2023
Author(s): Zhang Y, Sun F, Yuan K, Du Y, Wu L, Ge Y, Zhang Z, Sun S, Cao W
Maternal exposure to ambient heat may be associated with congenital anomalies, but evidence is still limited. OBJECTIVES: We aimed to estimate the association between maternal exposure to ambient heat during the 3-12 weeks post-conception (critical window of organogenesis) and risk of total and various diagnostic categories of major structural anomalies among live singleton births in the contiguous United States (US). METHODS: We included data on 2,352,529 births with the first day of critical developmental windows falling within months of May through August from 2000 to 2004 across 525 US counties. We used a validated spatial-temporal model to estimate daily county-level population-weighted temperature. We used logistic regression to estimate the association between ambient temperature and risk of diagnostic categories of anomalies during the critical window after adjusting for individual and county-level factors. We conducted subgroup analysis to identify potential susceptible subpopulations. RESULTS: A total of 29,188 anomalies (12.4 per 1000 births) were recorded during the study period. Maternal exposure to extreme heat (> 95th percentile) was associated with higher risk of total anomalies, central nervous system anomalies, and other uncategorized anomalies with an odds ratio (OR) of 1.05 (95 % CI: 1.00, 1.11), 1.17 (95 % CI: 1.01, 1.37), and 1.16 (95 % CI: 1.04, 1.29) compared with minimum morbidity temperature, respectively. The associations were homogeneous across subgroups defined by maternal age, maternal race/ethnicity, marital status, educational attainment, and parity, but were more pronounced among mothers residing in more socially vulnerable counties and births with multiple anomalies. CONCLUSIONS: Among US live singleton births, maternal exposure to ambient heat may be associated with higher risk of total anomalies, central nervous system anomalies, and other uncategorized anomalies. We suggest additional research is carried out to better understand the relations between maternal heat exposure and congenital anomalies in the presence of global warming.
DOI: https://dx.doi.org/10.1016/j.scitotenv.2023.163613