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Advancing adoptability and sustainability of
digital prediction tools for climate-sensitive
infectious disease prevention and control

Dung Phung 1,2 , Felipe J. Colón-González3, Daniel M. Weinberger4, Vinh Bui5,
Son Nghiem6, Cordia Chu7, Hai Phung7, Nam Sinh Vu8, Quang-Van Doan 9,
Masahiro Hashizume 10, Colleen L. Lau 11, Simon Reid1, Lan Trong Phan8,
Duong Nhu Tran8, Cong Tuan Pham 7, Kien Quoc Do1,12 & Robert Dubrow 13

Few forecasting models have been translated into digital prediction tools for
prevention and control of climate-sensitive infectious diseases. We propose a
3-U (useful, usable, and used) research framework for advancing the adopt-
ability and sustainability of these tools. We make recommendations for 1)
developing a tool with a high level of accuracy and sufficient lead time to
permit effective proactive interventions (useful); 2) conducting a needs
assessment to ensure that a tool meets the needs of end-users (usable); and 3)
demonstrating the efficacy and cost-effectiveness of a tool to secure its
adoption into routine surveillance and response systems (used).

Climate-sensitive infectious diseases
The Intergovernmental Panel on Climate Change has concluded with
high confidence that climate change has caused and will continue to
cause an increased incidence of climate-sensitive infectious diseases
(CSIDs), including vector-borne, food-borne, water-borne, and
respiratory diseases1. Increasing temperature can enhance the trans-
mission of vector-borne diseases by increasing vector survival, feeding
activity, and replication rate; increasing the rate of development of the
pathogen within the vector; lengthening the transmission season; and
expanding the geographic areas suitable for transmission2,3. In addi-
tion, changes in precipitation can increase vector abundance in
context-specific ways2,3. A warming climate can also increase the inci-
dence of water-borne and food-borne diseases by accelerating the
proliferation of pathogens in their habitats and causingmore frequent

extreme weather events that facilitate the spread and outbreaks of
these diseases4,5. Exposure to wildfire smoke, which is increasing due
to climate change, may increase the risk of respiratory infections6,7.
Furthermore, both unusually wet and unusually dry conditions are
associated with increased risk of fungal and other respiratory infec-
tions in sometimes complex ways8–10, and meteorological factors,
including temperature, humidity, and precipitation, influence the
seasonality of viral respiratory infections11.

Opportunities andbarriers to developprediction tools for CSIDs
Digital technology could facilitate the incorporation of climatic big
data into disease surveillance systems to enable them to serve as early
warning systems for CSIDs12. Climate-informed statistical models can
be used to develop digital tools to forecast CSID outbreaks at different
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spatiotemporal resolutions13. Such tools, integrated into surveillance
systems, could provide the lead time needed for public health pro-
fessionals to thwart predicted outbreaks by proactively implementing
preventive measures, in partnership with communities12–14. Such early
warning systems are especially important to implement in low-and
middle-income countries (LMICs)3,15, which suffer the worst impacts of
climate change, have the highest incidence of CSIDs like dengue and
malaria, and have the least adaptive capacity to address these impacts
due to limited resources.

Numerous studies have developed climate-informed forecasting
models for CSIDs. However, only a small proportion of these models
have been translated into user-friendly digital tools for incorporation
into routine surveillance systems13,16. Furthermore, the relatively few
developed tools rarely have been used in the field for disease pre-
vention by public health practitioners. A comprehensive landscape
mapping review published by the Inter-American Institute for Global
Change Research identified 37 existing climate-informed CSID mod-
elling tools that were transparently described and validated, named,
and accessible13,16. Thirty of these tools focussed on vector-borne dis-
eases. Twenty of the tools had either been presented as an accessible
product or used in an implementation setting; however, only one-
quarter of the tools had interfaces legible to decision-makers. The
review did not attempt to determine whether the tools were being
actively used to inform decision-making.

The Inter-American Institute for Global Change Research land-
scapemapping review included interviews with researchers and policy
stakeholders that revealed several important barriers to the use of
climate-informed CSID models as forecasting tools by public health
practitioners13,16. One key barrier was an inadequate collaboration
among modellers, tool developers (i.e., software engineers), and
decision-makers to translate models into practical tools that would be
adopted by decision-makers. A second key barrier was insufficient
training for practitioners who would use the tools. These barriers
pointed to the need for the co-creation of practical, user-friendly,
sustainable tools through multi-sectoral collaboration and local
training and capacity building. Finally, there is a paucity of compelling
evidence on the efficacy and cost-effectiveness of prediction tools for
reducing the incidence of CSIDs. Such evidence is needed to make a
case for public health authorities to adopt these tools.

Goal of this perspective
Based on our experience in research and practice, our multi-
disciplinary team of experts from disciplines including medicine,
public health, epidemiology, infectious disease modelling, climate
science, sociology, economics, health services and management, and
information and communication technology, believe that for CSID
prediction tools to be sustainably adopted into routine surveillance

systems, theymustfirst be shown, according to the concept of use17, to
be useful, usable, and effectively used for disease prevention and
control.

The concept of use, which we borrowed from the field of product
design, has three contextual principles: useful, usable, and used17. A
product is useful if it allows the users to accomplish a specific purpose.
However, it may not be used if it is not usable, meaning that the pro-
duct is readily understandable, user-friendly, and can be used in a
simple, convenient, efficient, engaging, and effective manner. Fur-
thermore, a productmay be both useful and usable but still not used if,
for example, it does not meet defined needs and cost-effectiveness so
that it is adopted by potential users. In this Perspective, we propose a
comprehensive research framework for advancing the adoptability
and sustainability of CSID prediction tools, based on the concept of
use and the 3-U principles (Fig. 1).

How to make the tool USEFUL
A useful tool should be based on a CSID-specific model that pre-
dicts the incidence or an outbreak of the CSID with a high level of
accuracy and with enough lead time to permit effective proactive
prevention efforts. Mechanistic models, based on first principles,
simulate biological processes involved in transmission dynamics,
whereas empirical models are based on observed statistical
associations between predictors and the CSID outcome. Many
prediction models incorporate both mechanistic and statistical
components18.

Model development
A prerequisite for adequate model development is the availability in
the target geographic location of high-quality, long-term datasets for
the daily, weekly, or monthly incidence of the CSID of interest; climate
data, such as daily mean air temperature and daily precipitation; and
other key predictors, such as population density, land cover, and
socioeconomic variables. An important limitation is that some or all of
these data may be of insufficient quality (e.g., paper rather than elec-
tronic records)or not available at all, especially in LMICs andother low-
resource settings, in which case development of a prediction model
and subsequent tool may not be possible. Thus, before a project to
develop a digital prediction tool for CSID prevention and control can
be launched, consultations with data providers are essential to
understand the existence, features, strengths, and limitations of these
datasets. Furthermore, a systematic review could be conducted to
identify previous modelling approaches for the CSID of interest, their
strengths and limitations, and climate and non-climate predictors
identified in previous studies19. Then, CSID outcome and predictor
datasets at the appropriate spatiotemporal resolution need to be
identified and access secured.

Fig. 1 | The research framework based on the 3-U principles17. Each blue oval
represents a stage in the development of an early warning system. Methods to
ensure that the early warning system is useful, usable, and used are applied at

specific stages of the development process. In addition, a needs assessment should
be conducted for each stage of the project.
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It would be valuable for public health authorities to incorporate
forecasting uncertainties into their decision-making20,21. Therefore,
approaches that yield probabilistic outcomes are most useful. For
instance, spatiotemporal models fitted using a Bayesian framework
enable quantification of the probability that an outbreak may occur at a
specific time and location22. While a number of machine learning meth-
ods have recently been developed for forecasting, they often do not
yield uncertainty estimates23. The ideal model should provide accurate
disease forecasting at a small enough spatial scale and a long enough
lead time to make it feasible for resource-constrained public health
departments to proactively implement the measures needed to prevent
a CSID outbreak in time to make a difference. Finally, previous studies
have found that ensemble models, which aggregate multiple indepen-
dent base models, generally outperform the individual models24,25, sug-
gesting that ensemble models may be favoured for CSID forecasting.

Model validation
A validation process, which evaluates the accuracy of a model in pre-
dicting disease incidence and outbreaks, is essential for selecting the
optimal model(s). Time series cross-validation is a general tool for
assessing the predictive ability of a model26, in which a model’s pre-
dictive performance after a training period is tested by comparing
predicted and observed values using the leave-future-out cross-
validation technique27. To validate the prediction of CSID incidence,
three inter-related metrics can be used in concert28: (i) Sharpness
examines the varianceof the predictivedistribution at each timepoint;
(ii) Bias tests whether a model systematically over- or under-predicts;
and (iii) Continuous Rank Probability Score (CRPS) is a summary mea-
sure that rewards sharp, unbiased forecasts. CRPS is similar to a mean
absolute error but uses the full probability distribution of the forecasts
instead of a point estimate, making it relevant for Bayesian prediction
models22. It is desirable for forecasts to have a low CRPS (CRPS has no
upper bound, with zero indicating a perfect forecast) and to be sharp
(i.e., for the predictive distribution to have low variance) and unbiased.
Validation is also needed to assess the accuracy of a model for pre-
dicting CSID outbreaks (as opposed to incidence), which occur when
the number of observed cases exceeds a location-specific epidemic
threshold. The Brier score29, used to measure the accuracy of prob-
abilistic forecasts for predicting events, is commonly used for valida-
tion of outbreak predictions of Bayesianmodels. An example ofmodel
development and validation for dengue forecasting is shown in Fig. 2.
It is possible that a model that predicts CSID incidence and outbreaks
far enough in advance to be useful will not be identified, in which case
the project should be abandoned.

How to make the tool USABLE
A usable tool is user-friendly, simple, andmeets the needs of end-users
(e.g., public health practitioners) for CSID prevention and control.
Such a tool could be a web-based software system with a mobile app
interface based on the outputs of the prediction model. The tool
should allow users to input data, receive alerts, and access real-time
information conveniently from anywhere. Ideally, a usable tool would
be integrated into a routine surveillance system for the CSID in ques-
tion, based ondatasets that are automated and updated in real-time by
existing systems and available for future use in the developed tool for
routine forecasting. It is important to recognise that in many settings
(especially LMICs and other low-resourced settings) routine surveil-
lance systems are rudimentary or do not exist and that existing sys-
tems (which vary widely in type, quality, human resources, and
financial capacity)may not be automated, updated in real-time, and/or
available for future routine use. Inmany instances, after these usability
factors are carefully assessed, a decisionmay bemade that substantial
capacity building would be needed as a prerequisite to tool
development.

Needs assessment
Furthermore, to ensure that the tool meets the needs of end-users,
once a decision is made to proceed with tool development, a needs
assessment (NA) should be conducted for each stage of the project.
The NA, which should incorporate assessments of community and
public health system assets and technology acceptance of potential
tool users, should engage a wide range of stakeholders, including
decision-makers, public health practitioners, data providers,
researchers, other technical experts, and community leaders.

For the early model development and validation stage of the
project, the NA should identify the needs to ensure that the tool is
appropriate and acceptable to relevant stakeholders. For example,
public health practitioners may have a well-established definition for
an outbreakof theCSID in question. If this is the case, ideally themodel
should adhere to this definition. However, if themodel developersfind
that another definition would be more useful for forecasting, a nego-
tiation process between the research team and the practitioners
should ensue to come up with an outbreak definition that both allows
for optimal forecasting and is acceptable to the practitioners.

For all stages of tool development, the NA should assess the
requirements for the tool to be effectively used in the surveillance
system and routine prevention practices. For example, when the tool
predicts an outbreak, what will the proactive intervention to prevent
the outbreak look like? This will dependon factors such as the financial

Fig. 2 | Framework for developing and validating a dengue prediction model.
Each box represents a step in the process of developing and validating a prediction
model. The grey boxes provide details on the methods and data used for model

development and evaluation. The figure in the “Prediction Tool” box represents a
colour code for a warning message.
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and human assets available to the public health system, as well as
practitioners’ beliefs about the effectiveness of alternative interven-
tion strategies. If the proactive intervention might involve community
mobilisation, then assessing community assets that could aid in the
mobilisation, such as faith-based organisations and media outlets,
would be relevant. Again, a negotiation between the research teamand
the practitioners may be needed to settle upon the characteristics of
the proactive intervention. For the project’s final stages and the post-
project stage, the NA should evaluate the need for sustaining and
expanding the use of the tool going forward. This often will be a
question of assessing financial and human assets as well as public
health system priorities and needs.

Bradshaw’s widely-used concept of four types of needs, as stated
in his seminal 1972 “Taxonomy of Social Need”, can provide a founda-
tional framework for an NA and categorising and understanding the
complexity of needs30. It has been used to inform social policy design,
service allocation, and resource distribution. Comparative needs are
defined objectively and are assessed by comparing the health status of
populations and the health services available to them. Normative
needs, defined by experts, set a standard against which the tool and its
use should be evaluated. Expressed needs are defined bywhat products
or services a community uses. Felt needs are defined by whatmembers
of the target population state their needs and desires to be. An NA
process for tool development can be based on a literature review and
consultationswith other user groups (comparative needs), aswell as in-
depth interviews or focus group discussions with 1) policymakers,
experts, and scientists (normative needs) and 2) practitioners, data and
technical service providers, and communitymembers (expressed needs
and felt needs) (Fig. 3).

A usable tool is easy to use, compatible with existing systems and
technologies, and aligns with the users’ skills and capabilities. Previous
studies have shown that the “fit” between information technology (IT)
and routine clinical practices “will lead intended end-users to accept or
reject the IT, to use it ormisuse it, to incorporate it into their routine or
work around it”31. This iswhy the assessment of technology acceptance
of potential users is a vital component of the NA. Various technology
acceptance frameworks that consider determinants of technology use,
such as perceived usefulness, perceived ease of use, social influence,
and habit may be used to facilitate this assessment32–34.

NAs have limitations. First, felt needs vary among individuals and
cultures, leading to potential biases depending on the perspectives of
the key informants. Thus, involving diverse and representative stake-
holders is crucial35. Second, not all expressed needs are communicated
due to barriers such as lackof access. Triangulatingmultiple sources of
information canhelp reveal these hidden needswithin the community.
Third, because needs may evolve over time, researchers should
maintain stakeholder engagement throughout the project and estab-
lish feedback mechanisms to capture changing needs. Finally, needs
are often complex and conflicting among different stakeholders,
which may complicate identifying solutions that address all perspec-
tives. Researchers must prioritise needs that are both actionable and
aligned with the broader objectives of the project36.

How to advance the tool to be USED
Efficacy evaluation
Even if an early-warning tool is useful and usable, it still may not be
used if there is limited or no evidence of its efficacy and cost-
effectiveness for reducing CSID incidence. A randomised controlled
trial is the gold standard study design for assessing the efficacy of a
public health intervention. Since an early-warning tool is a community-
level, geographically based intervention carried out by a public health
department, rather than an intervention that targets individual people,
a randomised controlled trial of the efficacy of an early-warning tool
must randomise geographic units in concert with their associated
public health departments. Such a trial is known as a cluster (i.e.,
group) randomised controlled trial (CRCT), where the unit of rando-
misation is by necessity, the cluster (in this case, a geographic unit) and
not the individual person37. CRCTs have beenwidely used to assess the
efficacy of infectious disease interventions38, including, for example, a
CRCT of communitymobilisation for dengue prevention in 150 census
enumeration areas in Nicaragua and Mexico39, a CRCT of mass drug
administration against malaria in 32 villages in The Gambia40, and a
CRCT of a community-led total sanitation intervention with a focus on
improved household toilets to reduce diarrhoea incidence in children
in 48 villages in Ethiopia41.

A prerequisite for conducting a CRCT to assess an early warning
tool would be a geographic region consisting of sub-regions (i.e., dis-
tricts) served by a public health department(s) that has (have) the

Fig. 3 | Needs assessment framework. This framework is used to identify needs
related to integrating a tool into a routine surveillance system and preventive
practices. The top row of the figure represents the needs assessmentmethods. The
second row describes the data collection process and research participants

included in each needs assessment activity. The third row shows the corresponding
types of needs identified by each needs assessment method. The final box shows
the findings of the needs assessment.
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willingness and capacity to implement a proactive intervention when
the early-warning tool predicts an outbreak. Clusters would be ran-
domised to an intervention arm and a non-intervention (control) arm.
To determine the number of clusters to be randomised, a target
reduction in CSID incidence (e.g., 25%) in the intervention arm com-
pared to the control arm needs to be set, and then a sample size
calculation needs to be conducted to ensure sufficient statistical
power. This calculation needs to take into account both the number of
clusters and the number of individuals within clusters due to a phe-
nomenon known as within-cluster correlation; i.e., individuals within
clusters tend to be more like each other than individuals in other
clusters with respect to the probability of the outcome42. Statistical
power is inversely proportional to the degree of within-cluster
correlation.

An example of a CRCT for a vector-borne CSID is illustrated in
Fig. 4. The non-intervention (control) clusters would conduct routine
prevention practices, as promulgated by public health authorities, for
the CSID in question. Intervention clusters alsowould conduct routine
prevention practices, but, in addition, if the early-warning system
predicts anoutbreak, theywould conduct a set of proactive preventive
interventions prescribed in the study protocol. Primary outcome
measures could be disease incidence and frequency of outbreaks, and
secondary outcomes couldbe entomological indices as determined by
vector monitoring.

Cost-effectiveness evaluation
In addition, a cost-effectiveness analysis that generates value-for-
money evidence should be incorporated into the trial43. The key out-
come would be the incremental cost-effectiveness ratio (ICER), that
compares the incremental cost change for disease surveillance and the
incremental outcome cost change (e.g., disability-adjusted life years
[as determined by society’s willingness to pay], number of hospitalised
CSID cases). The tool would be considered cost-effective if the esti-
mated ICER were less than one.

Limitations of cluster-randomised controlled trials
Although, by necessity, the efficacy of a CSID early warning system
needs to be assessed at the level of geographic units, CRCTs have
limitations. First, if the within-cluster correlation is high, then a large
number of clusters may be needed for sufficient statistical power,
which could be expensive and difficult to implement. Second, despite
randomisation, CRCTs may be subject to confounding when the
number of randomised clusters is relatively small, such that the
intervention and control groups may not be comparable with respect
to confounders simply due to chance37. This limitation could be
addressed by conducting stratified randomisation of clusters on
important known confounders, such as baseline CSID incidence rate,
and by adjusting for confounders in the analysis.

Third, there is the possibility of cross-contamination of interven-
tion and control clusters due to factors such as the movement of
people or vectors (in the case of a vector-borne CSID) across clusters,
which would make intervention and control clusters effectively more
alike and, therefore, bias efficacy estimates toward the null38,44. This
limitation could be addressed by creating geographic buffer zones
between intervention and control clusters, by only using the central
partof each cluster in thedata analysis (effectively creating geographic
buffers), or by using clusters of large geographic size to reduce the
impact of cross-cluster movement of people or vectors (in the case of
a vector-borne CSID)38,44.

Furthermore, the possibility of cross-contamination could be
avoided completely by using a quasi-experimental, nonrandomized
pre/post-intervention study design instead of a CRCT45. In this design,
the intervention is implemented in a defined geographic area and the
incidence of the CSID being studied is compared before and after the
intervention is implemented; without a control geographic area, there
is no contamination issue. However, abandonment of a randomised
design opens up the possibility of severe confounding as there are
many factors, both climatic and non-climatic, that could affect the
incidence of a CSID between the pre-intervention and post-

Fig. 4 | Framework for a cluster-randomised controlled trial (CRCT). Here, we
illustrate a CRCT to evaluate the efficacy and cost-effectiveness of a prediction tool
for a vector-borne CSID. Clusters are randomly assigned to the intervention arm
and the control arm. The clusters in both arms follow routine disease control
procedures. The clusters in the intervention arm also receive a proactive

intervention prompted by the prediction of an outbreak by the early warning sys-
tem. Measurement of disease incidence and outbreaks, vector indices, and cost-
effectiveness are conducted in all clusters before and during the intervention to
compare outcomes in the two arms.
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intervention periods apart from the intervention itself 45. For example,
for reasons that arenotwell understood, between 2023 and2024 there
was an unprecedented increase in probable dengue cases in Brazil –
from 1.65million in the entire year of 2023 to 6.56million in the first 45
epidemiological weeks of 202446. Thus, it often is preferable to risk
bias toward the null in a CRCT versus risking severe confounding in a
nonrandomized pre/post-intervention study.

There are specific barriers to conducting trials in LMICs, including
low levels of financial and human capacity, ethical and regulatory
system obstacles, poor research environment, operational barriers,
and competing demands on potential research, practice, or commu-
nity partners47. Finally, it is possible that a CRCT will have a null result,
which would indicate that the early warning tool should not be
implemented.

How to make the tool SUSTAINABLE
The goal of sustainability of the prediction tool must be considered
prior to, during, and after the project.

Pre-Project
The project should engage stakeholders, including decision-makers,
researchers, local, regional, and national public health practitioners,
data providers, software developers, other technical experts, and
community representatives in designing the project to ensure a sense
of ownership and that its desired outcomes are consistent with the
needs of the health sector and the community.

During the project
NAs should be conducted for all phases of the project to ensure the
appropriateness and acceptability of the tool to the relevant stake-
holders. TheCRCT shouldbedesigned as apragmatic trial that ensures
alignment with routine practices of the public health departments at
various administrative levels (e.g., local, regional, national), including
integration of the tool into the existing surveillance and response
systems without adversely interfering with current practices.

Post-project
The following activities would ensure post-project use of the tool:

• Adoption/endorsement of the tool by public health departments,
ideally including at the national level (i.e., the Ministry of Health).
Once the efficacy and cost-effectiveness of the prediction tool
have been established, the project should implement commu-
nication activities (technical workshops) to promote such
adoption.

• Capacity-building through training-of-trainers (public health
practitioners) to advance implementation of the tool beyond
the intervention districts in the trial. The trainers would train
practitioners in other districts of the country once the tool has
been adopted.

• Collaborating with public health departments to integrate mon-
itoring and evaluation of the tool into the routine practices of the
CSID surveillance system. Monitoring and evaluating the ongoing
effectiveness of the tool in maintaining a reduction of CSID inci-
dence should be funded by regular public health funding
schemes.

• To maximise the usefulness, reach, and reproducibility of the
project, particularly in LMICs, release the study design and
research outputs along with guidance documents via open
source. The modelling software tool could be deposited in a
version control platform like GitHub. Guidance documents would
describe details of the research, including methods, instruments,
procedures, statistical analysis, and computer code. In addition,
sample datasets, along with a user’s guide that would enable
researchers to use the developed software effectively should be

published. Thiswouldhelp researchers reproduce the project and
develop early warning tools for CSID adapted to their particular
settings.

Conclusion
Although there is a high level of interest in developing prediction tools
for CSID prevention, how to ensure the actual use of these tools in
routine surveillance systems is still an open question. In 2005, the
World Health Organisation published a conceptual framework for
developing early warning systems for CSIDs48. The publication focused
on how to develop a “useful” (our terminology, not theirs) early
warning system and performed a detailed evaluation of candidate
CSIDs. Although it advocated for including health policymakers in all
stages of system design and for rigorous evaluation and cost-
effectiveness analysis, it did not provide detailed guidance on devel-
oping a “usable” and “used” early warning system.

In this Perspective, we recommend a 3-U framework to promote
the usefulness, usability, and actual use of prediction tools, as well as
approaches to ensure that the tool is sustainable. We hope our
recommendations will help policymakers, researchers, public health
practitioners, and donors better formulate projects to advance the
adoptability and sustainability of early warning tools for CSID pre-
vention and control. As the incidence of CSIDs continues to increase
due to climate change, integrating early warning tools into routine
practice will represent a crucial climate change adaptation measure.
This will be especially challenging in LMICs and other low-resource
settings, where these measures are most needed.
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