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Abstract The co‐occurrence of multiple hazards is of growing concern globally as the frequency and
magnitude of extreme climate events increases. Despite studies examining the spatial distribution of such
events, there has been little work in examining if all relevant life threatening and damaging hazards are captured
in existing hazard databases and by common hazard metrics. For example, local/regional flash flooding events
are seldom captured by optical satellite instruments and are subsequently excluded from global hazard
databases. Similarly, the heat hazard definitions most frequently used in multi‐hazard studies inherently fail to
capture events that are life‐threatening but climatologically within an expected range. Our goal is to determine
the potential for increasing multi‐hazard event detection capabilities by inferring additional hazard footprints
from widely accessible satellite data. We use daily precipitation and temperature satellite data to develop an
open‐source framework that infers additional hazard footprints that are not included in traditional methods.
With the state of Texas as our study area, we detected 2.5 times as many flood hazards, equivalent to $320
million in property and crop damages. Furthermore, our expanded heat hazard definition increases the impacted
area by 56.6%, equivalent to 91.5 million km2 over an 18 year period. Increasing hazard detection capabilities
and expanding existing definitions of hazards using daily satellite data increases the temporal and spatial
resolutions at which multi‐hazard events are detected. Having more complete data sets of all relevant hazard
extents improves our ability to track global trends and more accurately determine the magnitude of hazard
exposure inequities.

Plain Language Summary Expanding hazard detection capabilities is critical as climate extremes
intensify. This study demonstrates the potential of daily satellite data to address limitations in current global
hazard detection methods, which often exclude localized and life‐threatening events like flash floods and
extreme heat within expected climatological ranges. Using an open‐source framework, we identified 2.5 times
more flood events in Texas, equating to $320million in damages, and increased the detected area of heat hazards
by 56.6%, covering 91.5 million km2 over 18 years. These advancements improve hazard monitoring, enabling
more accurate assessments of climate risks and hazard exposure inequities. Enhanced detection of multi‐hazard
events supports better‐informed responses to growing climate challenges worldwide.

1. Introduction
Climate change's threat to increasing future flood risks is well established, with current models suggesting
damages will increase 10–20 fold in some locations over the next few decades (Hallegatte et al., 2013; Winsemius
et al., 2015). Similar patterns of increased global risk exist for other hazards including droughts (Y. Liu &
Chen, 2021), wildfires (Pausas & Keeley, 2021), and extreme heat events (Dong et al., 2015). In addition to
climate change, anthropogenic factors (e.g., land use changes, floodplain management, impervious surface
development, increased emissions, etc.) are increasing future flood and heat risks (Hounkpè et al., 2019; Kishore
et al., 2022; Müller & Höfer, 2014; W. Zhang et al., 2022). These parallel trends in rising risks are just one
component contributing to the increased interest in multi‐hazard events. The United Nations (UN) and the
Intergovernmental Panel on Climate Change (IPCC) define a hazard as a potentially damaging physical event that
may cause loss of life, injury, property destruction, social/economic disruption or degradation (Cardona
et al., 2012). Therefore, a multi‐hazard event occurs when a hazard happens, simultaneously, cascadingly, or
cumulatively (e.g., compounding) in time and space (UNDRR, 2016). While some studies specifically examine
the mechanisms by which multi‐hazard events influence each other (e.g., Gill & Malamud, 2014), in the context
of this study a multi‐hazard event is the occurrence of more than one hazard overlapping in time and space (e.g.,
Claassen et al., 2023; de Ruiter et al., 2020; Kappes et al., 2012).
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Defining a multi‐hazard event or identifying the appropriate modeling methodology can be a non‐trivial task
because of divergent methodologies of cross‐disciplinary sciences (Kappes et al., 2012), the multitude of different
compounding/cascading/triggering mechanisms (Tilloy et al., 2019), and the challenges associated with vali-
dating the accuracy of these relationships (Wang et al., 2020). While studies are beginning to identify some
standardized approaches to creating coherent multi‐hazard data sets (Claassen et al., 2023; Kappes et al., 2012),
there remains a gap in addressing the completeness of the underlying input data into multi‐hazard studies. We
define completeness as the ability for an underlying hazard data set or definition to capture all relevant events that
have an impact on society by imposing either physical damage or potentially life endangering situations. Flooding
and extreme heat events, two of the most damaging natural hazards (Newman & Noy, 2023), are two event types
whose completeness are particularly impacted by their input data.

In terms of flooding events, global multi‐hazard research has predominantly relied on either hydrological models
or flood databases. Studies that rely on hydrologically modeled information have the advantage of being able to
incorporate future climate scenarios, which can greatly support the study of global hazard trends. However,
limitations including coarser spatial resolutions, untested accuracy, high levels of uncertainty, and (sometimes)
proprietary nature (e.g., Koks et al., 2019; Shi et al., 2015; Stalhandske et al., 2024) can make such models
unsuitable for more regional analyses (Schubert et al., 2024; Ward et al., 2015). Databases have the advantage of
being built on verifiable empirical evidence, reducing the uncertainty that may come from hydrological models.
One of the leading global flood databases that continues to be utilized by researchers is the Dartmouth Flood
Observatory (DFO) because it contains spatial data for over 4,900 events over 35 years (Brakenridge, 2024;
Kettner et al., 2021). Entries in the database include a boundary shapefile showing the extent and location of the
flooding event, and these boundaries directly supported the creation of the Global Flood Database (GFD), a
collection of satellite derived flood extent maps that has increased our ability to detect exposed populations
(Tellman et al., 2021). However, because specific criteria have to be met for an event to be considered large
enough to be entered into the DFO, and specific conditions have to exist for satellite based delineation to be
suitable (Notti et al., 2018; Tellman et al., 2021), there is a subset of flood hazard events not accounted for in the
DFO or GFD databases.

Extreme heat is another common feature of many multi‐hazard studies as a result of rising global temperatures and
the threat of increased exposure to global populations (Forzieri et al., 2016). Most commonly, heat hazards are
delineated using a heatwave definition, typically a minimum of three consecutive days where the temperature is
above a defined percentile (e.g., 90th or 95th) for that location throughout the record length (Lavaysse et al., 2018;
Nairn & Fawcett, 2014; Pezza et al., 2011; Ridder et al., 2020; C. Rogers et al., 2022; Sutanto et al., 2020).
Analyzing temperature hazards through a heatwave metric alone fails to capture extreme temperatures that may be
within climatologically expected ranges but are still detrimental to people and the environment (Bouchama
et al., 2024). There are a few studies that alternatively focus on heat events through the number of days that exceed
health standard thresholds (Heo et al., 2019; Stalhandske et al., 2024). Increases in the frequency and intensity of
both heatwaves and heat events will increase the threat of heat‐related illnesses on individuals, reduce ecosystem
services, and decrease economic productivity (Margolis, 2020; Shayegh et al., 2020; Smale et al., 2019).
However, the combination of both heatwave and heat event definitions in the same multi‐hazard study is un-
common, and we are therefore likely undercounting the threat of rising global temperatures.

The goal of our work is to utilize high spatial and temporal resolution satellite remote sensing data to delineate
flooding and extreme heat multi‐hazard events and to determine if vulnerable populations are inequitably
exposed. Here we present a framework for increasing our ability to delineate flooding and extreme heat multi‐
hazards and test it by observing events in Texas over the past two decades. We identify flood hazards as the
regions where the sub‐daily and multi‐day precipitation average recurrence intervals (ARIs) are above a 2‐year
threshold. We verify the precipitation‐based proxy flood hazard boundaries by comparing them to DFO events
and the NOAA Storm Events Database. We identify heat hazards as the unary union of heatwaves and extreme
heat events. We use a traditional 95th percentile heatwave metric definition and a heat wave metric based on the
Wet Bulb Globe Temperature (WBGT) and occupational safety standards to identify when temperatures directly
put people's health at risk as defined by recommended exposure limits (Anderson et al., 2013; Bernard &
Iheanacho, 2015; Hawkins et al., 2016; Osczevski & Bluestein, 2005). The specifics of how flood and heat
hazards are calculated can be found in the Methods section. Finally, we compare the extent to which existing
methods (DFO boundaries and heatwaves, DFO/HW) and our expanded methods (ARI boundaries and merged
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heat events/waves, ARI/HH) can detect multi‐hazard events across Texas, and we determine the impact of each
set of methods on assessing hazard exposure inequities.

2. Methods
2.1. Texas and Extreme Weather Events

We chose Texas as our study area because it is one of the most impacted states in the United States in terms of
extreme weather events. Of the 396 weather events in the United States that had a damage exceeding $1 billion
(1980 through September 2024), Texas has been affected by the most of any state at 187 (47%, 58 more events
than the next closest state), amounting to total damages between $300 and $430 billion from these storms alone
(NCEI, 2024). Texas serves as an ideal case study region because of the frequency of extreme heat and flood
events over the past 20 years, as well as it being the 2nd largest state in terms of population and area, having
numerous diverse geographic and socioeconomic regions.

2.2. Existing Flood Hazard Databases

To determine the degree to which global databases are capturing all relevant flood hazard events, we compare the
data record of the Dartmouth Flood Observatory (DFO) to the NOAA Storm Events Database between 2001 and
2020 (Brakenridge, 2024). The NOAA Storm Events Database was originally built to collect tornado event in-
formation (1950), was later expanded to include thunderstorm wind and hail event information (1955), and then
transformed into a holistic database of 48 weather events (1996 to present). Events are entered based on reports
from the National Weather Service's Weather Forecast Offices (NWS WFOs). An event's metadata typically
include the event type (e.g., hail, flash flooding, thunderstorm wind, etc.), property/crop damage estimates, death/
injury estimates, location attributes (state, county/NWS designated area, reportingWFO office), a narrative of the
event, and often a geo‐referenced point or line.

Events within the database are aggregated into episodes, which represent larger storm occurrences (e.g., multiple
floods, damaging winds, and lightning strike events might make up a single storm episode over multiple days).
We specifically filtered the database to only include the eight event types that directly relate to flooding: Coastal
Flood, Flash Flood, Flood, Heavy Rain, Hurricane (Typhoon), Storm Surge/Tide, Tropical Depression and
Tropical Storm. While the database captures a myriad of events and episodes, there are often multiple episodes
that can be attributed to a single storm system as a result of either multiple WFOs not combining episodes across
their reporting boundaries, or there being multiple days between event occurrences. For example, we estimate that
Hurricane Harvey is a collection of at least 7 episodes, composed of 168 individual flood‐related events when we
compare the geographic and temporal distribution of database entries to the known extent and duration of the
storm.

In order to capture the complete dynamics of storm systems for more accurate comparisons with other data sets,
we cluster episodes into storm periods. A given storm period, p, is the union of a storm event, e, with all other
storm events, ei, out of the entire set, E, that are within a given distance, δ, and time, τ, from the first storm event
(Equation 1).

p = e∪ {ei ∈E| dist(e,ei) ≤ δ and Δt(e,ei) ≤ τ} (1)

We set threshold values of 200‐km and 3‐day because they created the most coherent descriptions of known storm
systems when we examined the geographic extent, temporal ranges, and event narratives of the combined epi-
sodes. We determined the geographic extent of each period based on the dissolved county boundaries of each
event. While many event entries have other geographic information associated with them (e.g., begin/end co-
ordinates, polylines, city locations), the precision and reporting frequency of these location attributes greatly
impacted the accuracy of the delineated boundaries when solely relying on them, and therefore county boundaries
produced the most consistent and logical footprints. Storm period metadata consist of the aggregated period and
event metadata to capture the total estimated reported property/crop damages and deaths. Reported damage and
death values are rough estimates, and WFOs take best efforts to update records as more information becomes
available. To reduce the chances of erroneous NOAA database entries impacting defined storm periods, we apply
a filter that removes any period that has less than two events (i.e., two positive confirmations an event actually
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occurred). We compare NOAA storm periods to DFO entries to determine the extent to which the DFO captures
observed events, and we calculate what percentage of damages and deaths these storms account for.

2.3. Precipitation Based Proxy Flood Hazard Boundaries

We compare the combined microwave‐infrared daily mean precipitation rate and the number of half‐hourly
precipitation retrievals (>0.01 mm/hr) from the Integrated Multi‐satellitE Retrievals for Global Precipitation
Measurement (IMERG) product (Final Run Level 3 data) with the gridded NOAA Atlas 14 Precipitation Fre-
quency Estimates to compute the single day average recurrence intervals (ARIs) for every rainfall event (Huffman
et al., 2023; Perica et al., 2018). A single day event, d, is the set of all cells, i, j, in the study area, R, whose ARI
value is greater than the designated threshold, α, and whose euclidian distance from another cell, dist(i, j), is less
than δ, or 200‐km (Equation 2).

d = {i, j∈R|ARIi,j ≥ α, & dist(i, j) ≤ δ} (2)

Similar to the aggregation method we utilized with the NOAA Storm Events Database, we merge multiple single
day storm events together using the same spatial and temporal thresholds of 200‐km and 3‐day (Equation 1). If the
new storm boundary is made of events that occur on multiple days, we calculate and threshold an additional event
boundary (Equation 2), except that we utilize a multi‐day ARI based on the sum of the total precipitation depth
and total length in days of the event. Finally, we dissolve the daily and multi‐day ARI storm episodes together to
create the proxy boundaries and compare them against entries in the DFO and NOAA Storm Events Database to
calculate the degree to which we can increase the detection of flood hazards.

It is important to note that precipitation is not the only driver of flood events, such as the case for storm surge and
other coastal related flood events. However, all flood events within our study area contain a precipitation
component and we can therefore identify regions that experienced some level of flooding due to the presence of
high precipitation. Studies have shown significant dependence between rainfall and storm surge events (Zheng
et al., 2013) as well as cyclones/hurricanes being the leading cause of compound flood events (Lai et al., 2021),
which are the leading flood hazard source in terms of damages in our study area. We therefore rely on precip-
itation as our proxy flood hazard delineator.

We use a 2‐year event as the ARI threshold (α) for what constitute a proxy flood hazard boundary. While a 2‐year
event may seem relatively low to what is typically considered a significant flood event (e.g., the 100‐ and 500‐year
event, or the 1% and 0.2% annual exceedance probability events) we have to consider the precipitation depths in
the context of the daily time step and the available ARI data. For example, the Memorial Day Flood in Austin,
Texas is often considered one of the worst recent flood events in the region and was driven by intense rainfall
(Preisser et al., 2022). During this storm, a peak rainfall depth of 132‐mm fell within five to six hours, while many
surrounding areas registered between 80‐ and 90‐mm of precipitation. Without considering the count of half‐
hourly observed precipitation intervals, 80‐mm of rainfall in 24‐hr is only a 1‐year event for this area. When
we do consider the count of observations to recognize the five to 6 hour storm length, the ARI rises to between a 2‐
and 5‐ year event. The NOAAAtlas 14 Precipitation Frequency Estimates publishes recurrence interval data for 1,
2, 5, 10, etc. year events. Upon examining known events (e.g., The Memorial Day Flood in Austin, TX, Hurricane
Harvey, Texas May Floods, Tropical Storm Erin), we saw that 1‐year events were not restrictive enough and 5‐
year events were too restrictive, resulting in our 2‐year event threshold.

Examining half‐hourly precipitation observations, 80% of the precipitation fell within two hours, raising the peak
intensity to between a 25‐ and 50‐ year event. While sub‐daily precipitation observations may better capture peak
intensities, case‐by‐case knowledge of each event is required to define appropriate cumulative rainfall thresholds.
Determining the exact intensity of rainfall events is not the goal of this work, rather we are interested in delin-
eating generalized hazard boundary footprints and we therefore utilize the daily IMERG precipitation products.
The daily precipitation product is the composite observation of the half‐hourly measurements, and we therefore
take advantage of the high temporal resolution of the underlying data while also benefiting from the generality
that daily data provide. Furthermore, this flood event was a part of a month‐long weather event throughout the
entire state of Texas (Schumann et al., 2016), and including multi‐day ARIs based on the total depth of water over
the total number of days of the entire event captures the full extent of the hazard. Final event boundaries must also
have a minimum area sum of 1,000 km2 over the length of the event.
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2.4. Heat Hazard Events

We calculate heat hazards (heatwaves and heat events) using a spatiotemporally filled daily minimum and
maximum near‐surface air temperature data set (2003–2020, 1‐km) (T. Zhang et al., 2022). The global near‐
surface air temperature data set was derived from combining ground‐station air temperature observations with
satellite‐based elevation and land surface temperature observations. Land surface temperature data come from the
Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the Aqua and Terra satellites. We
define a heatwave using the dominant existing method (e.g., Claassen et al., 2023; Pezza et al., 2011; C. Rogers
et al., 2022). A location, i, is experiencing a heatwave, wi = 1, at time t when there are a minimum of 3
consecutive days where both the minimum and maximum temperature, Tmin,max, are above the 95th percentile, for
that specific location, T95

i (Equation 3). Additionally, we apply a 5‐day moving window average to reduce the
impact of outliers on the temperature record. Delineated heatwaves that have only one non‐heatwave day between
them are combined into single events.

wi =
⎧⎨

⎩

1, if ∃t s.t.∑2
k=01(T

min,max
i,t+k > T95

i ) = 3

0, otherwise
(3)

In terms of extreme heat events, air temperature alone is not enough to capture the complex relationships between
human physiology and environmental thermal regulation (Basu & Samet, 2002; Kovats & Hajat, 2008;
Leon, 2015; Mora et al., 2017). The wet bulb globe temperature (WBGT) accounts for additional meteorological
variables (solar radiation, humidity, and wind speed) that influence the human impact of extreme temperatures,
making it a more appropriate measurement for describing human‐heat relationships (Bernard & Iheanacho, 2015).
The WBGT is derived from a combination of three different types of thermometers: a black globe thermometer to
determine the solar factor (sun angle and cloud coverage), a wet bulb thermometer to account for humidity, and a
dry bulb thermometer for the ambient air temperature. Since the WBGT is not easily determined from satellite
derived data sets because of the number of complex input variables, we utilize a surrogate relationship that only
requires air temperature and relative humidity, or the heat index (Bernard & Iheanacho, 2015). We use the daily
maximum near‐surface air temperature (T, °F) along with daily relative humidity (R, percent) data to calculate the
heat index (HI) and subsequently estimate the WBGT (°C) (Equations 4 and 5) (Bernard & Iheanacho, 2015).
Daily global relative humidity data come from the Atmospheric Infrared Sounder instrument (AIRS Level 3)
aboard the Aqua satellite (AIRS, 2019). To create a spatiotemporally filled data set, missing values are filled using
a 5‐day (5 days before and 5‐day after) moving window average. If a location has more than 10 consecutive days
without an observation, than the missing values are spatially interpolated by taking the average of the surrounding
raster cells.

Heat Index = − 42.379 + 2.04901523T + 10.14333127R − 0.22475541TR

− 0.00683783T2 − 0.05481717R2 + 0.00122874T2R

+0.00085282TR2 − 0.00000199T2R2 + ADJ

(4)

where,

ADJ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− (
13 − R

4
) ⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
17 − |T − 95|

17

√

, if R < 13% and 80°F ≤ T ≤ 112°F,

(
R − 85
10

) ⋅ (
87 − T

5
), if R > 85% and 80°F ≤ T ≤ 87°F,

0, otherwise.

(5)

The maximumWBGT recommended exposure limit thresholds frommany major work place safety organizations
including the Occupational Safety and Health Administration for light levels of work is 30°C (Jacklitsch
et al., 2016). Light work is defined as standing, sitting, and moving objects less than 10 pounds. We use a
threshold of 30°C based off of the daily maximum near‐surface air temperature to align with daytime working
conditions in order to discern when people's health is at risk of being negatively impacted. The delineated WBGT
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extreme heat hazards have the same three‐consecutive day requirement as the heatwave calculation in order to
reduce the impact of outlier single day extremes. The final heat hazard layer is the union of the calculated
heatwave and heat event layers, relying on the same 200‐km and 3‐day aggregation parameters (Equation 1).

2.5. Multi‐Hazard Events

We specifically focus on identifying situations where there is the potential for flooding and extreme heat events to
compound, cascade, and/or trigger additional impacts, and are therefore interested in examining if vulnerable
populations are exposed inequitably. Heat and flood hazards have vastly different spatial and temporal dynamics,
and simply delineating a multi‐hazard event as the co‐occurrence of a heat and flood hazard may not capture the
actual intensity of the event. For example, a flood that occurs in the middle of a month long versus a week long
heatwave are two different kinds of multi‐hazard events. We therefore calculate the number of multi‐hazard
experiences, which is the number of heat hazard days that occur within a given time‐lag of each flood event.
Time‐lags in multi‐hazard studies help capture when two different hazards overlap in space and occur within a
given number of days of each other (Claassen et al., 2023; W. Zhang &Villarini, 2020). This approach is based on
the idea that hazards can be described as a “space‐time cube,” where an event is a collection of overlapping
gridded layers that capture the dynamics of a changing extent throughout both space and time. Our multi‐hazard
experiences definition is able to account for the durations of flood and heat events, and thus better captures
exposure. We combine both the existing hazard definitions (DFO database and heatwaves, DFO/HW) and the
proposed updated methodologies (ARI boundaries and merged heat events/waves, ARI/HH) into unique data sets
to compare the differences in identifying multi‐hazard experiences.

In order to identify if there are inequities in multi‐hazard experience exposure, we calculate Lorenz curves, which
are gaining renewed interest in various flood risk studies (Morgan, 1962; Preisser et al., 2023; Sanders
et al., 2022). We use the vulnerability index developed by the Center for Disease Control (CDC) because it is
readily available for the entire United States at the county level, the Census boundary most appropriate when
considering the spatial resolution of the multi‐hazards (Flanagan et al., 2011). We specifically examine the overall
vulnerability index as well as the individual Socioeconomic Status, Household Characteristics, and Race &
Ethnicity Status sub‐metrics (Table S1). In order to compare both the differences in inequities and magnitude of
multi‐hazard experiences detected, we create generalized Lorenz curve plots, where instead of normalizing the y‐
axis to between 0 and 1, we plot the raw cumulative sum of multi‐hazard experiences. Additionally, multi‐hazard
experiences are weighted by the population of each county to more accurately represent disparities in population
exposure.

It is important to note that Lorenz curves measure equality, and in order to account for equity, vulnerability scores
must be scaled to account for the difference in how impacts are felt (i.e., a more vulnerable county feels the impact
of an event to a greater extent than a less vulnerable county experiencing the same exact impact). In order to scale
the Lorenz curve to represent equity, every county's count of multi‐hazard experiences is multiplied by an equally
spaced value between 0 (least vulnerable) and n (most vulnerable), where n refers to the total number of counties
(Preisser et al., 2023). To numerically represent inequities we also calculate Gini coefficients (measure of de-
viation from perfectly equitable society, where 0 is perfectly equitable and − 1 and 1 are perfectly inequitable) and
quarterly percent burdens (percent of cumulative sum of multi‐hazard experiences encountered by each quarter of
the population).

3. Results
3.1. Delineating Precipitation ARIs

For every rainfall event between 2001 and 2020, we compare daily precipitation (Figure 1a) and the count of half‐
hourly observations where rainfall exceeded a depth of 0.01 mm (Figure 1b) with NOAA precipitation frequency
estimates. This comparison allows us to calculate the daily gridded ARI, which we threshold to a 2‐year event to
delineate likely flood hazard boundaries (Figure 1c). For example, the Memorial Day Flood in Austin, Texas
(May 25th 2015) was a flash flood event that encompassed multiple counties as a result of rapid rainfall over a
short period of time (Figure 1). While the storm system covered the majority of Texas, only a few counties
experienced flood conditions as a result of rainfall on that day, which are appropriately identified using the daily
ARI method (Figure 1c). In conjunction, we calculate a multi‐day ARI for the duration of every precipitation
event that lasts more than a single day to identify non‐flash flood hazards (Figure 3b). The ARI method identified
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a total of 190 potential flood hazard events between 2001 and 2020. 135 of these events can be validated when
compared against the NOAA storm Events Database (Table 1). The 55 (28.9%) events that are potentially false
positives might be explained through other hazards that are not directly related to flooding (e.g., extreme wind,
lightning, hail).

3.2. Missing Flood Damages

Between 2001 and 2020, the NOAA Storm Events Database documented 9,388 flood‐related events across 1,673
distinct episodes. We aggregated these episodes into 417 flood periods, having a total property and crop damage
valuation of $76.1 billion (Table 1). The DFO has 53 entries that align with the delineated NOAA storm periods,
accounting for only 12.7% of the events, but 99.2% and 80.1% of the damages and deaths, respectively. The ARI
method produced 135 events that aligned with NOAA storm periods, 2.54 times as many as recorded in the DFO.
Increasing event detection does not initially translate into a large difference in the damages and deaths being
accounted for because of the positive skewness in the intensity of events. Nine storm periods encompass $74.1
billion of total damages, with Hurricane Harvey alone causing over $50 billion in damages. When excluding the
nine most damaging storm periods, all of which individually caused over $700 million in damages, the detection
capabilities drastically change for the DFO and ARI methods. While both data sets are still detecting relatively the
same number of events as before, the ARI delineated events account for an additional $320 million in damages, a
23.2% difference compared to the DFO. Similar results exist in the number of recorded deaths, with the ARI
method accounting for 26.3% more.

3.3. Spatial Comparison of Flood Boundaries

To test the effectiveness of the ARI method in creating comparable event extents, we compared ARI single‐ and
multi‐day delineations with the DFO and NOAA storm event database for multiple storm events (Figures 2 and 3).
The 2015 May Floods, which encompassed the Memorial Day Flood (Figure 1), is often considered one of the
worst statewide flood events in recent history, lasting for almost the entirety of the month of May and impacting
the majority of the state (Figures 2a and 2b). The NOAA Storm Events Database and the DFO capture how the
vast extent of the numerous floods that occurred. However, the DFO underestimates this extent, and fails to
capture flood impacts in the southern half of the state (Figure 2c). On the other hand, the ARI method does a
comparatively better job of identifying the hazard boundary (Figure 2d). Furthermore, this result highlights the
usefulness of dual single and multi‐day ARIs. The multi‐day ARI method captures the true nature of the event,

Figure 1. Example precipitation average recurrence interval (ARI) method for proxy flood hazard boundary delineation for
May 25th 2015, showing (a) daily precipitation depth (mm), (b) the count of half hourly observations with more than
0.01 mm of precipitation, and (c) the average recurrence interval for rainfall.
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impacting the entire state over a longer time period, while the single‐day ARI highlights some of the intense single
day events that occurred during this time, such as the Memorial Day Flood in Austin.

We further examined and compared a number of other large flood events. Tropical Storm Erin is an example of
where the ARI method and the DFO do not agree on the impacted area, although the ARI method better aligns
with NOAA storm periods (Figure 3a). This difference could be a result of the DFO boundary being tied to the
tropical storm track, which would have lost intensity as it moved inland.While the ARImethod does under predict
the impacted region, it is able to capture damaged areas outside of the direct tropical storm track. The Central
Texas Floods were driven by the Brazos River flooding, which is captured in all of the databases to the eastern part
of the state (Figure 3b). However, the DFOmisses the other flood events that followed for the next month through
Central Texas. The delineated hazard footprints for Hurricane Harvey generally align, showing the same impacted
region (Figure 3c). The single day ARI method captures the majority of the full extent of the hurricane, with the
multi‐day ARI reconfirming the intensity of rainfall north of Houston, where the storm lagged before turning
eastward. The 2018 June Flooding is the most expensive event not accounted for in the DFO, causing over $100
million in damages. The daily ARI shows substantial alignment when compared to the NOAA storm periods, and
the multi‐day ARI slightly over predicts the impacted extent (Figure 3d).

3.4. Increased Area Exposed to Extreme Heat

Between 2003 and 2020, there were 2,517 days (38.3% of all days) where a location in Texas was experiencing a
heat hazard event. There was a total exposed area (i.e., the sum of areas experiencing a heat hazard over time) of
253.2 million km2. Heatwaves and heat events identified the same heat hazard exposure area for 58.2 million km2.
Heatwaves and heat hazards individually accounted for 103.5 and 91.5 million km2 of the impacted area,
respectively. The addition of the heat events metric therefore increased the total impacted area by 56.6%.

August 9th, 2011 had the largest overlap between heatwaves and heat events and is one of the largest heat hazard
days within Texas, being a part of the broader 2011 North American heatwave (Figure 4a). Heat hazard areas that
overlap highlight how heatwaves and heat events are not mutually exclusive, suggesting that both are suitable for
identifying similarly broad heat risks and there are likely many instances where heat hazards are a part of
heatwaves. However, there are events where there is little to no agreement, such as June 27th, 2012 and July 7th,
2020, which were the largest heat event and heatwave days, respectively (Figures 4b and 4c). Annually, the
addition of heat events regularly increases the total impacted area across Texas by relatively the same amount
(Figure 4d).

3.5. Multi‐Hazard Comparison

We compare the multi‐hazard detection capabilities when using existing methods (DFO/HW) and our proposed
expanded methods (ARI/HH) by calculating the number of multi‐hazard experiences, or the number of days with
a heat hazard within a given time lag around a flood event. Aggregating by county, regardless of time lag, the
DFO/HW method detects multi‐hazards primarily around the Gulf of Mexico, where most major flood events
occur due to tropical weather (Figures 5a–5c). Comparatively, the ARI/HH method detects events throughout
Texas, still covering the Gulf Coast region but also emphasizing events along the Texas‐Mexico border, and
throughout central Texas (Figures 5d–5f). There is a substantial difference in the magnitude of the number of
multi‐hazard experiences between the two methodologies. Across time‐lags, the maximum number of multi‐
hazard experiences a county might encounter is approximately 5‐times as more frequent when using the ARI/

Table 1
Dartmouth Flood Observatory (DFO) Flood Hazard Boundaries and Precipitation Average Recurrence Interval (ARI) Proxy
Flood Hazard Boundary Cross Referenced With NOAA Storm Event Database Periods to Calculate the Sum of Events,
Damages, and Deaths That Would Be Accounted for in Each Database Between 2001 and 2020

All events Events under $700M

Count Damages ($Billions) Deaths Count Damages ($Billions) Deaths
NOAA 417 76.1 433 408 2.05 234

DFO 53 (12.7%) 75.5 (99.2%) 351 (80.1%) 44 (10.8%) 1.38 (67.3%) 152 (65.0%)

ARI 135 (32.3%) 75.8 (99.6%) 391 (90.3%) 126 (30.9%) 1.70 (82.9%) 192 (82.1%)
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HH methods. When examined annually, there are regularly more multi‐hazard experiences when using the
expanded ARI/HH methods (Figure 6). The last 6 years those data are available show some of the highest counts
of multi‐hazard experiences as a result of the increased occurrence of large scale heat hazards and major flooding
events during these years.

Both DFO/HW and ARI/HH methods show substantial inequities across vulnerability indicators at the county
level, as seen in all of the Gini coefficients being greater than 0 (Figure 7). Overall, the more vulnerable half of the
population carries a much larger burden than the less vulnerable half of the population, with the DFO/HW and
ARI/HH Q4 populations carrying on average 38% and 49% of the overall multi‐hazard experience burden,
respectively. In terms of the less vulnerable half of the population, there is little to no change from one indicator to
the next on the burden that Q1 and Q2 carry, suggesting that exposure of hazards is only variable for the more
vulnerable half of the population. Burdens increase for each quarter of the population across indicators, with the
one exception of DFO/HW and Housing Characteristics, but this difference is small and still conveys that the
burden is greater for the more vulnerable half of the population (Figure 7b). Race & Ethnicity have the greatest
difference between the DFO/HW and ARI/HH methods, suggesting that a larger portion of the missed multi‐
hazard experiences are impacting minority counties (Figure 7c). Gini coefficients and burdens using the So-
cioeconomic and Overall Vulnerability indicators are nearly identical, suggesting that socioeconomic variables

Figure 2. ARI method analysis for the 2015 May Floods, examining the total precipitation depth (a), the NOAA Storm
Database periods (b), the Dartmouth Flood Observatory boundary (c), and the ARI method footprint (d).
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are major predictors of this specific vulnerability indicator (Figures 7a and 7d). While both sets of methods show
the same inequity trends, it is again further evident the degree to which the ARI/HH methods are detecting a
greater amount of multi‐hazard experiences.

4. Discussion
4.1. Flood Hazards

Climate models indicate that anthropogenic climate change is increasing the probability of intense rainfall events,
which is directly related to increased rates of flood related damages (Davenport et al., 2021). Additionally, NOAA
Atlas 14 data suggest that a greater proportion of the population is already exposed to higher extreme precipitation
risk (Kim et al., 2023). Defining, identifying, and delineating extreme precipitation events, and subsequently
flooding events, is therefore critical in order to describe their impacts on society (Gimeno et al., 2022). Although
several databases exist—such as the International Disaster Database, the United Nations' ReliefWeb, and the
International Flood Network—to document global floods, they often lack detailed information on the spatial and
temporal extent of events or have limited historical records (Saharia et al., 2021). The DFO, a database that does
meet many spatial and temporal requirements, is still missing events that cause hundreds of millions of dollars in
damages, reveling that reliance on existing databases may be failing to capture the true increased extent in which
global populations are exposed to flooding (Table 1).

Figure 3. Comparison of Dartmouth Flood Observatory, ARI method, and NOAA storm periods flood hazard footprints for
(a) Tropical Storm Erin, (b) the 2016 Central Texas floods, (c) Hurricane Harvey, and (d) the June 2018 floods.
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Our precipitation‐based proxy flood hazard boundary method enhances detection capabilities by leveraging near‐
real‐time precipitation data to identify likely damaged regions before formal damage assessments are completed.
Large storm events that span entire states rarely cause damage uniformly, making it essential to have tools that
pinpoint the most likely impacted areas (Figure 1). While not intended to replace flood mapping or modeling, our
ARI method serves as a supplementary tool to support the maintenance of existing flood databases. It identified
three times as many flood events as the DFO database, capturing an additional $320 million in damages (Table 1).
The high agreement between ARI boundaries and the NOAA Storm Events Database further demonstrates the
utility of the ARI method in identifying impacted areas in real time, increasing the proportion of damages
accounted for in global flood databases (Figure 3).

At first glance, it appears that the ARI and DFO miss a substantial amount of hazards in the NOAA Storm Events
Database, with over half of the total periods going unaccounted (Table 1). However, examining the matched and
unmatched ARI‐NOAA events, reveals that the unaccounted for events account for a small amount of impactful
events. Of the unmatched NOAA storm periods, 25.8% report zero monetary damages, as compared to 11.1% of
the matched events. Furthermore, the median damage for matched and unmatched events is $750,000 and $20,000
respectively, showing that the ARI method is capturing the majority of the high damage events. Finally, while we
utilize a minimum two‐event filter for NOAA storm periods, 86.9% of unmatched NOAA storm periods contained
less than 10 events, compared to 20% of matched events. Taking all of this into consideration, the ARI method is
identifying the vast majority of the damaging and large extent events, which is the most critical when identifying
multi‐hazard events.

Figure 4. Example heat hazard (combination of 95th percentile heatwave and the 30°C wet bulb globe temperature heat
event) delineations for (a) largest overlapping heatwave and heat event, (b) largest heat event (WBGT) day, and (c) largest
heatwave (95th percentile) day. Annual sum of heatwave, heat event, and overlapping areas show degree to which heat
events increase overall heat hazard area (d).
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A limitation of this methodology is that extreme precipitation events do not always lead to flooding, or do not
always lead to flooding that causes damages, as evident by the 55 false positive events. However, these events
might be associated with other related multi‐hazards, including storm events that produce damaging winds or hail.
This limitation presents an opportunity to expand the ARI thresholding method to additional daily satellite remote
sensing data sets to encompass more meteorological hazards. A key advantage of using a precipitation based
metric to delineate potential flood hazards is that it is not constrained by traditional limitations of optical (spatial
resolution, land use, cloud coverage) and radar (temporal resolution) based delineations of flooding (Notti
et al., 2018). Existing precipitation based methods for early warning and near‐real time flood detection are
designed to be computationally lightweight in order to play a role in forecasting imminent hazards (e.g., Alfieri
et al., 2011; Dao et al., 2020; Wu et al., 2012, 2014). We retain the advantages of low computational complexity
and further benefit from not needing additional ground‐based observations or coupling with hydrodynamic
models.

4.2. Heat Hazards

It is estimated that nearly 48% of the global population will be exposed to extreme heat by the year 2100 (Mora
et al., 2017). In terms of our study area, Texas has more heat‐related worker deaths than any other state, and has
set new state records for the number of overall heat‐related deaths in 2021, 2022, and 2023 (Ball, 2024; Fau-
zia, 2024; Foxhill et al., 2024). Until recently, heat hazard research has predominantly focused on dry‐heat events,
undercounting the potential impacts of humidity and other climatic conditions on health risks (C. D. W. Rogers
et al., 2021). The inclusion of additional climatic variables, such as through the use of the WBGT, has the
advantage of being more closely tied to heat‐related diseases (Heo et al., 2019). While there is an established lack
of data related to the global risk of heat‐related illnesses/mortality (Mora et al., 2017), the inclusion of extreme
WBGT heat events directly enhances heat hazard identification practices through the inclusion of known worker
safety standards (Jacklitsch et al., 2016).

Figure 5. Log‐scale multi‐hazard experiences per county for the period 2003–2020 for the Dartmouth Flood Observatory and
heatwave (DFO/HW) existing methods and the ARI and heat hazards (ARI/HH) expanded methods with a 10 (a, d), 30 (b, e),
and 90 (c, f) day time‐lags.
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The relatively similar annual increase in total impacted area as a result of the inclusion of WBGT is indicative of
the two major limitations of the heatwave metric: first, the traditional heatwave metric does not account for the
additional climatological conditions that humans experience. Second, temperatures under a 95th percentile
threshold do not automatically guarantee safe working conditions 4D). The inclusion of WBGT heat events
directly increases the duration and extent of heat hazard events, thus highlighting the importance of using dry‐ and
wet‐heat definitions when estimating heat exposure, especially for regions with the potential for high humidity.
For example, when examining the location and extent of heat events within Texas, they are primarily located in
the eastern half of the state, where humidity is higher as a result of there being more surface water and being closer
to the Gulf of Mexico (Figures 4b and 4c). This condition coincides with the majority of population centers in
Texas (e.g., Dallas, Austin, San Antonio, and Houston), all being more exposed to heat hazards when including
additional relevant climatological information.

It is essential for multi‐hazard studies to examine a combination of short‐ and long‐ term as well as dry‐ and wet‐
heat conditions to holistically capture how individuals are impacted in the context of their environments. We used
a worker safety WBGT threshold of only 30°C, the occupational limit for light work, which does not encompass
the vast majority of outdoor labor activities. We utilized a more strict heat event threshold to draw attention to the
magnitude of how much a traditional heatwave definition is likely missing heat exposure. However, a daily 1‐km
analysis of hazards is going to inherently miss finer scale impacts of extreme heat (Kamath et al., 2023). Similar to
our expanded flood delineation methods, our combined heatwave and heat event metric can be used to identify
priority areas for more targeted and holistic heat hazard mitigations.

4.3. Multi‐Hazards and Equity

Quantifying and analyzing the occurrence of multi‐hazard events is of growing concern across disciplines as
evident with the large number of review papers over the past few years (e.g., Drakes & Tate, 2022; Kappes
et al., 2012; Leonard et al., 2013; Tilloy et al., 2019; Zscheischler et al., 2020), which is further supported by the
increased number of multi‐hazard experiences in the past 6 years (Figure 6). Flooding and extreme heat multi‐
hazard events can have specific triggering, intensifying, and compounding impacts on each other. For
example, extreme heat events can influence local weather and increase the likelihood of flash flooding precip-
itation events (Chen et al., 2022; Fowler et al., 2021;W.Zhang &Villarini, 2020), heat events can lead to droughts
which influence the intensity of flood events (Pizzorni et al., 2024), and flooding events can induce power outages
making populations more susceptible to extreme heat events (Abi‐Samra et al., 2014; Matthews et al., 2019). It is

Figure 6. Annual multi‐hazard experiences for the Dartmouth Flood Observatory and heatwave (DFO/HW) existing methods
and the ARI and heat hazards (ARI/HH) expanded methods with a 10, 30, and 90 days time‐lags.
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also important to consider events that may not be individually extreme, as is the case for the 55 flood hazards that
did not directly cause damage. For example, rainfall events followed by heatwaves can influence infectious
disease outbreaks (McMichael, 2015).

The impact of multi‐hazards on individuals is controlled by various variables including infrastructure capabilities,
social and demographic characteristics, politics, finances, and culture (Barquet et al., 2023). In this study, we are
specifically focusing on identifying the inequities in how different populations, defined by their sociodemo-
graphic vulnerability, are exposed to flooding and extreme heat multi‐hazard events. Identifying the full extent of
hazards and multi‐hazards is critical in order to aid local, state, and national stakeholders in identifying priority
areas of action when considering the limited resources available to address such issues. For example, as a part of
the Texas State Flood Plan, managers identified over $54 billion worth of evaluations, projects, and management
strategies that could reduce flood risk, but only a potential $10 billion in currently available funding
(TWDB, 2024). Additionally, while heat risk perception may be growing in Texas, legislation to protect in-
dividuals may be lagging behind and more work is needed to identify priority mitigation locations (Dumlao &
Debbage, 2023; Howe et al., 2019; Levitan, 2023; Mallen et al., 2019; Seong et al., 2022).

Figure 7. Generalized Lorenz curves of the Center for Disease Control's social vulnerability index versus the cumulative sum
of multi‐hazard experiences for the Dartmouth Flood Observatory and heatwave (DFO/HW) existing methods and the ARI
and heat hazards (ARI/HH) expanded methods. 30 days time‐lag county multi‐hazard experience values are weighted by the
logarithm of population to more accurately convey hazard exposure. Socioeconomic (a), Housing Characteristics (b), Race &
Ethnicity (c), and overall Vulnerability (d) Gini coefficients and quarterly burdens are also presented.
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Comparing the locations of DFO/HW and ARI/HH delineated events with different time‐lags highlights how
existing methods might be failing to completely identify where multi‐hazard events, or experiences, are occurring
(Figure 5). With a 10‐day time‐lag, existing methods fail to identify any multi‐hazards in the western half of the
state, containing many counties with the highest level of exposure when using the updated ARI/HH methods
(Figures 5a and 5c). While this problem begins to be alleviated with longer time‐lags, it is still evident that the
updated methods are detecting substantially more multi‐hazards especially in southern and western counties.
Many border counties have higher minority populations, contributing to larger differences in inequities when
comparing the DFO/HW and ARI/HH methods using the Race & Ethnicity vulnerability indicator (Figure 7c).
With studies showing that race and ethnicity variables can be related to a decrease in access to resources (e.g.,
Drakes & Tate, 2022; Preisser et al., 2023; Rufat et al., 2015), the under accounting of multi‐hazard exposure
based on the DFO/HW method could further perpetuate how minorities are marginalized by hazards.

Regardless of vulnerability metric and method, persistent inequities exist in multi‐hazard experience exposure,
with the ARI/HH method showing slightly more inequities across the board (Figure 7). In terms of future multi‐
hazard mitigation practices, perfect equity is not necessarily the goal. A hazard impacting a society equitably
(G = 0) is less desirable than a hazard impacting only a handful of individuals (G ≠ 0) (Logan et al., 2021).
Identifying existing inequities is important for informing the decision making process so that resources can be
distributed in an efficient and optimized manner. While our expanded methods do use the highest resolution (10‐
km precipitation and 1‐km heat) available data sets, more targeted local studies are needed to more precisely
identify effective mitigation strategies. Comparing multi‐hazard events to county level social vulnerability es-
timates limits the spatial resolution at which inequities can be identified because of the heterogeneity that exists
within counties. While tools and methods exist to estimate sociodemographic vulnerability at a higher resolution
(e.g., Preisser et al., 2025), a finer examination is not currently possible because of the spatial limitations of using
satellite data sets to define hazard events.

4.4. Scalability and Future Opportunities

We focused on Texas to highlight the multi‐hazard risks in the state that is most impacted by climate hazards and
contains four of the 10 most populated metropolitan areas in the United States (Houston, San Antonio, Dallas, and
Austin). The benefit of utilizing satellite remote sensing data is their applicability to broad geographic regions that
may not have local data sources. The only data source we used that is geographically bounded is the Atlas 14
Precipitation Frequencies (i.e., the annual recurrence interval information). Assuming similar data can be
calculated based on global precipitation records, our proposed methods can be applied to the entire world, where
there is a growing focus on identifying global multi‐hazard events (Claassen et al., 2023). While the methods are
directly transferable, local and regional knowledge will always be critical in identifying appropriate thresholds of
what constitutes a hazard. For example, the relationship between precipitation and flooding will depend on a
variety of local factors (e.g., design limits of flood infrastructure). Furthermore, what constitutes as a hazard in
one location may not be a hazard in another. For example, acclimation can play a significant role when deter-
mining some levels of heat risk (Johnson et al., 2011). While our generalized approached can be appropriate in
identifying broad multi‐decadal trends in hazard exposure over broad regions, local action will require more
nuanced examinations. There are additional opportunities to expand a satellite remote sensing multi‐hazard
delineation approach to additional hazards including extreme cold events, droughts, and non‐meteorological
hazards such as air quality (Forzieri et al., 2016; B. Liu et al., 2021; Salvo & Vitale, 2023).

4.5. Conclusion

Using Texas as our study area, we demonstrate that current methods for identifying hazards used in many multi‐
hazard analyses may underestimate both the frequency and geographic extent of events. This under‐detection has
serious implications for effective mitigation, leaving vulnerable populations, particularly marginalized com-
munities, underprepared for life‐threatening conditions. The proposed expanded methods, utilizing global pre-
cipitation and temperature data sets, increase our ability to detect flooding and extreme heat, accounting for a
greater extent of the potential damaging and life threatening conditions that impact individuals. We found a five‐
fold increase in the number of multi‐hazard events over a two decade period, composed of flood hazard events that
caused over $300 million in damages and extreme heat events with a combined area of over 91.5 million km2.
Additional hazards can benefit from similar comparisons to empirical databases to verify their completeness, and
future work is needed in identifying additional remotely sensed variables that are applicable for increasing hazard,
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and subsequently multi‐hazard, detection capabilities. Relying on the extensive remote sensing global archive
will allow researchers and practitioners to efficiently identify hazard footprints into the future as the network of
Earth observing satellites continually grows. Significant work remains in the multi‐hazard field in order to address
challenges in forecasting future trends, creating better frameworks for risk management, and quantifying the
feedbacks between hazards, exposure, and vulnerability (Ward et al., 2022).
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