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Air pollution is associated with health in childhood. However, there is limited evidence on sensitive 
periods during the first 18 years of life. Data were drawn from the Millennium Cohort Study, a large 
and nationally representative cohort born in 2000/2002. Self-reported general health was assessed at 
age 17; number of hospital records were derived from linked health data (Hospital Episode Statistics) 
for consented participants. Residential history was linked to 25 × 25 m grid resolution annual PM2.5, 
PM10 and NO2 maps between 2000 and 2019; year-specific air pollution exposure in 200-m buffers 
around postcode centroids were computed. After adjusting for individual and time-variant area-level 
confounders, children exposed to higher air pollution in early (2–4 y) (n = 9137; PM2.5: OR = 1.06, 95% 
CI: 1.01–1.11; PM10: OR = 1.05, 95% CI: 1.01–1.09; NO2: OR = 1.01, 95% CI: 1.00–1.02) and middle 
childhood (5–7) (n = 9171; PM2.5: OR = 1.04, 95% CI: 1.00–1.07; PM10: OR = 1.03, 95% CI: 1.01–1.06) 
reported worse general health at age 17. Higher PM2.5 and NO2 exposure in adolescence increased 
the number of hospital episodes in young adulthood. Individuals from non-White and disadvantaged 
backgrounds were exposed to higher levels of air pollution. Air pollution in early and middle childhood 
might contribute to worse general health, with ethnic minority and disadvantaged children being more 
exposed.

Keywords Air pollution, Fine particle, General health, Life course, Environmental inequality, Birth cohort

Poor air quality is the single biggest environmental threat to human health, and according to the World 
Health Organization, 99% of the global population lives in areas exceeding healthy thresholds1. Based on the 
Global Burden of Diseases 2021 estimation, air pollution is the second leading cause of mortality responsible 
to 8.1  million death globally (12% of total); the diseases burden is particularly high among children and in 
older age2. Early life air pollution exposure may influence birth outcomes3. Morphological and functional 
development of organ systems (e.g. respiratory health, neurodevelopment) in early years makes children more 
vulnerable to toxic air quality4: emerging research shows higher risk of respiratory diseases5, such as asthma6, 
high blood pressure7, obesity8, mental health problems9 and lower cognitive function10 among children exposed 
to higher air pollution. The long-term health effects are also notable; the impact of early life air pollution might 
be mediated via childhood health, cognition and socioeconomic status on later life health outcomes11 and 
ultimately on mortality12.

Applying the life-course approach13 in the environmental health literature is crucial to understand whether 
there are sensitive developmental periods during childhood where the detrimental impact of air pollution is 
severe and long lasting4, or the negative effect of bad air quality accumulates over time with longer exposure 
leading to worse health. Evidence is limited as this requires cohort studies with address history allowing to link 
time-varying air pollution estimates over a long period of time9,14–18. Controlling for potential time-varying 
area-level confounders (e.g. income deprivation, population density, noise) is a further limitation, as well as 
sufficient resolution of air pollutants to produce rigorous evidence19. Air pollution exposure is often higher in 
areas with disadvantaged individuals20, and among ethnic minorities21 with potential effect modifications22; 
representative studies are required to estimate unbiased pollution-health associations and investigate 
environmental inequalities.
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Using a large and nationally representative British birth cohort, we explored the association between exposure 
to air pollution from birth onwards and general health at age 17; with outcomes measured using both self-
reported and administrative health records. The relationships were investigated with three pollutants relevant 
to population health: fine particulate matter that are 2.5 μm or less in diameter (PM2.5), particulate matter with 
a diameter of 10 μm or less (PM10), and nitrogen dioxide (NO2). First, considering six life-course models (i.e., 
infancy, early childhood, middle childhood, late childhood, adolescence, accumulation), associations were 
estimated with general health. Second, average life-course exposure between sociodemographic groups, as well 
as effect modification by sex, ethnicity, parental education and area-deprivation were explored.

Methods
The Millennium Cohort Study (MCS) is a nationally representative cohort of children born between September 
2000 and January 2002 in the United Kingdom23. Households with a child aged 9 months of age (Sweep 1) and 
living in the UK were randomly selected, providing a nationally representative sample23. Smaller UK nations, 
and in England disadvantaged areas, and families with ethnic minority backgrounds were oversampled, and at 
age 3 (Sweep 2), further eligible children—not captured at baseline—were added to the sample. Participants have 
been followed up seven times to date: at the average age of 9 months (Sweep 1: 2000–2002), 3 years (Sweep 2: 
2003–2005), 5 years (Sweep 3: 2006), 7 years (Sweep 4: 2008), 11 years (Sweep 5: 2012–2013), 14 years (Sweep 6: 
2015–2016), and 17 years (Sweep 7: 2017–2019). The total sample size comprises 19,519 children within 19,244 
families ever interviewed24. In the analytical sample, we included children if they participated in the age 17 
sweep and did not have missing values: data on self-reported general health covered all four UK nations; hospital 
episodes were only available for England. All methods were carried out in accordance with relevant guidelines 
and regulations and informed consent was obtain from all subjects.

Exposure to air pollution
Annual average PM2.5, PM10, and NO2 were estimated for Europe using Geographically and Temporally Weighted 
Regression (GTWR) between 2000 and 2019 on a 25 × 25 m grid. Detailed descriptions of the model development 
can be found in Shen et al.25. Briefly, the GTWR models regressed annual average observations from routine 
monitoring stations on several spatial predictor variables, such as chemical transport model estimates, satellite-
derived data, meteorological data, and land-use and road variables, capturing spatio-temporal variations in the 
measured annual average air pollution levels. GTWR allowed the regression coefficients to vary in space and 
time, reflecting the changing dynamics of air pollution across Europe over a 20-year period. The GTWR models 
showed satisfactory performance, explaining 71–82% of the variance in PM2.5 levels, 50–68% of the variance in 
PM10 levels and 61–69% of the variance in NO2 levels, as given by 5-fold cross-validated R2 values25.

Residential postcodes at interviews—as well as at birth for those moving between birth and sweep 1—were 
geocoded into 1-m resolution grid reference (i.e. easting [X], northing [Y]) using the British National Grid 
(England, Scotland, and Wales) and the Irish Grid (Northern Ireland) coordinate systems. Postcodes are the 
smallest geographic units in the UK, there are approximately 1.8 million live postcodes with an average of 18 
households each. Monthly residential postcode history was created using information about the dates of birth, 
dates of interviews, and residential moves. If the interview date was missing despite a productive interview, 
country-specific median dates were imputed. Main respondents were asked in each sweep whether their address 
had changed since the last interview, and if so, when they moved to their current address; to avoid discrepancies, 
we considered move dates valid if they took place between two productive interviews.

Average residential air pollution exposure for each year of participants’ lives were derived using buffers 
around postcode centroids. Monthly postcode history was linked to annual air pollution concentrations and 
averaged for every 12 months from birth onwards. Instead of extracting the pollution concentration at the grid 
reference, we computed 100, 200, and 500-m buffers around postcode centroids and extracted the area-weighted 
average pollution concentration within buffers. Using buffers aimed to lower exposure misclassification due to 
distance error between postcode and property centroids. As previous internal CLS analyses on MCS COVID 
web survey data suggested that the mean distance error between postcode and residential centroid is 60  m 
(SD = 87 m)26, we chose 200-m buffers as the main analyses as it likely covered at least 95% of the residential 
properties. Finally, we computed mean exposure during infancy (0–1 years), early childhood (2–4 years), middle 
childhood (5–7 years), late childhood (8–11 years), and adolescence (from 12 years until the interview in Sweep 
7 [~ 17 years]), as well as during participants’ whole life (i.e., accumulated exposure, 0–17 years); classification 
aligns with schooling milestones in the UK (i.e. pre-school, key stage 1–4). Supplementary Fig. 1 suggested that 
the exposure specific correlations across life years, as well as correlations between developmental period-specific 
PM2.5, PM10 and NO2 exposures were very high among participants.

Outcomes
General health was measured using a self-reported and a health administrative data derived variable.

Self-reported general health
MCS participants at Sweep 7 (average age of 17) were asked how they would describe their health generally, 
with five response options provided (‘Excellent’; ‘Very Good’; ‘Good’; ‘Fair’; and ‘Poor’). As there were very few 
individuals with ‘Poor’ and ‘Fair’ general health, we merged these groups together.

Number of hospital episodes
At Sweep 7, participants were asked to provide written consent linking their health records to the survey data27, 
and 85% of the sample provided consent. For MCS participants residing in England, extraction from the 
Hospital Episode Statistics (HES) database was carried out by National Health Service (NHS) England using 
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information on name, sex, date of birth, and postcode27,28. The match rate was 81.5%; however, for participants 
not linked to HES records we assumed the absence of hospital attendances, rather than the failure of linkage 
processes29. Hospital episodes (i.e., continuous period of care under one consultant) were extracted from the 
Admitted Patient Care (HES-APC) dataset which covers almost the entire study period for consented and 
linked participants (01.01.2001–31.03.2020) and provides information about emergency and non-emergency 
admissions to secondary care requiring a hospital bed30. HES-APC has an almost universal coverage with 
99% of hospital activity in England being funded by NHS30. We derived the number of hospital episodes from 
early childhood (2 year), middle childhood (5 year), late childhood (8 year), adolescence (12 year) and young 
adulthood (18 year) onwards as outcomes.

Covariates
Confounders were selected using a directed acyclic graph, taking into consideration the time of exposures 
(Fig. 1). Individual-level covariates were time-invariant and derived at 9 months; if not available, at age 3. They 
included sex (male; female), ethnic groups (white; non-white [specific ethnic groups were merged to allow 
testing effect modification]), number of siblings (none; 1; 2 or more), parental partnership status (single parent; 
living with partner), household employment, household tenure, and highest household education. Household 
employment was derived from the main caregiver and their partners employment status (both employed; one 
employed; none employed), for household tenure ‘own’ (outright, with mortgage/loan, shared equity), ‘social 
rent’, ‘private rent’, and ‘other’ (e.g. living with parents, squatting) options were considered. Highest household 
education was defined based on the National Vocational Qualification (NVQ) scale: the highest level between 

Fig. 1. Graph showing assessed life-course associations between air pollution and general health. Black arrows 
are associations of interest, grey arrows are confounding pathways. Light-green shaded box includes Model 
1, medium-green box Model 2, and dark-green box Model 3 confounders; boxes with diagonal stripes are 
sensitivity analyses. Data collection sweeps and developmental periods are also shown.
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the main caregiver and their partner was taken and merged into four groups: ‘None or overseas only’, ‘NVQ 1–2’, 
‘NVQ 3’ and ‘NVQ 4–5’. We extracted age (in years) at Sweep 7 to account for small differences in the time of 
outcome data collection.

Area-level confounders at the time of air pollution exposure were entered in the models as time-variant. 
They were linked to sweep addresses, and included country (England, Northern Ireland, Scotland, and Wales), 
population density and income deprivation (see Supplementary Table 1 for more detail). Population density and 
income deprivation was measured across small areas: lower layer super output areas for England and Wales (1000 
to 3000 persons), data zones for Scotland (500 to 1000 persons), and super output areas for Northern Ireland 
(1300 to 2800 persons). Population density (population counts per hectare) was derived from the 2001 and 2011 
Census estimates. Small area-level relative deprivation is published independently across the four nations as part 
of English, Northern Irish, Scottish and Welsh indices of multiple deprivation; the income deprivation domain 
was selected as most consistently measured across nations and time. Country-specific income deprivation ranks 
were classified into four equal categories ranging from ‘Q1—Most deprived’ to ‘Q4—Least deprived’.

Statistical analysis
Analyses for self-reported general health were conducted using proportional odds models, considering the 
stepwise increasing ordinal nature of the outcome. For the number of hospital episodes, we conducted quasi-
Poisson regression to avoid overdispersion. MCS was designed to be representative of the UK population: to 
account for oversampling as well as to restore the representativeness we applied UK-wide (self-reported general 
health) and England-only (hospital episodes) complex survey weights in all presented analyses, including 
descriptive statistics. Analytical samples were separately defined for each exposure period to avoid restriction to 
children participating in all sweeps; analyses were run separately for each air pollutant.

In Model 1, we adjusted for age and sex. In Model 2, all individual-level variables were added (i.e., age, 
sex, ethnic groups, number of siblings, partnership status, highest household education, household tenure, 
and household employment). Finally, in Model 3, we additionally included population density, area income 
deprivation, as well as country at the time of exposure. Odds Ratios (ORs) or Incidence Rate Ratios (IRRs) and 
their 95% Confidence Intervals (95% CI) are reported per 1-µg m−3 increment; we also provide coefficients 
expressed as interquartile range (IQR) change. For self-reported general health at age 17, we run a post-hoc 
analysis estimating the associations for each year of exposure, and plotted ORs with smoothed curves using 
LOESS regression. Effect modification by sex, ethnic groups, highest household education and area-level income 
deprivation at the time of exposure was tested by adding an interaction term to Model 3. As we tested a very large 
number of interactions (i.e. by three pollutants and two outcomes), only false discovery rate (FDR) adjusted 
significant (pFDR) findings are interpreted to lower the risk of false positives due to multiple comparisons31.

Six sensitivity and supplementary analyses were carried out to test the robustness of our findings. First, we 
presented main results after deriving air pollution exposure using 100-m and 500-m buffers (S1). Second, fully-
adjusted models were further adjusted for covariates about mother’s health status: self-reported general health 
(excellent; good; fair; poor), Body Mass Index before birth (underweight [< 18.5]; normal weight [18.5–24.9]; 
overweight [25.0–29.9]; obese [≥ 30]), and smoking status (never smoked; smoked during pregnancy; reduced 
or quit smoking before pregnancy; smoked before or after pregnancy) (S2). Third, road traffic noise (Lden) was 
added to the final models: we downloaded the 2012 noise maps separately for each nations for (a) major roads 
(≥ 3,000,000 vehicles per year) and (b) road noise in agglomerations (≥ 100,000 residents). Maps were intersected 
with residential postcode centroids and extracted values were classified into 3 groups (≤ 54.9 decibel [dB]; 55.00–
59.9 dB; ≥ 60 dB) (S3). Fourth, to account for bias due to missing individual and area-level confounders (8–9%) 
we ran multiple imputations on 25 datasets and combined coefficients using Rubin’s rule. In addition to all study 
variables, auxiliary variables were added including income quartiles, longstanding illness, maternal diabetes, 
sweep when family entered the study (sweep 1 or sweep 2), governmental region, as well as time-varying urban/
rural classification and overall deprivation (S4). Fifth, one of the main underlying assumptions of proportional 
odds regression is proportional effects of exposure on outcome thresholds, thus we also provided fully adjusted 
models for self-reported general health using multinomial regression (S5). Finally, as two-pollutant models 
were not feasible given high multicollinearity, we provided estimates for PM10, PM2.5 and NO2 mixtures using 
quantile g-computation for multinomial outcomes32 for self-reported general health (S6).

Analyses were conducted in R version 4.3.033, using the survey34, svyVGAM35, and mice36 packages.

Results
Out of 10,731 individuals participating in the age 17 data collection, 9971 had no missing value for self-reported 
general health covering all UK nations (i.e. England, Northern Ireland, Scotland, Wales). From the English 
subsample, 6104 individuals consented for linkage to HES records. After excluding participants with any missing 
covariates, the final sample sizes differed across the exposure periods but were between 9137 and 9593 for 
self-reported general health and between 5524 and 5757 for hospital episodes (Fig. 2). Follow-up for hospital 
episodes ended at the average age of 19 years. Sample characteristics of the ‘Infancy’ subsamples for the two 
main outcomes are presented in Table 1 and show close to identical distributions after applying survey weights. 
Approximately 50% of the sample were female, 14% belonged to ethnic minorities, and 43% of households 
had highest educational levels (i.e., NVQ4-5). In the self-reported general health sample, 84% of participants 
were living in England, 3%, 8%, and 5% in Northern Ireland, Scotland, and Wales, respectively (Table 1). While 
approximately 26% of the sample had excellent general health at age 17, 7% reported to have ‘Fair or Poor’ 
health (Supplementary Table 2); number of hospital episodes across the different subsample are shown in 
Supplementary Table 3. Participants with higher number of hospital episodes reported worse general health 
(Supplementary Table 4). The weighted average exposure to air pollution decreased markedly during the follow 
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up time but they remained above the 2021 WHO guideline1 threshold values of 5 µg m−3 for PM2.5, 15 µg m−3 for 
PM10, and 10 µg m−3 for NO2 (Supplementary Table 5).

Air pollution and self-reported general health
Higher air pollution exposure was found among those reporting worse general health (Supplementary Fig. 2). 
After adjusting for age and sex (i.e. Model 1), PM2.5 and PM10 exposures across the whole childhood and 
adolescence, as well as accumulated air pollution was significantly associated with worse self-reported general 
health at age 17 (Table 2). Further adjusting for individual-level sociodemographic confounders (i.e. Model 2) 
attenuated the associations but exposure in early and middle childhood, as well as the accumulated exposure 
for PM10 remained significant. After taking into consideration area-level time-variant confounders (i.e. Model 
3), we found that higher early and middle childhood exposures were significantly associated with worse general 
health: PM2.5 (OR = 1.06 per 1-µg m−3; 95% CI: 1.01, 1.11), PM10 (OR = 1.05 per 1-µg m−3, 95% CI: 1.01, 1.09) 
and NO2 (OR = 1.01 per 1-µg m−3, 95% CI: 1.01, 1.02) in early childhood, PM2.5 (OR = 1.04 per 1-µg m−3; 95% 
CI: 1.01, 1.07) and PM10 (OR = 1.03 per 1-µg m−3, 95% CI: 1.00, 1.06) in middle childhood (Table 2). Findings 
expressed in IQR change can be found in Supplementary Table 6. Post-hoc analyses showed that for PM2.5 and 

Fig. 2. Flowchart presenting sample selection for self-reported general health (A) and hospital episodes (B).
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PM10 exposure between the ages of 3.5 and 5.5 there was a potential sensitive period, while for NO2 associations 
were not significant (Fig. 3).

Air pollution and number of hospital episodes
Higher PM2.5 and NO2 exposure in adolescence was associated with higher number of hospital episodes from 
age 18 onwards, but only in the adjusted models. 1-µg m−3 higher of PM2.5 increased the likelihood of having a 
hospital episode with 28% (95% CI: 1.02, 1.61), while 1-µg m−3 higher of NO2 with 5% (95% CI: 1.00, 1.11) in 
the fully adjusted models (Table 2). However, as linked HES data were available until 31.03.2020, the follow up 
time for young adulthood hospital episodes was approximately 1.8 years with an average of 0.2 episodes reported 
during this period (Supplementary Table 3). There were no significant associations between PM10 exposures and 
number of hospital episodes (Table 2).

Variables (A) Self-reported General health (n = 9593) (B) Number of hospital episodes (n = 5652)

Time-invariant

 Sex, % (n)

  Female 50.2 (4878) 49.2 (2832)

  Male 49.8 (4715) 50.8 (2820)

 Age (years) at interview, mean ± SD 17.2 ± 0.3 17.2 ± 0.3

 Ethnic group, % (n)

  White 86.7 (7817) 85.3 (4166)

  Non-white 13.3 (1776) 14.7 (1486)

 Number of siblings, % (n)

  None 43.2 (4099) 43.1 (2397)

  1 35.5 (3319) 35.4 (1942)

  2 or more 21.3 (2175) 21.5 (1313)

 Partnership status, % (n)

  Single parent 15.7 (1226) 15.2 (670)

  Living with partner, % (n) 84.3 (8367) 84.8 (4982)

 Highest household education, % (n)

  None, overseas only 11.2 (1016) 11.1 (683)

  NVQ 1–2 30.2 (2644) 31.2 (1588)

  NVQ 3 15.0 (1498) 14.8 (820)

  NVQ 4–5 43.7 (4435) 42.8 (2561)

 Household tenure, % (n)

  Own 62.1 (6282) 61.6 (3607)

  Social rent 22.5 (2037) 22.7 (1247)

  Private rent 10.0 (728) 10.5 (475)

  Other 5.5 (546) 5.3 (323)

 Household employment, % (n)

  Both employed 41.5 (4105) 41.1 (2306)

  One employed 53.1 (4947) 53.8 (3021)

  None unemployed 5.4 (541) 5.1 (325)

Time-variant

 Population density, mean ± SD 42.2 ± 40.3 43.8 ± 41.0

 Area-level income deprivation, % (n)

  1—Most deprived 30.7 (3545) 31.4 (2245)

  2 23.7 (2265) 24.7 (1383)

  3 22.9 (1921) 22.9 (1077)

  4—Least deprived 22.6 (1862) 21.0 (947)

 Country, % (n)

  England 84.2 (6272) 100 (5652)

  Northern Ireland 3.1 (906) NA

  Scotland 7.6 (1038) NA

  Wales 5.1 (1377) NA

Table 1. Weighted sample characteristics for the ‘Infancy’ subsamples, millennium cohort study. NVQ National 
Vocational Qualifications, SD Standard Deviation.
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(A) Self-reported general healtha

Model 1 Model 2 Model 3

OR 95% CI p OR 95% CI p OR 95% CI p

PM2.5

 Infancy 1.02 0.99, 1.06 0.180 1.00 0.96, 1.04 0.971 0.98 0.92, 1.03 0.380

 Early childhood 1.08 1.05, 1.11 < 0.001 1.06 1.03, 1.10 < 0.001 1.06 1.01, 1.11 0.015

 Middle childhood 1.05 1.03, 1.07 < 0.001 1.03 1.01, 1.06 0.005 1.04 1.00, 1.07 0.037

 Late childhood 1.03 1.01, 1.06 0.011 1.01 0.99, 1.04 0.321 0.99 0.95, 1.03 0.510

 Adolescence 1.05 1.01, 1.08 0.009 1.02 0.98, 1.06 0.464 0.99 0.94, 1.05 0.844

 Accumulation 1.04 1.01, 1.08 0.011 1.02 0.98, 1.06 0.397 0.99 0.94, 1.04 0.646

PM10

 Infancy 1.02 1.00, 1.05 0.101 1.00 0.98, 1.03 0.735 0.98 0.94, 1.03 0.500

 Early childhood 1.05 1.03, 1.07 < 0.001 1.04 1.02, 1.06 < 0.001 1.05 1.01, 1.09 0.009

 Middle childhood 1.03 1.02, 1.05 < 0.001 1.02 1.01, 1.04 0.001 1.03 1.00, 1.06 0.021

 Late childhood 1.03 1.01, 1.05 0.001 1.02 1.00, 1.04 0.103 1.00 0.98, 1.03 0.854

 Adolescence 1.04 1.02, 1.06 < 0.001 1.02 1.00, 1.04 0.123 1.01 0.97, 1.04 0.714

 Accumulation 1.04 1.02, 1.06 < 0.001 1.02 1.00, 1.05 0.045 1.01 0.98, 1.04 0.583

NO2

 Infancy 1.00 1.00, 1.01 0.181 1.00 0.99, 1.01 0.576 0.99 0.98, 1.01 0.294

 Early childhood 1.02 1.01, 1.02 < 0.001 1.01 1.00, 1.02 0.001 1.01 1.00, 1.02 0.036

 Middle childhood 1.01 1.01, 1.02 < 0.001 1.01 1.00, 1.01 0.060 1.00 0.99, 1.01 0.579

 Late childhood 1.01 1.00, 1.02 0.001 1.00 0.99, 1.01 0.551 0.99 0.99, 1.00 0.276

 Adolescence 1.01 1.00, 1.02 0.008 1.00 0.99, 1.01 0.917 0.99 0.98, 1.00 0.130

 Accumulation 1.01 1.00, 1.02 0.024 1.00 0.99, 1.01 0.924 0.99 0.98, 1.00 0.172

(B) Number of hospital 
episodesb

Model 1 Model 2 Model 3

IRR 95% CI p IRR 95% CI p IRR 95% CI p

PM2.5

 Infancy 1.00 0.96, 1.04 0.869 0.99 0.95, 1.04 0.692 0.98 0.94, 1.02 0.308

 Early childhood 1.02 0.95, 1.11 0.558 1.01 0.93, 1.10 0.778 0.99 0.92, 1.07 0.797

 Middle childhood 1.01 0.93, 1.10 0.787 1.01 0.91, 1.12 0.835 0.97 0.90, 1.05 0.472

 Late childhood 0.96 0.89, 1.03 0.233 0.95 0.88, 1.02 0.163 0.94 0.87, 1.02 0.118

 Adolescence 1.20 0.97, 1.47 0.087 1.22 1.01, 1.49 0.041 1.28 1.02, 1.61 0.033

 Accumulation 1.02 0.96, 1.09 0.452 1.02 0.96, 1.09 0.489 1.00 0.95, 1.06 0.966

PM10

 Infancy 0.99 0.96, 1.03 0.770 0.99 0.95, 1.03 0.625 0.98 0.94, 1.02 0.370

 Early childhood 0.98 0.94, 1.03 0.450 0.98 0.93, 1.03 0.439 0.96 0.92, 1.00 0.073

 Middle childhood 0.98 0.93, 1.04 0.537 0.98 0.92, 1.05 0.608 0.95 0.90, 1.00 0.061

 Late childhood 0.96 0.90, 1.02 0.151 0.95 0.90, 1.01 0.094 0.95 0.90, 1.00 0.072

 Adolescence 1.07 0.97, 1.17 0.184 1.08 0.98, 1.19 0.110 1.12 0.98, 1.27 0.087

 Accumulation 0.99 0.95, 1.02 0.486 0.99 0.95, 1.03 0.566 0.97 0.93, 1.00 0.083

NO2

 Infancy 1.00 0.99, 1.02 0.718 1.00 0.99, 1.01 0.944 1.00 0.98, 1.02 0.912

 Early childhood 1.00 0.99, 1.01 0.817 1.00 0.98, 1.02 0.954 0.99 0.98, 1.01 0.271

 Middle childhood 1.00 0.99, 1.02 0.542 1.01 0.98, 1.03 0.600 0.99 0.98, 1.01 0.350

 Late childhood 1.00 0.99, 1.02 0.552 1.00 0.98, 1.01 0.722 0.99 0.98, 1.01 0.406

 Adolescence 1.03 0.99, 1.07 0.148 1.04 1.00, 1.08 0.058 1.05 1.00, 1.11 0.046

 Accumulation 1.00 0.99, 1.01 0.800 1.00 0.99, 1.02 0.842 0.99 0.98, 1.01 0.302

Table 2. Air pollution exposure from birth onwards, self-reported general health and number of hospital 
episodes, millennium cohort study. Analyses were conducted using ordinal logistic regression for self-reported 
general health and quasi-Poisson regression for hospital episodes; complex survey weights were implemented 
to approximate the target population. Odds Ratios (OR), Incidence Rate Ratios (IRR) and their 95% confidence 
intervals (CI) are reported per 1 µg m−3 increment. Sample sizes are presented in the flowchart (see Fig. 2). 
Model 1: adjusted for age and sex. Model 2: Model 1 + ethnic groups, number of siblings, highest household 
education, household tenure, household employment, and partnership status (time-invariant). Model 3: Model 
2 + country (for self-reported general health only), area-level income deprivation and population density (time-
varying). aUnited Kingdom. bEngland. Significant values are in bold.
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Fig. 3. Annual PM2.5, PM10 and NO2 exposure from birth onwards and smoothed Odds Ratios of worse 
self-reported general health at age 17, Millennium Cohort Study. All models were adjusted for age, sex, ethnic 
groups, number of siblings, highest household education, household tenure, household employment, and 
partnership status; time-varying data on country, area-level income deprivation and population density were 
included. Complex survey weights were implemented to approximate the target population. LOESS regression 
was used to fit a smooth curve. ORs and their 95% CIs are smoothed and reported per 1 µg m−3 increment; 
vertical grey lines separate developmental periods.
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Exploring environmental health inequalities
Weighted average air pollution exposures differed between socioeconomic groups: children from non-White 
ethnic backgrounds, from lower parental education and those living in deprived areas had consistently higher 
PM2.5, PM10 and NO2 exposures during the first 18 years of their lives (Supplementary Fig.  3 for PM2.5; 
Supplementary Fig. 4 for PM10, Supplementary Fig. 5 for NO2). Differences were particularly striking between 
ethnic groups: non-White children were exposed to 15% higher PM2.5, 13% higher PM10 and a staggering 
51% higher NO2 concentrations during early life, in comparison to White children (Supplementary Table 7). 
Investigating effect modification by these variables, however, suggested only minimal differences in terms 
of effect magnitude. There was no significant interaction with sex (Supplementary Table 8) or ethnic groups 
(Supplementary Table 9) after adjusting for false discovery rate.

As there was some effect modification by highest household education (Supplementary Table 10) and area 
deprivation (Supplementary Table 11), we plotted stratified models to visualise differences. Higher PM2.5, PM10, 
and NO2 exposure in infancy among children born to lower educated families significantly lowered the odds 
of worse self-reported health (Supplementary Fig. 6A). Associations between air pollution (PM2.5, PM10, NO2) 
in infancy and early childhood and self-reported general health were strongest among those living in middle 
deprived areas (Q3) suggesting an inverted U-shaped curve of association (Supplementary Fig. 6B–E). Finally, 
there were negative associations between PM2.5 and PM10 exposure in late childhood and number of hospital 
episodes among those living in the most deprived neighbourhoods (Q1) (Supplementary Fig. 6F–H).

Sensitivity analyses
S1: Extracting area-weighted average air pollution exposure in 100-m (Supplementary Table 12) or 500-m buffers 
(Supplementary Table 13) around residential postcodes produced the same findings; only associations with NO2 
attenuated using 500-m buffers. S2: After adjusting for maternal health (i.e. BMI before pregnancy, smoking, 
self-reported general health) associations minimally changed with early childhood PM2.5 and self-reported 
general health association being attenuated, while higher early childhood and accumulated PM10 exposure 
being significantly associated with lower total number of hospital episodes (Supplementary Table 14). S3: After 
adjusting for road traffic noise, main associations for PM2.5 and PM10 and self-reported general health remained 
significant, but attenuated for NO2; also, accumulated PM10 exposure was associated with lower total number of 
hospital episodes (Supplementary Table 15). S4: Imputing missing individual and area-level variables reinforced 
the main findings (Supplementary Table 16). S5: Analysing the life-course association between air pollution 
exposure and self-reported general health using multinomial regression confirmed a sensitive period around 
early and middle childhood: in comparison to ‘Excellent’, higher air pollution in early and middle childhood 
increased the likelihood of reporting ‘Good’ or ‘Fair or Poor’ general health. Moreover, the associations increased 
stepwise by higher PM2.5, PM10 and NO2 concentrations for these age groups (Supplementary Fig. 7). S6: In 
comparison to ‘Excellent’, quantile-based g-computation of exposure mixtures confirmed that air pollution 
during early, middle—and for fair and poor health—in late childhood was associated with lower self-reported 
health at age 17.

Discussion
Higher PM2.5, PM10 and—in a smaller extend—NO2 exposures in early and middle childhood were associated 
with higher risk of reporting worse general health in a nationally representative sample of 17-year olds from 
the UK. Associations between air pollution and number of hospital episodes were limited, but suggested a 
positive link between air pollution exposure during adolescence and subsequent hospital episodes. Importantly, 
we found that children from disadvantaged ethnic groups, households, and neighbourhoods had higher air 
pollution exposures during the life; however, apart from a few exemptions, effect sizes were comparable between 
advantaged and disadvantaged children suggesting limited effect modification, and only for parental education 
and neighbourhood deprivation.

By extracting annual exposure for the first 18 years of life, we were able to identify a potential sensitive period 
around early and middle childhood (likely between age 3 and 6 years) for self-reported general health outcomes. 
Cohort studies suggest that childhood exposure may associate with adolescence or adulthood health conditions, 
including respiratory37, cardiovascular17, cognitive38 and mental health outcomes9. Previous findings from the 
Millennium Cohort Study also suggested that air pollution exposure (including PM2.5, PM10, NO2) at age 5 were 
associated with lower scores in Naming Vocabulary, a cognitive test39, with a French cohort study reinforcing a 
similar sensitive window for cognition18. Preschool age is considered as a sensitive period for brain development 
related to cognitive and behavioural changes40 and for lung growth41. Contrary to the literature42, air pollution 
exposure during infancy was not associated with self-reported general health in the total population; it was 
significant only after we stratified models by individual and area-level socioeconomic status. It is plausible 
that prenatal exposures, which we did not capture, might have a more prominent link to on general health 
than exposure during the first year; however, this needs to be explored in future studies. Focussing on specific 
conditions, where development during the first 1000 days of life is crucial43,44, instead of general health, might 
lead to different sensitive windows.

There was some evidence for adolescence air pollution exposure (PM2.5, NO2) being significantly associated 
with higher number of hospital episodes during young adulthood. However, given that the follow-up time was 
much shorter in young adulthood than in other exposure periods, we cannot ascertain whether findings were 
due to short versus long-term effects of air pollution on hospitalizations, or related to time of exposure during 
the life course; thus, this finding should be interpreted carefully. Although short and long-term air pollution 
exposure has been associated with hospital admission in the general population and among children, including 
for respiratory conditions45, there is evidence suggesting different associations between short and long-term air 
pollution exposures and health46. In this study, we only used the number of hospital episodes as an outcome to 
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provide an objective marker of general health. Despite self-reported and administrative data derived general 
health being associated with each other, we did not find any indication for early or middle childhood air pollution 
exposure being linked to higher hospital episodes. Future studies interested in the link between air pollution and 
health in MCS and linked hospital episode data should focus on using ICD codes and detailed information on 
self-reported health conditions.

Unlike several longitudinal studies in the literature, our study is based on a nationally representative sample 
including various individual and area-level confounders. There were significant inequalities in exposure to air 
pollution across social and, especially, ethnic groups, which remained consistent from birth to young adulthood. 
The environmental injustice literature has long documented the disproportional effects of air pollution exposure 
on marginalised communities20,47,48. For disadvantaged children, the impact of environmental hazards might 
be particularly detrimental: air pollution can lead to developing chronic conditions in childhood which may 
harm their health across the whole life course11,47. A recent whole population study from the Netherlands 
found consistent differences between ethnic Dutch and minority ethnic populations21. PM2.5 exposures were 
1.1–6.6%, PM10 exposures 0.7–5.5%, NO2 exposures 2.8–22.8% larger in minority populations, which are much 
smaller differences in comparison to those presented in the current investigation. The study also showed that 
air pollution exposures were higher at younger ages (< 25 years old)21. A US-based study confirmed ethnic 
group-based inequalities in air pollution exposure, adding that low-income non-White children are particularly 
affected by environmental inequalities49. Finally, a large UK-based general population sample showed higher 
levels of air pollution exposure among ethnic minorities and immigrants in comparison to White and UK-born 
individuals, which modified associations with general health22.

In contrast to the literature18,22, we found limited evidence on different effect sizes across males or females, or 
across social and ethnic groups. First, findings suggested stronger air pollution and self-reported general health 
associations in neighbourhoods which were neither advantaged nor disadvantaged (i.e., inverted U-shaped 
association). Second, higher air pollution during infancy was associated with better health among children 
growing up in household where parents had no education. We also found that among children residing in 
deprived neighbourhoods in late childhood, air pollution was linked to smaller number of hospital admissions. 
These contradictory findings require further investigation in the specific types of health conditions or that 
geographic accessibility might play a role.

Strengths and limitations
This study benefitted from a large and nationally representative cohort of children followed up regularly from 
birth to age 17. Residential addresses were asked up to seven times (plus birth addresses) from each household, 
enabling us to derive air pollution exposure in each year of participants’ lives. MCS has rich individual-level 
information about participants and their families; further linkage to time-varying area-level exposures enabled 
to more accurately adjusting for confounding. A further strength of our study is the linkage of very high-
resolution air pollution maps to residential postcodes, which are able to reduce exposure misclassification in 
comparison to earlier representative longitudinal studies using larger geographies22,39. However, there are several 
limitations to consider. First, there is still some risk of misclassifying air pollution exposure, as we did not have 
the exact property addresses geocoded. Using buffers around postcode centroids may lower the distance error 
and thus exposure misclassification, however, with increasing sizes of buffers localised effects of air pollutants 
become harder to capture. This might be less problematic in remote areas where air pollution is likely low and 
more homogeneous, but could introduce problems in high density populated areas. In addition, we do not have 
information about daily mobility patterns which are key to define the real area of exposure. Second, there are 
significant differences in how area-level confounders were produced between the four UK nations and across 
time. For example, small areas have slightly different populations (i.e., smallest in Scotland), and indices of 
multiple deprivation were produced in different years. While we adjusted models for country of residence, we 
cannot rule out different measurements biasing findings. Third, although 85% of the sample consented to health 
data linkage in Sweep7 and the weighted sample distribution for the two outcomes were almost identical, there 
is evidence suggesting differences between consenting and not-consenting survey participants50, which is not 
included in the survey weights. Fourth, general health was derived from participants’ self-report, which is prone 
to reporting bias. Fifth, despite identifying a range of relevant confounders, residual confounding cannot be 
ruled out due to imperfect selection of covariates (e.g. policy impact) or measurement error. Last, analyses in 
this paper do not examine the causal relationship between air pollution and general health; future studies should 
implement quasi-experimental designs or instrumental variable approaches to strengthen evidence base.

Conclusions
Using a large and nationally representative sample, this study demonstrated how PM2.5, PM10 and NO2 exposure 
during early and middle childhood associates with general health in late adolescence. Findings extend on 
previous literature suggesting a sensitive window and exploring environmental inequalities across social and 
ethnic groups. Future research should utilise representative birth cohorts linked with environmental and health 
administrative data to understand how air pollution is associated with specific health conditions and identify 
disease-specific sensitive windows. Confirming sensitive windows across cohorts from different generations 
and regions, and exploring causality using quasi-experimental studies should be prioritized. As air pollution 
exposure in childhood is linked to health and well-being in later life, policies reducing concentrations below 
WHO guideline limits may have benefits across the whole life course.
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Data availability
All MCS datasets are available via the UK Data Service  ( h t t p s  : / / b e t  a . u k d a  t a s e r v  i c e . a c . u k / d a t a c a t a l o g u e / s e r i e s / 
s e r i e s ? i d = 2 0 0 0 0 3 1 ) ; air pollution maps were produced by the EXPANSE project and are available upon request 
(https://expanseproject.eu/toolbox/exposome-maps/). Researchers interested in linking environmental data to 
MCS postcodes can apply for data access via CLS Data Access Committee  ( h t t p s  : / / c l s  . u c l . a  c . u k / d  a t a - a c c e s s - t r a i 
n i n g / d a t a - a c c e s s / a c c e s s i n g - d a t a - d i r e c t l y - f r o m - c l s / ) ; completed application should be submitted to  c l s d a t a @ u c l . 
a c . u k . Further queries can be directed to corresponding author.

Received: 25 November 2024; Accepted: 11 March 2025

References
 1. World Health Organization. WHO Global Air Quality Guidelines. Particulate matter (PM2.5 and PM10), Ozone, nitrogen dioxide, 

sulfur dioxide and carbon monoxide. (World Health Organization, Geneva, (2021).
 2. Health Effects Institute. State of Global Air 2024. Special Report (Health Effects Institute, 2024).
 3. Bekkar, B., Pacheco, S., Basu, R. & DeNicola, N. Association of air pollution and heat exposure with preterm birth, low birth weight, 

and stillbirth in the US: A systematic review. JAMA Netw. Open. 3, e208243. https://doi.org/10.1001/jamanetworkopen.2020.8243 
(2020).

 4. Brumberg, H. L., Karr, C. J. & Council on Environmental Health. Ambient air pollution: health hazards to children. Pediatrics 147 
https://doi.org/10.1542/peds.2021-051484 (2021).

 5. Dominski, F. H. et al. Effects of air pollution on health: A mapping review of systematic reviews and meta-analyses. Environ. Res. 
201, 111487. https://doi.org/10.1016/j.envres.2021.111487 (2021).

 6. Khreis, H. et al. Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and 
meta-analysis. Environ. Int. 100, 1–31. https://doi.org/10.1016/j.envint.2016.11.012 (2017).

 7. Huang, M. et al. Effects of ambient air pollution on blood pressure among children and adolescents: a systematic review and meta-
analysis. J. Am. Heart Assoc. 10, e017734. https://doi.org/10.1161/JAHA.120.017734 (2021).

 8. Huang, C. et al. The association between childhood exposure to ambient air pollution and obesity: a systematic review and meta-
analysis. Int. J. Environ. Res. Public. Health. 19 https://doi.org/10.3390/ijerph19084491 (2022).

 9. Newbury, J. B. et al. Air and noise pollution exposure in early life and mental health from adolescence to young adulthood. JAMA 
Netw. Open. 7, e2412169. https://doi.org/10.1001/jamanetworkopen.2024.12169 (2024).

 10. Chandra, M. et al. Air pollution and cognitive impairment across the life course in humans: a systematic review with specific focus 
on income level of study area. Int. J. Environ. Res. Public. Health. 19 https://doi.org/10.3390/ijerph19031405 (2022).

 11. Baranyi, G. et al. Higher air pollution exposure in early life is associated with worse health among older adults: A 72-year follow-up 
study from Scotland. Health Place. 86, 103208. https://doi.org/10.1016/j.healthplace.2024.103208 (2024).

 12. Baranyi, G. et al. Early life PM(2.5) exposure, childhood cognitive ability and mortality between age 11 and 86: A record-linkage 
life-course study from Scotland. Environ. Res. 238, 117021. https://doi.org/10.1016/j.envres.2023.117021 (2023).

 13. Ben-Shlomo, Y. & Kuh, D. A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and 
interdisciplinary perspectives. Int. J. Epidemiol. 31, 285–293. https://doi.org/10.1093/ije/31.2.285 (2002).

 14. Baranyi, G. et al. Life-course exposure to air pollution and biological ageing in the Lothian birth cohort 1936. Environ. Int. 169, 
107501. https://doi.org/10.1016/j.envint.2022.107501 (2022).

 15. Cai, Y. et al. Prenatal, early-life, and childhood exposure to air pollution and lung function: the ALSPAC cohort. Am. J. Respir Crit. 
Care Med. 202, 112–123. https://doi.org/10.1164/rccm.201902-0286OC (2020).

 16. Reuben, A. et al. Association of air pollution exposure in childhood and adolescence with psychopathology at the transition to 
adulthood. JAMA Netw. Open. 4, e217508. https://doi.org/10.1001/jamanetworkopen.2021.7508 (2021).

 17. Guo, C. et al. Life-course exposure to ambient fine particulate matter and hypertension in adulthood: a longitudinal cohort study. 
Environ. Sci. Pollut Res. Int. 30, 788–797. https://doi.org/10.1007/s11356-022-22272-w (2023).

 18. Guilbert, A. et al. Prenatal and childhood exposure to ambient air pollution and cognitive function in school-age children: 
examining sensitive windows and sex-specific associations. Environ. Res. 235, 116557. https://doi.org/10.1016/j.envres.2023.116557 
(2023).

 19. Bakolis, I. et al. Mental health consequences of urban air pollution: prospective population-based longitudinal survey. Soc. 
Psychiatry Psychiatr Epidemiol. 56, 1587–1599. https://doi.org/10.1007/s00127-020-01966-x (2021).

 20. Hajat, A., Hsia, C. & O’Neill, M. S. Socioeconomic disparities and air pollution exposure: a global review. Curr. Environ. Health 
Rep. 2, 440–450. https://doi.org/10.1007/s40572-015-0069-5 (2015).

 21. van den Brekel, L. et al. Ethnic and socioeconomic inequalities in air pollution exposure: a cross-sectional analysis of nationwide 
individual-level data from the Netherlands. Lancet Planet. Health. 8, e18–e29. https://doi.org/10.1016/S2542-5196(23)00258-9 
(2024).

 22. Abed Al Ahad, M., Demsar, U., Sullivan, F. & Kulu, H. The spatial-temporal effect of air pollution on individuals’ reported health 
and its variation by ethnic groups in the united Kingdom: a multilevel longitudinal analysis. BMC Public. Health. 23, 897.  h t t p s : / / 
d o i . o r g / 1 0 . 1 1 8 6 / s 1 2 8 8 9 - 0 2 3 - 1 5 8 5 3 - y     (2023).

 23. Connelly, R. & Platt, L. Cohort profile: UK millennium cohort study (MCS). Int. J. Epidemiol. 43, 1719–1725.  h t t p s : / / d o i . o r g / 1 0 . 1 
0 9 3 / i j e / d y u 0 0 1     (2014).

 24. Joshi, H. & Fitzsimons, E. The UK millennium cohort study: the making of a multi-purpose resource for social science and policy 
in the UK. Longit Life Course Stud. 7, 409–430. https://doi.org/10.14301/llcs.v7i4.410 (2016).

 25. Shen, Y. et al. Europe-wide air pollution modeling from 2000 to 2019 using geographically weighted regression. Environ. Int. 168, 
107485. https://doi.org/10.1016/j.envint.2022.107485 (2022).

 26. London, U. C. & UCL Institute of Education, Centre for Longitudinal Studies. UK Data Service,. COVID-19 Survey in Five 
National Longitudinal Cohort Studies: Millennium Cohort Study, Next Steps, 1970 British Cohort Study and 1958 National Child 
Development Study, 2020–2021 [data collection]. 4th Edn. (2024).

 27. Kerry-Barnard, S., Gomes, D. & Fitzsimons, E. Millennium Cohort Study: A Guide To the Linked Health Administrative datasets—
Hospital Episode Statistics (HES). User Guide (Version 1) (UCL Centre for Longitudinal Studies, 2022).

 28. University College, London & UCL Institute of Education, Centre for Longitudinal Studies, NHS Digital. Millennium Cohort 
Study. : Linked Health Administrative Datasets (Hospital Episode Statistics), England, 2000–2019: Secure Access. (UK Data 
Service, 2024).

 29. Rajah, N. et al. Using linked administrative data to aid the handling of non-response and restore sample representativeness in 
cohort studies: the 1958 National child development study and hospital episode statistics data. BMC Med. Res. Methodol. 23, 266. 
https://doi.org/10.1186/s12874-023-02099-w (2023).

 30. Herbert, A., Wijlaars, L., Zylbersztejn, A., Cromwell, D. & Hardelid, P. Data resource profile: hospital episode statistics admitted 
patient care (HES APC). Int. J. Epidemiol. 46, 1093–1093i. https://doi.org/10.1093/ije/dyx015 (2017).

Scientific Reports |        (2025) 15:10983 11| https://doi.org/10.1038/s41598-025-94107-w

www.nature.com/scientificreports/

https://doi.org/10.1001/jamanetworkopen.2020.8243
https://doi.org/10.1542/peds.2021-051484
https://doi.org/10.1016/j.envres.2021.111487
https://doi.org/10.1016/j.envint.2016.11.012
https://doi.org/10.1161/JAHA.120.017734
https://doi.org/10.3390/ijerph19084491
https://doi.org/10.1001/jamanetworkopen.2024.12169
https://doi.org/10.3390/ijerph19031405
https://doi.org/10.1016/j.healthplace.2024.103208
https://doi.org/10.1016/j.envres.2023.117021
https://doi.org/10.1093/ije/31.2.285
https://doi.org/10.1016/j.envint.2022.107501
https://doi.org/10.1164/rccm.201902-0286OC
https://doi.org/10.1001/jamanetworkopen.2021.7508
https://doi.org/10.1007/s11356-022-22272-w
https://doi.org/10.1016/j.envres.2023.116557
https://doi.org/10.1007/s00127-020-01966-x
https://doi.org/10.1007/s40572-015-0069-5
https://doi.org/10.1016/S2542-5196(23)00258-9
https://doi.org/10.1186/s12889-023-15853-y
https://doi.org/10.1186/s12889-023-15853-y
https://doi.org/10.1093/ije/dyu001
https://doi.org/10.1093/ije/dyu001
https://doi.org/10.14301/llcs.v7i4.410
https://doi.org/10.1016/j.envint.2022.107485
https://doi.org/10.1186/s12874-023-02099-w
https://doi.org/10.1093/ije/dyx015
http://www.nature.com/scientificreports


 31. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R Stat. 
Soc. Ser. B Stat. Methodol. 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).

 32. Keil, A. P. et al. A quantile-based g-computation approach to addressing the effects of exposure mixtures. Environ. Health Perspect. 
128, 47004. https://doi.org/10.1289/EHP5838 (2020).

 33. Language, A. And Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).
 34. Lumley, T. Analysis of complex survey samples. J. Stat. Softw. 9, 1–19. https://doi.org/10.18637/jss.v009.i08 (2004).
 35. SvyVGAM: Design-Based Inference In Vector Generalised Linear Models. (2023). https://CRAN.R-project.org/package=svyVGAM
 36. Buuren, S. & Groothuis-Oudshoorn, K. Mice: multivariate imputation by chained equations InR. J. Stat. Softw. 45, 1–67.  h t t p s : / / d 

o i . o r g / 1 0 . 1 8 6 3 7 / j s s . v 0 4 5 . i 0 3     (2011).
 37. Garcia, E. et al. Childhood air pollution exposure associated with self-reported bronchitic symptoms in adulthood. Am. J. Respir 

Crit. Care Med. 210, 1025–1034. https://doi.org/10.1164/rccm.202308-1484OC (2024).
 38. Harris, M. H. et al. Prenatal and childhood traffic-related air pollution exposure and childhood executive function and behavior. 

Neurotoxicol Teratol. 57, 60–70. https://doi.org/10.1016/j.ntt.2016.06.008 (2016).
 39. Milojevic, A., Dutey-Magni, P., Dearden, L. & Wilkinson, P. Lifelong exposure to air pollution and cognitive development in young 

children: the UK millennium cohort study. Environ. Res. Lett. 16 https://doi.org/10.1088/1748-9326/abe90c (2021).
 40. Brown, T. T. & Jernigan, T. L. Brain development during the preschool years. Neuropsychol. Rev. 22, 313–333.  h t t p s : / / d o i . o r g / 1 0 . 1 

0 0 7 / s 1 1 0 6 5 - 0 1 2 - 9 2 1 4 - 1     (2012).
 41. Carraro, S., Scheltema, N., Bont, L. & Baraldi, E. Early-life origins of chronic respiratory diseases: Understanding and promoting 

healthy ageing. Eur. Respir J. 44, 1682–1696. https://doi.org/10.1183/09031936.00084114 (2014).
 42. Zhao, Q. et al. Air pollution during infancy and lung function development into adolescence: the GINIplus/LISA birth cohorts 

study. Environ. Int. 146, 106195. https://doi.org/10.1016/j.envint.2020.106195 (2021).
 43. Shao, J. et al. Exposure to air pollution during the first 1000 days of life and subsequent health service and medication usage in 

children. Environ. Pollut. 256, 113340. https://doi.org/10.1016/j.envpol.2019.113340 (2020).
 44. Bettiol, A., Gelain, E., Milanesio, E., Asta, F. & Rusconi, F. The first 1000 days of life: traffic-related air pollution and development 

of wheezing and asthma in childhood. A systematic review of birth cohort studies. Environ. Health. 20, 46.  h t t p s : / / d o i . o r g / 1 0 . 1 1 8 
6 / s 1 2 9 4 0 - 0 2 1 - 0 0 7 2 8 - 9     (2021).

 45. Ab Manan, N., Noor Aizuddin, A. & Hod, R. Effect of air pollution and hospital admission: a systematic review. Ann. Glob Health. 
84, 670–678. https://doi.org/10.9204/aogh.2376 (2018).

 46. Qi, H. et al. Association between short- and long-term exposures to air pollutants and internalizing/externalizing behavior in 
children aged 4 to 7 years. Environ. Sci. Pollut Res. Int. 30, 37321–37331. https://doi.org/10.1007/s11356-022-24811-x (2023).

 47. Mathiarasan, S. & Huls, A. Impact of environmental injustice on children’s health-interaction between air pollution and 
socioeconomic status. Int. J. Environ. Res. Public. Health. 18 https://doi.org/10.3390/ijerph18020795 (2021).

 48. Fairburn, J., Schule, S. A., Dreger, S., Karla Hilz, L. & Bolte, G. Social inequalities in exposure to ambient air pollution: a systematic 
review in the WHO European region. Int. J. Environ. Res. Public. Health. 16 https://doi.org/10.3390/ijerph16173127 (2019).

 49. Clark, L. P., Millet, D. B. & Marshall, J. D. National patterns in environmental injustice and inequality: outdoor NO2 air pollution 
in the united States. PLoS One. 9, e94431. https://doi.org/10.1371/journal.pone.0094431 (2014).

 50. Mostafa, T. Variation within households in consent to link survey data to administrative records: evidence from the UK millennium 
cohort study. Int. J. Soc. Res. Methodol. 19, 355–375. https://doi.org/10.1080/13645579.2015.1019264 (2016).

Author contributions
Gergő Baranyi: Conceptualization, Formal analysis, Methodology, Visualization, Writing – original draft; Katie 
Harron: Conceptualization, Writing – review and editing; Youchen Shen: Resources (air pollution maps), Writ-
ing – review and editing; Kees de Hoogh: Resources (air pollution maps), Writing – review and editing; Emla 
Fitzsimons: Conceptualization, Funding acquisition, Writing – review and editing.

Funding
GB, KH and EF were supported by ESRC grants ES/M001660/1 and ES/W013142/1. EF was additionally sup-
ported by ESRC grant ES/W001179/1. KH was additionally supported by funding from ADR UK (Adminis-
trative Data Research UK), and Economic and Social Research Council (part of UK Research and Innovation) 
programme (ES/V000977/1, ES/X000427/1 and ES/X003663/1). The air pollution mapping work was supported 
by EXPANSE and EXPOSOME-NL projects. The EXPANSE project is funded by the European Union’s Horizon 
2020 research and innovation programme under grant agreement No 874627. The content of this article is not 
officially endorsed by the European Union. The EXPOSOME-NL project is funded through the Gravitation 
programme of the Dutch Ministry of Education, Culture, and Science and the Netherlands Organization for 
Scientific Research (NWO grant number 024.004.017).

Declarations

Ethics approval and consent to participate
Participants (in younger age their parents) provided written informed consent for data collection and data 
linkage. The study was approved by NHS Multicenter Research Ethics Committees. See more information:  h t t p 
s :   /  / c l  s . u c  l .  a c .  u k   / w p - c o  n t  e n t  / u p l  o a  d s /  2 0   1 7 / 0   7 / M C S -  E  t h i c a  l - A p  p  r o  v a l - a n d -  C o n s  e n t - 2 0 1 9 . p d f.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at  h t t p s : / / d o i . o r g / 1 
0 . 1 0 3 8 / s 4 1 5 9 8 - 0 2 5 - 9 4 1 0 7 - w     .  

Correspondence and requests for materials should be addressed to G.B.

Reprints and permissions information is available at www.nature.com/reprints.

Scientific Reports |        (2025) 15:10983 12| https://doi.org/10.1038/s41598-025-94107-w

www.nature.com/scientificreports/

https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1289/EHP5838
https://doi.org/10.18637/jss.v009.i08
https://CRAN.R-project.org/package=svyVGAM
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1164/rccm.202308-1484OC
https://doi.org/10.1016/j.ntt.2016.06.008
https://doi.org/10.1088/1748-9326/abe90c
https://doi.org/10.1007/s11065-012-9214-1
https://doi.org/10.1007/s11065-012-9214-1
https://doi.org/10.1183/09031936.00084114
https://doi.org/10.1016/j.envint.2020.106195
https://doi.org/10.1016/j.envpol.2019.113340
https://doi.org/10.1186/s12940-021-00728-9
https://doi.org/10.1186/s12940-021-00728-9
https://doi.org/10.9204/aogh.2376
https://doi.org/10.1007/s11356-022-24811-x
https://doi.org/10.3390/ijerph18020795
https://doi.org/10.3390/ijerph16173127
https://doi.org/10.1371/journal.pone.0094431
https://doi.org/10.1080/13645579.2015.1019264
https://cls.ucl.ac.uk/wp-content/uploads/2017/07/MCS-Ethical-Approval-and-Consent-2019.pdf
https://cls.ucl.ac.uk/wp-content/uploads/2017/07/MCS-Ethical-Approval-and-Consent-2019.pdf
https://doi.org/10.1038/s41598-025-94107-w
https://doi.org/10.1038/s41598-025-94107-w
http://www.nature.com/scientificreports


Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 

Scientific Reports |        (2025) 15:10983 13| https://doi.org/10.1038/s41598-025-94107-w

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	The relationship between early life course air pollution exposure and general health in adolescence in the United Kingdom
	Methods
	Exposure to air pollution
	Outcomes
	Self-reported general health
	Number of hospital episodes
	Covariates
	Statistical analysis

	Results
	Air pollution and self-reported general health
	Air pollution and number of hospital episodes
	Exploring environmental health inequalities
	Sensitivity analyses

	Discussion
	Strengths and limitations

	Conclusions
	References


