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Flood risk prediction is critical for adaptation to the forecast frequency of extreme weather events. 
As South Korea experiences events that cause widespread flood damage, we conducted a flood risk 
assessment by employing global climate models and a hydrological model of the Yeongsan River 
Basin. Using shared socioeconomic pathway scenario data from the soil and water assessment tool, 
we simulated daily streamflow and reservoir outflow data for each sub-basin, modeling baseline, 
mid-century, and end-century scenarios. Four flood indices (duration, magnitude, probability, and 
frequency) were used for estimating flood risk. The spatial distribution of flood risk projected higher 
risks in most sub-basins for the mid- and end-century scenarios with an increase of flood amount to 
about 65% in the future. Adaptive strategies were required to address the risks of both flash floods and 
longer-term flooding. The study facilitates prioritizing flood risk regions for implementing effective 
preventive measures and efficient flood management.

Climate change is projected to cause more frequent and heavy rainfall events and increased temperatures in the 
future, as well as changes in the spatiotemporal patterns of precipitation and temperature1. Floods are a prevalent 
and devastating category of natural disasters that annually cause countless fatalities worldwide2,3. South Korea 
has a tropical monsoon climate that renders the country vulnerable to climate change. The region receives 68% 
of total precipitation in June–September, and notable variations in precipitation patterns could indicate a higher 
risk of flooding or drought4. Typhoons and intense rainfall cause widespread flooding damage in South Korea 
every two years5,6. Mitigating flood risk in agricultural watersheds requires the establishment of appropriate 
flood risk measures, such as hazard analysis7. Hazard analyses require future climate change data to evaluate 
flood hazards based on historical data8–11. Various approaches are used in estimating climate extremes that cause 
flooding, such as investigating their frequency, magnitude, duration, exceedance, or variability12–16.

Regional climate models and global climate models (RCMs and GCMs, respectively), have long been used to 
estimate potential future responses to changing circumstances17. Several hydrological studies have used GCM 
and RCM data to project the implications of climate change up to 2100 for representative concentration pathways 
(RCPs) of greenhouse gases. Previous climate change scenarios such as SA90 and SRES from the Intergovernmental 
Panel on Climate Change (IPCC) considered only rainfall, energy structures, and temperature18. However, the 
IPCC 6th Assessment Report indicate five shared socioeconomic pathways (SSPs) for future socially sustainable 
development scenarios19,20. The SSPs link indicators of socioeconomic development, such as GDP, population, 
and urbanization to the CO2 concentration target21. The GCMs indicate a higher chance of future flooding along 
with rising temperatures, leading to uncertainty in obtaining accurate flood risk assessment results22,23. Selecting 
a suitable GCM is essential for quantifying future flood risks associated with climate change adaptation. Bias 
correction and statistical downscaling methods (SDM) in obtaining climate data at finer spatial scales in assessing 
future local impacts of climate change24–26. Several statistical downscaling methods have been developed and 
examined to assess the impacts of climate change27. The demand for high-resolution spatiotemporal data in 
hydrological impact assessments of climate change has led to a growing reliance on statistical downscaling 
methods28,29.

Routing future climate data with hydrological models, such as TOPMODEL, HEC-RAS, MIKESHE, HEC-
HMS, SWMM, FLO-2D, and the Soil and Water Assessment Tool (SWAT) facilitates the evaluation of local and 
regional flood risks30–32. Hydrological models coupled with GCMs are essential for quantifying future flood 
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risks. The SWAT model with GCMs has been used to determine the effects of climate change on flood risk30. 
As the SWAT model offers substantial accessibility and easy input data management, significant applications 
have been developed in researching the effects of climate change and hydrological modelling31–40. The authors 
reported that declining rainfall and rising temperatures increased the relative hazard levels for future conditions. 
Flood frequency was evaluated with 21 GCMs using the SWAT model in Bitlis Creek, Turkey39. Results show 
that under SSP245 and SSP585 (2025–2099), flood discharges increased by 31.7% from the historical period 
(1955–2010). A comprehensive assessment of projected flood hazards across Vietnam under four SSPs and two 
periods (2036–2065 and 2070–2099) shows an increase in streamflow by 31% with a potential future flood risk 
using the SWAT model and 20 GCMs40. Dysarz et al.41 evaluated future spatial extent and depth classes of flood 
hazard zones in the middle course of the River Warta, Poland using SWAT and HEC-RAS models. RCPs (4.5 and 
8.5) for three return periods (10-, 100- and 500-year floods) from 2021 to 2050 indicate that the flood extend are 
projected to increase and the mean water depths of the flooded areas are projected to decrease with increase in 
flood inundated areas.

Several studies have been conducted in South Korea to predict severe floods using hydrological models and 
GCMs42,43. Son et al.44 determined the likelihood of severe rainfall, related flood levels, and the flood volume of 
the Namhangang River using projected climate change data from 13 GCMs. The authors reported increases in the 
likelihood of severe rainfall, flood volume, and flood level occurrences of 13.0–15%, 29–33.5%, and 12.6–13.6%, 
respectively. Using xp-swmm software, Hwang et al.42 examined the effects of climate change on flood-level 
design in the Hwajabae drainage basin of Korea. The findings highlight an increase in the peak flood volume, 
necessitating redesign of the urban drainage infrastructure to cope with severe floods. Kwak et al.45 used the 
Hydrologic Modeling System (HEC-HMS) to assess the effects of rainfall distribution, curve number (CN), and 
climate change on flood volume variations in the Yedang watershed of Korea for RCP4.5/8.5 and SSP 2-4.5/5-8.5 
scenarios. The findings indicate that between RCP 4.5/8.5 and SSP 2-4.5/5-8.5, the average flood volume would 
increase by 15% and 13%, respectively. Conventional watershed modelling approaches in Korea primarily focus 
on estimating flood volume and rainfall distribution in conjunction with Representative Concentration Pathway 
(RCP) scenarios. Despite advancements in modelling capabilities, many existing methods continue to rely on 
simplified indicators such as exceedance probability or spatial distribution patterns to assess flood risk. These 
approaches often fall short in capturing the complex dynamics of flood regimes. Numerous flood risk assessment 
studies in Korea have focused on the effects of climate change through a single flood characteristic, limiting 
the scope of their conclusions. However, integrating multiple flood characteristics is essential for accurately 
assessing future flood events and formulating effective flood risk management policies. As highlighted by Postel 
and Richter46comprehensive flow management should consider not only flood magnitude, but also duration and 
frequency. Moreover, accurate flood modelling must account for land use and key hydrological infrastructure, 
including dams, reservoirs, weirs, and drainage systems. Therefore, a flood hazard analysis framework that 
incorporates the impacts of climate change on multiple flood characteristics can significantly enhance flood 
risk assessment and management. In this study, a disaggregated flood hazard framework was used, separating 
recurrence probability, frequency, duration, and magnitude to provide a clearer, more actionable understanding 
of flooding patterns in Korea. Korea has experienced frequent flooding over the past decade, with the Yeongsan 
River Basin (YRB) being particularly vulnerable due to its high agricultural use (50%) and extensive dam and 
reservoir network (1,104 structures). Climate change, as projected by the SSP scenario, is expected to increase 
precipitation, heightening the risk of dam failures and overflows. Evaluating future flood risk is essential to 
identify high-risk areas and support adaptive planning and resilient infrastructure development to mitigate 
evolving flood threats. Accordingly, this study evaluated four flood risk hazard indices (duration, frequency, 
magnitude, and recurrence) to quantify future flood risk under SSP climate change scenarios in the YRB.

The YRB is located in the southwestern region of South Korea, covering 3441.09 km2 (Fig. 1). It is the fourth 
largest basin in the country and the river is 129.5 km long. The YRB has Korea’s largest agricultural land area, 
comprising 32% rice paddies, 34% forests, 18% upland crops, 1% grasslands, 2% bare fields, with 5% urban and 6% 
water areas17,47. The YRB supplies an average of three billion m3 of water each year, accounting for approximately 
3.9% of the total water resources in South Korea. The basin has 4 major agricultural dams, approximately 1102 
small dams and reservoirs, 2 weirs, and a dyke used mostly for irrigation. Annual precipitation is 1391 mm in the 
monsoon watershed, and the average temperature is 14 °C. Summer monsoon rains in June–September account 
for approximately 60–70% of the total drainage48,49.

This study evaluated the basin-level flood risk index linked with climate change. A developed, calibrated, 
and validated soil and SWAT hydrological model was used to assess the risk of future flooding in the region. 
The observed baseline (1980–2021) and future climate mid-century (2030–2060), and end-century (2070–2100) 
data from SSP scenarios were used as temperature and rainfall inputs for the SWAT model to simulate the daily 
streamflow and reservoir outflow for each sub-basin. An SSP scenario is essential for this study, as it links the 
CO2 concentration target and socioeconomic development, such as GDP, population, socioeconomic changes, 
urbanization, as well as the radiative forcing intensity in 2100. Downscaling and bias corrections were applied 
to SSP scenario data. Streamflow and reservoir outflow output data from the SWAT model were processed in 
MATLAB® (MathWorks, Massachusetts, USA) to predict the flow rate for a 2-year return flood period. The 
simulated daily flow output was used as input to calculate flood hazard indices for each sub-basin under baseline 
and future climate change scenarios. The codes and detailed explanations used in this study derive from Cheng50. 
Future flood risk was assessed by conducting a comparative analysis of baseline and future scenarios in the 
YRB. Our findings are expected to provide adequate flood risk information to decision-makers and stakeholders 
concerned with the consequences and occurrences of flood events (Supplementary Data Fig. S1).
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Evaluation of the SWAT model
The SWAT model was calibrated (2006–2013) and validated (2014–2021) using observed and simulated data 
from four hydrological stations (S1, S2, S3, and S4) in the YRB at daily intervals. The sensitivity of the YRB 
SWAT model and calibrated parameters, performed by trial and error in SWAT-CUP, which directly influenced 
the streamflow are shown in Supplementary Data Table S5. Statistical analyses performed in this study included 
p-factor, r-factor, R2,PBAIS, NSE, and RSR (Supplementary Data Fig. S2 and Supplemental Data Table. S1). The 
model’s overall performance was ‘satisfactory to very good’ based on the criteria proposed by Moriasi et al.51.

Projected changes in precipitation and temperature
Table 1  shows the monthly averages of precipitation, maximum temperature and minimum temperature for 
historical (1980–2023) and the four SSP scenarios (2024–2100). Historical average precipitation fluctuated 
between 1.09 mm in January (lowest precipitation) to 9.90 mm in July (Highest precipitation). Future scenarios 
show a decrease from the historical scenario in the month of July for all four scenarios with the least drop in the 
SSP3-7.0 scenario for the month of December (-1.23 mm) and the most decline in the SSP2-4.5 scenario for the 
month of January. The overall increase of precipitation across all the SSP scenarios indicating more precipitation 
amounts in the future which could lead to flooding.

Historical average maximum and minimum temperatures indicates that the lowest temperature occur in 
January and higher temperature in August. Future minimum temperature depicts in (Table 1). that the SSP1-
2.6 scenario would have the lowest temperatures in March (-0.32 oC) and the SSP5-8.5 scenario will experience 
the highest temperatures in August with an increase to 3.93 oC. For future maximum temperatures, the SSP1-
2.6 scenario would experience lower temperatures in January and the highest in September for the SSP5-8.5 
scenario.

Under the SSP scenarios, precipitation increased approximately by 3.42% for the SSP1-2.6 scenario, 6.24% 
for the SSP2-4.5 scenario, 6.81% for the SSP3-7.0 scenario and 5.52% for the SSP5-8.5 scenario. Average 
yearly minimum and maximum temperatures increased between 1-4oC across all scenarios (Fig.  2). Details 
of the statistical analysis of the historical (1980–2023) and future SSP scenarios (2024–2100) for precipitation, 
maximum temperature and minimum temperature include the mean, median, coefficient of variance (%), range, 
kurtosis, skewness and percentage change are shown in Supplemental Data Table S2.

Fig. 1. The Yeongsan River Basin indicates landcover/use. The map shows the basin’s extent and detailed land 
cover/use of the Basin.
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Baseline scenario flood risk assessment
The spatial distribution of the baseline scenario for the four indices well represented the flood risk in the YRB 
(Fig. 3). Flood duration across YRB sub-basins well-represented flooding days in the baseline scenario, with 
longer flood days in and around sub-basins with dams and urban areas, and 1.14–0.37 recurrence days for 
some sub-basins. Flood exceedance probability and magnitude showed higher flood probability (0.50) and 
relative magnitude (27.67) for sub-basins with dams and within urban areas, whereas forested areas had lower 
probabilities (0.11) and magnitudes (0.37). Flood frequency was higher in dam outlet sub-basins and the basin 
outlet at 1.10 days per year, and lowest in some sub-basins at 0.40 days per water year. The SWAT model captured 
the four indices showing consistency with a few sub-basins and inconsistency with most other sub-basins. Flood 
duration and magnitude show similar flood risk patterns, and flood exceedance and frequency also show a 
similar flood pattern in the baseline scenario for the 2-year flood recurrence threshold, thus capturing the 
flooding in the various sub-basins.

Month Historical precipitation (mm) SSP1-2.6 (mm) SSP 2-4.5 (mm) SSP 3–7.0 (mm) SSP 5-8.5 (mm)

Jan 1.09 1.02 1.10 1.21 1.23

Feb 1.56 1.74 1.73 2.07 2.14

Mar 2.00 2.29 2.29 2.62 2.55

Apr 2.80 3.11 3.73 3.40 3.43

May 3.04 3.49 3.81 4.19 4.20

Jun 5.59 4.36 4.74 5.48 4.64

Jul 9.90 9.84 10.35 9.93 10.10

Aug 9.80 10.75 10.12 9.41 9.27

Sep 4.94 5.42 5.75 5.56 5.66

Oct 1.79 1.81 1.74 1.93 1.87

Nov 1.76 1.87 1.73 1.68 1.72

Dec 1.12 1.32 1.20 1.07 1.18

Month
Historical Max temperature 
(°C) SSP1-2.6 (°C) SSP 2-4.5 (°C) SSP 3-7.0 (°C) SSP 5-8.5 (°C)

Jan 5.42 6.26 7.31 8.47 8.73

Feb 7.91 9.17 9.84 10.98 11.52

Mar 13.52 14.42 15.20 16.18 16.46

Apr 19.80 20.33 20.84 21.72 22.20

May 24.62 25.69 26.14 27.02 27.47

Jun 27.81 29.27 29.80 30.61 31.21

Jul 29.85 32.06 32.84 33.53 34.25

Aug 30.80 33.11 33.94 34.82 35.25

Sep 27.01 29.36 30.10 31.01 31.75

Oct 21.76 23.52 24.26 24.95 25.76

Nov 14.88 16.91 17.55 17.97 18.82

Dec 7.85 9.20 9.78 10.58 11.0

Month
Historical Min temperature 
(°C) SSP1-2.6 (°C) SSP 2-4.5 (°C) SSP 3-7.0 (°C) SSP 5-8.5 (°C)

Jan −3.03 −3.00 −2.12 −0.95 −0.76

Feb −1.73 −1.30 −0.87 0.28 0.81

Mar 2.44 2.12 2.80 3.89 4.19

Apr 7.80 7.53 8.09 9.01 9.44

May 13.26 13.15 13.78 14.78 15.17

Jun 18.50 18.90 19.64 20.50 20.85

Jul 22.70 24.33 25.21 25.95 26.34

Aug 23.02 24.98 25.74 26.50 26.95

Sep 18.00 19.47 20.22 21.17 21.77

Oct 11.11 11.29 12.04 12.90 13.56

Nov 4.89 5.64 6.23 6.65 7.52

Dec −0.90 −0.41 −0.09 0.69 1.13

Table 1. Monthly average precipitation (mm), maximum temperature (oC) and minimum temperature (oC) 
for historical (1980–2023) and future projections (2024–2100).
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Climate model flood risk assessment
The spatial distribution of climate change results indicated future flood risk across sub-basins to the baseline 
scenario under SSP scenarios for a 2-year return period in the range of no risk–high risk. In the SSP1-2.6 mid-
century scenario, spatial distributions of flood indices ranged between − 35 and 30% across YRB sub-basins. 
Flood duration and exceedance probability increased by + 15% in some sub-basins and decreased in others 
by -5% from the baseline scenario. Flood magnitude could increase up to 25% in some sub-basins, whereas 

Fig. 3. Spatial distribution of flood risk for the baseline scenario from 1980 to 2023.

 

Fig. 2. Average yearly precipitation, maximum temperature and minimum temperature (a) Historical 
precipitation (b) Combined SSPs precipitation (c) Historical maximum temperature (d) Combined SSPs 
maximum temperature (e) Historical minimum temperature (f) Combined SSPs minimum temperature.
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it decreased by -35% in others from the baseline scenario. Similar to flood magnitude, flood frequency could 
increase up to 30% in some sub-basins from the baseline scenario and decrease by -30% in other sub-basins is 
depicted in (Fig. 4a).

In the SSP1-2.6 end-century scenarios in (Fig. 4b), flood duration and flood magnitude showed an increase 
up to 20% and decrease up to -30% in sub-basins compared with the baseline scenario. Flood exceedance ranged 
between − 10% and + 15% and flood frequency between − 55% and 50% among the sub-basins. The number of 
flood frequencies per year in sub-basins showed a 50% chance of flooding or not flooding with relatively average 
flood magnitude. Flood duration days were longer in some sub-basins and shorter in others with relatively low 
flood exceedance probability. Sub-basins with higher flood risk indices are more prone at the dam and reservoir 
outlets as there could be possibilities of dam breakage or overflow.

Figure 5a indicates the spatial distribution of the four indices for the SSP2-4.5 mid-century scenario from 
the baseline scenario, with a slight decrease (-5%) and increase (20%) observed in flood duration, indicating 
low flood risk in the YRB. Flood exceedance decreased by -5% in some sub-basins and increased to 45% of the 
baseline scenario. Flood magnitude decreased by -15% in some sub-basins and increased by 35% in others from 
the baseline scenario. Flood frequency increased by 30% and decreased by -15% across the YRB sub-basins. The 
number of flood-duration days shows a low flood risk for the SSP2-4.5 mid-century and moderate flood risk 
for flood exceedance. The number of flood frequencies indicates no flood occurrence in some sub-basins and 
moderate flood risk in other sub-basins with a relatively low flood magnitude in the YRB.

The SSP2-4.5 end-century scenario showed results similar to those of the SSP2-4.5 mid-century scenario 
from the baseline scenario, with slight increases in some sub-basins for the four flood indices. The spatial pattern 
of flood duration showed an increase up to 20% and a decrease of -5%. Flood exceedance probability increased 
by 45% and decreased up to -5%. Flood magnitude ranged between − 5% and 35%, and flood frequency from 
− 20 to 30% across the sub-basins. Figure 5b shows that a few sub-basins would experience low flood frequency, 
whereas a major basin showed a slight increase in flood risk. A few sub-basins show a low flood frequency 
whereas a major indicates a slight increase in flood risk in the YRB. The number of flood days indicates on 

Fig. 4. Percentage change between baseline and mid-century SSP1-2.6 scenario (a) mid-century scenario and 
(b) end-century scenario. Flood frequency of the end scenario shows the most significant changes, with some 
sub-basins showing little or no flood risk with − 55%, while other sub-basins indicate a 50% chance of flood 
risk.
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average a low flood risk in the YRB. Flood exceedance probability shows a moderate flood risk, indicating a 
higher flood risk magnitude and slight flood frequency in the sub-basins.

Results from the SSP3-7.0 mid-century scenario showed an increase of up to + 25% in the spatial pattern of 
flood duration, with no decrease among the sub-basins from the baseline scenario. The spatial pattern showed 
a flood exceedance probability range of -5–45%, a flood magnitude of -10–40%, and a flood frequency between 
− 10% and 40% in the sub-basins from the baseline scenario. Spatial patterns of flood exceedance probability, 
magnitude, and frequency indicated moderate flood risk up to 40–45% and, therefore, provable future flood risk. 
No flood days were predicted in the SSP3-7.0 mid-century in the YRB. Spatial patterns show flood exceedance 
probability, magnitude, and frequency show a moderate flood risk of up to 40–45%, thus, possible future flood 
risk (Fig. 6a).

The results of the SSP3-7.0 end-century scenario for all four indices showed an increase across the YRB 
from the baseline scenario (Fig. 6b). Flood duration and magnitude ranged from − 10 to 40%, flood exceedance 
probability between − 5 and 25%, and flood frequency between − 40% and 60%. The number of flood days 
indicated medium flood risk, with most sub-basins showing longer flood days and a few no flood days. Flood 
exceedance indicated a slight flood risk, and flood magnitude indicated a higher future risk across the sub-
basins. The number of flood frequencies indicated a high future flood risk, with some sub-basins increasing up 
to 60% and other basins as low as -40%.

Figure 7a shows the spatial patterns of flood risk indices for the SSP5-8.5 mid-century scenario from the 
baseline scenario. Flood duration and exceedance probability showed high flood risk, with increases up to 25% 
for flood duration days and exceedance probability of approximately 50% in all sub-basins. Flood magnitude 
ranged between − 5% and 45%, and flood frequency was between − 25% and 25% per year. The number of flood 
days indicated a longer flood duration, with a probability of medium flood risk in the future. Flood exceedance 
indicated that the likelihood of flooding could reach 50%. The four indices show a slight flood risk for flood 
duration and exceedance, whereas flood magnitude and frequency with a higher flood risk in the YRB.

Fig. 5. Percentage change between baseline and mid-century SSP2-4.5 scenario (a) mid-century scenario and 
(b) end-century scenario. Flood frequency of the end scenario shows the most significant changes, with some 
sub-basins showing little or no flood risk with − 55%, while other sub-basins indicate a 50% chance of flood 
risk.
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The spatial patterns of the four flood indices for the end-century scenario of SSP5-8.5 showed an average 
higher flood risk in the YRB than in the baseline scenario. Flood duration increased between 5% and 30% 
in all sub-basins. Flood exceedance probability ranged from − 5 to 25%, magnitude between − 5% and 45%, 
and frequency from − 45 to 65%. The four indices showed slight flood risk for flood duration and exceedance, 
whereas flood magnitude and frequency showed higher flood risk as represented in (Fig. 7b).

Discussion
The SWAT model was developed for the YRB for the baseline scenario (1985–2021) and future climate change 
scenarios, namely mid-century (2030–2060) and end-century (2070–2100). The model was calibrated (2006–
2013) and validated (2014–2021) for the YRB at four weather stations (S1, S2, S3, and S4) with streamflow data at 
a daily time step. The model’s overall performance was satisfactory according to the criteria suggested by Moriasi 
et al.51. Calibrating a model at multiple locations increased the accuracy of the SWAT model and provided a 
good representation of the watershed52–54.

Monthly precipitation and temperature trends across the SSPs suggest slight increases in precipitation during 
the summer monsoon season with higher minimum and maximum temperatures which may result in high 
water evaporation, possible future droughts, agricultural productivity reduction and possible water scarcity5. 
Results in the study conform with a report in 2009 from the National Institute of Meteorological Research 
which predicted that future yearly averages for minimum and maximum temperatures would increase by 4 
oC55. Temperature and precipitation changes will have a direct impact on flood indices since rising temperatures 
will raise the frequency of floods by increasing atmospheric moisture and severe precipitation occurrences. 
Flood occurrences might last longer when there is prolonged, heavy rainfall because it can saturate soils and 
overwhelm drainage systems56. High levels of precipitation and quick melting increase the size of floods by 
allowing more water to enter river systems in shorter amounts of time and raising peak discharge. Additionally, 
climate change modifies the statistical distribution of extreme weather occurrences, increasing the likelihood 
that precipitation would be above historical thresholds and, consequently, the likelihood of flood exceedance57.

Fig. 6. Percentage change between baseline and mid-century SSP3-7.0 scenario (a) mid-century scenario and 
(b) end-century scenario. Flood frequency of the end scenario shows the most significant changes, with some 
sub-basins showing little or no flood risk with − 40%, while other sub-basins indicate a 60% chance of flood 
risk.
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Flood risk assessment for the baseline scenario showed variability in flood effects across different sub-basins, 
aligning with past and recent flood events in South Korea, where the frequency of disruptive floods has increased 
over the last decade5. In the baseline scenario, some sub-basins experienced lower flood risk characterized 
by shorter flood durations, lower exceedance probabilities, lower flood magnitudes, and less frequent flood 
events. These areas are covered predominantly by agricultural land and forests, which likely contribute to their 
reduced flood vulnerability. Vegetation plays an important role in the reduction of peak flow, and watersheds 
with vegetation reduce surface runoff, whereas watersheds with little or no vegetation increase runoff18,22,58,59. 
In contrast, other sub-basins exhibited higher flood risk with longer flood durations, higher exceedance 
probabilities, and more frequent and intense flood events. High risk was found primarily in urbanized areas, 
where land use patterns and infrastructural development contribute to the increased vulnerability to flooding, 
confirming the significant effect of urbanization on flood risk60. Furthermore, the high flood risk might be due to 
the presence of dams and reservoirs, as paddy rice farming is the main crop cultivated, and agriculture comprises 
about 50% of the YRB. With the large dams being constructed in the 70s, an increase in moderate or large rainfall 
events could lead to dam overtopping and failure, resulting in catastrophic downstream flooding61,62.

Future flood risks are projected to vary significantly across different SSP (SSP1-2.6, SSP2-4.5, SSP3-7.0 and 
SSP5-8.5) scenarios, reflecting both the anticipated socioeconomic changes and varying levels of radiative forcing 
by 2100. In the mid-century SSP1-2.6 scenario, flood durations are projected to decrease by approximately 10%. 
This reduction suggests that floods could become shorter but potentially more intense, as storm systems could 
release substantial amounts of rainfall over brief periods63. These could overwhelm the drainage systems, causing 
sudden infrastructure failures, traffic paralysis, and high casualty risks, thus increasing flood vulnerability64. 
On the other hand, in the end-century SSP3-7.0 scenario, flood durations could increase by as much as 40%. 
This increase indicated the likelihood of prolonged rainfall, resulting in longer-lasting floods that significantly 
increase the risks of exposure and damage. The shifts in flood duration reflect the complex interplay between 
changing rainfall patterns and the ability of the landscape to absorb water under warming climate conditions65,66. 

Fig. 7. Percentage change between baseline and mid-century SSP5-8.5 scenario (a) mid-century scenario and 
(b) end-century scenario. Flood frequency of the end scenario shows the most significant changes, with some 
sub-basins showing little or no flood risk with −45%, while other sub-basins indicate a 65% chance of flood 
risk.
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Prolonged flood durations exacerbate infrastructure damage, economic disruption, and public health risks, 
leading to deeper and longer-term vulnerability that affects both urban and rural areas67.

Flood exceedance probability, a measure of floods, also changed under different SSP scenarios for a 2-year 
return period. In the most optimistic SSP1-2.6 scenario, a decrease of 10% in flood exceedance probability 
was forecast for the mid- and end-century scenarios. Although fewer flood events could occur, the possibility 
of larger sporadic floods remains, with a higher likelihood that water levels surpass critical thresholds in the 
drainage system. In stark contrast, the end-century SSP5-8.5 scenario predicted a 50% increase in exceedance 
probability, driven by more intense storms, more substantial precipitation, and possibly reduced land absorption 
capacity owing to urbanization and deforestation68. Higher flood exceedance probability leads to chronic flood 
exposure, accelerating infrastructure degradation and deepening regional vulnerability, particularly in urban 
and low-adaptive-capacity69.

Flood magnitude is expected to vary, with a  35% reduction in the mid-century scenario under SSP1-2.6 
and a 45% increase under SSP5-8.5 for mid- and end-century scenarios. The decrease in flood magnitude in 
SSP1-2.6 suggested lower peak discharges, probably because of less intense precipitation patterns. However, the 
projected increase in flood magnitude under SSP5-8.5 signaled more severe flood events caused by intense and 
prolonged rainfall. These results are consistent with several studies that indicate an increase in flood magnitude 
in South and East Asia70. However, the magnitude of extreme rainfall events is expected to increase along with 
higher temperatures71. These can be characterized by greater flow volumes and water depths, increasing flood 
vulnerability, leading to greater economic and human losses, especially in densely populated and low-lying 
areas72.

Flood frequency, closely tied to storm intensity and recurrence, is projected to decrease by 55% for the end-
century SSP1-2.6 scenario, indicating fewer flood events because of less frequent or intense storms. Conversely, 
SSP5-8.5 forecasts a 65% increase in flood frequency by mid-century, suggesting more regular and intense storm 
events, particularly in urban and rural areas. Rising flood occurrence of flood events reduces the recovery time 
between flood incidents and compounding socio-economic impacts that strain infrastructure, overwhelm 
emergency services, and disrupt livelihoods72.

Spatial and temporal distributions of rainfall and large-scale climate indices affect the magnitude and 
frequency of high flows73. Based on this study’s projections for the mid- and end-century periods, most sub-
basins in the YRB have a higher flood risk. These findings are similar to those of a study conducted by Kim et 
al.17indicating that the YRB has the highest flood risk in South Korea. Future flood risk and vulnerability will 
be multi-dimensional, driven by the combined effects of increased flood magnitude, duration, frequency, and 
exceedance probability. These changes are not uniformly distributed, indicating the need for adaptation plans 
in the YRB. Integrating these flood indices into planning frameworks allows for a more nuanced understanding 
of both acute and chronic flood threats. Policymakers and urban planners should prioritize sub-basins with 
high exceedance probability and limited recovery capacity, while strengthening infrastructure and early warning 
systems in the sub-basins exposed to frequent or severe flood events.

A limitation of this study is the simulation of land use/cover changes, which are driven by urbanization, 
deforestation, and agricultural expansion. Since the SWAT model assumes a stationary LULC, it may 
underestimate future flood risks, as changes in infiltration, surface runoff, and channel flow significantly impact 
flood frequency and magnitude. Integrating non-stationary LULC scenarios and using projected landcover 
maps coupled with GCMs could enhance the accuracy of flood risk predictions and reduce uncertainty, 
ensuring effective watershed management planning. Exploring the use of multiple CMIP6 GCMs and RCMs 
may improve the accuracy and credibility of impact analysis by capturing uncertainty and bracketing possible 
flood risk outcomes as only 5 RCMs were employed in this study. Future research should further integrate socio-
economic and infrastructure data to develop holistic flood risk (hazard, exposure and vulnerability) assessments 
and adaptive response strategies under changing climate conditions. Also, more extensive analysis integrating 
future changes in the snowmelt and baseflow regimes should be carried out to offer reliable predictions of the 
highest potential flood risk.

Methods
SWAT model setup and evaluation
Details of the SWAT model description are shown in Supplementary Note S1 and Supplementary Data Fig. S3. We 
used the software ArcSWAT 2020 revision 681, employing land use, digital elevation model (DEM), streamflow, 
dam, and soil data as inputs for model development. The 30 m × 30 m resolution ASTER Global Digital Elevation 
Model (GDEM) was used to obtain DEM data, the Harmonized World Soil Database (HWSD v121) provided 
soil data, and the USGS EROS Archive—Land Cover Products—Global Land Cover Characterization (GLCC) 
map was used for land use data (Supplementary Data Fig. S4). Hydrological response units (HRUs) were defined 
using thresholds, namely land use 10%, soil 10%, and slope maps 15%. The watershed was divided into 502 HRUs 
and 83 sub-basins to represent the YRB adequately. Daily weather data for 1980–2021 were obtained from eight 
weather stations through the Korean Meteorological Administration (KMA) shown on Supplementary Data 
Table S3. The Soil Conservation Service (SCS) CN method was used to predict surface runoff, and the daily CN 
was determined as a function of soil moisture. Route channel flow was calculated using the Muskingum method, 
and potential ET was estimated using the Penman–Monteith technique. Four agricultural dams were simulated 
as reservoirs in the model (Supplementary Data Fig. S5, S6, S7 and S8). Supplementary Data Table S4 shows the 
details of reservoir characteristics. The CO2 concentrations were varied for different scenarios.

Sensitivity and uncertainty analyses were conducted using the SWAT calibration and uncertainty program 
(SWAT-CUP). Multivariable and multi-site calibration approaches were used in the YRB at daily and monthly 
time steps for the four hydrological stations. The model was calibrated for 2006–2013, and the 2014–2021 
streamflow dataset was validated. Nash–Sutcliffe model efficiency (NSE), r-factor, RMSE-observation standard 
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deviation ratio (RSR), root mean square error (R2), p-factor, and percentage bias (PBIAS) were used for model 
evaluation and validation51,74–77. Details of the equations can be seen in the supplementary data equation S1.

Using the generalized likelihood uncertainty estimation approach in SWAT-CUP, the most sensitive factors 
were identified that directly affected streamflow, namely SOL_AWC, GW_DELAY, CN, CH_K2, and ALPHA_
BF (Supplementary Data Table S5). According to the criteria proposed by Moriasi et al.51, discharge simulations 
for monthly or daily model statistics in a range NSE > 0.5, RSR ≤ 0.7, and PBIAS < 15%, R2 > 0.6 are regarded as 
acceptable.

Climate model selection, downscaling, and bias correction
To conduct this study, high-resolution climate change projection data of precipitation and temperature are 
essential. In South Korea, five CMIP6 regional climate models (RCMs) are used to generate and disseminate 
high-resolution climate change projection data for the East Asian region, with a horizontal resolution of 25 km. 
These projections are based on the four SSP scenarios (1-2.6, 2-4.5, 3–7.0, and 5-8.5) defined by the IPCC78–85.

In this study, future projections of average climate conditions and extreme climate events across six regions 
of South Korea were made using the new high-resolution (1  km) climate change scenario developed using 
the PRIDE (PRISM-based Dynamic Downscaling Error Correction) method, which is based on MK-PRISM 
(Modified Korean-Parameter elevation Regressions on Independent Slopes Model)84,85 generated through 
the PRIDE method (PRISM-based Dynamic Downscaling Error Correction)84. Using the Barnes objective 
analysis method, the 25 km resolution East Asia climate change scenario data from five regional climate models 
(RCMs) in the second phase of the CORDEX-East Asia project were first interpolated to a 1 km resolution for 
South Korea to align them with the high-resolution gridded observational data85. The Hadley Center Global 
Environmental Model version 3 regional climate model (HadGEM3-RA), Weather Research and Forecasting 
(WRF), Consortium for Small-scale Modeling (COSMO)-Climate Limited-area Modeling (CLM) (CCLM), 
Regional Climate Model version 4.0 (RegCM), and Global/Regional Integrated Model system (GRIMs) were 
the five RCMs that were used. These models are described in detail in Kim et al.84. After that, the daily seasonal 
cycles from the regional climate models were substituted with those from the gridded observational data in 
the interpolated 1 km data. With the response to climate change forcings preserved, this stage eliminated the 
systematic bias in the climate models’ seasonal cycles, producing the final high-resolution climate change 
scenario. To learn more about this approach and validation, see Kim & Kim85 and Kim et al.84. Using the Quantile 
Delta Mapping (QDM) technique, which was suggested by Cannon et al.86, an extra bias correction was included 
since precipitation shows comparatively substantial systematic biases in climate models.

Using four SSP scenarios and five model ensemble members, the final high-resolution climate change 
scenarios were created for a total of 80 years (2021–2100). For six administratively divided areas of South Korea, 
future changes in the average climate and extreme climatic events were projected using the high-resolution 
(1 km) climate change scenarios produced by the approach presented. More precise forecasts at the levels of over 
220 cities, counties, and districts, 17 metropolitan and provincial regions, and roughly 3,500 towns, townships, 
and neighborhoods will be provided by future research. In terms of temperature and precipitation, the expected 
changes in the average climate were compared between the current period (1979–2014) and two future periods: 
the mid-century (2030–2060) and the end-century (2070–2100). Both individual ensemble members and the 
ensemble mean from the five-model ensemble were projected into the future. More information on the RCMs 
and the SSPs is detailed in Supplementary Data Tables S6 and S7.

Flood indices
To evaluate future flood risk in the YRB, four indices (exceedance probability, duration, magnitude, and 
frequency) were calculated using the simulated daily flow rate for each of the 83 sub-basins in the SWAT 
model. Flood events were identified using a 2-year return period threshold for each sub-basin, derived from 
baseline climate simulations. Annual maximum daily flows were extracted and fitted with a Log-Pearson Type 
III distribution using the method of moments based on log-transformed data. The 2-year flood threshold, 
representing a 50% annual exceedance probability, was calculated by adjusting the standard normal variate for 
skewness and back-transforming to the original scale. This consistent threshold was applied across all scenarios 
to identify flood events and compute flood indices. For future scenarios, this threshold was derived from present 
climate simulations. Details of the flood indices are explained below.

Flood exceedance probability (FEP) is the probability of a flood event of a certain magnitude equaling or 
exceeding each year. The FED index represents the proportion of days in a given water year (June–September) 
where the simulated flow is greater than or equal to the index. This index is used to compute the likelihood of 
daily flow above the index. The percentage is averaged over the simulation period Eq. (1).

 
F EDI =

∑
n
i=1

F ED

N
× 100% (1)

where FED is the flood exceedance probability of water year i; N is the total number of years in simulation years; 
n is the number of days when a flood occurs in a water year i; FEDI represents the average flood exceedance 
probability for a sub-basin.

Flood duration (FD) is the number of consecutive days of flooding in a flood event. The FD index was 
computed as the total amount of time during which the water level surpassed the threshold indices in a water 
year. The flood duration index is computed using the average for all years Eq. (2).

 
F DI =

∑
n
i=1Di

N
 (2)
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where Di is the number of days flood events occur in a water year i; n is the total number of flood occurrences in 
a water year i; N  is the total number of years in the simulation years; FDI represents the average flood duration 
index for each sub-basin.

The flood magnitude index indicates the proportional size of floods relative to the flood indices. The average 
daily discharge is calculated for each flood occurrence Eq. (3).

 
F MI = Qpeak

Qthreshold
 (3)

where Qpeak  is the peak discharge in a water year i; Qthreshold is the threshold value of the return period; FMI 
is the flood magnitude index for each sub-basin at a given threshold.

Flood frequency (FF) quantifies the frequency of flood events exceeding the flood indices in a water year. The 
FF index is calculated as the average discharge of flood events in a water year Eq. (4).

 
F F I = Nflood

N
 (4)

 
where Nflood is the number of flood occurrences in a water year i; N  is the total number of years in the 

simulation years; FFI is the average flood frequency index for a sub-basin.
Flood indices were calculated for each model in the climate model ensemble under future conditions 

(2030–2060 and 2070–2100) and historical conditions (1980–2021) using 2-year flood recurrence thresholds. To 
determine whether the flood risk of each sub-basin increased or decreased under the influence of future climatic 
circumstances, the findings are provided as a percentage of change in the flood indices between the baseline and 
future scenarios.

Data availability
All the datasets utilized for the study this study are publicly available which compromises of the ASTER Global 
Digital Elevation Model data can be accessed from https://earthexplorer.usgs.gov/; Harmonized World Soil  D a t a 
b a s e v1.21 data from  h t t p s :  / / w w w .  f a o . o r  g / s o i l  s - p o r  t a l / d a  t a - h u b  / s o i l -  m a p s -  a n d - d a  t a b a s e  s / h a r m  o n i z e d - w o r l d - s 
o i l - d a t a b a s e - v 1 2; USGS EROS Archive - Land Cover Products - Global Land Cover Characterization (GLCC) 
data from  h t t p s :   /  / w w  w . u s g  s . g  o v / c  e n t e  r  s / e  r o s  / s c i e   n c e /  u  s g s -  e  r o s - a r   c h i v e   - l a n d   - c o v e r  - p r  o d  u c t s  - g  l o b  a l  - l a  n d - c o v e 
r - c h a r a c t e  r i z a t i o n - g l c c; Korean meteorological data from https://data.kma.go.kr/; streamflow, dam inflow and 
outflow data from http://www.wamis.go.kr/; and the shared socioeconomic pathways climate change data from 
http://www.climate.go.kr/. The data supporting the findings of this study are available from the first author, 
[Agbortoko Bate Ashu], upon reasonable request.

Code availability
The code to determine four flood indices using the Soil and Water Assessment Tool, MATLAB-scripts and 
R-scripts are publicly available and can be accessed https://github.com/yuchenw/Flood-Index.
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