2019

Author(s): Keyel AC, Elison Timm O, Backenson PB, Prussing C, Quinones S, Mcdonough KA, Vuille M, Conn JE, Armstrong PM, Andreadis TG and Kramer LD

West Nile virus (WNV; Flaviviridae: Flavivirus) is a widely distributed arthropod-borne virus that has negatively affected human health and animal populations. WNV infection rates of mosquitoes and human cases have been shown to be correlated with climate. However, previous studies have been conducted at a variety of spatial and temporal scales, and the scale-dependence of these relationships has been understudied. We tested the hypothesis that climate variables are important to understand these relationships at all spatial scales. We analyzed the influence of climate on WNV infection rate of mosquitoes and number of human cases in New York and Connecticut using Random Forests, a machine learning technique. During model development, 66 climate-related variables based on temperature, precipitation and soil moisture were tested for predictive skill. We also included 20-21 non-climatic variables to account for known environmental effects (e.g., land cover and human population), surveillance related information (e.g., relative mosquito abundance), and to assess the potential explanatory power of other relevant factors (e.g., presence of wastewater treatment plants). Random forest models were used to identify the most important climate variables for explaining spatial-temporal variation in mosquito infection rates (abbreviated as MLE). The results of the cross-validation support our hypothesis that climate variables improve the predictive skill for MLE at county- and trap-scales and for human cases at the county-scale. Of the climate-related variables selected, mean minimum temperature from July-September was selected in all analyses, and soil moisture was selected for the mosquito county-scale analysis. Models demonstrated predictive skill, but still over- and under-estimated WNV MLE and numbers of human cases. Models at fine spatial scales had lower absolute errors but had greater errors relative to the mean infection rates.

Journal: PLoS One