2011
Author(s): Zwiers FW, Zhang XB, Feng Y
Observed 1961-2000 annual extreme temperatures, namely annual maximum daily maximum (TXx) and minimum (TNx) temperatures and annual minimum daily maximum (TXn) and minimum (TNn) temperatures, are compared with those from climate simulations of multiple model ensembles with historical anthropogenic (ANT) forcing and with combined anthropogenic and natural external forcings (ALL) at both global and regional scales using a technique that allows changes in long return period extreme temperatures to be inferred. Generalized extreme value (GEV) distributions are fitted to the observed extreme temperatures using a time-evolving pattern of location parameters obtained from model-simulated extreme temperatures under ANT or ALL forcing. Evaluation of the parameters of the fitted GEV distributions shows that both ANT and ALL influence can be detected in TNx, TNn, TXn, and TXx at the global scale over the land areas for which there are observations, and also regionally over many large land areas, with detection in more regions in TNx. Therefore, it is concluded that the influence of anthropogenic forcing has had a detectable influence on extreme temperatures that have impacts on human society and natural systems at global and regional scales. External influence is estimated to have resulted in large changes in the likelihood of extreme annual maximum and minimum daily temperatures. Globally, waiting times for extreme annual minimum daily minimum and daily maximum temperature events that were expected to recur once every 20 yr in the 1960s are now estimated to exceed 35 and 30 yr, respectively. In contrast, waiting times for circa 1960s 20-yr extremes of annual maximum daily minimum and daily maximum temperatures are estimated to have decreased to fewer than 10 and 15 yr, respectively.
Journal: Journal of Climate