2020

Author(s): Wang Y, Liu Y, Ye D, Li N, Bi P, Tong S, Wang Y, Cheng Y, Li Y, Yao X

BACKGROUND: Health impacts of high temperatures on hospital emergency department visits (EDVs) have been less reported, especially from developing countries. OBJECTIVES: To investigate high temperature-EDVs relationship in various regions with different climatic characteristics, to explore the regional differences, to identify vulnerable populations, and to provide scientific evidence for climate change adaptation strategies in China. METHODS: Daily data on weather, air pollution and EDVs were collected from 18 sites in China from June to August during 2014-2017. A quasi-Poisson generalized additive regression model was applied to examine the high temperature-EDVs relationship in each site. Site-specific risks of EDVs were pooled using a random effect meta-analysis model. Stratified analyses were performed by gender, age-groups, cause-specific EDVs and regions. Attributable fractions of EDVs due to high temperatures were calculated in different regions. RESULTS: 1 °C increase in daily mean temperature was associated with 1.07% (95% CI, 0.46-1.67%) increase in EDVs across all study regions. The negative health effects from high temperatures were worse for the people living in southern China, in subtropical monsoon climate zone or in counties, with percentage change of 1.96% (95% CI, 0.92-3.02%), 1.35% (95% CI, 0.95-1.76%) and 1.41% (95% CI, 0.48-2.34%), respectively. People under 18 were more vulnerable to high temperatures. Exposure to high temperatures increased EDVs risks from endocrine, respiratory, and digestive diseases and injury. The attributable fraction due to high temperatures was 8.64% for overall EDVs, 11.70% for the people living in southern China, 10.80% for people living in subtropical monsoon climate zone and 12.65% for the county population. CONCLUSIONS: Exposure to high temperatures resulted in extra burden to China's already overloaded hospital emergency departments. More resources are needed to meet increasing demands and effective preventative measurements are warranted to tackle such a challenge. Further studies should pay more attention to both heat and cold-related EDVs risks and socioeconomic cost for better climate change adaptation.

DOI: https://dx.doi.org/10.1016/j.envint.2020.105486