2020

Author(s): Waxenbaum EB, Feiler ME

OBJECTIVES: Human sexual dimorphism is frequently assessed through skull and pelvic size and shape. Researchers suggest that climatic variation and the associated stress may be significant factors in sexual dimorphism's etiology. However, little research has specifically investigated climatic effects on nonmetric skeletal indicators of sex. To further appreciate the plasticity of human biology, a comparative study of standard skull and pelvic nonmetric sex indicators is presented. METHODS: A Native Alaskan archeological sample (n = 104) and a component of the Terry collection (n = 99) represent populations originating from different climatic environments in recent history. These sex-balanced groups are compared through Tukey-Kramer's method and Greene's t-test to determine any variation in degree of sexual dimorphism within and between samples. RESULTS: The results reinforce the complex and multifaceted relationship between climate and sexual dimorphism. The Terry sample demonstrated a greater degree of sexual dimorphism with statistically significant differences in robusticity of the mastoid process and nuchal crest compared with the Native Alaskans. A more "male" morphotype and reduced dimorphism are appreciated in the pelves of Native Alaskans than the Terry sample. CONCLUSIONS: This research highlights a reduction in sexual dimorphism in populations under greater climatic stress and contributes to the production of more accurate skeletal assessments in future investigations. Discussion of confounding factors suggest more research is necessary to untangle climate and human morphology's complex relationship. This study contributes to a greater appreciation of human biological plasticity, ecogeographic variation, and the evolution of modern human diversity.

DOI: https://dx.doi.org/10.1002/ajhb.23559