2022
Author(s): Yin S
In China, the rapid development of the economy and implementation of multiple emission control policies in recent decades have been accompanied by dramatic changes in air quality. In this study, PM(2.5) concentrations estimated by using MERRA-2 reanalysis data were integrated into the Global Exposure Mortality Model (GEMM) to explore the spatiotemporal variation of nationwide PM(2.5)-related premature mortality from 1990 to 2019, and the driving factors behind decadal changes were evaluated. Since 2000, as a result of PM(2.5) pollution, air quality in China has deteriorated substantially, especially in the fast-developing eastern and southern parts. In 2009, the nationwide population-weighted (PW) PM(2.5) concentration peaked at 41.4 μg/m(3) (95% confidence interval [CI], 36.7-46.2). Simultaneously, the GEMM results revealed that nationwide PM(2.5)-related deaths increased remarkably from 1089 (95% CI, 965-1210) thousand in 1990 to 1795 (1597-1986) thousand in 2009. The implementation of the toughest-ever Air Pollution Prevention and Control Action Plan (APPCAP) in 2013 effectively controlled PM(2.5) pollution in China. By 2018, the nationwide PW PM(2.5) concentration had decreased to 34.0 (29.2-38.9) μg/m(3). Dynamic trend prediction revealed that, although the APPCAP achieved substantial health benefits, the policy did not result in further remarkable reductions in PM(2.5)-related deaths; in 2019, deaths peaked at 1932 (1716-2140) thousand. PM(2.5)-related deaths in 2030 were projected for each of four emission control scenarios. The results of the driving factor analysis and the future projections indicated that the health benefits from improving air quality are likely to be counterbalanced by changes in the population age structure. Because population ageing is becoming more and more rapid in China and the challenge of climate change is increasing, the results of this study imply that policymakers need to implement more stringent measures and set more ambitious emission control targets to reduce nationwide PM(2.5)-related premature mortality in the future.
DOI: https://dx.doi.org/10.1016/j.scitotenv.2022.155334