2021

Author(s): Zhang S, Wang B, Wang S, Hu W, Wen X, Shao P, Fan J

It is known that air pollution is harmful to creatures, though until now most of the human thermal comfort indices that existed were calculated only with meteorological conditions. Therefore, a new index - meteorology and environment comfort (MEC) - was given out in this paper that considers both meteorology and air pollution conditions and presents the comprehensive and synergistic effects of meteorological and air pollution. The meteorology and air pollution data were used to establish the influence function of the five air pollutants (PM(2.5), PM(10), O(3), NO(2), and SO(2)) according to Fechner's law; then, we calculated the somatosensory temperature (ST, a class of human thermal comfort indices) and MEC values of five typical cities (Beijing, Xining, Nanjing, Kunming, and Guangzhou). The results showed average improvements of five cities on MEC as a new comprehensive human comfort index to new ST. In spring, the MEC comfort proportion fell by 29.25%. Besides, the extreme heat discomfort ratio in Nanjing and Kunming has increased over 20%. In summer, the comfort proportion fell 12.54%; the extreme heat discomfort proportion of Beijing increased 37.86% and Kunming increased 24.09%. Air pollution significantly raised discomfort stress in Beijing. In fall, the comfort proportion fell by 20.87%; and the extreme heat discomfort of Nanjing increased 23.67% caused by poor air quality. About winter, the comfort ratio decreased 12.72%, and the cold discomfort proportion of Nanjing increased 30.30%, signifying awful air quality in winter. Air pollution levels significantly affect the comfort levels in all seasons, which is more evident with good weather patterns. MEC can offer early warnings of extreme weather events and provide a basis for the better prevention and control of air pollution to protect human health basing on the predictions of meteorological and environmental impact factors.

DOI: https://dx.doi.org/10.1016/j.envres.2020.110318