2022

Author(s): Gronlund CJ, Ketenci KC, Reames TG, Larson PS, Schott J, Rowe Z, Jenkins QS, Sanca MO, Tournat T, Sol K, Williams D, Gijsbers E, O'neill MS

The burden of temperature-associated mortality and hospital visits is significant, but temperature's effects on non-emergency health outcomes is less clear. This burden is potentially greater in low-income households unable to afford efficient heating and cooling. We examined short-term associations between indoor temperatures and cognitive function and daytime sleepiness in low-income residents of Detroit, Michigan. Apparent temperature (AT, based on temperature and humidity) was recorded hourly in 34 participant homes between July 2019-March 2020. Between July-October 2019, 18 participants were administered word list immediate (WLL) and delayed (WLD) recall tests (10-point scales) and the Epworth Sleepiness Scale (24-point scale) 2-4 times. We applied longitudinal models with nonlinear distributed lags of temperature up to 7 days prior to testing. Indoor temperatures ranged 8-34°C overall and 15-34°C on survey days. We observed a 0.4 (95% CI: 0.0, 0.7) point increase in WLL and 0.4 (95% CI: 0.0, 0.9) point increase in WLD scores per 2°C increase in AT. Results suggested decreasing sleepiness scores with decreasing nighttime AT below 22??C. Low-income Detroit residents experience uncomfortably high and low indoor temperatures. Indoor temperature may influence cognitive function and sleepiness, although we did not observe deleterious effects of higher temperatures.