2017

Author(s): Kolb C, Pozzi M, Samaras C, Vanbriesen JM

In some regions, sea level rise due to climate change is expected to increase saltwater intrusion in coastal aquifers, leading to increased salt levels in drinking water wells relying on these supplies. Seawater contains elevated concentrations of bromide, which has been shown to increase the formation and alter the speciation of disinfection by-products (DBPs) during the treatment process. DBPs have been associated with increased risk of cancer and negative reproductive outcomes, and they are regulated under drinking water standards to protect human health. This paper incorporates statistical simulation of changes in source water bromide concentrations as a result of potential increased saltwater intrusion to assess the associated impact on trihalomethane (THM) formation and speciation. Additionally, the health risk associated with these changes is determined using cancer slope factors and odds ratios. The analysis indicates that coastal utilities treating affected groundwater sources will likely meet regulatory levels for THMs, but even small changes in saltwater intrusion can have significant effects on finished water concentrations and may exceed desired health risk threshold levels due to the extent of bromination in the THM. As a result of climate change, drinking water utilities using coastal groundwater or estuaries should consider the implications of treating high bromide source waters. Additionally, extra consideration should be taken for surface water utilities considering mixing with groundwater sources, as elevated source water bromide could pose additional challenges for health risk, despite meeting regulatory requirements for THM.

DOI: 10.1061/ajrua6.0000904
Journal: Asce-Asme Journal of Risk and Uncertainty in Engineering Systems Part a-Civil Engineering