Vibrio cholerae, an important human pathogen, is naturally occurring in specific aquatic ecosystems. With very few exceptions, only the cholera-toxigenic strains belonging to the serogroups O1 and O139 are responsible for severe cholera outbreaks with epidemic or pandemic potential. All other nontoxigenic, non-O1/non-O139 V. cholerae (NTVC) strains may cause various other diseases, such as mild to severe infections of the ears, of the gastrointestinal and urinary tracts as well as wound and bloodstream infections. Older, immunocompromised people and patients with specific preconditions have an elevated risk. In recent years, worldwide reports demonstrated that NTVC infections are on the rise, caused amongst others by elevated water temperatures due to global warming.The aim of this review is to summarize the knowledge gained during the past two decades on V. cholerae infections and its occurrence in bathing waters in Austria, with a special focus on the lake Neusiedler See. We investigated whether NTVC infections have increased and which specific environmental conditions favor the occurrence of NTVC. We present an overview of state of the art methods that are currently available for clinical and environmental diagnostics. A preliminary public health risk assessment concerning NTVC infections related to the Neusiedler See was established. In order to raise awareness of healthcare professionals for NTVC infections, typical symptoms, possible treatment options and the antibiotic resistance status of Austrian NTVC isolates are discussed.
Region-specific meteorological data show that Upper Austria will mainly be affected by increasing temperatures (up to +2.7 °C in 2050) and decreasing precipitation (up to – 27 mm in 2050). Using an interdisciplinary framework, we derive climatic developments and quantify the resulting direct sectoral and macroeconomic impacts for Upper Austria. Based on a set of climate change indicators, sectoral damages are monetized for selected impact chains in forestry, health, agriculture, space heating and cooling, and winter tourism. These damage costs are used as input for ex-ante simulations to quantify the macroeconomic impacts in 2022-2050. The results show an annual decline in gross regional product, accompanied by an annual decline in employment. This study provides a basis for decision making in Upper Austria, as well as in regions with comparable geographical, economic or demographic structures, and highlights the importance of region-specific climate change adaptation strategies.
Projections of warmer global temperatures in fast-approaching time horizons warrant planning strategies for reducing impacts on human morbidity and mortality. This study sought to determine whether increases in temperature and other changes in weather indices had an impact on rates of fatal accidents occurring in the popular mountainous regions of Austria, with the purpose of improving prevention and accident-mitigation strategies in the mountains. The study was based on the merging of 3285 fatal outdoor accidents reported by the Austrian Alpine Safety Board for the period 2006 to 2018 with daily meteorological data from 43 nearby climate stations during the same period. Multivariable logistic regression was used to model the odds of one or more fatal accidents per station and day with weather indices as predictors, controlling for weekend effects bringing more visitors to the mountains. Separate prediction models were performed for summer and winter activities, as well as for specific disciplines. Even after adjustment for concomitant effects impacting mountain fatal accidents, the daily weather indices of temperature, relative humidity, global radiation, cloudiness, snow cover and precipitation were statistically significantly associated with fatal-accident risk. In particular, a 1 degrees increase in temperature was associated with a 13% increase in odds of a mountain-biking accident in the summer and an 8% increase in odds of a mountain suicide in the winter. An increase in global radiation by 1 kW h M-2 was associated with an 11% and 28% increase in fatal-accident odds for mountaineering in the summer and touring in the winter, respectively.
Previous research has found higher levels of heatwave mortality and morbidity among urban residents with a migration background because of their social, health and environmental conditions. The purpose of the study was to investigate and compare heat induced changes in the outdoor recreation behaviours of Turkish migrants with those of non-migrants on hot days in Vienna. Specifically, the study compared coping behaviours due to heat such as inter-area, intra-area, temporal and activity displacement between migrants and non-migrants. The study interviewed 400 migrants and non-migrants in four public green spaces of different area sizes and asked about their outdoor recreation motives and activities, as well as behavioural changes, due to summer heat. Results show that migrants have different motives for visiting urban green spaces on hot days, and that they visit these less frequently on hot days compared to non-migrants. While both groups shift their outdoor uses more to shady areas and the cooler times of the day, more migrants visit green spaces in the afternoon, perform more energetic recreational activities, and use sunnier sites more frequently than non-migrants on hot days. Few migrants and non-migrants stated that they would visit alternative green spaces when it is hot. The results indicate that migrants’ behaviours result in higher heat exposure, while making less use of the opportunities larger green spaces such as forests can provide for heat relief. Recommendations on how green and city planners could reduce heat related health risks for both study groups are presented.
PURPOSE: This report describes a rare autochthonous case of human D. repens infection in Austria. Dirofilariosis is a mosquito-borne parasitic infection that predominantly affects dogs. Human D. repens infections have primarily been reported in Mediterranean countries, but are emerging throughout Central and Northern Europe. METHODS: The worm was removed surgically and identified using PCR and DNA sequencing. The consensus sequences were compared against reference sequences of Dirofilaria repens from GenBank. RESULTS: The 56-year-old woman acquired the infection, which presented as a subcutaneous nodule, in Vienna, Austria. This is the second autochthonous case of human D. repens infection in Austria. CONCLUSION: The reasons for the emergence of D. repens and other parasitic infections in Central and Northern Europe are manifold, including climate change and globalization. This case demonstrates that with the growing number of D. repens infections, health care professionals must place further emphasis on emerging infectious diseases to ensure appropriate diagnostics and treatment in the future.
Free-ranging wild ungulates are widespread in Austria, and act as hosts (i.e. feeding hosts) for ticks, including Ixodes ricinus, and as reservoir hosts for pathogens transmitted by I. ricinus. Due to climate change, the abundance of I. ricinus might be increasing, which could potentially lead to higher prevalences of tick-borne pathogens, such as Babesia spp. and Anaplasma phagocytophilum, some known for their zoonotic potential. Human babesiosis is classified as an emerging zoonosis, but sufficient data of these parasites in central Austria is lacking. In order to assess the abundance of vector-borne pathogens, blood of roe deer (Capreolus capreolus; n = 137), red deer (Cervus elaphus; n = 37), mouflons (Ovis gmelini; n = 2) and chamois (Rupicapra rupicapra; n = 1), was collected and tested for pathogen DNA in two different sampling sites in central Austria. DNA of tick-borne pathogens was detected in 15.5 % (n = 27) of these animals. Babesia capreoli (n = 22 in roe deer; n = 1 in mouflon), Babesia divergens (n = 1, in red deer), and Anaplasma phagocytophilum (n = 4, in roe deer) were detected. DNA sequencing of the 18S rRNA gene of two C. capreolus samples from Upper Austria featured another new genotype of Babesia, which differs in one nucleotide position to B. divergens and B. capreoli, and is intermediate between the main genotypes of B. capreoli and B. divergens within the partial gene sequence analyzed. This study thus confirms that B. capreoli, B. divergens, and A. phagocytophilum are present in free-ranging ungulates in central Austria. Further testing over a longer period is recommended in order to assess the impact of climate change on the prevalence of blood parasites in central Austria.
Recently, ticks of Hyalomma spp. have been found more often in areas previously lacking this tick species. Due to their important role as a vector of different diseases, such as Crimean-Congo-hemorrhagic fever (CCHF), the occurrence and potential spread of this tick species is of major concern. So far, eight Hyalomma sp. ticks were found between 2018 and 2021 in Austria. A serological investigation on antibodies against the CCHF virus in 897 cattle as indicator animals displayed no positive case. During observation of climatic factors, especially in the period from April to September, the year 2018 displayed an extraordinary event in terms of higher temperature and dryness. To estimate the risk for humans to come in contact with Hyalomma sp. in Austria, many parameters have to be considered, such as the resting place of birds, availability of large livestock hosts, climate, density of human population, etc.
Early adolescence (12-13 years old) is a critical but under-researched demographic for the formation of attitudes related to climate change. We address this important area by exploring adolescent views about climate change. This paper presents opinions collected from surveys of?463 1st-year secondary school students (12-13 years old) in public secondary schools in inner-urban centres in Austria and Australia on whether climate change is (1) something about which to worry, (2) caused by humans and (3) happening now. Eligible respondents in both countries showed similar levels of agreement that climate change was probably or definitely something we should (1) worry about (84.6% Austria, 89.1% Australia), which is significantly higher than either country’s adult population. Eligible respondents agreed that climate change probably or definitely is (2) caused by humans (75.6% Austria, 83.6% Australia) and that climate change is probably or definitely something that is (3) happening now (73.1% Austria, 87.5% Australia). Their response differed from the respective adult populations, but in opposite directions. Our results suggest that socio-cultural worldview may not have as much influence on this age group as it does on the respective adult populations and suggests that this age group would be receptive and ready for climate science education and engagement initiatives.
BACKGROUND: Why human tick-borne encephalitis (TBE) cases differ from year to year, in some years more 100%, has not been clarified, yet. The cause of the increasing or decreasing trends is also controversial. Austria is the only country in Europe where a 40-year TBE time series and an official vaccine coverage time series are available to investigate these open questions. METHODS: A series of generalized linear models (GLMs) has been developed to identify demographic and environmental factors associated with the trend and the oscillations of the TBE time series. Both the observed and the predicted TBE time series were subjected to spectral analysis. The resulting power spectra indicate which predictors are responsible for the trend, the high-frequency and the low-frequency oscillations, and with which explained variance they contribute to the TBE oscillations. RESULTS: The increasing trend can be associated with the demography of the increasing human population. The responsible GLM explains 12% of the variance of the TBE time series. The low-frequency oscillations (10 years) are associated with the decadal changes of the large-scale climate in Central Europe. These are well described by the so-called Scandinavian index. This 10-year oscillation cycle is reinforced by the socio-economic predictor net migration. Considering the net migration and the Scandinavian index increases the explained variance of the GLM to 44%. The high-frequency oscillations (2-3 years) are associated with fluctuations of the natural TBE transmission cycle between small mammals and ticks, which are driven by beech fructification. Considering also fructification 2 years prior explains 64% of the variance of the TBE time series. Additionally, annual sunshine duration as predictor for the human outdoor activity increases the explained variance to 70%. CONCLUSIONS: The GLMs presented here provide the basis for annual TBE forecasts, which were mainly determined by beech fructification. A total of 3 of the 5 years with full fructification, resulting in high TBE case numbers 2 years later, occurred after 2010. The effects of climate change are therefore not visible through a direct correlation of the TBE cases with rising temperatures, but indirectly via the increased frequency of mast seeding.
The first long-term monitoring to document both activity and density of questing ixodid ticks in Vienna, Austria, is introduced. It was started in 2017 and is planned to run over decades. Such long-term monitorings are needed to quantify possible effects of climate change or to develop tick density forecast models. The monthly questing tick density at three sites has been observed by using a standardized sampling method by dragging an area of [Formula: see text] at each occasion. Popular recreational areas were chosen as study sites. These are the Prater public park, the wooded Kahlenberg, and a wildlife garden in Klosterneuburg. First results show a 3-year time series of nymphs and adults of the Ixodes ricinus species complex and Haemaphysalis concinna for the period 2017-2019. Whereas questing nymphs of the I. ricinus species complex were collected from February to November, H. concinna nymphs were only dragged from May to October. The peak of nymphal activity of the I. ricinus species complex was in May, that of H. concinna in August. In addition, a brief overview is given about ticks and tick-borne pathogens occurring in urban and suburban areas of Vienna.
Urban heat islands are an increasing concern even in small- to medium-sized cities, although these areas are still understudied especially in terms of the economic feasibility of adaptation options. This paper uses adaptation scenarios produced by an urban climate model as inputs to a social cost-benefit analysis in three small- to medium-sized cities in Austria: Modling, Klagenfurt, and Salzburg. The adaptation scenarios, which consider measures such as increasing the reflectivity of different sealed surfaces (referred to as the White City scenario) as well as greening measures (i.e. the Green City scenario), show decreases in the number of hot days (T-max >= 30 degrees C) when implemented. Benefits include reductions in heat-related mortality, which are modeled based on trends of daily mortality and climate data, reduced morbidity, productivity loss, and numerous urban ecosystem services. The results demonstrate favorable benefit-cost ratios of a combination of measures (White and Green City) of 1.27, 1.36, and 2.68 for Modling, Klagenfurt, and Salzburg, respectively, indicating positive economic grounds for supporting policies in line with the adaptation scenarios. Furthermore, results of the Green City vs. White City showed higher benefits for the combined and Green City scenarios despite higher costs for each of the cities.