During 2010-2018 in Denmark, 638 patients had Vibrio infections diagnosed and 521 patients had Shewanella infections diagnosed. Most cases occurred in years with high seawater temperatures. The substantial increase in those infections, with some causing septicemia, calls for clinical awareness and mandatory notification policies.
BACKGROUND: Plasmodium vivax was endemic in northern Europe until the early twentieth century. Considering climate change and the recent emergence of other vector borne diseases in Europe, historical insight into the relationship between malaria and environmental factors in northern Europe is needed. This article describes malaria epidemiology in late-nineteenth century Denmark. METHODS: We described the seasonality and spatial patterns of malaria, and the relationship of the disease with environmental factors such as soil types, clay content and elevation for the period 1862-1914. We studied demographic and seasonal patterns and malaria mortality in the high-morbidity period of 1862-1880. Finally, we studied the relationship between malaria seasonality and temperature and precipitation using a Spearman correlation test. RESULTS: We found that the highest incidence occurred in eastern Denmark. Lolland-Falster medical region experienced the highest incidence (14.5 cases per 1000 pop.) and Bornholm medical region experienced the lowest incidence (0.57 cases per 1000 pop.). Areas with high malaria incidence also had high soil clay content, high agricultural production, and Lolland-Falster furthermore has a low elevation. Malaria incidence typically peaked in May and was associated with high temperatures in July and August of the previous year but not with precipitation. The case fatality rate was 0.17%, and the disease affected both sexes and all age groups except for infants. In 1873, a large epidemic occurred following flooding from a storm surge in November 1872. CONCLUSIONS: Malaria gradually declined in Denmark during our study period and had essentially disappeared by 1900. The high adult and low child morbidity in 1862-1880 indicates that malaria was not highly endemic in this period, as malaria is most frequent among children in highly endemic areas today. The association of high malaria incidence in spring with warmer temperatures in the previous summer suggests that transmission took place in the previous summers. The close geographical connection between malaria and soil types, agricultural production and elevation suggests that these factors are detrimental to sustain endemic malaria. Our findings of a close connection between malaria and environmental factors such as climate and geography provides insights to address potential reintroduction of malaria in temperate climates.
Ultrafine particles (UFP), harmful to human health, are emitted at high levels from motorized traffic. Bicycle commuting is increasingly encouraged to reduce traffic emissions and increase physical activity, but higher breathing rates increase inhaled UFP concentrations while in traffic. We assessed exposure to UFP while cycling along a fixed 8.5 km inner-city route in Copenhagen, on weekdays over six weeks (from September to October 2020), during morning and afternoon rush-hour, as well as morning non-rush-hour, traffic time periods starting from 07:45, 15:45, and 09:45 h, respectively. Continuous measurements were made (each second) of particle number concentration (PNC) and location. PNC levels were summarized and compared across time periods. We used generalized additive models to adjust for meteorological factors, weekdays and trends. A total of 61 laps were completed, during 28 days (∼20 per time period). Overall mean PNC was 18,149 pt/cm^(3) (range 256-999,560 pt/cm^(3)) with no significant difference between morning rush-hour (18003 pt/cm^(3)), afternoon rush-hour (17560 pt/cm^(3)) and late morning commute (17560 pt/cm^(3)) [p = 0.85]. There was substantial spatial variation of UFP exposure along the route with highest PNC levels measured at traffic intersections (∼38,000-42000 pt/cm^(3)), multiple lane roads (∼38,000-40000 pt/cm^(3)) and construction sites (∼44,000-51000 pt/cm^(3)), while lowest levels were measured at smaller streets, areas with open built environment (∼12,000 pt/cm^(3)), as well as at a bus-only zone (∼15,000 pt/cm^(3)). UFP exposure in inner-city Copenhagen did not differ substantially when bicycling in either rush-hour or non-rush-hour, or morning or afternoon, traffic time periods. UFP exposure varied substantially spatially, with highest concentrations around intersections, multiple lane roads, and construction sites. This suggests that exposure to UFP is not necessarily reduced by avoiding rush-hours, but by avoiding sources of pollution along the bicycling route.