BACKGROUND: Ethiopia has seen an increase in the number of internally displaced persons (IDPs) due to conflict and violence related to border-based disputes and climate change. This study examines the insecurities experienced by IDPs in the Burayu camp and how they navigate and challenge them. Violence and insecurity have daunted Ethiopian regions for decades, violated children’s rights, and impeded the achievement of the United Nation’s sustainable development goals related to children, such as good healthcare and mental health, quality education, clean water, and sanitation. The deteriorating security concerns in Ethiopia could also expose IDP children to poor health outcomes associated with a lack of access to healthcare services. METHODS: This was an exploratory qualitative case study guided by intersectionality theoretical lens to explore the forms of insecurities perceived and experienced by IDPs in Ethiopia. Participants were selected using a purposeful sampling approach. We interviewed 20 children, 20 parents or guardians, and 13 service providers. Interviews were audio recorded and transcribed verbatim in Afan Oromo, then translated into English. We used NVivo 12 qualitative data analysis software to analyze data following Braun & Clarke’s approach to thematic data analysis. RESULTS: The participants reported that IDP children in Burayu town faced many challenges related to poor socioeconomic conditions that exposed them to several insecurities and negatively affected their well-being. They reported inadequate access to clothing and shelter, clean water, sanitary facilities, food, and adequate healthcare due to financial barriers, lack of drugs, and quality of care. Our data analysis shows that socioeconomic and contextual factors intersect to determine the health and well-being of children in the Ethiopian IDP camp studied. The children experienced insecurities while navigating their daily lives. This is compounded by institutional practices that shape gender relations, income status, and access to healthcare, education, and food. These deficiencies expose children to traumatic events that could decrease future livelihood prospects and lead to compromised mental health, rendering them susceptible to prolonged post-traumatic stress disorder and depression. Results are presented under the following topics: (1) basic needs insecurity, (2) healthcare insecurity, (3) academic insecurity, (4) economic insecurity, (5) food insecurity, and (6) physical and mental health insecurity. CONCLUSION: Successful relocation and reintegration of IDPs would help to alleviate both parent and child post-conflict stressors. Managing and following up on economic reintegration efforts is needed in both the short and long term. Such measures will help to achieve goals for specific projects attached to donor support outcomes, consequently enabling social support and conflict resolution management efforts.
Heat stress is a harmful physical hazard in many occupational settings. However, consequences of occupational heat exposure among workers in a sugarcane factory in Ethiopia are not well characterized. This study aimed to assess the level of occupational heat exposure-related symptoms and contributing factors. In this cross-sectional study, five workstations were selected for temperature measurement. Heat stress levels were measured using a wet-bulb globe temperature index meter. A stratified random sampling technique was used to select 1,524 participants. Heat-related symptoms were assessed using validated questionnaires. The level of occupational heat exposure was 72.4% (95% CI: 70.2%-74.8%), while 71.6% (95% CI: 69.3%-74.9%) of participants experienced at least one symptom related to heat stress. The most common heat-related symptoms were swelling of hands and feet (78%), severe thirst (77.8%) and dry mouth (77.4%). The identified risk factors were a lack of reflective shields (AOR: 2.20, 95% CI: 1.53, 3.17), not-enclosed extreme heat sources (AOR: 1.76, 95% CI: 1.23, 2.51), a lack of access to shade (AOR: 9.62, 95% CI: 6.20, 14.92), and inappropriate protective clothing provision (AOR: 1.58, 95% CI: 1.27, 2.71). The burden of occupational heat exposure and heat-induced symptoms was high. Lack of reflective shields, the absence of enclosed extreme heat sources, a lack of access to shade, and inappropriate protective clothing provision were considerable attributes of heat stress. Therefore, the use of mechanical solutions to stop heat emissions at their sources and the key factors identified were areas for future intervention.
Introduction: Safe and easily accessible drinking water service generates substantial benefits for public health and the economy. Approximately 10% of the global burden of disease worldwide could be prevented with improved access to drinking water. The death of similar to 30% of children younger than 5 years in developing countries is attributable to inadequate access to improved drinking water. Despite the presence of abundant water sources in Ethiopia, uneven distribution and waste pollution coupled with unprecedented population growth, rapid urbanization, and climate change are hindering the country’s ability to maintain the balance between the demand and supply of accessible and improved drinking water services. The importance of up-to-date evidence for actions regarding the distribution of access to improved drinking water services is indicated by the Ethiopian Ministry of Water and Energy. Therefore, this study aimed to explore the spatial distribution and determinants of limited access to improved drinking water service among households in Ethiopia. Methods: This study used the 2019 Ethiopian Mini Demographic and Health Survey (EMDHS). The data were weighted using sampling weight to restore the representativeness and to obtain valid statistical estimates. After excluding ineligible households, a total weighted sample of 5,760 households was included in the final analysis. The analysis was performed using STATA version 14.2, ArcGIS Pro, and SaTScan version 10.1 software. To find significant determinants with limited access to improved drinking water service, we used a multilevel logistic regression model. A P-value of Results: This study found that in Ethiopia, 16.1% (95% CI: 15.2, 17.1) of households have limited access to improved drinking water services. The spatial distribution of households with limited access was identified to be clustered across a few regions of the country (Moran’s I = 0.17, p-value < 0.01). The most likely significant primary clusters with highly limited access were seen in the Somali region (RR = 4.16, LLR = 162.8), the border between Amhara and Afar region (RR = 4.74, LLR = 41.6), the border between Oromia and Afar region (RR = 5.21, LLR = 13.23), and the northeastern Tigray region (RR = 2.52, LLR = 9.87). The wealth index, the age of household head, residence, and region were significantly associated with limited access to improved drinking water service. A high rate of limited access to improved drinking water service is predicted in the southwestern part of Gambella, the northeastern part of Oromia, the southwestern part of South Nation Nationalities and Peoples' region, and part of the Oromia region that surrounds Addis Ababa. Conclusion: Limited access to improved drinking water service in Ethiopia varies across regions, and inequality in the service provision exists in the country. Prioritization and extra level of efforts should be made by concerned government and non-government organizations as well as other stakeholders for those underprivileged areas and groups of the population as they are found in the study.
BACKGROUND: This study aimed to examine the spatial variations in malaria hotspots along Dilla sub-watershed in western Ethiopia based on environmental factors for the prevalence; and compare the risk level along with districts and their respective kebele. The purpose was to identify the extent of the community’s exposure to the risk of malaria due to their geographical and biophysical situations, and the results contribute to proactive interventions to halt the impacts. METHODS: The descriptive survey design was used in this study. Ethiopia Central Statistical Agency based meteorological data, digital elevation model, and soil and hydrological data were integrated with other primary data such as the observations of the study area for ground truthing. The spatial analysis tools and software were used for watershed delineation, generating malaria risk map for all variables, reclassification of factors, weighted overlay analysis, and generation of risk maps. RESULTS: The findings of the study reveal that the significant spatial variations in magnitudes of malaria risk have persisted in the watershed due to discrepancy in their geographical and biophysical situations. Accordingly, significant areas in most of the districts in the watershed are characterized by high and moderate in malaria risks. In general, out of the total area of the watershed which accounts 2773 km2, about 54.8% (1522km2) identified as high and moderate malaria risk area. These areas are explicitly identified and mapped along with the districts and kebele in the watershed to make the result suitable for planning proactive interventions and other decision making. CONCLUSIONS: The research output may help the government and humanitarian organizations to prioritize the interventions based on identified spatial situations in severity of malaria risks. The study was aimed only for hotspot analysis which may not provide inclusive account for community’s vulnerability to malaria. Thus, the findings in this study needs to be integrated with the socio-economic and other relevant data for better malaria management in the area. Therefore, future research should comprehend the analysis of vulnerability to the impacts of malaria through integrating the level of exposure to the risk, for instance identified in this study, with factors of sensitivity and adaptation capacity of the local community.
The impacts of climate change and environmental predictors on malaria epidemiology remain unclear and not well investigated in the Sub-Sahara African region. This study was aimed to investigate the nonlinear effects of climate and environmental factors on monthly malaria cases in northwest Ethiopia, considering space-time interaction effects. The monthly malaria cases and populations sizes of the 152 districts were obtained from the Amhara public health institute and the central statistical agency of Ethiopia. The climate and environmental data were retrieved from US National Oceanic and Atmospheric Administration. The data were analyzed using a spatiotemporal generalized additive model. The spatial, temporal, and space-time interaction effects had higher contributions in explaining the spatiotemporal distribution of malaria transmissions. Malaria transmission was seasonal, in which a higher number of cases occurred from September to November. The long-term trend of malaria incidence has decreased between 2012 and 2018 and has turned to an increased pattern since 2019. Areas neighborhood to the Abay gorge and Benshangul-Gumuz, South Sudan, and Sudan border have higher spatial effects. Climate and environmental predictors had significant nonlinear effects, in which their effects are not stationary through the ranges of values of variables, and they had a smaller contributions in explaining the variabilities of malaria incidence compared to seasonal, spatial and temporal effects. Effects of climate and environmental predictors were nonlinear and varied across areas, ecology, and landscape of the study sites, which had little contribution to explaining malaria transmission variabilities with an account of space and time dimensions. Hence, exploring and developing an early warning system that predicts the outbreak of malaria transmission would have an essential role in controlling, preventing, and eliminating malaria in areas with lower and higher transmission levels and ultimately lead to the achievement of malaria GTS milestones.
BACKGROUND: Diarrheal illnesses are a long-standing public health problem in developing countries due to numerous sanitation issues and a lack of safe drinking water. Floods exacerbate public health issues by spreading water-borne infectious diseases such as diarrhea through the destruction of sanitation facilities and contamination of drinking water. There has been a shortage of studies regarding the magnitude of diarrheal disease in flood-prone areas. Therefore, this research aimed to evaluate the prevalence of diarrheal disease and its predictors among under-five children living in flood-prone localities in the south Gondar zone of Northwest Ethiopia. METHOD: A community-based cross-sectional research was carried out in flood-prone villages of the Fogera and Libokemkem districts from March 17 to March 30, 2021. Purposive and systematic sampling techniques were used to select six kebeles and 717 study units, respectively. Structured and pretested questionnaires were used to collect the data. A multivariable analysis was performed to determine the predictors of diarrheal disease, with P-value <0.05 used as the cut-off point to declare the association. RESULT: The prevalence of a diarrheal disease among under-five children was 29.0%. The regular cleaning of the compound [AOR: 2.13; 95% CI (1.25, 3.62)], source of drinking water [AOR: 2.36; 95% CI: (1.26, 4.41)], animal access to water storage site [AOR: 3.04; 95% CI: (1.76, 5.24)], vector around food storage sites [AOR: 9.13; 95% CI: (4.06, 20.52)], use of leftover food [AOR: 4.31; 95% CI: (2.64, 7.04)], and fecal contamination of water [AOR: 12.56; 95% CI: (6.83, 23.20)] remained to have a significant association with diarrheal diseases. CONCLUSION: The present study found that the prevalence of the diarrheal disease among under-five children was high. Routine compound cleaning, the source of drinking water, animal access to a water storage site, vectors near food storage sites, consumption of leftover food, and fecal contamination of water were significant predictors of diarrheal disease. Therefore, it is advised to provide improved water sources, encourage routine cleaning of the living area, and offer health education about water, hygiene, and sanitation.
Zoonotic diseases negatively impact pastoral communities in Ethiopia. In addition to impacts on human health, the interaction between people, livestock and environment which is so fundamental to the pastoralist way of life, means zoonoses pose additional challenges to social bonds and protection networks. These challenges are compounded by adverse impacts from climate change, poor health care services, market problems and cultural practices that increase pastoralists’ vulnerability to zoonotic diseases. This research adopted a grounded theory approach and attempted to capture the perception of Hamer and Dassenetch pastoralists on zoonotic diseases and rangeland health through focus group discussions and key informant interviews. Involved in the research were human and animal health experts, and woreda (Woreda is a third level of administrative unit in Ethiopia following region and zone) level government officials. Thematic framework analysis was used to analyse the data. Zoonotic diseases are a significant public health concern and have a substantial economic burden on local livelihoods. Poor access to human and livestock health services contributed towards the widespread transmission of zoonotic pathogens. In most cases, pastoralists were aware of the possibility of zoonotic disease transmission from livestock to humans and were cognizant of infections contracted from animals. However, the level of risk perception from zoonotic diseases and the subsequent measures of protection was poor. In almost all cases, despite pastoralists’ awareness of zoonotic diseases, they did not consider zoonoses as harmful to human health as they are to animals. It was evident that the burden of zoonotic diseases was high in livestock camps away from settlements in Hamer while for Dassenetch the resettlement clusters created a conducive environment for transmission. This research underscored the importance of engaging with local communities on the risk implications of zoonotic diseases including those related to their food habits and practices.
Evidence on the trends of the proportion of malaria infections detected by routine passive case detection at health facilities is important for public health decision making especially in areas moving towards elimination. The objective was to assess nine years of trends on clinical malaria infections detected at health facility and its associated climate factors, in the water resource development set up of Wonji sugar estate, Oromia, Ethiopia. Retrospective data were collected from malaria-suspected patient recording logbook at Wonji sugar factory’s primary hospital. Monthly average meteorological data were obtained from the estate meteorological station. Data were collected from April through June 2018 and January 2022. The data were analyzed using Stata version 16.0 software for Chi-square and regression analysis. Over the last nine years, 34,388 cases were legible for analysis with complete data. Of these, 11.75% (4039/34388) were positive for clinical malaria. Plasmodium vivax test positivity was the highest proportion (8.2%, n = 2820) followed by Plasmodium falciparum (3.48%, n = 1197) and mixed infections (P. falciparum and P. vivax, 0.06%, n = 21). The odds of being positive for malaria was highest in males (AOR = 1.46; 95%CI = 1.36-1.52; P < 0.001) compared to females and in older individuals of above 15 years old (AOR = 4.55, 95%CI = 4.01-5.17, P < 0.001) followed by school-aged children (5-15 years old) (AOR = 2.16; 95%CI = 1.88-2.49, P < 0.001). There was no significant variation in the proportion of malaria-positive cases in the dry and wet seasons (P = 0.059). Malaria test positivity rates were associated with average monthly rainfall (AdjIRR = 1.00; 95%CI = 1.00-1.001, P < 0.001) while negatively associated with average monthly minim temperature (adjIRR = 0.94; 95%CI = 0.94-0.95; P < 0.001) and average monthly relative humidity (adjIRR = 0.99, 95%CI = 0.99-1.00, P = 0.023). There was year-round malaria transmission, adults especially males and school children frequently tested malaria positive. Hence, alternative vector management tools like larval source management have to be deployed besides ITNs and IRS in such water development areas to achieve the malaria elimination goal.
The study of the impacts and drivers of climate change adaptation should consider gender (in)equality and women’s participation, as they both play pivotal roles. However, research on gender aspects of climate change adaptation has been limited. This study assesses gender dimensions of adaptation to climate change and de-terminants of smallholder farmers’ adaptation strategies in Adwa district, Tigray, Ethiopia. Drawing on house-hold surveys, key informant interviews, and focus group discussions carried out in 2017, the study found that climate change had more severe impacts on female-headed households than on male-headed households. This was due to women’s lack of resource access and control, lack of income and technology use, and high depen-dence on natural resources. Major climate change adaptation measures identified in the study area included adjustment of planting dates, crop varieties, water harvesting practices, soil and water conservation, irrigation, seasonal migration, diversifying income sources, and agricultural inputs. Rates and extent of adaptation varied by gender. As indicated by multivariate probit analysis, major determinants of farmers’ adaptation choices included agro-ecology; gender, age, education, family size, farm size, non-farm income, livestock; access to in-formation, extension services, and credit; and distance to market center. Study findings suggest that policy-makers should consider differences between female-and male-headed families in their access to land, information, income, extension services, technologies, and other resources. By doing so, climate change adap-tation practices may be broadened and sustainable development promoted.
Ethiopia has a history of climate related malaria epidemics. An improved understanding of malaria-climate interactions is needed to inform malaria control and national adaptation plans. METHODS: Malaria-climate associations in Ethiopia were assessed using (a) monthly climate data (1981-2016) from the Ethiopian National Meteorological Agency (NMA), (b) sea surface temperatures (SSTs) from the eastern Pacific, Indian Ocean and Tropical Atlantic and (c) historical malaria epidemic information obtained from the literature. Data analysed spanned 1950-2016. Individual analyses were undertaken over relevant time periods. The impact of the El Niño Southern Oscillation (ENSO) on seasonal and spatial patterns of rainfall and minimum temperature (Tmin) and maximum temperature (Tmax) was explored using NMA online Maprooms. The relationship of historic malaria epidemics (local or widespread) and concurrent ENSO phases (El Niño, Neutral, La Niña) and climate conditions (including drought) was explored in various ways. The relationships between SSTs (ENSO, Indian Ocean Dipole and Tropical Atlantic), rainfall, Tmin, Tmax and malaria epidemics in Amhara region were also explored. RESULTS: El Niño events are strongly related to higher Tmax across the country, drought in north-west Ethiopia during the July-August-September (JAS) rainy season and unusually heavy rain in the semi-arid south-east during the October-November-December (OND) season. La Niña conditions approximate the reverse. At the national level malaria epidemics mostly occur following the JAS rainy season and widespread epidemics are commonly associated with El Niño events when Tmax is high, and drought is common. In the Amhara region, malaria epidemics were not associated with ENSO, but with warm Tropical Atlantic SSTs and higher rainfall. CONCLUSION: Malaria-climate relationships in Ethiopia are complex, unravelling them requires good climate and malaria data (as well as data on potential confounders) and an understanding of the regional and local climate system. The development of climate informed early warning systems must, therefore, target a specific region and season when predictability is high and where the climate drivers of malaria are sufficiently well understood. An El Niño event is likely in the coming years. Warming temperatures, political instability in some regions, and declining investments from international donors, implies an increasing risk of climate-related malaria epidemics.
Climate variability and extremes adversely affect the livestock sector by reducing pasture availability, polluting and depleting water resources, aggravating livestock diseases, and distorting the production systems. The cu-mulative effect of climate variability undermines the adaptive capacity of pastoralists and worsens food inse-curity. This study assesses the impact of climate variability and the determinants of pastoralists and agro-pastoralists adaptation strategies in Yabello and Arero Districts, southern Ethiopia. Accordingly, data were collected from randomly selected 296 sample households using a questionnaire survey. Data were also gathered from a purposively selected key informants and focus group discussion participants. Areal gridded dikadal rainfall and temperature data were collected from the National Meteorological Institute. Descriptive statistics and multinomial logistic regression data analysis methods were used. The results show that all seasons were significantly warming, while rainfall declined at various degrees and the distribution was highly variable across the study period. The ever rising minimum and maximum temperature and the erratic nature of rainfall has undermined the availability of pasture and water resources, especially during drought years resulting in the prevalence of livestock diseases. The age of the household head, poor access to information, lack of credit and saving services, limited knowledge, and erratic rainfall were found to be the determinant factors in the choice of adaptation options to climate variability and extremes. The study also found that lack of appropriate intervention and support mechanisms by government and non-government actors as well as the reluctance of pastoralists and agro-pastoralists to accept the stakeholders’ advice were the barriers to climate variability adaptation. Thus, it is clear that pastoralists’ and agro-pastoralists’ livelihood is at risk for climate variability and extremes and hence, requires context specific adaptive capacity building intervention that ranges from awareness creation to strengthening basic infrastructures and rangeland management.
BACKGROUND: Sub-Saharan Africa (SSA) has one of the highest prevalence of malnutrition among children under 5 in the world. It is also the region most vulnerable to the adverse effect of climate change, and the one that records the most armed conflicts. The chains of causality suggested in the literature on the relationship between climate change, armed conflict, and malnutrition have rarely been supported by empirical evidence for SSA countries. METHODS: This study proposes to highlight, under the hypothesis of spatial non-stationarity, the influence of climatic variations and armed conflicts on malnutrition in children under 5 in Ethiopia, Kenya, and Nigeria. To do this, we use spatial analysis on data from Demographic and Health Surveys (DHS), Uppsala Conflict Data Program Georeferenced Event Dataset (UCDP GED), Climate Hazards center InfraRed Precipitation with Station data (CHIRPS) and Moderate Resolution Imaging Spectroradiometer (MODIS). RESULTS: The results show that there is a spatial autocorrelation of malnutrition measured by the prevalence of underweight children in the three countries. Also, local geographically weighted analysis shows that armed conflict, temperature and rainfall are positively associated with the prevalence of underweight children in localities of Somali in Ethiopia, Mandera and Turkana of Wajir in Kenya, Borno and Yobe in Nigeria. CONCLUSION: In conclusion, the results of our spatial analysis support the implementation of conflict-sensitive climate change adaptation strategies.
Global climate change is affecting water resources and other aspects of life in many countries. Rainfall is the most significant climate element affecting the livelihood and well-being of the majority of Ethiopians. Rainfall variability has a great impact on agricultural production, water supply, transportation, the environment, and urban planning. Because all agricultural activities and subsequent national crop production hinge on the amount and distribution of rainfall, accurate monthly and seasonal predictions of this rainfall are vital for agricultural planning. Rainfall prediction is also useful for governmental, non-governmental, and private agencies in making long-term decisions and planning in numerous areas such as farming, early warning of potential hazards, drought mitigation, disaster prevention, and insurance policy. Artificial Intelligence (AI) has been widely used in almost every area, and rainfall prediction is one of them. In this study, we attempt to investigate the use of AI-based models to predict monthly rainfall at 92 Ethiopian meteorological stations. The applicability of Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference System (ANFIS) models in predicting long-term monthly precipitation was investigated using geographical and periodicity component (longitude, latitude, and altitude) data collected from 2011 to 2021. The experimental results reveal that the ANFIS model outperforms the ANN model in all assessment criteria across all testing stations. The Nash-Sutcliffe efficiency coefficients were 0.995 for ANFIS and 0.935 for ANN over testing stations.
Three concurrent global environmental trends are particularly apparent: human population growth, urbanization, and climate change. Especially in countries such as Ethiopia in the Global South, all three are impacted by, and in turn have bearing upon, social justice and equity. Combined, these spatial and social factors reduce wellbeing, leading to increasing urgency to create urban environments that are more livable, resilient, and adaptive. However, the impacts on, and of, non-human urban residents, particularly on the ecosystem services they provide, are often neglected. We review the literature using the One Health theoretical framework and focusing on Ethiopia as a case-study. We argue for specific urban strategies that benefit humans and also have spillover effects that benefit other species, and vice versa. For example, urban trees provide shade, clean the air, help combat climate change, create more livable neighborhoods, and offer habitat for many species. Similarly, urban neighborhoods that attract wildlife have characteristics that also make them more desirable for humans, resulting in improved health outcomes, higher livability, and enhanced real-estate values. After summarizing the present state of knowledge about urban ecology, we emphasize components relevant to the developing world in general and pre- COVID-19 pandemic Ethiopia in particular, then expand the discussion to include social justice and equity concerns in the built environment. Prior to the ongoing civil war, Ethiopia was beginning to invest in more sustainable urbanization and serve as a model. Especially in light of the conflict and pandemic, much more will need to be done.
BACKGROUND: Ethiopia’s exposure to the El Niño drought (2015-2016) resulted in high malnutrition, internally displaced people, and epidemics of communicable diseases, all of which strained the health system. The drought was especially challenging for mothers and children. We aimed to identify salient factors that can improve health system resilience by exploring the successes and challenges experienced by a community-based health system during the drought response. METHODS: We collected data via key informant interviews and focus group discussions to capture diverse perspectives across the health system (eg, international, national, district, facility, and community perspectives). Data were collected from communities in drought-affected regions of: 1) Somali, Sitti Zone, 2) Hawassa, Southern Nations, Nationalities, and Peoples’ Region (SNNPR), and 3) Tigray, Eastern Zone. Data were analysed using a deductive-inductive approach using thematic content analysis applied to a conceptual framework. RESULTS: A total of 94 participants were included (71 from the communities and 23 from other levels). Key themes included the importance of: 1) organized community groups linked to the health system, 2) an effective community health workforce within strong health systems, 3) adaptable human resource structures and service delivery models, 4) training and preparedness, and 5) strong government leadership with decentralized decision making. CONCLUSIONS: The results of this study provide insights from across the health system into the successes and challenges of building resilience in community-based health systems in Ethiopia during the drought. As climate change exacerbates extreme weather events, further research is needed to understand the determinants of building resilience from a variety of shocks in multiple contexts, especially focusing on harnessing the power of communities as reservoirs of resilience.
BACKGROUND: Stunting is impaired linear growth of children: they experience stunting in the first 1000 days after conception and is an indication of chronic malnutrition. Children under the age of two are regarded as the most vulnerable to malnutrition due to their rapid growth and greater exposure to infectious disease. OBJECTIVE: To assess the magnitude and associated factors of stunting among 6 to 23-month-old children in drought-vulnerable kebeles of the Demba Gofa district, southern Ethiopia. METHODS: A community-based cross-sectional study was conducted from February to March 2021. Systematic random sampling was used to select pairs of mothers/caregivers with children aged 6 to 23 months. A semistructured questionnaire and anthropometric measurement were used to collect the data. The data were checked coded and entered into Epi-data version 3.1 and exported to SPSS for Windows version 20.0 for analysis. Simple and multivariable linear regressions were conducted. The level of significance was declared at 95% CI and p-value < 0.05. RESULTS: The magnitude of stunting in the study area was 79(21.82%). Household dietary diversity [β = 0.217, 95% CI, 0.093-0.342], early initiation of complementary feeding [β = 0.444, 95% CI, 0.344-0.543], frequency of breastfeeding within 24 h [β = 0.217, 95% CI, 0.179-0.263] and child eating animal source food [β = 0.351, 95% CI, 0.196-0.506] were positively significant predictors of child height/length-for-age (HAZ). CONCLUSION: The extent of stunting in the study area is relatively lower than that in regional and national reports, but one out of five children were still stunted. Therefore, health education on infant and young child feeding practices should be provided to mothers to reduce the problem.
INTRODUCTION: Malaria is a life-threatening acute febrile illness which is affecting the lives of millions globally. Its distribution is characterized by spatial, temporal, and spatiotemporal heterogeneity. Detection of the space-time distribution and mapping high-risk areas is useful to target hot spots for effective intervention. METHODS: Time series cross sectional study was conducted using weekly malaria surveillance data obtained from Amhara Public Health Institute. Poisson model was fitted to determine the purely spatial, temporal, and space-time clusters using SaTScan™ 9.6 software. Spearman correlation, bivariate, and multivariable negative binomial regressions were used to analyze the relation of the climatic factors to count of malaria incidence. RESULT: Jabitenan, Quarit, Sekela, Bure, and Wonberma were high rate spatial cluster of malaria incidence hierarchically. Spatiotemporal clusters were detected. A temporal scan statistic identified 1 risk period from 1 July 2013 to 30 June 2015. The adjusted incidence rate ratio showed that monthly average temperature and monthly average rainfall were independent predictors for malaria incidence at all lag-months. Monthly average relative humidity was significant at 2 months lag. CONCLUSION: Malaria incidence had spatial, temporal, spatiotemporal variability in West Gojjam zone. Mean monthly temperature and rainfall were directly and negatively associated to count of malaria incidence respectively. Considering these space-time variations and risk factors (temperature and rainfall) would be useful for the prevention and control and ultimately achieve elimination.
BACKGROUND: The health effects of climate change have been found to be a global concern for the last 2 centuries. However, the effect of climate variability on diarrhoea among under-five-year-old children is perhaps undocumented or otherwise unknown. The aim of the present study was to determine the effect of climate variability on diarrhoea among children under 5 years of age. METHODS: A community-based longitudinal study was conducted over 8 repeated visits from June 2016 to May 2018 at the Kersa Demographic Surveillance and Health Research Center. A total of 500 randomly selected households and their 48 improved water sources were included in the survey from 3 agro-ecological zones, the rural and urban areas of the study area. Data was collected on household characteristics, diarrhoea, WASH practices, water quality and quantity in households, and improved water sources. A structured pre-tested questionnaire, an observational check list and laboratory tests were used for data collection. The data was entered into Epi Data Version 3.01 and transferred to Stata Version 12 for analysis. Multilevel mixed-effect Poisson regression was used to determine the relationship between predictors and outcome variables. A P-value of less than .05 was the cut-off point for statistically significant. RESULTS: The prevalence of diarrhoea in 2 weeks among children under 5 years of age was 17.2% (95% CI: 15.8-19.71). Rainfall, E. coli contamination of drinking water at the source and in the home, 20 L of water consumption per capita per day, sharing water sources with animals and home water treatment by residents of the mid- and lowlands were all predictors of diarrhoea. The space-time scan statistic confirmed that child diarrhoea had random variation in both space and time. CONCLUSION: Climate variability has influenced the prevalence of diarrhoea among under-five-year-old children. Climate-resilient measures should be taken to reduce the burden of diarrhoea in the community.
BACKGROUND AND OBJECTIVES: Over centuries, Ethiopia has experienced severe famines and periods of serious drought, and malnutrition remains a major public health problem. The aims of this study were to estimate seasonal variations in child stunting and wasting, and identify factors associated with both forms of child malnutrition in drought-prone areas. METHODS: This cohort study was conducted among a random sample of 909 children in rural southern Ethiopia. The same children were followed for 1 year (2017-2018) with quarterly repeated measurements of their outcomes: height-for-age and weight-for-height indices (Z-scores). Linear regression models were used to analyse the association between both outcomes and baseline factors (eg, household participation in a social safety net programme and water access) and some time-varying factors (eg, household food insecurity). RESULTS: Child wasting rates varied with seasonal household food insecurity (ᵪ(2) (trend) = 15.9, p=0.001), but stunting rates did not. Household participation in a social safety net programme was associated with decreased stunting (p=0.001) and wasting (p=0.002). In addition to its association with decreased wasting (p=0.001), protected drinking water access enhanced the association between household participation in a social safety net programme and decreased stunting (p=0.009). Absence of a household latrine (p=0.011), lower maternal education level (p=0.001), larger family size (p=0.004) and lack of non-farming income (p=0.002) were associated with increased child stunting. CONCLUSIONS: Seasonal household food insecurity was associated with child undernutrition in rural Ethiopia. Strengthening community-based food security programmes, such as the Ethiopian social safety net programme, could help to reduce child undernutrition in drought-prone areas. Improving clean water access and sanitation could also decrease child undernutrition.Key terms: Z-scores; Social safety net program; Water access.
Developing-country households are facing an increasingly challenging set of shocks-including climate, economic, political, and health shocks-that in combination present a novel threat to their livelihoods and well-being, and thus to international development progress. There is a growing need to strengthen the evidence base for interventions and programming approaches that bolster households’ resilience to such shocks. In response, this paper documents an impact evaluation of the USAID-funded “Pastoralist Areas Resilience Improvement and Market Expansion” (PRIME) project implemented from 2012 to 2017 in one of the most shock-prone areas of the world, the drylands of Ethiopia. The project’s overall goal was to reduce poverty and hunger by enhancing households’ ability to recover from recurring climate shocks and their downstream economic impacts. As it were, soon after its inception, the drylands were hit by an exceptionally harsh and prolonged shock, a series of multiple, back-to-back, severe droughts. The droughts led to a sharp drop in households’ well-being, measured here by their food security. Using Difference-in-Difference Propensity Score Matching (DID-PSM) in one of the first causal resilience evaluations, this paper demonstrates that, nevertheless, the project’s resilience-strengthening interventions had a positive impact on their ability to recover, slowing the decline in food security considerably. Delving deeper into how this impact was achieved, the paper finds that two programming approaches optimized resilience impacts. First, “Comprehensive Resilience Programming”, whereby interventions spanning multiple sectors were implemented simultaneously in the same geographical areas, made a major difference. Second, while interventions were mainly implemented at a systems-level (e.g., establishing veterinary pharmacies), many households made the decision to actively participate in them. The paper finds that the impact on their resilience was far greater when they did so. The lessons for future resilience projects are that (1) greater impacts can be achieved by taking advantage of the synergies induced when interventions are layered cross-sectorally, and (2) projects with systems-level interventions should pro-actively plan for the direct participation of households so they can take full advantage of their benefits and thereby achieve greater resilience to shocks. The paper also offers some lessons for future resilience impact evaluations.
This study assessed the perceived causes, indicators and impacts of climate change by disaggregating farmers in to adaptor and non-adaptor groups in Goat based agro-pastoral livelihood zone of Ethiopia. The collected quantitative and qualitative data were analysed in descriptive statistics, linear regression, anomaly index, Likert rating scale and conceptual narrations. The findings demonstrated that an increasing temperature and a decreasing rainfall trends were perceived by farmers across the study decades. Higher deforestation rate, rash natural resource exploitation, poor soil and water management rehearses and alarming population growth in descending order were identified as climate change causes. Livestock and crop yield decline, livestock/human diseases epidemics and death, as well as recurrent conflicts due to grazing land were its associated impacts. The status and nature of climate change causes, indicators and impacts were however significantly diverse within similar awareness groups. To mitigate its adverse impacts, the farmers were thus applied livestock, crop and non-agriculture related adaptation strategies. Shortage of finance and eligible household labor combined with the absence of climate related information, training and extension services were hindered farmers to take any measure to the climate change. Therefore, to encourage the farmers’ responsiveness, the finding underlines the importance of supplying applicable as well as legitimate natural resource exploitation system, followed by access to climate related information, awareness rising trainings, credit and input delivery services at local and community level.
This study explores the perceived influence of climate change on the health of Hamer pastoralists and their livestock in south-western Ethiopia. A combination of focus group discussions and key informant interviews were conducted with Hamer communities as well as local health workers, animal health workers and non-governmental organisation (NGO) staff. Thematic framework analysis was used to analyse the data. Reductions in rangeland, erratic rainfall, recurrent droughts and loss of seasonality were perceived to be the biggest climate challenges influencing the health and livelihoods of the Hamer. Communities were travelling greater distances to access sufficient grazing lands, and this was leading to livestock deaths and increases in ethnic violence. Reductions in suitable rangeland were also precipitating disease outbreaks in animals due to increased mixing of different herds. Negative health impacts in the community stemmed indirectly from decreases in livestock production, uncertain crop harvests and increased water scarcity. The remoteness of grazing lands has resulted in decreased availability of animal milk, contributing to malnutrition in vulnerable groups, including children. Water scarcity in the region has led to utilisation of unsafe water sources resulting in diarrhoeal illnesses. Further, seasonal shifts in climate-sensitive diseases such as malaria were also acknowledged. Poorly resourced healthcare facilities with limited accessibility combined with an absence of health education has amplified the community’s vulnerability to health challenges. The resilience and ambition for livelihood diversification amongst the Hamer was evident. The introduction of camels, increase in permanent settlements and new commercial ideas were transforming their livelihood strategies. However, the Hamer lack a voice to express their perspectives, challenges and ambitions. There needs to be collaborative dynamic dialogue between pastoral communities and the policy-makers to drive sustainable development in the area without compromising the values, traditions and knowledge of the pastoralists.
Climate change has become a global phenomenon, but its impact is unevenly distributed among regions, economic classes, age classes and genders. Gender is among the factors that influence the perception and adaptation of smallholder farmers to the impacts of climate change. This study assessed the level of gender vulnerability, perception and adaptation options against climate change in the rural areas of Meta District, eastern Ethiopia. Data were collected from 193 respondents through household survey, focus group discussions (FGD) and key informant interviews. Long-term climate data (1990-2019) were acquired from the National Meteorological Agency (NMA) of Ethiopia. Integrated vulnerability assessment method through the construction of indices from selected indicators of climate change was used to describe vulnerability. A multivariate probit model (MVP) was employed to identify factors affecting the choice of adaptation options to climate change. Climate data analysis showed that long-term annual, belg (short rainy season from February-April) and kiremt (long rainy season from June-September) seasonal rainfall had high variability with a coefficient of variation of 37.7%, 42.5% and 34.4%, respectively. Approximately 90% of male- and 74% of female-headed households perceived declining and erratic rainfall and rising temperature over time in their locality in the last three decades. The lower perception of women implies that they had less access to climate information and lack awareness, which constrains their adaptation against the impacts of climate change. The likelihood of household heads adopting soil and water conservation (SWC) practices, adjusting planting dates and use of drought-tolerant varieties was 77.2%, 56.9% and 53.9%, respectively. Women were more vulnerable, with a vulnerability index (VI) of – 0.138, to climate change than men (VI = 0.009) in the study area. These findings necessitate the formulation and implementation of gender-sensitive and context-specific policies that provide poor female farmers with the opportunities to diversify their livelihood with non-farm income. Moreover, non-formal trainings and better extension services are needed to enhance the perception of climate change and the use of adaptation practices to improve resilience against climate change.
The Ethiopian Rift Valley (ERV) is characterized by arid and semi-arid climate with groundwater as the most important water resource used for drinking and irrigation purposes. However, in the region, people are suffering from severe water scarcity exacerbated by climate effect. Besides water availability, endemic water quality issues are critical and affect the suitability of the water and human health risks. The present study evaluates the suitability of groundwater for drinking and agricultural purposes in the Ziway Lake Basin (ZLB) of the ERV. Groundwater used for drinking contains multiple inorganic contaminants in levels that surpass the World Health Organization recommended limits. The most frequent of these violations were for Na+, K+, HCO3-, F- and few samples for Mn, As, U, Pb and Mo. The modeled Drinking Water Quality Index (DWQI) values of the groundwater show wide variation ranging from 12.7 (Excellent category) to 714 (Unsuitable category) with mean value of 94. Likewise, Irrigation Water Quality Index (IWQI) computed by considering EC, SAR, Na%, RSC and PI of the groundwater varies from 13.2 to 520 with a mean value of 106. Both DWQI and IWQI values suggest that groundwater is generally of Excellent quality for drinking and irrigation use in the headwater regions of the ZLB and progressively becomes extremely Unsuitable toward the rift floor. The exceptionally high DWQI values to the west of Lake Ziway is mainly associated with the co-occurrence of multiple toxic elements from a groundwater from the Quaternary sediments and rhyolitic volcanic aquifers.
Ethiopia is affected by recurrent drought and food-insecurity crises, including El Niño. El Niño started in mid-2014, worsened in 2015, and continued in 2016, leading to a widespread food-insecurity emergency resulting in a surge in the rate of acute malnutrition in infants due to suboptimal feeding practices. This study explored how El Niño influenced complementary feeding practices in the eastern Ethiopia community from March to September 2016. It was an exploratory qualitative study with a basic interpretative qualitative approach. A general inductive approach was used for the analysis. The study involved 11 focus group discussions (FGD) with a total of 76 people, including three with mothers, three with Health Development Army (HDA) leaders, two with fathers, two with traditional birth attendants, and one with religious leaders. El Niño resulted in failed crops and loss of livestock, resulting in reduced dietary diversity and meal frequency. El Niño resulted in suboptimal complementary feeding practices by reducing food access and altering livelihood and coping strategies, reducing the time mothers allocated to child feeding, keeping them away from home, and stressing community health services. The maternal suboptimal time allocation is central to the poor complementary feeding practices. Thus, the women should be supported with climate-resilient livelihood options in their villages, allowing them to feed their children and attend education sessions with HDA leaders.
The impact of climate change is a global threat, and its effect is more pronounced in developing countries. It is vital to link physical data analysis with endogenous knowledge and practices of farmers to strengthen their adaptive capacity. This study was conducted to explore spatial variability and temporal trends of temperature and rainfall in association with farmers’ perceptions and their adaptation strategies in Southwest Ethiopia. Daily rainfall and temperature data of twelve weather stations were collected from the National Meteorological Agency of Ethiopia for the period 1983 to 2016. Farmers’ perceptions about climate change and its impact and their adaptation strategies were assessed through a survey. Spatial variability and temporal trends of rainfall and temperature were analyzed using ArcGIS and R software. Sen’s slope estimator and Mann-Kendall’s trend tests were used to detect the magnitude and statistical significance of changes in rainfall and temperature. Spatial analysis of rainfall showed high variability over the region. There were no consistent and significant temporal trends of annual and seasonal rainfall of the area. Significant and upward trends of annual maximum and minimum temperatures were reported for all stations. Accordingly, annual maximum and minimum temperatures were increased by 0.71 and 0.65 degrees C, respectively, over the period 1983 to 2016. Farmers had a good awareness of climate change and its impact. Adaptation strategies used by farmers included soil and water conservation practices (66.21%), crop diversification (62.16%), modifying planting date (42.56%), agroforestry practices (35.13%), use of drought-tolerant variety (33.95%), use of early maturing crop (27.03%), and livelihood diversification (25.42%). As most of these adaptation strategies were familiarized by a small number of farmers, further effort is needed to identify factors limiting the adoption of these strategies. Furthermore, additional planned strategies and supports that widen available options at the farmers’ disposal should be introduced to strengthen their adaptive capacity.
BACKGROUND: The recent research recommendations on the adaptations of poor are toward local specific investigations, aimed at a comprehensive understanding of the adaptation strategies through in-depth analysis of the status, and the explicit on how climate and non-climate global change processes constrain the inherent strategies. Intent to this idea, we have designed this study to assess the small-scale farmers’ adaptation and coping strategies in southwestern Ethiopia. METHODS: The agroecology approach steered in case-study design was used for the conceptual and analytical framework. The data collected from 335 households were analyzed for descriptive and multivariate analysis of variance and substantiated by qualitative data obtained through focused group discussion, interview, and observations. RESULTS: The significant differences were observed in the watershed among households in the case studies on their adoption of the identified adaptation and coping strategies. The sustainability of preferred strategies was different along case studies, solely determined by the impact magnitude of the adaptations constraining factors. Although free ecosystem-based strategies become less practical and replacing by new strategies in the watershed, the processes were gradual, internal to the community and managed through adaptive learning in the highland. However, the paths were perceived as toward maladaptive, resulted by the state interventions which disrupted free adaptations, deteriorated adaptive learning of the community, and shaped the adaptation responses toward the interventions in the kolla agroecology. CONCLUSIONS: The study implies that the situations of households’ adaptation strategies are beyond the reflections of their respective production ecology, designated within climate variability in the previous studies. The structural land use dynamics and associated resource tenure insecurity have greater constraining effects on the strategies than the impacts of climate variability in the kolla. Thus, subsequent research interested in such contexts, and any plan for the development interventions should (re)consider the impacts of non-climate national/and global environmental change in shaping the adaptation and coping strategies of the local community.
Chronic seasonal crop and livestock loss due to heat stress and rainfall shortages can pose a serious threat to human health, especially in Sub-Saharan Africa where subsistence and small-scale farming dominate. Young children are particularly susceptible to undernutrition when households experience food insecurity because nutritional deficiencies affect their growth and development. The increase in the frequency of extreme climate events, including droughts, can potentially pose serious health impacts on children. However, the evidence is inconclusive and rather limited to small-scale local contexts. Furthermore, little is known about the differential impacts of droughts on the health of population subgroups. This study contributes to the literature by using data from three nationwide Demographic and Health Surveys (DHS) for Ethiopia conducted in 2005, 2011 and 2016 (n = 21,551). Undernutrition, measured as stunting and wasting among children under five, is used as a health indicator. Droughts are identified using the Standardized Precipitation Evapotranspiration Index (SPEI), a multi-scalar drought index. This study found that drought exposure during the main agricultural season (meher) increased the risk of both chronic undernutrition (stunting) and acute undernutrition (wasting) among under-five children in Ethiopia, however, the impacts vary with population subgroups. Boys, children born to uneducated mothers, and those living in the rural area and whose households are engaged in agricultural activities were more likely to be affected. This suggests that nutritional intervention should target these particularly vulnerable groups of the population. (C) 2021 Elsevier Ltd. All rights reserved.
Protracted and prolonged droughts lead to famine and substantial decline in agricultural productivity that contribute to food insecurity and hunger in sub-Saharan Africa which needs to explore the risk coping strategies to better target risk mitigation. The main research question of this paper was to analyze ex-post coping strategies and their determinants in rural Ethiopia. We use a cross-section data collected in 2013 from vulnerable rural households in Rayitu district, Bale Zone of Oromia Regional State. Using population-proportionate to size (PPS) sampling technique, a total number of 1,402 households in the district participated in this study. The data were analyzed using a three-stage least squares (3SLS) method. Our analysis confirms that rural households in Rayitu district experience drought and are vulnerable to the consequences of shocks. As a response, rural households adopt interdependent risk coping strategies. This supports the notion of addressing the problem of risk through integrated rural development strategies (and policies) to help the poor to improve the vulnerability to shock and help to escape out of poverty. In addition, we found that the risk coping strategies that households adopt are influenced by the resource holdings and income levels of the rural households, their access to product and financial market, and their socio-demographic characteristics. Hence, we argue that strategies and interventions to improve the livelihood of the poor and to support the vulnerable ones should be targeted to fit to the needs and priorities of households.
BACKGROUND: Ethiopia is a Sub-Saharan country with very high neonatal mortality rates, varying across its regions. The rate of neonatal mortality reduction in Ethiopia is slow, and Ethiopia may not meet the third United Nations sustainable development target by 2030. This study aimed to investigate the spatial variations and contributing factors for neonatal mortality rates in Ethiopia. METHODS: We analysed data from the 2016 Ethiopian Demographic and Health Survey (EDHS), which used a two-stage cluster sampling technique with a census enumeration area as primary and households as secondary sampling units. A Bayesian spatial logistic regression model using the Stochastic Partial Differential Equation (SPDE) method was fitted accounting for socio-economic, health service-related and geographic factors. RESULTS: Higher neonatal mortality rates were observed in eastern, northeastern and southeastern Ethiopia, and the Somali region had higher risks of neonatal mortality. Neonates from frequently drought-affected areas had a higher mortality risk than less drought-affected areas. Application of traditional substances on the cord increased the risk of neonatal mortality (Adjusted Odds Ratio (AOR) = 2.07, 95% Credible Interval (CrI): 1.12 to 4.30) and getting health facility delivery services had a lower odds of neonatal mortality (AOR = 0.60, 95% CrI: 0.37, 0.98). CONCLUSIONS: Residing in drought-affected areas, applying traditional substances on the umbilical cord and not delivering at health facilities were associated with a higher risk of neonatal mortality. Policy-makers and resource administrators at different administrative levels could leverage the findings to prioritise and target areas identified with higher neonatal mortality rates.
BACKGROUND: Globally, understanding spatial analysis of malnutrition is increasingly recognized. However, our knowledge on spatial clustering of malnutrition after controlling for known risk factors of malnutrition such as wealth status, food insecurity, altitude and maternal characteristics is limited from Ethiopia. Previous studies from southern Ethiopia have shown seasonal patterns of malnutrition, yet they did not evaluate spatial clustering of malnutrition. OBJECTIVE: The aim of this study was to assess whether child stunting and maternal malnutrition were spatially clustered in drought-prone areas after controlling for previously known risk factors of malnutrition. METHODS: We used a community-based cohort study design for a one-year study period. We used SaTScan software to identify high rates of child stunting and maternal malnutrition clustering. The outcome based was the presence or absence of stunting and maternal malnutrition ([BMI] <18.5 kg/m(2)). We controlled for previously known predictors of child stunting and maternal malnutrition to evaluate the presence of clustering. We did a logistic regression model with declaring data to be time-series using Stata version 15 for further evaluation of the predictors of spatial clustering. RESULTS: The crude analysis of SaTScan showed that there were areas (clusters) with a higher risk of stunting and maternal malnutrition than in the underlying at risk populations. Stunted children within an identified spatial cluster were more likely to be from poor households, had younger and illiterate mothers, and often the mothers were farmers and housewives. Children identified within the most likely clusters were 1.6 times more at risk of stunting in the unadjusted analysis. Similarly, mothers within the clusters were 2.4 times more at risk of malnutrition in the unadjusted analysis. However, after adjusting for known risk factors such as wealth status, household food insecurity, altitude, maternal age, maternal education, and maternal occupation with SaTScan analysis, we show that child stunting and maternal malnutrition were not spatially clustered. CONCLUSION: The observed spatial clustering of child stunting and maternal malnutrition before controlling for known risk factors for child stunting and maternal malnutrition could be due to non-random distribution of risk factors such as poverty and maternal characteristics. Moreover, our results indicated the need for geographically targeted nutritional interventions in a drought-prone area.
Evidence on the potential for agricultural intensification to improve nutrition has grown considerably. While small-scale irrigation is a key factor driving agricultural intensification in sub-Saharan Africa, its impact on nutrition has not yet been thoroughly explored. In this study, we assess the impact of adoption of small-scale irrigation in Ethiopia and Tanzania on household and women’s dietary diversity, as well as children’s nutrition. We use two rounds of primary data collected from irrigators and nonirrigators in Ethiopia and Tanzania. We used a panel fixed effects econometric approach to control for observed household, women and children specific characteristics as well as observed and unobserved time-invariant confounding factors. The results show that among Ethiopian households who reported having faced drought, women in irrigating households have higher Women’s Dietary Diversity Score (WDDS) compared to women in nonirrigating households. In Tanzania, women in irrigating households have higher WDDS compared to nonirrigators and the impact of irrigation on WDDS more than doubles among households facing drought. In addition, among Tanzanian households who reported having faced a drought shock, irrigating households have higher Household Dietary Diversity Score compared to nonirrigators. Children in irrigating households in Ethiopia have weight-for-height z-scores (WHZ) that are 0.87 SDs higher, on average, than WHZ of children in nonirrigating households. In Tanzania, irrigation leads to higher WHZ-scores in children under-five among households who reported having experienced a drought in the 5 years preceding the survey. The study shows small-scale irrigation has a strong effect on households’ economic access to food and on nutritional outcomes of women and children.
BACKGROUND: Internally displaced persons fleeing their homes due to conflict and drought are particularly at risk of morbidity and mortality from diarrhoeal diseases. Regular handwashing with soap (HWWS) could substantially reduce the risk of these infections, but the behaviour is challenging to practice while living in resource-poor, informal settlements. To mitigate these challenges, humanitarian aid organisations distribute hygiene kits, including soap and handwashing infrastructure. Our study aimed to assess the effect of modified hygiene kits on handwashing behaviours among internally displaced persons in Moyale, Ethiopia. METHODS: The pilot study evaluated three interventions: providing liquid soap; scented soap bar; and the inclusion of a mirror in addition to the standard hygiene kit. The hygiene kits were distributed to four study arms. Three of the arms received one of the interventions in addition to the standard hygiene kit. Three to six weeks after distribution the change in behaviour and perceptions of the interventions were assessed through structured observations, surveys and focus group discussions. RESULTS: HWWS was rare at critical times for all study arms. In the liquid soap arm, HWWS was observed for only 20% of critical times. This result was not indicated significantly different from the control arm which had a prevalence of 17% (p-value = 0.348). In the mirror and scented soap bar intervention arms, HWWS prevalence was 11 and 10%, respectively. This was indicated to be significantly different from the control arm. Participants in the focus group discussions indicated that liquid soap, scented soap bar and the mirror made handwashing more desirable. In contrast, participants did not consider the soap bar normally distributed in hygiene kits as nice to use. CONCLUSION: We found no evidence of an increased prevalence of handwashing with soap following distribution of the three modified hygiene kits. However, our study indicates the value in better understanding hygiene product preferences as this may contribute to increased acceptability and use among crisis-affected populations. The challenges of doing research in a conflict-affected region had considerable implications on this study’s design and implementation. TRIAL REGISTRATION: The trial was registered at www.ClinicalTrials.gov 6 September 2019 (reg no: NCT04078633 ).
BACKGROUND: Climate and environmental factors could be one of the primary factors that drive malaria transmission and it remains to challenge the malaria elimination efforts. Hence, this study was aimed to evaluate the effects of meteorological factors and topography on the incidence of malaria in the Boricha district in Sidama regional state of Ethiopia. METHODS: Malaria morbidity data recorded from 2010 to 2017 were obtained from all public health facilities of Boricha District in the Sidama regional state of Ethiopia. The monthly malaria cases, rainfall, and temperature (minimum, maximum, and average) were used to fit the ARIMA model to compute the malaria transmission dynamics and also to forecast future incidence. The effects of the meteorological variables and altitude were assessed with a negative binomial regression model using R version 4.0.0. Cross-correlation analysis was employed to compute the delayed effects of meteorological variables on malaria incidence. RESULTS: Temperature, rainfall, and elevation were the major determinants of malaria incidence in the study area. A regression model of previous monthly rainfall at lag 0 and Lag 2, monthly mean maximum temperature at lag 2 and Lag 3, and monthly mean minimum temperature at lag 3 were found as the best prediction model for monthly malaria incidence. Malaria cases at 1801-1900 m above sea level were 1.48 times more likely to occur than elevation ≥ 2000 m. CONCLUSIONS: Meteorological factors and altitude were the major drivers of malaria incidence in the study area. Thus, evidence-based interventions tailored to each determinant are required to achieve the malaria elimination target of the country.
BACKGROUND: During the last two decades, researchers have suggested that the changes of malaria cases in African highlands were driven by climate change. Recently, a study claimed that the malaria cases (Plasmodium falciparum) in Oromia (Ethiopia) were related to minimum temperature. Critics highlighted that other variables could be involved in the dynamics of the malaria. The literature mentions that beyond climate change, trends in malaria cases could be involved with HIV, human population size, poverty, investments in health control programmes, among others. METHODS: Population ecologists have developed a simple framework, which helps to explore the contributions of endogenous (density-dependent) and exogenous processes on population dynamics. Both processes may operate to determine the dynamic behaviour of a particular population through time. Briefly, density-dependent (endogenous process) occurs when the per capita population growth rate (R) is determined by the previous population size. An exogenous process occurs when some variable affects another but is not affected by the changes it causes. This study explores the dynamics of malaria cases (Plasmodium falciparum and Plasmodium vivax) in Oromia region in Ethiopia and explores the interaction between minimum temperature, HIV, poverty, human population size and social instability. RESULTS: The results support that malaria dynamics showed signs of a negative endogenous process between R and malaria infectious class, and a weak evidence to support the climate change hypothesis. CONCLUSION: Poverty, HIV, population size could interact to force malaria models parameters explaining the dynamics malaria observed at Ethiopia from 1985 to 2007.
BACKGROUND: Informed decision making is underlined by all tiers in the health system. Poor data record system coupled with under- (over)-reporting of malaria cases affects the country’s malaria elimination activities. Thus, malaria data at health facilities and health offices are important particularly to monitor and evaluate the elimination progresses. This study was intended to assess overall reported malaria cases, reporting quality, spatiotemporal trends and factors associated in Gedeo zone, South Ethiopia. METHODS: Past 8 years retrospective data stored in 17 health centers and 5 district health offices in Gedeo Zone, South Ethiopia were extracted. Malaria cases data at each health center with sociodemographic information, between January 2012 and December 2019, were included. Meteorological data were obtained from the national meteorology agency of Ethiopia. The data were analyzed using Stata 13. RESULTS: A total of 485,414 suspected cases were examined for malaria during the previous 8 years at health centers. Of these suspects, 57,228 (11.79%) were confirmed malaria cases with an overall decline during the 8-year period. We noted that 3758 suspected cases and 467 confirmed malaria cases were not captured at the health offices. Based on the health centers records, the proportions of Plasmodium falciparum (49.74%) and P. vivax (47.59%) infection were nearly equivalent (p = 0.795). The former was higher at low altitudes while the latter was higher at higher altitudes. The over 15 years of age group accounted for 11.47% of confirmed malaria cases (p < 0.001). There was high spatiotemporal variation: the highest case record was during Belg (12.52%) and in Dilla town (18,150, 13.17%, p < 0.001) which is located at low altitude. Monthly rainfall and minimum temperature exhibited strong associations with confirmed malaria cases. CONCLUSION: A notable overall decline in malaria cases was observed during the eight-year period. Both P. falciparum and P. vivax were found at equivalent endemicity level; hence control measures should continue targeting both species. The noticed under reporting, the high malaria burden in urban settings, low altitudes and Belg season need spatiotemporal consideration by the elimination program.
Dengue Fever (DF) is an important arthropod-borne viral infection that has repeatedly occurred as outbreaks in eastern and northeastern Ethiopia since 2013. A cross-sectional epidemiological outbreak investigation was carried out from September to November 2019 on febrile patients (confirmed malaria negative) who presented with suspected and confirmed DF at both public and private health facilities in Gewane District, Afar Region, northeastern Ethiopia. Entomological investigation of containers found in randomly selected houses belonging to DF-positive patients was undertaken to survey for the presence of Aedes larvae/pupae. A total of 1185 DF cases were recorded from six health facilities during the 3-month study period. The mean age of DF cases was 27.2 years, and 42.7% of cases were female. The most affected age group was 15−49 years old (78.98%). The total case proportions differed significantly across age groups when compared to the population distribution; there were approximately 15% and 5% higher case proportions among those aged 15−49 years and 49+ years, respectively. A total of 162 artificial containers were inspected from 62 houses, with 49.4% found positive for Aedes aegypti larva/pupae. Aedes mosquitoes were most commonly observed breeding in plastic tanks, tires, and plastic or metal buckets/bowls. World Health Organization entomological indices classified the study site as high risk for dengue virus outbreaks (House Index = 45.2%, Container Index = 49.4%, and Breteau Index = 129). Time series climate data, specifically rainfall, were found to be significantly predictive of AR (p = 0.035). Study findings highlight the importance of vector control to prevent future DF outbreaks in the region. The scarcity of drinking water and microclimatic conditions may have also contributed to the occurrence of this outbreak.
A counterargument to the importance of climate change for malaria transmission has been that regions where an effect of warmer temperatures is expected, have experienced a marked decrease in seasonal epidemic size since the turn of the new century. This decline has been observed in the densely populated highlands of East Africa at the center of the earlier debate on causes of the pronounced increase in epidemic size from the 1970s to the 1990s. The turnaround of the incidence trend around 2000 is documented here with an extensive temporal record for malaria cases for both Plasmodium falciparum and Plasmodium vivax in an Ethiopian highland. With statistical analyses and a process-based transmission model, we show that this decline was driven by the transient slowdown in global warming and associated changes in climate variability, especially ENSO. Decadal changes in temperature and concurrent climate variability facilitated rather than opposed the effect of interventions.
BACKGROUND: Malaria is a serious public health problem of most developing countries, including Ethiopia. The burden of malaria is severely affecting the economy and lives of people, particularly among the productive ages of rural society. Thus, this study was targeted to analyze the past five-year retrospective malaria data among the rural setting of Maygaba town, Welkait district, northwest Ethiopia. METHODS: The study was done on 36,219 outpatients attending for malaria diagnosis during January 2015 to 2019. Data was extracted from the outpatient medical database. Chi-square (χ (2)) test and binary logistic regression model were used to analyze the retrospective data. Statistical significance was defined at p < 0.05. RESULTS: Of 36,219 outpatients examined, 7,309 (20.2%) malaria-positive cases were reported during 2015-2019. There was a fluctuating trend in the number of malaria-suspected and -confirmed cases in each year. Male slide-confirmed (61.4%, N = 4,485) were significantly higher than females (38.6%, N = 2,824) (p < 005). Plasmodium falciparum and Plasmodium vivax were the dominant parasites detected, which accounted for 66.1%; N = 4832, 33.9%; N = 2477, respectively. Despite the seasonal abundance of malaria cases, the highest prevalence was recorded in autumn (September to November) in the study area. Binary logistic regression analysis revealed that statistically significant associations were observed between sexes, interseasons, mean seasonal rainfall, and mean seasonal temperature with the prevalence of P. vivax. However, P. falciparum has shown a significant association with interseasons and mean seasonal temperature. CONCLUSIONS: Although the overall prevalence of malaria was continually declined from 2015-2019, malaria remains the major public health problem in the study area. The severe species of P. falciparum was found to be the dominant parasite reported in the study area. A collaborative action between the national malaria control program and its partners towards the transmission, prevention, and control of the two deadly species is highly recommended.
Background. In Sub-Saharan African countries, malaria is a leading cause of morbidity and mortality. In Ethiopia, malaria is found in three-fourths of its land mass with more than 63 million people living in malaria endemic areas. Nowadays, Ethiopia is implementing a malaria elimination program with the goal of eliminating the disease by 2030. To assist this goal, the trends of malaria cases should be evaluated with a function of time in different areas of the country to develop area-specific evidence-based interventions. Therefore, this study was aimed at analysing a five year trend of malaria in Nirak Health Center, Abergele District, Northeast Ethiopia, from 2016 to 2020. Methods. A retrospective study was conducted at Nirak Health Center, Abergele District, Northeast Ethiopia from February to April 2021. Five-year (2016 to 2020) retrospective data were reviewed from the malaria registration laboratory logbook. The sociodemographic and malaria data were collected using a predesigned data collection sheet. Data were entered, cleaned, and analysed using SPSS version 26. Results. In the five-year period, a total of 19,433 malaria suspected patients were diagnosed by microscopic examination. Of these, 6,473 (33.3%) were positive for malaria parasites. Of the total confirmed cases, 5,900 (91.2%) were P. falciparum and 474 (7.2%) were P. vivax. Majority of the cases were males (62.2%) and in the age group of 15-45 years old (52.8%). The findings of this study showed an increasing trend in malaria cases in the past five years (2016-2020). The maximum number of confirmed malaria cases reported was in the year 2020, while the minimum number of confirmed malaria cases registered was in 2016. Regarding the seasonal distribution of malaria, the highest number of malaria cases (55.2%) was observed in Dry season (September to January) and also the least (15.9%) was observed in Autumn (March to May) replaced by the least (21.6%) was observed in Rainy season (June to August), that is, the major malaria transmission season in Ethiopia and the least (15.9%) was observed in autumn (March to May). Conclusion. The trends of malaria in Nirak Health Center showed steadily increasing from the year 2016-2020, and the predominant species isolated was P. falciparum. This showed that the malaria control and elimination strategy in the area were not properly implemented or failed to achieve its designed goal. Therefore, this finding alarms the local governments and other stack holders urgently to revise their intervention strategies and take action in the locality.
BACKGROUND: Land use change has increasingly been expanding throughout the world in the past decades. It can have profound effects on the spatial and temporal distribution of vector borne diseases like malaria through ecological and habitat change. Understanding malaria disease occurrence and the impact of prevention interventions under this intense environmental modification is important for effective and efficient malaria control strategy. METHODS: A descriptive ecological study was conducted by reviewing health service records at Abobo district health office. The records were reviewed to extract data on malaria morbidity, mortality, and prevention and control methods. Moreover, Meteorological data were obtained from Gambella region Meteorology Service Center and National Meteorology Authority head office. Univariate, bivariate and multivariate analysis techniques were used to analyze the data. RESULTS: For the twelve-year time period, the mean annual total malaria case count in the district was 7369.58. The peak monthly malaria incidence was about 57 cases per 1000 people. Only in 2009 and 2015 that zero death due to malaria was recorded over the past 12 years. Fluctuating pattern of impatient malaria cases occurrence was seen over the past twelve years with an average number of 225.5 inpatient cases. The data showed that there is a high burden of malaria in the district. Plasmodium falciparum (Pf) was a predominant parasite species in the district with the maximum percentage of about 90. There was no statistically significant association between season and total malaria case number (F(3,8): 1.982, P:0.195). However, the inter-annual total case count difference was statistically significant (F(11,132): 36.305, p < 0001). Total malaria case count had shown two months lagged carry on effect. Moreover, 3 months lagged humidity had significant positive effect on total malaria cases. Malaria prevention interventions and meteorological factors showed statistically significant association with total malaria cases. CONCLUSION: Malaria was and will remain to be a major public health problem in the area. The social and economic impact of the disease on the local community is clearly pronounced as it is the leading cause of health facility visit and admission including the mortality associated with it. Scale up of effective interventions is quite important. Continuous monitoring of the performance of the vector control tools needs to be done.
BACKGROUND: Rainfall is one of the climate variables most studied as it affects malaria occurrence directly. OBJECTIVE: This study aimed to describe how monthly rainfall variability affects malaria incidence in different years. METHODS: A total of 7 years (2013/14-2019/20) retrospective confirmed and treated malaria cases in Gondar Zuria district were used for analysis in addition to five (2013/14-2017/18) years retrospective data from Dembia district. RESULTS: The annual rainfalls in the study years showed no statistically significant difference (p = 0. 78). But, variations in rainfalls of the different months (p = 0.000) of the different years were the source of variations for malaria count (incidences) in the different years. Malaria was transmitted throughout the year with the highest peak in November (mean count = 1468.7 ± 697.8) and followed by May (mean count = 1253.4 ± 1391.8), after main Kiremt/Summer and minor Bulg/Spring rains respectively. The lowest transmission was occurred in February (338 ± 240.3) when the rivers were the only source of mosquito vectors. Year 2013/14 (RF = 2351.12 mm) and 2019/20 (RF = 2278.80 mm) with no statistically significant difference (p = 0.977) in annual rainfalls produced 10, 702 (49.2%) and 961 (20%) malaria counts for the Bulg (spring) season respectively due to 581.92 mm (24.8%) higher total Bulg/Spring rain in 2013/14 compared to 124.1 mm (5.45%) in 2019/20. Generally, above normal rainfalls in Bulg/Spring season increased malaria transmission by providing more aquatic habitats supporting the growth of the immature stages. But heavy rains in Summer/Kiremt produced low malaria counts due to the high intensity of the rainfalls which could kill the larvae and pupae. Spearman’s correlation analysis indicated that the mean rainfalls of current month (RF) (0 lagged month) (P = 0.025), previous month (RF1) (1 month lagged) (p = 0.000), before previous months (RF2) (2 months lagged) (p = 0.001) and mean RF + RF1 + RF2 (P = 0.001) were positive significantly correlated with mean monthly malaria counts compared to negative significant correlations for temperature variables. Temperature variables negative correlations were interpreted as confounding effects because decreased malaria counts in dry months were due to a decrease in rainfalls. Conclusion: rainfall distribution in different months of a year affects malaria occurrences.
Since the outbreak of COVID-19, its effects on different aspects of life have been subject to much research, including food security, a domain that has been of special concern in many low-income countries. Ethiopia has been facing many challenges related to food security for decades via drought, famine, and conflict. Within this context, this case study assessed the impact of the COVID-19 pandemic on food security in Ethiopia. Results show that the ongoing pandemic has negatively impacted different regions and at-risk groups in a heterogeneous manner. This has been mainly through disruptions in the Ethiopian food value chain and the relative failure of social security programmes to address the losses generated by COVID-19. The population in the capital city, Addis Ababa, was able to maintain the same level of food security despite income losses caused by the COVID-19 pandemic. However, at-risk groups such as refugees, internally displaced persons (IDPs), and conflict affected regions were seen to suffer significantly from food insecurity exacerbated by COVID-19. Furthermore, this paper particularly emphasizes the importance of considering contextual factors other than COVID-19, such as conflicts or climate change, when discussing the state of food security in Ethiopia.
BACKGROUND: Onchocerciasis is a neglected tropical filarial disease transmitted by the bites of blackflies, causing blindness and severe skin lesions. The change in focus for onchocerciasis management from control to elimination requires thorough mapping of pre-control endemicity to identify areas requiring interventions and to monitor progress. Onchocerca volvulus nodule prevalence in sub-Saharan Africa is spatially continuous and heterogeneous, and highly endemic areas may contribute to transmission in areas of low endemicity or vice-versa. Ethiopia is one such onchocerciasis-endemic country with heterogeneous O. volvulus nodule prevalence, and many districts are still unmapped despite their potential for onchocerciasis transmission. METHODOLOGY/PRINCIPLE FINDINGS: A Bayesian geostatistical model was fitted for retrospective pre-intervention nodule prevalence data collected from 916 unique sites and 35,077 people across Ethiopia. We used multiple environmental, socio-demographic, and climate variables to estimate the pre-intervention prevalence of O. volvulus nodules across Ethiopia and to explore their relationship with prevalence. Prevalence was high in southern and northwestern Ethiopia and low in Ethiopia’s central and eastern parts. Distance to the nearest river (RR: 0.9850, 95% BCI: 0.9751-0.995), precipitation seasonality (RR: 0.9837, 95% BCI: 0.9681-0.9995), and flow accumulation (RR: 0.9586, 95% BCI: 0.9321-0.9816) were negatively associated with O. volvulus nodule prevalence, while soil moisture (RR: 1.0218, 95% BCI: 1.0135-1.0302) was positively associated. The model estimated the number of pre-intervention cases of O. volvulus nodules in Ethiopia to be around 6.48 million (95% BCI: 3.53-13.04 million). CONCLUSIONS/SIGNIFICANCE: Nodule prevalence distribution was correlated with habitat suitability for vector breeding and associated biting behavior. The modeled pre-intervention prevalence can be used as a guide for determining priorities for elimination mapping in regions of Ethiopia that are currently unmapped, most of which have comparatively low infection prevalence.
Malaria is a severe public health problem in the Amhara region, Ethiopia. A retrospective study was conducted to model and interpret the effects of climate variability and environmental factors on the monthly malaria surveillance data of 152 districts in the region. The data were analyzed using the Bayesian generalized Poisson spatiotemporal model. Malaria incidence had significant seasonal, temporal, and spatial variations in the region. The risk of malaria incidence was decreased by 24% per 100 m increase in altitude. Monthly minimum temperature decreases the risk of malaria by 2.2% per a 1 °C increment. The risk of malaria transmission was increased by 8% per 100 mm rise in the total monthly rainfall of districts. Besides, long-lasting insecticidal net coverage significantly reduces malaria risk by a factor of 0.8955. The finding suggests that malaria transmission was higher in northern and western districts. Hence, concerned bodies should consider seasonal, temporal, and spatial variations and effects of climate and environmental factors for intervention and elimination.
Ethiopia is experiencing an increasing frequency and intensity of slow-onset and acute disasters caused by climate change, with significant health impacts. Understanding and addressing these impacts involves trade-offs, which are central to effective priority setting in health and overarching efforts to meet the Sustainable Development Goals. Despite minimal historic greenhouse gas emissions, Ethiopia has been at the forefront of climate action since launching the Climate-Resilient Green Economy (CRGE) in 2011, a low-carbon development strategy. To learn from the Ethiopian approach, this paper examines to what extent health has been integrated into the CRGE. We found that the early years of the CRGE prioritized developing the financial basis of the green economy, while the health impacts of climate change have only been tentatively considered to date and remain detached from broader health strategies. Further analysis of climate adaptation measures, “health co-benefits,” and reducing specific vulnerabilities of the health sector could help improve health and build climate resilience.
We examine the relationships between climatic conditions, breastfeeding behavior, and maternal time use in Ethiopia. Infant feeding practices are important predictors of child nutrition that may be affected by a number of factors including mother’s time engaging in agricultural labor, food security, cultural beliefs, and antenatal care. We use panel data from the Living Standards Measurement Study to investigate linkages between climatic conditions during a child’s first year of life and year prior to birth and duration of exclusive breastfeeding. We then explore one potential mechanism: women’s agricultural labor. Results indicate that rainfall during the primary agricultural season-kiremt-in a child’s first year of life plays an important role in duration of exclusive breastfeeding. Experiencing 25 cm of average monthly kiremt rainfall, versus 5 cm, is associated with a 20-percentage-point decrease in the likelihood of being exclusively breastfed for the recommended six months. More kiremt rainfall is associated with a greater number of days that women spend planting and harvesting, and at high levels of rainfall women with infants do not engage in significantly fewer days of agricultural labor than those without infants. Lastly, we find that during the year before birth, greater rainfall during kiremt as well as the dry season is associated with a lower likelihood of six months of exclusive breastfeeding, potentially due to the early introduction of complementary foods. Our findings indicate that agricultural labor demands may in part drive breastfeeding behaviors, leading to “sub-optimal” feeding practices in the short-term, but resulting in improved household food security in the longer-term.
Climate change is predicted to adversely affect agricultural yields, particularly in African countries such as Ethiopia, where crop production relies heavily on environmental factors such as rainfall and temperature. However, there have only been a limited number of studies on the effects of climate change dynamics on food security in Africa, particularly at the household level. We therefore analyzed local climatic changes, the status of household food security, climate-related causes of food insecurity, food security determinants, and the adaptation strategies of local farmers. Three decades meteorological data were analyzed. A total of 185 farmers were selected using simple random sampling and interviewed, together with focus groups. Data were analyzed using the descriptive and inferential statistics were used together with the logit regression model. Climate change over the last three decades was found to have a negative impact the food security status of households. Crop production was constrained by poor rainfall, severe erosion, and increases in temperature. The unpredictability of rainfall, pests, and diseases were also contributing factors. Using the calorie intake approach, 60.5% of sampled respondents were found to be food insecure. Analysis using the logistic regression model showed that age and family size, as well as the amount of cultivated land and rainfall, were the significant (p < .05) factors influencing household food security status. A large proportion (69.8%) of farmers were incorporating adapting strategies into farm management including improved use of crop varieties and livestock production, in addition to income diversification. Taken together, these findings show that improving climate change awareness, facilitating the participation of female-led households in income generation, and strengthening existing adaptation measures have positive impacts on food security.
Flood is one of life-threatening events in different parts of Ethiopia. The causes of flood might vary from place to place, for instance, rates of deforestation, agricultural expansion, urbanization, wetland drainage, climate change, siltation of river bed, and several other types of land use change might be the cause for flood in different rivers banks. This study aims to assess, investigate, and design suitable river training works on lower Kulfo river reach. The study reach has been seriously affected by extreme floods due to the above reasons. For minimizing the loss due to flood, and to use the advantage of flood for different developmental activities various flood control measures should be adopted. The flood control measures which should more correctly be termed as “flood management” can be planed either through structural engineering measures or non-structural measures. Structural measures comprise retarding structures which store flood water, channel improvements which increase flood-carrying capacity of the river, embankments, and levees which keep the waterway from flood-prone area, detention basin which retards and absorbs most of the floodwater. Within the identified 6 km reach, field investigation including secondary data collection has been done to predict the flood extent using 1D hydrodynamic model, HECRAS and HEC Geo RAS. Estimated flood depth and extent helped us in fixing the dimension of different river training structures selected. The modelling result indicates a maximum channel bed flood depth of 4.3 m and flood plain flood depth 2.3 m obtained using a 100-year return flow. Analysis of soil samples indicates that the lower reach of Kulfo river is gravel and sand dominated meandering river, with estimated scour depth up to 3.41 m along the river course. Levees have been designed in conjunction with Groynes to protect the Upstream farm located at the prison and upper part of the Limat households. Frequent floods happening near both bridges shall be reduced by using Guide banks without influencing the bridges and diversion structures. Consideration is given for the ecosystem to stay in equilibrium, by providing suitable outer slopes so that plantation is possible on the top and side slope of the levees and guide banks.
This paper examines the relationship between weather conditions and child nutrition in Ethiopia. We link data from four rounds of the Ethiopia Demographic and Health Survey to high-resolution climate data to measure exposure to rainfall and temperature in utero and during early life. We then estimate a set of multivariate regression models to understand how weather conditions impact child stunting, an indicator of sustained early life undernutrition. We find that greater rainfall during the rainy seasons in early life is associated with greater height for age. In addition, higher temperatures in utero, particularly during the first and third trimesters, and more rainfall during the third trimester, are positively associated with severe stunting, though stunting decreases with temperature in early life. We find potential evidence for a number of pathways underlying the weather-child nutrition relationship including agricultural livelihoods, heat stress, infectious disease transmission, and women’s time use during pregnancy. These findings illuminate the complex pathways through which climate change may influence child health and should motivate additional research focused on identifying the causal mechanisms underlying these links.
This study was conducted to evaluate seasonal patterns of household food insecurity, dietary diversity, and household characteristics on wasting and stunting among children in households followed for 1 year in the drought-prone areas of Sidama, Ethiopia. A cohort study design was employed. Data were collected on the pre-harvest season (March and June) and post-harvest season (September and December) of 2017. We studied 935 children aged 6 to 47 months. At four seasons over a year, we had 3,449 observations from 897 households and 82% (2,816) (95% CI: 80.3-82.9) were food in-secured households. Severe food insecurity was higher in the pre-harvest (March; food scarcity season) which was 69% as compared to 50% of September (P < .001). From 3,488 observations, 44% (1,533) (95% CI: 42.3-45.6) of children were stunted. Stunting showed seasonal variations with 38% (95% CI: 34.7-41.0) in March and 49% (95% CI: 45.8-52.5) in December. Six percent (95% CI: 5.0-6.6) of children were wasted, with higher prevalence in March (8%) as compared to 3% of September (P < .001). Moreover, household characteristics such as poverty level, education, occupation and the household food insecurity and dietary diversity were associated with subsequent wasting and stunting.
BACKGROUND: Malaria is a mosquito-borne infectious disease known to cause significant numbers of morbidities and mortalities across the globe. In Ethiopia, its transmission is generally seasonal and highly unstable due to variations in topography and rainfall patterns. Studying the trends in malaria in different setups is crucial for area-specific evidence-based interventions, informed decisions, and to track the effectiveness of malaria control programs. The trend in malaria infections in the area has not been documented. Hence, this study aimed to assess the five-year trend in microscopically confirmed malaria cases in Dembecha Health Center, West Gojjam Zone, Amhara national regional state, Ethiopia. METHODS: A health facility-based retrospective study was conducted in Dembecha Health Center from February to April 2018. All microscopically confirmed malaria cases registered between 2011/12 and 2015/16 were carefully reviewed from laboratory record books and analyzed accordingly. RESULTS: A total of 12,766 blood films were requested over the last five years at Dembecha Health Center. The number of microscopically confirmed malaria cases was 2086 (16.34%). The result showed a fluctuating yet declining trend in malaria infections. The highest number of cases was registered in 2012/13, while the lowest was in 2015/16. Males and age groups >20 constituted 58.9% and 44.2% of the patients, respectively, being the hardest hit by malaria in the area. Malaria existed in almost every month and seasons. Plasmodium falciparum was the predominant species. The highest peak of malaria infections was observed in the late transition (October-December) 799 (38.3%) and early transition (May-June) 589 (28.2%) seasons. CONCLUSION: Although the results indicate a fluctuating yet declining trend, the prevalence of confirmed malaria cases in the area remains alarming and indicates a major public health burden. Therefore, close monitoring and intervention measures to control malaria infections in the area and also to tackle the dominant species, Plasmodium falciparum, are necessitated accordingly.
Flash flood is an extreme flooding event which is quick, short-lived, hazardous phenomena having negative environmental and socio-economic impacts. Flood risk management is essential to reduce the effects of flood on human lives and livelihoods. The main goals of this research were flash flood risk analysis and risk quantification in terms of land use land cover using geo-spatial technology in Shewa Robit town. In the present study, elevation, slope, drainage density, distance from river, NDVI, land use land cover, topographic wetness index and curvature were used as parameters determining flash flood risk. To realize these research objectives, all these data were reclassified in to five classes and different weights for each of them was assigned using analytic hierarchy process. Weighted Sum Overlay (WSO) analyses of ARC GIS software was employed to produce flood vulnerability map. Then, the accuracy of generated flood risk map was validated using historical flood data. According to the result, about 3.08%, 14.62% and 20.66% of Shewa Robit town are at a very high, high and moderate flash flood risk, respectively. In addition to this, flood risk was also quantified in terms of land use land cover. The result indicates that the settlement land use is the most vulnerable with an estimated area of 12.01 ha, 99.57 ha and 174.16 ha in very high, high and moderate risk classes. The outcome of the study will be applicable in flood hazard management and mitigation strategies.