OBJECTIVES: Climate change has increased attention to the health effects of high ambient temperatures and heatwaves worldwide. Both cause-specific mortality and hospital admissions are studied widely, mainly concentrating on warmer climates, but studies focusing on more subtle health effects and cold climates lack. This study investigated the effect of summertime daily ambient temperatures and heatwaves on sick leaves in the employed population in Helsinki, Finland, a Nordic country with a relatively cold climate. METHODS: We obtained from the City of Helsinki personnel register data on sick leaves for the summer months (June-August) of 2002-2017. We estimated the overall cumulative association of all and short (maximum 3-day) sick leaves with daily mean temperature over a 21-day lag period using a negative binomial regression model coupled with a penalized distributed lag non-linear model (penalized DLNM). The association of sick leaves with heatwaves (cut-off temperature 20.8 °C), and prolonged heatwaves, was estimated using a negative binomial regression model coupled with DLNM. We adjusted the time series model for potential confounders, such as air pollution, relative humidity, time trends, and holidays. RESULTS: Increasing daily temperature tended to be associated with decreased overall cumulative risk of sick leaves and short sick leaves over a 21-day lag period. In addition, heatwaves and prolonged heatwaves were associated with decreased overall cumulative risk of sick leaves compared to all other summer days: RR 0.87 (95 % CI 0.78 to 0.97) and RR 0.83 (95 % CI 0.70 to 0.98), respectively. CONCLUSIONS: This research suggests that summertime daily temperatures that are high for this northern location have protective effects on the health of the working population.
Global environmental challenges such as climate change, biodiversity loss, and overconsumption of natural resources require urgent action. Environmental crises have social consequences; hence, social work should participate in recognizing and mitigating these . This study investigated social welfare professionals’ perceptions on the relation of their work to environmental issues in Finland and the factors that influence these views. The research questions were: 1) How important do social welfare professionals perceive addressing environmental issues to be in their work? 2) What kinds of environmental issues do they perceive as having the most influence on social work clients’ wellbeing in Finland? 3) What background factors are associated with the perceived importance of addressing environmental issues in social work? A survey (N = 542) conducted among Finnish social welfare professionals in November 2020 showed that most respondents perceived addressing environmental issues in social work as important. Increasing concentrations of the population in certain areas, anxiety related to environmental problems, and desolated rural areas were the three most important environment-related issues marked as impairing client wellbeing. Social welfare professionals who emphasized the importance of addressing environmental issues in their personal life and those working in private or third sector organizations were more likely than public sector counterparts to value addressing environmental issues in social work. The findings suggest that social welfare professionals recognize that environment-related issues affect client wellbeing; hence, these issues should be incorporated into social work training and practice.
BACKGROUND: Climate change scenarios illustrate various pathways in terms of global warming ranging from “sustainable development” (Shared Socioeconomic Pathway SSP1-1.9), the best-case scenario, to ‘fossil-fueled development’ (SSP5-8.5), the worst-case scenario. OBJECTIVES: We examined the extent to which increase in daily average urban summer temperature is associated with future cause-specific mortality and projected heat-related mortality burden for the current warming trend and these two scenarios. METHODS: We did an observational cohort study of 363,754 participants living in six cities in Finland. Using residential addresses, participants were linked to daily temperature records and electronic death records from national registries during summers (1 May to 30 September) 2000 to 2018. For each day of observation, heat index (average daily air temperature weighted by humidity) for the preceding 7 d was calculated for participants’ residential area using a geographic grid at a spatial resolution of 1 km × 1 km. We examined associations of the summer heat index with risk of death by cause for all participants adjusting for a wide range of individual-level covariates and in subsidiary analyses using case-crossover design, computed the related period population attributable fraction (PAF), and projected change in PAF from summers 2000-2018 compared with those in 2030-2050. RESULTS: During a cohort total exposure period of 582,111,979 summer days (3,880,746 person-summers), we recorded 4,094 deaths, including 949 from cardiovascular disease. The multivariable-adjusted rate ratio (RR) for high ( ≥ 21°C) vs. reference (14 – 15°C) heat index was 1.70 (95% CI: 1.28, 2.27) for cardiovascular mortality, but it did not reach statistical significance for noncardiovascular deaths, RR = 1.14 (95% CI: 0.96, 1.36), a finding replicated in case-crossover analysis. According to projections for 2030-2050, PAF of summertime cardiovascular mortality attributable to high heat will be 4.4% (1.8%-7.3%) under the sustainable development scenario, but 7.6% (3.2%-12.3%) under the fossil-fueled development scenario. In the six cities, the estimated annual number of summertime heat-related cardiovascular deaths under the two scenarios will be 174 and 298 for a total population of 1,759,468 people. DISCUSSION: The increase in average urban summer temperature will raise heat-related cardiovascular mortality burden. The estimated magnitude of this burden is > 1.5 times greater if future climate change is driven by fossil fuels rather than sustainable development. https://doi.org/10.1289/EHP12080.
BACKGROUND: Seasonal variation in exacerbations, hospitalisations, and mortality statistics has been reported for some diseases. To our knowledge, however, no published studies exist on the seasonality of health-related quality of life (HRQoL) amongst rhinologic patients. AIMS/OBJECTIVES: This study, therefore, aimed to investigate the possible seasonal variation in rhinologic patients’ HRQoL using the rhinologic disease-specific Sino-Nasal Outcome Test-22 (SNOT-22) and the generic 15D HRQoL instrument. MATERIAL AND METHODS: We enrolled unselected adult rhinologic patients requiring specialist care at the Helsinki University Hospital in this cross-sectional, questionnaire-based prospective study during four seasons: February (winter), May (spring), August (summer), and November (autumn). Patients received SNOT-22 and 15D questionnaires via post. The Finnish Meteorological Institute supplied climate data from these months. RESULTS: SNOT-22 and 15D data were available for 301 and 298 patients, respectively. We found no statistically significant differences (p = 0.948) between the mean monthly 15D scores or mean SNOT-22 scales. Furthermore, the mean SNOT-22 subscales did not differ between the monthly study periods. CONCLUSIONS AND SIGNIFICANCE: Our study shows that seasonality did not impact rhinologic patients’ SNOT-22 or 15D HRQoL scores. Thus, these questionnaires can be used for follow-up amongst rhinologic patients regardless of season.
Road weather is a major concern for the public safety and health, industries and transport sectors. Half of the yearly 27,000 road and 50,000 pedestrian injuries in Finland, Norway and Sweden can be traced back to slippery road and walkway conditions. We simulated the climate change impacts on future roads and walkways for mid- and end-century in Finland, Norway and Sweden with the road weather model RoadSurf, driven by the regional climate model HCLIM38 with boundary data from two global climate models following the RCP8.5 scenario. Our simulations for mid-century suggest strong road surface temperature increases, especially in southern Finland (+ 5.1 degrees C) and Sweden (+7.1 degrees C). Snowy and icy road surface conditions decreased by 23 percentage points, causing 18.5 percentage points less difficult driving conditions during the cold season. Zero-degree-crossing days mostly decreased in autumn and spring by up to 7 days and increased in winter by up to 5 days. Sidewalks mostly showed a decrease in slipperiness, but a five percentage point increase of water above ice layers on the sidewalks in winter, suggesting the slip-season might become shorter, but more slippery. Our results are upper extreme estimates but can serve as a reference to help local decision-makers plan mitigation and adaptation measures ahead of time.
BACKGROUND: Heatwaves are known to increase mortality. However, there is a need for more quantitative information on factors affecting sensitivity to the adverse health effects, particularly in countries with cool summer temperatures. OBJECTIVES: We evaluated mortality risk related to heatwave days in Finland. Risk was examined by age, sex, cause of death, and place of death, including health and social care facilities and homes. Mortality was also analysed for different patient subgroups in healthcare facilities. METHODS: Heatwaves were defined as periods when the daily average temperature exceeded the 90th percentile of that from May to August in 2000-2014 for ≥4 days. In addition to all heatwave days, risk was analysed for short (4-5 days) and long (≥10 days) heatwaves. Mortality analyses were based on linking registry data on i) daily non-accidental and cause-specific mortality and ii) admissions to a health or social care facility. Statistical analyses were conducted using generalised estimating equations for longitudinal data analysis, assuming a Poisson distribution for the daily mortality count. RESULTS: During all heatwave days, mortality increased among those aged 65-74 years (6.7%, 95% confidence interval 2.9-10.8%) and ≥75 years (12.8%, 95% CI 9.8-15.9%). Mortality increased in both sexes, but the risk was higher in women. Positive associations were observed for deaths due to respiratory diseases, renal diseases, mental and behavioural disorders, diseases of the nervous system, and cardiovascular diseases. Overall, effects were stronger for long than short heatwaves. During all heatwave days, mortality increased in healthcare facilities in outpatients (26.9%, 95% CI 17.3-37.2%) and inpatients. Among inpatients, the risk was higher in long-term inpatients (stay in ward > 30 days, 13.1%, 95% CI 8.6-17.7%) than others (5.8%, 95% CI 2.7-9.0%). At homes, mortality increased by 8.1% (95% CI 1.9-14.6%). Elevated risk estimates were also detected for social care facilities. CONCLUSIONS: In Finland, a cold-climate Northern country, heatwaves increase mortality risk significantly among the elderly. Women are more susceptible than men, and many chronic diseases are important risk factors. To reduce heatwave-related deaths, preparedness should be improved particularly in hospital and healthcare centre wards, where the most vulnerable are long-term inpatients. However, measures are also needed to protect the elderly at home and in social care facilities, especially during prolonged hot periods.
In this article, we examine the effects of high temperatures on hospital visits and mortality in Finland. This provides new information of the topic in a context of predominantly cool temperatures. Unique, individual-level data are used to examine the relationship at the municipality-month level over a span of 20 years. Linear regression methods alongside high-dimensional fixed effects are used to minimize confounding variation. Analysis is conducted with special emphasis on the elderly population, as well as on specific elderly risk groups identified in previous literature. We show that for an additional day per month above 25°C, monthly all-cause mortality increases by 1.5 percent (95% CI: 0.4%-2.6%) and acute hospital visits increase by 1.1 percent (95% CI: 0.7%-1.6%). We also find some evidence that these effects are elevated in selected population subgroups, the low-income elderly, and people with dementia. Hospital visits also increase among younger age groups, illustrating the importance of using multiple health indicators. Such detailed evidence is important for identifying vulnerable groups as extreme heat waves are expected to become more frequent and intense in northern countries.
There is only limited scientific evidence with varying results on the association between hospital admissions and low ambient temperatures. Furthermore, there has been no research in Northern Europe on cold-associated morbidity. Therefore, this study investigated the associations of daily wintertime temperature and cold spells with cardiorespiratory hospital admissions in the Helsinki metropolitan area, Finland. Daily number of non-elective hospital admissions for 2001-2017 was obtained from the national hospital discharge register and meteorological data from the Finnish Meteorological Institute. Quasi-Poisson regression models were fitted, controlling for potential confounders such as time trend, weekday, holidays, air pollution, barometric pressure, and influenza. The associations of cold season daily mean ambient temperature and cold spells with hospital admissions were estimated using a penalized distributed lag linear models with 21 lag days. Decreased wintertime ambient temperature was associated with an increased risk of hospitalization for myocardial infarction in the whole population (relative risk [RR] per 1 degrees C decrease in temperature: 1.017, 95% confidence interval [CI]: 1.002-1.032). An increased risk of hospital admission for respiratory diseases (RR: 1.012, 95% CI: 1.002, 1.022) and chronic obstructive pulmonary disease (RR: 1.031, 95% CI: 1.006, 1.056) was observed only in the >= 75 years age group. There was an independent effect of cold spell days only for asthma admissions (RR: 2.348, 95% CI: 1.026, 5.372) in the all-ages group. Cold temperature increases the need for acute hospital care due to myocardial infarction and respiratory causes during winter in a northern climate.
Warnings for several hazards including severe thunderstorm warning, heavy rain warning, forest fire warning, heat wave warning, and thunderstorm wind gusts for sea areas. All warning types aim for safety of population, and some of the warnings are directly health related.
This air quality index is used to describe the air quality in simple terms and an easy-to-understand color scale. It is based on measured air quality data and gives an overall characterization of the actual air quality. Finnish air quality index is an hourly index which describes the air quality each day, based on hourly values and updated every hour.
Strong wind gusts may occur in connection with thunderstorms, causing a lot of damage. Severe thunderstorm warnings contains warnings on thunderstorm gusts. There are not any lightning warnings, but in emergency warnings there are.
The purpose of the warnings on extreme temperatures is to prevent health problems resulting from cold and hot weather. The warnings are mainly intended for risk groups and people who work outdoors.
A heat wave warning is issued if stifling hot weather has been forecasted for some area in Finland. Criteria for cold weather warnings are based on wind chill index, which describes the combined effect of cold and wind. Warnings for hot and cold weather are for the next 5 days.
Sun protection is required when the UV index is 3 or higher. The forecast for the daily maximum UV index is valid for cloudless conditions. Only thick clouds attenuate the UV radiation considerably.
The Finnish Meteorological Institute gives warnings about highly slippery pedestrian weather. Then extra attention should be paid to the choice of footwear and slip guards should be worn. There may be wide local variations in walkway conditions. It depends on factors such as maintenance practices and the volume of traffic.
The warning specifies the cause and duration of slippery conditions. Between about seven and twenty warnings are issued each year per region.
There are three different level of forest fire warnings (yellow, orange and red) and one in grass fire warnings (yellow). They all refer in law to the same thing, that it is forbidden to start open fire. Probability for large and quickly progressive forest fires increase, when it is orange or red warning.
A forest fire warning is usually given and cancelled at 6 am. The warnings are specific to each province. Municipality-specific warnings may also be given in Northern Ostrobothnia (mainly for Kuusamo, Taivalkoski and Pudasjärvi) and in Lapland.
Forest fire warnings are issued using an index calculated by means of a model that describes moisture conditions in the top soil layer measuring about 6 centimetres in thickness. The input data for the model includes precipitation and air temperature.
Most often, the first forest fire warnings of the year are issued in early May. The forest fire warning season ends in September or at the latest in early October.
Background: There is a lack of knowledge concerning the effects of ambient heat exposure on morbidity in Northern Europe. Therefore, this study aimed to evaluate the relationships of daily summertime temperature and heatwaves with cardiorespiratory hospital admissions in the Helsinki metropolitan area, Finland. Methods: Time series models adjusted for potential confounders, such as air pollution, were used to investigate the associations of daily temperature and heatwaves with cause-specific cardiorespiratory hospital admissions during summer months of 2001-2017. Daily number of hospitalizations was obtained from the national hospital discharge register and weather information from the Finnish Meteorological Institute. Results: Increased daily temperature was associated with a decreased risk of total respiratory hospital admissions and asthma. Heatwave days were associated with 20.5% (95% CI: 6.9, 35.9) increased risk of pneumonia admissions and during long or intense heatwaves also with total respiratory admissions in the oldest age group (?75 years). There were also suggestive positive associations between heatwave days and admissions due to myocardial infarction and cerebrovascular diseases. In contrast, risk of arrhythmia admissions decreased 20.8% (95% CI: 8.0, 31.8) during heatwaves. Conclusions: Heatwaves, rather than single hot days, are a health threat affecting morbidity even in a Northern climate.