Climate change and water security have become the most challenging global issues of this era, especially for developing countries like Pakistan. Amid many hindrances, poor governance has been identified as one of the most pressing reasons for ineffective action to tackle multifaceted and integrative climate-water issues in Pakistan. This article, therefore, applied a systematic literature review methodology to examine the current climate-water governance archetype, including key areas, major elements, critical gaps, and potential strategy in Pakistan. This study found that key climate-water governance areas in Pakistan are: river basin and watershed management, agriculture and irrigation management, urban and domestic water issues, floods, droughts and disaster management, groundwater management, and transboundary management. Moreover, it is revealed that the major governance elements are political commitment and leadership, policy formulation and regulation, institutional capacity and coordination, stakeholder engagement, and resource management, technology, and infrastructure development. The article also discusses how Pakistan has not effectively employed most of the identified governance elements to tackle its climate-water problems, lacking mostly in political, policy, institutional, coordination, and infrastructure aspects. In conclusion, a four-dimensional governance strategy, encompassing leadership, policy, institutions, and stakeholders is proposed to improve water sector resilience and adaptation to combat climate change in Pakistan.
Climate-induced pressures spur on the need for urban green infrastructure (UGI) planning. This approach offers a possible way to improve ecosystem functionality and human well-being in adversely affected urban regions, wherein UGI is perceived as a green and nature-based climate change mitigation/adaptation strategy. In Pakistan, the Khyber Pakhtunkhwa (KP) province lacks such urban landscape and greening policies (ULGP) or legislative frameworks for transitioning to green action plans (GAP), to alleviate the risk of multi-climatic hazards. Thus, this study aims to investigate a sustainable UGI-indicator-based framework model, based on the due inclusion of the concerned stakeholders. The relative importance index (RII) and inter-quartile range (IQR) techniques are employed for field data analysis. The findings proclaim excellent reliability (alpha > 0.7) and internal consistency, wherein sustainable UGI indicators are grouped based on their importance. The results portray the ecological and economic sustainability dimensions as being important (RII = 0.835 and RII = 0.807, respectively), socio-cultural dimensions as being moderately important (RII = 0.795), and a set of UGS elements (RII >= 0.77) as vital for bolstering individual UGI indicators. The main UGS elements emerging in each category can be grouped as follows: ecological category-“reducing rainwater runoff” (RII = 0.94); socio-cultural category-“enhancement of mental and physical health” (RII = 0.90); and eco category-“minimizing the risk of flood disasters” (RII = 0.96). The simulation results demonstrate the need for an inclusive perspective when building the urban green space (UGS) infrastructure (and standards) that will be most suitable for ensuring climate-resilient urban regions. This study contributes to putting the scientific research knowledge of the natural green-landscape-based (NBLB) approach into practice. The study calls for the establishment of an effective, pragmatic relationship between the urban landscape and greening policies, alongside a constructive relationship with the native inhabitants to ensure eco-friendly and resilient settlements.
Pakistan is an agrarian nation that is among the most vulnerable countries to climatic variations. Around 20% of its GDP is produced by agriculture, and livestock-related production contributes more than half of this value. However, few empirical studies have been conducted to determine the vulnerability and knowledge of livestock herders, and particularly the smaller herders. Comprehending individual perceptions of and vulnerabilities to climate change (CC) will enable effective formulation of CC mitigation strategies. This study intended to explore individual perceptions of and vulnerabilities to CC based on a primary dataset of 405 small livestock herders from three agro-ecological zones of Punjab. The results showed that livestock herders’ perceptions about temperature and rainfall variations/patterns coincide with the meteorological information of the study locations. The vulnerability indicators show that Dera Ghazi Khan district is more vulnerable than the other two zones because of high exposure and sensitivity to CC, and lower adaptive capacity. However, all zones experience regular livelihood risks due to livestock diseases and deaths resulting from extreme climatic conditions, lower economic status, and constrained institutional and human resource capabilities, thus leading to increased vulnerability. The results indicate that low-cost local approaches are needed, such as provision of improved veterinary services, increased availability of basic equipment, small-scale infrastructure projects, and reinforcement of informal social safety nets. These measures would support cost-effective and sustainable decisions to enable subsistence livestock herders to adopt climate smart practices.
This paper explores physical, psychological, social, and institutional vulnerabilities associated with slow-onset events (SoEs) of climate change. Based on review of interdisciplinary research in the context of Pakistan, this paper reviews the relevance of multi-level vulnerabilities and how they exacerbate impacts of SoEs of climate change. The physical vulnerabilities of climate change have been relatively well researched; however, research on the psychological, social, and institutional vulnerabilities and their intersectional associations with SoEs have been rare. Therefore, this review highlights the need for understanding multi-level vulnerabilities of high-risk groups in Pakistan. This paper emphasizes the need to work with an integrated approach for vulnerabilities of marginalized subgroups such as gender (women’s marginalized status), socio-economic status (lower SES), displacement history, and migration background. Finally, we propose the need for inclusive policy building sensitive to the demands of vulnerable groups in Karachi and elsewhere in Pakistan. We hope that this multilevel and inclusive framework has the potential to guide practitioners, and especially those who are least prepared for the slow-onset events of climate change.
Torrential rainfall following the monsoon season occurs annually in Pakistan and adversely affects health service delivery and population health. This qualitative study was undertaken in five flood-prone districts to examine district health systems’ performance during floods in Pakistan. The first of its kind study to gather an in-depth assessment of the capacity of district health systems in maintaining healthcare services during floods. Key informant interviews were conducted with 37 district stakeholders and 42 frontline healthcare providers. Nine focus group discussions were also conducted with 56 lady health workers. World Health Organization health systems’ six building blocks framework was utilized to assess the performance of district health systems. The findings illustrated increased reporting of diseases, and domestic and sexual violence against females. The damaged roads and unavailability of transportation during floods affected outreach services in the communities. The inadequate availability of funds resulted in critical gaps in the supply chain for essential medicines and supplies, impeding outreach services. Shortage of female medical staff was reported in addition to poor attention to the training of staff for disaster response. Furthermore, reporting mechansim varied across provinces with daily reporting system of acute illnesses instituted. Moreover, district health systems lacked gender-sensitive responses in responding to flood emergencies. This study identified multiple health system constraints that resulted in poor district health systems’ capacity in delivering essential healthcare services during floods. This study, therefore, highlighted a need to improve district health systems’ capacity in effectively responding to healthcare service needs during floods.
Using household surveys for 2008 and 2011, a multidimensional destitution measure is constructed for Pakistan’s most populated province – Punjab. Using a non-monetary framework for dimensions of health, education and standard of living, the study paints a temporal picture of the extremely impoverished households in districts and towns, while highlighting the impact of the destructive 2010 floods. Results reveal the existence of pervasive destitution, with half of the multidimensionally poor households also identified as destitute. Destitution is higher for rural as compared to urban households, while the geography of destitution highlights its concentration in south-west Punjab, providing insights for targeted interventions.
Pakistan is vulnerable and most affected by adverse impacts of climate change. The study examines the impact of climate change on Pakistan during the year 2022, resulting into unprecedented heatwave and drought in summers followed by the abnormal rains and floods during monsoon season. Agriculture is the backbone of Pakistan’s economy, which has been devastated by both drought and floods. While the flood water is gradually receding, the stagnant contaminated water is causing several health risks for the inhabitants. This research argues that water security is the emerging national security challenge for Pakistan. The article investigates the status of water availability vis-a-vis the burgeoning population, agriculture, and other uses of water. Impact of abnormal melting of glaciers, nonavailability of dams for storage of rainwater, and lack of smart means for agriculture water have been examined to empirically validate the arguments.
Stunting is a significant public health problem in low- and middle-income countries. This study assessed the prevalence of stunting and associated risk factors of stunting among preschool and school-going children in flood-affected areas of Pakistan. A cross-sectional study was conducted by visiting 656 households through multi-stage sampling. Respondent’s anthropometric measurements, socio-demographic information and sanitation facilities were explored. A logistic regression model was used to determine determinants of stunting, controlling for all possible confounders. The overall prevalence of stunting in children was 40.5%, among children 36.1% boys and 46.3% of girls were stunted. The prevalence of stunting in under-five children was 50.7%. Female children (OR=1.35, 95% CI:0.94-2.0), children aged 13-24 months (OR=6.5, 95% CI: 3.0-13.9), mothers aged 15-24 years (OR=4.4, 95% CI: 2.6-7.2), joint family (OR=2.1, 95% CI: 1.4-3.0) did not have access to improved drinking water (OR=3.3, 95% CI: 1.9-5.9), and the toilet facility (OR=2.8, 95% CI, 1.9-4.3), while the children from district Nowshera (OR=1.7, 95% CI: 0.9-3.2) were significantly (P<0.05) associated in univariate analysis. The regression model revealed that child age, maternal age, family type, quality of water, and toilet facility, were the significant (P<0.05) factors contributing to child stunting in the flood-hit areas. Identification of key factors might be helpful for policymakers in designing comprehensive community-based programs for the reduction of stunting in flood-affected areas. In disasters such as flood, the detrimental consequences of the stunting problem could be even more on children. Evidence-based education and care must be provided to the families in the flood-affected regions to reduce the stunting problem. The determinants of stunting should be targeted by making comprehensive policies regarding proper nutrition, livelihood, clean water, and sanitation facilities in flood-hit regions.
There is minimal literature regarding micronutrient deficiencies in flood-affected regions. In our study, we aimed to find the prevalence of micronutrient deficiencies (vitamin A, calcium, zinc, iron, and iodine) among preschool and school-age children in flood-hit areas of Khyber Pakhtunkhwa, Pakistan. In this cross-sectional study, a multi-stage sampling technique was used for the selection of 656 households. Serum micronutrient status was detected in the targeted population in the affected districts. The least significant difference test was used with analysis of variance to determine significant differences in nutrient contents in different areas. Of the total respondents, 90.8% of the children were calcium deficient, 88.3% were zinc deficient, 26.7% were iron deficient, 53.5% were vitamin A deficient, and 39.5% were had an iodine deficiency in flood-affected areas. A significant difference (P < 0.05) was found in different age groups of children for zinc (5.7-42.63 μg/dL) and urinary iodine (69.6-85.4 μg/L). The 10- to 12-year-old age group had a lower serum zinc concentration (5.7 μg/dL), whereas the 1- to 3-year-old age group had a lower urinary iodine concentration (69.6 μg/L) than other groups. There was no significant difference (P > 0.05) between male and female children and various age groups for calcium and iron status. Vitamin A levels were significantly (P < 0.05) different among different age groups (high in age group 4-6 years) and districts. Vitamin A concentration was lower in the Nowshera District, whereas serum iron and zinc were lower in the Dera Ismail Khan District. All the important micronutrients in the population of children were deficient in the flood-affected areas of Pakistan. Therefore, policymakers should implement potential prevention strategies, such as food security, school health nutrition, food fortification, nutrition in the first 1,000 golden days, nutrition knowledge, and awareness of the local population, to reduce the burden of micronutrients deficiencies in flood-affected areas.
Low- and middle-income countries are usually at high risk of malnutrition. Not only that but the prevalence of malnutrition is much higher. It is important to evaluate the determinants of malnutrition in flood-affected areas of Pakistan. The present study examined the prevalence and risk factors of MUAC-based child malnutrition in flood-hit regions of Khyber Pakhtunkhwa, Pakistan. Multi-stage sampling was employed to select 656 households. Finally, 298 children of 6-59 months were selected. MUAC, an independent anthropometric parameter, was used to investigate the nutritional status of children. An automated logistic regression model was used to identify the risk factors of MUAC-based malnutrition. The prevalence of MUAC-based malnutrition was found 46%, including 40.5% females and 52.1% males. More than 90% of people had improved water quality and soap hand washing facility. Almost 17% of respondents had no toilet facility. Through automated logistic model, child age, maternal age, family size, income level, mother education, water quality, toilet facility were the significant determinants (P < .05) of MUAC-based undernutrition in flood affecting the area. The findings suggest that MUAC-based malnutrition can be minimized in flood-hit areas by targeting the listed risk factors. Community-based awareness programs regarding guidance on nutrition might be a key to reducing malnutrition in the target areas.
Rapid and unplanned urbanization has resulted in the settlement and expansion of marginalized communities in flood-prone areas. Consequently, the devastating impacts of urban flooding have increased recently, further augmented by the changing climatic patterns resulting in more frequent flooding. However, to effectively enhance resilience at the community level, it is essential first to understand its components and indicators. This study proposed and tested a methodology to assess community resilience against urban flooding – 57 indicators of resilience were identified, which were classified into six domains, namely social, economic, infrastructural, institutional, natural, and psychological. The data was collected through a questionnaire survey in three com-munities of Rawalpindi, Sialkot, and Muzaffargarh cities in the province of Punjab, Pakistan. The data of resilience indicators were standardized, and an index-based approach was used to assess the community resil-ience in the six domains. The relative importance of each domain was evaluated through input from field experts translated into weights through the analytic hierarchy process method. Thereafter, overall community resilience was constructed, and statistical methods were employed to compare resilience and its domains. A significant difference in resilience was observed among the selected communities. Recommendations based on relative urgency, complexity, and impact were devised to help institutions make informed decisions to improve com-munity resilience against floods.
As a result of global climate change, the frequency and intensity of heat waves have increased significantly. According to the World Meteorological Organization (WMO), extreme temperatures in southwestern Pakistan have exceeded 54 degrees C in successive years. The identification and assessment of heat-health vulnerability (HHV) are important for controlling heat-related diseases and mortality. At present, heat waves have many definitions. To better describe the heat wave mortality risk, we redefine the heat wave by regarding the most frequent temperature (MFT) as the minimum temperature threshold for HHV for the first time. In addition, different indicators that serve as relevant evaluation factors of exposure, sensitivity and adaptability are selected to conduct a kilometre-level HHV assessment. The hesitant analytic hierarchy process (H-AHP) method is used to evaluate each index weight. Finally, we incorporate the weights into the data layers to establish the final HHV assessment model. The vulnerability in the study area is divided into five levels, high, middle-high, medium, middle-low and low, with proportions of 3.06%, 46.55%, 41.85%, 8.53% and 0%, respectively. Health facilities and urbanization were found to provide advantages for vulnerability reduction. Our study improved the resolution to describe the spatial heterogeneity of HHV, which provided a reference for more detailed model construction. It can help local government formulate more targeted control measures to reduce morbidity and mortality during heat waves.
Background: Climate change is evident around the globe causing heat stress as an emerging public health problem for people working in tropical and subtropical areas. Occupational heat stress can impact the health and productivity of small and mid-sized enterprise workers. Objective: This study aimed to profile the indoor thermal environmental conditions and modify the working practices by recommending the work/rest cycle according to the international organization for standardization 7243. Study Design: This cross-sectional study design included eight industrial (Iron spare parts manufacturing) small and mid-size enterprises in Lahore, Pakistan. The indoor thermal environment, including globe temperature, natural wet bulb temperature, ambient temperature, relative humidity, and air velocity, were recorded during summer to measure the wet bulb globe temperature (WBGT). Quest heat stress meter (model 2500), modified Testo loggers (177-T4), and EL-USB-2-LCD data loggers were placed at different working stations to measure these thermal environmental parameters. A self-administered questionnaire was used to measure the workers’ demographic characteristics and working practices. The International Organization for Standardization 7243 reference was used to estimate and recommend the work/rest cycle. Results: 138 workers aged 28.59 +/- 10.46 years participated in this study. Continuous work of 8.8 +/- 1.5 hours per day with a conventional resting period of 30-60 minutes was recorded on a typical working day. The indoor wet bulb globe temperature ranged from 26.8 degrees C to 36.4 degrees C. The workers were registered for low (72.5%), moderate (18.1%), and high (9.4%) metabolic rates according to the International Organization for Standardization 7243 reference values. Conclusion: A high wet bulb globe temperature was recorded in the selected small and mid-sized enterprises making these workers vulnerable to heat stress and related illnesses. Work/rest cycle evaluation suggested that the workers were required to improve their cool-down time by avoiding continuous exposure to high temperatures and reducing the metabolic rate.
BACKGROUND: Extreme heat exposure is a growing public health concern. In this trial, we tested the impact of a community health worker (CHW) led heat education programme on all-cause mortality, unplanned hospital visits and changes in knowledge and practices in Karachi, Pakistan. METHODS: The Heat Emergency Awareness and Treatment trial was a community-based, open-label, two-group, unblinded cluster-randomised controlled trial that implemented a CHW-led educational intervention between March and May 2018 in Karachi, Pakistan. We randomly assigned (1:1) 16 clusters, each with ~185 households or 1000 population, to the intervention or usual care (control group). We collected data on all-cause mortality, unplanned hospital visits, evidence of heat illness through surveillance and a knowledge and practice survey during the summer months of 2017 (preintervention) and 2018 (postintervention). FINDINGS: We recruited 18 554 participants from 2991 households (9877 individuals (1593 households) in the control group and 8668 individuals (1398 households) in the intervention group). After controlling for temporal trends, there was a 38% (adjusted OR 0.62, 95% CI 0.49 to 0.77) reduction in hospital visits for any cause in the intervention group compared with the control group. In addition, there was an improvement in many areas of knowledge and practices, but there was no significant difference in all-cause mortality. INTERPRETATION: A CHW-led community intervention was associated with decreased unscheduled hospital visits, improved heat literacy and practices but did not impact all-cause mortality. CHWs could play an essential role in preparing communities for extreme heat events. TRIAL REGISTRATION NUMBER: NCT03513315.
Heat waves are the second leading cause of weather-related morbidity and mortality affecting millions of individuals globally, every year. The aim of this study was to understand the perceptions and practices of community residents and healthcare professionals with respect to identification and treatment of heat emergencies. A qualitative study was conducted using focus group discussions and in-depth interviews, with the residents of an urban squatter settlement, community health workers, and physicians and nurses working in the emergency departments of three local hospitals in Karachi. Data was analyzed using content analysis. The themes that emerged were (1) perceptions of the community on heat emergencies; (2) recognition and early treatment at home; (3) access and quality of care in the hospital; (4) recognition and treatment at the health facility; (5) facility level plan; (6) training. Community members were able to recognize dehydration as a heat emergency. Males, elderly, and school-going children were considered at high risk for heat emergencies. The timely treatment of heat emergencies was widely linked with availability of financial resources. Limited availability of water, electricity, and open public spaces were identified as risk factors for heat emergencies. Home based remedies were reported as the preferred practice for treatment by community members. Both community members and healthcare professionals were cognizant of recognizing heat related emergencies.
The objective of this paper is to model and study the impact of high temperature on mortality in Pakistan. For this purpose, we have used mortality and climate data consisting of maximum temperature, variation in monthly temperature, average rainfall, humidity, dewpoint, as well as average air pressure in the country over the period from 2000 to 2019. We have used the Generalized Linear Model with Quasi-Poisson link function to model the number of deaths in the country and to assess the impact of maximum temperature on mortality. We have found that the maximum temperature in the country has a significant impact on mortality. The number of deaths in Pakistan increases as the maximum temperature increases. We found that, as the maximum temperature increase beyond 30 degrees C, mortality increases significantly. Our results indicate that mortality increases by 27% when the maximum temperature in the country increases from medium category to a very high level. Similarly, the number of deaths in the country increases by 11% when the temperature increases from medium temperature to high level. Furthermore, our study found that when the maximum temperature in the country decreases from a medium level to a low level, the number of deaths in the country decreases by 23%. This study does not consider the impact of other factors on mortality, such as age, medical conditions, gender, geographical location, as well as variability of temperature across the country.
The combined effects of global warming, urbanization, and demographic change influence climate risk for urban populations, particularly in metropolitan areas with developing economies. To inform climate change adaptation and spatial planning, it is important to study urban climatic hazards and populations at risk in relation to urban growth trends and development patterns. However, this relationship has not been adequately investigated in studies dedicated to climate vulnerability. This study identifies the typologies of development patterns within Lahore, Pakistan, investigates the heat vulnerability of residents at a neighborhood scale, and establishes a relationship between both of these factors. We identified urban clusters with diverse development patterns. Fourteen context- and site-specific indicators were selected to construct a human heat vulnerability index. Weighted sum, cluster analysis, and ANOVA test of variance were conducted to analyze the data. Our results demonstrate that development patterns significantly influence human vulnerability to heat stress, e.g., vulnerability is higher in older cities and undeveloped neighborhoods with less diverse land uses. These findings are essential for informing policy-makers, decision-makers and spatial planners about proactive adaptation planning in dynamic urban environments.
Surface water quality is among the significant challenges in the Sutlej River basin, passing through Pakistan’s most densely populated province. Currently, the overall surface water quality is grossly polluted, mainly due to the direct discharge of wastewater from the urban areas to the Sutlej River directly or through stream networks. Escherichia coli concentrations vary under extreme weather events like floods and droughts and socioeconomic circumstances like urbanization, population growth, and treatment options. This paper assesses the future E. coli load and concentrations using the Soil and Water Assessment Tool (SWAT) along with scenarios based on Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs) developed by the Intergovernmental Panel on Climate Change (IPCC). E. coli concentrations according to a more polluted scenario disclose a near and mid future increase by 108% and 173%, and far future increases up to 251% compared to the reference period (baseline) concentrations. The E. coli concentration is reduced by - 54%, - 68%, and - 81% for all the projected time steps compared to the baseline concentrations. While highly improved sewerage and manure management options are adapted, the concentration is further reduced by - 96%, - 101%, and - 105%, respectively, compared to the baseline. Our modeling and scenario matrix study shows that reducing microbiological concentrations in the surface water is possible. Still, it requires rigorous sanitation and treatment options, and socioeconomic variables play an essential role besides climate change to determine the microbiological concentration of water resources and be included in future studies whenever water quality and health risks are considered.
BACKGROUND: Pakistan has been experiencing intervals of sporadic cases and localized outbreaks in the last two decades. No proper study has been carried out in order to find out the environmental burden of toxigenic V. cholerae as well as how temporal and environmental factors associated in driving cholera across the country. METHODS: We tested waste water samples from designated national environment surveillance sites in Pakistan with RT-PCR assay. Multistage sampling technique were utilized for samples collection and for effective sample processing Bag-Mediated Filtration system, were employed. Results were analysed by district and month wise to understand the geographic distribution and identify the seasonal pattern of V. cholera detection in Pakistan. RESULTS: Between May 2019, and February 2020, we obtained and screened 160 samples in 12 districts across Pakistan. Out of 16 sentinel environmental surveillance sites, 15 sites showed positive results against cholera toxigenic gene with mostly lower CT value (mean, 34??2) and have significant difference (p < 0.05). The highest number of positive samples were collected from Sindh in month of November, then in June it is circulating in different districts of Pakistan including four Provinces respectively. CONCLUSION: V. cholera detection do not follow a clear seasonal pattern. However, the poor sanitation problems or temperature and rainfall may potentially influence the frequency and duration of cholera across the country. Occurrence of toxigenic V. cholerae in the environment samples showed that cholera is endemic, which is an alarming for a potential future cholera outbreaks in the country.
We examine the impact of flooding in Pakistan on child health using satellite data and two household datasets. Flooding may influence child health, as measured by weight-for-height z-score, through two key channels. First, excessive flood waters can catalyze the spread of diarrheal disease, negatively impacting child health. Second, excessive flood waters – even when damaging in some areas – provide water to rice paddies and other agriculture, increasing food availability in the post-flood period. This may positively influence child health. In Pakistan, we find evidence of both channels: floods increase incidence of morbidity (diarrhea and fever) as well as meal frequency in the post flood season. We also find that floods increase dietary diversity, but only in districts with high rice harvesting intensity where flooding may predict favorable growing conditions. Because these mechanisms (disease incidence and dietary adequacy) act against one another, we find weak overall impact of floods on child health. (c) 2021 Elsevier Ltd. All rights reserved.
Neonates and children are more vulnerable to the negative impact of flood-related changes and may have a variety of detrimental negative impacts on their health. They are more prone to get various infectious diseases. They are also more vulnerable to malnutrition during floods. Flooding limits access to clean water as sewage overflows and contaminates nearby water sources. The polluted setting in the flood-affected area makes it difficult to ensure the hygiene of feeding equipment used to prepare infant formula. Breastfeeding may also become less effective due to the lack of privacy for women to breastfeed their kids while living in temporary shelters with other flood victims. In addition, milk production decreases and might even cease due to mothers’ reduced food intake and increased stress levels. Flooding may also cause supplemental feeding to deteriorate. The mothers and other primary caregivers usually lack the resources in affected areas to prepare supplemental diets for their kids, which further harm the babies. There is mounting evidence that children are more likely to develop clogged noses, itchy eyes, hoarseness, skin complications, and sneezing while living in humid areas.
The recent monsoon rains in Pakistan were unprecedented and caused flooding all over Pakistan, especially in Sindh and Balochistan. Following this national disaster, various water-borne and contagious diseases started erupting all over the country. In such a calamity-struck city of Jacobabad, we started receiving cases with a peculiar set of ocular complaints mimicking viral keratoconjunctivitis. Failure to respond to traditional treatment and the unique appearance of these corneal opacities led to a rare diagnosis of Microsporidial Keratoconjunctivitis, which was later confirmed by microscopy and staining of corneal scrapings of the most affected case. In line with published literature, all cases were treated with topical fluoroquinolone and topical anti-fungal therapy, following which the disease was cleared within a week. The disease has seen an upward trend the world over, especially among Asia. To the best of our knowledge, no such cases have been reported in Pakistan as yet. In this case series, we highlight the strong correlation of emergence of microsporidial keratitis in patients following exposure to pooled water bodies after the monsoon rainy season and floods. Moreover, this report will help create awareness in eye professionals regarding the prevention, timely diagnosis and treatment of these rare and emerging cases. Key Words: Keratitis, Spores, Water-borne diseases, Microsporidia.
Climate change threatens global sustainability, especially in rural communities of developing countries. In Pakistan, severe impacts of climate change have become evident in the recent past. Large-scale floods in the Indus river system have caused massive damages in the past decade. Also, frequent droughts and heatwaves are among other consequences of the changing climate in the country. Understanding the perspective of local communities regarding climate change adaptation strategies is pivotal to effective policymaking. We surveyed the rural community in the Indus Basin, in southern Punjab, Pakistan, to assess the climate change adaptations currently practiced. We found that the respondents perceive droughts, floods, and disease outbreaks (which are frequently followed by flooding events) as major climate change-induced threats. The respondents used flood and drought-resistant crop varieties, field boundaries (spate irrigation), migration to safe places, and loans as key adaptation strategies. We also assessed the socioeconomic determinants of climate change adaptation behaviour using a binary logistic regression model. Gender, occupation, and education influenced the adaptations to climate change. The present study highlights the need for monetary support to flood-prone communities, better medical facilities, provision of drought and flood-resistant crop varieties, and awareness campaigns to enhance adaptive capacity in the study area.
This research was carried out to analyze variations in indoor and outdoor ozone concentrations and their health impact on local communities of megacities in Pakistan. For indoor ozone measurements, industrial units of an economic zone, Hattar Industrial Estate, Haripur, KPK, Pakistan, were selected. For outdoor ozone measurements, maximum and minimum peaks from different selected stations of three megacities (Islamabad, Abbottabad, and Haripur Hattar) in Pakistan were analyzed for paired comparisons. The tropospheric ozone levels were measured with the help of a portable SKY 2000-WH-O-3 meter from December 2018 to November 2019. According to the findings of this investigation, the indoor ozone concentrations at Hattar Industrial Estate exceeded the permissible limit devised by the WHO. The highest concentration (0.37 ppm) was recorded in the month of May in the food industry, while the lowest concentration (0.00 ppm) was recorded in the cooling area of the steel industry in the month of December. For outdoor ozone concentrations, the maximum concentration (0.23 ppm) was detected in Islamabad in the month of March 2019, whereas the rest of year showed comparatively lower concentrations. In Haripur, the maximum concentration (0.22 ppm) was detected in the month of February 2019 and a minimum concentration (0.11 ppm) was found in the month of November 2019. In Abbottabad, the maximum concentration (0.21 ppm) was detected in the month of March 2019 and the minimum concentration was 0.082 ppm. Increasing tropospheric ozone levels might be harmful for local communities and industrial laborers in the winter season because of the foggy weather. In the Abbottabad and Hattar regions, since COVID infection is indirectly related to low temperature and high emission of gases may compromise the respiratory systems of humans. The results of the present study were shared with industrialists to set precautions for ambient air quality and support the adoption of low emission techniques in industries for the safety of labour and nearby residents.
Pakistan ranks third in the world in terms of mortality attributable to air pollution, with aerosol mass concentrations (PM2.5) consistently well above WHO (World Health Organization) air quality guidelines (AQG). However, regulation is dependent on a sparse network of air quality monitoring stations and insufficient ground data. This study utilizes long-term observations of aerosols and trace gases to characterize and rank the air pollution scenarios and pollution characteristics of 80 selected cities in Pakistan. Datasets used include (1) the Aqua and Terra (AquaTerra) MODIS (Moderate Resolution Imaging Spectmradiometer) Level 2 Collection 6.1 merged Dark Target and Deep Blue (DTB) aerosol optical depth (AOD) retrieval products; (2) the CAMS (Copernicus Atmosphere Monitoring Service) reanalysis PM1, PM2.5, and PM10 data; (3) the MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, Version 2) reanalysis PM2.5 data, (4) the OMI (Ozone Monitoring Instrument) tropospheric vertical column density (TVCD) of nitrogen dioxide (NO2), and VCD of sulfur dioxide (SO2) in the Planetary Boundary Layer (PBL), (5) the VIIRS (Visible Infrared Imaging Radiometer Suite) Nighttime Lights data, (6) MODIS Collection 6 Version 2 global monthly fire location data (MCD14ML), (7) population density, (8) MODIS Level 3 Collection 6 land cover types, (9) AERONET (AErosol RObotic NETwork) Version 3 Level 2.0 data, and (10) ground-based PM2.5 concentrations from air quality monitoring stations. Potential Source Contribution Function (PSCF) analyses were performed by integrating with ground-based PM2.5 concentrations and the NOAA (National Oceanic and Atmospheric Administration) HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) air parcel back trajectories to identify potential pollution source areas which are responsible for extreme air pollution in Pakistan. Results show that the ranking of the top polluted cities depends on the type of pollutant considered and the metric used.For example, Jhang, Multan, and Vehari were characterized as the top three polluted cities in Pakistan when considering AquaTerra DTB AOD products; for PM1, PM2.5, and PM10 Lahore, Gujranwala, and Okara were the top three; for tropospheric NO2 VCD Lahore, Rawalpindi, and Islamabad and for PBL SO2 VCD Lahore, Mirpur, and Gujranwala. The results demonstrate that Pakistan’s entire population has been exposed to high PM2.5 concentrations for many years, with a mean annual value of 54.7 mu g/m(3), over all Pakistan from 2003 to 2020.This value exceeds Pakistan’s National Environmental Quality Standards (Pak-NEQS, i.e., <15 mu g/m(3) annual mean) for ambient air defined by the Pakistan Environmental Protection Agency (Pak-EPA) as well as the WHO Interim Target-1 (i.e., mean annual PM2.5 < 35 mu g/m(3)).The spatial analyses of the concentrations of aerosols and trace gases in terms of population density, nighttime lights, land cover types, and fire location data, and the PSCF analysis indicate that Pakistan's air quality is strongly affected by anthropogenic sources inside of Pakistan, with contributions from surrounding countries.Statistically significant positive (increasing) trends in PM1, PM2. 5, PM10, tropospheric NO2 VCD, and SO2 VCD were observed in similar to 89%, similar to 67%, similar to 48%, 91%, and similar to 88% of the Pakistani cities (80 cities), respectively. This comprehensive analysis of aerosol and trace gas levels, their characteristics in spatio-temporal domains, and their trends over Pakistan, is the first of its kind. Results will be helpful to the Ministry of Climate Change (Government of Pakistan), Pak-EPA, SUPARCO (Pakistan Space and Upper Atmosphere Research Commission), policymakers, and the local research community to mitigate air pollution and its effects on human health.
This study examines point and non-point sources of air pollution and particulate matter and their associated socioeconomic and health impacts in South Asian countries, primarily India, China, and Pakistan. The legislative frameworks, policy gaps, and targeted solutions are also scrutinized. The major cities in these countries have surpassed the permissible limits defined by WHO for sulfur dioxide, carbon monoxide, particulate matter, and nitrogen dioxide. As a result, they are facing widespread health problems, disabilities, and causalities at extreme events. Populations in these countries are comparatively more prone to air pollution effects because they spend more time in the open air, increasing their likelihood of exposure to air pollutants. The elevated level of air pollutants and their long-term exposure increases the susceptibility to several chronic/acute diseases, i.e., obstructive pulmonary diseases, acute respiratory distress, chronic bronchitis, and emphysema. More in-depth spatial-temporal air pollution monitoring studies in China, India, and Pakistan are recommended. The study findings suggest that policymakers at the local, national, and regional levels should devise targeted policies by considering all the relevant parameters, including the country’s economic status, local meteorological conditions, industrial interests, public lifestyle, and national literacy rate. This approach will also help design and implement more efficient policies which are less likely to fail when brought into practice.
Pakistan is amongst the developing countries, which have been strongly affected by several emerging and re-emerging disease outbreaks as a consequence of climate change. Various studies have clearly demonstrated the impact of climate change on human health in Pakistan. This has increased the rate of morbidity and mortality, related not only to vector-borne, water-borne and food-borne diseases but has also contributed to the prevalence of neurological, cardiovascular and respiratory disorders. It is therefore important to take adequate measurements for water management and improve sanitary conditions especially in case of natural disasters. In order to effectively control the emerging and re-emerging infections in the country, an early, more Rigorous response is required, by the national health department, to monitor and evaluate the spread of infections in future. Therefore, precise planning and management strategies should be defined in order to circumvent the damage caused by the natural disasters associated with climate changes. This mini-review gives an overview about the public health issues associated with environmental change with special reference to Pakistan. This will provide a baseline for policymakers to develop public health surveillance programs in Pakistan.
Climate variability is heavily impacting human health all around the globe, in particular, on residents of developing countries. Impacts on surface water and groundwater resources and water-related illnesses are increasing, especially under changing climate scenarios such as diversity in rainfall patterns, increasing temperature, flash floods, severe droughts, heatwaves and heavy precipitation. Emerging water-related diseases such as dengue fever and chikungunya are reappearing and impacting on the life of the deprived; as such, the provision of safe water and health care is in great demand in developing countries to combat the spread of infectious diseases. Government, academia and private water bodies are conducting water quality surveys and providing health care facilities, but there is still a need to improve the present strategies concerning water treatment and management, as well as governance. In this review paper, climate change pattern and risks associated with water-related diseases in developing countries, with particular focus on Pakistan, and novel methods for controlling both waterborne and water-related diseases are discussed. This study is important for public health care, particularly in developing countries, for policy makers, and researchers working in the area of climate change, water quality and risk assessment.
Cryptosporidium is a water-borne zoonotic parasite worldwide, usually found in lakes and rivers contaminated with sewage and animal wastes, causing outbreaks of cryptosporidiosis. In this study, 300 water samples were collected from four designated places of flood-affected district Nowshera consist of different water sources to find out the prevalence of Cryptosporidium via polymerase chain reaction (PCR). The overall prevalence of Cryptosporidium was 30.33% (91/300) with more prevalent 44% in drain water and low 5% in bore/tube well water. The prevalence in open well and tap water was recorded 33% and 20%, respectively. The highest prevalence was recorded in summer (June-September). The result of this study ensures enormous contamination of drinking water that requires appropriate treatment, cleaning and filtration to provide safe drinking water. Preventing water-borne disease and proper treatment of water supplies is essential to public health.
Households’ vulnerability assessment is considered an essential step towards reducing the harmful consequences of disaster risks. Adaptation helps in reducing their future vulnerability. The aims of this study are to (1) assess the different components of vulnerability, (2) compare the individual components and the composite vulnerability between the two regions and (3)assess the households’ adaptation to floods. Data were collected from 382 households and statistical tests were applied for comparison among these households living in two regions. A total of 32 and 17 indicators were used for vulnerability and adaptation assessment respectively. Results revealed that social, economic, physical and institutional components of vulnerability were found higher in Region 1 than Region 2. Except for social and attitudinal vulnerability, all the other vulnerability components had significant differences. Similarly, the overall composite vulnerability was higher in Region 1 than Region 2 and statistically significant. Moreover, in both regions, informal adaptation was mostly practiced compared to formal adaptation. Thus, it is recommended that the government and non-governmental stakeholders provide options and facilitation for formal adaptation at the community level.
Rural communities inhabited on riverbank areas are frequently facing the ever-increasing psychological, social and economic distress due to negative effects of riverbank erosion. This study focused to investigate the impact of climate-based hazards particularly riverbank erosion on human displacement, food security and livelihood of rural riverine households and how vulnerable households act in response. The survey data of 398 households of erosion-prone riverbank area were collected, and group discussions connecting household heads from this area were also used for this study. In human displacement scenario of the last ten years due to riverbank erosion, almost 60% households lost their homestead once while 38% more than three times and forced to displaced. Empirical estimates of households’ food security status indicated the value of Food Security Index 2.11, highlighting households face issue of food security all over the year. Food security issue of vulnerable households is highly related with migration because these households have insufficient employment chances, and coupled with limited or no farming land, they are highly prone to migration. In conclusion, this study estimated that riverbank erosion risk is a co-exist reason of population displacement, increasing rural environmental vulnerability and obstacles to psychological, cultural and socioeconomic development. Implications of local-based proper policy interventions such as developing advance research regarding infusion of agro-based technology packages for emerging Bait areas for developing resilience, human capital development, credit access and institution service are necessary for improving livelihood and food security of these riverbank erosion households. State-based institutions and local community mutually need to focus increasing forestry specifically in riverbank areas to save fertile land from riverbank erosion and reducing environmental pollution. Convalescing livelihood and food security for erosion riverbank households, more employment opportunity needs to provided, investing more in training and education programmes to promoting income-generating activities that subsequently will develop livelihood and food security of households.
Pakistan is home to a wide range of geographical landscapes, each of which faces different climate change impacts and challenges. This article presents findings from a National Geographic Society funded project, which employed a people-centered, narratives-based approach to study climate impacts and adaptation strategies of people in 19 rural study sites in four provinces of Pakistan (N = 108). The study looked at six climate-related stressors-changes in weather patterns, floods, Glacial Lake Outburst Floods, drought, heat waves, and sea-level rise-in the coastal areas of Sindh, the desert of Thar, the plains of Punjab, and the mountains of Hunza, Gilgit, and Chitral. Speaking to people at these frontlines of climate change revealed much about climate suffering and trauma. Not only is the suffering induced by losses and damages to property and livelihood, but climate impacts also take a heavy toll on people’s psycho-social wellbeing, particularly when they are displaced from their homes. The findings further demonstrate that people try to adapt in various ways, for instance by altering their agricultural practices, but they face severe barriers to effective adaptation action. Understanding people’s perceptions of climate change and incorporating their recommendations in adaptation planning can help policy-makers develop a more participatory, inclusive, and holistic climate resilience framework for the future.
Air pollution has become a threat to human health in urban settlements, ultimately leading to negative impacts on overall economic system as well. Already developed nations and still developing countries both are at the risk of air pollution globally. In this scenario, this work aims to investigate the associations of asthma (AS) and acute upper respiratory infection (ARI) patients with satellite-based aerosol optical depth (AOD) and meteorological factors, i.e., relative humidity (RH), temperature (TEMP), and wind speed (WS). We applied second-generation unit root tests to provide empirical evidence. Two sets of unit root tests confirmed mix order of integration, and the other Westerlund co-integration test further showed strong linkages between estimated variables. Fully modified ordinary least square (FMOLS) and dynamic ordinary least square (DOLS) tests were applied, only to explore that TEMP and WS lower the number of AS and ARI patients, but RH and AOD increase the number of patients. Therefore, in accordance with these findings, our study provides some important policy instruments to improve the health status in megacities of Pakistan.
National level floods affect large sections of the population, and in turn, receive attention from the government and international agencies. Localized natural disasters, including localized floods, do not get the attention of the government and policymakers because their impact is felt within limited geographical areas, despite the fact that these disasters severely affect the livelihood of rural communities. This study examines the impact of localized floods on the livelihood of farmers in Pakistan using a cross-sectional data set collected from 812 households. The empirical results show that localized floods severely affect rural livelihoods, and affected households have lowered cereal crop yields, less income, and reduced food security levels. Farmers adopt a number of strategies, including crop and livestock insurance, bund-making, land-leveling, and tree planting, to combat the impact of localized floods. Among all these mitigating strategies, the tree plantation is ranked as the best mitigating strategy followed by crop and livestock insurance, land leveling, and bund making, respectively. Education, wealth, access to non-governmental organizations (NGOs), extension services, and infrastructure, influence the adoption of measures to mitigate the effect of flood risks. National policy on localized flood risks needs to strengthen local institutions to provide support to families and extension services to train farmers to mitigate the impact of localized floods.
Drinking water quality is of vital importance for the healthy life of a community especially if consumer is a teenager. In order to compare groundwater profile of flooded area (FA) and non-flooded area (NFA) of district Sanghar, 120 water samples from public schools were collected and investigated for physico-chemical parameters, essential metals, trace elements and microbiological indicators. Analysis data revealed that 47% samples in FA were contaminated with faecal coliform bacteria as compared to only 8.3% in NFA. On the other hand, chemical indicators like TDS, Ca, Na, K, SO4, Mg and hardness were higher in FA. Comparison of trace elements content with WHO guidelines revealed that concentration of Fe, As and Zn was higher in 66.7%, 31.7% and 13.3% water samples, respectively in FA whereas content of these elements was also on higher side in 3.3%, 23.3% and 1.7% samples in NFA, respectively. Health risk assessment due to high concentration of Fe, As and Zn showed that As HRI>1, for children in 35 and 23% water samples in FA and NFA, respectively.
INTRODUCTION: Environmental factors such as wind, temperature, humidity, and sun exposure are known to affect influenza and viruses such as severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) transmissions. COVID-19 is a new pandemic with very little information available about its transmission and association with environmental factors. The goal of this paper is to explore the association of environmental factors on daily incidence rate, mortality rate, and recoveries of COVID-19. METHODS: The environmental data for humidity, temperature, wind, and sun exposure were recorded from metrological websites and COVID-19 data such as the daily incidence rate, death rate, and daily recovery were extracted from the government’s official website available to the general public. The analysis for each outcome was adjusted for factors such as lock down status, nationwide events, and the number of daily tests performed. Analysis was completed with negative binominal regression log link using generalised linear modelling. RESULTS: Daily temperature, sun exposure, wind, and humidity were not significantly associated with daily incidence rate. Temperature and nationwide social gatherings, although non-significant, showed trends towards a higher chance of incidence. An increase in the number of daily testing was significantly associated with higher COVID-19 incidences (effect size ranged from 2.17-9.96). No factors were significantly associated with daily death rates. Except for the province of Balochistan, a lower daily temperature was associated with a significantly higher daily recovery rate. DISCUSSION: Environmental factors such as temperature, humidity, wind, and daily sun exposure were not consistently associated with COVID-19 incidence, death rates, or recovery. More policing about precautionary measures and ensuring diagnostic testing and accuracy are needed.