Assessing disaster impacts is the pathway to attain informed decision making to mitigate damages. Currently, these impacts are generally analyzed excluding the environmental consequences of disasters. Thus, this study proposes a novel quantitative method, named multi-dimensional damage assessment (MDDA), that integrates the disaster-related environmental impacts with economic and social losses. For this, Life Cycle Assessment was used to measure environmental impacts at the endpoint level for the human health area of protection. The unit of assessment used to merge the three damage dimensions was the disability-adjusted life year equivalent (DALYeq). The damages exerted by floods in Peru linked to El Nino in recent decades were selected as the main case study. Furthermore, other natural disasters (e.g., earthquakes) were included in the assessment for the sake of comparability. The results show that El Nino floods in Peru in 1982-83 and 1997-98 presented higher damage per capita, approximately 2.8 times higher, than the event in 2017. Additionally, the assessment showed that economic damages are the most relevant in El Nino floods, whereas social damages are those prevalent for earthquakes. The results demonstrate that MDDA is an effective measurement for the purpose of damage comparison and, therefore, to implement mitigation strategies. The proposed methodology will allow the development of disaster risk mitigation strategies that will cover all damage dimensions and enable the adoption of improved public policies. Finally, MDDA can be applied to compute any complex array of damages that humans may suffer or infringe as a consequence of their interaction with the environment.
Biodiversity and ecosystem conservation in the Amazon play a critical role in climate-change mitigation. However, institutional responses have had conflicted and complex relations with Indigenous peoples. There is a growing need for meaningful engagement with-and recognition of-the centrality of Indigenous peoples’ perceptions and understanding of the changes they are experiencing to inform successful and effective place-based adaptation strategies. To fill this gap, this study focuses on the value-based perspectives and pragmatic decision-making of Shawi Indigenous men in the Peruvian Amazon. We are specifically interested in their perceptions of how their food system is changing, why it is changing, its consequences, and how/whether they are coping with and responding to this change. Our results highlight that Shawi men’s agency and conscious envisioning of their future food system intersect with the effects of government policy. Shawi men perceive that the main driver of their food-system changes, i.e., less forest food, is self-driven population growth, leading to emotions of guilt and shame. During our study, they articulated a conscious belief that future generations must transition from forest-based to agricultural foods, emphasising education as central to this transition. Additionally, results suggest that the Peruvian government is indirectly promoting Shawi population growth through policies linking population size to improved service delivery, particularly education. Despite intentional Shawi moves to transition to agriculture, this results in a loss of men’s cultural identity and has mental-health implications, creating new vulnerabilities due to increasing climatic extremes, such as flooding and higher temperatures.
Fascioliasis is a worldwide emerging snail-borne zoonotic trematodiasis with a great spreading capacity linked to animal and human movements, climate change, and anthropogenic modifications of freshwater environments. South America is the continent with more human endemic areas caused by Fasciola hepatica, mainly in high altitude areas of Andean regions. The Peruvian Cajamarca area presents the highest human prevalences reported, only lower than those in the Bolivian Altiplano. Sequencing of the complete rDNA ITS-2 allowed for the specific and haplotype classification of lymnaeid snails collected in seasonal field surveys along a transect including 2007-3473 m altitudes. The species Galba truncatula (one haplotype preferentially in higher altitudes) and Pseudosuccinea columella (one haplotype in an isolated population), and the non-transmitting species Lymnaea schirazensis (two haplotypes mainly in lower altitudes) were found. Climatic seasonality proved to influence G. truncatula populations in temporarily dried habitats, whereas L. schirazensis appeared to be more climatologically independent due to its extreme amphibious ecology. Along the southeastern transect from Cajamarca city, G. truncatula and L. schirazensis shared the same site in 7 localities (46.7% of the water collections studied). The detection of G. truncatula in 11 new foci (73.3%), predominantly in northern localities closer to the city, demonstrate that the Cajamarca transmission risk area is markedly wider than previously considered. Lymnaea schirazensis progressively increases its presence when moving away from the city. Results highlight the usefulness of lymnaeid surveys to assess borders of the endemic area and inner distribution of transmission foci. Similar lymnaeid surveys are still in need to be performed in the wide northern and western zones of the Cajamarca city. The coexistence of more than one lymnaeid transmitting species, together with a morphologically indistinguishable non-transmitting species and livestock movements inside the area, conform a complex scenario which poses difficulties for the needed One Health control intervention.
The way newspapers frame infectious disease outbreaks and their connection to the environmental determinants of disease transmission matter because they shape how we understand and respond to these major events. In 2017, following an unexpected climatic event named “El Niño Costero,” a dengue epidemic in Peru affected over seventy-five thousand people. This paper examines how the Peruvian news media presented dengue, a climate-sensitive disease, as a public health problem by analyzing a sample of 265 news stories on dengue from two major newspapers published between January 1st and December 31st of 2017. In analyzing the construction of responsibility for the epidemic, I find frames that blamed El Niño Costero’s flooding and Peru’s poorly prepared cities and public health infrastructure as the causes of the dengue outbreak. However, when analyzing frames that offer solutions to the epidemic, I find that news articles call for government-led, short-term interventions (e.g., fogging) that fail to address the decaying public health infrastructure and lack of climate-resilient health systems. Overall, news media tended to over-emphasize dengue as requiring technical solutions that ignore the root causes of health inequality and environmental injustice that allow dengue to spread in the first place. This case speaks to the medicalization of public health and to a long history of disease-control programs in the Global South that prioritized top-down technical approaches, turning attention away from the social and environmental determinants of health, which are particularly important in an era of climate change.
BACKGROUND: Global temperatures are projected to rise by ?2?°C by the end of the century, with expected impacts on infectious disease incidence. Establishing the historic relationship between temperature and childhood diarrhea is important to inform future vulnerability under projected climate change scenarios. METHODS: We compiled a national dataset from Peruvian government data sources, including weekly diarrhea surveillance records, annual administered doses of rotavirus vaccination, annual piped water access estimates, and daily temperature estimates. We used generalized estimating equations to quantify the association between ambient temperature and childhood (5?years) weekly reported clinic visits for diarrhea from 2005 to 2015 in 194 of 195 Peruvian provinces. We estimated the combined effect of the mean daily high temperature lagged 1, 2, and 3 weeks, in the eras before (2005-2009) and after (2010-2015) widespread rotavirus vaccination in Peru and examined the influence of varying levels of piped water access. RESULTS: Nationally, an increase of 1?°C in the temperature across the three prior weeks was associated with a 3.8% higher rate of childhood clinic visits for diarrhea [incidence rate ratio (IRR): 1.04, 95% confidence interval (CI): 1.03-1.04]. Controlling for temperature, there was a significantly higher incidence rate of childhood diarrhea clinic visits during moderate/strong El Niño events (IRR: 1.03, 95% CI: 1.01-1.04) and during the dry season (IRR: 1.01, 95% CI: 1.00-1.03). Nationally, there was no evidence that the association between temperature and the childhood diarrhea rate changed between the pre- and post-rotavirus vaccine eras, or that higher levels of access to piped water mitigated the effects of temperature on the childhood diarrhea rate. CONCLUSIONS: Higher temperatures and intensifying El Niño events that may result from climate change could increase clinic visits for childhood diarrhea in Peru. Findings underscore the importance of considering climate in assessments of childhood diarrhea in Peru and globally, and can inform regional vulnerability assessments and mitigation planning efforts.
Despite mitigation attempts, the trajectory of climate change remains on an accelerated path, with devastating health impacts. As a response to the United Nations Framework Convention on Climate Change call for National Adaptation Plans, Peru has developed a national and decentralized regional adaptation plans. The purpose of this article is to understand the role and priority status of health within the adaptation planning and process. Peru was used as a case study to analyse the policy process in the creation of adaptation plans, encompassing the need to address climate change impacts on health with a particular focus on marginalized people. An actor, content and context policy analyses were conducted to analyse 17 out of 25 regional adaptation plans, which are available. The national adaptation plans (2002, 2015) do not include health as a priority or health adaptation strategies. In a decentralized health care system, regional plans demonstrate an increased improvement of complexity, systematization and structure over time (2009-17). In general, health has not been identified as a priority but as another area of impact. There is no cohesiveness between plans in format, content, planning and execution and only a limited consideration for marginalized populations. In conclusion, the regional departments of Peru stand on unequal footing regarding adapting the health sector to climate change. Findings in the strategies call into question how mitigation and adaption to climate change may be achieved. The lack of local research on health impacts due to climate change and a particular focus on marginalized people creates a policy vacuum. The Peruvian case study resembles global challenges to put health in the centre of national and regional adaptation plans. In-depth cross-country analysis is still missing but urgently needed to learn from other experiences.
The purpose of this article is to analyze how indigenous livelihoods are challenged by the global phenomenon of climate change while paying particular attention to how historically shaped, non-climatic factors influence how climate change is experienced in the Peruvian Amazon. In this sense, we will address indigenous people’s lived experiences of climate variations using a theoretical framework based on concepts of vulnerability. Methodologically, we draw on both a recent literature review and fieldwork conducted during 2015 and 2016 with two Kukama Kukamiria communities in Loreto (low jungle) and three Ashaninka communities in Junín (high jungle). After describing our theoretical framework and qualitative methods, we discuss the economic history of the addressed areas and show how non-climatic factors, such as colonialism, influence these communities’ experiences. This context allows us to better understand indigenous people’s experience of seasonal variations, precipitations and climatic events, its effect on their livelihoods, and their adaptive strategies in response to challenges imposed by climate unpredictability and broader transformations in their territories. Our conclusions are twofold: (a) addressing climate change must incorporate multiple temporal and spatial scales and (b) non-climatic factors are integral to understanding the role of climate change vulnerability of indigenous population.
The intensifying impacts of climate change pose a serious global threat, particularly for rural populations whose livelihoods are closely tied to natural resources. Yet there is a lack of critical understanding of how asymmetric power dynamics shape the vulnerabilities of such populations under climate change. This article examines the interrelations between smallholders’ climate-related vulnerability experiences and power relations across multiple scales of climate adaptation in the Peruvian Andes, a region susceptible to increasing climatic threats. The analysis draws on a case study conducted in the Mantaro River Valley in Central Peru using qualitative methods: open-ended interviews, participant observation, and document analysis. Findings of the study show that in the context of climate change, the production of vulnerabilities has much to do with larger socio-political structures in which protection of the highland farmers is not prioritized. The impact of the uneven scalar power dynamics in climate adaptation and other overlapping fields of policy have created uneven terms of adaptation among smallholders. This has created marginalization, conflicts, and deepened smallholders’ vulnerabilities under climate change. I argue that to reach a better understanding of the multidimensionality of vulnerabilities, more detailed attention must be paid to place-based climate experiences within context-specific, socio-political processes, and to the ways these are shaped by unequal power relations across multiple scales.
Climate change has been linked to poor childhood growth and development through maternal stress, nutritional insults related to lean harvests, and exposure to infectious diseases. Vulnerable populations are often most susceptible to these stressors. This study tested whether susceptibility to linear growth faltering is higher among Peruvian children from indigenous, rural, low-education, and low-income households. High-resolution weather and household survey data from Demographic and Health Survey 1996-2012 were used to explore height-for-age z-scores (HAZ) at each year of life from 0 to 5. Rural, indigenous children at age 0-1 experience a HAZ reduction of 0.35 units associated with prenatal excess rainfall which is also observed at age 4-5. Urban, non-indigenous children at age 4-5 experience a HAZ increase of 0.07 units associated with postnatal excess rainfall, but this advantage is not seen among rural, indigenous children. These findings highlight the need to consider developmental stage and social predictors as key components in public health interventions targeting increased climate change resilience.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), universally recognized as COVID-19, is currently is a global issue. Our study uses multivariate regression for determining the relationship between the ambient environment and COVID-19 cases in Lima. We also forecast the pattern trajectory of COVID-19 cases with variables using an Auto-Regressive Integrated Moving Average Model (ARIMA). There is a significant association between ambient temperature and PM10 and COVID-19 cases, while no significant correlation has been seen for PM2.5. All variables in the multivariate regression model have R-2 = 0.788, which describes a significant exposure to COVID-19 cases in Lima. ARIMA (1,1,1), during observation time of PM2.5, PM10, and average temperature, is found to be suitable for forecasting COVID-19 cases in Lima. This result indicates that the expected high particle concentration and low ambient temperature in the coming season will further facilitate the transmission of the coronavirus if there is no other policy intervention. A suggested sustainable policy related to ambient environment and the lessons learned from different countries to prevent future outbreaks are also discussed in this study.
Extreme floods pose multiple direct and indirect health risks. These risks include contamination of water, food, and the environment, often causing outbreaks of diarrheal disease. Evidence regarding the effects of flooding on individual diarrhea-causing pathogens is limited, but is urgently needed in order to plan and implement interventions and prioritize resources before climate-related disasters strike. This study applied a causal inference approach to data from a multisite study that deployed broadly inclusive diagnostics for numerous high-burden common enteropathogens. Relative risks (RRs) of infection with each pathogen during a flooding disaster that occurred at one of the sites-Loreto, Peru-were calculated from generalized linear models using a comparative interrupted time series framework with the other sites as a comparison group and adjusting for background seasonality. During the early period of the flood, increased risk of heat-stable enterotoxigenic E. coli (ST-ETEC) was identified (RR = 1.73 [1.10, 2.71]) along with a decreased risk of enteric adenovirus (RR = 0.36 [0.23, 0.58]). During the later period of the flood, sharp increases in the risk of rotavirus (RR = 5.30 [2.70, 10.40]) and sapovirus (RR = 2.47 [1.79, 3.41]) were observed, in addition to increases in transmission of Shigella spp. (RR = 2.86 [1.81, 4.52]) and Campylobacter spp. (RR = 1.41 (1.01, 1.07). Genotype-specific exploratory analysis reveals that the rise in rotavirus transmission during the flood was likely due to the introduction of a locally atypical, non-vaccine (G2P[4]) strain of the virus. Policy-makers should target interventions towards these pathogens-including vaccines as they become available-in settings where vulnerability to flooding is high as part of disaster preparedness strategies, while investments in radical, transformative, community-wide, and locally-tailored water and sanitation interventions are also needed.
OBJECTIVE: In 2011-2012, severe El Niño Southern Oscillation (ENSO) conditions (La Niña) led to massive flooding and temporarily displacement in the Peruvian Amazon. Our aims were to examine the impact of this ENSO exposure on child diets, in particular: (1) frequency of food consumption patterns, (2) the amount of food consumed (g/d), (3) dietary diversity (DD), (4) consumption of donated foods, among children aged 9-36 months living in the outskirts of City of Iquitos in the Amazonian Peru. DESIGN: This was a longitudinal study that used quantitative 24-h recall dietary data collection from children aged 9-36 months from 2010 to 2014 as part of the MAL-ED birth cohort study. SETTING: Iquitos, Loreto, Peru. PARTICIPANTS: Two hundred and fifty-two mother-child dyads. RESULTS: The frequency of grains, rice, dairy and sugar in meals reduced by 5-7 %, while the frequency of plantain in meals increased by 24 % after adjusting for covariates. ENSO exposure reduced girl’s intake of plantains and sugar. Despite seasonal fluctuations in the availability of fruits, vegetables and fish, DD remained constant across seasons and as children aged. However, DD was significantly reduced under moderate La Niña conditions by 0·32 (P < 0·05) food groups. Adaptive social strategies such as consumption of donated foods were significantly higher among households with girls. CONCLUSIONS: This is the first empirical study to show differential effect of the ENSO on the dietary patterns of children, highlighting differences by gender. Public health nutrition programmes should be climate- and gender-sensitive in their efforts to safeguard the diets of vulnerable populations.