It is now widely accepted that we are in a climate emergency, and the number of people who are concerned about this problem is growing. Yet, qualitative, in-depth studies to investigate the emotional response to climate change were conducted either in high-income, western countries, or in low-income countries particularly vulnerable to climate change. To our knowledge, there are no qualitative studies conducted in countries that share great barriers to decarbonization while being significant contributors to carbon emissions. Since climate change affects people globally, it is crucial to study this topic in a variety of socio-political contexts. In this work, we discuss views and reflections voiced by highly concerned residents of Poland, a Central European country that is a major contributor to Europe’s carbon emissions. We conducted 40 semi-structured interviews with Polish residents, who self-identified as concerned about climate change. A variety of emotions related to climate change were identified and placed in the context of four major themes: dangers posed by climate change, the inevitability of its consequences, attributions of responsibility, and commonality of concern. Our findings highlight a variety of often ambivalent and conflicting emotions that change along with the participant’s thoughts, experiences and behaviours. Furthermore, we describe a wide repertoire of coping strategies, which promoted well-being and sustained long-term engagement in climate action. As such, our work contributes to research on a broad array of climate-related emotions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12144-022-03807-3.
Aim: The aim of the first Polish pilot study was to conduct an initial analysis of the occurrence of mental issues related to such experiences as: fear, worry, sense of loss and grief in connection with climate change and ecology. The consequences of climate and environmental changes for physical health are increasingly well-documented. In contrast, psychosocial changes due to climate change and, in particular, the impact on mental health, remain unrecognized. Material and method: Psychologists and psychotherapists were asked to share their clinical experience in diagnosing and treatment of patients reporting climate change-related mental symptoms. Climate change-related mental issues were operationalized as clinically significant symptoms meeting the criteria for anxiety and depressive disorders or adjustment disorders, and are known in literature as a solastalgia and ecological anxiety. The collection of data with the use of an on-line survey started lasted 4 months. Results: Issues relating to ecology and climate change were present both in the contents of patient concerns (48.6% of respondents) and in patients’ hypotheses regarding their symptoms (16.7% of respondents) in the past 6 months of the respondents’ clinical work. Mental health professionals considered psychoeducation (62.5%), psychological support (73.6%), short-term psychotherapy (45.8%) and self-help groups (40.3%) to be appropriate mental health support interventions. Discussion: The presented study provides evidence that mental health issues related to climate change are recognized by Polish psychologists and psychotherapists. The professionals can need comprehensive knowledge of climate-related mental health, including appropriate interventions. Conclusions: These findings may be a ground for designing further research on this topic.
The work describes diurnal meteorological and biometeorological conditions in June 2019 in the urban areas of Central Europe. UTCI, STI, Oh_H, WL, and OV indices were calculated based on 24-h data from Bydgoszcz (Poland) for hot days. The degree of risk connected with heat stress of different intensities, risk of hyperthermia, body water loss, and decreased oxygen volume was determined. The studies showed that June 2019 was an example of an extreme situation with a heatwave that generated high stress for the inhabitants of urban areas. The conditions were burdensome mostly due to “very strong” and “strong” heat stress and periodic risk of dehydration, situations that could quickly lead to overheating of the body and a decreased oxygen volume leading to stress.
The vast majority of studies on heat-related mortality are focused on large cities. The aim of this study is to fill this research gap and to estimate the impact of high temperatures on the risk of death in smaller towns and villages. The results show that increased mortality is not only a problem in large cities. The risk of death, although usually slightly lower than in highly populated areas, may be higher for the age-related risk group. At temperatures above 35 degrees C, it may exceed 1.3 in smaller towns and even 1.6 in villages. The increase in mortality during five selected heat waves of high intensity and long duration was also studied for two regions of Poland: Malopolska and Wielkopolska. Towns with a population of less than 10,000 in Malopolska region, during the 2006 heatwave, experienced an increase in the number of deaths by as much as 18%. At the same time in the largest city of Malopolska-Krakow, the death toll rose by 4%. This paper also presents some differences between regions in terms of the impact of heat waves: in the lowland region of Wielkopolska, the mortality rate is generally higher than in the upland region of Malopolska.
The study objective was to characterise human-biometeorological conditions in the summer season in the period 1966-2019 in Poland, with particular consideration of June 2019. The study was conducted based on data from the Institute of Meteorology and Water Management-National Research Institute (IMGW-PIB) for the years 1966-2019. The data provided the basis for the calculation of the Universal Thermal Climate Index (UTCI). The study revealed high spatial variability of human-biometeorological conditions in Poland, with strenuous character intensifying from the north to the south of the country. An increase in UTCI in the summer season was recorded in the studied multi-annual period. It was the most intensive in the north-eastern Poland. The consequence of the observed changes was an increase in the frequency of days with heat stress categories (days with UTCI > 26.0 degrees C), and a decrease in the frequency of days with cold stress categories (days with UTCI < 9.0 degrees C). Season 2019 stood out at the scale of the entire country in the context of the multi-annual period. This particularly concerns June, when mean monthly UTCI values were the highest in the analysed multi-annual period.
Greening and green regeneration have been developed as a major strategy for improving quality of life in cities and neighbourhoods. Greening policies and projects are being applied at both the citywide and the neigh-bourhood level for various reasons, such as adaptation to climate change and the improvement of housing and living conditions as well as wellbeing and health. Urban policies, plans, and programmes have increasingly employed greening strategies to make urban neighbourhoods more attractive, to improve quality of life, and to provide residents with recreational space. At the same time, greening is increasingly “exploited” by market -oriented regeneration and construction strategies. The new critical debates on eco-gentrification-or distribu-tional, procedural, and interactional injustices-are discussing emerging conflicts or trade-offs between green regeneration and the social or housing market impacts, as well as analysing the role of greening and green regeneration with respect to the (re)production of socio-spatial inequalities and injustices.Set against this background, our paper provides a comparative analysis of two cases-L acute accent odz acute accent Stare Polesie (Poland) and Leipzig’s inner east (Germany)-and has a threefold purpose: first, it seeks to analyse in-terconnections between greening policies and justice concerns. To operationalise the aforementioned in-terconnections, we will, second, develop an operational model that looks at interconnections as a process and applies a justice perspective that focuses on a multidimensional, intersectional, relational, and context-and policy-sensitive understanding of justice. Third, the paper seeks to detect how a contrasting comparison can help us to come to a better and more comprehensive understanding of the interconnections between green regen-eration and justice. The study itself builds on primary research about the two cases from earlier projects.
Dermacentor reticulatus ticks are one of the most important vectors and reservoirs of tick-borne pathogens in Europe. Changes in the abundance and range of this species have been observed in the last decade and these ticks are collected in areas previously considered tick-free. This may be influenced by progressive climate change. Eastern Poland is an area where the local population of D. reticulatus is one of the most numerous among those described so far. At the same time, the region is characterized by a significant increase in the mean air temperature in recent years (by 1.81 °C in 2020) and a decrease in the average number of days with snow cover (by 64 days in 2020) and in the number of days with frost (by 20 days in 2020) on an annual basis compared to the long-term average. The aim of our research was to investigate the rhythms of seasonal activity and the population size of D. reticulatus in the era of progressive climate change. To this end, questing ticks were collected in 2017-2020. Next, the weather conditions in the years of observation were analyzed and compared with multi-year data covering 30 years preceding the study. The research results show that, in eastern Poland, there is a stable population of D. reticulatus with the peak of activity in spring or autumn (up to a maximum of 359 individuals within 30 min of collection) depending on the year of observation. Ticks of this species may also be active in winter months. The activity of D. reticulatus is influenced by a saturation deficit.
INTRODUCTION: Lyme disease is the most common tick-borne disease, caused by spirochetes of the genus Borrelia, transmitted by ticks of the Ixodes genus. According to ECDC, Poland should be considered as an endemic area. The risk of Lyme disease incidence in-creases with tick habitats increase, which is a response to environmental factors and climate change. AIM OF THE STUDY: The aim of the study is to assess the epidemiological situation of Lyme disease in Poland in 2018 compared to the situation in previous years. MATERIAL AND METHODS: The epidemiological situation of Lyme disease in Poland was assessed on the basis of the data sent to NIPH-NIH by voivodeship sanitary-epidemiological stations and published in the bulletin ‘Infectious diseases and poisoning in Poland in 2018’ . RESULTS: In 2018; 20,150 Lyme disease cases was registered, 2,124 people were hospitalized. You can also see an increase in cases in the second and third quarter in favor of the fourth quarter. The epidemiological situation in Western European countries is similar to the situation in Poland. SUMMARY AND CONCLUSION: The inability to determine the clear trend of the epidemiological situation in Poland indicates the sensitivity of the surveillance system, but also the difficulty in new cases diagnosis. You can also see a decrease in the number of cases, which may be a sign of having the right tools or experience in the Lyme disease diagnosis.
INTRODUCTION: Lyme disease is caused by Borrelia spirochetes transmitted by ticks of the genus Ixodes. In Poland, Lyme disease is the most common tick-borne disease. The entire territory of Poland is recognized by ECDC as an endemic area of Lyme disease. Environmental factors and climate change are responsible for the increase in the number of tick habitats, which leads to an increased risk of Lyme disease. AIM OF THE STUDY: The aim of the study is to present the epidemiological situation of Lyme disease in Poland in 2019 compared to the previous year. MATERIAL AND METHODS: The analysis of the epidemiological situation of Lyme disease in Poland was based on data sent to NIPH NIH – NRI by voivodeship sanitary-epidemiological stations and published in the bulletin “Infectious diseases and poisoning in Poland in 2019.” RESULTS: In 2019, 20,630 cases of Lyme disease were registered, and 1,701 people were hospitalized. Compared to 2018, there was a shift in the incidence from the first and second quarter to the fourth quarter. The highest incidence of 107.7 / 100,000 population was recorded in the Podlaskie voivodeship, which has belonged to the voivodeships with the highest incidence in the country for many years. Despite an increase in the total number of cases by 2.4% compared to 2018, the percentage of hospitalized cases was lower than in the previous year. SUMMARY AND CONCLUSION: Difficulties in the diagnosis of Lyme disease make it impossible to define an unequivocal trend in the epidemiological situation in Poland. A slight increase in the incidence may result from the growing number of infected ticks and a better understanding of the problem of Lyme diagnosis by doctors.
The paper analyses the temporal and spatial variability of the Universal Thermal Climate Index (UTCI) in Poland in summer. Summer is the season with the highest intensity of tourism traffic that is why it is important to determine biometeorological conditions, especially in popular tourist destinations such as coastal, mountain and urban areas, in the times of climate changes. The analysis was based on data from 18 stations of IMGW-PIB (Institute of Meteorology and Water Management-National Research Institute), distributed evenly in the territory of the country, and representing all eight bioclimatic regions. The data include air temperature, relative humidity, wind velocity and cloudiness at 12 UTC from summer months: June, July and August from the years 2001-2018. Thermoneutral zone was the most frequently occurring UTCI class in Poland. It was recorded during 56-75% of summer days (with the exception of mountain stations, where it occurred on 30-35% of days). Moderate heat stress is the second most frequently occurring category with a frequency from 18 to 29% with the exception of mountain and coastal areas. Extreme and very strong cold stress occurred particularly in high mountain stations, and was sporadically observed at the coast of the Baltic Sea; however, the occurrence of such conditions decreases, which if favourable for beach tourism. No cases of extreme heat stress were recorded in any of the stations. The most unfavourable bioclimatic conditions were characteristic of the Upland Region (IV), represented by Kraków and Sandomierz, where very strong heat stress occurred with a 10% frequency. This is a limitation for urban tourism in those regions. The highest UTCI values were recorded in Kraków on 17 July 2007 and 29 July 2005. The highest number of cases with strong and very strong heat stress was recorded in 2015 as a consequence of the heat wave observed in Poland in the first half of August. In the majority of the analysed stations, in the second half of the analysed period (2010-2018), an increase in the number of days with strong and very strong heat stress was observed in comparison with the first half of period (2001-2009). The highest frequency of such days was observed in July. Based on the data, there are 4 potential periods of occurrence of such days, with two most intense being 26. July-13 August and 14-22 July.
The aim of the study was to establish to what extent extreme thermal conditions have changed and how they affected mortality, and what conditions favor lower mortality rates or conversely, higher mortality rates. Heat/cold exposure was measured with the Universal Thermal Climate Index (UTCI). Daily mortality and meteorological data for 8 large Polish cities (Bia?ystok, Gda?sk, Kraków, Lublin, ?ód?, Pozna?, Warszawa, and Wroc?aw) in the period 1975-2014 were analyzed. Generalized additive models were used to investigate the relationship between UTCI and mortality, and TBATS models were used for the evaluation of time series UTCI data. Most of the cities experienced a clear and statistically significant at p???0.05 decrease in cold stress days of 0.8-3.3 days/year and an increase in the frequency of thermal heat stress days of 0.3-0.6 days/year until 1992-1994. There was a clear difference as regards the dependence of mortality on UTCI between cities located in the “cooler” eastern part of Poland and the “warmer” central and western parts. “Cool” cities were characterized by a clear thermal optimum, approx. in the range of 5-30 °C UTCI, changing slightly depending on cause of death, age, or sex. For UTCI over 32 °C, in most of the cities except Gda?sk and Lublin, the relative risk of death (RR) rose by 10 to 20%; for UTCI over 38 °C, RR rose to 25-30% in central Poland. An increase in mortality on cold stress days was noted mainly in the “cool” cities: RR of total mortality increased even by 9-19% under extreme cold stress.
Significant changes in climate variables in the last decades resulted in changes of perceived climate conditions. However, there are only few studies discussing long-lasting changes in bioclimatic conditions. Thus, the purpose of this paper is to present the temporal and spatial distribution of hazardous heat and cold stress conditions in different regions of Poland. Its focus is on long-lasting changes in such conditions in the period 1951-2018. To assess changes in hazardous thermal stress conditions, the Universal Thermal Climate Index (UTCI) was used. UTCI values at 12 UTC hour (respectively 1 pm winter time, 2 pm summer time) were calculated daily based on air temperature, relative humidity, total cloud cover and wind speed at 24 stations representing the whole area of Poland. We found that the greatest changes were observed in minimum (1.33 °C/10 years) and average (0.52 °C/10 years) UTCI values as well as in cold stress frequency (- 4.00 days per 10 years). The changes vary seasonally and regionally. The greatest increase in UTCImin and decrease in cold stress days were noted from November to March and had the highest values in north-east and east Poland, and also in the foothills of the Carpathian Mountains. The trends in maximum UTCI are much smaller and not always positive. The spatially averaged trend in UTCImax for Poland as a whole was 0.35 °C/10 years and the increase in heat stress days was 0.80 days/10 years. The highest increases in UTCImax and heat stress days were noted in eastern and south-eastern Poland.
The occurrence of long-lasting severe heat stress, such as in July-August 2003, July 2010, or in April-May 2018 has been one of the biggest meteorological threats in Europe in recent years. The paper focuses on the biometeorological and mortality effects of the hot June that was observed in Central Europe in 2019. The basis of the study was hourly and daily Universal Thermal Climate Index (UTCI) values at meteorological stations in Poland for June 2019. The average monthly air temperature and UTCI values from 1951 to 2018 were analysed as background. Grosswetterlagen calendar of atmospheric circulation was used to assess synoptic conditions of heat wave. Several heat strain measures were applied : net heat storage (S), modelled heart rate (HR), sultriness (HSI), and UTCI index. Actual total mortality (TM) and modelled strong heat-related mortality (SHRM) were taken as indicators of biometeorological consequences of the hot June in 2019. The results indicate that prolonged persistence of unusually warm weather in June 2019 was determined by the synoptic conditions occurring over the European region and causing advection of tropical air. They led to the emergence of heat waves causing 10% increase in TM and 5 times bigger SHRM then in preceding 10 years. Such increase in SHRM was an effect of overheating and overload of circulatory system of human organism.
This work analyses the temporal and spatial characteristics of bioclimatic conditions in the Lower Silesia region. The daily time values (12UTC) of meteorological variables in the period 1966-2017 from seven synoptic stations of the Institute of Meteorology and Water Management (IMGW) (Jelenia Góra, K?odzko, Legnica, Leszno, Wroc?aw, Opole, ?nie?ka) were used as the basic data to assess the thermal stress index UTCI (Universal Thermal Climate Index). The UTCI can be interpreted by ten different thermal classes, representing the bulk of these bioclimatic conditions. Stochastic autoregressive moving-average modelling (ARMA) was used for the statistical analysis and modelling of the UTCI as well as separately for all meteorological components. This made it possible to test differences in predicting UTCI as a full index or reconstructing it from single meteorological variables. The results show an annual and seasonal variability of UTCI for the Lower Silesia region. Strong significant spatial correlations in UTCI were also found in all stations of the region. “No thermal stress” is the most commonly occurring thermal class in this region (about 38%). Thermal conditions related to cold stress classes occurred more frequently (all cold classes at about 47%) than those of heat stress classes (all heat classes at about 15%). Over the available 52-year period, the occurrence of “extreme heat stress” conditions was not detected. Autoregressive analysis, although successful in predicting UTCI, was nonetheless unsuccessful in reconstructing the wind speed, which showed a persistent temporal correlation possibly due to its vectorial origin. We conclude thereby that reconstructing UTCI using linear autoregressive methods is more suitable when working directly on the UTCI as a whole rather than reconstructing it from single variables.
Previous studies have demonstrated that plants are a very good indicator of global environmental variations. The responses of many plant species to climate change are confirmed by aerobiological research. This paper presents an analysis of many parameters of pollen seasons in the Amaranthaceae family based on measurements of pollen concentrations in atmospheric air. Pollen samples were collected with the volumetric method at a sampling site in Lublin (Poland) in 2001-2019. The obtained data were verified using statistical analyses. Moreover, the presence of pollenkitt on the pollen grain surface was examined in fresh anthers using scanning electron and light microscopes, since there are some difficulties in identification of Amaranthaceae pollen grains deposited on microscopic slides in aerobiological analysis. The pollen season in Amaranthaceae began on average on June 23 and ended on October 5, i.e. it lasted 105 days. The peak value and annual pollen sum were characterized by the highest variability in the study years in comparison with other season characteristics. The annual pollen sum was in the range from 183 to 725. Maximum concentrations were most often recorded in the second half of August, which is associated with the greatest risk of development of pollen allergy symptoms in sensitive subjects during this period. The results obtained in the 19-year study revealed that the pollen seasons began 14 days earlier. Similarly, the end of the season was accelerated by 24 days. The response of these plants to climate change also include the reduced pollen production by representatives of this family, which was manifested by a decrease in the annual sum of daily airborne pollen concentrations, on average by 35%, and a reduction in the maximum pollen concentration, on average by more than 60%. We found that temperature in May and June had an effect on pollen release, and relative air humidity in May influenced pollen concentrations. We noted significant similarities in the pollen release rate during the last 8 years of the study. The scanning electron microscopy examinations showed that the pollen grain surface in the representative of this family was covered completely or partially with pollenkitt. Hence, the apertures characteristic for pollen in this family were poorly visible. The presence of pollenkitt on the surface of these polyaperturate pollen grains may play an important role in preventing water loss during pollen migration in the air. Our research has demonstrated the response of plants flowering in summer to climate change. The results not only have practical importance for public health in the aspect of allergy risk but can also help to assess environmental changes.