The Sahelian zone of Senegal experienced heat waves in the previous decades, such as 2013, 2016 and 2018 that were characterised by temperatures exceeding 45°C for up to 3 successive days. The health impacts of these heat waves are not yet analysed in Senegal although their negative effects have been shown in many countries. This study analyses the health impacts of observed extreme temperatures in the Sahelian zone of the country, focusing on morbidity and mortality by combining data from station observation, climate model projections, and household survey to investigate heat wave detection, occurrence of climate-sensitive diseases and risk factors for exposure. To do this, a set of climatic (temperatures) and health (morbidity, mortality) data were collected for the months of April, May and June from 2009 to 2019. These data have been completed with 1246 households’ surveys on risk factor exposure. Statistical methods were used to carry out univariate and bivariate analyses while cartographic techniques allowed mapping of the main climatic and health indicators. The results show an increase in temperatures compared to seasonal normal for the 1971-2000 reference period with threshold exceedances of the 90th percentiles (42°C) for the maxima and (27°C) the minima and higher temperatures during the months of May and June. From health perspective, it was noted an increase in cases of consultation in health facilities as well as a rise in declared morbidity by households especially in the departments of Kanel (17.7%), Ranérou (16.1 %), Matam (13.7%) and Bakel (13.7%). The heat waves of May 2013 were also associated with cases of death with a reported mortality (observed by medical staff) of 12.4% unequally distributed according to the departments with a higher number of deaths in Matam (25, 2%) and in Bakel (23.5%) than in Podor (8.4%) and Kanel (0.8%). The morbidity and mortality distribution according to gender shows that women (57%) were more affected than men (43%). These health risks have been associated with a number of factors including age, access to drinkable water, type of fuel, type of housing and construction materials, existence of fan and an air conditioner, and health history.The heat wave recurrence has led to a frequency in certain diseases sensitive to rising temperatures, which is increasingly a public health issue in the Sahelian zone of Senegal.
Several vector-borne diseases, such as malaria, are sensitive to climate and weather conditions. When unusual conditions prevail, for example, during periods of heavy rainfall, mosquito populations can multiply and trigger epidemics. This study, which consists of better understanding the link between malaria transmission and climate factors at a national level, aims to validate the VECTRI model (VECtor borne disease community model of ICTP, TRIeste) in Senegal. The VECTRI model is a grid-distributed dynamical model that couples a biological model for the vector and parasite life cycles to a simple compartmental Susceptible-Exposed-Infectious-Recovered (SEIR) representation of the disease progression in the human host. In this study, a VECTRI model driven by reanalysis data (ERA-5) was used to simulate malaria parameters, such as the entomological inoculation rate (EIR) in Senegal. In addition to the ERA5-Land daily reanalysis rainfall, other daily rainfall data come from different meteorological products, including the CPC Global Unified Gauge-Based Analysis of Daily Precipitation (CPC for Climate Prediction Center), satellite data from the African Rainfall Climatology 2.0 (ARC2), and the Climate Hazards InfraRed Precipitation with Station data (CHIRPS). Observed malaria data from the National Malaria Control Program in Senegal (PNLP/Programme National de Lutte contre le Paludisme au Senegal) and outputs from the climate data used in this study were compared. The findings highlight the unimodal shape of temporal malaria occurrence, and the seasonal malaria transmission contrast is closely linked to the latitudinal variation of the rainfall, showing a south-north gradient over Senegal. This study showed that the peak of malaria takes place from September to October, with a lag of about one month from the peak of rainfall in Senegal. There is an agreement between observations and simulations about decreasing malaria cases on time. These results indicate that the southern area of Senegal is at the highest risk of malaria spread outbreaks. The findings in the paper are expected to guide community-based early-warning systems and adaptation strategies in Senegal, which will feed into the national malaria prevention, response, and care strategies adapted to the needs of local communities.
Malaria is a constant reminder of the climate change impacts on health. Many studies have investigated the influence of climatic parameters on aspects of malaria transmission. Climate conditions can modulate malaria transmission through increased temperature, which reduces the duration of the parasite’s reproductive cycle inside the mosquito. The rainfall intensity and frequency modulate the mosquito population’s development intensity. In this study, the Liverpool Malaria Model (LMM) was used to simulate the spatiotemporal variation of malaria incidence in Senegal. The simulations were based on the WATCH Forcing Data applied to ERA-Interim data (WFDEI) used as a point of reference, and the biased-corrected CMIP6 model data, separating historical simulations and future projections for three Shared Socio-economic Pathways scenarios (SSP126, SSP245, and SSP585). Our results highlight a strong increase in temperatures, especially within eastern Senegal under the SSP245 but more notably for the SSP585 scenario. The ability of the LMM model to simulate the seasonality of malaria incidence was assessed for the historical simulations. The model revealed a period of high malaria transmission between September and November with a maximum reached in October, and malaria results for historical and future trends revealed how malaria transmission will change. Results indicate a decrease in malaria incidence in certain regions of the country for the far future and the extreme scenario. This study is important for the planning, prioritization, and implementation of malaria control activities in Senegal.
OBJECTIVE: The aim of this study is to find the most suitable heat wave definition among 15 different ones and to evaluate its impact on total, age-, and gender-specific mortality for Bandafassi, Senegal. METHODS: Daily weather station data were obtained from Kedougou situated at 17 km from Bandafassi from 1973 to 2012. Poisson generalized additive model (GAM) and distributed lag non-linear model (DLNM) are used to investigate the effect of heat wave on mortality and to evaluate the nonlinear association of heat wave definitions at different lag days, respectively. RESULTS: Heat wave definitions, based on three or more consecutive days with both daily minimum and maximum temperatures greater than the 90th percentile, provided the best model fit. A statistically significant increase in the relative risk (RRs 1.4 (95% Confidence Interval (CI): 1.2-1.6), 1.7 (95% CI: 1.5-1.9), 1.21 (95% CI: 1.08-1.3), 1.2 (95% CI: 1.04-1.5), 1.5 (95% CI: 1.3-1.8), 1.4 (95% CI: 1.2-1.5), 1.5 (95% CI: 1.07-1.6), and 1.5 (95% CI: 1.3-1.8)) of total mortality was observed for eight definitions. By using the definition based on the 90th percentile of minimum and maximum temperature with a 3-day duration, we also found that females and people aged ? 55 years old were at higher risks than males and other different age groups to heat wave related mortality. CONCLUSION: The impact of heat waves was associated with total-, age-, gender-mortality. These results are expected to be useful for decision makers who conceive of public health policies in Senegal and elsewhere. Climate parameters, including temperatures and humidity, could be used to forecast heat wave risks as an early warning system in the area where we conduct this research. More broadly, our findings should be highly beneficial to climate services, researchers, clinicians, end-users and decision-makers.
BACKGROUND: In malaria endemic areas, identifying spatio-temporal hotspots is becoming an important element of innovative control strategies targeting transmission bottlenecks. The aim of this work was to describe the spatio-temporal variation of malaria hotspots in central Senegal and to identify the meteorological, environmental, and preventive factors that influence this variation. METHODS: This study analysed the weekly incidence of malaria cases recorded from 2008 to 2012 in 575 villages of central Senegal (total population approximately 500,000) as part of a trial of seasonal malaria chemoprevention (SMC). Data on weekly rainfall and annual vegetation types were obtained for each village through remote sensing. The time series of weekly malaria incidence for the entire study area was divided into periods of high and low transmission using change-point analysis. Malaria hotspots were detected during each transmission period with the SaTScan method. The effects of rainfall, vegetation type, and SMC intervention on the spatio-temporal variation of malaria hotspots were assessed using a General Additive Mixed Model. RESULTS: The malaria incidence for the entire area varied between 0 and 115.34 cases/100,000 person weeks during the study period. During high transmission periods, the cumulative malaria incidence rate varied between 7.53 and 38.1 cases/100,000 person-weeks, and the number of hotspot villages varied between 62 and 147. During low transmission periods, the cumulative malaria incidence rate varied between 0.83 and 2.73 cases/100,000 person-weeks, and the number of hotspot villages varied between 10 and 43. Villages with SMC were less likely to be hotspots (OR?=?0.48, IC95%: 0.33-0.68). The association between rainfall and hotspot status was non-linear and depended on both vegetation type and amount of rainfall. The association between village location in the study area and hotspot status was also shown. CONCLUSION: In our study, malaria hotspots varied over space and time according to a combination of meteorological, environmental, and preventive factors. By taking into consideration the environmental and meteorological characteristics common to all hotspots, monitoring of these factors could lead targeted public health interventions at the local level. Moreover, spatial hotspots and foci of malaria persisting during LTPs need to be further addressed. TRIAL REGISTRATION: The data used in this work were obtained from a clinical trial registered on July 10, 2008 at www.clinicaltrials.gov under NCT00712374.