Togo, in west Africa, is vulnerable to the impacts of climate change, but has made a negligible contribution to causing it. Togo ratified the Paris Agreement in 2017, committing to submit Nationally Determined Contributions (NDCs) that outline Togo’s climate change mitigation commitment. Togo’s capital, Lomé, as well as other areas of Togo have ambient air pollutant levels exceeding World Health Organisation guidelines for human health protection, and 91 % of Togolese households cook using solid biomass, elevating household air pollution exposure. In Togo’s updated NDC, submitted in 2021, Togo acknowledges the importance and opportunity of achieving international climate change mitigation targets in ways that improve air quality and achieve health benefits for Togo’s citizens. The aim of this work is to evaluate priority mitigation measures in an integrated assessment of air pollutant, Short-Lived Climate Pollutant (SLCP) and Greenhouse Gas (GHG) emissions to identify their effectiveness in simultaneously reducing air pollution and Togo’s contribution to climate change. The mitigation assessment quantifies emissions for Togo and Grand Lomé from all major source sectors for historical years between 2010 and 2018, for a baseline projection to 2030 and for mitigation scenarios evaluating ten mitigation measures. The assessment estimates that Togo emitted ~21 million tonnes of GHG emissions in 2018, predominantly from the energy and Agriculture, Forestry and Other Land Use sectors. GHG emissions are projected to increase 42 % to 30 million tonnes in 2030 without implementation of mitigation policies and measures. The implementation of the ten identified priority mitigation measures could reduce GHG emissions by ~20 % in 2030 compared to the baseline, while SLCPs and air pollutants were estimated to be reduced more, with a more than 75 % reduction in black carbon emissions in 2030. This work therefore provides a clear pathway by which Togo can reduce its already small contribution to climate change while simultaneously achieving local benefits for air quality and human health in Togo and Grand Lomé.
Recurrent floods have become a major problem in the transboundary Lower Mono River catchment of Togo and Benin, causing more damage and loss of life than any other disaster in the area. The level of understanding about floods and their management can be as diverse as the groups within the communities and thus can present a variety of perspectives. People tend to perceive flood risk and management differently due to their proximity to flood-prone areas and their level of vulnerability as well as their capacity to adapt. Therefore, this study explores the specific perspectives of local communities and experts on floods in the transboundary Mono catchment, which can help to inform better adaptation strategies according to the contexts of each community. We conducted series of focus groups discussions (FGDs) using the Actors, Resources, Dynamics, and Interactions (ARDI) framework to develop mental models of flood management. This approach allowed us to identify the causes and impact of flooding in the area, and to describe the actors and effects of flood events on the main natural resources as well as the dynamics and interactions that drive change and influence flood management in the study area. The results indicate that the perceptions of local communities and experts show both similarities and differences. These differences include (1) perceptions of relevant direct actors, (2) perceptions of resources at stake, and (3) actor-specific resource utilization. Considering these dissimilar views between expert and local community knowledge systems appears to be an important contributing factor to improving flood mitigation efforts in the catchment. Adapting risk communication and measures taken for flood management in accordance with the perceptions of affected communities could greatly increase success, with positive long-term effects for the involved institutions and communities regarding mutual trust-building.
BACKGROUND: This study aimed to assess the seasonality of confirmed malaria cases in Togo and to provide new indicators of malaria seasonality to the National Malaria Control Programme (NMCP). METHODS: Aggregated data of confirmed malaria cases were collected monthly from 2008 to 2017 by the Togo’s NMCP and stratified by health district and according to three target groups: children < 5 years old, children ≥ 5 years old and adults, and pregnant women. Time series analysis was carried out for each target group and health district. Seasonal decomposition was used to assess the seasonality of confirmed malaria cases. Maximum and minimum seasonal indices, their corresponding months, and the ratio of maximum/minimum seasonal indices reflecting the importance of malaria transmission, were provided by health district and target group. RESULTS: From 2008 to 2017, 7,951,757 malaria cases were reported in Togo. Children < 5 years old, children ≥ 5 years old and adults, and pregnant women represented 37.1%, 57.7% and 5.2% of the confirmed malaria cases, respectively. The maximum seasonal indices were observed during or shortly after a rainy season and the minimum seasonal indices during the dry season between January and April in particular. In children < 5 years old, the ratio of maximum/minimum seasonal indices was higher in the north, suggesting a higher seasonal malaria transmission, than in the south of Togo. This is also observed in the other two groups but to a lesser extent. CONCLUSIONS: This study contributes to a better understanding of malaria seasonality in Togo. The indicators of malaria seasonality could allow for more accurate forecasting in malaria interventions and supply planning throughout the year.