Explore By

This site uses cookies.

This site uses cookies to improve your online experience. To learn more about how we use cookies, please see our terms of use.

Protecting Your Employees From Extreme Heat

Protecting Employee Mental Health Amid Climate Challenges

Global Status of Multi-Hazard Early Warning Systems 2024

The State of the World’s Children 2024

Young People’s Guide to Climate Change and Children’s Health

2024 State of Climate Services: Five-year Progress Report (2019–2024)

The 2024 report of the Lancet Countdown on health and climate change: facing record-breaking threats from delayed action

Is there an association between hot weather and poor mental health outcomes? A systematic review and meta-analysis

A systematic review of ambient heat and sleep in a warming climate

Mental health and Climate Change: Policy Brief

Mental Health And Our Changing Climate: Impacts, Implications, and Guidance

Review of Health in National Adaptation Plans

Born into the Climate Crisis: Why we must act now to secure children’s rights

People Exposed to Climate Change: June-August 2024

U.S Climate and Health Outlook: October 2024

Designing For Natural Hazards: A Resilience Guide For Builders & Developers – U.S

Kids and Climate Health Zone

Heat and Health: Action Statement from the Global Heat Health Information Network

Urban Climate-Health Action: A New Approach to Protecting Health in the Era of Climate Change

From Risk to Resilience: Unlocking Climate and Health Finance for Local Health Adaptation

Resilient Cities Network 2022-2023 Impact Report

Case Study: Anticipatory Action to Reduce the Impact of Extreme Weather Events on Health

CCC Mid-Program Impact Report

UNICEF Heatwave Evolution Monitor: Tracking heatwave indicators and children’s exposure (1960s-2020s)

U.S. National Heat Strategy 2024-2030

Climate and Health Outcomes Research Data Systems (CHORDS)

Climate Change and Health in Durham Region: Understanding the local health impacts of climate change

United Nations Secretary-General’s Call to Action on Extreme Heat

A Threat to Progress: Confronting the effects of climate change on child health and well-being

Detection & Attribution of Climate Change Impacts on Human Health

Resilient Cities at the Intersection of Climate and Health

Health Canada: Wildfire smoke with extreme heat

Alertable – NSEM

The Climate Explorer (Version 3.1)

Climate Mapping for Resilience and Adaptation (CMRA)

City Climate Action Plan Analysis in Latin America and the Caribbean

Report at a glance: Ensuring safety and health at work in a changing climate

Health, Climate and Environment in Latin America and the Caribbean

Plan de Acción Climática Bogotá 2020 -2050 / Climate Action Plan for Bogotá 2020 -2050

State of the Climate in Latin America and the Caribbean 2023

National Oceanic and Atmospheric Administration Equitable Climate Services Action Plan

Urban adaptation in Europe: what works?

The Increasing Risks to Our People-Powered Economy

El Niño in the Americas: Protecting health and promoting resilience

The 2023 Latin America report of the Lancet Countdown on health and climate change: the imperative for health-centred climate-resilient development

European State of the Climate 2023

Ensuring safety and health at work in a changing climate

Intervention North Carolina Healthy & Resilient Communities Initiative (NC HRCI)

PERSIST: Climate School Educational Intervention on Youth Climate Emotions

Stichting Klimaat Psychologie: For sustainable insights and green behavioral change

Mental Health Effects due to the Double burden of COVID-19 and Extreme Heat and Drought in Afghanistan

A feasibility study of the use of Umbiflow™ to assess the impact of heat stress on fetoplacental blood flow in field studies

OBJECTIVE: To evaluate the use of UmbiFlow™ in field settings to assess the impact of heat stress on umbilical artery resistance index (RI). METHODS: This feasibility study was conducted in West Kiang, The Gambia, West Africa; a rural area with increasing exposure to extreme heat. We recruited women with singleton fetuses who performed manual tasks (such as farming) during pregnancy to an observational cohort study. The umbilical artery RI was measured at rest, and during and at the end of a typical working shift in women at 28 weeks or more of pregnancy. Adverse pregnancy outcomes (APO) were classified as stillbirth, preterm birth, low birth weight, or small for gestational age, and all other outcomes as normal. RESULTS: A total of 40 participants were included; 23 normal births and 17 APO. Umbilical artery RI demonstrated a nonlinear relationship to heat stress, with indication of a potential threshold value for placental insufficiency at 32°C by universal thermal climate index and 30°C by wet bulb globe temperature. CONCLUSIONS: The Umbiflow device proved to be an effective field method for assessing placental function. Dynamic changes in RI may begin to explain the association between extreme heat and APO with an identified threshold of effect.

An analysis of past and future heatwaves based on a heat-associated mortality threshold: Towards a heat health warning system

Heatwaves can have severe impacts on human health extending from illness to mortality. These health effects are related to not only the physical phenomenon of heat itself but other characteristics such as frequency, intensity, and duration of heatwaves. Therefore, understanding heatwave characteristics is a crucial step in the development of heat-health warning systems (HHWS) that could prevent or reduce negative heat-related health outcomes. However, there are no South African studies that have quantified heatwaves with a threshold that incorporated a temperature metric based on a health outcome. To fill this gap, this study aimed to assess the spatial and temporal distribution and frequency of past (2014 – 2019) and future (period 2020 – 2039) heatwaves across South Africa. Heatwaves were defined using a threshold for diurnal temperature range (DTR) that was found to have measurable impacts on mortality. In the current climate, inland provinces experienced fewer heatwaves of longer duration and greater intensity compared to coastal provinces that experienced heatwaves of lower intensity. The highest frequency of heatwaves occurred during the austral summer accounting for a total of 150 events out of 270 from 2014 to 2019. The heatwave definition applied in this study also identified severe heatwaves across the country during late 2015 to early 2016 which was during the strongest El Niño event ever recorded to date. Record-breaking global temperatures were reported during this period; the North West province in South Africa was the worst affected experiencing heatwaves ranging from 12 to 77 days. Future climate analysis showed increasing trends in heatwave events with the greatest increases (80%-87%) expected to occur during summer months. The number of heatwaves occurring in cooler seasons is expected to increase with more events projected from the winter months of July and August, onwards. The findings of this study show that the identification of provinces and towns that experience intense, long-lasting heatwaves is crucial to inform development and implementation of targeted heat-health adaptation strategies. These findings could also guide authorities to prioritise vulnerable population groups such as the elderly and children living in high-risk areas likely to be affected by heatwaves.

How climate change may threaten progress in neonatal health in the African region

Climate change is likely to have wide-ranging impacts on maternal and neonatal health in Africa. Populations in low-resource settings already experience adverse impacts from weather extremes, a high burden of disease from environmental exposures, and limited access to high-quality clinical care. Climate change is already increasing local temperatures. Neonates are at high risk of heat stress and dehydration due to their unique metabolism, physiology, growth, and developmental characteristics. Infants in low-income settings may have little protection against extreme heat due to housing design and limited access to affordable space cooling. Climate change may increase risks to neonatal health from weather disasters, decreasing food security, and facilitating infectious disease transmission. Effective interventions to reduce risks from the heat include health education on heat risks for mothers, caregivers, and clinicians; nature-based solutions to reduce urban heat islands; space cooling in health facilities; and equitable improvements in housing quality and food systems. Reductions in greenhouse gas emissions are essential to reduce the long-term impacts of climate change that will further undermine global health strategies to reduce neonatal mortality.

Heat exposure and child nutrition: Evidence from West Africa

Extreme heat shocks are increasingly linked to poor economic and health outcomes. This paper constructs hour-degree bins of temperature exposure to assess the effects of extreme heat on early child nutrition, a health outcome correlated with educational attainment and income in adulthood. Linking 15 rounds of repeated cross-section data from five West African countries to geo-coded weather data, we find that extreme heat exposure increases the prevalence of both chronic and acute malnutrition. We find that a 2 degrees C rise in temperature will increase the prevalence of stunting by 7.4 percentage points, reversing the progress made on improving nutrition during our study period.

Near-term regional climate change in east Africa

In the coming few decades, projected increases in global temperature and humidity are generally expected to exacerbate human exposure to climate extremes (e.g., humid-heat and rainfall extremes). Despite the growing risk of humid-heat stress (measured by wet-bulb temperature), it has received less attention in East Africa, where arid and semi-arid climatic conditions prevail. Moreover, no consensus has yet been reached across models regarding future changes in rainfall over this region. Here, we screen Global Climate Models (GCMs) from CMIP5 and CMIP6 and use, for boundary conditions, simulations from only those GCMs that simulate successfully recent climatic trends. Based on these GCMs and Regional Climate Model (RCM) simulations, we project that annual mean temperature is likely to rise by 2 celcius toward midcentury (2021-2050) at a faster rate than the global average (about 1.5 celcius), under the RCP8.5 and SSP5-8.5 scenarios, associated with more frequent and severe climate extremes. In particular, low-lying regions in East Africa will be vulnerable to severe heat stress, with an extreme wet-bulb temperature approaching or exceeding the US National Weather Service’s extreme danger threshold of 31 celcius. On the other hand, population centers in the highlands of Ethiopia will receive significantly more precipitation during the autumn season and will see more extreme rainfall events, with implications for flooding and agriculture. The robustness of these results across all GCM and RCM simulations, and for both of CMIP5 and CMIP6 frameworks (CMIP: Coupled Model Inter-comparison Project) supports the reliability of these future projections. Our simulations of near-term climate change impacts are designed to inform the development of sound adaptation strategies for the region.

Utilization of greenhouse effect for the treatment of COVID-19 contaminated disposable waste – A simple technology for developing countries

Countries with abundant solar radiation have the potential to invest in simple technologies for deactivation of many bacteria and viruses in medical solid waste. In addition to the traditional Infection and Prevention Control (IPC) measures, these simple technologies contribute to better protection of health care workers in countries with compromised solid management schemes. Monitoring of temperature, relative humidity and ultraviolet inside containers soundly designed to collect disposal infectious waste illustrated to deactivate several viruses and bacteria. Casanova et al., 2010, used some surrogate viruses to overcome the challenges of working with SARS-CoV, concluded that by temperature above 40 °C most of viruses become below levels of detection after 90 min. Here we are proposing a model of a simple transparent container almost 200 L in volume that allow solar energy to be accumulated inside. In summer conditions in the testing site, temperature inside the container reached above 50 °C when the ambient air temperature was around 30 °C. The container was built using epoxy glass to guarantee maximum heat penetration. Actual temperature measurement inside the container was measured in real time against ambient air temperature. We present a mathematical model for predication of maximum temperature at different positions inside the container and their relation to different ambient air temperature scenarios. The mathematical formulas used are based on the conservation laws and a good agreement of a full month of field measurements were obtained. Even in winter conditions in many of developing countries air temperature can maintain levels above 20 °C, which will produce temperature around 30 °C and viruses can reach levels below detection limit in maximum 3 h.

Exploring strategies for investigating the mechanisms linking climate and individual-level child health outcomes: An analysis of birth weight in Mali

The goal of this article is to consider data solutions to investigate the differential pathways that connect climate/weather variability to child health outcomes. We apply several measures capturing different aspects of climate/weather variability to different time periods of in utero exposure. The measures are designed to capture the complexities of climate-related risks and isolate their impacts based on the timing and duration of exposure. Specifically, we focus on infant birth weight in Mali and consider local weather and environmental conditions associated with the three most frequently posited potential drivers of adverse health outcomes: disease (malaria), heat stress, and food insecurity. We focus this study on Mali, where seasonal trends facilitate the use of measures specifically designed to capture distinct aspects of climate/weather conditions relevant to the potential drivers. Results indicate that attention to the timing of exposures and employing measures designed to capture nuances in each of the drivers provides important insight into climate and birth weight outcomes, especially in the case of factors impacted by precipitation. Results also indicate that high temperatures and low levels of agricultural production are consistently associated with lower birth weights, and exposure to malarious conditions may increase likelihood of nonlive birth outcomes.

Concurrent heat waves and extreme ozone (o(3)) episodes: Combined atmospheric patterns and impact on human health

More recurrent heat waves and extreme ozone (O(3)) episodes are likely to occur during the next decades and a key question is about the concurrence of those hazards, the atmospheric patterns behind their appearance, and their joint effect on human health. In this work, we use surface maximum temperature and O(3) observations during extended summers in two cities from Morocco: Casablanca and Marrakech, between 2010 and 2019. We assess the connection between these data and climate indices (North Atlantic Oscillation (NAO), Mediterranean Oscillation (MO), and Saharan Oscillation (SaO)). We then identify concurrent heat waves and O(3) episodes, the weather type behind this concurrence, and the combined health risks. Our findings show that the concurrence of heat waves and O(3) episodes depends both on the specific city and the large-scale atmospheric circulation. The likely identified synoptic pattern is when the country is under the combined influence of an anticyclonic area in the north and the Saharan trough extending the depression centered in the south. This pattern generates a warm flow and may foster photochemical pollution. Our study is the first step toward the establishment of an alert system. It will help to provide recommendations for coping with concurrent heat waves and air pollution episodes.

Between the rich and poor: Exposure and adaptation to heat stress across two urban neighbourhoods in Nigeria

With heat stress as a notable climate-related challenge in Africa, the need to limit heat exposure and enhance adaptation becomes important. Behavioural responses and heat-resistant characteristics of residential buildings are key aspects of exposure and adaptation to heat stress. We report a study that investigates heat exposure and adaptation responses across two neighbourhoods of different socio-economic status in Akure, Nigeria. The study involved a survey of 70 residents in each of the neighbourhoods. The study shows differences and commonalities in personal behavioural responses to heat stress, further revealing that education (p < 0.000), household income (p < 0.001) and gender (p < 0.002) were significant predictors of behavioural responses. Heat-resistant features in dwellings in both neighbourhoods were also identified. The poorer neighbourhood was more disadvantaged in this regard as their housing features did not completely prevent heat exposure. People in the richer neighbourhood, much more than the poorer one, were able to include features such as A/C, ceramic tiles, shady plants to cope with heat. These findings highlight intra-urban inequality in heat exposure and adaptation. They show the need for initiatives towards improved awareness and comprehensive retrofitting of dwellings to enhance their heat-resistant capacity.A

Climate change and young people in Uganda: A literature review

The disruptions of anthropogenic climate change are increasingly severe. People living in sub-Saharan Africa are especially exposed to these risks, and amongst them young people. It is well established that climate disruptions have the potential to halt education, displace populations, and wreck infrastructure. This rigorous literature review focuses on climate change in the landlocked East African country of Uganda, demographically the world’s third youngest country, where young people struggle to get by due to insufficient work opportunities. Extended to other countries in the Eastern and Central African region, the review considers what is known about the intersection of youth livelihoods and climate change; young people’s susceptibility to climate disruption due to limited resources and livelihood options; and the constraints around their responses. The review findings suggest the need for substantial youth informed interventions to bolster young people’s economic resilience and adaptive capacity given the worsening climate change and prolonged population growth.

Monitoring and moderating extreme indoor temperatures in low-income urban communities

Climate change presents significant threats to human health, especially for low-income urban communities in the Global South. Despite numerous studies of heat stress, surprisingly little is known about the temperatures actually encountered by people in their homes, or the benefits of affordable adaptations. This paper examines indoor air temperature measurements gathered from 47 living rooms within eight low-income communities of Accra and Tamale, Ghana. Using multiple temperature indices and a tiered analysis, we evaluate indoor temperature variations linked to roof type, ceiling insulation, presence of fans, and tree shade, for different housing types and locations. Our data reveal indoor temperatures in the range 22.4 degrees C to 45.9 degrees C for Accra, and 22.2 degrees C to 43.0 degrees C in Tamale. Using dummy regression analysis, we find that tree shade reduces the number of very hot days (>40 degrees C) and nights (>30 degrees C) by about 12 and 15 d per year, respectively. Building materials also strongly moderate indoor temperatures but in opposing ways: rooms with traditional mud walls and thatch roofs are on average 4.5 degrees C cooler than rooms in concrete block houses with uninsulated metal roofs during the day but are 1.5 degrees C warmer at night; rooms with ceiling insulation are on average 6.9 degrees C cooler in the day but 1.4 degrees C warmer at night. We conclude that sub-daily data are necessary for reporting extreme indoor temperatures, and that trade-offs between minimum and maximum temperatures require interventions to be assessed carefully before attempting to counter extreme heat inside homes.

Increasing global temperatures threaten gains in maternal and newborn health in Africa: A review of impacts and an adaptation framework

Anatomical, physiologic, and socio-cultural changes during pregnancy and childbirth increase vulnerability of women and newborns to high ambient temperatures. Extreme heat can overwhelm thermoregulatory mechanisms in pregnant women, especially during labor, cause dehydration and endocrine dysfunction, and compromise placental function. Clinical sequelae include hypertensive disorders, gestational diabetes, preterm birth, and stillbirth. High ambient temperatures increase rates of infections, and affect health worker performance and healthcare seeking. Rising temperatures with climate change and limited resources heighten concerns. We propose an adaptation framework containing four prongs. First, behavioral changes such as reducing workloads during pregnancy and using low-cost water sprays. Second, health system interventions encompassing Early Warning Systems centered around existing community-based outreach; heat-health indicator tracking; water supplementation and monitoring for heat-related conditions during labor. Building modifications, passive and active cooling systems, and nature-based solutions can reduce temperatures in facilities. Lastly, structural interventions and climate financing are critical. The overall package of interventions, ideally selected following cost-effectiveness and thermal modeling trade-offs, needs to be co-designed and co-delivered with affected communities, and take advantage of existing maternal and child health platforms. Robust-applied research will set the stage for programs across Africa that target pregnant women. Adequate research and climate financing are now urgent.

Mixed methods study into social impacts of work-related heat stress on Ghanaian mining workers: A pragmatic research approach

Although mixed methods research proves significant in understanding complex social phenomenon, inadequate research has explored its utility in heat exposure studies. The convergent mixed methods analysis comprising 320 surveys and two focus group interviews were used to evaluate the social impacts of occupational heat stress on Ghanaian mineworkers to enlighten policy choices for the purpose of complementarity. The study contributes to mixed methods study by affirming the practical use of between-method triangulation and complementarity. The merged quantitative and qualitative results also showed adequate corroboration and complementarity between both data, to illustrate the social impacts of work-related heat stress on mining workers as heat-related comorbidity, productive capacity loss, anxiety, slow pace of work, and inadequate social well-being. The mixed methods results would inform policy options on the health and safety of work settings, managing occupational heat stress, and adaptation guidelines in the mining industry.

Heatwaves in Kenya 1987-2016: Facts from CHIRTS high resolution satellite remotely sensed and station blended temperature dataset

As global temperatures continue to rise unabated, episodes of heat-related catastrophes across the world have intensified. In Kenya, heatwave phenomena and their associated impacts are ignored and neglected due to several reasons, including unreliable and inconsistent weather datasets and heatwave detection metrics. Based on CHIRTS satellite infrared estimates and station blended temperature, this study investigated the spatiotemporal distribution of the heatwave events over Kenya during 1987-2016 using the Heatwave Magnitude Index daily (HWMId). The results showed that contrary to the absence of heatwave records in official national and international disaster database about Kenya, the country experienced heatwaves ranging from less severe (normal) to deadly (super-extreme) between 1987 and 2016. The most affected areas were located in the eastern parts of the country, especially in Garissa and Tana River, and in the west-northern side around the upper side of Turkana county. It was also found that the recent years’ heatwaves were more severe in magnitude, duration, and spatial extent. The highest magnitude of the heatwaves was recorded in 2015 (HWMId = 22.64) while the average over the reference period is around 6. CHIRTS and HWMId were able to reveal and capture most critical heatwave events over the study period. Therefore, they could be used respectively as data source and detection metrics, for heatwaves disaster emergency warning over short period as well as for long-term projection to provide insight for adaptation strategies.

Urban thermal perception and self-reported health effects in Ibadan, south west Nigeria

The ability of poor urban populations in developing countries to adapt to rapid increase in surface temperature and likely health effect of a 1.5 °C increase in global temperature is uncertain. Rapid urbanization and poor socio, economic, and technological development may increase heat vulnerabilities of poor urban populations in tropical cities. This study examines the thermal perception of urban populations in Ibadan, south western Nigeria, and sociodemographic characteristics of individuals that influence thermal perception, self-reported health effects, and coping strategies to heat stress using a purposefully designed questionnaire and interviews with aged individuals in the five local government areas of Ibadan metropolis. Differences in sociodemographic characteristics of respondents such as inequalities in monthly income, occupation, ethnicity, housing characteristics, and length of stay in Ibadan significantly influence thermal perception, self-reported health effects of heat exposure, and coping strategies adopted. Perceived thermal conditions reported were warmer temperatures during the day and night (43.75%), warmer day-time temperatures (40.25%), and warmer night-time temperatures (16%). Dehydration and sweating (56%): heat rash, heat exhaustion, headaches, sleep disturbances and dehydration (15.25%), and sleep disturbance and sweating (12.25%) were major combinations of self-reported health effects. Other effects include fainting, diarrhea, raised blood pressure, and restlessness. Temperature variations (minimum and maximum) examined from 1971 to 2018 shows that warmer conditions are being experienced in Ibadan. Increased heat-health awareness and urban designs that respond to people’s thermal perception should be encouraged in developing thermally comfortable environments in Ibadan.

Heat waves and health risks in the northern part of Senegal: Analysing the distribution of temperature-related diseases and associated risk factors

The Sahelian zone of Senegal experienced heat waves in the previous decades, such as 2013, 2016 and 2018 that were characterised by temperatures exceeding 45°C for up to 3 successive days. The health impacts of these heat waves are not yet analysed in Senegal although their negative effects have been shown in many countries. This study analyses the health impacts of observed extreme temperatures in the Sahelian zone of the country, focusing on morbidity and mortality by combining data from station observation, climate model projections, and household survey to investigate heat wave detection, occurrence of climate-sensitive diseases and risk factors for exposure. To do this, a set of climatic (temperatures) and health (morbidity, mortality) data were collected for the months of April, May and June from 2009 to 2019. These data have been completed with 1246 households’ surveys on risk factor exposure. Statistical methods were used to carry out univariate and bivariate analyses while cartographic techniques allowed mapping of the main climatic and health indicators. The results show an increase in temperatures compared to seasonal normal for the 1971-2000 reference period with threshold exceedances of the 90th percentiles (42°C) for the maxima and (27°C) the minima and higher temperatures during the months of May and June. From health perspective, it was noted an increase in cases of consultation in health facilities as well as a rise in declared morbidity by households especially in the departments of Kanel (17.7%), Ranérou (16.1 %), Matam (13.7%) and Bakel (13.7%). The heat waves of May 2013 were also associated with cases of death with a reported mortality (observed by medical staff) of 12.4% unequally distributed according to the departments with a higher number of deaths in Matam (25, 2%) and in Bakel (23.5%) than in Podor (8.4%) and Kanel (0.8%). The morbidity and mortality distribution according to gender shows that women (57%) were more affected than men (43%). These health risks have been associated with a number of factors including age, access to drinkable water, type of fuel, type of housing and construction materials, existence of fan and an air conditioner, and health history.The heat wave recurrence has led to a frequency in certain diseases sensitive to rising temperatures, which is increasingly a public health issue in the Sahelian zone of Senegal.

Climate change knowledge, concerns and experiences in secondary school learners in South Africa

Climate change poses a major threat to the future of today’s youth. Globally, young people are at the forefront of climate change activism. Their ability to engage, however, depends on the level of knowledge of climate change and concern about the topic. We sought to examine levels of knowledge and concerns about climate change among youth in South Africa, and their experiences of heat exposure. Ten questions on climate change knowledge, concerns and experiences were nested within a cross-sectional survey conducted in a cluster randomised trial among 924 secondary school learners in 14 public schools in low-income Western Cape areas. Learners’ mean age was 15.8 years and they were predominately female. While 72.0% of respondents knew that climate change leads to higher temperatures, only 59.7% agreed that human activity is responsible for climate change, and 58.0% believed that climate change affects human health. Two thirds (68.7%) said that climate change is a serious issue and 65.9% indicated action is needed for prevention. Few learners indicated climate change events had affected them, although many reported difficulties concentrating during hot weather (72.9%). Female learners had lower knowledge levels than male learners, but more frequent heat-related symptoms. Learners scoring high on knowledge questions expressed the most concern about climate change and had the highest heat impacts. Many youth seem unaware that climate change threatens their future. Heat-related symptoms are common, likely undermining educational performance, especially as temperatures escalate. More is needed to mainstream climate change into South African school curricula.

Characteristics and long-term trends of heat stress for South Africa

Increasing air temperature coupled with high humidity due to ongoing climate change across most parts of South Africa is likely to induce and intensify heat exposure, particularly in densely populated areas. The adverse health implications, including heatstroke, are expected to be common and more severe during extreme heat and heat wave events. The present study was carried out to examine heat stress conditions and long-term trends in South Africa. The study aimed to identify geographical locations exposed to elevated heat stress based on over two decades of hourly ground-based data. Selected heat stress indicators were calculated based on Steadman’s apparent temperature (AT in degrees C). The trends in AT were assessed based on the non-parametric Mann-Kendall (MK) trend test at 5% significance level. Positive trends were detected in 88% of the selected weather stations except in Welkom-FS, Ficksburg-FS, Langebaanweg-WC, Lambertsbaai Nortier-WC, Skukuza-MP, and Thabazimbi-LP. Approximately 47% of the detected positive trends are statistically significant at 5% significant level. Overall, high climatological annual median (ATmed) values (>32 degrees C) were observed at 42 stations, most of which are in low altitude regions, predominately along the coastlines. The hottest towns with ATmed values in the danger category (i.e., 39-50 degrees C) were found to be Patensie-EC (41 degrees C), Pietermaritzburg-KZN (39 degrees C), Pongola-KZN (39 degrees C), Knysna-WC (39 degrees C), Hoedspruit-LP (39 degrees C), Skukuza-MP (45 degrees C), and Komatidraai-MP (44 degrees C). The results provide insight into heat stress characteristics and pinpoint geographical locations vulnerable to heat stress conditions at the community level in South Africa. Such information can be useful in monitoring hotspots of heat stress and contribute to the development of local heat-health adaptation plans.

Ambient temperature during pregnancy and risk of maternal hypertensive disorders: A time-to-event study in Johannesburg, South Africa

Hypertensive disorders in pregnancy are a leading cause of maternal and perinatal mortality and morbidity. We evaluate the effects of ambient temperature on risk of maternal hypertensive disorders throughout pregnancy. We used birth register data for all singleton births (22-43 weeks’ gestation) recorded at a tertiary-level hospital in Johannesburg, South Africa, between July 2017-June 2018. Time-to-event analysis was combined with distributed lag non-linear models to examine the effects of mean weekly temperature, from conception to birth, on risk of (i) high blood pressure, hypertension, or gestational hypertension, and (ii) pre-eclampsia, eclampsia, or HELLP (hemolysis, elevated liver enzymes, low platelets). Low and high temperatures were defined as the 5th and 95th percentiles of daily mean temperature, respectively. Of 7986 women included, 844 (10.6%) had a hypertensive disorder of which 432 (51.2%) had high blood pressure/hypertension/gestational hypertension and 412 (48.8%) had pre-eclampsia/eclampsia/HELLP. High temperature in early pregnancy was associated with an increased risk of pre-eclampsia/eclampsia/HELLP. High temperature (23 °C vs 18 °C) in the third and fourth weeks of pregnancy posed the greatest risk, with hazard ratios of 1.76 (95% CI 1.12-2.78) and 1.79 (95% CI 1.19-2.71), respectively. Whereas, high temperatures in mid-late pregnancy tended to protect against pre-eclampsia/eclampsia/HELLP. Low temperature (11°) during the third trimester (from 29 weeks’ gestation) was associated with an increased risk of high blood pressure/hypertension/gestational hypertension, however the strength and statistical significance of low temperature effects were reduced with model adjustments. Our findings support the hypothesis that high temperatures in early pregnancy increase risk of severe hypertensive disorders, likely through an effect on placental development. This highlights the need for greater awareness around the impacts of moderately high temperatures in early pregnancy through targeted advice, and for increased monitoring of pregnant women who conceive during periods of hot weather.

Lack of vegetation exacerbates exposure to dangerous heat in dense settlements in a tropical African city

Both climate change and rapid urbanization accelerate exposure to heat in the city of Kampala, Uganda. From a network of low-cost temperature and humidity sensors, operational in 2018-2019, we derive the daily mean, minimum and maximum Humidex in order to quantify and explain intra-urban heat stress variation. This temperature-humidity index is shown to be heterogeneously distributed over the city, with a daily mean intra-urban Humidex Index deviation of 1.2 degrees C on average. The largest difference between the coolest and the warmest station occurs between 16:00 and 17:00 local time. Averaged over the whole observation period, this daily maximum difference is 6.4 degrees C between the warmest and coolest stations, and reaches 14.5 degrees C on the most extreme day. This heat stress heterogeneity also translates to the occurrence of extreme heat, shown in other parts of the world to put local populations at risk of great discomfort or health danger. One station in a dense settlement reports a daily maximum Humidex Index of >40 degrees C in 68% of the observation days, a level which was never reached at the nearby campus of the Makerere University, and only a few times at the city outskirts. Large intra-urban heat stress differences are explained by satellite earth observation products. Normalized Difference Vegetation Index has the highest (75%) power to predict the intra-urban variations in daily mean heat stress, but strong collinearity is found with other variables like impervious surface fraction and population density. Our results have implications for urban planning on the one hand, highlighting the importance of urban greening, and risk management on the other hand, recommending the use of a temperature-humidity index and accounting for large intra-urban heat stress variations and heat-prone districts in urban heat action plans for tropical humid cities.

Combining environmental and social dimensions in the typomorphological study of urban resilience to heat stress

Over the past years, cities have become more prone to extreme and frequent heatwaves. In this regard, urban form plays an important role and several typomorphological classifications have been developed to describe the urban form characteristics that can exacerbate heat stress and influence people’s health and comfort negatively (i.e. the environmental dimension of heat-stress resilience). Nevertheless, evidence from past heatwave disasters indicates that other urban form characteristics, not included in existing typomorphological classifications, can significantly affect heat-stress resilience by influencing the conditions of social interaction and the state of social ties and solidarities in urban neighborhoods (i.e. the social dimension). Therefore, this paper proposes a broader approach combining the aforementioned environmental and social dimensions in the classification of urban form types; and demonstrates its application in a real-world case by developing a data-driven typomorphological classification that complements existing ones with the missing social dimension. The results showed the possi-bility of numerically identifying neighborhood types that, through distinct urban form characteristics, have different potentials for enhancing the social dimension of heat-stress resilience. This has direct planning and design relevance as the quantifiable characteristics of these types can be translated into guidelines/rules and incorporated into local regulations/codes.

A literature review of the impacts of heat stress on human health across Africa

Heat stress-related illness attributed to the changing climate, particularly the more frequent extreme high temperatures, is becoming a theme of public concern, especially in the most vulnerable regions, such as the African continent. Knowledge of the existing research directions and gaps on heat stress and human health is vital for informing future strategic research foci capable of influencing policy development, planning, adaptation, and mitigation efforts. In this regard, a bibliometric analysis was conducted, with an emphasis on Africa, to assess regional research contributions to heat stress impacts on human health. The goals of the study were to review publication growth and patterns of the scientific publications and to identify key players (especially collaborating institutions and countries) and the evolution of research themes on the African continent, while paying attention to global trends and emergent hot topics and methodology of heat stress research. Using the Web of Science (WoS) and Scopus core collection databases, a structured keyword search was undertaken, which yielded 463 and 58 research publications from around the world and Africa, respectively. The retrieved scientific documents, published between 1968 and 2020, were analyzed and visualized using a bibliometric analysis technique and the VOSviewer software tool. The results indicate low statistics and slow scientific growth in publication output, with the highest peak having been reached in 2018, resulting in 13 scientific publications. While global research collaborations are successfully reflected in the literature, there is a considerable gap in understanding heat stress and related collaborations between African countries and international institutions. The review study has identified key opportunities that can benefit Africa through the expansion of the scope of heat stress and human health research on the continent. These opportunities can be achieved by closing the following research gaps: (1) vulnerability assessments within demographic classes, such as the elderly, (2) personal exposure and associated risks, (3) Urban Heat Island (UHI) evaluation for urban environments, and (4) heat adaptation research, which will enable informed and targeted preventive actions that will limit future heat health impacts. The authors opine that the pursuit of such studies will be most impactful if the current knowledge gaps are bridged through transdisciplinary research supported by local, regional, and international collaborators.

Prediction of climate change effect on outdoor thermal comfort in arid region

Climate change and expected weather patterns in the long-term threaten the livelihood inside oases settlements in arid lands, particularly under the recurring heat waves during the harsh months. This paper investigates the impact of climate change on the outdoor thermal comfort within a multifamily housing neighborhood that is considered the most common residential archetype in Algerian Sahara, under extreme weather conditions in the summer season, in the long-term. It focuses on assessing the outdoor thermal comfort in the long-term, based on the Perceived Temperature index (PT), using simulation software ENVI-met and calculation model RayMan. Three different stations in situ were conducted and combined with TMY weather datasets for 2020 and the IPCC future projections: A1B, A2, B1 for 2050, and 2080. The results are performed from two different perspectives: to investigate how heat stress evolution undergoes climate change from 2020 till 2080; and for the development of a mathematical algorithm to predict the outdoor thermal comfort values in short-term, medium-term and long-term durations. The results indicate a gradual increase in PT index values, starting from 2020 and progressively elevated to 2080 during the summer season, which refers to an extreme thermal heat-stress level with differences in PT index averages between 2020 and 2050 (+5.9 degrees C), and 2080 (+7.7 degrees C), meaning no comfortable thermal stress zone expected during 2080. This study gives urban climate researchers, architects, designers and urban planners several insights into predicted climate circumstances and their impacts on outdoor thermal comfort for the long-term under extreme weather conditions, in order to take preventive measures for the cities’ planning in the arid regions.

Environmental heat stress on maternal physiology and fetal blood flow in pregnant subsistence farmers in the Gambia, West Africa: An observational cohort study

BACKGROUND: Anthropogenic climate change has caused extreme temperatures worldwide, with data showing that sub-Saharan Africa is especially vulnerable to these changes. In sub-Saharan Africa, women comprise 50% of the agricultural workforce, often working throughout pregnancy despite heat exposure increasing the risk of adverse birth outcomes. In this study, we aimed to improve understanding of the pathophysiological mechanisms responsible for the adverse health outcomes resulting from environmental heat stress in pregnant subsistence farmers. We also aimed to provide data to establish whether environmental heat stress also has physiological effects on the fetus. METHODS: We conducted an observational cohort study in West Kiang, The Gambia, at the field station for the Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine (named the MRC Keneba field station). Pregnant women who were aged 16 years or older and who were at <36 weeks' gestation of any gravida or parity were invited to participate in the study. Participants were eligible if they were involved in agricultural or related manual daily tasks of living. Participants were ineligible if they refused to provide consent, had multiple pregnancies (eg, if they had twins), were acutely unwell, or were diagnosed with pre-eclampsia or eclampsia. Heat stress was measured by wet bulb globe temperature (WBGT) and by using the universal thermal climate index (UTCI), and maternal heat strain was directly measured by modified physiological strain index calculated from heart rate and skin temperature. Outcome measures of fetal heart rate (FHR) and fetal strain (defined as a FHR >160 beats per min [bpm] or <115 bpm, or increase in umbilical artery resistance index) were measured at rest and during the working period. Multivariable repeated measure models (linear regression for FHR, and logistic regression for fetal strain) were used to evaluate the association of heat stress and heat strain with acute fetal strain. FINDINGS: Between Aug 26, 2019, and March 27, 2020, 92 eligible participants were recruited to the study. Extreme heat exposure was frequent, with average exposures of WBGT of 27·2°C (SD 3·6°C) and UTCI equivalent temperature of 34·0°C (SD 3·7°C). The total effect of UTCI on fetal strain resulted in an odds ratio (OR) of 1·17 (95% CI 1·09-1·29; p<0·0001), with an adjusted direct effect of OR of 1·12 (1·03-1·21; p=0·010) with each 1°C increase in UTCI. The adjusted OR of maternal heat strain on fetal strain was 1·20 (1·01-1·43; p=0·038), using the UTCI model, with each unit increase. INTERPRETATION: Data from our study show that decreasing maternal exposure to heat stress and heat strain is likely to reduce fetal strain, with the potential to reduce adverse birth outcomes. Further work that explores the association between heat stress and pregnancy outcomes in a variety of settings and populations is urgently needed to develop effective interventions. FUNDING: The Wellcome Trust.

Evaluation of passive cooling and thermal comfort in historical residential buildings in Zanzibar

Indoor thermal comfort is essential for occupants’ well-being, productivity, and efficiency. Global climate change is leading to extremely high temperatures and more intense solar radiation, especially in hot, humid areas. Passive cooling is considered to be one of the environmental design strategies by which to create indoor thermal comfort conditions and minimize buildings’ energy consumption. However, little evidence has been found regarding the effect of passive cooling on the thermal comfort of historical buildings in hot-dry or hot-humid areas. Therefore, we explored the passive cooling features (north-south orientation, natural ventilation, window shading, and light color painted walls) applied in historic residential buildings in Zanzibar and evaluated the residents’ thermal responses and comfort perception based on questionnaires and field surveys. The results showed that the average predicted mean votes (PMVs) were 1.23 and 0.85 for the two historical case study buildings; the average predicted percentages of dissatisfaction (PPD) were 37.35% and 20.56%, respectively. These results indicate that the thermal conditions were not within the acceptable range of ASHRAE Standard 55. Further techniques, such as the use of lime plaster, wash lime, and appropriate organization, are suggested for the improvement of indoor thermal comfort in historical buildings in Zanzibar. This study provides guidelines to assist architects in designing energy-efficient residential buildings, taking into account cultural heritage and thermal comfort in buildings.

The role of residential air circulation and cooling demand for electrification planning: Implications of climate change in sub-Saharan Africa

Nearly 1 billion people live without electricity at home. Energy poverty limits their ability to take autonomous actions to improve air circulation and the cooling of their homes. It is therefore important that electricity-access planners explicitly evaluate the current and future air circulation and cooling needs of energy-poor households, in addition to other basic energy needs. To address this issue, we combine climate, socio-economic, demographic and satellite data with scenario analysis to model spatially explicit estimates of potential cooling demand from households that currently lack access to electricity. We link these demand factors into a bottom-up electrification model for sub-Saharan Africa, the region with the world’s highest concentration of energy poverty. Accounting for cooling needs on top of baseline household demand implies that the average electrification investment requirements grow robustly (a scenario mean of 65.5% more than when considering baseline household demand only), mostly due to the larger generation capacity needed. Future climate change could increase the investment requirements by an additional scenario mean of 4%. Moreover, the share of decentralised systems as the lowest-cost electrification option falls by a scenario mean 4.5 percentage points of all new connections. The crucial determinants for efficient investment pathways are the adoption and use of cooling appliances, the extent of climate change, and the baseline electricity demand. Our results call for a more explicit consideration of climate-adaptative energy needs by infrastructure planners in developing countries.

Heat stress in Africa under high intensity climate change

Extreme weather events are major causes of loss of life and damage infrastructure worldwide. High temperatures cause heat stress on humans, livestock, crops and infrastructure. Heat stress exposure is projected to increase with ongoing climate change. Extremes of temperature are common in Africa and infrastructure is often incapable of providing adequate cooling. We show how easily accessible cooling technology, such as evaporative coolers, prevent heat stress in historic timescales but are unsuitable as a solution under climate change. As temperatures increase, powered cooling, such as air conditioning, is necessary to prevent overheating. This will, in turn, increase demand on already stretched infrastructure. We use high temporal resolution climate model data to estimate the demand for cooling according to two metrics, firstly the apparent temperature and secondly the discomfort index. For each grid cell we calculate the heat stress value and the amount of cooling required to turn a heat stress event into a non heat stress event. We show the increase in demand for cooling in Africa is non uniform and that equatorial countries are exposed to higher heat stress than higher latitude countries. We further show that evaporative coolers are less effective in tropical regions than in the extra tropics. Finally, we show that neither low nor high efficiency coolers are sufficient to return Africa to current levels of heat stress under climate change.

Potential impact of 1.5, 2 and 3°C global warming levels on heat and discomfort indices changes over Central Africa

Investigating the effects of the increased global warming through the lens of the Paris agreements would be of particular importance for Central African countries, which are already experiencing multiple socio-political and socio-economic constraints, but are also subject to severe natural hazards that interact to limit their adaptive capacity and thus increase their vulnerability to the adverse effects of climate change. This study explores changes in heat stress and the proportion of population at risk of discomfort over Central Africa, based on an ensemble-mean of high-resolution regional climate model simulations that cover a 30-year period, under 1.5, 2 and 3 °C Global Warming Levels (GWLs). The heat index was computed according to Rothfusz’s equation, while the discomfort index was obtained from Thom’s formula. The results show that throughout the year but with a predominance from March to August, the spatial extent of both heat and discomfort categories is projected to gradually increase according to the considered GWLs (nearly threefold for an increasing warming thresholds from 1.5 to 3 °C). As these heat conditions become more frequent, they lead to the emergence of days with potentially dangerous heat-related risks, where almost everyone feels discomfort due to heat stress. It thus appears that the majority of populations living in countries located along the Atlantic coast and in the northern and central part of the study area are likely to be more vulnerable to certain health problems, which could have repercussions on the socio-economic development of the sub-region through decreased workers’ productivity and increased cooling degree days. Overall, these heat-related risks are more extended and more frequent when the GWL reaches 2 °C and above.

Drought, psychosocial stress, and ecogeographical patterning: Tibial growth and body shape in Samburu (Kenyan) pastoralist children

Objectives This study of Samburu pastoralists (Kenya) employs a same-sex sibling design to test the hypothesis that exposure in utero to severe drought and maternal psychosocial stress negatively influence children’s growth and adiposity. As a comparison, we also hypothesized that regional climate contrasts would influence children’s growth and adiposity based on ecogeographical patterning. Materials and Methods Anthropometric measurements were taken on Samburu children ages 1.8-9.6 years exposed to severe drought in utero and younger same-sex siblings (drought-exposed, n = 104; unexposed, n = 109) in two regions (highland, n = 128; lowland, n = 85). Mothers were interviewed to assess lifetime and pregnancy-timed stress. Results Drought exposure associated to lower weight-for-age and higher adiposity. Drought did not associate to tibial growth on its own but the interaction between drought and region negatively associated to tibial growth in girls. In addition, drought exposure and historically low rainfall associated to tibial growth in sensitivity models. A hotter climate positively associated to adiposity and tibial growth. Culturally specific stressors (being forced to work too hard, being denied food by male kin) associated to stature and tibial growth for age. Significant covariates for child outcomes included lifetime reported trauma, wife status, and livestock. Discussion Children exposed in utero to severe drought, a hotter climate, and psychosocial stress exhibited growth differences in our study. Our results demonstrate that climate change may deepen adverse health outcomes in populations already psychosocially and nutritionally stressed. Our results also highlight the value of ethnography to identifying meaningful stressors.

Malnutrition pathway for the impact of in utero drought shock on child growth indicators in rural households

This paper evaluates the short-term health effects of in utero drought shock using repeated cross-section household data on Malawi. The main finding reveals that the effects of in utero harvest variability caused by rainfall shocks on child growth indices are driven by the deleterious effects of negative rainfall deviations, namely droughts. Negative rainfall deviation during the agricultural season prior to the gestational period of a child leads to a 21.8 per cent average local level reduction in age-standardized height scores, with the counterpart positive rainfall deviation having no apparent effect. The paper also uses harvest and consumption patterns to establish an important link between early-life malnutrition and growth serving as a precursor for the fetal period programming hypothesis in the literature. The direct impact of embryonic period shocks on growth provides supportive evidence on potential interaction between nutritional and environmental pathways.

Extreme Temperature Events (ETEs) in South Africa: A review

Extreme Temperature Events (ETEs), including heatwaves, warm spells, cold waves and cold spells, have disastrous impacts on human health and ecosystems. The frequency, intensity, and duration of ETEs is projected to increase due to climate change. However, very little research has been done on ETEs in South Africa, and only a few attempts have been made to identify and examine trends. Currently, ten known publications have examined ETEs across South Africa, the majority of which use the South African Weather Service (SAWS) climate database as the primary source. The general findings indicate that the incidence and duration of extreme warm temperatures are increasing, while cold extremes are decreasing. However, inconstancies exist in the indices used to identify ETEs, selection of meteorological stations, study period, and statistical methods used to examine trends. We review the methodological approaches to define ETEs, the extreme temperature indices adopted, the selection of meteorological stations, study periods, data quality and homogeneity, statistical trend analysis, and results. From these, we propose an approximate number of stations to adequately portray temperature variability on a national and regional level. Finally, we reflect on projections of ETEs under current climate change conditions, and the implications of cold and warm ETEs in a South African context.

Passive survivability under extreme heat events: The case of AlDarb Al Ahmar, Cairo

According to the Intergovernmental Panel on Climate Change (IPCC), the global mean temperature is expected to increase from 1.4°C to 5.8°C by 2100. The implications will be particularly significant in urban areas as indoor and outdoor comfort levels will be disrupted, leading to significant health impacts. One of the expected impacts is indoor overheating, as it has been identified as one of the major causes of thermal discomfort and is directly linked to the potential increase in mortality levels in the future. This paper focuses on the potential implications of increased overheating hours on human health in an old low-income residential neighborhood. We study the effect of three main factors: population coping capacity, building thermal performance, and human physiological response to heat exposure. This is achieved by examining an old low-income neighborhood in Cairo, Egypt, whose residents have limited cooling systems access. Results indicate higher overheating risks in older buildings with a projected increase of 18% in indoor temperature and higher health risks, especially for elderly residents. The study’s findings can be considered a starting point to examine the relationship between exposure duration, indoor air temperature range, and potential health risks for vulnerable urban communities with limited access to cooling mechanisms such as AC units.

Exploring relationships between drought and epidemic cholera in Africa using generalised linear models

BACKGROUND: Temperature and precipitation are known to affect Vibrio cholerae outbreaks. Despite this, the impact of drought on outbreaks has been largely understudied. Africa is both drought and cholera prone and more research is needed in Africa to understand cholera dynamics in relation to drought. METHODS: Here, we analyse a range of environmental and socioeconomic covariates and fit generalised linear models to publicly available national data, to test for associations with several indices of drought and make cholera outbreak projections to 2070 under three scenarios of global change, reflecting varying trajectories of CO(2) emissions, socio-economic development, and population growth. RESULTS: The best-fit model implies that drought is a significant risk factor for African cholera outbreaks, alongside positive effects of population, temperature and poverty and a negative effect of freshwater withdrawal. The projections show that following stringent emissions pathways and expanding sustainable development may reduce cholera outbreak occurrence in Africa, although these changes were spatially heterogeneous. CONCLUSIONS: Despite an effect of drought in explaining recent cholera outbreaks, future projections highlighted the potential for sustainable development gains to offset drought-related impacts on cholera risk. Future work should build on this research investigating the impacts of drought on cholera on a finer spatial scale and potential non-linear relationships, especially in high-burden countries which saw little cholera change in the scenario analysis.

Applying a wash risk assessment tool in a rural south African setting to identify risks and opportunities for climate resilient communities

Climate change threatens the health and well-being of populations. We conducted a risk assessment of two climate-related variables (i.e., temperature and rainfall) and associated water, sanitation and hygiene (WASH)-related exposures and vulnerabilities for people living in Mopani District, Limpopo province, South Africa. Primary and secondary data were applied in a qualitative and quantitative assessment to generate classifications of risk (i.e., low, medium, or high) for components of hazard/threat, human exposure, and human vulnerability. Climate-related threats were likely to impact human health due to the relatively high risk of waterborne diseases and WASH-associated pathogens. Vulnerabilities that increased the susceptibility of the population to these adverse outcomes included environmental, human, physical infrastructure, and political and institutional elements. People of low socio-economic status were found to be least likely to cope with changes in these hazards. By identifying and assessing the risk to sanitation services and water supply, evidence exists to inform actions of government and WASH sector partners. This evidence should also be used to guide disaster risk reduction, and climate change and human health adaptation planning.

Malaria metrics distribution under global warming: Assessment of the vectri malaria model over Cameroon

Malaria is a critical health issue across the world and especially in Africa. Studies based on dynamical models helped to understand inter-linkages between this illness and climate. In this study, we evaluated the ability of the VECTRI community vector malaria model to simulate the spread of malaria in Cameroon using rainfall and temperature data from FEWS-ARC2 and ERA-interim, respectively. In addition, we simulated the model using five results of the dynamical downscaling of the regional climate model RCA4 within two time frames named near future (2035-2065) and far future (2071-2100), aiming to explore the potential effects of global warming on the malaria propagation over Cameroon. The evaluated metrics include the risk maps of the entomological inoculation rate (EIR) and the parasite ratio (PR). During the historical period (1985-2005), the model satisfactorily reproduces the observed PR and EIR. Results of projections reveal that under global warming, heterogeneous changes feature the study area, with localized increases or decreases in PR and EIR. As the level of radiative forcing increases (from 2.6 to 8.5 W.m(-2)), the magnitude of change in PR and EIR also gradually intensifies. The occurrence of transmission peaks is projected in the temperature range of 26-28 °C. Moreover, PR and EIR vary depending on the three agro-climatic regions of the study area. VECTRI still needs to integrate other aspects of disease transmission, such as population mobility and intervention strategies, in order to be more relevant to support actions of decision-makers and policy makers.

Climate change-mediated heat stress vulnerability and adaptation strategies among outdoor workers

The study examined the effect of heat stress on the well-being of outdoor workers and their coping strategies. A cross-sectional survey study was conducted between September 2019 and December 2019 to collect data from outdoor workers including hawkers and traffic wardens from 13 urban areas (N = 322) and analyzed using SPSS v.23. The results of the study show that most of the outdoor workers were in a good health state based on their self-health assessment. However, the respondents expressed concerns and symptoms of heat stress including heat cramps, heat exhaustion, heat stroke and sleep disorders. The findings also show that male outdoor workers were 1.3 times more likely than females to be affected by heat stress. Respondents in their 20s were more likely to be affected by heat stress, as a result of temperatures and humidity conditions, than those in their 30s (OR = 0.389, CI = 0.158-0962) and 40s (OR = 0.395, CI = 0.147-1.063). Coping strategies identified include the use of breathable cotton attires, drinking a lot of water, hiding under shades and reducing outdoor activity intermittently.

Incidence, drivers and global health implications of the 2019/2020 yellow fever sporadic outbreaks in Sub-Saharan Africa

The 2019 and 2020 sporadic outbreaks of yellow fever (YF) in Sub-Saharan African countries had raised a lot of global health concerns. This article aims to narratively review the vector biology, YF vaccination program, environmental factors and climatic changes, and to understand how they could facilitate the reemergence of YF. This study comprehensively reviewed articles that focused on the interplay and complexity of YF virus (YFV) vector diversity/competence, YF vaccine immunodynamics and climatic change impacts on YFV transmission as they influence the 2019/2020 sporadic outbreaks in Sub-Saharan Africa (SSA). Based on available reports, vectorial migration, climatic changes and YF immunization level could be reasons for the re-mergence of YF at the community and national levels. Essentially, the drivers of YFV infection due to spillover are moderately constant. However, changes in land use and landscape have been shown to influence sylvan-to-urban spillover. Furthermore, increased precipitation and warmer temperatures due to climate change are likely to broaden the range of mosquitoes’ habitat. The 2019/2020 YF outbreaks in SSA is basically a result of inadequate vaccination campaigns, YF surveillance and vector control. Consequently, and most importantly, adequate immunization coverage must be implemented and properly achieved under the responsibility of the public health stakeholders.

Geostatistical modeling of malaria prevalence among under-five children in Rwanda

BACKGROUND: Malaria has continued to be a life-threatening disease among under-five children in sub-Saharan Africa. Recent data indicate rising cases in Rwanda after some years of decline. We aimed at estimating the spatial variations in malaria prevalence at a continuous spatial scale and to quantify locations where the prevalence exceeds the thresholds of 5% and 10% across the country. We also consider the effects of some socioeconomic and climate variables. METHODS: Using data from the 2014-2015 Rwanda Demographic and Health Survey, a geostatistical modeling technique based on stochastic partial differential equation approach was used to analyze the geospatial prevalence of malaria among under-five children in Rwanda. Bayesian inference was based on integrated nested Laplace approximation. RESULTS: The results demonstrate the uneven spatial variation of malaria prevalence with some districts including Kayonza and Kirehe from Eastern province; Huye and Nyanza from Southern province; and Nyamasheke and Rusizi from Western province having higher chances of recording prevalence exceeding 5%. Malaria prevalence was found to increase with rising temperature but decreases with increasing volume for rainfall. The findings also revealed a significant association between malaria and demographic factors including place of residence, mother’s educational level, and child’s age and sex. CONCLUSIONS: Potential intervention programs that focus on individuals living in rural areas, lowest wealth quintile, and the locations with high risks should be reinforced. Variations in climatic factors particularly temperature and rainfall should be taken into account when formulating malaria intervention programs in Rwanda.

Assessing occupational risk of heat stress at construction: A worker-centric wearable sensor-based approach

Construction workers are at a high risk of exposure to excessive heat generated by several factors such as intensive physical activities, personal protective clothing, and frequent heat events at construction sites. Previous studies attempted to evaluate the occupational risk of heat stress by concentrating on environmental variables or the self-assessment measures of perceived heat. Despite their potentials, most of these approaches were intrusive, inaccurate, and intermittent. More importantly, they mainly overlooked the disparities in workers’ physical and physiological characteristics. To address these limitations, this study proposes a heat-stress risk-assessment process to evaluate workers’ bodily responses to heat – heat strain – based on the continuous measurement of their physiological signals. To this end, workers’ physiological signals were captured using a wristband-type biosensor. Subsequently, their physiological signals were decontaminated from noises, resampled into an array of informative features, and finally interpreted into distinct states of individuals’ heat strain by employing several supervised learning algorithms. To examine the performance of the proposed process, physiological signals were collected from 18 subjects while performing specific construction tasks under three predetermined environmental conditions with a different probability of exposure to heat stress. The analysis results revealed the proposed process could predict the risk of heat strain with more than 92% accuracy, illuminating the potentials of wearable biosensors to continuously assess workers’ heat strain. The long-term implications of this study can be capitalized as guidelines to improve systematic evaluation of heat strain and promote workers’ occupational safety and well-being through early detection of heat strain at construction sites.

Heat stress morbidity among us military personnel: Daily exposure and lagged response (1998-2019)

Heat stress illnesses represent a rising public health threat; however, associations between environmental heat and observed adverse health outcomes across populations and geographies remain insufficiently elucidated to evaluate risk and develop prevention strategies. In particular, military-relevant large-scale studies of daily heat stress morbidity responses among physically active, working-age adults to various indices of heat have been limited. We evaluated daily means, maximums, minimums, and early morning measures of temperature, heat index, and wet bulb globe temperature (WBGT) indices, assessing their association with 31,642 case-definition heat stroke and heat exhaustion encounters among active duty servicemembers diagnosed at 24 continental US installations from 1998 to 2019. We utilized anonymized encounter data consisting of hospitalizations, ambulatory (out-patient) visits, and reportable events to define heat stress illness cases and select the 24 installations with the highest case counts. We derived daily indices of heat from hourly-scale gridded climate data and applied a case-crossover study design incorporating distributed-lag, nonlinear models with 5 days of lag to estimate odds ratios at one-degree increments for each index of heat. All indices exhibited nonlinear odds ratios with short-term lag effects throughout observed temperature ranges. Responses were positive, monotonic, and exponential in nature, except for maximum daily WBGT, minimum daily temperature, temperature at 0600 h (local), and WBGT at 0600 h (local), which, while generally increasing, showed decreasing risk for the highest heat category days. The risk for a heat stress illness on a day with a maximum WBGT of 32.2 °C (90.0 °F) was 1.93 (95% CI, 1.82 – 2.05) times greater than on a day with a maximum WBGT of 28.6 °C (83.4 °F). The risk was 2.53 (2.36-2.71) times greater on days with a maximum heat index of 40.6 °C (105 °F) compared to 32.8 °C (91.0 °F). Our findings suggest that prevention efforts may benefit from including prior-day heat levels in risk assessments, from monitoring temperature and heat index in addition to WBGT, and by promoting control measures and awareness across all heat categories.

Interaction of maternal medication use with ambient heat exposure on congenital heart defects in the National Birth Defects Prevention Study

BACKGROUND: Maternal exposure to weather-related extreme heat events (EHEs) has been associated with congenital heart defects (CHDs) in offspring. Certain medications may affect an individual’s physiologic responses to EHEs. We evaluated whether thermoregulation-related medications modified associations between maternal EHE exposure and CHDs. METHODS: We linked geocoded residence data from the U.S. National Birth Defects Prevention Study, a population-based case-control study, to summertime EHE exposures. An EHE was defined using the 90(th) percentile of daily maximum temperature (EHE90) for each of six climate regions during postconceptional weeks 3-8. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) for associations between EHE90 and the risk of CHDs were estimated by strata of maternal thermoregulation-related medication use and climate region. Interaction effects were evaluated on multiplicative and additive scales. RESULTS: Over 45% of participants reported thermoregulation-related medication use during the critical period of cardiogenesis. Overall, these medications did not significantly modify the association between EHEs and CHDs. Still, medications that alter central thermoregulation increased aORs (95% CI) of EHE90 from 0.73 (0.41, 1.30) among non-users to 5.09 (1.20, 21.67) among users in the Southwest region, U.S. This effect modification was statistically significant on the multiplicative (P = 0.03) and additive scales, with an interaction contrast ratio (95% CI) of 1.64 (0.26, 3.02). CONCLUSION: No significant interaction was found for the maternal use of thermoregulation-related medications with EHEs on CHDs in general, while medications altering central thermoregulation significantly modified the association between EHEs and CHDs in Southwest U.S. This finding deserves further research.

Ambient heat and stillbirth in Northern and Central Florida

BACKGROUND: Elevated temperature is well-recognized as a health hazard, and may be particularly harmful to pregnant women, including increasing risk of stillbirth. We conducted a study in Northern and Central Florida, an area prone to periodic extreme heat but with significant seasonal variation, focusing on the most socioeconomically vulnerable populations least able to mitigate the impact of heat. METHODS: We obtained electronic health records data from the OneFlorida Data Trust for the period 2012-2017, with 1876 stillbirths included in the analysis. We used a case-crossover design to examine the risk of stillbirth associated with acute exposures to elevated heat prior to the outcome, contrasting the case period (the week preceding the stillbirth) with a control period (the week prior to the case period and the week after the stillbirth). Average heat index and maximum warning level during the case and control periods of each woman were assigned by ZIP code. Conditional logistic regression models were used to assess the association between stillbirth and heat exposure, controlling for PM(2.5) and O(3). RESULTS: The adjusted odds ratio showed no overall association with stillbirth except for a weak association for exposure above the 90th percentile which was larger among the most socioeconomically deprived and non-Hispanic Black women. In the hot months, there was a clear association for all indices of heat exposure, but largest again for the most socioeconomically deprived population (aOR = 2.4, 95% CI: 1.2-5.2 in the 4th vs. 1st quartile) and among non-Hispanic Black women (aOR = 1.8, 95% CI: 1.0-3.2 in the 4th vs. 1st quartile). CONCLUSIONS: Our results provide further evidence that elevated ambient heat is related to stillbirth and encourage a focus on the most susceptible individuals and possible clinical pathways.

Heatwaves in South Asia: Characterization, consequences on human health, and adaptation strategies

South Asia, with more than one-fifth of the world’s population, is highly vulnerable to heatwaves and associated health consequences. The population experiences considerably higher residential vulnerability due to limited infrastructural capacities, economic resources, and health and environmental quality deficiencies. However, a limited number of studies are available from the region to account for the health effects of heatwaves. Therefore, this study has conducted a comprehensive review to characterize heatwaves across South Asian countries. The review explicitly identifies the population’s vulnerability to heatwaves during recent years and heatwave management policies in the region. The literature review suggests increased heat-related deaths in most South Asian countries, with few exceptions. In addition, the analysis of historical temperature records identified an upward trend in annual average temperature across the South Asian countries. The study highlights various heatwave definitions that have been used in the region to facilitate comparative evidence. The review of policies identified that only a few South Asian countries have functional heatwave management plans and majorly lack community and residential preparedness for heatwaves. Therefore, this study identifies potential community- and residential-based adaptation strategies to mitigate heat discomfort. As prospective solutions, the study recommends adaptation strategies such as blue-green spaces, indoor passive cooling, infrastructural adjustments, heat action plans, etc. However, such adaptation measures require a holistic amalgamation of different stakeholders to fabricate heatwave-resilient cities.

Climate change, social vulnerability and child nutrition in South Asia

Despite recent advancements in global population well-being and food security, climate change threatens to undermine child nutritional health, particularly for marginalized populations in tropical low- and middle-income countries. South Asia is at particular risk for climate-driven undernutrition due to a combination of historical weather exposures, existing nutritional deficits, and a lack of sanitation access. Previous studies have established that precipitation extremes increase rates of undernutrition in this region, but the existing literature lacks adequate consideration of temperature anomalies, mediating social factors, and the developmentally-relevant timing of exposure. We combine high-resolution temperature and precipitation data with large-sample survey data on household demographics and child anthropometry, using an approach that incorporates three key developmental periods and a rigorous fixed effects design. We find that precipitation extremes in the first year of life significantly decrease children’s height-for-age (HAZ) in South Asia. The detrimental effects of extreme precipitation are especially concentrated in under-resourced households, such as those lacking access to proper sanitation and education for women, while anomalous heat is particularly harmful for children in Pakistan, though it tends to benefit children in some demographic groups. These results indicate that nutritional status in South Asia is highly responsive to climate exposures, and that addressing sanitation infrastructure and other development priorities is a pathway towards reducing this vulnerability.

Assessing outdoor thermal comfort conditions at an urban park during summer in the hot semi-arid region of India

Urban parks play an essential role in urban settings; significantly contribute to the health of every age group person. Parks provide opportunities for families to connect with nature and breathe in the fresh air. Due to global climate change and increased urbanisation in the past few decades, extreme heat can be experienced in urban areas. Mental and physical health issues arise primarily due to a sedentary lifestyle in cities. Staying at parks for a longer duration could promote stress reduction and perceived physical health. The present study aims to assess the thermal comfort conditions at an urban park in the hot semi-arid climate(BSh) of Haryana, India. The present study investigated the outdoor thermal comfort range and thermal sensations of visitors at a park during the summer season using the onsite monitoring of the microclimate parameters and questionnaire survey in the hot-semi arid region of India. Thermal comfort indices, Physiological equivalent temperature (PET) and Universal Thermal Climate Index (UTCI) and Wet bulb globe temperature(WBGT) have been applied to investigate the outdoor thermal comfort conditions. The seven-point sensation scale has been used to record the visitors’ thermal sensations. The results indicated that:1) WBGT was found to be the most suitable index to investigate the OTC conditions. The neutral UTCI, PET, and WBGT ranged within 28.03 degrees C to 35.6 degrees C, 24.04 degrees C to 37.5 degrees C, and 23.5 degrees C to 26.1 degrees C, respectively. 2) The neutral PET ,UTCI, and WBGT were found to be 30.8 degrees C, 31.8 degrees C, and 24.8 degrees C, respectively.3) Dry bulb temperature is the most significant thermal comfort parameter affecting visitors’ thermal sensations, followed by mean radiant temperature.4) Thermal comfort indices were found to be most significantly affected by globe temperature. The study’s outcome could provide theoretical design reference to urban designers to develop new parks and existing parks, ultimately promoting public health. Copyright (c) 2022 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the F-EIR Conference 2021 on Environment Concerns and its Remediation: Materials Science

Characteristics of human thermal stress in south Asia during 1981-2019

Climate change has significantly increased the frequency and intensity of human thermal stress, with relatively more severe impacts than those of pure temperature extremes. Despite its major threats to public health, limited studies have assessed spatiotemporal changes in human thermal stress in densely populated regions, like South Asia (SAS). The present study assessed spatiotemporal changes in human thermal stress characteristics in SAS, based on daily minimum, maximum, and mean Universal Thermal Climate Indices (i.e. UTCImin, UTCImax, and UTCImean) using the newly developed high-spatial-resolution database of the thermal-stress Indices over South and East Asia for the period 1981-2019. This study is the first of its kind to assess spatiotemporal changes in UTCI indices over the whole of SAS. The study also carried out extreme events analysis of the UTCI indices and explored their nexus with El Nino-Southern Oscillation (ENSO) index. Results revealed a significant increase in heat stress in SAS, with the highest human thermal stress in western Afghanistan, the Indo-Gangetic Plain, and southeastern, and central parts. The extreme event analysis showed that the study region is likely to observe more frequent and intense heat extremes in the coming decades. The correlation of UTCI indices with ENSO exhibited a robust positive coherence in southeastern and central India, southern Pakistan, and northwestern Afghanistan. The findings of the study are critical in understanding human thermal stress and adopting effective risk reduction strategies against heat extremes in SAS. To better understand the dynamic mechanism of thermal extremes, the study recommends a detailed investigation of the underlying drivers of UTCI variability in SAS.

Climate change adaptation: Prehospital data facilitate the detection of acute heat illness in India

INTRODUCTION: Extreme heat is a significant cause of morbidity and mortality, and the incidence of acute heat illness (AHI) will likely increase secondary to anthropogenic climate change. Prompt diagnosis and treatment of AHI are critical; however, relevant diagnostic and surveillance tools have received little attention. In this exploratory cross-sectional and diagnostic accuracy study, we evaluated three tools for use in the prehospital setting: 1) case definitions; 2) portable loggers to measure on-scene heat exposure; and 3) prevalence data for potential AHI risk factors. METHODS: We enrolled 480 patients who presented to emergency medical services with chief complaints consistent with AHI in Ahmedabad, India, from April-June 2016 in a cross-sectional study. We evaluated AHI case definition test characteristics in reference to trained prehospital provider impressions, compared on-scene heat index measured by portable loggers to weather station measurements, and identified AHI behavioral and environmental risk factors using logistic regression. RESULTS: The case definition for heat exhaustion was 23.8% (12.1-39.5%) sensitive and 93.6% (90.9-95.7%) specific. The positive and negative predictive values were 33.5% (20.8-49.0%) and 90.1% (88.5-91.5%), respectively. Mean scene heat index was 6.7°C higher than the mean station heat index (P < 0.001), and station data systematically underestimated heat exposure, particularly for AHI cases. Heat exhaustion cases were associated with on-scene heat index ≥ 49°C (odds ratio [OR] 2.66 [1.13-6.25], P = 0.025) and a history of recent exertion (OR 3.66 [1.30-10.29], P = 0.014), while on-scene air conditioning was protective (OR 0.29 [0.10-0.85], P = 0.024). CONCLUSION: Systematic collection of prehospital data including recent activity history and presence of air conditioning can facilitate early AHI detection, timely intervention, and surveillance. Scene temperature data can be reliably collected and improve heat exposure and AHI risk assessment. Such data may be important elements of surveillance, clinical practice, and climate change adaptation.

Assessing the monthly heat stress risk to society using thermal comfort indices in the hot semi-arid climate of India

Extreme weather conditions, especially heatwave, are a threat to society, affecting livability, wellbeing, and social interactions. The present study aims to assess the monthly heat stress in the outdoor environment from 2010 to 2019 in Sonepat’s municipality, representing a hot semi-arid climate. The authors applied three heat stress indices, namely, Wet bulb globe temperature (WBGT), Physiological equivalent temperature (PET), and Universal thermal climate index (UTCI), to estimate the grade of heat stress. While calculations, the highest average WBGT was found in July (33.4 +/- 0.77 degrees C), demonstrating July in the “Extreme heat stress” category. The highest mean PET was found in June (42.47 +/- 2.34 degrees C), indicating June in the “Extreme heat stress” category. The highest mean UTCI was found in June (38.58 +/- 1.82 degrees C), demonstrating “Very strong heat stress.” The dry bulb temperature was found to be the most dominant parameter among meteorological parameters promoting extreme heat stress. It was concluded that extreme heat stress was observed in the Pre-monsoon hot weather season and summer monsoon season (especially in June), making the population vulnerable to mortality and morbidity. The findings could provide valuable information to people from various disciplines like Climate scientists, landscape designers, architects, and all relevant stakeholders to develop a heatwave action plan against adverse heat stress.(c) 2021 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the F-EIR Conference 2021 on Environment Concerns and its Remediation: Materials Science.

Characteristics of prehospital heat illness cases during the annual heat wave period in Telangana, India

OBJECTIVES: Global warming and more intense heat wave periods impact health. Heat illness during heat waves has not been studied in the prehospital setting of a low- and middle-income country (LMIC). Early intervention in the community and in the prehospital setting can improve outcomes. Hence, this paper aims to describe the characteristics of heat illness patients utilizing the ambulance service in Telangana state, India with the aim of optimizing public prevention and first aid strategies and prehospital response to this growing problem. METHODS: This retrospective observational study reviewed patients presenting to Telangana’s prehospital emergency care system with heat illness symptoms during the heat wave period from March through June in 2018 and 2019. Descriptive analysis was done on the prehospital, dispatch, and environmental data looking at the patients’ characteristics and prehospital intervention. RESULTS: There were 295 cases in 2018 and 230 cases in 2019 from March-June. The overall incidence of calls with heat illness symptoms was 1.5 cases per 100,000 people. The Scheduled Tribes (ST) had the highest incidence of 4.5 per 100,000 people. Over 96% were from the white income group (below poverty line) while two percent were from the pink income group (above poverty line). From geospatial mapping of the cases, the highest incidence of calls came from the rural, tribal areas. However, the time to response in rural areas was longer than that in an urban area. Males with an average age of 47 were more likely to be affected. The three most common symptoms recorded by the first responders were vomiting (44.4%), general weakness (28.7%), and diarrhea (15.9%). The three most common medical interventions on scene were oxygen therapy (35.1%), oral rehydration salt (ORS) solution administration (26.9%), and intravenous fluid administration (27.0%), with cold sponging infrequently mentioned. CONCLUSION: This descriptive study provides a snapshot of the regions and groups of people most affected by heat illness during heat waves and the heterogeneous symptom presentation and challenges with management in the prehospital setting. These data may aid planning of prehospital resources and preparation of community first responders during heat wave periods.

Indoor thermal comfort and adaptive thermal behaviors of students in primary schools located in the humid subtropical climate of India

This study investigated children’s perceptions and adaptive behaviors related to indoor thermal conditions of classrooms in primary schools with no air-conditioning systems during both summer and winter in Dehradun City, Uttarakhand, India. Responses were collected from 5297 school children aged 6-13 years. During the measurement periods, 100% and 94% of the samples were obtained under conditions outside an 80% thermally acceptable comfort range in winter and summer, respectively. The analysis using receiver operating characteristics suggested that the students had the least sensitivity to the temperature variation for all scales of the thermal sensation vote (TSV). Approximately 95.1% of students were “very satisfied”, “satisfied”, or “slightly satisfied” with the thermal conditions under the condition of “extreme caution” or “danger” of heat risk. In contrast, adaptive thermal behaviors, such as adjusting clothing insulation ensembles, opening or closing classroom windows and doors, and utilizing ceiling fans, were found to be the most affordable options for optimizing indoor thermal comfort. Children’s reports of thermal sensations and thermal satisfaction did not correspond to the actual physical environment. This draws attention to the adequacy of applying widely used methods of TSV-based identification of the thermal comfort range in classrooms for children, especially in hot environments. The findings of this study are expected to serve as an evidence-based reference for local governments and authorities to take appropriate measures to mitigate heat risks for schoolchildren in the future.

Spatial and statistical characteristics of heat waves impacting India

The climate of a place has a decisive role in human adaptations. Man’s health, adaptability, behavioural patterns, food, shelter, and clothing are mainly influenced by the temperatures of the area. Hence, a study is undertaken to analyse the spatial distribution, frequency, and trend in the heat waves over the country. The statistical characteristics of heat waves over India are addressed in this study. Gridded daily temperature data sets for the period 1951-2019 were used to compute the arithmetic mean (AM), standard deviation (SD), coefficient of variation (CV), and trends of monthly maximum temperature. The number of heat wave days were identified using the criteria given by India Meteorological Department (IMD) i.e., a heat wave is recognized when the daily normal maximum temperature of a station is less than or equal to (greater than) 40 degrees C than it will be considered as a heat wave if the daily maximum temperature exceeds the daily normal maximum temperature by 5 degrees C (4 degrees C). The analysis was confined to the two summer months of April and May only. The spatial distribution of the AM shows higher values during May, and the core hot region with temperatures exceeding 40 degrees C lies over central India extending towards the northwest. The SD distribution shows higher values over the northeast of central India decreasing towards the southwest. The CV distribution shows higher values over the north decreasing toward the south. Higher numbers of heat waves are observed during May and the number is higher over Andhra Pradesh and south Telangana regions of southeast India. This study concludes that a moderate hot region experiences a higher number of heat wave days over India.

Seasonal comfort temperature and occupant’s adaptive behaviour in a naturally ventilated university workshop building under the composite climate of India

In the present research work, the authors investigated the seasonal thermal environment and thermal perception of university subjects in a naturally ventilated workshop building under the composite climate of India. Total 1460 subjective responses were collected during the field study in the year, 2019. Standard Effective Temperature (SET*) has been used as a rationally derived thermal comfort index to study the combined effects of air temperature, relative humidity and airspeed on perceived thermal sensation and occupant’s preference under high metabolic rates. Probit analysis showed more than 80% of subjects were voting comfortable (+/- 1 Thermal sensation votes) when SET* ranged between 25 degrees C-33 degrees C. Seasonal mean comfort temperature varied more than 4.8 degrees C, while, preferred temperature was noted about 3 degrees C lower than their mean Griffiths comfort temperature. The adaptive relation developed from the collected database under high metabolic activities was compared with existing national and international comfort standards. The slope coefficient for adaptive relation was observed close to the adaptive model of ASHRAE Standard 55-2017 but lower than the National Building Code of India, 2016. Further, adaptive use of fans and windows were analyzed using logistic regression models and predicted about 80% of fans and windows were in operation at 30 degrees C. To confirm the adaptive mechanism, the interrelation of other contextual factors like gender, clothing insulation, airspeed, metabolic activities, etc. to thermal comfort expectations of subjects were also studied.

Summer temperature and all-cause mortality from 2006 to 2015 for Hyderabad, India

BACKGROUND: Studies have documented a significant association between temperature and all-cause mortality for various cities but such data are unavailable for Hyderabad City. OBJECTIVE: The objective of this work was to assess the association between the extreme heat and all-cause mortality for summer months (March to June) from 2006 to 2015 for Hyderabad city population. METHODS: We obtained the data on temperature and all-cause mortality for at least ten years for summer months. Descriptive and Bivariate analysis were conducted. Pearson correlation coefficient was used to study the relationship between heat and all-cause mortality for lag time effect. RESULTS: A total of 122,117 deaths for 1,220 summer days (2006 to 2015) were analyzed with mean daily all-cause mortality was 100.1±21.5. There is an increase of 16% and 17% per day mean all-cause mortality at the maximum temperature of less than or equal to 40 degrees C and for extreme danger days (Heat Index greater than 54 degrees C) respectively. The mean daily all-cause mortality shows a significant association with maximum temperature (P < 0.001) and Heat Index from caution to extreme danger risk days (P<0.0183). The lag effect of extreme heat on all-cause mortality for the study period (2006 to 2015) was at peak on same day of the maximum temperature (r = 0.273 at p<0.01). CONCLUSION: The study concludes that the impact of ambient heat in the rise of all-cause mortality is clearly evident (16% mean deaths/day). There was no lag effect from the effect of extreme heat on all-cause mortality as the peak period was the same as the maximum temperature. Hence heat action plans are needed. However, extreme heat-related mortality merits further analysis.

Heat wave fatalities over India: 1978-2014

The present paper is an attempt to study the heat waves associated fatalities over space and time in India. For this, ‘Disastrous Weather Events’ reports statistics have been used for the period 1978-2014. The analysis has shown that a total of 660 heat wave events have caused 12,273 fatalities (about 332 fatalities every year). Only five states namely, Andhra Pradesh (42%), Rajasthan (17%), Odisha (10%), Uttar Pradesh (7%) and Bihar (7%) have accounted more than 80% of the heat wave fatalities, although nine states namely, Arunachal Pradesh, Nagaland, Manipur, Meghalaya, Tripura, Sikkim, Mizoram, Uttarakhand and Goa have never reported heat wave events and fatalities during 1978-2014. Interestingly, each event has resulted about 104 fatalities in Andhra Pradesh state. Further, fatality and density rates have been witnessed to the tune of 0.35 and 3.81 respectively. Temporally, heat wave events have displayed large differences with a significant increasing trend (P < 0.01), whereas no trend could be noticed in fatalities. Majority of events have been witnessed in May and June months. It has been observed that men have been more harshly affected compared to women and children. Finally, it is believed that this study may provide new insight towards making better disaster management guidelines for minimizing the shocks of harsh temperature.

Hot weather hazard analysis over India

Heat waves are often termed as the silent killer and have become even more important as recent studies suggest that the heat wave have become second most devastating extreme weather events in terms of human deaths and losses. It is also been largely realised by scientific community that it is not just the high temperatures which are responsible for the gruesome effect of heat waves but several other meteorological parameters play a vital role in aggravating the impact and causing much more damages. In view of the above the attention of scientific community, weather forecasters as well as disaster managers has shifted to also take into account the different meteorological parameters like maximum and minimum temperatures, relative humidity, wind speed, duration/spell of heat waves and its intensity which are aggravating the impact of heat stress. In this background, this study is undertaken as an attempt to quantify the effect of different meteorological parameters on heat wave on different regions of India for different summer months (March, April, May and June). In this study the impact of individual meteorological parameter as well their cumulative effect is studied based on data of 30 years (1981-2010) for 300 stations. The effect of different meteorological parameters is identified for different months for different regions of the country. Also the cumulative scores are calculated for different regions considering different meteorological parameters, as a first initiative to perform heat hazard analysis and zonation over the entire country. This could serve as initial step for planning mitigation and adaptation strategies throughout the country. These scores as thresholds for different regions may be also useful for operational forecaster’s for early impact based warning services as well as for the disaster managers, for taking effective and timely actions.

Present and future projections of heatwave hazard-risk over India: A regional earth system model assessment

The heatwave is a disastrous hazard having significant impacts on health and society. This study analyses the heatwave hazards and risk for India’s current and future scenarios using socioeconomic vulnerability and temperature datasets during the summer (April-June) season. The Census of India (CoI) 2011 datasets were considered to assess current vulnerability and projected from the SocioEconomic Data And Application Center (SEDAC) population at Shared Socioeconomic Pathway (SSP) 4 for future vulnerability. Whereas IMD temperature data used for hazard assessment for the present scenario (1958-2005) while projected temperature data from regional earth system model REMO-OASIS-MPIOM (ROM) were used for the future (2006-2099) scenario. The study exhibited the most hazardous, vulnerable, and risk-prone regions identified as the south-eastern coast and Indo-Gangetic plains and some populous districts with metropolitan regions (Mumbai, Delhi, and Kolkata) under the current scenario. The coupled model ROM has efficiently captured the critical districts with higher and lower risk, showing its future projection capability. The study highlighted that the heatwave hazard-risk would significantly worsen in future scenarios in all districts under enhanced global warming and largely affecting the districts in the eastern and middle Indo-Gangetic plains and Malabar region. The present study will provide sufficient insights into designing mitigation strategies and future adaptive planning for the heatwave risk, which is one of the targets under Sustainable Development Goal 13 (Goal 13: Climate Action).

Summer temperature and all-cause mortality from 2006 to 2015 for smart city Jaipur, India

A considerable association between temperature and all-cause mortality has been documented in various studies. Further insights can be obtained from studying the impact of temperature and heat index (HI) for Jaipur city’s all-cause mortality. The objective of this work was to assess the association between the extreme heat (daily maximum temperature, daily minimum temperature, daily mean temperature, relative humidity and HI) and all-cause mortality for summer months (March to June) from 2006 to 2015 for urban population of Jaipur. For summer months, we collected the data on various temperature and all-cause mortality parameters for at least 10 years. The student’s t-test and ANOVA were used to analyse variations in mean temperature, maximum temperature and HI. The Pearson correlation coefficient was used to study the relationship between ambient heat and lag time effect all-cause mortality. A total of 75,571 deaths (all-cause mortality) for 1,203 summer days (2006-2015) were analysed in relation to temperature and relative humidity. The mean daily all-cause mortality has been estimated at 62.8 +/- 15.2 for the study period. There is a significant increase of 39% per day all-cause mortality at the maximum temperature of 45 degrees C and above. However only 10% rise per day all-cause mortality for extreme danger days (HI > 54 degrees C). The mean daily all-cause mortality shows a significant association with daily maximum temperature (F = 34.6, P < .0001) and HI (discomfort index) from caution to extreme danger risk days (F = 5.0, P < .0019). The lag effect of extreme heat on all-cause mortality for the study period (2006 to 2015) was at a peak period on the same day of the maximum temperature (r = 0.245 at P < .01) but continues up to four days. The study concludes that the effect of ambient heat on all-cause mortality increase is clearly evident (rise of 39% deaths/day). Accordingly, focus should be put on developing adaptation measures against ambient heat. This analysis may satisfy policy makers' needs. Extreme heat-related mortality needs further study to reduce adverse effects on health among Jaipur's urban population.

Comprehensive analysis of thermal stress over northwest India: Climatology, trends and extremes

Heat waves are quite frequent over the Indian subcontinent during the summer season (April-July) owing to an increase in anthropogenic activities and global temperatures. These extreme heat conditions induce a high level of outdoor discomfort, adverse health effects and mortality, depending on the degree of thermal stress. The present study investigates the climatology of thermal stress and its trends over northwest (NW) India during the summer. The Universal Thermal Climate Index (UTCI) derived from Human thErmAl comforT (ERAS-HEAT) dataset was used for the period of 1981-2019. The monthly and seasonal climatological mean of UTCI exhibits moderate to strong thermal stress over NW India (ranges from 27 to 34.5 degrees C) than in the rest of the country (below 25.5 degrees C), with a peak during the months of June (34.5 degrees C) and July (33.5 degrees C) months. The seasonal mean UTCI shows significant rising trends (0.9 degrees C per 39 years) over NW India and entire India (0.6 degrees C per 39 years), indicating that the thermal discomfort amplifies at a faster pace compared to the rest of India. Similar rising trends are also noticed in the major cities of the study region. Surface temperature and relative humidity also exhibit a substantial increasing trend, which resulted in the intensification of thermal discomfort over NW India. Furthermore, the number of thermal discomfort days over NW India exhibits an increasing trend during 1981-2019. The composite analysis of UTCI greater than 32 degrees C (referred to as strong heat stress) depicts the highest thermal discomfort conditions in NW India. During summer, strong soil temperatures and high sensible heat fluxes over the study region may enhance the warming at the surface during UTCI (> 32 degrees C) days as it depends on surface radiative fluxes through the mean radiant temperature. In addition to high temperatures, a substantial amount of moisture transported by strong westerly wind from the Arabian Sea towards the NW India during strong thermal stress days seems to have contributed to high thermal stress conditions in the region.

Vulnerability to heat stress and its health effects among people of Nepalgunj Sub-Metropolitan

BACKGROUND: Record-breaking temperatures have occurred more frequently worldwide under the trend of climate change. It has increased the number of people at heat related medical conditions resulting in both mortality and morbidity from heat stress. This study aimed to assess factors associated with vulnerability to heat stress, its health effects among people of Nepalgunj Sub-metropolitan, and identify various coping strategies adopted. METHODS: Cross-sectional analytical study was conducted among 366 research participants selected through multi-stage random sampling technique in Nepalgunj Sub-metropolitan. Heat Index was assessed using secondary analysis of meteorological data of Nepalgunj (Airport) station. Chi-square test was done to analyze the primary data. RESULTS: Out of 366 participants, 224 (61.2%) participants had heat related symptoms in the past 6 months (April to September) from the date of the interview. Sex, education, income, roof construction, Cross-ventilation, working hour per day, presence of chronic disease, and medications use had a significant association with heat related symptoms among the participants (p<0.05) The most common coping strategies adopted to manage heat stress were the use of cooling methods, wearing light clothing, and bathing by cold water. The average monthly heat index was highest in August (42 °C) and lowest in April (29°C). CONCLUSIONS: The majority of the participants had heat related symptoms in the study area. In order to mitigate the heat stress in the urban town like Nepalgunj, measures such as tree plantation, reducing vehicle smoke emissions, and developing proper housing ventilation can be applied.

Mapping heat-health vulnerability based on remote sensing: A case study in Karachi

As a result of global climate change, the frequency and intensity of heat waves have increased significantly. According to the World Meteorological Organization (WMO), extreme temperatures in southwestern Pakistan have exceeded 54 degrees C in successive years. The identification and assessment of heat-health vulnerability (HHV) are important for controlling heat-related diseases and mortality. At present, heat waves have many definitions. To better describe the heat wave mortality risk, we redefine the heat wave by regarding the most frequent temperature (MFT) as the minimum temperature threshold for HHV for the first time. In addition, different indicators that serve as relevant evaluation factors of exposure, sensitivity and adaptability are selected to conduct a kilometre-level HHV assessment. The hesitant analytic hierarchy process (H-AHP) method is used to evaluate each index weight. Finally, we incorporate the weights into the data layers to establish the final HHV assessment model. The vulnerability in the study area is divided into five levels, high, middle-high, medium, middle-low and low, with proportions of 3.06%, 46.55%, 41.85%, 8.53% and 0%, respectively. Health facilities and urbanization were found to provide advantages for vulnerability reduction. Our study improved the resolution to describe the spatial heterogeneity of HHV, which provided a reference for more detailed model construction. It can help local government formulate more targeted control measures to reduce morbidity and mortality during heat waves.

Evaluation of occupational exposure to heat stress and working practices in the small and mid-sized manufacturing industries of Lahore, Pakistan

Background: Climate change is evident around the globe causing heat stress as an emerging public health problem for people working in tropical and subtropical areas. Occupational heat stress can impact the health and productivity of small and mid-sized enterprise workers. Objective: This study aimed to profile the indoor thermal environmental conditions and modify the working practices by recommending the work/rest cycle according to the international organization for standardization 7243. Study Design: This cross-sectional study design included eight industrial (Iron spare parts manufacturing) small and mid-size enterprises in Lahore, Pakistan. The indoor thermal environment, including globe temperature, natural wet bulb temperature, ambient temperature, relative humidity, and air velocity, were recorded during summer to measure the wet bulb globe temperature (WBGT). Quest heat stress meter (model 2500), modified Testo loggers (177-T4), and EL-USB-2-LCD data loggers were placed at different working stations to measure these thermal environmental parameters. A self-administered questionnaire was used to measure the workers’ demographic characteristics and working practices. The International Organization for Standardization 7243 reference was used to estimate and recommend the work/rest cycle. Results: 138 workers aged 28.59 +/- 10.46 years participated in this study. Continuous work of 8.8 +/- 1.5 hours per day with a conventional resting period of 30-60 minutes was recorded on a typical working day. The indoor wet bulb globe temperature ranged from 26.8 degrees C to 36.4 degrees C. The workers were registered for low (72.5%), moderate (18.1%), and high (9.4%) metabolic rates according to the International Organization for Standardization 7243 reference values. Conclusion: A high wet bulb globe temperature was recorded in the selected small and mid-sized enterprises making these workers vulnerable to heat stress and related illnesses. Work/rest cycle evaluation suggested that the workers were required to improve their cool-down time by avoiding continuous exposure to high temperatures and reducing the metabolic rate.

Impact of community education on heat-related health outcomes and heat literacy among low-income communities in Karachi, Pakistan: A randomised controlled trial

BACKGROUND: Extreme heat exposure is a growing public health concern. In this trial, we tested the impact of a community health worker (CHW) led heat education programme on all-cause mortality, unplanned hospital visits and changes in knowledge and practices in Karachi, Pakistan. METHODS: The Heat Emergency Awareness and Treatment trial was a community-based, open-label, two-group, unblinded cluster-randomised controlled trial that implemented a CHW-led educational intervention between March and May 2018 in Karachi, Pakistan. We randomly assigned (1:1) 16 clusters, each with ~185 households or 1000 population, to the intervention or usual care (control group). We collected data on all-cause mortality, unplanned hospital visits, evidence of heat illness through surveillance and a knowledge and practice survey during the summer months of 2017 (preintervention) and 2018 (postintervention). FINDINGS: We recruited 18 554 participants from 2991 households (9877 individuals (1593 households) in the control group and 8668 individuals (1398 households) in the intervention group). After controlling for temporal trends, there was a 38% (adjusted OR 0.62, 95% CI 0.49 to 0.77) reduction in hospital visits for any cause in the intervention group compared with the control group. In addition, there was an improvement in many areas of knowledge and practices, but there was no significant difference in all-cause mortality. INTERPRETATION: A CHW-led community intervention was associated with decreased unscheduled hospital visits, improved heat literacy and practices but did not impact all-cause mortality. CHWs could play an essential role in preparing communities for extreme heat events. TRIAL REGISTRATION NUMBER: NCT03513315.

Heat emergencies: Perceptions and practices of community members and emergency department healthcare providers in Karachi, Pakistan: A qualitative study

Heat waves are the second leading cause of weather-related morbidity and mortality affecting millions of individuals globally, every year. The aim of this study was to understand the perceptions and practices of community residents and healthcare professionals with respect to identification and treatment of heat emergencies. A qualitative study was conducted using focus group discussions and in-depth interviews, with the residents of an urban squatter settlement, community health workers, and physicians and nurses working in the emergency departments of three local hospitals in Karachi. Data was analyzed using content analysis. The themes that emerged were (1) perceptions of the community on heat emergencies; (2) recognition and early treatment at home; (3) access and quality of care in the hospital; (4) recognition and treatment at the health facility; (5) facility level plan; (6) training. Community members were able to recognize dehydration as a heat emergency. Males, elderly, and school-going children were considered at high risk for heat emergencies. The timely treatment of heat emergencies was widely linked with availability of financial resources. Limited availability of water, electricity, and open public spaces were identified as risk factors for heat emergencies. Home based remedies were reported as the preferred practice for treatment by community members. Both community members and healthcare professionals were cognizant of recognizing heat related emergencies.

Modeling the impact of high temperature on mortality in Pakistan

The objective of this paper is to model and study the impact of high temperature on mortality in Pakistan. For this purpose, we have used mortality and climate data consisting of maximum temperature, variation in monthly temperature, average rainfall, humidity, dewpoint, as well as average air pressure in the country over the period from 2000 to 2019. We have used the Generalized Linear Model with Quasi-Poisson link function to model the number of deaths in the country and to assess the impact of maximum temperature on mortality. We have found that the maximum temperature in the country has a significant impact on mortality. The number of deaths in Pakistan increases as the maximum temperature increases. We found that, as the maximum temperature increase beyond 30 degrees C, mortality increases significantly. Our results indicate that mortality increases by 27% when the maximum temperature in the country increases from medium category to a very high level. Similarly, the number of deaths in the country increases by 11% when the temperature increases from medium temperature to high level. Furthermore, our study found that when the maximum temperature in the country decreases from a medium level to a low level, the number of deaths in the country decreases by 23%. This study does not consider the impact of other factors on mortality, such as age, medical conditions, gender, geographical location, as well as variability of temperature across the country.

Energy poverty, occupant comfort, and wellbeing in internally displaced peoples residences in Sri Lanka

Internally displaced people (IDP) due to conflict and violence were estimated as 41.3 million in 55 countries as the end of the year 2019, the highest figure ever recorded. Sri Lanka has not yet prioritized the health and wellbeing of households in building designing, with the emerging heat island effect making the lives more desperate for IDP. This study focused on the effect of energy poverty on occupant comfort in determining the quality of life of people and adaptive behaviors to manage heat strain in overheated interiors of rehabilitated residences in Jaffna, Sri Lanka. Field investigations consisted of personal monitoring, questionnaire surveying and physical measurements in four clusters of rehabilitation residence programmes in four regions. The study found that IDP were suffering from hidden energy poverty, with mean electricity consumption of 52 kWh per household per month. Residents have marginal (29%) access to clean fuels for cooking and accountable for an abnormal particulate matter count of 360 951 particles per cubic centimeter. Findings explicitly revealed the presence of overheated spaces with mean thermal preference of-0.6 conveying the need of cooler indoor environment. People tend to exhibit behavioral adjustments to cope up with prevailing extreme temperatures. Severity of heat stress informed by modified wet bulb globe temperature (WBGT) reporting 90% (28-31 degrees C) of households facing higher risk of heat strain while remaining 10% (>31 degrees C) are in hazardous situation. Predicted mean vote (PMV) was 1.29 explains warm sensation with predicted percentage of dissatisfied (PPD) 44.1% not complying to ASHRAE 55 standards. This detrimental combination of fuel poverty, lack of thermal comfort, and unacceptable indoor air quality has been a significant factor for 62% of the residences reporting at least one type of illness and being more prone to cardiovascular and respiratory disorders (37%). Thus, the study evidenced the presence of energy poverty and overheated interiors in the IDP’s residences in hot tropics of Sri Lanka. (c) 2021 Elsevier B.V. All rights reserved.

Extreme heat at outdoor COVID-19 vaccination sites

Extreme heat is an increasing climate risk due to climate change and the urban heat island (UHI) effect and can jeopardize points of dispensing (PODs) for COVID-19 vaccination distribution and broader public health emergency preparedness (PHEP) response operations. These PODs were often located on large parking lot sites with high heat severity and did not take heat mitigation or management strategies into account for unacclimated workers and volunteers. To investigate the personal heat exposure of workers, volunteers, and clients at three PODs in Tucson, Arizona, we collected ambient air temperatures, wet bulb globe temperatures (WBGT), surface temperatures, and thermal images. We also made qualitative observations and compared data against daily meteorological records. Ambient air temperatures at all three PODs exceeded the meteorological recorded high. WBGT on average were 8°F (4.4 °C) higher in full sun locations than shaded locations such as tents. Evaporative cooling decreased ambient air temperatures by 2°F (1.2 °C) when placed one per tent, but decreased ambient air temperatures by 7°F (3.9 °C) when placed en masse in a larger tent. Vehicle surface temperatures exceeded recommended safe limits of 140°F (60 °C) at all three sites, with a maximum temperature recorded at 170.9°F (77.2 °C). Public health professionals should consider heat resilience, including heat mitigation and management measures, in POD and PHEP response operations to reduce exposure. This includes considering the UHI effect in the siting of PODs, applying heat mitigation strategies in the design of PODs such as the adaptive use of solar panels for shading, and improving heat safety guidance for workers and volunteers.

Health impact assessment of Delhi’s outdoor workers exposed to air pollution and extreme weather events: An integrated epidemiology approach

This study is an assessment of the effects of outdoor air pollution and extreme weather events on the health of outdoor workers in Delhi, including auto rickshaw drivers, street vendors, and sweepers. To carry it out, a cross-sectional and perception-based epidemiological research design was used, and the primary tool used for data collection was a questionnaire. Two hundred twenty-eight people participated in the survey, and a pulmonary function test (PFT) was performed on 63 participants. Most of the respondents from different occupational groups complained about headaches/giddiness, nausea, and muscular cramps during extreme heat events due to the physically demanding nature of their jobs in the outdoor environment. Furthermore, autorickshaw drivers reported the highest prevalence of ophthalmic symptoms, such as eye redness (44%) and eye irritation (36%). In comparison, vendors reported a higher prevalence of headaches (43%) and eye redness (40%) due to increased exposure to vehicular emissions. Among sweepers, musculoskeletal problems like joint pain (40%), backache (38%), and shoulder pain (35%) were most prevalent due to occupation-related ergonomic factors. In addition, the majority of autorickshaw drivers (47%), vendors (47%), and sweepers (48%) considered that air quality had a severe impact on their health. PFT results showed that most respondents had restricted lung function. Binary logistic regression analysis showed that lung function impairment had a significant association with smoking (p = 0.023) and age (0.019). The odds ratio for smoking, which was around 4, indicated that respondents who smoked had a nearly four times greater risk of developing lung impairment. The study also highlighted the need for using personal protective equipment and developing guidelines to reduce their exposure level.

Mortality risk attributable to high and low ambient temperature in Pune city, India: A time series analysis from 2004 to 2012

BACKGROUND: Exposure to high and low ambient temperatures is associated with morbidity and mortality across the globe. Most of these studies assessing the effects of non-optimum temperatures on health and have been conducted in the developed world, whereas in India, the limited evidence on ambient temperature and health risks and has focused mostly on the effects of heat waves. Here we quantify short term association between all temperatures and mortality in urban Pune, India. METHODS: We applied a time series regression model to derive temperature-mortality associations based on daily mean temperature and all-cause mortality records of Pune city from year January 2004 to December 2012. We estimated high and low temperature-mortality relationships by using standard time series quasi-Poisson regression in conjunction with a distributed lag non-linear model (DLNM). We calculated temperature attributable mortality fractions for total heat and total cold. FINDINGS: The analysis provides estimates of the total mortality burden attributable to ambient temperature. Overall, 6∙5% [95%CI 1.76-11∙43] of deaths registered in the observational period were attributed to non-optimal temperatures, cold effect was greater 5.72% [95%CI 0∙70-10∙06] than heat 0∙84% [0∙35-1∙34]. The gender stratified analysis revealed that the highest burden among men both for heat and cold. CONCLUSION: Non-optimal temperatures are associated with a substantial mortality burden. Our findings could benefit national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately due to climate change.

An assessment of long-term changes in mortalities due to extreme weather events in India: A study of 50 years’ data, 1970-2019

In the Indian subcontinent, the annual average extreme weather events (EWEs) are reported to be increasing during the last few decades. The impact of increased EWEs on mortality has become a key issue in terms of minimizing it, even with the increasing population. In the present study, based on 50 years’ data (1970-2019) of India Meteorological Department, mortality rates of different EWEs viz., floods, tropical cyclones, heat waves, cold waves, lightning, etc. were analysed, both at the national and state level. The analysis was done based on different periods, i.e. annual, decadal and twenty-year slice periods. Various statistical analyses were carried out. Out of these EWEs, floods accounted for maximum mortality of 46.1%, followed by tropical cyclones with 28.6% mortality. Over the decades, despite a significant rise in EWEs (except for tropical cyclones), there has been a decrease in the mortality rate (mortalities per year per million population). The number of mortalities per event had a significant negative trend for heatwaves and floods, during the last 50 years. The total EWEs had a mortality rate of 3.86 during 1980-1999 and it reduced to 2.14 during 2000-2019. The mortality rate of tropical cyclones reduced by 94% in the past 20 years, whereas for heatwaves and lightning it increased by 62.2% and 52.8%, respectively. However, the change in mortality rate was not found to be statistically significant due to high year to year variability in mortality associated with floods, lightning, and tropical cyclones in the last two decades as compared to earlier decades. In India, among the major states, Odisha, Andhra Pradesh, Assam, Bihar, Kerala, and Maharashtra were found to be having maximum mortality rates due to EWEs in the last two decades and thus there is a need to consider these states with priority for developing disaster management action plans.

Estimating summertime heat stress in a tropical Indian city using Local Climate Zone (LCZ) framework

The Intergovernmental Panel on Climate Change (IPCC) report highlights the projected increase in heat wave (HW) frequency, intensity, and duration. Globally, HW events have caused massive deaths in the past. India has also experienced severe HWs and thousands have reportedly died during the past decade. The study uses the Local Climate Zone (LCZ) classification developed by Stewart and Oke (2012) for evaluating heat stress at the city level during the summer period. Stationery surveys were conducted to collect micro-meteorological data in different LCZs. The study analyses the unique behaviour of mapped LCZs in Nagpur, a tropical landlocked Indian city using widely adopted heat indices (heat index and humidex). It investigates two kinds of probabilities, the distribution of heat stress levels in a particular LCZ and how vulnerable are various LCZs to a given heat stress level. It adopts a statistical approach fitting a predictive logit model to estimate the probability of heat stress in various LCZs. The results show that temperature regimes differ significantly across the LCZs. Secondly, heat stress varies greatly depending upon the LCZs. The mapping scheme and the corresponding heat stress provides indispensable information for targeted heat response planning and heat stress mitigation strategies in heat-prone areas.

Spatial variation of surface urban heat island magnitude along the urban-rural gradient of four rapidly growing Indian cities

The unplanned and uncontrolled urbanization of Indian cities has put them under different ecological and environmental threats. Urban heat island (UHI) is one such critical ecological hazard, whereby an urban area is experiencing higher land surface temperature (LST) as compared to the surrounding rural area. In the present study, the relationship of LST and surface urban heat island (SUHI) with the degree of impervious surface (IS) and green spaces (GS) in four rapidly growing Indian cities is presented. This study utilizes different geospatial techniques, including urban-rural gradient analysis, surface urban heat island estimation using Landsat OLI/TIRS data. The results signify a strong negative correlation of LST with the IS for Ahmedabad, Jodhpur, and Nagpur, while a positive correlation is seen over Guwahati. The negative correlation is the manifestation of the urban cool island, pertaining to higher LST over rural areas. On the other hand, Guwahati is surrounded by green vegetation, which provides natural cooling and thus lowers the LST, resulting in positive SUHI. The density of GS is found to be a significant contributor of SUHI in Guwahati city, whereas in the other three cities, its impact is insignificant due to its presence in very less amount in rural surroundings.

Rural cooling needs assessment towards designing community cooling hubs: Case studies from Maharashtra, India

In a rapidly warming world, sustainable cooling is directly related to the protection of fresh and nutritious food, medicines, and the population from extreme heat for work conditions, the economic productivity of the working population, and income generation. This study aimed to understand how rural communities are meeting their nutrition, livelihood, health, living space, and mobility requirements regarding the role of cooling. We selected three villages as case studies in Maharashtra, India and conducted household surveys, in-depth interviews of key informants, focus group discussions (FGDs), and social mapping building typology study. The objective was to assess the rural community cooling to propose a community cooling hub (CCH) framework that could be economically, environmentally, and socially sustainable for the three villages. Our study showed that agriculture, dairy, buildings (domestic and commercial), and healthcare require cooling intervention in the studied communities. Based on the needs assessment for cooling, we proposed a CCH framework to provide cooling solutions in an integrated system for rural contexts.

A heat vulnerability index: Spatial patterns of exposure, sensitivity and adaptive capacity for urbanites of four cities of India

Extreme heat and heat waves have been established as disasters which can lead to a great loss of life. Several studies over the years, both within and outside of India, have shown how extreme heat events lead to an overall increase in mortality. However, the impact of extreme heat, similar to other disasters, depends upon the vulnerability of the population. This study aims to assess the extreme heat vulnerability of the population of four cities with different characteristics across India. This cross-sectional study included 500 households from each city across the urban localities (both slum and non-slum) of Ongole in Andhra Pradesh, Karimnagar in Telangana, Kolkata in West Bengal and Angul in Odisha. Twenty-one indicators were used to construct a household vulnerability index to understand the vulnerability of the cities. The results have shown that the majority of the households fell under moderate to high vulnerability level across all the cities. Angul and Kolkata were found to be more highly vulnerable as compared to Ongole and Karimnagar. Further analysis also revealed that household vulnerability is more significantly related to adaptive capacity than sensitivity and exposure. Heat Vulnerability Index can help in identifying the vulnerable population and scaling up adaptive practices.

Social inequities in urban heat and greenspace: Analyzing climate justice in Delhi, India

Climate change and rapid urbanization currently pose major challenges for equitable development in megacities of the Global South, such as Delhi, India. This study considers how urban social inequities are distributed in terms of burdens and benefits by quantifying exposure through an urban heat risk index (UHRI), and proximity to greenspace through the normalized difference vegetation index (NDVI), at the ward level in Delhi. Landsat derived remote sensing imagery for May and September 2011 is used in a sensitivity analysis of varying seasonal exposure. Multivariable models based on generalized estimating equations (GEEs) reveal significant statistical associations (p < 0.05) between UHRI/NDVI and several indicators of social vulnerability. For example, the proportions of children (β = 0.922, p = 0.024) and agricultural workers (β = 0.394, p = 0.016) are positively associated with the May UHRI, while the proportions of households with assets (β = -1.978, p = 0.017) and households with electricity (β = -0.605, p = 0.010) are negatively associated with the May UHRI. In contrast, the proportions of children (β = 0.001, p = 0.633) and agricultural workers (β = 0.002, p = 0.356) are not significantly associated with the May NDVI, while the proportions of households with assets (β = 0.013, p = 0.010) and those with electricity (β = 0.008, p = 0.006) are positively associated with the May NDVI. Our findings emphasize the need for future research and policies to consider how socially vulnerable groups are inequitably exposed to the impact of climate change-related urban heat without the mitigating effects of greenspace.

Linkages between typologies of existing urban development patterns and human vulnerability to heat stress in Lahore

The combined effects of global warming, urbanization, and demographic change influence climate risk for urban populations, particularly in metropolitan areas with developing economies. To inform climate change adaptation and spatial planning, it is important to study urban climatic hazards and populations at risk in relation to urban growth trends and development patterns. However, this relationship has not been adequately investigated in studies dedicated to climate vulnerability. This study identifies the typologies of development patterns within Lahore, Pakistan, investigates the heat vulnerability of residents at a neighborhood scale, and establishes a relationship between both of these factors. We identified urban clusters with diverse development patterns. Fourteen context- and site-specific indicators were selected to construct a human heat vulnerability index. Weighted sum, cluster analysis, and ANOVA test of variance were conducted to analyze the data. Our results demonstrate that development patterns significantly influence human vulnerability to heat stress, e.g., vulnerability is higher in older cities and undeveloped neighborhoods with less diverse land uses. These findings are essential for informing policy-makers, decision-makers and spatial planners about proactive adaptation planning in dynamic urban environments.

Investigation of spatio-temporal changes in land use and heat stress indices over Jaipur City using geospatial techniques

Heat waves are expected to intensify around the globe in the future, with a potential increase in heat stress and heat-induced mortality in the absence of adaptation measures. India has high current exposure to heat waves, and with limited adaptive capacity, impacts of increased heat waves might be quite severe. This paper presents a comparative analysis of urban heat stress/heatwaves by combining temperature and vapour pressure through two heat stress indices, i.e., Wet Bulb Globe Temperature (WBGT) and humidex index. For the years 1970-2000 (historical) and 2041-2060 (future), these two indicators were estimated in Jaipur. Another goal of this research is to better understand Jaipur land use changes and urban growth. For the land use study, Landsat 5 TM and Landsat 8 OLI satellite data from the years 1993, 2010, and 2015 were examined. During the research period, urban settlement increased and the majority of open land is converted to urban settlements. In the coming term, all months except three, namely July to September, have seen an increase in the WBGT index values; however, these months are classified as dangerous. Humidex’s historical value has been 21.4, but in RCP4.5 and RCP8.5 scenarios, it will rise to 25.5 and 27.3, respectively, and slip into the danger and extreme danger categories. The NDVI and SAVI indices are also used to assess the city’s condition during various periods of heat stress. The findings suggest that people’s discomfort levels will rise in the future, making it difficult for them to work outside and engage in their usual activities.

Effects of rising urban temperatures on the wellbeing of the residents: A case study of Kolkata metropolitan region

Urban climate changes and the warming of the cities are serious issues that cannot be overlooked. One of the most common inferences for these changes is unprecedented and unplanned urbanization, which further causes a rise in local, regional, and even global temperatures. Although the rate of urbanisation defines and greatly influences the city’s socioeconomic worth and GDP per capita, if the urban expansion is hap-hazardous, it can cause serious environmental harm.There has been a steep rise in global urban population over the past three decades, and the highest growth rates have been observed in Asian and African cities. These two continents have been predicted to contribute to almost 90% of the total urban growth from the present to 2050. India is one of the few highly susceptible countries to the harsh effects of climate change in terms of rise in temperatures. After 1990s’, India has observed substantial changes in the landscape due to urbanization, which has led to a significant rise in the surface and ambient air temperatures, further affecting the planet’s health. Elevated temperature drastically affects the health of urban dwellers leading to a rise in stress and discomfort levels. Estimation of Land Surface Temperature (LST) can play a vital role in understanding the region-specific alterations in temperatures as it uses satellite data that captures the entire region and provides the information in the form of pixels. Traditionally, the temperature was measured at meteorological stations and extrapolated for the entire region,whichinduces inaccuracies. This ambiguity can be amended by developing a relationship between LST and ambient air temperature. This communication focuses on LST estimation using Radiative Transfer Equation algorithm corresponding to various Landuse categories. The study also attempts to create a relationship between the LST and the ambient air temperature observed at two meteorological stations. An overall assessment of the number of days under stress for the residents was also performed over several years. Kolkata Metropolitan Area was considered the study area to represent the results and understand the complete analysis. A rise of 6.77 degrees C was observed in LST over the study period (2000-2019) due to an increment of 200% in the urban area. Analysis of the number of days under stress showed an increasing trend for the study area due to alterations in urban temperatures. These results and the suggestions from the scientific community, urban planners, and climate experts will help develop or modify the current policy frameworks for creating a balance between development and the environment, thus creating sustainable urban development.

Recent patterns of extreme temperature events over Tamil Nadu, India

We investigated the time evolution of heat waves and warm nights over the 7 agroclimatic zones of Tamil Nadu, India, during the period 1951-2016, including the spatiotemporal patterns of concurrent hot day and hot night (CHDHN) episodes and the concurrent warm spells in daytime temperature and drought (CWD) episodes. The research relied upon gridded temperature and rainfall observations from the India Meteorological Department. We used the Heat-Wave Magnitude Index daily to study the warm spells in daytime and nighttime temperature, while the analysis of droughts was based on the Standardized Precipitation Evapotranspiration Index. We observed a considerable increase in the count, intensity and duration of heat waves and warm night episodes across Tamil Nadu between the periods 1951-1983 and 1984-2016. Particularly, the number of heat wave events almost doubled in the second half of the study period. We observed a west-east gradient in the severity of heat waves. The intensity and duration of warm night events increased up to 3-fold in the second half of the study period, especially over central Tamil Nadu. The study recorded a multi-fold increase in the number and frequency of CHDHN episodes and the number of CWD episodes during 1984-2016 compared to the base period 1951-1983. More importantly, the incidence of compound events that coexisted with anomalous phases of sea surface temperatures registered a statistically significant spike in many locations. These changes in temperature-induced extremes pose an exceptional public health threat that can increase morbidity and mortality, disproportionately affecting vulnerable sections of Tamil Nadu’s populace engaged in outdoor work.

Inter-spatial heat vulnerability assessment of summer-2018 over Madhya Pradesh using discomfort (wind and thermal) indices

Due to global warming, increase in air temperature is a growing concern at present. This rise in temperature may cause mild to severe thermal discomfort and heat related hazards mostly for the people who are engaged in outside activities throughout the day. The present study shows the inter-spatial monthly distribution of thermal patches over major stations of Madhya Pradesh, viz., Bhopal, Gwalior, Indore, Jabalpur, Hoshangabad, Rewa, Ratlam, Ujjain, Dhar etc. In this study, various Heat Indices applicable for tropical climate including Wet Bulb Globe Temperature (WBGT) are used to estimate the thermal stress by analyzing the meteorological data of Summer-2018 in Madhya Pradesh. Study was carried out for computing indoor, shady and outdoor heat stress separately and heat transfer rates to identify the places vulnerable to severe heat stroke in the month of March, April and May in 2018.It is observed that declaration of heat wave alone at any station is not sufficient for the administration and health organizations to take precautionary actions; also, discomfort indices should be referred for impact based monitoring and making work schedules. It is found that March and April fall in the partial discomfort category for at least half of the districts in Madhya Pradesh. It is interesting to note that several districts fall in discomfort category in outdoor conditions but not in indoor or shady conditions in May month. Severe stresses are observed mainly in the West and Central Madhya Pradesh during April and May months. Comparison of various Heat Indices is too performed along with computing Tropical Summer Index (TSI) and Apparent Temperature (AT) to indicate real feel-like temperatures in Madhya Pradesh during extreme temperature events.

Assessing mortality risk attributable to high ambient temperatures in Ahmedabad, 1987 to 2017

BACKGROUND: Studies on high temperatures and mortality have not focused on underdeveloped tropical regions and have reported the associations of different temperature metrics without conducting model selection. METHODS: We collected daily mortality and meteorological data including ambient temperatures and humidity in Ahmedabad during summer, 1987-2017. We proposed two cross-validation (CV) approaches to compare semiparametric quasi-Poisson models with different temperature metrics and heat wave definitions. Using the fittest model, we estimated heat-mortality associations among general population and subpopulations. We also conducted separate analyses for 1987-2002 and 2003-2017 to evaluate temporal heterogeneity. FINDINGS: The model with maximum and minimum temperatures and without heat wave indicator gave the best performance. With this model, we found a substantial and significant increase in mortality rate starting from maximum temperature at 42 °C and from minimum temperature at 28 °C: 1 °C increase in maximum and minimum temperatures at lag 0 were associated with 9.56% (95% confidence interval [CI]: 6.64%, 12.56%) and 9.82% (95% CI: 6.33%, 13.42%) increase in mortality risk, respectively. People aged ≥65 years and lived in South residential zone where most slums were located, were more vulnerable. We observed flatter increases in mortality risk associated with high temperatures comparing the period of 2003-2017 to 1987-2002. INTERPRETATION: The analyses provided better understanding of the relationship of high temperatures with mortality in underdeveloped tropical regions and important implications in developing heat warning system for local government. The proposed CV approaches will benefit future scientific work.

Individually experienced heat stress among elderly residents of an urban slum and rural village in India

The elderly are one of the most vulnerable groups to heat-related illnesses and mortality. In tropical countries like India, where heat waves have increased in frequency and severity, few studies have focused on the level of stress experienced by the elderly. The study presented here included 130 elderly residents of Kolkata slums and 180 elderly residents of rural villages about 75 km south of Kolkata. It used miniature monitoring devices to continuously measure temperature, humidity, and heat index experienced during everyday activities over 24-h study periods, during hot summer months. In the Kolkata slum, construction materials and the urban heat island effect combined to create hotter indoor than outdoor conditions throughout the day, and particularly at night. As a result, elderly slum residents were 4.3 times more likely to experience dangerous heat index levels (≥ 45°C) compared to rural village elderly. In both locations, the median 24-h heat indexes of active elderly were up to 2°C higher than inactive/sedentary elderly (F = 25.479, p < 0.001). Among Kolkata slums residents, there were no significant gender differences in heat exposure during the day or night, but in the rural village, elderly women were 4 times more likely to experience dangerous heat index levels during the hottest times of the day compared to elderly men. Given the decline in thermoregulatory capacity associated with aging and the increasing severity of extreme summer heat in India, these results forecast a growing public health challenge that will require both scientific and government attention.

Heat exposure, heat-related symptoms and coping strategies among elderly residents of urban slums and rural vilages in West Bengal, India

The impact of heat stress among the elderly in India-particularly the elderly poor-has received little or no attention. Consequently, their susceptibility to heat-related illnesses is virtually unknown, as are the strategies they use to avoid, or deal with, the heat. This study examined perceptions of comfort, heat-related symptoms, and coping behaviors of 130 elderly residents of Kolkata slums and 180 elderly residents of rural villages south of Kolkata during a 90-day period when the average 24-h heat indexes were between 38.6 °C and 41.8 °C. Elderly participants in this study reported being comfortable under relatively warm conditions-probably explained by acclimatization to the high level of experienced heat stress. The prevalence of most heat-related symptoms was significantly greater among elderly women, who also were more likely to report multiple symptoms and more severe symptoms. Elderly women in the rural villages were exposed to significantly hotter conditions during the day than elderly men, making it likely that gender differences in symptom frequency, number and severity were related to gender differences in heat stress. Elderly men and elderly village residents made use of a greater array of heat-coping behaviors and exhibited fewer heat-related symptoms than elderly women and elderly slum residents. Overall, heat measurements and heat-related symptoms were less likely to be significant predictors of most coping strategies than personal characteristics, building structures and location. This suggests that heat-coping behaviors during hot weather were the result of complex, culturally influenced decisions based on many different considerations besides just heat stress.

Analysis of heat stress and heat wave in the four metropolitan cities of india in recent period

Cities are becoming hotter day-by-day because heat is trapped near the earth’s surface due to a decrease in green cover, rapid urbanization, energy-intensity activities, and concrete structures. The four major metropolitan cities of India, i.e. Kolkata, Chennai, Delhi and Mumbai, have experienced heat waves and heat stress frequently during the summer season. This study analyses heat wave and heat stress patterns in these cities using 30 years of data from 1990 to 2019 during the summer season. We used daily maximum temperature, relative humidity, wind speed and solar radiation datasets for the above mentioned period in this study. To understand the episode of a heat wave, we have used the 95th percentile method. Furthermore, we have also used Humidity Index (HD) to evaluate the degree of discomfort and the Universal Thermal Climate Index (UTCI) to categorize the level of heat stress. The analysis indicates that the number of heat wave events in the Delhi region is 26.31%, 31.58% and 63.16% higher than Kolkata, Chennai, and Mumbai regions respectively. It is also seen that the risks of extreme heat stress and dangerous-heat stroke events in the Chennai region during heat wave periods are higher than that experienced in other metropolitan cities because of high temperature with higher values of relative humidity. The risk of extreme heat stress is less in Delhi because of lower relative humidity compared to other metropolitan cities although temperature is higher in this region. However, the risk of extreme heat stress is lower in Mumbai region because of relatively lower temperature than Chennai during summer season. The likelihood of experiencing great discomfort during heat wave periods in Kolkata city is higher than that experienced in other metropolitan cities in India, however, during non-heat wave periods the probability of extreme discomfort is higher in Chennai.

Threshold determination and temperature trends analysis of Indian cities for effective implementation of an early warning system

Extreme heat events (EHEs) have been linked to increased mortality rates, rendering them a valuable research topic in both climate and public health. Early warning systems are highly impactful in prevention and management of heat-related illnesses. We aimed to determine the preliminary maximum temperature thresholds for Nagpur and Rajkot city of India by analyzing the meteorological and mortality data to enable the heat-health response system based on the heat wave disaster risk of a particular state and city. We conducted a trend analysis with daily maximum temperature and all-cause mortality data of Nagpur and Rajkot (2003-2017) cities, also city-specific thresholds evaluated for both cities. There was a significant association between all-cause mortality and extreme heat events and it was more profound when temperatures were above 40.1 degrees C, but V-shaped relationship of mortality-temperature was noted only for Nagpur city. The dose-response relationship between maximum temperatures and deaths alert thresholds to activate heat health response for red alert set at 46 degrees C and 44 degrees C for Nagpur and Rajkot city respectively. This study suggests that determining local thresholds is important for developing and implementing scientific early warning systems to prevent heat-related illnesses.

Effect of El Niño-southern oscillation and local weather on Aedes vector activity from 2010 to 2018 in Kalutara District, Sri Lanka: A two-stage hierarchical analysis

BACKGROUND: Dengue, transmitted by Aedes mosquitoes, is a major public health problem in Sri Lanka. Weather affects the abundance, feeding patterns, and longevity of Aedes vectors and hence the risk of dengue transmission. We aimed to quantify the effect of weather variability on dengue vector indices in ten Medical Officer of Health (MOH) divisions in Kalutara, Sri Lanka. METHODS: Monthly weather variables (rainfall, temperature, and Oceanic Niño Index [ONI]) and Aedes larval indices in each division in Kalutara were obtained from 2010 to 2018. Using a distributed lag non-linear model and a two-stage hierarchical analysis, we estimated and compared division-level and overall relationships between weather and premise index, Breteau index, and container index. FINDINGS: From Jan 1, 2010, to Dec 31, 2018, three El Niño events (2010, 2015-16, and 2018) occurred. Increasing monthly cumulative rainfall higher than 200 mm at a lag of 0 months, mean temperatures higher than 31·5°C at a lag of 1-2 months, and El Niño conditions (ie, ONI >0·5) at a lag of 6 months were associated with an increased relative risk of premise index and Breteau index. Container index was found to be less sensitive to temperature and ONI, and rainfall. The associations of rainfall and temperature were rather homogeneous across divisions. INTERPRETATION: Both temperature and ONI have the potential to serve as predictors of vector activity at a lead time of 1-6 months, while the amount of rainfall could indicate the magnitude of vector prevalence in the same month. This information, along with knowledge of the distribution of breeding sites, is useful for spatial risk prediction and implementation of effective Aedes control interventions. FUNDING: None.

Dengue outbreaks in Bangladesh: Historic epidemic patterns suggest earlier mosquito control intervention in the transmission season could reduce the monthly growth factor and extent of epidemics

Dengue is endemic in Bangladesh and is an important cause of morbidity and mortality. Suppressing the mosquito vector activity at the optimal time annually is a practical strategy to control dengue outbreaks. The objective of this study was to estimate the monthly growth factor (GF) of dengue cases over the past 12 years as a means to identify the optimal time for a vector-control programme in Bangladesh. We reviewed the monthly cases reported by the Institute of Epidemiology, Disease Control and Research of Bangladesh during the period of January 2008-December 2019. We calculated the GF of dengue cases between successive months during this period and report means and 95% confidence intervals (CI). The median number of patients admitted to the hospital with dengue fever per year was 1554 (range: 375-101,354). The mean monthly GF of dengue cases was 1.2 (95% CI: 0.4-2.4). The monthly GF lower CI between April and July was > 1, whereas from September to November and January the upper CI was <1. The highest GF of dengue was recorded in June (mean: 2.4; 95% CI: 1.7-3.5) and lowest in October (mean: 0.43; 95% CI: 0.24-0.73). More than 81% (39/48) months between April and July for the period 2008-2019 had monthly GF >1 compared to 20% (19/96) months between August and March of the same period. The monthly GF was significantly correlated with monthly rainfall (r = 0.39) and monthly mean temperature (r = 0.30). The growth factor of the dengue cases over the last 12 years appeared to follow a marked periodicity linked to regional rainfall patterns. The increased transmission rate during the months of April-July, a seasonally determined peak suggests the need for strengthening a range of public health interventions, including targeted vector control efforts and community education campaigns.

Climate variability, dengue vector abundance and dengue fever cases in Dhaka, Bangladesh: A time-series study

Numerous studies on climate change and variability have revealed that these phenomena have noticeable influence on the epidemiology of dengue fever, and such relationships are complex due to the role of the vector—the Aedes mosquitoes. By undertaking a step-by-step approach, the present study examined the effects of climatic factors on vector abundance and subsequent effects on dengue cases of Dhaka city, Bangladesh. Here, we first analyzed the time-series of Stegomyia indices for Aedes mosquitoes in relation to temperature, rainfall and relative humidity for 2002–2013, and then in relation to reported dengue cases in Dhaka. These data were analyzed at three sequential stages using the generalized linear model (GLM) and generalized additive model (GAM). Results revealed strong evidence that an increase in Aedes abundance is associated with the rise in temperature, relative humidity, and rainfall during the monsoon months, that turns into subsequent increases in dengue incidence. Further we found that (i) the mean rainfall and the lag mean rainfall were significantly related to Container Index, and (ii) the Breteau Index was significantly related to the mean relative humidity and mean rainfall. The relationships of dengue cases with Stegomyia indices and with the mean relative humidity, and the lag mean rainfall were highly significant. In examining longitudinal (2001–2013) data, we found significant evidence of time lag between mean rainfall and dengue cases.

Modeling heat island exposure and vulnerability utilizing earth observations and social drivers: A case study for Alabama, USA

Alabama currently experiences an above-average threat from extreme heat events compared to the remaining states in the USA. More than 160,000 people living in the state (infants, elderly age groups, or poverty-ridden populations) remain vulnerable to heat events. The risk of heat-related mortalities and morbidities disproportionately impacts the growing Alabama cities due to increasing hot-weather episodes and several underlying social vulnerability factors. The exposure threat in 2050 is projected to increase by more than 90 average heat days a year and the number of heat-wave days is predicted to increase from 15 to more than 70 days a year. Although the state’s hazard mitigation plan covers extreme heat issues and heat emergency plans, Alabama lacks heat adaptation plans and is conducting heat vulnerability assessments from time to time. This study focused on determining the social drivers of heat vulnerability and identifying regions within the state that experienced intense heat island effects over the course of five years (2015-2019). 15 sociodemographic factors data from the 2018 American Community Survey (ACS), and 6 health outcome variables (asthma, obesity, stroke, high blood pressure, diabetes) were analyzed to assess cumulative social vulnerability using principal component analysis (PCA). Using Spatial Autoregression (SAR) model, exposure risk was measured as a function of environmental parameters including proportional vegetation, normalized difference water index (NDWI), digital elevation model (DEM), and percent imperviousness of land surface. A heat risk index calculated as a product of social vulnerability and exposure risk was analyzed for Alabama’s eight largest and growing cities (Birmingham, Huntsville, Hoover, Montgomery, Mobile, Tuscaloosa, Auburn, and Dothan) at the block-group census resolution. Spatial data depicting the physical landscape characteristics across the cities revealed differing levels of and factors in exposure to urban heat effects across the city.

Ambient temperature and risk of urinary tract infection in California: A time-stratified case-crossover study using electronic health records

BACKGROUND: In the United States (US), urinary tract infections (UTI) lead to more than 10 million office visits each year. Temperature and season are potentially important risk factors for UTI, particularly in the context of climate change. METHODS: We examined the relationship between ambient temperature and outpatient UTI diagnoses among patients followed from 2015 to 2017 in two California healthcare systems: Kaiser Permanente Southern California (KPSC) and Sutter Health in Northern California. We identified UTI diagnoses in adult patients using diagnostic codes and laboratory records from electronic health records. We abstracted patient age, sex, season of diagnosis, and linked community-level Index of Concentration at the Extremes (ICE-I, a measure of wealth and poverty concentration) based on residential address. Daily county-level average ambient temperature was assembled from the Parameter-elevation Regressions on Independent Slopes Model (PRISM). We implemented distributed lag nonlinear models (DLNM) to assess the association between UTI and lagged daily temperatures. Main analyses were confined to women. In secondary analyses, we stratified by season, healthcare system, and community-level ICE-I. RESULTS: We observed 787,186 UTI cases (89% among women). We observed a threshold association between ambient temperature and UTI among women: an increase in daily temperature from the 5th percentile (6.0 ˚C) to the mean (16.2 ˚C) was associated with a 3.2% (95% CI: 2.4, 3.9%) increase in same-day UTI diagnosis rate, whereas an increase from the mean to 95th percentile was associated with no change in UTI risk (0.0%, 95% CI: -0.7, 0.6%). In secondary analyses, we observed the clearest monotonic increase in the rate of UTI diagnosis with higher temperatures in the fall. Associations did not differ meaningfully by healthcare system or community-level ICE-I. Results were robust to alternate model specifications. DISCUSSION: Increasing temperature was related to higher rate of outpatient UTI, particularly in the shoulder seasons (spring, autumn).

Application of Haddon’s Matrix in the exploration of factors related to exertional heat illness in disaster responders in the US national guard

Exertional heat illness (EHI) presents significant risks for National Guard (NG) disaster response teams, especially when they are performing operations in impermeable personal protective equipment (PPE). Impermeable PPE does not allow passage of air or fluids either from the outside or inside of the equipment. While EHI prevention and management strategies are well documented, these strategies do not account for the additional heat-related risks NG teams confront when responding to disasters requiring PPE that protects against any hazards. NG personnel who wear the full gamut of impermeable PPE (including Trek coveralls and respirators) experience core body temperature increase as a result of builtup body heat or accumulated perspiration. We conducted a qualitative descriptive study using thematic analysis with three focus groups to identify EHI-related factors during disaster response operations that require PPE. We organized focus group data into phases of disaster response operation: pre-event, event, and post-event to reflect four conceptual groups: human (host), agent (energy transfer), environmental, and workplace/social conditions. Participants identified 12 themes covering the 3 phases and situated in the 4 conceptual groups. Results of this study serve as an evidence-based foundation for enhancing pre-event, event, and post-event assessments administered by NG medical personnel and can be applied to other professionals who are required to wear PPE.

The risks of warm nights and wet days in the context of climate change: Assessing road safety outcomes in Boston, USA and Santo Domingo, Dominican Republic

Background: There remains a dearth of cross-city comparisons on the impact of climate change through extreme temperature and precipitation events on road safety. We examined trends in traffic fatalities, injuries and property damage associated with high temperatures and heavy rains in Boston (USA) and Santo Domingo (Dominican Republic). Methods: Official publicly available data on daily traffic outcomes and weather conditions during the warm season (May to September) were used for Boston (2002-2015) and Santo Domingo (2013-2017). Daily maximum temperatures and mean precipitations for each city were considered for classifying hot days, warm days, and warm nights, and wet, very wet, and extremely wet days. Time-series analyses were used to assess the relationship between temperature and precipitation and daily traffic outcomes, using a quasi-Poisson regression. Results: In Santo Domingo, the presence of a warm night increased traffic fatalities with a rate ratio (RR) of 1.31 (95% CI [confidence interval]: 1.00,1.71). In Boston, precipitation factors (particularly, extremely wet days) were associated with increments in traffic injuries (RR 1.25, 95% CI: 1.18, 1.32) and property damages (RR 1.42, 95% CI: 1.33, 1.51). Conclusion: During the warm season, mixed associations between weather conditions and traffic outcomes were found across Santo Domingo and Boston. In Boston, increases in heavy precipitation events were associated with higher traffic injuries and property damage. As climate change-related heavy precipitation events are projected to increase in the USA, the associations found in this study should be of interest for road safety planning in a rapidly changing environment.

Heat stress in the Caribbean: Climatology, drivers, and trends of human biometeorology indices

Forty years (1980-2019) of reanalysis data were used to investigate climatology and trends of heat stress in the Caribbean region. Represented via the Universal Thermal Climate Index (UTCI), a multivariate thermophysiological-relevant parameter, the highest heat stress is found to be most frequent and geographically widespread during the rainy season (August, September, and October). UTCI trends indicate an increase of more than 0.2 degrees C center dot decade(-1), with southern Florida and the Lesser Antilles witnessing the greatest upward rates (0.45 degrees C center dot decade(-1)). Correlations with climate variables known to induce heat stress reveal that the increase in heat stress is driven by increases in air temperature and radiation, and decreases in wind speed. Conditions of heat danger, as depicted by the heat index (HI), have intensified since 1980 (+1.2 degrees C) and are found to occur simultaneously to conditions of heat stress suggesting a synergy between heat illnesses and physiological responses to heat. This work also includes the analysis of the record-breaking 2020 heat season during which the UTCI and HI achieved above average values, indicating that local populations most likely experienced heat stress and danger higher than the ones they are used to. These findings confirm the gradual intensification of heat stress in the Caribbean and aim to provide a guidance for heat-related policies in the region.

A short note on the use of daily climate data to calculate humidex heat-stress indices

The projected increase in the frequency and intensity of extreme heat events due to climate change means an associated increase in risk of heat-related illnesses and mortality. Public health systems need to be prepared to identify and reduce the susceptibility of vulnerable populations to increased occurrence of heat-related illness and stress. To facilitate this, climate services have begun developing climate change projections for heat-stress indices based on exceedances of thresholds used operationally in meteorological heat warning systems. This task is complicated by the fact that heat-stress indices are generally computed using hourly data whereas climate model outputs are often archived at daily or longer time steps. This study focuses on Humidex, a heat-stress index used in heat alerts issued by the Meteorological Service of Canada. Several potential solutions for computing robust Humidex indices using daily data are examined, including a new approximation method. Indices obtained with the new method are compared with indices obtained using the classic method based on hourly data as well as with other two methods based on average daily values. The new approximation gives good estimations for humidex indices, while the daily-average-value methods present biases with respect to the hourly-value method.

Heat tolerance and the validity of occupational heat exposure limits in women during moderate-intensity work

To mitigate excessive rises in core temperature (>1 °C) in non-heat acclimatized workers, the American Conference of Governmental Industrial Hygienists (ACGIH) provides heat stress limits (Action Limit Values; ALV), defined by the wet-bulb globe temperature (WBGT) and a worker’s metabolic rate. However, since these limits are based on data from men, their suitability for women remains unclear. We therefore assessed core temperature and heart rate in men (n = 19; body surface area-to-mass ratio: 250 (SD 17) cm(2)/kg) and women (n = 15; body surface area-to-mass ratio: 268 (SD 24) cm(2)/kg) aged 18-45 years during 180 min of walking at a moderate metabolic rate (200 W/m(2)) in WBGTs below (16 and 24 °C) and above (28 and 32 °C) ACGIH ALV. Sex did not significantly influence (i) rises in core temperature, irrespective of WBGT, (ii) the proportion of participants with rises in core temperature >1 °C in environments below ACGIH limits, and (iii) work duration before rises in core temperature exceeded 1 °C or volitional termination in environments above ACGIH limits. Although further studies are needed, these findings indicate that for the purpose of mitigating rises in core temperature exceeding recommended limits (>1 °C), ACGIH guidelines have comparable effectiveness in non-heat acclimatized men and women during moderate-intensity work. Novelty: Sex did not appreciably influence thermal strain nor the proportion of participants with core temperatures exceeding recommended limits. Sex did not significantly influence tolerance to uncompensable heat stress. Despite originating from data obtained in only men, current occupational heat stress guidance offered comparable effectiveness in men and women.

A heat-health watch and warning system with extended season and evolving thresholds

BACKGROUND: Many countries have developed heat-health watch and warning systems (HHWWS) or early-warning systems to mitigate the health consequences of extreme heat events. HHWWS usually focuses on the four hottest months of the year and imposes the same threshold over these months. However, according to climate projections, the warm season is expected to extend and/or shift. Some studies demonstrated that health impacts of heat waves are more severe when the human body is not acclimatized to the heat. In order to adapt those systems to potential heat waves occurring outside the hottest months of the season, this study proposes specific health-based monthly heat indicators and thresholds over an extended season from April to October in the northern hemisphere. METHODS: The proposed approach, an adoption and extension of the HHWWS methodology currently implemented in Quebec (Canada). The latter is developed and applied to the Greater Montreal area (current population 4.3 million) based on historical health and meteorological data over the years. This approach consists of determining excess mortality episodes and then choosing monthly indicators and thresholds that may involve excess mortality. RESULTS: We obtain thresholds for the maximum and minimum temperature couple (in °C) that range from (respectively, 23 and 12) in April, to (32 and 21) in July and back to (25 and 13) in October. The resulting HHWWS is flexible, with health-related thresholds taking into account the seasonality and the monthly variability of temperatures over an extended summer season. CONCLUSIONS: This adaptive and more realistic system has the potential to prevent, by data-driven health alerts, heat-related mortality outside the typical July-August months of heat waves. The proposed methodology is general and can be applied to other regions and situations based on their characteristics.

Assessment of future overheating conditions in Canadian cities using a reference year selection method

Climate change has led to prolonged, more frequent, intense, and severe extreme weather events, such as summertime heatwaves, creating many challenges on the economy and society and human health and energy resources. For example, the 2010 and 2018 heatwave in Quebec, Canada, resulted in about 280 and 93 heat-related deaths, and there were around 500 fatalities due to overheated indoor environments in 2021 around entire Canada. Therefore, it is imperative to understand and evaluate the overheating conditions in buildings, for which selecting suitable future reference weather data under climate change is one of the first critical steps. This study evaluated a reference year selection method in terms of typical and extreme reference years based on future climate datasets to assess both outdoor and indoor overheating in the future. The future climate data were collected from the Coordinated Regional Downscaling Experiment (CORDEX) program. Three Canadian cities (Montreal, Toronto, Vancouver) were selected for the overheating evaluation during three selected periods (2001-2020, 2041-2060, 2081-2100). The CORDEX climate projections were first bias-corrected by the multivariate quantile mapping correction method with the observational data. Then, the typical and extreme reference year data were generated as well as climate data from the design summer year for comparison. The performance of the reference year selection method was evaluated by comparing the maximum, minimum, and average overheating hours for the 20-years data of each period. This study demonstrates that the multivariate quantile mapping bias correction method can improve the reliability of future climate data making it one of the most important steps for any future weather projection study. Besides, the reference year selection method could efficiently capture maximum and minimum monthly overheating hours providing the upper and lower boundary of possible outdoor and indoor overheating conditions.. In contrast, neither the severest nor the typical monthly outdoor and indoor overheating conditions could be predicted by the design summer year method. Finally, owing to the effects of climate change, average monthly overheating hours normally increase by around one time (from 50% to 150%) until the mid-term future (2041-2060) and by around two to three times (even up to nine times for some scenarios) during the long-term future (2081-2100).

Critical windows of susceptibility for the effects of prenatal exposure to heat and heat variability on gestational growth

BACKGROUND: Studies have shown that prenatal heat exposure may impact fetal growth, but few studies have examined the critical windows of susceptibility. As extreme heat events and within season temperature variability is expected to increase in frequency, it is important to understand how this may impact gestational growth. OBJECTIVES: We investigated associations between various measures of weekly prenatal heat exposure (mean and standard deviation (SD) of temperature and heat index (HI), derived using temperature in °C and dew point) and term birthweight or odds of being born small for gestational age (SGA) to identify critical windows of susceptibility. METHODS: We analyzed data from mother-child dyads (n = 4442) in the Boston-based Children’s HealthWatch cohort. Birthweights were collected from survey data and electronic health records. Daily temperature and HI values were obtained from 800 m gridded spatial climate datasets aggregated by the PRISM Climate Group. Distributed lag-nonlinear models were used to assess the effect of the four weekly heat metrics on measures of gestational growth (birthweight, SGA, and birthweight z-scores). Analyses were stratified by child sex and maternal homelessness status during pregnancy. RESULTS: HI variability was significantly associated with decreased term birthweight during gestational weeks 10-29 and with SGA for weeks 9-26. Cumulative effects for these time periods were -287.4 g (95% CI: -474.1 g, -100.8 g for birthweight and 4.7 (95% CI: 1.6, 14.1) for SGA. Temperature variability was also significantly associated with decreased birthweight between weeks 15 and 26. The effects for mean heat measures on term birthweight and SGA were not significant for any gestational week. Stratification by sex revealed a significant effect on term birthweight in females between weeks 23-28 and in males between weeks 9-26. Strongest effects of HI variability on term birthweight were found in children of mothers who experienced homelessness during pregnancy. Weekly HI variability was the heat metric most strongly associated with measures of gestational growth. The effects observed were largest in males and those who experienced homelessness during pregnancy. DISCUSSION: Given the impact of heat variability on birthweight and risk of SGA, it is important for future heat warnings to incorporate measure of heat index and temperature variability.

A futures perspective of health, climate change and poverty in the United States

Trend assessments suggest that poverty and health will worsen in the United States in the coming decades and that climate change will exacerbate these trends. An aging society, lack of affordable housing, and automation threaten the economic sustainability of millions of households. Despair, drug abuse, and unhealthy lifestyles have led to the first decline in life spans in the U.S. during a non-war period. Extreme weather events caused by climate change can be anticipated to disrupt economic activities and destroy homes and infrastructure, pushing millions of more Americans into poverty. A warming climate threatens vulnerable individuals, such as elders, with heat stress, increasing levels of air pollution, and increasing risks from new tropical diseases entering the country. It is anticipated that climate change will force tens of millions of Americans from their homes, creating The Great Migration (TGM) scenario. The welfare of the migrants will depend on what types of human settlements they migrate to. Seven different types of settlements are depicted within the TGM scenario, such as Willow Pond settlements that represent radical redesigns of suburbs to make them sustainable and resilient to climate change. Numerous recommendations are provided to foster positive outcomes with respect to TGM, including having the U. S. formally designate that the right to safe and adequate housing is a human right.

Impact of environmental factors on heat-associated mortalities in an urban desert region

The troubling trend of rising heat-associated mortalities in an urban desert region (Maricopa County, AZ, USA) has motivated us to explore the extent to which environmental factors may contribute to increased heat-health risks. Summertime data from 2010 to 2019 were used to construct a suite of models for daily heat-associated mortalities. The best-performing full model included the following predictors, ordered from strongest to weakest influence: daily average air temperature, average of previous 5 days daily average air temperature, year, day of year, average of previous 5 days daily average dew point temperature, average of previous 5 days daily average PM(2.5), and daily average PM(10). This full model exhibited a 5.39% reduction in mean absolute error in daily heat-associated mortalities as compared to the best-performing model that included only air temperature as an environmental predictor. The extent to which issued and modeled excessive heat warnings (from both the temperature only and full models) corresponded with heat-associated mortalities was also examined. Model hindcasts for 2020 and 2021 showed that the models were able to capture the high number of heat-associated mortalities in 2020, but greatly undercounted the highest yet observed number of heat-associated mortalities in 2021. Results from this study lend insights into environmental factors corresponding to an increased number of heat-associated mortalities and can be used for informing strategies towards reducing heat-health risks. However, as the best-performing model was unable to fully capture the observed number of heat-associated mortalities, continued scrutiny of both environmental and non-environmental factors affecting these observations is needed.

Climatology and trends of morning and evening surface-based temperature inversions in southwestern Pennsylvania with air quality implications

Concerns over regional climate change include its impact on air quality. A major contributor to unhealthy air quality is surface-based temperature inversions. Poor air quality is a serious public health concern that is often addressed by public health agencies. To assist with understanding the climatology and trend of temperature inversions for a large public health department, innovative pragmatic criteria were developed and used to determine morning and evening surface-based temperature inversions from datasets derived from Pittsburgh National Weather Service (NWS) radiosonde measurements made from 1 January 1991 through 31 December 2020. During this 30-year period, the strength of the morning (7 a.m. EST; 12 UTC) inversions was 3.9 °C on average. The depth of the inversion layer measured an average height of 246 m above the ground. The inversions tended to dissipate by 10 a.m. EST. The frequency of occurrence of morning inversions averaged 47%. The mean strength of the evening (7 p.m. EST; 00 UTC) inversions was 1.1 °C with a mean depth of 101 m above the ground. The frequency of evening inversion occurrence averaged 20% during this period. The 30-year climatology revealed generally declining frequency of inversions in the Pittsburgh area. Morning surface-based inversion strengths usually declined while morning depths and break times were steady. Evening inversion strengths and depths increased overall during the 30-year period. Monthly means showed a morning-evening overlap of some months that record the most frequent substantial inversions during the fall time of the year, coinciding with the time when the worst air pollution events occur.

Designing a lora-based smart helmet to aid in emergency detection by monitoring bio-signals

The smart helmet is designed for a wildland firefighter to send vital data to their supervisor while they are working to extinguish an active fire. The smart helmet collects temperature, heart rate, and acceleration data from each firefighter via sensors inside and around the helmet. The data is used to alert the supervisor of potential health or emergency issues, such as heat-related illness, dehydration, potential falls or abnormal heart rates. A mobile app that the supervisor connects to their smart helmet device collects data in real time from the firefighters, without the need of any cellular coverage or WiFi.

Identifying risk factors for hospitalization with behavioral health disorders and concurrent temperature-related illness in New York State

Extreme temperature events are linked to increased emergency department visits, hospitalizations, and mortality for individuals with behavioral health disorders (BHD). This study aims to characterize risk factors for concurrent temperature-related illness among BHD hospitalizations in New York State. Using data from the NYS Statewide and Planning Research and Cooperative System between 2005-2019, multivariate log binomial regression models were used in a population of BHD hospitalizations to estimate risk ratios (RR) for a concurrent heat-related (HRI) or cold-related illness (CRI). Dementia (RR 1.65; 95% CI:1.49, 1.83) and schizophrenia (RR 1.38; 95% CI:1.19, 1.60) were associated with an increased risk for HRI among BHD hospitalizations, while alcohol dependence (RR 2.10; 95% CI:1.99, 2.22), dementia (RR 1.52; 95% CI:1.44, 1.60), schizophrenia (RR 1.41; 95% CI:1.31, 1.52), and non-dependent drug/alcohol use (RR 1.20; 95% CI:1.15, 1.26) were associated with an increased risk of CRI among BHD hospitalizations. Risk factors for concurrent HRI among BHD hospitalizations include increasing age, male gender, non-Hispanic Black race, and medium hospital size. Risk factors for concurrent CRI among BHD hospitalizations include increasing age, male gender, non-Hispanic Black race, insurance payor, the presence of respiratory disease, and rural hospital location. This study adds to the literature by identifying dementia, schizophrenia, substance-use disorders, including alcohol dependence and non-dependent substance-use, and other sociodemographic factors as risk factors for a concurrent CRI in BHD hospitalizations.

Evaluation of environmental conditions on self-selected work and heat stress in wildland firefighting

INTRODUCTION: The purpose of this study was to evaluate heat stress occurring in wildfire management activities with variable environmental conditions. METHODS: Direct observation and real-time wireless physiological monitoring allowed for weather and physiological metrics, including heart rate, core temperature (T(c)), skin temperature, and physiological strain index (PSI), of male (n=193) and female (n=28) wildland firefighters (WLFFs) to be recorded during wildfire management activities. Accelerometry data were used to categorize intensity level of activity. RESULTS: Ambient temperature and relative humidity values were used to compute the heat index (HI; n=3891 h) and divided into quartiles (Q1: 13.3-25.1°C; Q2: 25.2-26.4°C; Q3: 26.5-28.9°C; Q4: 29.0-49.1°C). Activity levels remained relatively constant across all HI quartiles. The percentage of time spent performing moderate/vigorous activities was lowest during the hotter Q4 (Q1: 3%; Q2: 2%; Q3: 2%; Q4: 1%). Heart rate, T(c), PSI, and skin temperature associations with HI varied by resource type. Sixty-one percent of WLFFs (n=134) experienced a T(c) ≥38.0°C, and 50% of WLFFs (n=111) experienced a PSI ≥6.0. CONCLUSIONS: Heat stress was prevalent as WLFFs performed job tasks of varying intensities in all ambient conditions. Spontaneous bouts of arduous labor, duration of work shifts, and other occupation characteristics present the possibility for substantial durations of hyperthermia, although no heat-related injuries occurred in this study. Despite chronic exposure to rugged sloped terrain, load carriage, and environmental conditions, self-regulation and individual attention to managing work:rest appears to be the primary management strategy in mitigating excessive accumulation of body heat in this occupation.

Effect of vented helmets on heat stress during wildland firefighter simulation

Uncompensable heat from wildland firefighter personal protective equipment decreases the physiological tolerance while exercising in the heat. Our previous work demonstrated that the standard wildland firefighter helmet significantly increases both perceived and actual head heat. This study compared heat accumulation under simulated working conditions while wearing a standard non-vented helmet versus a vented helmet. Ten male subjects randomly completed two trials separated by a 2-week washout. Subjects walked 180 min (5.6 km h−1, 5% grade) in a heat chamber (35°C, 30% relative humidity) broken into three segments of 50 min of exercise and 10 min rest, followed by a work capacity test to exhaustion. Each trial measured the physiological strain index, perceived head heat, helmet temperature and relative humidity, rating of perceived exertion and heart rate. At the end of the 3-h trial heart rate, physiological strain, perceived exertion, helmet temperature and humidity showed the main effects of time (P < 0.05) but were not different between trials. Work capacity was significantly greater in the vented trial (P = 0.001). End-trial strain and heart rate were significantly related to work performed (r = –0.8, P < 0.001). Elevated work, trends for changes in perceived exertion, helmet microenvironment and perceived head heat suggest greater heat dissipation and comfort with the vented helmet.

Prevention of occupational heat-related illnesses

High ambient temperatures and strenuous physical activity put workers at risk for a variety of heat-related illnesses and injuries. Through primary prevention, secondary prevention, and treatment, OEM health providers can protect workers from the adverse effects of heat. This statement by the American College of Occupational and Environmental Medicine provides guidance for OEM providers who serve workers and employers in industries where heat exposure occurs.

Association of area-level heat and social vulnerability with recurrent hospitalizations among individuals with rheumatic conditions

OBJECTIVE: Climate and social vulnerability contribute to morbidity and health care utilization. We examined associations between the neighborhood Social Vulnerability Index (SVI) and the Heat Vulnerability Index (HVI) and recurrent hospitalizations among individuals with rheumatic conditions. METHODS: Using a Massachusetts multihospital centralized clinical data repository, we identified individuals ≥18 years of age with a rheumatic condition who received rheumatology care within 3 years of April 2021. We defined the index date as 2 years before the last encounter and the baseline period as 1 year pre-index date. Addresses were geocoded and linked by census tract to the SVI and the HVI. We used multilevel, multinomial logistic regression to examine the odds of 1-3 and ≥4 hospitalizations (reference = 0) over 2 years post index date by vulnerability index, adjusting for age, gender, race/ethnicity, insurance, and comorbidities. RESULTS: Among 14,401 individuals with rheumatic conditions, the mean ± age was 61.9 ± 15.7 years, 70% were female, 79% White, 7% Black, and 2% Hispanic. There were 8,251 hospitalizations; 11,649 individuals (81%) had 0 hospitalizations, 2,063 (14%) had 1-3, and 689 (5%) had ≥4. Adjusting for individual-level factors, individuals living in the highest versus lowest SVI areas had 1.84 times higher odds (95% confidence interval [95% CI] 1.43-2.36) of ≥4 hospitalizations. Individuals living in the highest versus lowest HVI areas had 1.64 times greater odds (95% CI 1.17-2.31) of ≥4 hospitalizations. CONCLUSION: Individuals with rheumatic conditions living in areas with high versus low social and heat vulnerability had significantly greater odds of recurrent hospitalizations. Studies are needed to determine modifiable factors to mitigate risks.

Association of daily high temperatures with increased snake envenomations: A case-crossover study

The prevention of snake envenomations in North America often focuses on avoiding interactions between humans and snakes. Previous strategies have focused on the influence of geography, type of habitat, and time of year, though a detailed analysis of weather patterns on snakebite envenomation behavior is lacking. We present a case-crossover study of non-pregnant adults (n = 489) who reported snake envenomations to a single state’s poison control center from 2014 to 2018. Age and gender of the individual, as well as the date, time, zip code associated with the envenomation, and snake descriptions were collected. Information regarding barometric pressure, actual temperature, high and low daily temperature, and weather condition (fair, cloudy, or rain/precipitation) was collected and compared to the same zip code, date, and time exactly one week and one year prior to the envenomation using historical data from the Weather Underground database. Paired t-tests and Stuart-Maxwell tests were used to determine differences in weather conditions during the study period. This study was IRB-approved. At the time of envenomation, the weather was most often fair (52.2%), followed by cloudy (44%), and least frequently demonstrated rain/precipitation (3.9%). Snake envenomations increased significantly (p < 0.0001) on days with an elevated daily high temperature. There were statistical differences in the distribution of weather conditions (fair, cloudy, or rain/precipitation) on the day of envenomation compared to one week prior (p < 0.0001) and one year prior (p < 0.0008). Comparisons based on both control groups indicated that envenomations were significantly less likely to occur during rain/precipitation and cloudy weather than during fair weather. Limitations include its retrospective nature and low total number of envenomations. In our single-center study, snake envenomation behavior as it relates to readily reportable weather measurements, appears to be associated with the warmer days, the overall high temperature on the day of envenomation, and fair weather conditions. Actual temperature at the time of envenomation, low temperature, barometric pressure, and precipitation at the time of envenomation do not appear to be associated with an increased risk of envenomation. Additional studies to determine the cause of these associations would be beneficial in further delineating the findings of this study.

Associations between high ambient temperatures and asthma exacerbation among children in Philadelphia, PA: A time series analysis

OBJECTIVES: High ambient temperatures may contribute to acute asthma exacerbation, a leading cause of morbidity in children. We quantified associations between hot-season ambient temperatures and asthma exacerbation in children ages 0-18 years in Philadelphia, PA. METHODS: We created a time series of daily counts of clinical encounters for asthma exacerbation at the Children’s Hospital of Philadelphia linked with daily meteorological data, June-August of 2011-2016. We estimated associations between mean daily temperature (up to a 5-day lag) and asthma exacerbation using generalised quasi-Poisson distributed models, adjusted for seasonal and long-term trends, day of the week, mean relative humidity,and US holiday. In secondary analyses, we ran models with adjustment for aeroallergens, air pollutants and respiratory virus counts. We quantified overall associations, and estimates stratified by encounter location (outpatient, emergency department, inpatient), sociodemographics and comorbidities. RESULTS: The analysis included 7637 asthma exacerbation events. High mean daily temperatures that occurred 5 days before the index date were associated with higher rates of exacerbation (rate ratio (RR) comparing 33°C-13.1°C days: 1.37, 95% CI 1.04 to 1.82). Associations were most substantial for children ages 2 to <5 years and for Hispanic and non-Hispanic black children. Adjustment for air pollutants, aeroallergens and respiratory virus counts did not substantially change RR estimates. CONCLUSIONS: This research contributes to evidence that ambient heat is associated with higher rates of asthma exacerbation in children. Further work is needed to explore the mechanisms underlying these associations.

Farmer perceptions of climate, adaptation, and management of farmworker risk in California

Adaptation across systems’ in agriculture is essential for sustainability under ongoing climate change. Farmers and agricultural employers implement changes in their work (e.g., mechanization, changing crops, managing workspaces) in ways that may directly impact worker health. In this study, semi-structured interviews were conducted with farmers and farm labor contractors in three agriculturally productive regions of California. We investigated (1) how farmers view changing climate in terms of worker safety and health; (2) how they are currently adapting to long-term weather patterns; (3) how their choices of management practices might impact their workers; (4) how they view their responsibility for their workers; and (5) what their overall observations are concerning environmental changes. Many employers made a clear distinction between weather and climate but not all agreed on whether they were experiencing climate change. Heat was notably the biggest climate hazard farmers identified. Most of the employers interviewed were proud of their longevity and ability to adapt to changing conditions in the field; however, they did not have established emergency procedures. Despite regulations that put the onus on employers, most participants believed that workers needed to take individual responsibility to keep themselves safe in the workplace. This research is one step in an ongoing research process designed to address the impacts of health and safety for agricultural workers in the context of climate change.

Hospitalised heat-related acute kidney injury in indoor and outdoor workers in the USA

OBJECTIVES: To characterise heat-related acute kidney injury (HR-AKI) among US workers in a range of industries. METHODS: Two data sources were analysed: archived case files of the Occupational Safety and Health Administration’s (OSHA) Office of Occupational Medicine and Nursing from 2010 through 2020; and a Severe Injury Reports (SIR) database of work-related hospitalisations that employers reported to federal OSHA from 2015 to 2020. Confirmed, probable and possible cases of HR-AKI were ascertained by serum creatinine measurements and narrative incident descriptions. Industry-specific incidence rates of HR-AKI were computed. A capture-recapture analysis assessed under-reporting in SIR. RESULTS: There were 608 HR-AKI cases, including 22 confirmed cases and 586 probable or possible cases. HR-AKI occurred in indoor and outdoor industries including manufacturing, construction, mail and package delivery, and solid waste collection. Among confirmed cases, 95.2% were male, 50.0% had hypertension and 40.9% were newly hired workers. Incidence rates of AKI hospitalisations from 1.0 to 2.5 hours per 100000 workers per year were observed in high-risk industries. Analysis of overlap between the data sources found that employers reported only 70.6% of eligible HR-AKI hospitalisations to OSHA, and only 41.2% of reports contained a consistent diagnosis. CONCLUSIONS: Workers were hospitalised with HR-AKI in diverse industries, including indoor facilities. Because of under-reporting and underascertainment, national surveillance databases underestimate the true burden of occupational HR-AKI. Clinicians should consider kidney risk from recurrent heat stress. Employers should provide interventions, such as comprehensive heat stress prevention programmes, that include acclimatisation protocols for new workers, to prevent HR-AKI.

Heat exposure and multiple sclerosis – A regional and temporal analysis

Multiple sclerosis (MS) is a neurological disorder that progressively distorts the myelination of axons within the central nervous system (CNS). Increased core body temperature or metabolism as a result of exercise are common causes of short-term exacerbations of neurological symptoms in MS. About 60-80% of patients with MS experience a worsening of their symptoms when exposed to heat. In comparison, less data are available on the relationship between ambient meteorological conditions (e.g., temperature and relative humidity (RH)) and fluctuations in such variables in relation to MS symptoms. Thus, this study examined associations between time-lagged exposure to meteorological conditions and risk of a clinic visit due to MS among US veterans between 2010 and 2013. This study leveraged data from the Veterans Affairs (VA) and National Climactic Data Center (NCDC) for the continental US, partitioned into eight climate zones. We used a case crossover design to assess the risk of a MS clinic visit with respect to several meteorological conditions. Location-specific time-lagged daily (ambient) exposure to temperature, RH, and temperature variations (standard deviation (SD) of temperature) were computed (up to 30 days) for each case (i.e., day of MS visit) and control (a randomly assigned date ± 90-270 days prior to visit). Statistical analyses were conducted to examine independent associations between the selected meteorological conditions and risk of MS visits at the national and regional levels. A total of 533,066 patient visits received a MS diagnosis (International Classifications of Diseases (ICD)-9 code = 340). The Northeast (NE) and Upper Midwest (UMW) regions reported the highest frequency of clinic visits due to MS. Clinic visits were 9% more likely to occur in the spring, summer, and fall months (March-October) than in the winter (OR = 1.089; 95% CI = 1.076-1.103; p < 0.01). In the univariate analyses, the SD of temperature, temperature, and temperature-RH interaction were positively associated with an elevated risk of a MS clinic visit, while the RH was negatively associated with the risk for a clinic visit. In multivariate analyses, the strongest association of a MS clinic visit was observed with the SD of the temperature (OR = 1.012; 95% CI 1.008-1.017; p < 0.01). These associations between MS clinic visits and meteorological conditions varied across climate regions, with the strongest associations being observed in the LMW, UMW, DSW, and NE zones. The SD of the temperature was again the strongest associated predictor when examined regionally. Temperature variations and temperature-RH interactions (a proxy of the heat index) showed significant associations with MS clinic visits. These associations varied across climate regions when examined geographically. Our findings have implications for the management of MS in severe or recurrent cases, especially considering the impending changes in the daily temperature variations and intensity of the heatwaves expected with the intensification of global warming.

Increased temperatures are associated with increased utilization of emergency medical services in Rhode Island

BACKGROUND: Increasing temperatures negatively impact health and increases demands on healthcare systems. However, this has been poorly studied in Rhode Island (RI). Here we characterize the impact of heat on emergency medical services (EMS) utilization in RI. METHODS: The Rhode Island National Emergency Services Information System V3 dataset was merged with data from the National Center for Environmental Information of the National Oceanic and Atmospheric Administration from the summers of 2018 and 2019. The outcome of daily mean EMS runs were compared against the exposure increasing daily temperatures, measured as daily maximum, minimum and daily average °F, using Poisson regressions. Patient characteristics were included across temperature models. RESULTS: Increasing daily temperatures were associated with increasing EMS encounters. The adjusted incident rate ratio (IRR) for mean daily EMS encounters by increasing maximum daily temperature was 1.006 (95% CI 1.004-1.007, Table 3). This resulted in a projected 17.2% increase in EMS runs on days with a maximum temperature of 65°F compared to days with a maximum temperature of 95°F. The adjusted IRR for mean daily EMS encounters by the daily minimum temperature was 1.004 (1.003-1.006) and the adjusted IRR for the mean daily EMS encounters by the daily average temperature was 1.006 (1.005-1.008). CONCLUSIONS: Increasing minimum, maximum, and average daily temperatures were associated with increasing EMS utilization across Rhode Island in the summers of 2018 and 2019. Further research into these trends may help with planning and resource allocation as summer temperatures continue to rise.

Shear stress induced by acute heat exposure is not obligatory to protect against endothelial ischemia-reperfusion injury in humans

Acute heat exposure protects against endothelial ischemia-reperfusion (I/R) injury in humans. However, the mechanism/s mediating this protective effect remain unclear. We tested the hypothesis that inhibiting the increase in shear stress induced by acute heat exposure would attenuate the protection of endothelial function following I/R injury. Nine (3 women) young healthy participants were studied under three experimental conditions: 1) thermoneutral control; 2) whole body heat exposure to increase body core temperature by 1.2°C; and 3) heat exposure + brachial artery compression to inhibit the temperature-dependent increase in shear stress. Endothelial function was assessed via brachial artery flow-mediated dilatation before (pre-I/R) and after (post-I/R) 20 min of arm ischemia followed by 20 min of reperfusion. Brachial artery shear rate was increased during heat exposure (681 ± 359 s^(−1)), but not for thermoneutral control (140 ± 63 s−1; P < 0.01 vs. heat exposure) nor for heat + brachial artery compression (139 ± 60 s−1; P < 0.01 vs. heat exposure). Ischemia-reperfusion injury reduced flow-mediated dilatation following thermoneutral control (pre-I/R, 5.5 ± 2.9% vs. post-I/R, 3.8 ± 2.9%; P = 0.06), but was protected following heat exposure (pre-I/R, 5.8 ± 2.9% vs. post-I/R, 6.1 ± 2.9%; P = 0.5) and heat + arterial compression (pre-I/R, 4.4 ± 2.8% vs. post-I/R, 5.8 ± 2.8%; P = 0.1). Contrary to our hypothesis, our findings demonstrate that shear stress induced by acute heat exposure is not obligatory to protect against endothelial I/R injury in humans.NEW & NOTEWORTHY Acute heat exposure protects against endothelial ischemia-reperfusion injury in humans. However, the mechanism/s mediating this protective effect remain unclear. We utilized arterial compression to inhibit the temperature-dependent increase in brachial artery blood velocity that occurs during acute heat exposure to isolate the contribution of shear stress to the protection of endothelial function following ischemia-reperfusion injury. Our findings demonstrate that shear stress induced by acute heat exposure is not obligatory to protect against endothelial I/R injury.

Social disparities in neighborhood heat in the Northeast United States

Upward trends in ground-level warming are expected to intensify, affecting the health of human populations. Specific to the United States, the Northeast (NE) region is one of the most vulnerable to these warming trends. Previous research has found social disparities in the distribution of heat, while recent studies have examined associations between metropolitan racial/ethnic segregation and heat exposures. We advance upon previous research by including a novel measure of neighborhood-level racial/ethnic diversity in our examination of social inequalities in heat for NE neighborhoods (census tracts). We paired data derived from the United States Geological Survey on mean land surface temperature (LST) for the summer months of 2013-2017 with sociodemographic data from the American Community Survey (5-year estimates, 2013-2017). We use multivariable generalized estimating equations (GEEs) that adjust for geographic clustering. Findings reveal heat exposure disparities across NE neighborhoods. Neighborhoods with higher proportions of racial/ethnic minorities, people of lower socioeconomic status, households without access to an automobile, and greater diversity experience higher temperatures. Diversity was more strongly related to increased heat in neighborhoods with lower Latinx and lower Black composition suggesting that neighborhood homogeneity confers a differentially greater cooling effect based on higher White composition. The social groups that carry the unequal thermal burdens are also those who are most vulnerable. Interventions to reduce heat risks in the NE should therefore prioritize reducing the burden on historically disadvantaged communities.

Biomimicry-based strategies for urban heat island mitigation: A numerical case study under tropical climate

In recent years, demographic growth has caused cities to expand their urban areas, increasing the risk of overheating, creating insurmountable microclimatic conditions within the urban area, which is why studies have been carried out on the urban heat island effect (UHI) and its mitigation. Therefore, this research aims to evaluate the cooling potential in the application of strategies based on biomimicry for the microclimate in a historical heritage city of Panama. For this, three case studies (base case, case 1, and case 2) of outdoor thermal comfort were evaluated, in which the Envi-met software was used to emulate and evaluate the thermal performance of these strategies during March (highest temperature month) and October (rainier month). The strategies used were extracted from the contrast of zebra skin, human skin, evaporative cooling, and ant skin. The results showed a reduction of 2.8 °C in the air temperature at 11:00, the radiant temperature decreased by 2.2 °C, and the PET index managed to reduce the thermal comfort indicator among its categories. The importance of thinking based on biomimicry in sustainable strategies is concluded; although significant changes were obtained, high risks of discomfort persist due to the layout and proximity of the building.

Internet searches and heat-related emergency department visits in the United States

Emerging research suggests that internet search patterns may provide timely, actionable insights into adverse health impacts from, and behavioral responses to, days of extreme heat, but few studies have evaluated this hypothesis, and none have done so across the United States. We used two-stage distributed lag nonlinear models to quantify the interrelationships between daily maximum ambient temperature, internet search activity as measured by Google Trends, and heat-related emergency department (ED) visits among adults with commercial health insurance in 30 US metropolitan areas during the warm seasons (May to September) from 2016 to 2019. Maximum daily temperature was positively associated with internet searches relevant to heat, and searches were in turn positively associated with heat-related ED visits. Moreover, models combining internet search activity and temperature had better predictive ability for heat-related ED visits compared to models with temperature alone. These results suggest that internet search patterns may be useful as a leading indicator of heat-related illness or stress.

Modeling the relationships between historical redlining, urban heat, and heat-related emergency department visits: An examination of 11 Texas cities

Place-based structural inequalities can have critical implications for the health of vulnerable populations. Historical urban policies, such as redlining, have contributed to current inequalities in exposure to intra-urban heat. However, it is unknown whether these spatial inequalities are associated with disparities in heat-related health outcomes. The aim of this study is to determine the relationships between historical redlining, intra-urban heat conditions, and heat-related emergency department visits using data from 11 Texas cities. At the zip code level, the proportion of historical redlining was determined, and heat exposure was measured using daytime and nighttime land surface temperature (LST). Heat-related inpatient and outpatient rates were calculated based on emergency department visit data that included ten categories of heat-related diseases between 2016 and 2019. Regression or spatial error/lag models revealed significant associations between higher proportions of redlined areas in the neighborhood and higher LST (Coef. = 0.0122, 95% CI = 0.0039-0.0205). After adjusting for indicators of social vulnerability, neighborhoods with higher proportions of redlining showed significantly elevated heat-related outpatient visit rate (Coef. = 0.0036, 95% CI = 0.0007-0.0066) and inpatient admission rate (Coef. = 0.0018, 95% CI = 0.0001-0.0035). These results highlight the role of historical discriminatory policies on the disparities of heat-related illness and suggest a need for equity-based urban heat planning and management strategies.

Recent trends in heat-related mortality in the United States: An update through 2018

Much research has shown a general decrease in the negative health response to extreme heat events in recent decades. With a society that is growing older, and a climate that is warming, whether this trend can continue is an open question. Using eight additional years of mortality data, we extend our previous research to explore trends in heat-related mortality across the United States. For the period 1975-2018, we examined the mortality associated with extreme-heat-event days across the 107 largest metropolitan areas. Mortality response was assessed over a cumulative 10-day lag period following events that were defined using thresholds of the excess heat factor, using a distributed-lag nonlinear model. We analyzed total mortality and subsets of age and sex. Our results show that in the past decade there is heterogeneity in the trends of heat-related human mortality. The decrease in heat vulnerability continues among those 65 and older across most of the country, which may be associated with improved messaging and increased awareness. These decreases are offset in many locations by an increase in mortality among men 45-64 (+1.3 deaths per year), particularly across parts of the southern and southwestern United States. As heat-warning messaging broadly identifies the elderly as the most vulnerable group, the results here suggest that differences in risk perception may play a role. Further, an increase in the number of heat events over the past decade across the United States may have contributed to the end of a decades-long downward trend in the estimated number of heat-related fatalities.

A study on assessing the awareness of heat-related illnesses in the construction industry

Construction workers often expose to heat stress hazards as temperature and humidity increase. Heat-related illnesses include heat stroke, heat exhaustion, heat cramps, and heat rash conditions. Without immediate and correct treatments, patients may suffer from brain damage or other organ failures, and even death. Heat exposure can also cause fatigue and then lead to other construction accidents. It is crucial to raise awareness of heat-related illnesses and equip people with the means and methods to prevent them from happening. This study aims to assess the current status of people’s knowledge of heat-related illnesses using an online survey questionnaire. The results suggest that further heat-related training should put more focus on the training topics of heat-related illnesses prevention strategies, first-aid, and symptom identifications. The participants whose work is directly related to safety have a better understanding of heat-related illness symptoms than the rest. The results also indicate that the participants’ knowledge of heat-related illness prevention is related to their age and whether they had participated in heat-related training. The findings of this research can help with the development of future heat-related illnesses training and facilitate construction companies to improve their current safety culture and practices.

Ambient heat and risks of emergency department visits among adults in the United States: Time stratified case crossover study

OBJECTIVE: To quantify the association between ambient heat and visits to the emergency department (ED) for any cause and for cause specific conditions in the conterminous United States among adults with health insurance. DESIGN: Time stratified case crossover analyses with distributed lag non-linear models. SETTING: US nationwide administrative healthcare claims database. PARTICIPANTS: All commercial and Medicare Advantage beneficiaries (74.2 million) aged 18 years and older between May and September 2010 to 2019. MAIN OUTCOME MEASURES: Daily rates of ED visits for any cause, heat related illness, renal disease, cardiovascular disease, respiratory disease, and mental disorders based on discharge diagnosis codes. RESULTS: 21 996 670 ED visits were recorded among adults with health insurance living in 2939 US counties. Days of extreme heat-defined as the 95th centile of the local warm season (May through September) temperature distribution (at 34.4°C v 14.9°C national average level)-were associated with a 7.8% (95% confidence interval 7.3% to 8.2%) excess relative risk of ED visits for any cause, 66.3% (60.2% to 72.7%) for heat related illness, 30.4% (23.4% to 37.8%) for renal disease, and 7.9% (5.2% to 10.7%) for mental disorders. Days of extreme heat were associated with an excess absolute risk of ED visits for heat related illness of 24.3 (95% confidence interval 22.9 to 25.7) per 100?Çë000 people at risk per day. Heat was not associated with a higher risk of ED visits for cardiovascular or respiratory diseases. Associations were more pronounced among men and in counties in the north east of the US or with a continental climate. CONCLUSIONS: Among both younger and older adults, days of extreme heat are associated with a higher risk of ED visits for any cause, heat related illness, renal disease, and mental disorders. These results suggest that the adverse health effects of extreme heat are not limited to older adults and carry important implications for the health of adults across the age spectrum.

Assessing the effect of extreme heat on workforce health in the southwestern USA

Extreme temperature significantly affects workforce health during the summer in locations with sustained high temperatures. The exposure of workers to excessive heat has increased in the last decades, and it is correlated with reduced productivity and work efficiency. The effects of extreme heat on the health of outdoor workers in the southwestern USA were assessed using the heat index (HI) calculated using temperature and humidity information from National Oceanic and Atmospheric Administration and data on occupational injuries/illnesses from the US Bureau of Labor Statistics. The analysis of the data was performed using the Spearman’s rho nonparametric analysis. A statistically significant increase in the heat index was found in two of the three locations selected for this study. At the Phoenix Sky Harbor Airport (Phoenix, AZ) and Harry Reid International Airport (Las Vegas, NV) stations, seasonal maximum HI values exceeded the extreme danger threshold and seasonal average HI ranges were found within the dangerous range. The number of nonfatal occupational heat-related injuries/illnesses in Arizona, California, and Nevada were also analyzed and were found to be steadily increasing in all three states over the study period (2011-2018). The overall number of nonfatal occupational injuries/illnesses were also analyzed as a function of the length of service with the employer, which showed an increase in the number of events with an increase in the length of service. The time of the day and number of hours worked were also found to significantly affect the overall number of nonfatal occupational injuries/illnesses in the three locations studied. In addition, the number of days away from work after the occurrence of a heat-related, nonfatal occupational injury/illness event was significantly higher for events during which the worker remained away from work for more than 30 days. Results from this study suggest that extreme heat poses a real threat for outdoor workers and decision-making devoted to addressing this risk is required to prevent undesirable effects.

Occupational heat exposure and the risk of chronic kidney disease of nontraditional origin in the United States

Occupational heat exposure is linked to the development of kidney injury and disease in individuals who frequently perform physically demanding work in the heat. For instance, in Central America, an epidemic of chronic kidney disease of nontraditional origin (CKDnt) is occurring among manual laborers, whereas potentially related epidemics have emerged in India and Sri Lanka. There is growing concern that workers in the United States suffer with CKDnt, but reports are limited. One of the leading hypotheses is that repetitive kidney injury caused by physical work in the heat can progress to CKDnt. Whether heat stress is the primary causal agent or accelerates existing underlying pathology remains contested. However, the current evidence supports that heat stress induces tubular kidney injury, which is worsened by higher core temperatures, dehydration, longer work durations, muscle damaging exercise, and consumption of beverages containing high levels of fructose. The purpose of this narrative review is to identify occupations that may place US workers at greater risk of kidney injury and CKDnt. Specifically, we reviewed the scientific literature to characterize the demographics, environmental conditions, physiological strain (i.e., core temperature increase, dehydration, heart rate), and work durations in sectors typically experiencing occupational heat exposure, including farming, wildland firefighting, landscaping, and utilities. Overall, the surprisingly limited available evidence characterizing occupational heat exposure in US workers supports the need for future investigations to understand this risk of CKDnt.

Using social security number to identify sub-populations vulnerable to the health impacts from extreme heat in Florida, U.S

BACKGROUND: Some socioeconomically vulnerable groups may experience disproportionately higher risk of extreme heat illness than other groups, but no study has utilized the presence/absence of a social security number (SSN) as a proxy for vulnerable sub-populations. METHODS: This study focused on the warm season from 2008 to 2012 in Florida, U.S. With a total number of 8,256,171 individual level health outcomes, we devised separate case-crossover models for five heat-sensitive health outcomes (cardiovascular disease, dehydration, heat-related illness, renal disease, and respiratory disease), type of health care visit (emergency department (ED) and hospitalization), and patients reporting/not reporting an SSN. Each stratified model also considered potential effect modification by sex, age, or race/ethnicity. RESULTS: Mean temperature raised the odds of five heat-sensitive health outcomes with the highest odds ratios (ORs) for heat-related illness. Sex significantly modified heat exposure effects for dehydration ED visits (Males: 1.145, 95 % CI: 1.137-1.153; Females: 1.110, 95 % CI: 1.103-1.117) and hospitalization (Males: 1.116, 95 % CI: 1.110-1.121; Females: 1.100, 95 % CI: 1.095-1.105). Patients not reporting an SSN between 25 and 44 years (1.264, 95 % CI: 1.192-1.340) exhibited significantly higher dehydration ED ORs than those reporting an SSN (1.146, 95 % CI: 1.136-1.157). We also observed significantly higher ORs for cardiovascular disease hospitalization from the no SSN group (SSN: 1.089, 95 % CI: 1.088-1.090; no SSN: 1.100, 95 % CI: 1.091-1.110). CONCLUSIONS: This paper partially supports the idea that individuals without an SSN could experience higher risks of dehydration (for those 25-45 years), renal disease, and cardiovascular disease than those with an SSN.

Analysis of daily ambient temperature and firearm violence in 100 US cities

IMPORTANCE: Firearm violence is a leading public health crisis in the US. Understanding whether and how ambient temperature is associated with firearm violence may identify new avenues for prevention and intervention. OBJECTIVE: To estimate the overall and regional association between hotter temperatures and higher risk of firearm violence in the US. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study used distributed lag nonlinear models, controlling for seasonality and long-term time trends by city and pooled results overall and by climate region. The most populous cities in the US with the highest number of assault-related firearm incidence (ie, shootings) from 2015 to 2020 were analyzed. Data analysis was performed from October 2021 to June 2022. EXPOSURES: Maximum daily temperature by city. MAIN OUTCOMES AND MEASURES: The primary outcome was the number of assault-related firearm shootings by city. RESULTS: A total of 116 511 shootings in 100 cities were included in this analysis. The pooled analysis estimated that 6.85% (95% CI, 6.09%-7.46%) of all shootings were attributable to days hotter than city-specific median temperatures. This equates to 7973 total shootings (95% CI, 7092-8688 total shootings) across the 100 cities over the 6-year study period, although the number of total persons injured or killed would be higher. Estimated risk of firearm incidents increased almost monotonically with higher temperatures, with a local peak at the 84th percentile of the temperature range corresponding to a relative risk of 1.17 (95% CI, 1.12-1.21) compared with the median temperature. However, even moderately hot temperatures were associated with higher risk of shootings. Although significant, there was low heterogeneity between cities (I2 = 11.7%; Cochran Q test, P = .02), indicating regional or climate-specific variation in the daily temperature and incident shootings relationship. CONCLUSIONS AND RELEVANCE: These findings underscore the importance of heat adaptation strategies broadly throughout the year to reduce shootings, rather than focusing on only the hottest days.

Heat-related emergency department visits during the northwestern heat wave – United States, June 2021

Association between the 2021 heat wave in Portland, Oregon, and Seattle, Washington, and emergency department visits

Climate change and ambient temperature extremes: Association with serious hypoglycemia, diabetic ketoacidosis, and sudden cardiac arrest/ventricular arrhythmia in people with type 2 diabetes

Widespread race and class disparities in surface urban heat extremes across the United States

Here we use remotely sensed land surface temperature measurements to explore the distribution of the United States’ urban heating burden, both at high resolution (within cities or counties) and at scale (across the whole contiguous United States). While a rich literature has documented neighborhood-level disparities in urban heat exposures in individual cities, data constraints have precluded comparisons across locations. Here, drawing on urban temperature anomalies during extreme summer surface temperature events from all 1,056 US counties with more than 10 developed census tracts, we find that the poorest tracts (and those with lowest average education levels) within a county are significantly hotter than the richest (and more educated) neighborhoods for 76% of these counties (54% for education); we also find that neighborhoods with higher Black, Hispanic, and Asian population shares are hotter than the more White, non-Hispanic areas in each county. This holds in counties with both large and small spreads in these population shares, and for 71% of all counties the significant racial urban heat disparities persist even when adjusting for income. Although individual locations have different histories that have contributed to race- and class-based geographies, we find that the physical features of the urban environments driving these surface heat exposure gradients are fairly uniform across the country. Systematically, the disproportionate heat surface exposures faced by minority communities are due to more built-up neighborhoods, less vegetation, and—to a lesser extent—higher population density.

High ambient temperature and child emergency and hospital visits in New York City

BACKGROUND: Emerging literature has documented heat-related impacts on child health, yet few studies have evaluated the effects of heat among children of different age groups and comparing emergency department (ED) and hospitalisation risks. OBJECTIVES: To examine the differing associations between high ambient temperatures and risk of ED visits and hospitalisations among children by age group in New York City (NYC). METHODS: We used New York Statewide Planning and Research Cooperative System (SPARCS) data on children aged 0-18 years admitted to NYC EDs (n = 2 252 550) and hospitals (n = 228 006) during the warm months (May-September) between 2005 and 2011. Using a time-stratified, case-crossover design, we estimated the risk of ED visits and hospitalisations associated with daily maximum temperature (Tmax) for children of all ages and by age group. RESULTS: The average Tmax over the study period was 80.3°F (range 50°, 104°F). Tmax conferred the greatest risk of ED visits for children aged 0-4, with a 6-day cumulative excess risk of 2.4% (95% confidence interval [CI] 1.7, 3.0) per 13°F (ie interquartile range) increase in temperature. Children and adolescents 5-12 years (0.8%, 95% CI 0.1, 1.6) and 13-18 years (1.4%, 95% CI 0.6, 2.3) are also sensitive to heat. For hospitalisations, only adolescents 13-18 years had increased heat-related risk, with a cumulative excess risk of 7.9% (95% CI 2.0, 14.2) per 13°F increase in Tmax over 85°F. CONCLUSIONS: This urban study in NYC reinforces that young children are particularly vulnerable to effects of heat, but also demonstrates the sensitivity of older children and adolescents as well. These findings underscore the importance of focussing on children and adolescents in targeting heat illness prevention and emergency response activities, especially as global temperatures continue to rise.

Measuring the impacts of a real-world neighborhood-scale cool pavement deployment on albedo and temperatures in Los Angeles

Climate change is expected to exacerbate the urban heat island (UHI) effect in cities worldwide, increasing the risk of heat-related morbidity and mortality. Solar reflective ‘cool pavement’ is one of several mitigation strategies that may counteract the negative effects of the UHI effect. An increase in pavement albedo results in less heat absorption, which results in reduced surface temperatures (T (surface)). Near surface air temperatures (T (air)) could also be reduced if cool pavements are deployed at sufficiently large spatial scales, though this has never been confirmed by field measurements. This field study is the first to conduct controlled measurements of the impacts of neighborhood-scale cool pavement installations. We measured the impacts of cool pavement on albedo, T (surface), and T (air). In addition, pavement albedo was monitored after installation to assess its degradation over time. The field site (similar to 0.64 km(2)) was located in Covina, California; similar to 30 km east of Downtown Los Angeles. We found that an average pavement albedo increase of 0.18 (from 0.08 to 0.26) corresponded to maximum neighborhood averaged T (surface) and T (air) reductions of 5 degrees C and 0.2 degrees C, respectively. Maximum T (surface) reductions were observed in the afternoon, while minimum reductions of 0.9 degrees C were observed in the morning. T (air) reductions were detected at 12:00 local standard time (LST), and from 20:00 LST to 22:59 LST, suggesting that cool pavement decreases T (air) during the daytime as well as in the evening. An average albedo reduction of 30% corresponded to a similar to 1 degrees C reduction in the T (surface) cooling efficacy. Although we present here the first measured T (air) reductions due to cool pavement, we emphasize that the tradeoffs between T (air) reductions and reflected shortwave radiation increases are still unclear and warrant further investigation in order to holistically assess the efficacy of cool pavements, especially with regards to pedestrian thermal comfort.

Communicating heat-health information to the public: Assessing municipal government extreme heat event website content

Extreme heat events pose a threat to human health. Forecasting and warning strategies have been developed to mitigate heat-health hazards. Yet, studies have found that the public lacks knowledge about their heat-health risks and preventive actions to take to reduce risks. Local governmental websites are an important means to communicate preparedness to the public. The purpose of this study is to examine information provided to the public on municipal government web pages of the 10 most populous U.S. cities. A two-level document and content analyses were conducted. A direct content analysis was conducted using federal government websites and documents to create the Extreme Heat Event Public Response Rubric. The rubric contains two broad categories of populations and actions that are further specified. The rubric was then used to examine local government extreme heat event websites for the 10 most populous cities in the United States. The examination of the local government sites found that information included on the websites failed to identify the breadth of populations at greater risk for adverse heat-health outcomes and omitted some recommended actions designed to prevent adverse heat-health events. Local governments often communicated concrete and simple content to the public but more complex information was not included on their websites. SIGNIFICANCE STATEMENT: Extreme heat is the leading weather-related cause of mortality in the United States annually. Public response to extreme heat events requires that the public understand their risk and know the actions to take to mitigate that risk. The public seeks information from local government websites. Our results found that many local government websites did not provide the information to the public on the array of conditions and factors that put people at a greater risk for an adverse heat-health event, nor did the websites include information on the variety of actions that the public should take in response to an extreme heat event in order to reduce their risks. Addressing the omission of the information on these websites may improve public response to extreme heat events.

Revising NCEI’s Climate Extremes Index and the CDC’s Social Vulnerability Index to analyze climate extremes vulnerability across the United States

The occurrence of extreme weather and climate events has increased in recent decades. This increasing frequency has adversely impacted economic and health outcomes, leading to an increasingly urgent need to study climate extremes. The National Centers for Environmental Information (NCEI) created the Climate Extremes Index (CEI) in 1996 to quantify climate extremes. In this article, we explore the potential for enhancing the CEI via the use of the Z-score statistic to calculate the CEI on a numerical scale, to increase usability at smaller spatial scales, and to allow the creation of a new climate Extremes Vulnerability Index (EVI). The EVI combines the results from the revised CEI with values from the Social Vulnerability Index from the Centers for Disease Control and Prevention (CDC). The EVI can be used by policy-makers, planners, and the public to understand a subregion’s vulnerability to climate extremes. This information from the EVI could then be used to implement policies and changes in infrastructure that mitigate risk in vulnerable climate divisions. In a trial application, it is found that the southeastern and portions of the central United States had the highest levels of vulnerability for the abnormal month of December 2015.

Acute association between heatwaves and stillbirth in six US states

BACKGROUND: Heatwaves are becoming more frequent and may acutely increase the risk of stillbirth, a rare and severe pregnancy outcome. OBJECTIVES: Examine the association between multiple heatwave metrics and stillbirth in six U.S. states. METHODS: Data were collected from fetal death and birth records in California (1996-2017), Florida (1991-2017), Georgia (1994-2017), Kansas (1991-2017), New Jersey (1991-2015), and Oregon (1991-2017). Cases were matched to controls 1:4 based on maternal race/ethnicity, maternal education, and county, and exposure windows were aligned (gestational week prior to stillbirth). County-level temperature data were obtained from Daymet and linked to cases and controls by residential county and the exposure window. Five heatwave metrics (1 categorical, 3 dichotomous, 1 continuous) were created using different combinations of the duration and intensity of hot days (mean daily temperature exceeding the county-specific 97.5(th) percentile) during the exposure window, as well as a continuous measure of mean temperature during the exposure window modeled using natural splines to allow for nonlinear associations. State-specific odds ratios (ORs) and 95% confidence intervals (CI) were estimated using conditional logistic regression models. State-specific results were pooled using a fixed-effects meta-analysis. RESULTS: In our data set of 140,428 stillbirths (553,928 live birth controls), three of the five heatwave metrics examined were not associated with stillbirth. However, four consecutive hot days during the previous week was associated with a 3% increase in stillbirth risk (CI: 1.01, 1.06), and a 1 °C average increase over the threshold was associated with a 10% increase in stillbirth risk (CI: 1.04, 1.17). In continuous temperature analyses, there was a slight increased risk of stillbirth associated with extremely hot temperatures (≥ 35 °C). DISCUSSION: Most heat wave definitions examined were not associated with acute changes in stillbirth risk; however, the most extreme heatwave durations and temperatures were associated with a modest increase in stillbirth risk.

Association of extreme heat and cardiovascular mortality in the United States: A county-level longitudinal analysis from 2008 to 2017

BACKGROUND: Extreme-heat events are increasing as a result of climate change. Prior studies, typically limited to urban settings, suggest an association between extreme heat and cardiovascular mortality. However, the extent of the burden of cardiovascular deaths associated with extreme heat across the United States and in different age, sex, or race and ethnicity subgroups is unclear. METHODS: County-level daily maximum heat index levels for all counties in the contiguous United States in summer months (May-September) and monthly cardiovascular mortality rates for adults ≥20 years of age were obtained. For each county, an extreme-heat day was identified if the maximum heat index was ≥90 °F (32.2 °C) and in the 99th percentile of the maximum heat index in the baseline period (1979-2007) for that day. Spatial empirical Bayes smoothed monthly cardiovascular mortality rates from 2008 to 2017 were the primary outcome. A Poisson fixed-effects regression model was estimated with the monthly number of extreme-heat days as the independent variable of interest. The model included time-fixed effects and time-varying environmental, economic, demographic, and health care-related variables. RESULTS: Across 3108 counties, from 2008 to 2017, each additional extreme-heat day was associated with a 0.12% (95% CI, 0.04%-0.21%; P=0.004) higher monthly cardiovascular mortality rate. Extreme heat was associated with an estimated 5958 (95% CI, 1847-10 069) additional deaths resulting from cardiovascular disease over the study period. In subgroup analyses, extreme heat was associated with a greater relative increase in mortality rates among men compared with women (0.20% [95% CI, 0.07%-0.33%]) and non-Hispanic Black compared with non-Hispanic White adults (0.19% [95% CI, 0.01%-0.37%]). There was a greater absolute increase among elderly adults compared with nonelderly adults (16.6 [95% CI, 14.6-31.8] additional deaths per 10 million individuals per month). CONCLUSIONS: Extreme-heat days were associated with higher adult cardiovascular mortality rates in the contiguous United States between 2008 and 2017. This association was heterogeneous among age, sex, race, and ethnicity subgroups. As extreme-heat events increase, the burden of cardiovascular mortality may continue to increase, and the disparities between demographic subgroups may widen.

Association of extreme heat with all-cause mortality in the contiguous US, 2008-2017

IMPORTANCE: The number of extreme heat events is increasing because of climate change. Previous studies showing an association between extreme heat and higher mortality rates generally have been limited to urban areas, and whether there is heterogeneity across different populations is not well studied; understanding whether this association varies across different communities, particularly minoritized racial and ethnic groups, may allow for more targeted mitigation efforts. OBJECTIVE: To the assess the association between extreme heat and all-cause mortality rates in the US. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study involved a longitudinal analysis of the association between the number of extreme heat days in summer months from 2008 to 2017 (obtained from the Centers for Disease Control and Prevention’s Environmental Public Health Tracking Program) and county-level all-cause mortality rates (obtained from the National Center for Health Statistics), using a linear fixed-effects model across all counties in the contiguous US among adults aged 20 years and older. Data analysis was performed from September 2021 to March 2022. EXPOSURES: The number of extreme heat days per month. Extreme heat was identified if the maximum heat index was greater than or equal to 90 °F (32.2 °C) and in the 99th percentile of the maximum heat index in the baseline period (1979 to 2007). MAIN OUTCOMES AND MEASURES: County-level, age-adjusted, all-cause mortality rates. RESULTS: There were 219 495 240 adults aged 20 years and older residing in the contiguous US in 2008, of whom 113 294 043 (51.6%) were female and 38 542 838 (17.6%) were older than 65 years. From 2008 to 2017, the median (IQR) number of extreme heat days during summer months in all 3108 counties in the contiguous US was 89 (61-122) days. After accounting for time-invariant confounding, secular time trends, and time-varying environmental and economic measures, each additional extreme heat day in a month was associated with 0.07 additional death per 100 000 adults (95% CI, 0.03-0.10 death per 100 000 adults; P = .001). In subgroup analyses, greater increases in mortality rates were found for older vs younger adults (0.19 death per 100 000 individuals; 95% CI, 0.04-0.34 death per 100 000 individuals), male vs female adults (0.12 death per 100 000 individuals; 95% CI, 0.05-0.18 death per 100 000 individuals), and non-Hispanic Black vs non-Hispanic White adults (0.11 death per 100 000 individuals; 95% CI, 0.02-0.20 death per 100 000 individuals). CONCLUSIONS AND RELEVANCE: These findings suggest that from 2008 to 2017, extreme heat was associated with higher all-cause mortality in the contiguous US, with a greater increase noted among older adults, men, and non-Hispanic Black individuals. Without mitigation, the projected increase in extreme heat due to climate change may widen health disparities between groups.

Associations between ambient extreme heat exposure and emergency department visits related to kidney disease

RATIONALE & OBJECTIVE: Extreme heat exposure is associated with multiple diseases. However, our current understanding of the specific impact of extreme heat exposure on kidney disease is limited. STUDY DESIGN: Case-crossover study. SETTING & PARTICIPANTS: 1,114,322 emergency department (ED) visits with a principal diagnosis of kidney disease were identified in New York state, 2005-2013. EXPOSURE: Extreme heat exposure was defined as when the daily temperature exceeded the 90th percentile temperature of that month during the study period in the county. OUTCOME: ED visits with a principal diagnosis of kidney disease and its subtypes (ICD-9 [International Classification of Diseases, Ninth Revision] codes 580-599, 788). ANALYTICAL APPROACH: Extreme heat exposure on the ED visit days was compared with extreme heat exposure on control days using a conditional logistic regression model, controlling for humidity, air pollutants, and holidays. The excess risk of kidney disease was calculated for a week (lag days 0-6) after extreme heat exposure during the warm season (May through September). We also stratified our estimates by sociodemographic characteristics. RESULTS: Extreme heat exposure was associated with a 1.7% (lag day 0) to 3.1% (lag day 2) higher risk of ED visits related to kidney disease; this association was stronger with a greater number of extreme heat exposure days in the previous week. The association with extreme heat exposure lasted for an entire week and was stronger in the transitional months (ie, May and September; excess rates ranged from 1.8% to 5.1%) rather than the summer months (June through August; excess rates ranged from 1.5% to 2.7%). The strength of association was greater among those with ED visits related to acute kidney injury, kidney stones, and urinary tract infections. Age and sex may modify the association between extreme heat exposure and ED visits. LIMITATIONS: Individual exposure to heat-how long people were outside or whether they had access to air conditioning-was unknown. CONCLUSIONS: Extreme heat exposure was significantly associated with a dose-dependent greater risk of ED visits for kidney disease.

Extreme heat and its association with social disparities in the risk of spontaneous preterm birth

BACKGROUND: Climate change is increasing the frequency and intensity of heatwaves. Prior studies associate high temperature with preterm birth. OBJECTIVES: We tested the hypotheses that acute exposure to extreme heat was associated with higher risk of live spontaneous preterm birth (≥20 and <37 completed weeks), and that risks were higher among people of colour and neighbourhoods with heat-trapping landcover or concentrated racialised economic disadvantage. METHODS: We conducted a retrospective cohort study of people giving birth between 2007 and 2011 in Harris County, Texas (Houston metropolitan area) (n = 198,013). Exposures were daily ambient apparent temperature (AT(max) in 5°C increments) and dry-bulb temperatures (T(max) and T(min) >historical [1971-2000] summertime 99(th) percentile) up to a week prior for each day of pregnancy. Survival analysis controlled for individual-level risk factors, secular and seasonal trends. We considered race/ethnicity, heat-trapping neighbourhood landcover and Index of Concentration at the Extremes as effect modifiers. RESULTS: The frequency of preterm birth was 10.3%. A quarter (26.8%) of people were exposed to AT(max) ≥40°C, and 22.8% were exposed to T(max) and T(min) >99(th) percentile while at risk. The preterm birth rate among the exposed was 8.9%. In multivariable models, the risk of preterm birth was 15% higher following extremely hot days (hazard ratio [HR] 1.15 (95% confidence interval [CI] 1.01, 1.30) for AT(max) ≥40°C vs. <20°C; HR 1.15 (95% CI 1.02, 1.28) for T(max) and T(min) >99(th) percentile). Censoring at earlier gestational ages suggested stronger associations earlier in pregnancy. The risk difference associated with extreme heat was higher in neighbourhoods of concentrated racialised economic disadvantage. CONCLUSIONS: Ambient heat was associated with spontaneous preterm birth, with stronger associations earlier in pregnancy and in racially and economically disadvantaged neighbourhoods, suggesting climate change may worsen existing social inequities in preterm birth rates.

Heat illness data strengthens vulnerability maps

BACKGROUND: Previous extreme heat and human health studies have investigated associations either over time (e.g. case-crossover or time series analysis) or across geographic areas (e.g. spatial models), which may limit the study scope and regional variation. Our study combines a case-crossover design and spatial analysis to identify: 1) the most vulnerable counties to extreme heat; and 2) demographic and socioeconomic variables that are most strongly and consistently related to heat-sensitive health outcomes (cardiovascular disease, dehydration, heat-related illness, acute renal disease, and respiratory disease) across 67 counties in the state of Florida, U. S over 2008-2012. METHODS: We first used a case-crossover design to examine the effects of air temperature on daily counts of health outcomes. We employed a time-stratified design with a 28-day comparison window. Referent periods were extracted from ±7, ±14, or ± 21 days to address seasonality. The results are expressed as odds ratios, or the change in the likelihood of each health outcome for a unit change in heat exposure. We then spatially examined the case-crossover extreme heat and health odds ratios and county level demographic and socioeconomic variables with multiple linear regression or spatial lag models. RESULTS: Results indicated that southwest Florida has the highest risks of cardiovascular disease, dehydration, acute renal disease, and respiratory disease. Results also suggested demographic and socioeconomic variables were significantly associated with the magnitude of heat-related health risk. The counties with larger populations working in farming, fishing, mining, forestry, construction, and extraction tended to have higher risks of dehydration and acute renal disease, whereas counties with larger populations working in installation, maintenance, and repair workers tended to have lower risks of cardiovascular, dehydration, acute renal disease, and respiratory disease. Finally, our results showed that high income counties consistently have lower health risks of dehydration, heat-related illness, acute renal disease, and respiratory disease. CONCLUSIONS: Our study identified different relationships with demographic/socioeconomic variables for each heat-sensitive health outcome. Results should be incorporated into vulnerability or risk indices for each health outcome.

Heat waves and road traffic collisions in Alabama, United States

The effects of heat waves on traffic collisions require investigation to improve traffic safety during extreme heat events. A time-stratified case-crossover design was used to examine associations between heat waves and traffic collisions in Alabama between May and September from 2009 to 2018. We derived a heat wave index, defined as the daily mean temperature greater than the 95th percentile for two or more consecutive days, by meteorological data from Phase 2 of the North American Land Data Assimilation System. We obtained traffic collision records from the Alabama Department of Transportation. A nonsignificant and negative association between traffic collisions and heat waves was noted, with a 1.4 percent decrease (95 percent confidence interval [CI] [-3.1 percent, 0.4 percent]) in traffic collisions on heat wave days compared to non-heat wave days. Similar results were found when the analysis was stratified by driver-related factors (i.e., gender, age, race, employment status, and driver residence distances), vehicle-related factors (i.e., vehicle usage), and collision-related factors (i.e., rural or urban roads, speed limits, and intersections). A significant and positive association was observed on heat wave days without precipitation, however (23.5 percent increase; 95 percent CI [7.3 percent, 42.3 percent]). In conclusion, traffic collisions were not associated with heat waves in many collision-related conditions in Alabama.

Mortality associated with extreme heat in Washington state: The historical and projected public health burden

Extreme heat is one of the most important pathways illustrating the connection between climate and human health, and climate change is expected to exacerbate this public health issue. This study first used a case-crossover analysis to characterize the historical (1980-2018) association between summertime heat and non-traumatic mortality in Washington State. A separate analysis was conducted for each of the state’s ten climate divisions to produce distinct exposure-response curves expressing odds of mortality as a function of humidex. Stratified analyses were used to assess the impact of age, sex, race/ethnicity, and select causes of death, and the reported results are pooled across all divisions using meta-analysis. The historical heat-mortality relationship was combined with climate projections to estimate the impact of climate change on heat-related deaths in 2030, 2050, and 2080 under two warming scenarios. The odds ratio (OR) and 95% confidence intervals of mortality at the 99th percentile of humidex compared to the 50th percentile did not include the null value in four climate divisions (E Olympic Cascade Foothills, NE Olympic San Juan, Northeastern, and Puget Sound Lowlands). The statewide odds of mortality are 8% higher (6%, 10%) on 99th percentile days compared to 50th percentile days, driven primarily by an OR of 1.09 (1.06, 1.11) in the Puget Sound Lowlands. Risk is higher for women than men and for Blacks than Whites. Risk increases with age and for diabetic, circulatory, cardiovascular, ischemic, cerebrovascular, and respiratory deaths. The 95% confidence intervals of projected heat-attributable mortality did not overlap with zero in three climate divisions (E Olympic Cascade Foothills, NE Olympic San Juan, and Puget Sound Lowlands). In these three divisions, the average percent increase in heat-attributable mortality across both warming scenarios is 35%, 35%, and 603% in 2030, 2050, and 2080, respectively. This research is the most extensive study of heat-related mortality in Washington to date and can help inform public health initiatives aiming to improve present and future health outcomes in the state.

Climate change and the epidemiology of infectious diseases in the United States

The earth is rapidly warming, driven by increasing atmospheric carbon dioxide and other gases that result primarily from fossil fuel combustion. In addition to causing arctic ice melting and extreme weather events, climatologic factors are linked strongly to the transmission of many infectious diseases. Changes in the prevalence of infectious diseases not only reflect the impacts of temperature, humidity, and other weather-related phenomena on pathogens, vectors, and animal hosts but are also part of a complex of social and environmental factors that will be affected by climate change, including land use, migration, and vector control. Vector- and waterborne diseases and coccidioidomycosis are all likely to be affected by a warming planet; there is also potential for climate-driven impacts on emerging infectious diseases and antimicrobial resistance. Additional resources for surveillance and public health activities are urgently needed, as well as systematic education of clinicians on the health impacts of climate change.

Heat warnings, mortality, and hospital admissions among older adults in the United States

BACKGROUND: Heat warnings are issued in advance of forecast extreme heat events, yet little evidence is available regarding their effectiveness in reducing heat-related illness and death. We estimated the association of heat warnings and advisories (collectively, “alerts”) issued by the United States National Weather Service with all-cause mortality and cause-specific hospitalizations among Medicare beneficiaries aged 65 years and older in 2,817 counties, 2006-2016. METHODS: In each county, we compared days with heat alerts to days without heat alerts, matched on daily maximum heat index and month. We used conditional Poisson regression models stratified on county, adjusting for year, day of week, federal holidays, and lagged daily maximum heat index. RESULTS: We identified a matched non-heat alert day for 92,029 heat alert days in 2,817 counties, or 54.6% of all heat alert days during the study period. Contrary to expectations, heat alerts were not associated with lower risk of mortality (RR: 1.005 [95% CI: 0.997, 1.013]). However, heat alerts were associated with higher risk of hospitalization for fluid and electrolyte disorders (RR: 1.040 [95% CI: 1.015, 1.065]) and heat stroke (RR: 1.094 [95% CI: 1.038, 1.152]). Results were similar in sensitivity analyses additionally adjusting for same-day heat index, ozone, and PM(2.5). CONCLUSIONS: Our results suggest that heat alerts are not associated with lower risk of mortality but may be associated with higher rates of hospitalization for fluid and electrolyte disorders and heat stroke, potentially suggesting that heat alerts lead more individuals to seek or access care.

Assessing proximate intermediates between ambient temperature, hospital admissions, and mortality in hemodialysis patients

BACKGROUND: Typical thermoregulatory responses to elevated temperatures among healthy individuals include reduced blood pressure and perspiration. Individuals with end-stage kidney disease (ESKD) are susceptible to systemic fluctuations caused by ambient temperature changes that may increase morbidity and mortality. We investigated whether pre-dialysis systolic blood pressure (preSBP) and interdialytic weight gain (IDWG) can independently mediate the association between ambient temperature, all-cause hospital admissions (ACHA), and all-cause mortality (ACM). METHODS: The study population consisted of ESKD patients receiving hemodialysis treatments at Fresenius Medical Care facilities in Philadelphia County, PA, from 2011 to 2019 (n = 1981). Within a time-to-event framework, we estimated the association between daily maximum dry-bulb temperature (TMAX) and, as separate models, ACHA and ACM during warmer calendar months. Clinically measured preSBP and IDWG responses to temperature increases were estimated using linear mixed effect models. We employed the difference (c-c’) method to decompose total effect models for ACHA and ACM using preSBP and IDWG as time-dependent mediators. Covariate adjustments for exposure-mediator and total and direct effect models include age, race, ethnicity, blood pressure medication use, treatment location, preSBP, and IDWG. We considered lags up to two days for exposure and 1-day lag for mediator variables (Lag 2-Lag 1) to assure temporality between exposure-outcome models. Sensitivity analyses for 2-day (Lag 2-only) and 1-day (Lag 1-only) lag structures were also conducted. RESULTS: Based on Lag 2- Lag 1 temporal ordering, 1 °C increase in daily TMAX was associated with increased hazard of ACHA by 1.4% (adjusted hazard ratio (HR), 1.014; 95% confidence interval, 1.007-1.021) and ACM 7.5% (adjusted HR, 1.075, 1.050-1.100). Short-term lag exposures to 1 °C increase in temperature predicted mean reductions in IDWG and preSBP by 0.013-0.015% and 0.168-0.229 mmHg, respectively. Mediation analysis for ACHA identified significant indirect effects for all three studied pathways (preSBP, IDWG, and preSBP + IDWG) and significant indirect effects for IDWG and conjoined preSBP + IDWG pathways for ACM. Of note, only 1.03% of the association between temperature and ACM was mediated through preSBP. The mechanistic path for IDWG, independent of preSBP, demonstrated inconsistent mediation and, consequently, potential suppression effects in ACHA (-15.5%) and ACM (-6.3%) based on combined pathway models. Proportion mediated estimates from preSBP + IDWG pathways achieved 2.2% and 0.3% in combined pathway analysis for ACHA and ACM outcomes, respectively. Lag 2 discrete-time ACM mediation models exhibited consistent mediation for all three pathways suggesting that 2-day lag in IDWG and preSBP responses can explain 2.11% and 4.41% of total effect association between temperature and mortality, respectively. CONCLUSION: We corroborated the previously reported association between ambient temperature, ACHA and ACM. Our results foster the understanding of potential physiological linkages that may explain or suppress temperature-driven hospital admissions and mortality risks. Of note, concomitant changes in preSBP and IDWG may have little intermediary effect when analyzed in combined pathway models. These findings advance our assessment of candidate interventions to reduce the impact of outdoor temperature change on ESKD patients.

Association between temperature and inpatient stone admission in a pediatric population

Background: Higher temperatures have been associated with increased stone formation and subsequent utilization of hospital resources, including inpatient admission. However, these observations have been derived from the adult population. We sought to examine if this purported association extends to the pediatric population. Methods: We used the 2016 Kids’ Inpatient Database to identify nationwide pediatric inpatient admissions related to nephrolithiasis. Temperature data from the National Oceanic and Atmospheric Administration was linked to each admission. Comparative statistics analyzed patient and admission characteristics. Multivariable logistic regression analyzed associations between stone-related admissions and temperature. As a frame of reference, this analysis was replicated using the National Inpatient Sample from 2016 to evaluate associations in the adult population. Results: Of the 2,496,257 pediatric admissions, 8453 (0.33%) were related to nephrolithiasis. Temperatures at the time of stone admission were higher than those during nonstone admission (55.9°F vs 54.8°F, p < 0.001). The stone admission group had a higher proportion of females than the nonstone admission group (64.8% vs 55.4%, p < 0.001). Stone admission was significantly associated with temperature (odds ratio [OR] 1.025 per 10°F, confidence interval [95% CI] 1.003-1.049, p = 0.03) and female gender (OR 1.097, 95% CI 1.027-1.171, p = 0.006). In the adult population, 380,520 out of 30,000,941 patients (1.3%) were admitted with a stone. The effect of temperature on stone admissions was similar to that in the pediatric population (OR 1.020, 95% CI 1.014-1.026, p < 0.001), but women were >20% less likely to be admitted for stones than men (OR 0.770, 95% CI 0.757-0.784, p < 0.001). Conclusions: Increased temperatures were associated with an increased risk of stone-related admission in both the pediatric and adult populations. Females were at increased risk for stone-related admissions during childhood, but this trend reverses in adulthood.

Climate Change and Social Vulnerability in the United States: A Focus on Six Impacts. Appendix F: Labor

A preclinical model of exertional heat stroke in mice

Heat stroke is the most severe manifestation of heat-related illnesses. Classic heat stroke (CHS), also known as passive heat stroke, occurs at rest, whereas exertional heat stroke (EHS) occurs during physical activity. EHS differs from CHS in etiology, clinical presentation, and sequelae of multi-organ dysfunction. Until recently, only models of CHS have been well established. This protocol aims to provide guidelines for a refined preclinical mouse model of EHS that is free from major limiting factors such as the use of anesthesia, restraint, rectal probes, or electric shock. Male and female C57Bl/6 mice, instrumented with core temperature (Tc) telemetric probes were utilized in this model. For familiarization with the running mode, mice undergo 3 weeks of training using both voluntary and forced running wheels. Thereafter, mice run on a forced wheel inside a climatic chamber set at 37.5 °C and 40%-50% relative humidity (RH) until displaying symptom limitation (e.g., loss of consciousness) at Tc of 42.1-42.5 °C, although suitable results can be obtained at chamber temperatures between 34.5-39.5 °C and humidity between 30%-90%. Depending on the desired severity, mice are removed from the chamber immediately for recovery in ambient temperature or remain in the heated chamber for a longer duration, inducing a more severe exposure and a higher incidence of mortality. Results are compared with sham-matched exercise controls (EXC) and/or naïve controls (NC). The model mirrors many of the pathophysiological outcomes observed in human EHS, including loss of consciousness, severe hyperthermia, multi-organ damage as well as inflammatory cytokine release, and acute phase responses of the immune system. This model is ideal for hypothesis-driven research to test preventative and therapeutic strategies that may delay the onset of EHS or reduce the multi-organ damage that characterizes this manifestation.

An exploratory survey of heat stress management programs in the electric power industry

Workers in the electric power industry commonly perform physically demanding jobs in hot environments, which combined with the protective clothing worn, places them at risk of disease and health problems related to occupational heat stress. With climate change fueling an increase in the occurrence of hot weather, a targeted approach to heat stress management within the industry is needed. To better understand current heat management practices and identify opportunities for refinement, we conducted an exploratory survey among 33 electric utility companies operating in the United States (n = 32) and Canada (n = 1). Forty-six employees responsible for health and safety of company workers completed 26 questions assessing heat stress as a workplace hazard and heat management practices within five categories: (1) use and administration of heat stress management program; (2) surveillance of heat stress and heat strain; (3) job evaluation and heat-mitigation guidance; (4) education and training programs; and (5) treatment of heat-related illness. While a majority of the respondents (87.0%) indicated heat stress is a workplace hazard and their organization has a heat stress management program (78.3%), less than half reported performing real-time monitoring of heat stress in the workplace (47.8%) or tracking worker heat strain (19.6%) (i.e., physiological response to heat stress). However, most organizations indicated they conducted pre-job evaluations for heat stress (71.7%) and implemented an employee training program on managing heat stress (73.9%). The latter included instruction on various short- and long-term heat-mitigation guidance for workers (e.g., use of work exposure limits, hydration protocols) and the prevention (52.2%) and treatment (63.1%) of heat-related illnesses. Altogether, our survey demonstrates that although many companies employ some form of a heat management program, the basic components defining the programs vary and are lacking for some companies. To maximize worker health and safety during work in hot environments, a consensus-based approach, which considers the five basic components of a heat management program, should be employed to formulate effective practices and methodologies for creating an industry-specific heat management strategy.

Are Cal/OSHA regulations protecting farmworkers in California from heat-related illness?

OBJECTIVE: Determine compliance with and effectiveness of California regulations in reducing farmworkers’ heat-related illness (HRI) risk and identify main factors contributing to HRI. METHODS: In a cross-sectional study of Latino farmworkers, core body temperature (CBT), work rate, and environmental temperature (WBGT) were monitored over a work shift by individual ingestible thermistors, accelerometers, and weather stations, respectively. Multiple logistic modeling was used to identify risk factors for elevated CBT. RESULTS: Although farms complied with Cal/OSHA regulations, worker training of HRI prevention and hydration replacement rates were insufficient. In modeling (AOR [95% CI]) male sex (3.74 [1.22 – 11.54]), WBGT (1.22 [1.08 – 1.38]), work rate (1.004 [1.002 – 1.006]), and increased BMI (1.11 [1.10 – 1.29]) were all independently associated with elevated CBT. CONCLUSION: Risk of HRI was exacerbated by work rate and environmental temperature despite farms following Cal/OSHA regulations.

Core temperature responses to compensable versus uncompensable heat stress in young adults (PSU heat project)

With global warming, much attention has been paid to the upper limits of human adaptability. However, the time to reach a generally accepted core temperature criterion (40.2°C) associated with heat-related illness above (uncompensable heat stress) and just below (compensable heat stress) the upper limits for heat balance remains unclear. Forty-eight (22 men/26 women; 23 ± 4 yr) subjects were exposed to progressive heat stress in an environmental chamber during minimal activity (MinAct, 159 ± 34 W) and light ambulation (LightAmb, 260 ± 55 W) in warm-humid (WH; ∼35°C, >60% RH) and hot-dry (HD; 43°C-48°C, <25% RH) environments until heat stress became uncompensable. For each condition, we compared heat storage (S) and the change in gastrointestinal temperature (ΔT(gi)) over time during compensable and uncompensable heat stress. In addition, we examined whether individual characteristics or seasonality were associated with the rate of increase in T(gi). During compensable heat stress, S was higher in HD than in WH environments (P < 0.05) resulting in a greater but more variable ΔT(gi) (P ≥ 0.06) for both metabolic rates. There were no differences among conditions during uncompensable heat stress (all P > 0.05). There was no influence of sex, aerobic fitness, or seasonality, but a larger body size was associated with a greater ΔT(gi) during LightAmb in WH (P = 0.003). The slopes of the T(gi) response during compensable (WH: MinAct, 0.06, LightAmb, 0.09; HD: MinAct, 0.12, LightAmb, 0.15°C/h) and uncompensable (WH: MinAct, 0.74, LightAmb, 0.87; HD: MinAct, 0.71, LightAmb, 0.93°C/h) heat stress can be used to estimate the time to reach a target core temperature from any given starting value.NEW & NOTEWORTHY This study is the first to examine heat storage and the rate of change in core temperature above (uncompensable heat stress) and just below (compensable heat stress) critical environmental limits to human heat balance. Furthermore, we examine the influence of individual subject characteristics and seasonality on the change in core temperature in warm-humid versus hot-dry environments. We provide the rate of change in core temperature, enabling projections to be made to and from any hypothetical core temperature.

Environmental injustice among hispanics in Santa Clara, California: A human-environment heat vulnerability assessment

In the United States, there is a growing interest in understanding heat stress in lower-income and racially isolated neighborhoods. This study spatially identifies heat-vulnerable neighborhoods, evaluates the relationship between race/ethnicity and temperature exposure, and emphasizes differences among Hispanics by origin to capture environmental injustices in Santa Clara County (SCC), CA. The current methodology uses Landsat 8 via Google Earth Engine to measure the Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) to assess the physical environment. The human environment is evaluated using the Modified Darden-Kamel Composite Socioeconomic Index to determine the spatial variability of socioeconomic status (SES) and the Index of Dissimilarity to determine the level of segregation between Hispanics and non-Hispanic Whites and among Hispanics/Latinos. The combination of these assessments comprises a comprehensive human-environment approach for health exposure evaluation by which to define environmental injustice. Results reveal socioeconomic inequalities and an uneven residential distribution between Hispanics and non-Hispanic Whites. Low NDVI and high LST values were found in Mexican neighborhoods, implying possible environmental racism. Almost half the Mexican population lives in highly segregated neighborhoods with low and very low SES, mainly located in East San Jose, where, historically, they have been ghettoized. Mexicans, in general, could be at a higher risk of heat stress and heat mortality during heat waves. Future work should examine additional variables (e.g., housing characteristics, crime, social cohesion, and collective behaviors) to comprehensively evaluate the at-risk Mexican population.

Development of an urban heat mitigation plan for the greater Sacramento Valley, California, a Csa Koppen climate Ttype

An urban atmospheric modeling study was undertaken with the goal of informing the development of a heat-mitigation plan for the greater Sacramento Valley, California. Realistic levels of mitigation measures were characterized and ranked in terms of their effectiveness in producing urban cooling under current conditions and future climate and land use. An urban heat-island index was computed for current and future climates based on each location’s time-varying upwind temperature reference points and its hourly temperatures per coincident wind direction. For instance, the UHII for the period 16-31 July 2015, for all-hours averaged temperature equivalent (i.e., degrees C center dot h hr(-1)), ranged from 1.5 to 4.7 degrees C across the urban areas in the region. The changes in local microclimates corresponding to future conditions were then quantified by applying a modified high-resolution urban meteorology model in dynamically downscaling a climate model along with future urbanization and land use change projections for each area. It was found that the effects of urbanization were of the same magnitude as that of the local climate change. Considering the urban areas in the region and the selected emissions scenarios, the all-hours temperature equivalent of the UHII (degrees C center dot h hr(-1)) increased by between 0.24 and 0.80 degrees C, representing an increase of between 17% and 13% of their respective values in the current climate. Locally, instantaneous (e.g., hourly) temperatures could increase by up to similar to 3 degrees C because of climate effects and up to similar to 5 degrees C because of both climate and urbanization changes. The efficacies of urban heat mitigation measures were ranked both at the county level and at local project scales. It was found that urban cooling measures could help decrease or offset exceedances in the National Weather Service heat index (NWS HI) above several warning thresholds and reduce the number of heatwave or excessive heat event days. For example, measures that combine increased albedo and urban forests can reduce the exceedances above NWS HI Danger level by between 50% and 100% and the exceedances above Extreme Caution level by between 18% and 36%. UHII offsets from each mitigation measure were quantified for two situations: (1) a scenario where a community implements cooling measures and no other nearby communities take any action and (2) a scenario where both the community and its upwind neighbors implement cooling measures. In this second situation, the community benefits from cooler air transported from upwind areas in addition to the local cooling resulting from implementation of its own heat mitigation strategies. The modeling of future climates showed that except for a number of instances, the ranking of measures in each respective urban area remains unchanged into the future.

Heat exposure limits for young unacclimatized males and females at low and high humidity

Little is known about the separate and combined influences of humidity conditions, sex, and aerobic fitness on heat tolerance in unacclimatized males and females. The purpose of the current study was to describe heat tolerance, in terms of critical WBGT (WBGT(crit)), in unacclimatized young males and females in hot-dry (HD) and warm-humid (WH) environments. Eighteen subjects (9 M/9F; 21 ± 2 yr) were tested during exercise at 30% V̇O(2max) in a controlled environmental chamber. Progressive heat stress exposures were performed with either (1) constant dry-bulb temperature (T(db)) of 34 and 36 °C and increasing ambient water vapor pressure (P(a)) (P(crit) trials; WH); or (2) constant P(a) of 12 and 16 mmHg and increasing T(db) (T(crit) trials; HD). Chamber T(db) and P(a), and subject esophageal temperature (T(es)), were continuously monitored throughout each trial. After a 30-min equilibration period, progressive heat stress continued until subject heat balance could no longer be maintained and a clear rise in T(es) was observed. Absolute WBGT(crit) and WBGT(crit) adjusted to a metabolic rate of 300 W (WBGT(300)), and the difference between WBGT(crit) and occupational exposure limits (OEL; ΔOEL) was assessed. WBGT(crit), WBGT(300), and ΔOEL were higher in WH compared to HD (p < 0.0001) for females but were the same between environments for males (p ≥ 0.21). WBGT(crit) was higher in females compared to males in WH (p < 0.0001) but was similar between sexes in HD (p = 0.44). When controlling for metabolic rate, WBGT(300) and ΔOEL were higher in males compared to females in WH and HD (both p < 0.0001). When controlling for sex, V̇O(2max) was not associated with WBGT(300) or ΔOEL for either sex (r ≤ 0.12, p ≥ 0.49). These findings suggest that WBGT(crit) is higher in females compared to males in WH, but not HD, conditions. Additionally, the WBGT(crit) is lower in females, but not males, in HD compared to WH conditions.

Heat exposure misclassification: Do current methods of classifying diurnal range in individually experienced temperatures and heat indices accurately reflect personal exposure?

Wearable sensors have been used to collect information on individual exposure to excessive heat and humidity. To date, no consistent diurnal classification method has been established, potentially resulting in missed opportunities to understand personal diurnal patterns in heat exposure. Using individually experienced temperatures (IET) and heat indices (IEHI) collected in the southeastern United States, this work aims to determine whether current methods of classifying IETs and IEHIs accurately characterize “day,” which is typically the warmest conditions, and “night,” which is typically the coolest conditions. IET and IEHI data from four locations were compared with the closest hourly weather station. Different day/night classifications were compared to determine efficacy. Results indicate that diurnal IET and IEHI ranges are higher than fixed-site ranges. Maximum IETs and IEHIs are warmer and occur later in the day than ambient conditions. Minimum IETs are lower and occur earlier in the day than at weather stations, which conflicts with previous assumptions that minimum temperatures occur at night. When compared to commonly used classification methods, a method of classifying day and night based on sunrise and sunset times best captured the occurrence of maximum IETs and IEHIs. Maximum IETs and IEHIs are often identified later in the evening, while minimum IETs and IEHIs occur throughout the day. These findings support future research focusing on nighttime heat exposure, which can exacerbate heat-related health issues, and diurnal patterns of personal exposure throughout the entire day as individual patterns do not necessarily follow the diurnal pattern seen in ambient conditions.

Heat stress illness outcomes and annual indices of outdoor heat at U.S. Army installations

This study characterized associations between annually scaled thermal indices and annual heat stress illness (HSI) morbidity outcomes, including heat stroke and heat exhaustion, among active-duty soldiers at ten Continental U.S. (CONUS) Army installations from 1991 to 2018. We fit negative binomial models for 3 types of HSI morbidity outcomes and annual indices for temperature, heat index, and wet-bulb globe temperature (WBGT), adjusting for installation-level effects and long-term trends in the negative binomial regression models using block-bootstrap resampling. Ambulatory (out-patient) and reportable event HSI outcomes displayed predominately positive association patterns with the assessed annual indices of heat, whereas hospitalization associations were mostly null. For example, a one-degree Fahrenheit (°F) (or 0.55°C) increase in mean temperature between May and September was associated with a 1.16 (95% confidence interval [CI]: 1.11, 1.29) times greater rate of ambulatory encounters. The annual-scaled rate ratios and their uncertainties may be applied to climate projections for a wide range of thermal indices to estimate future military and civilian HSI burdens and impacts to medical resources.

Heat stress management in the military: Wet-bulb globe temperature offsets for modern body armor systems

OBJECTIVE: The aim of this study was to model the effect of body armor coverage on body core temperature elevation and wet-bulb globe temperature (WBGT) offset. BACKGROUND: Heat stress is a critical factor influencing the health and safety of military populations. Work duration limits can be imposed to mitigate the risk of exertional heat illness and are derived based on the environmental conditions (WBGT). Traditionally a 3°C offset to WBGT is recommended when wearing body armor; however, modern body armor systems provide a range of coverage options, which may influence thermal strain imposed on the wearer. METHOD: The biophysical properties of four military clothing ensembles of increasing ballistic protection coverage were measured on a heated sweating manikin in accordance with standard international criteria. Body core temperature elevation during light, moderate, and heavy work was modeled in environmental conditions from 16°C to 34°C WBGT using the heat strain decision aid. RESULTS: Increasing ballistic protection resulted in shorter work durations to reach a critical core temperature limit of 38.5°C. Environmental conditions, armor coverage, and work intensity had a significant influence on WBGT offset. CONCLUSION: Contrary to the traditional recommendation, the required WBGT offset was >3°C in temperate conditions (<27°C WBGT), particularly for moderate and heavy work. In contrast, a lower WBGT offset could be applied during light work and moderate work in low levels of coverage. APPLICATION: Correct WBGT offsets are important for enabling adequate risk management strategies for mitigating risks of exertional heat illness.

Heat tolerance and occupational heat exposure limits in older men with and without type 2 diabetes or hypertension

PURPOSE: To mitigate rises in core temperature >1°C, the American Conference of Governmental Industrial Hygienists (ACGIH) recommends upper limits for heat stress (action limit values [ALV]), defined by wet-bulb globe temperature (WBGT) and a worker’s metabolic rate. However, these limits are based on data from young men and are assumed to be suitable for all workers, irrespective of age or health status. We therefore explored the effect of aging, type 2 diabetes (T2D), and hypertension (HTN) on tolerance to prolonged, moderate-intensity work above and below these limits. METHODS: Core temperature and heart rate were assessed in healthy, heat unacclimatized young (18-30 yr, n = 13) and older (50-70 yr) men (n = 14) and heat unacclimatized older men with T2D (n = 10) or HTN (n = 13) during moderate-intensity (metabolic rate: 200 W·m-2) walking for 180 min (or until termination) in environments above (28°C and 32°C WBGT) and below (16°C and 24°C WBGT) the ALV for continuous work at this intensity (25°C WBGT). RESULTS: Work tolerance in the 32°C WBGT was shorter in men with T2D (median [IQR]; 109 [91-173] min; P = 0.041) and HTN (120 [65-170] min; P = 0.010) compared with healthy older men (180 [133-180] min). However, aging, T2D, and HTN did not significantly influence (i) core temperature or heart rate reserve, irrespective of WBGT; (ii) the probability that core temperature exceeded recommended limits (>1°C) under the ALV; and (iii) work duration before core temperature exceeded recommended limits (>1°C) above the ALV. CONCLUSION: These findings demonstrate that T2D and HTN attenuate tolerance to uncompensable heat stress (32°C WBGT); however, these chronic diseases do not significantly impact thermal and cardiovascular strain, or the validity of ACIGH recommendations during moderate-intensity work.

It’s a dry heat: Professional perspectives on extreme heat risk in Utah

Heat waves are the deadliest weather-related hazard in the United States while also increasing in frequency, intensity, and duration. Population growth is also occurring in places most exposed to extreme heat. Current US National Weather Service (NWS) guidelines to issue heat alerts vary geographically and may not facilitate optimal heat risk communication. This study focuses on professionals’ decision making and communication in the context of extreme heat risk in Utah, a state with historically low but increasing heat risk due to climate change, a growing population, and rising outdoor recreation visitation. We analyze the mental models of decision-makers responsible for forecasting, communicating, and managing heat risk in Utah using interviews with 32 weather forecasters, media broadcasters, and public officials including park managers. Results demonstrate that institutional norms have influenced how forecasters characterize extreme heat in the western region of the US. NWS heat alerts and tools are new and unfamiliar to many decision-makers, especially in areas of the state where previous criteria did not warrant alerts. Only 44% of participants from these areas were familiar with NWS heat alerts compared to 100% of participants from areas with a history of heat events. While experience with NWS heat alerts and tools varied widely among participants, 100% were familiar with heat protective behaviors. 94% stated they had personally experienced extreme heat and 66% stated that this experience influenced their decisions. Personal experience may be an effective means to communicate heat risk and promote adaptive practices. These insights may be generalizable to other settings where risk is changing and communication strategies are underdeveloped.

Martiny-a low-cost biometeorological sensing device with embedded computer vision for urban climate research

Extreme heat puts tremendous stress on human health and limits people’s ability to work, travel, and socialize outdoors. To mitigate heat in public spaces, thermal conditions must be assessed in the context of human exposure and space use. Mean Radiant Temperature (MRT) is an integrated radiation metric that quantifies the total heat load on the human body and is a driving parameter in many thermal comfort indices. Current sensor systems to measure MRT are expensive and bulky (6-directional setup) or slow and inaccurate (globe thermometers) and do not sense space use. This engineering systems paper introduces the hardware and software setup of a novel, low-cost thermal and visual sensing device (MaRTiny). The system collects meteorological data, concurrently counts the number of people in the shade and sun, and streams the results to an Amazon Web Services (AWS) server. MaRTiny integrates various micro-controllers to collect weather data relevant to human thermal exposure: air temperature, humidity, wind speed, globe temperature, and UV radiation. To detect people in the shade and Sun, we implemented state of the art object detection and shade detection models on an NVIDIA Jetson Nano. The system was tested in the field, showing that meteorological observations compared reasonably well to MaRTy observations (high-end human-biometeorological station) when both sensor systems were fully sun-exposed. To overcome potential sensing errors due to different exposure levels, we estimated MRT from MaRTiny weather observations using machine learning (SVM), which improved RMSE. This paper focuses on the development of the MaRTiny system and lays the foundation for fundamental research in urban climate science to investigate how people use public spaces under extreme heat to inform active shade management and urban design in cities.

Risk factors for hyperthermia mortality among emergency department patients

PURPOSE: This study examines risk factors for heat-related mortality due to hyperthermia in emergency department patients, a vulnerable population. METHODS: This matched case-control study used statewide, longitudinally linked emergency department (ED) data and death records from California. Cases comprised California residents (≥18 years) who presented to a state-licensed ED and died of hyperthermia during the study period (2009-2012). For each case, up to five ED patients were randomly selected as live controls and matched on sex and age. Patients’ demographic characteristics and history of ED utilization for alcohol use, drug use, psychiatric disorders, heart-related conditions, chronic respiratory disease, neurodegenerative disorders, and cerebrovascular disease were assessed in relationship to hyperthermia mortality. RESULTS: Using multivariate conditional logistic regression models, hyperthermia mortality cases had higher odds of prior ED utilization for alcohol use (OR = 11.16, 95% CI = 3.87, 32.17) compared to controls. Cases were also more likely than controls to have Medicare insurance (OR = 5.80, 95% CI = 1.70, 15.15) or self-pay (OR = 5.39, 95% CI = 1.73, 16.79), at their most recent ED visit. CONCLUSIONS: ED patients presenting with alcohol problems may face increased risk of hyperthermia mortality. To help reduce heat-related mortality, EDs should consider interventions that target patients vulnerable to heat exposure.

Acute associations between heatwaves and preterm and early-term birth in 50 US metropolitan areas: A matched case-control study

BACKGROUND: The effect of heatwaves on adverse birth outcomes is not well understood and may vary by how heatwaves are defined. The study aims to examine acute associations between various heatwave definitions and preterm and early-term birth. METHODS: Using national vital records from 50 metropolitan statistical areas (MSAs) between 1982 and 1988, singleton preterm (< 37 weeks) and early-term births (37-38 weeks) were matched (1:1) to controls who completed at least 37 weeks or 39 weeks of gestation, respectively. Matching variables were MSA, maternal race, and maternal education. Sixty heatwave definitions including binary indicators for exposure to sustained heat, number of high heat days, and measures of heat intensity (the average degrees over the threshold in the past 7 days) based on the 97.5(th) percentile of MSA-specific temperature metrics, or the 85(th) percentile of positive excessive heat factor (EHF) were created. Odds ratios (OR) for heatwave exposures in the week preceding birth (or corresponding gestational week for controls) were estimated using conditional logistic regression adjusting for maternal age, marital status, and seasonality. Effect modification by maternal education, age, race/ethnicity, child sex, and region was assessed. RESULTS: There were 615,329 preterm and 1,005,576 early-term case-control pairs in the analyses. For most definitions, exposure to heatwaves in the week before delivery was consistently associated with increased odds of early-term birth. Exposure to more high heat days and more degrees above the threshold yielded higher magnitude ORs. For exposure to 3 or more days over the 97.5(th) percentile of mean temperature in the past week compared to zero days, the OR was 1.027 for early-term birth (95%CI: 1.014, 1.039). Although we generally found null associations when assessing various heatwave definitions and preterm birth, ORs for both preterm and early-term birth were greater in magnitude among Hispanic and non-Hispanic black mothers. CONCLUSION: Although associations varied across metrics and heatwave definitions, heatwaves were more consistently associated with early-term birth than with preterm birth. This study's findings may have implications for prevention programs targeting vulnerable subgroups as climate change progresses.

Classroom temperatures and asthma-related school-based health care utilization: An exploratory study

OBJECTIVE: Schools with aging infrastructure may expose students to extreme temperatures. Extreme outdoor temperatures have previously been linked to more asthma-related health care utilization. Explore the relationship between classroom temperatures and school-based health care visits for asthma in an urban school building with an outdated heating and cooling system. METHODS: Participants were students in grades K-8 who received health care from a school-based health center (SBHC) (n = 647) or school nurse (n = 1244) in 2 co-located urban public schools between 2016 and 2018. The probability of an asthma visit to the SBHC or school nurse was modeled as a function of indoor temperature exposure using generalized estimating equations with covariates accounting for grade, sex, outdoor temperature, days at risk of asthma visit, nonasthma visits, month, and year fixed effects. RESULTS: Classroom temperatures ranged from 48.0 °F to 100.6 °F. Higher mean grade-level indoor temperatures from a baseline of approximately 70 °F to 76 °F were associated with increased rates of asthma-related visits to the SBHC or school nurse on same day of exposure. Model-generated estimates suggest that an increase of 10 degrees F in indoor temperature relative to a baseline of 75 °F was associated with a 53% increase in the rate of asthma-related SBHC visits. CONCLUSIONS: Elevated classroom temperatures may be associated with more school-based health care utilization for asthma. Low-income and students from racial and ethnic minority groups have disproportionately higher rates of asthma and are also more likely to attend schools with poor infrastructure. The potential benefits of school infrastructure investments for student health, health care costs, and health equity merit further investigation.

Heat waves and emergency department visits among the homeless, San Diego, 2012-2019

Objectives. To determine the effect of heat waves on emergency department (ED) visits for individuals experiencing homelessness and explore vulnerability factors. Methods. We used a unique highly detailed data set on sociodemographics of ED visits in San Diego, California, 2012 to 2019. We applied a time-stratified case-crossover design to study the association between various heat wave definitions and ED visits. We compared associations with a similar population not experiencing homelessness using coarsened exact matching. Results. Of the 24 688 individuals identified as experiencing homelessness who visited an ED, most were younger than 65 years (94%) and of non-Hispanic ethnicity (84%), and 14% indicated the need for a psychiatric consultation. Results indicated a positive association, with the strongest risk of ED visits during daytime (e.g., 99th percentile, 2 days) heat waves (odds ratio = 1.29; 95% confidence interval = 1.02, 1.64). Patients experiencing homelessness who were younger or elderly and who required a psychiatric consultation were particularly vulnerable to heat waves. Odds of ED visits were higher for individuals experiencing homelessness after matching to nonhomeless individuals based on age, gender, and race/ethnicity. Conclusions. It is important to prioritize individuals experiencing homelessness in heat action plans and consider vulnerability factors to reduce their burden. (Am J Public Health. 2022;112(1):98-106. https://doi.org/10.2105/AJPH.2021.306557).

Limited application of reflective surfaces can mitigate urban heat pollution

Elevated air temperatures in urban neighborhoods due to the Urban Heat Island effect is a form of heat pollution that causes thermal discomfort, higher energy consumption, and deteriorating public health. Mitigation measures can be expensive, with the need to maximize benefits from limited resources. Here we show that significant mitigation can be achieved through a limited application of reflective surfaces. We use a Computational Fluid Dynamics model to resolve the air temperature within a prototypical neighborhood for different wind directions, building configurations, and partial application of reflective surfaces. While reflective surfaces mitigate heat pollution, their effectiveness relative to cost varies with spatial distribution. Although downstream parts experience the highest heat pollution, applying reflective surfaces to the upstream part has a disproportionately higher benefit relative to cost than applying them downstream.

Heat stroke

Heat-related illness is a spectrum of conditions progressing from heat exhaustion, heat injury, to life-threatening heat stroke. Heat stroke is a clinical constellation of symptoms that include a severe elevation in body temperature which typically, but not always, is greater than 40°C. Also, there must be clinical signs of central nervous system dysfunction that may include ataxia, delirium, or seizures, in the setting of exposure to hot weather or strenuous physical exertion. Risk factors include environmental variables, medications, drug use, and other medical comorbidities.

Compound climate and infrastructure events: How electrical grid failure alters heat wave risk

The potential for critical infrastructure failures during extreme weather events is rising. Major electrical grid failure or “blackout” events in the United States, those with a duration of at least 1 h and impacting 50,000 or more utility customers, increased by more than 60% over the most recent 5 year reporting period. When such blackout events coincide in time with heat wave conditions, population exposures to extreme heat both outside and within buildings can reach dangerously high levels as mechanical air conditioning systems become inoperable. Here, we combine the Weather Research and Forecasting regional climate model with an advanced building energy model to simulate building-interior temperatures in response to concurrent heat wave and blackout conditions for more than 2.8 million residents across Atlanta, Georgia; Detroit, Michigan; and Phoenix, Arizona. Study results find simulated compound heat wave and grid failure events of recent intensity and duration to expose between 68 and 100% of the urban population to an elevated risk of heat exhaustion and/or heat stroke.

Compounding hazards and intersecting vulnerabilities: Experiences and responses to extreme heat during COVID-19

Extreme heat is a major threat to human health worldwide. The COVID-19 pandemic, with its complexity and global reach, created unprecedented challenges for public health and highlighted societal vulnerability to hazardous hot weather. In this study, we used data from a three-wave nationally representative survey of 3036 American adults to examine how the COVID-19 pandemic affected extreme heat vulnerability during the summer of 2020. We used mixed effects models to examine the roles of socio-demographic characteristics and pandemic-related factors in the distribution of negative heat effects and experiences across the United States. The survey findings show that over a quarter of the US population experienced heat-related symptoms during the summer of 2020. Mixed effects models demonstrate that among all socio-economic groups, those who were most vulnerable were women, those in low-income households, unemployed or on furlough, and people who identify as Hispanic or Latino or as other non-white census categories (including Asian, American Indian or Alaska Native, Native Hawaiian or other Pacific Islander, and multi-racial US residents). The study findings indicate that millions of people in the US had difficulty coping with or responding to extreme heat because of the direct and indirect effects of the COVID-19 pandemic. Limited access to cooling as well as COVID-19 related social isolation played a major role in adverse heat health effects. Geographically, the South and the West of the US stood out in terms of self-reported negative heat effects. Overall, the study suggests that the intersection of two health hazards-extreme heat and coronavirus SARS-CoV2-amplified existing systemic vulnerabilities and expanded the demographic range of people vulnerable to heat stress.

Emergency department visits for heat-related emergency conditions in the United States from 2008-2020

Exposure to high temperatures is detrimental to human health. As climate change is expected to increase the frequency of extreme heat events, and raise ambient temperatures, an investigation into the trend of heat-related emergency department (ED) visits over the past decade is necessary to assess the human health impact of this growing public health crisis. ED visits were examined using the Nationwide Emergency Department Sample. Visits were included if the diagnostic field contained an ICD-9-CM or ICD-10-CM code specific to heat-related emergency conditions. Weighted counts were generated using the study design and weighting variables, to estimate the national burden of heat-related ED visits. A total of 1,078,432 weighted visits were included in this study. The annual incidence rate per 100,000 population increased by an average of 2.85% per year, ranging from 18.21 in 2009, to 32.34 in 2018. The total visit burden was greatest in the South (51.55%), with visits increasing to the greatest degree in the Midwest (8.52%). ED visit volume was greatest in July (29.79%), with visits increasing to the greatest degree in July (15.59%) and March (13.18%). An overall increase in heat-related ED visits for heat-related emergency conditions was found during the past decade across the United States, affecting patients in all regions and during all seasons.

Engaged convergence research: An exploratory approach to heat resilience in mobile homes

Efforts to understand the complex, multidimensional nature of environmental vulnerability can generate new knowledge by deploying a convergence research framework within a community-engaged approach. We explore the benefits and shortcomings of what we call engaged convergence research (ECR) by narrating a case study that uncovered a pattern of indoor heat-related deaths that was previously unexplained: Although only 5 percent of Maricopa County, Arizona, residents live in mobile homes, residents of mobile homes account for 29 percent of indoor heat-related deaths. Exploring the multiplicative threats of economic precarity, population sensitivity to environmental exposure, site, and shelter type, we recharacterize the reality faced by mobile home dwellers to find them falling between the cracks of available heat resilience options. Beyond contributing to scholarship on indoor heat-related deaths, we demonstrate the potential for novel and actionable insights emerging from ECR. We also elucidate some of the challenges faced when enlisting community actors as coproducers of knowledge in geographic research.

Estimating the burden of heat-related illness morbidity attributable to anthropogenic climate change in North Carolina

Climate change is known to increase the frequency and intensity of hot days (daily maximum temperature ≥30°C), both globally and locally. Exposure to extreme heat is associated with numerous adverse human health outcomes. This study estimated the burden of heat-related illness (HRI) attributable to anthropogenic climate change in North Carolina physiographic divisions (Coastal and Piedmont) during the summer months from 2011 to 2016. Additionally, assuming intermediate and high greenhouse gas emission scenarios, future HRI morbidity burden attributable to climate change was estimated. The association between daily maximum temperature and the rate of HRI was evaluated using the Generalized Additive Model. The rate of HRI assuming natural simulations (i.e., absence of greenhouse gas emissions) and future greenhouse gas emission scenarios were predicted to estimate the HRI attributable to climate change. Over 4 years (2011, 2012, 2014, and 2015), we observed a significant decrease in the rate of HRI assuming natural simulations compared to the observed. About 3 out of 20 HRI visits are attributable to anthropogenic climate change in Coastal (13.40% [IQR: -34.90,95.52]) and Piedmont (16.39% [IQR: -35.18,148.26]) regions. During the future periods, the median rate of HRI was significantly higher (78.65%: Coastal and 65.85%: Piedmont), assuming a higher emission scenario than the intermediate emission scenario. We observed significant associations between anthropogenic climate change and adverse human health outcomes. Our findings indicate the need for evidence-based public health interventions to protect human health from climate-related exposures, like extreme heat, while minimizing greenhouse gas emissions.

Evaluating the sensitivity of heat wave definitions among North Carolina physiographic regions

Exposure to extreme heat is a known risk factor that is associated with increased heat-related illness (HRI) outcomes. The relevance of heat wave definitions (HWDs) could change across health conditions and geographies due to the heterogenous climate profile. This study compared the sensitivity of 28 HWDs associated with HRI emergency department visits over five summer seasons (2011−2016), stratified by two physiographic regions (Coastal and Piedmont) in North Carolina. The HRI rate ratios associated with heat waves were estimated using the generalized linear regression framework assuming a negative binomial distribution. We compared the Akaike Information Criterion (AIC) values across the HWDs to identify an optimal HWD. In the Coastal region, HWDs based on daily maximum temperature with a threshold > 90th percentile for two or more consecutive days had the optimal model fit. In the Piedmont region, HWD based on the daily minimum temperature with a threshold value > 90th percentile for two or more consecutive days was optimal. The HWDs with optimal model performance included in this study captured moderate and frequent heat episodes compared to the National Weather Service (NWS) heat products. This study compared the HRI morbidity risk associated with epidemiologic-based HWDs and with NWS heat products. Our findings could be used for public health education and suggest recalibrating NWS heat products.

Exertional heat illness at Fort Benning, GA: Unique insights from the army heat center

The Army Heat Center at Fort Benning, GA was established to identify and disseminate best practices for the prevention, field care, evacuation, hospital care, and return to duty of exertional heat casualties. During the 2017-2021 surveillance period, there were 1,911 heat casualties treated at Ft. Benning’s Martin Army Community Hospital. Most patients were junior enlisted and officer personnel who were engaged in initial entry training. Heat exhaustion, heat injury, heat stroke, and hyponatremia accounted for 52.6%, 18.4%, 18.2%, and 2.0% of total heat illnesses, respectively. The annual proportion of heat casualties that were due to heat exhaustion rose steadily during the surveillance period, reaching 77.7% in 2021, while the incidence of heat injury and heat stroke did not increase during this period. Data are presented on the occurrence of clusters of heat illness, the association of cases of heat stroke with arduous physical activities, and the seasonal variation in incidence of heat illnesses. It is important that unit leaders and trainers understand the risk factors for heat illness among those being trained and that early first aid measures be employed in the field (especially rapid cooling).

Flexibility and partnerships perceived as supportive of dual hazard response: COVID-19 and heat related illness, Summer 2020

OBJECTIVES: To understand how health departments implemented the response to the dual hazards of Heat Related Illness (HRI) and COVID-19 in Summer 2020. METHODS: We interviewed five health jurisdictions with a Building Resilience Against Climate Effects (BRACE) Framework HRI project to understand impacts to organizational roles and preparedness activities, capacity to respond to the heat season, challenges experienced with resources and personnel, and how partners influenced their capacity to respond to dual hazards. RESULTS: Health jurisdictions working in both heat preparedness and on the COVID-19 response highlighted three components as integral to maintaining public health capacity throughout the pandemic: 1) adapting to changing roles and responsibilities, 2) building and strengthening inter-organizational partnerships, and 3) maintaining flexibility through cross-training as themes to maintain the public health capacity throughout the pandemic. CONCLUSIONS: With impacts of the changing climate, including resultant extreme events with subsequent public health impacts, simultaneous responses are likely to arise again in the future. Developing cross-training programs, fostering flexibility and adaptability within the workforce, and building and sustaining external partnerships can support health departments anticipating the need to respond to simultaneous public health hazards in the future.

Fluid intake and hydration status among North Carolina farmworkers: A mixed methods study

BACKGROUND: Agricultural workers are disproportionately at risk for heat-related morbidity and mortality. The purpose of this study was to explore how sociocultural and occupational factors, and environmental heat stress influenced fluid intake and hydration status among Latino farmworkers working in eastern North Carolina. METHODS: A community-informed, mixed methods research study was conducted in partnership with staff at a federally qualified health center. In summer 2020, we recruited Latino farmworkers at migrant camps. Twenty-eight male, migrant farmworkers participated in focus group discussions and 30 completed surveys and provided urine specimens. Wet bulb globe temperatures were measured in fields where workers labored. Content analysis and parametric analyses were performed. Data integration was completed using a meta-matrix. RESULTS: Prior to work, 46.7% of farmworkers’ urine specific gravity measurements indicated dehydration, which increased to 100% after work. The farmworkers spent between 2 and 7.5 hours of their day working in conditions above the recommended limits for workplace heat exposure. Farmworkers described exposure to extreme heat and inconsistent occupational policy compliance. Farmworkers expressed the opportunity to drink water but accessibility and poor water quality limited hydration. The integrated data supported congruent findings of extreme heat, few work breaks, and substandard housing. CONCLUSION/APPLICATION TO PRACTICE: Farmworkers are dehydrated at work, placing them at higher risk for heat-related illness (HRI). By engaging with agricultural stakeholders, occupational health nurses can combine efforts and advocate for effective health and safety work policies to reduce HRIs and deaths among farmworkers. Legislation stipulating cooling and hydration practices would support safer work environments.

Heat exposure during a power outage: A simulation study of residences across the metro phoenix area

In the wake of growing concern for climate change, heat waves and their potential health effects (McGeehin and Mirabelli, 2001) [37] have become a recurring phenomenon (Beniston, 2004; Fouillet et al., 2006) [8,21]. Extreme heat events in the USA are responsible for more deaths as compared to other weather events such as hurricanes, lightning, tornadoes and floods (Luber and McGeehin, 2008) [33]. Heat exposure in buildings has risen due to global warming in conjunction with other factors like urban-ization and associated heat island effects (Kolokotroni et al., 2012) [25], lack of thermal mass (Lomas and Porritt, 2017a) [31], exposure to solar insolation on higher stories, absence of window shading, over-crowding and envelope properties exacerbate the overheating inside the dwellings (Vellei et al., 2017). [45]. Stone et al. specialIntscript [43] provides a macro view of the indoor environments in buildings due to the concurrent event of power outage during heat wave in face of climate change. This paper builds on the previous publication and provides a detailed view of modeling methodology, building physics that explains the sources/sinks of heat and entails a detailed evaluation of the current building stock for the low to moderate income residences in the city of Phoenix, Arizona in terms of their thermal performance. Finite Element models of building stock were simulated using MATLAB for microclimate weather files of Phoenix generated by Weather Research and Forecasting (WRF) simulation. Significant differences in temperature were noted in same building archetypes in different pockets of the city indicating the role of urbanization in aggravating the impact of heat wave. Dwellings with high thermal mass are found to be much more resilient to high ambient temperatures as compared to code compliant residences with base-ments being the coolest zones in all prototypes. (C) 2021 Elsevier B.V. All rights reserved.

Heat illness

The disorders of hyperthermia, also known as heat-related injury or illness, exist on a continuum, which is marked by dysregulation of the body’s thermoregulatory capacity. This condition can vary both in presentation and in severity, from benign conditions, including heat cramps and heat edema, to life-threatening hyperthermia, also known as heatstroke. This article will discuss non-life-threatening heat-related illnesses. It is essential to be able to identify and manage these conditions appropriately as moderate hyperthermia can progress to life-threatening heatstroke. As such, including these injuries in medical decision-making, prompt identification, and appropriate treatment is important. This article will also review the epidemiology, including at-risk populations, red-flag features of patient presentations, treatment options and strategies, and preventative techniques, which all play a significant role in decreasing the morbidity, mortality, and healthcare costs associated with these injuries.

Inflammation-related factors identified as biomarkers of dehydration and subsequent acute kidney injury in agricultural workers

Globally, there is increasing recognition that agricultural workers are at risk for chronic kidney disease of unknown etiology (CKDu). Recurrent heat exposure, physical exertion, dehydration, muscle damage, and inflammation are hypothesized to contribute to the development of CKDu, but the relative importance of these processes and the interactions among them remain unclear. Moreover, there is a need to identify biomarkers that could distinguish individuals who are at greatest risk for kidney damage to target preventative interventions for CKDu. In this study, we evaluated dehydration and markers of inflammation, muscle damage, and renal function in agricultural workers at a non-workday baseline assessment. Urine specific gravity and kidney function were measured before and after work shifts on three subsequent days, and heat index, core body temperature, and heart rate were monitored during the work shifts. A combination of direct comparisons and machine learning algorithms revealed that reduced levels of uromodulin and sodium in urine and increased levels of interleukin-6 and C-reactive protein in serum were indicative of dehydration at baseline, and that dehydration, high body mass index, reduced urine uromodulin, and increased serum interleukin-6, C-reactive protein, and lipopolysaccharide-binding protein at baseline were predictive of acute kidney injury on subsequent workdays. Our findings suggest a method for identifying agricultural workers at greatest risk for kidney injury and reveal potential mechanisms responsible for this process, including pathways overlapping in dehydration and kidney injury. These results will guide future studies confirming these mechanisms and introducing interventions to protect kidney health in this vulnerable population.

Kidney injury risk during prolonged exposure to current and projected wet bulb temperatures occurring during extreme heat events in healthy young men

Wet bulb temperatures (T(wet)) during extreme heat events are commonly 31°C. Recent predictions indicate that T(wet) will approach or exceed 34°C. Epidemiological data indicate that exposure to extreme heat events increases kidney injury risk. We tested the hypothesis that kidney injury risk is elevated to a greater extent during prolonged exposure to T(wet) = 34°C compared with T(wet) = 31°C. Fifteen healthy men rested for 8 h in T(wet) = 31 (0)°C and T(wet) = 34 (0)°C. Insulin-like growth factor-binding protein 7 (IGFBP7), tissue inhibitor of metalloproteinase 2 (TIMP-2), and thioredoxin 1 (TRX-1) were measured from urine samples. The primary outcome was the product of IGFBP7 and TIMP-2 ([IGFBP7·TIMP-2]), which provided an index of kidney injury risk. Plasma interleukin-17a (IL-17a) was also measured. Data are presented at preexposure and after 8 h of exposure and as mean (SD) change from preexposure. The increase in [IGFBP7·TIMP-2] was markedly greater at 8 h in the 34°C [+26.9 (27.1) (ng/mL)(2)/1,000) compared with the 31°C [+6.2 (6.5) (ng/mL)(2)/1,000] trial (P < 0.01). Urine TRX-1, a marker of renal oxidative stress, was higher at 8 h in the 34°C [+77.6 (47.5) ng/min] compared with the 31°C [+16.2 (25.1) ng/min] trial (P < 0.01). Plasma IL-17a, an inflammatory marker, was elevated at 8 h in the 34°C [+199.3 (90.0) fg/dL; P < 0.01] compared with the 31°C [+9.0 (95.7) fg/dL] trial. Kidney injury risk is exacerbated during prolonged resting exposures to T(wet) experienced during future extreme heat events (34°C) compared with that experienced currently (31°C), likely because of oxidative stress and inflammatory processes.NEW AND NOTEWORTHY We have demonstrated that kidney injury risk is increased when men are exposed over an 8-h period to a wet bulb temperature of 31°C and exacerbated at a wet bulb temperature of 34°C. Importantly, these heat stress conditions parallel those that are encountered during current (31°C) and future (34°C) extreme heat events. The kidney injury biomarker analyses indicate both the proximal and distal tubules as the locations of potential renal injury and that the injury is likely due to oxidative stress and inflammation.

Spatial and intraseasonal variation in changing susceptibility to extreme heat in the United States

Exposure to excessive heat is associated with a higher risk of death. Although the relative risk of death on extreme-heat days has decreased over the past several decades in the United States, the drivers of this decline have not been fully characterized. In particular, while extreme heat earlier in the warm season has been shown to confer greater risk of mortality than exposure later in the season, it is unknown whether this within-season variability in susceptibility has changed over time and whether it is modified by region, climatic changes, or social vulnerability. METHODS: We used distributed-lag nonlinear models and meta-regression to estimate the association between ambient maximum daily temperature during the early, late, and overall warm seasons and the relative risk of mortality for two decades, 1973-1982 and 1997-2006, in 186 metropolitan areas in the United States. We assessed changes in relative risk nationally, regionally, and between places with differential changes in early-season relative extreme heat and indicators of social vulnerability. RESULTS: Most of the reduction in heat-related mortality nationally between the two decades is driven by decreases in late-season mortality, while substantial early-season risk remains. This difference is most apparent in the Northeast, in cities with greater increases in early-season relative extreme heat, and in places that have become more socially vulnerable. CONCLUSIONS: Early-season heat mortality risks have persisted despite overall adaptations, particularly in places with greater warming and increasing social vulnerability. Interventions to reduce heat mortality may need to consider greater applicability to the early warm season.

Risk factors for reaching core body temperature thresholds in Florida agricultural workers

BACKGROUND: There is a compelling need to identify agricultural workers at risk for heat related illness (HRI). METHODS: Data from Florida agricultural workers (N = 221) were collected over 3 summer workdays (2015 to 2017) to examine risk factors for exceeding NIOSH-recommended core temperature (Tc) thresholds (38 °C [Tc38] and 38.5 °C [Tc38.5]) using generalized linear mixed models. RESULTS: On an average workday, 49% of participants exceeded Tc38 and 10% exceeded Tc38.5. On average, participants first exceeded both thresholds early in the day; the Tc38 threshold mid-morning (10:38 AM), and Tc38.5 about a half hour later (11:10 AM). Risk factors associated with exceeding Tc38 included years working in US agriculture, body mass index, time performing moderate-to-vigorous physical activity, increasing heat index, and field crop work. CONCLUSIONS: The high prevalence of core temperatures exceeding recommended limits emphasizes the serious need for mandated HRI prevention programs for outdoor workers.

Core temperature lability predicts sympathetic interruption and cognitive performance during heat exposure in persons with spinal cord injuries

Among persons with high spinal cord injury (Hi-SCI: > T5), changes in core body temperature (Tcore) and cognitive performance during heat exposure appear related to degree of sympathetic interruption. Twenty men with Hi-SCI (C4-T4, American Spinal Injury Association Impairment Scale [AIS] A-B) and 19 matched, able-bodied controls were acclimated to 27°C baseline (BL) before exposure to 35°C heat challenge (HC). Two groups, differentiated by increase in Tcore during HC, were identified: high responders (HR-SCI: ΔTcore ≥0.5°C; n = 13, C4-T2) and low responders (LR-SCI: ΔTcore <0.5°C; n = 7, C4-T4). Tcore, distal skin temperatures (Tsk(avg)), and distal microvascular perfusion (LDF(both feet)) were measured, as were indices of sympathetic integrity, mean arterial pressure (MAP), and extremity sweat rate (SR(avg)). Cognitive performance was assessed at BL and post-HC, using the Stroop Color and Word and Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) Digit Span tests. At BL, Tcore of the HR-SCI group (36.6 ± 0.4°C) was lower than that for the LR-SCI (37.1 ± 0.3°C; p = 0.011) and control groups (37.3 ± 0.3°C; p < 0.001). After HC, Tcore was not different among groups. MAP of the HR-SCI group (70.9 ± 9.8 mm Hg) was lower than that of the LR-SCI (81.8 ± 7.0 mm Hg; p = 0.048) and control groups (89.9 ± 9.9 mm Hg; p < 0.001). SR(avg) increased more in the control group (77.0 ± 52.5 nL/cm(2)/min) than in the HR-SCI group (15.5 ± 22.0 nL/cm(2)/min; p = 0.001). Only the HR-SCI group had significant increases in T-Scores of Stroop Word (7.5 ± 4.4; p < 0.001), WAIS-IV Digit Span Sequence (1.9 ± 1.8; p = 0.002), and WAIS-IV Digit Span Total (1.4 ± 1.6; p = 0.008). Persons with SCI who responded to HC with a greater change in Tcore demonstrated evidence of greater sympathetic interruption and had an associated improvement in cognitive performance.

Heat safety in the workplace: Modified Delphi consensus to establish strategies and resources to protect the US workers

The purpose of this consensus document was to develop feasible, evidence-based occupational heat safety recommendations to protect the US workers that experience heat stress. Heat safety recommendations were created to protect worker health and to avoid productivity losses associated with occupational heat stress. Recommendations were tailored to be utilized by safety managers, industrial hygienists, and the employers who bear responsibility for implementing heat safety plans. An interdisciplinary roundtable comprised of 51 experts was assembled to create a narrative review summarizing current data and gaps in knowledge within eight heat safety topics: (a) heat hygiene, (b) hydration, (c) heat acclimatization, (d) environmental monitoring, (e) physiological monitoring, (f) body cooling, (g) textiles and personal protective gear, and (h) emergency action plan implementation. The consensus-based recommendations for each topic were created using the Delphi method and evaluated based on scientific evidence, feasibility, and clarity. The current document presents 40 occupational heat safety recommendations across all eight topics. Establishing these recommendations will help organizations and employers create effective heat safety plans for their workplaces, address factors that limit the implementation of heat safety best-practices and protect worker health and productivity.

Knowledge of heat-related illness first aid and self-reported hydration and heat-related illness symptoms in migrant farmworkers

Background: Outdoor workers are exposed to hot work environments and are at risk of heat-related morbidity and mortality. The purpose of this study was to evaluate the knowledge of migrant farmworkers about first aid for heat-related illness (HRI) symptoms. Methods: The authors recruited 60 migrant farmworkers out of 66 who were approached from vegetable farms in Georgia. They were workers who participated in the 2018 Farmworker Family Health Program (FWFHP). The authors surveyed the workers to assess demographics, prevalence of HRI symptoms, hydration practices, and knowledge of HRI first aid. Descriptive statistics for worker demographics, HRI symptoms, and hydration data were calculated, as were the percentages of correctly answered pilot questions. Findings: Of the 60 workers who chose to participate in this study, more than 50% incorrectly answered pilot questions related to their knowledge of HRI first aid. The two most common HRI symptoms reported were heavy sweating and muscle cramps. More than two thirds reported experiencing at least one HRI symptom during the workday. Mean liquid consumption within this sample was 72.95 oz per day, which is much less than the recommended 32 oz per hour. Conclusion/Application to Practice: Until larger structural change can occur to protect farmworkers, farm owners can prevent morbidity and mortality from inadequate hydration practices and working in high-heat conditions by providing migrant farmworkers with training in heat-related first aid. Appropriate heat-illness interventions should focus on first aid measures to reduce morbidity and mortality related to heat illness in farmworkers.

The multi-level heat education and awareness tools [HEAT] intervention study for farmworkers: Rationale and methods

BACKGROUND: The burden of adverse health effects from heat exposure is substantial, and outdoor workers who perform heavy physical work are at high risk. Though heat prevention interventions have been developed, studies have not yet systematically evaluated the effectiveness of approaches that address risk factors at multiple levels. OBJECTIVE: We sought to test the effectiveness of a multi-level heat prevention approach (heat education and awareness tools [HEAT]), which includes participatory training for outdoor agricultural workers that addresses individual and community factors and a heat awareness mobile application for agricultural supervisors that supports decisions about workplace heat prevention, in the Northwest United States. DESIGN: We designed the HEAT study as a parallel, comparison, randomized group intervention study that recruited workers and supervisors from agricultural workplaces. In intervention arm crews, workers received HEAT training, and supervisors received the HEAT awareness application. In comparison arm crews, workers were offered non-HEAT training. Primary outcomes were worker physiological heat strain and heat-related illness (HRI) symptoms. In both worker groups, we assessed HRI symptoms approximately weekly, and heat strain physiological monitoring was conducted at worksites approximately monthly, from June through August. DISCUSSION: To our knowledge, this is the first study to evaluate the effectiveness of a multi-level heat prevention intervention on physiological heat strain and HRI symptoms for outdoor agricultural workers. TRIAL REGISTRATION: ClinicalTrials.gov Registration Number: NCT04234802.

A case of heat stroke in the era of climate change

Extreme heat vulnerability in Phoenix, Arizona: A comparison of all-hazard and hazard-specific indices with household experiences

Practitioners and researchers use vulnerability indices to understand the conditions that influence hazard risk. However, there has been little research on how well such indices depict household-scale vulnerability to specific hazards. We examined relationships between an all-hazard index and a hazard-specific index with householdlevel adaptive resources, adaptive behaviors, proximate sensitivities, and self-reported health outcomes related to extreme heat. Household measures were drawn from a stratified random sample survey conducted in Phoenix, Arizona, USA (n = 163). The results point to different experiences between households in more and less heat vulnerable areas. The largest differences between households stratified by the hazard-specific index (Heat Vulnerability Index) primarily involved adaptive resources and behaviors, whereas indicators of proximate sensitivity were more strongly differentiated by the all-hazard index (Social Vulnerability Index). Differences in health outcomes between more and less vulnerable neighborhoods were more evident using HVI than SoVI, although effect sizes using either index were small and confidence intervals were wide. The relationship between vulnerability indices and several survey measures varied across four study sites. The specific ways in which more and less vulnerable communities differ from one another varies based on the adaptation, sensitivity, or outcome measure of interest, location within the city, and choice of vulnerability index.

Increasing trees and high-albedo surfaces decreases heat impacts and mortality in Los Angeles, CA

There is a pressing need for strategies to prevent the heat-health impacts of climate change. Cooling urban areas through adding trees and vegetation and increasing solar reflectance of roofs and pavements with higher albedo surface materials are recommended strategies for mitigating the urban heat island. We quantified how various tree cover and albedo scenarios would impact heat-related mortality, temperature, humidity, and oppressive air masses in Los Angeles, California, and quantified the number of years that climate change-induced warming could be delayed in Los Angeles if interventions were implemented. Using synoptic climatology, we used meteorological data for historical summer heat waves, classifying days into discrete air mass types. We analyzed those data against historical mortality data to determine excess heat-related mortality. We then used the Weather Research and Forecasting model to explore the effects that tree cover and albedo scenarios would have, correlating the resultant meteorological data with standardized mortality data algorithms to quantify potential reductions in mortality. We found that roughly one in four lives currently lost during heat waves could be saved. We also found that climate change-induced warming could be delayed approximately 40-70 years under business-as-usual and moderate mitigation scenarios, respectively.

Modeling lives saved from extreme heat by urban tree cover

Urban tree cover contributes to human well-being through a variety of ecosystem services. In this study, we focus on the role that trees can play in reducing temperature during warm seasons and associated impacts on human health and well-being. We introduce a method for quantifying and valuing changes in premature mortality from extreme heat due to the changes in urban tree cover and apply this method to Baltimore City, Maryland. The model i-Tree Cool Air uses a water and energy balance to estimate hourly changes in air temperature due to alternative scenarios of tree cover applied across 653 Census Block Groups. The changes in temperature are applied to existing temperature?mortality models to estimate changes in health outcomes and associated values. Existing tree cover in Baltimore is estimated to reduce annual mortality by 543 deaths as compared to a 0% tree cover scenario. Increasing the area of current tree cover by 10% of each Census Block Group reduced baseline annual mortality by 83 to 247 deaths (valued at $0.68 ?2.0 billion applying Value of Statistical Life estimates). Over half of the reduced mortality is from the over 65 year age group, who are among the most vulnerable to extreme heat. Reductions in air temperature due to increased tree cover were greatest in downtown Baltimore where tree cover is relatively low and impervious cover is relatively high. However, the greatest reductions in mortality occurred in the outskirts of Baltimore where a greater number of people who are over 65 years in age reside. Quantifying and valuing the health benefits of changes in air temperatures due to increased tree cover can inform climate adaptation and mitigation plans by decision makers. Developing adaptation strategies to effectively address these issues will become increasingly important in the future under changing climates and an aging population.

Using logic regression to characterize extreme heat exposures and their health associations: A time-series study of emergency department visits in Atlanta

BACKGROUND: Short-term associations between extreme heat events and adverse health outcomes are well-established in epidemiologic studies. However, the use of different exposure definitions across studies has limited our understanding of extreme heat characteristics that are most important for specific health outcomes or subpopulations. METHODS: Logic regression is a statistical learning method for constructing decision trees based on Boolean combinations of binary predictors. We describe how logic regression can be utilized as a data-driven approach to identify extreme heat exposure definitions using health outcome data. We evaluated the performance of the proposed algorithm in a simulation study, as well as in a 20-year time-series analysis of extreme heat and emergency department visits for 12 outcomes in the Atlanta metropolitan area. RESULTS: For the Atlanta case study, our novel application of logic regression identified extreme heat exposure definitions that were associated with several heat-sensitive disease outcomes (e.g., fluid and electrolyte imbalance, renal diseases, ischemic stroke, and hypertension). Exposures were often characterized by extreme apparent minimum temperature or maximum temperature over multiple days. The simulation study also demonstrated that logic regression can successfully identify exposures of different lags and duration structures when statistical power is sufficient. CONCLUSION: Logic regression is a useful tool for identifying important characteristics of extreme heat exposures for adverse health outcomes, which may help improve future heat warning systems and response plans.

Disproportionate exposure to urban heat island intensity across major US cities

Urban heat stress poses a major risk to public health. Case studies of individual cities suggest that heat exposure, like other environmental stressors, may be unequally distributed across income groups. There is little evidence, however, as to whether such disparities are pervasive. We combine surface urban heat island (SUHI) data, a proxy for isolating the urban contribution to additional heat exposure in built environments, with census tract-level demographic data to answer these questions for summer days, when heat exposure is likely to be at a maximum. We find that the average person of color lives in a census tract with higher SUHI intensity than non-Hispanic whites in all but 6 of the 175 largest urbanized areas in the continental United States. A similar pattern emerges for people living in households below the poverty line relative to those at more than two times the poverty line.

Estimating terrestrial radiation for human thermal comfort in outdoor urban space

Cities inadvertently create warmer and drier urban climate conditions than their surrounding areas through urbanization that replaces natural surfaces with impervious materials. These changes cause heat-related health problems and many studies suggest microclimatic urban design (MUD) as an approach to address these problems. In MUD-related research, although terrestrial radiation plays an important role in human thermal comfort and previous studies use thermal comfort models to identify human heat stress, few studies have addressed the effect of terrestrial radiation. This study develops the ground ratio factor (GRF) model to estimate the different terrestrial radiation according to different ground conditions. Three types of ground materials (asphalt, concrete, and grass) were considered in the model, and field studies were conducted in humid subtropical climate (Cfa) zone during the hot season (13 July to 19 September 2020). The model was validated by comparing the predicated terrestrial radiation (PTR) from the model with the actual terrestrial radiation (ATR). The results showed that there is a statistically significant strong correlation between PTR and ATR. The model can contribute to MUD strategies by updating existing human energy budget models, which can lead to the measurement of more accurate human thermal comfort for mitigating thermal environments.

Facilitators and barriers for keeping cool in an urban heat island: Perspectives from residents of an environmental justice community

Background: Extreme heat is a leading cause of morbidity and mortality during summer months in the United States. Risk of heat exposure and associated health outcomes are disproportionately experienced by people with lower incomes, people of color, and/or immigrant populations.Methods: As qualitative research on the experiences of residents in heat islands is limited, this community-based study examined barriers and coping strategies for keeping cool among residents of Chelsea and East Boston, Massachusetts-environmental justice (EJ) areas that experience the urban heat island effect-through semistructured interviews and qualitative content analysis.Results: Results indicate that all participants (n = 12) had air conditioning, but high energy bills contributed to low use. Eight participants were self-described heat-sensitive, with five experiencing poor health in heat. In addition, nine reported insufficient hydration due to work schedules, distaste of water, or perceptions of it being unsafe.Discussion: This research highlights the importance of understanding perceptions of residents in EJ communities to contextualize vulnerability and identify multipronged heat coping strategies and targeted interventions.

Heat exposure and the climate change beliefs in a Desert City: The case of Phoenix metropolitan area

Beliefs in climate change are influenced by personal experiences and sociodemographic charac-teristics; yet justice considerations are often overlooked. We unveil the influence of these factors? on climate change beliefs in a large American city facing substantial climate change impacts, Phoenix, Arizona. Using the Phoenix Area Social Survey that includes data collected from (n = 806) households across fourteen cities in the Phoenix metropolitan area, we investigate what factors influence a belief that ?global warming and climate change are already occurring.? Engaging adaptive capacity and justice literatures with climate belief models, we find that belief in climate change and global warming is positively associated with race specifically other than non-Hispanic Whites, high levels of education, personal experience with heat-related illnesses, and liberal beliefs. Widespread agreement about climate change is found within the scientific community, but general populations, especially in the USA, lag behind in accepting climate change. Critically, there are important justice dimensions absent in the existing literature relevant to understanding belief in and the impacts of climate change. Unpacking these factors could help inform policy makers and civil society organizations in their efforts to design more ?just adaptation? strategies.

Individually experienced heat index in a coastal southeastern US city among an occupationally exposed population

Recent studies have characterized individually experienced temperatures or individually experienced heat indices, including new exposure metrics that capture dimensions of exposure intensity, frequency, and duration. Yet, few studies have examined the personal thermal exposure in underrepresented groups, like outdoor workers, and even fewer have assessed corresponding changes in physiologic heat strain. The objective of this paper is to examine a cohort of occupationally exposed grounds and public safety workers (n = 25) to characterize their heat exposure and resulting heat strain. In addition, a secondary aim of this work is to compare individually heat index exposure (IHIE) across exposure metrics, fixed-site in situ weather stations, and raster-derived urban heat island (UHI) measurements in Charleston, SC, a humid coastal climate in the Southeastern USA. A Bland-Altman (BA) analysis was used to assess the level of agreement between the personal IHIE measurements and weather-station heat index (HI) and Urban Heat Island (UHI) measurements. Linear mixed-effect models were used to determine the association between individual risk factors and in situ weather station measurements significantly associated with IHIE measurements. Multivariable stepwise Cox proportional hazard modeling was used to identify the individual and workplace factors associated with time to heat strain in workers. We also examined the non-linear association between heat strain and exposure metrics using generalized additive models. We found significant heterogeneity in IHIE measurements across participants. We observed that time to heat strain was positively associated with a higher IHIE, older age, being male, and among Caucasian workers. Important nonlinear associations between heat strain occurrence and the intensity, frequency, and duration of personal heat metrics were observed. Lastly, our analysis found that IHIE measures were significantly similar for weather station HI, although differences were more pronounced for temperature and relative humidity measurements. Conversely, our IHIE findings were much lower than raster-derived UHI measurements. Real-time monitoring can offer important insights about unfolding temperature-health trends and emerging behaviors during thermal extreme events, which have significant potential to provide situational awareness.

Mixed methods assessment of personal heat exposure, sleep, physical activity, and heat adaptation strategies among urban residents in the Boston area, MA

The growing frequency, intensity, and duration of extreme heat events necessitates interventions to reduce heat exposures. Local opportunities for heat adaptation may be optimally identified through collection of both quantitative exposure metrics and qualitative data on perceptions of heat. In this study, we used mixed methods to characterize heat exposure among urban residents in the area of Boston, Massachusetts, US, in summer 2020. Repeated interviews of N = 24 study participants ascertained heat vulnerability and adaptation strategies. Participants also used low-cost sensors to collect temperature, location, sleep, and physical activity data. We saw significant differences across temperature metrics: median personal temperature exposures were 3.9 °C higher than median ambient weather station temperatures. Existing air conditioning (AC) units did not adequately control indoor temperatures to desired thermostat levels: even with AC use, indoor maximum temperatures increased by 0.24 °C per °C of maximum outdoor temperature. Sleep duration was not associated with indoor or outdoor temperature. On warmer days, we observed a range of changes in time-at-home, expected given our small study size. Interview results further indicated opportunities for heat adaptation interventions including AC upgrades, hydration education campaigns, and amelioration of energy costs during high heat periods. Our mixed methods design informs heat adaptation interventions tailored to the challenges faced by residents in the study area. The strength of our community-academic partnership was a large part of the success of the mixed methods approach.

Morning transition of the boundary layer over Dallas-Fort worth

Temperature profiles of the lower atmosphere (<3 km) over complex urban areas are related to health risks, including heat stress and respiratory illness. This complexity leads to uncertainty in numerical simulations, and many studies call for more observations of the lower atmosphere over cities. Using 20 years of observations from the Aircraft Meteorological Data Relay (AMDAR) program over Dallas-Fort Worth, Texas, average profiles every 0.5 h are created from the 1.5 million individual soundings. Dallas-Fort Worth is ideal because it is a large urban area in the central Great Plains, has no major topographic or coastal influences, and has two major airports near the center of the urban heat island. With frequent and high-quality measurements over the city, we investigate the evolution of the lower atmosphere around sunrise to quantify the stability, boundary layer height, and duration of the morning transition when there are southerly winds, few clouds, and no precipitation so as to eliminate transient synoptic events. Characteristics of the lower atmosphere are separated by season and maximum wind speed because the the Great Plains low-level jet contributes to day-to-day variability. In all seasons, stronger wind over the city leads to a weaker nocturnal temperature inversion at sunrise and a shorter morning transition period, with the greatest difference during autumn and the smallest difference during summer. During summer, the boundary layer height at sunrise is higher on average, deepens the most as wind strengthens, and has the fewest days exhibiting a surface temperature inversion over the city. Significance StatementCities impact health by creating an urban heat island caused by more heating at the surface, less evaporative cooling, and increased anthropogenic waste heat, and they can have high pollution. Cooling overnight stabilizes the lower atmosphere and traps pollutants near the surface until surface heating after sunrise mixes them away. Inadequate pollution observations make it difficult to study these issues. The greatest mixing occurs about 2 h after sunrise but can be modulated by wind speed. Observations from 1.5 million aircraft landing and taking off over Dallas-Fort Worth, Texas, reveal that strong low-level wind leads to morning transitions ending 0.84 h earlier on average than with light wind. Details from this vast dataset contribute to improved understanding of the lower atmosphere over cities and provide a baseline for simulations.

Increasing health risks during outdoor sports due to climate change in Texas: Projections versus attitudes

Extreme heat is a recognized threat to human health. This study examines projected future trends of multiple measures of extreme heat across Texas throughout the next century, and evaluates the expected climate changes alongside Texas athletic staff (coach and athletic trainer) attitudes toward heat and climate change. Numerical climate simulations from the recently published Community Earth System Model version 2 and the Climate Model Intercomparison Project were used to predict changes in summer temperatures, heat indices, and wet bulb temperatures across Texas and also within specific metropolitan areas. A survey examining attitudes toward the effects of climate change on athletic programs and student athlete health was also distributed to high-school and university athletic staff. Heat indices are projected to increase beyond what is considered healthy/safe limits for outdoor sports activity by the mid-to-late 21st century. Survey results reveal a general understanding and acceptance of climate change and a need for adjustments in accordance with more dangerous heat-related events. However, a portion of athletic staff still do not acknowledge the changing climate and its implications for student athlete health and their athletic programs. Enhancing climate change and health communication across the state may initiate important changes to athletic programs (e.g., timing, duration, intensity, and location of practices), which should be made in accordance with increasingly dangerous temperatures and weather conditions. This work employs a novel interdisciplinary approach to evaluate future heat projections alongside attitudes from athletic communities toward climate change.

Menopausal symptoms in underserved and homeless women living in extreme temperatures in the Southwest

Background: Little is known about menopausal symptoms in underserved women. Aim: To better understand self-reported menopausal symptoms in underserved and homeless women living in extreme heat during different seasons. Methods: A cross-sectional study, including the Greene Climacteric Scale (GCS), climate-related questions, and demographics was administered June to August of 2017 and December to February 2018 to women 40-65 years of age. Results: In 104 predominantly Hispanic (56%), uninsured (53%), menopausal (56%), and mid-aged (50 ± 9.5) women, 57% reported any bother, while 20% of these women reported “quite a bit” or “extreme” bother from hot flushes. The total GCS score was a mean of 41 ± 15.0; out of 63 indicating significant symptoms, the psychological and somatic clusters were highest. Women did not think temperature outside influenced their menopausal symptoms at either time point (69% in winter vs. 57% in summer, p = 0.23). In multivariable analyses after adjusting for race, body mass index, and living situation neither season nor temperature was associated with self-reported hot flush bother. While one-third of women reported becoming ill from the heat, 90% of women reported not seeking care from a doctor for their illness. Conclusion: Menopausal, underserved, homeless women living in Arizona reported few vasomotor symptoms regardless of season, and endorsed psychological and somatic complaints. Socioeconomic factors may influence types of bothersome menopausal symptoms in this population of women.

Extreme heat exposure: Access and barriers to cooling centers – Maricopa and Yuma counties, Arizona, 2010-2020

Extreme heat exposure increases the risk for heat-related illnesses (HRIs) and deaths, and comprehensive strategies to prevent HRIs are increasingly important in a warming climate (1). An estimated 702 HRI-associated deaths and 67,512 HRI-associated emergency department visits occur in the United States each year (2,3). In 2020, Phoenix and Yuma, Arizona, experienced a record 145 and 148 days, respectively, of temperatures >100°F (37.8°C), and a record 522 heat-related deaths occurred in the state. HRIs are preventable through individual and community-based strategies*(,)(†); cooling centers,(§) typically air-conditioned or cooled buildings designated as sites to provide respite and safety during extreme heat, have been established in Maricopa and Yuma counties to reduce HRIs among at-risk populations, such as older adults. This analysis examined trends in HRIs by age during 2010-2020 for Maricopa and Yuma counties and data from a survey of older adults related to cooling center availability and use in Yuma County during 2018-2019. Data from CDC’s Social Vulnerability Index (SVI) were also used to overlay cooling center locations with SVI scores. During 2010-2020, heat days, defined as days with an excessive heat warning issued by the National Weather Service Phoenix Office,(¶) for any part of Maricopa and Yuma counties (4), increased in both Maricopa County (1.18 days per year) and Yuma County (1.71 days per year) on average. Adults aged ≥65 years had higher rates of HRI hospitalization compared with those aged <65 years. In a survey of 39 adults aged ≥65 years in Yuma County, 44% reported recent HRI symptoms, and 18% reported electricity cost always or sometimes constrained their use of air conditioning. Barriers to cooling center access among older adults include awareness of location and transportation. Collaboration among diverse community sectors and health profession education programs is important to better prepare for rising heat exposure and HRIs. States and communities can implement adaptation and evaluation strategies to mitigate and assess heat risk, such as the use of cooling centers to protect communities disproportionately affected by HRI during periods of high temperatures.

Comparison of health outcomes from heat-related injuries by national weather service reported heat wave days and non-heat wave days – Illinois, 2013-2019

It is predicted that heat waves will increase as climate changes. Related public health interventions have expanded over the past decades but are primarily targeted at health outcomes occurring during heat waves. However, heat adaptation is dynamic and adverse outcomes related to heat injuries occur with moderate increases in temperature throughout the summertime. We analyzed outpatient and inpatient heat related injuries from 2013 to 2019. National Weather Service event summaries were used to characterize reported heat wave days and weather data was linked to individual cases. Despite the higher rate of heat injury on heat wave days, only 12.7% of the 17,662 heat-related injuries diagnosed from 2013 to 2019 occurred during reported heat waves. In addition, the National Weather Service surveillance system monitoring heat related injuries only captured 2.1% of all heat related injuries and 30.6% of heat related deaths. As climate changes and warmer conditions become more common, public health response to moderate increases in temperature during summertime needs to be strengthened as do the surveillance systems used to monitor adverse heat related health events. Improved surveillance systems, long-term interventions and strategies addressing climate change may help mitigate adverse health outcomes attributable to heat related injuries over the summertime.

A multistate study on housing factors influential to heat-related illness in the United States

As climate change increases the frequency and intensity of devastating and unpredictable extreme heat events, developments to the built environment should consider instigating practices that minimize the likelihood of indoor overheating during hot weather. Heatwaves are the leading cause of death among weather-related causes worldwide, including in developed and developing countries. In this empirical study, a four-step approach was used to collect, extract and analyze data from twenty-seven states in the United States. Three housing characteristic categories (i.e., general housing conditions, living conditions, and housing thermal inertia) and eight variables were extracted from the American Housing Survey database, ResStock database and CDC’s National Environmental Public Health Tracking Network. Multivariable regression models were used to understand the influential variables, a multicollinearity test was used to determine the dependence of those variables, and then a logistic model was used to verify the results. Three variables-housing age (HA), housing crowding ratio (HCR), and roof condition (RC)-were found to be correlated with the risk of heat-related illness (HRI) indexes. Then, a logistic regression model was generated using the three variables to predict the risk of heat-related emergency department visits (EDV) and heat-related mortality (MORD) on a state level. The results indicate that the proposed logistic regression model correctly predicted 100% of the high-risk states for MORD for the eight states tested. Overall, this analysis provides additional evidence about the housing character variables that influence HRI. The outcomes also reinforce the concept of the built environment determined health and demonstrate that the built environment, especially housing, should be considered in techniques for mitigating climate change-exacerbated health conditions.

Ambient extreme heat exposure in summer and transitional months and emergency department visits and hospital admissions due to pregnancy complications

Although extreme heat exposure (EHE) was reported to be associated with increased risks of multiple diseases, little is known about the effects of EHE on pregnancy complications. We examined the EHE-pregnancy complications associations by lag days, subtypes, sociodemographic characteristics, and areas in New York State (NYS). We conducted a case-crossover analysis to assess the EHE-pregnancy complications associations in summer (June-August) and transitional months (May and September). All emergency department (ED) visits and hospital admissions due to pregnancy complications (ICD 9 codes: 630-649) from 2005 to 2013 in NYS were included. Daily mean temperature > 90th percentile of the monthly mean temperature in each county was defined as an EHE. We used conditional logistic regression while controlling for other weather factors, air pollutants and holidays to assess the EHE-pregnancy complications associations. EHE was significantly associated with increased ED visits for pregnancy complications in summer (ORs ranged: 1.01-1.04 from lag days 0-5). There was also a significant and stronger association in transitional months (ORs ranged: 1.02-1.06, Lag 0). Furthermore, we found EHE affected multiple subtypes of pregnancy complications, including threatened/spontaneous abortion, renal diseases, infectious diseases, diabetes, and hypertension (ORs range: 1.13-1.90) during transitional months. A significant concentration response effect between the number of consecutive days of EHE and ED visits in summer (P for trend <0.001), ED visits in September (P for trend =0.03), and hospital admission in May (P for trend<0.001) due to pregnancy complications was observed, respectively. African Americans and residents in lower socioeconomic position (SEP) counties were more susceptible to the effects of EHE. In conclusion, we found an immediate and prolonged effect of EHE on pregnancy complications in summer and a stronger, immediate effect in transitional months. These effects were stronger in African Americans and counties with lower SEP. Earlier warnings regarding extreme heat are recommended to decrease pregnancy complications.

Analyzing changes to U.S. municipal heat response plans during the COVID-19 pandemic

Extreme heat events are the deadliest weather-related event in the United States. Cities throughout the United States have worked to develop heat adaptation strategies to limit the impact of extreme heat on vulnerable populations. However, the COVID-19 pandemic presented unprecedented challenges to local governments. This paper provides a preliminary review of strategies and interventions used to manage compound COVID-19-extreme heat events in the 25 most populous cities of the United States. Heat adaptation strategies employed prior to the COVID-19 pandemic were not adequate to meet during the co-occurring compound hazard of COVID-19-EHE. Long-term climate-adaptation strategies will require leveraging physical, financial, and community resources across multiple city departments to meet the needs of compound hazards, such as COVID-19 and extreme heat.

Anthropogenic warming and population growth may double US heat stress by the late 21st century

Globally, heat stress (HS) is nearly certain to increase rapidly over the coming decades, characterized by increased frequency, severity, and spatiotemporal extent of extreme temperature and humidity. While these characteristics have been investigated independently, a holistic analysis integrating them is potentially more informative. Using observations, climate projections from the CMIP5 model ensemble, and historical and future population estimates, we apply the IPCC risk framework to examine present and projected future potential impact (PI) of summer heat stress for the contiguous United States (CONUS) as a function of non-stationary HS characteristics and population exposure. We find that the PI of short-to-medium duration (1-7 days) HS events is likely to increase more than three-fold across densely populated regions of the U.S. including the Northeast, Southeast Piedmont, Midwest, and parts of the Desert Southwest by late this century (2060-2099) under the highest emissions scenario. The contribution from climate change alone more than doubles the impact in the coastal Pacific Northwest, central California, and the Great Lakes region, implying a substantial increase in HS risk without aggressive mitigation efforts.

Heat-related illness among workers in British Columbia, 2001-2020

OBJECTIVE: The aim of this study was to describe the incidence of heat-related illness among workers in British Columbia (BC), Canada, 2001-2020. METHODS: Cases of heat-related illness occurring among workers aged 15 years and older were identified from accepted lost-time claims from WorkSafeBC, the provincial workers’ compensation board. Incidence rates were calculated using monthly estimates of the working population from Statistics Canada’s Labour Force Survey as the denominator. RESULTS: Between 2000 and 2020, there were 528 heat-related illness claims, corresponding to a rate of 1.21 (95% confidence interval, 1.10-1.31) claims per 100,000 workers. Eighty-four percent of claims occurred between June and August. Rates were higher among male workers, younger workers, and among those working in occupations related to primary industry; trades, transport, and equipment operators; and processing, manufacturing, and utilities. CONCLUSIONS: In BC, lost-time claims for heat-related illness occurred disproportionately among certain subgroups of the workforce.

Reimagining spaces where children play: Developing guidance for thermally comfortable playgrounds in Canada

SETTING: Planning and designing thermally comfortable outdoor spaces is increasingly important in the context of climate change, particularly as children are more vulnerable than adults to environmental extremes. However, existing playground standards focus on equipment and surfacing to reduce acute injuries, with no mention of potential negative health consequences related to heat illness, sun exposure, and other thermal extremes. The goal of this project was to develop proposed guidelines for designing thermally comfortable playgrounds in Canada for inclusion within the CAN/CSA-Z614 Children’s playground equipment and surfacing standard. INTERVENTION: The project to develop guidance for thermally comfortable playgrounds was initiated with a municipal project in Windsor, Ontario, to increase shade, vegetation, and water features at parks and playgrounds to provide more comfortable experiences amid the increased frequency of hot days (≥30°C). The lack of available information to best manage environmental conditions led to a collaborative effort to build resources and raise awareness of best practices in the design of thermally comfortable playgrounds. OUTCOMES: A group of multidisciplinary experts developed technical guidance for improving thermal comfort at playgrounds, including a six-page thermal comfort annex adopted within a national playground and equipment standard. The annex has been used by Canadian schools in a competition to design and implement green playgrounds. IMPLICATIONS: Both the technical report and the thermal comfort annex provide increased awareness and needed guidance for managing environmental conditions at playgrounds. Thermally safe and comfortable play spaces will help ensure that Canada’s playgrounds are designed to minimize environmental health risks for children.

Evaluating the association between extreme heat and mortality in urban Southwestern Ontario using different temperature data sources

Urban areas have complex thermal distribution. We examined the association between extreme temperature and mortality in urban Ontario, using two temperature data sources: high-resolution and weather station data. We used distributed lag non-linear Poisson models to examine census division-specific temperature-mortality associations between May and September 2005-2012. We used random-effect multivariate meta-analysis to pool results, adjusted for air pollution and temporal trends, and presented risks at the 99th percentile compared to minimum mortality temperature. As additional analyses, we varied knots, examined associations using different temperature metrics (humidex and minimum temperature), and explored relationships using different referent values (most frequent temperature, 75th percentile of temperature distribution). Weather stations yielded lower temperatures across study months. U-shaped associations between temperature and mortality were observed using both high-resolution and weather station data. Temperature-mortality relationships were not statistically significant; however, weather stations yielded estimates with wider confidence intervals. Similar findings were noted in additional analyses. In urban environmental health studies, high-resolution temperature data is ideal where station observations do not fully capture population exposure or where the magnitude of exposure at a local level is important. If focused upon temperature-mortality associations using time series, either source produces similar temperature-mortality relationships.

The impact of extreme heat events on emergency departments in Canadian hospitals

INTRODUCTION: Mean daily temperatures in Canada rose 1.7°C between 1948 and 2016, and the frequency, severity, and duration of extreme heat events has increased. These events can exacerbate underlying health conditions, bringing patients to emergency departments (EDs). This retrospective analysis assessed the impact of temperature and humidex on ED volume and length of stay (LOS). METHODS: LOS is an indicator of ED overcrowding and system performance. Using daily maximum temperatures and humidex values, this study investigated the impact of mean 3-d temperatures and humidex preceding ED presentation on the median and maximum ED LOS and patient volume in 2 community hospitals in Montreal, Quebec, during the summer months of 2016 to 2018. Data were analyzed with 1-way analysis of variance with post hoc Fisher least significant difference tests and Spearman correlation tests. RESULTS: The mean maximum temperature and humidex were 26.1°C and 30.4°C, respectively (n=276 d). Mean 3-d temperatures ≥30°C were associated with higher daily ED volumes in both hospitals (138 vs 121, P=0.002 and 132 vs 125, P=0.03) and with increased median LOS at 1 hospital (8.9 vs 7.6 h, P=0.03). Mean 3-d humidex ≥35 was associated with higher daily ED volumes at both hospitals as well (136 vs 123, P=0.01 and 133 vs 125, P=0.009) with an increased median LOS at 1 hospital (8.6 vs 6.9 h, P=0.0001) with humidex values of 25 to 29.9°C. CONCLUSIONS: Heat events were associated with increased ED presentations and LOS. This study suggests that a warming climate can impede emergency service provision by increasing the demand for and delaying timely care.

Montreal’s environmental justice problem with respect to the urban heat island phenomenon

Due to climate change, heat events in Canada have become more extreme in intensity and frequency and will continue to do so according to the Intergovernmental Panel on Climate Change’s global predictions. Environmental justice research has indicated that extreme heat exposure disproportionally affects socio-economically disadvantaged populations in cities. The objective of this research was to determine whether such a phenomenon exists in Montreal, Canada. Temperature data were obtained through in-situ sensors and governmental weather stations, while census data were retrieved from Statistics Canada through the Census mapper. Correlation tests were run between temperature and five demographic and socio-economic variables measured inside a 500 m buffer around the temperature sensors. The variables included Indigenous Peoples (IND), people of 65 years old and over (Over 65), people between 25 and 64 years old without a high school degree (No HS), and low-income (LI). A positive correlation was found for LI and No HS (p < 0.05). A regression test performed with interpolated temperature and the demographic and socio-economic variables across the study area revealed no significant correlation due to spatial heterogeneity.

Heat-related mortality prediction using low-frequency climate oscillation indices: Case studies of the cities of Montréal and Québec, Canada

Heat-related mortality is an increasingly important public health burden that is expected to worsen with climate change. In addition to long-term trends, there are also interannual variations in heat-related mortality that are of interest for efficient planning of health services. Large-scale climate patterns have an important influence on summer weather and therefore constitute important tools to understand and predict the variations in heat-related mortality. METHODS: In this article, we propose to model summer heat-related mortality using seven climate indices through a two-stage analysis using data covering the period 1981-2018 in two metropolitan areas of the province of Québec (Canada): Montréal and Québec. In the first stage, heat attributable fractions are estimated through a time series regression design and distributed lag nonlinear specification. We consider different definitions of heat. In the second stage, estimated attributable fractions are predicted using climate index curves through a functional linear regression model. RESULTS: Results indicate that the Atlantic Multidecadal Oscillation is the best predictor of heat-related mortality in both Montréal and Québec and that it can predict up to 20% of the interannual variability. CONCLUSION: We found evidence that one climate index is predictive of summer heat-related mortality. More research is needed with longer time series and in different spatial contexts. The proposed analysis and the results may nonetheless help public health authorities plan for future mortality related to summer heat.

Determinants of heat stress and strain in electrical utilities workers across North America as assessed by means of an exploratory questionnaire

Previous field studies monitoring small groups of participants showed that heat stress in the electrical utilities industry may be detrimental to worker health and safety. Our aim in this study was to characterize heat stress and strain in electrical utilities workers across North America. A total of 428 workers in the power generation, transmission and distribution industry across 16 US states and three Canadian Provinces completed a two-part on-line questionnaire anonymously. The first part comprised 13 general questions on the employee’s workplace location, role in the organization, years of experience, general duties, average work shift duration, and other job-related information. It also included two questions on self-reported heat stress. The second part consisted of the “Heat Strain Score Index” (HSSI), a validated questionnaire which evaluates heat stress at the workplace as “safe level” (score ≤13.5: worker experiences no/low heat strain), “caution level” (score 13.6 to 18.0: moderate risk for heat strain), and “danger level” (score >18.0: high risk for heat strain). In addition to the survey, we obtained meteorological data from weather stations in proximity (12.3 ± 12.2 km) to the work locations. Based on the HSSI, 32.9%, 22.3%, 44.4% of the responders’ workplaces were diagnosed as “safe level”, “caution level”, and “danger level”, respectively. The HSSI varied significantly depending on the occupation from 4.9 ± 3.2 in contact center workforce to 19.1 ± 5.4 in mechanics (p < 0.001), and demonstrated moderate linear relationships with summertime (June, July, August) midday air temperature (r = 0.317, p < 0.001) and outdoor midday Wet-Bulb Globe Temperature (r = 0.322, p < 0.001). The highest HSSI was observed in mechanics, machine operators in line installations, line workers, electricians, and meter-readers. We conclude that electrical utilities workers experience instances of severe environmental heat stress resulting in elevated levels of heat strain, particularly when performing physically demanding tasks (e.g., manually climbing utility poles, installing lines).

Identifying factors that contribute to structural firefighter heat strain in North America

This article describes results from a survey of firefighters designed to identify conditions that contribute to heat strain in structural firefighting. Based on responses from about 3000 firefighters across the USA and Canada, the article provides invaluable information about how firefighters associate environmental conditions, work tasks and other factors with heat strain. One-half of firefighters surveyed have experienced heat stress during their service. They can wear fully deployed turnout gear for 2 h or more at the fire scene, reinforcing the importance of turnout suit breathability as a factor in heat strain. Survey results are useful in weighing the comparative value of total heat loss (THL) and evaporative heat resistance (Ref) for predicting turnout-related heat strain. Survey findings support the inclusion of a performance criterion in the National Fire Protection Association 1971 standard for firefighter personal protective equipment based on limiting Ref of turnout materials along with current THL requirement.

Clinical spectrum of pediatric heat illness and heatstroke in a North American desert climate

The spectrum of historical features and clinical presentations of heat illness and heatstroke in the pediatric population has received limited focus in the emergency medicine literature. The majority of published cases involve children trapped in closed spaces and adolescent athletes undergoing high-intensity training regimens in geographical regions with moderately high ambient temperatures and high humidity. There has been less research on the potential impact of extreme temperatures and radiant heat that are the hallmarks of the US southwest region. We performed a retrospective review of pediatric heat illness at our facility located in a North American desert climate.

Characterization of heat index experienced by individuals residing in urban and rural settings

Heatwave warning systems rely on forecasts made for fixed-point weather stations (WS), which do not reflect variation in temperature and humidity experienced by individuals moving through indoor and outdoor locations. We examined whether neighborhood measurement improved the prediction of individually experienced heat index in addition to nearest WS in an urban and rural location. Participants (residents of Birmingham, Alabama [N = 89] and Wilcox County, Alabama [N = 88]) wore thermometers clipped to their shoe for 7 days. Shielded thermometers/hygrometers were placed outdoors within participant’s neighborhoods (N = 43). Nearest WS and neighborhood thermometers were matched to participant’s home address. Heat index (HI) was estimated from participant thermometer temperature and WS humidity per person-hour (HI[individual]), or WS temperature and humidity, or neighborhood temperature and humidity. We found that neighborhood HI improved the prediction of individually experienced HI in addition to WS HI in the rural location, and neighborhood heat index alone served as a better predictor in the urban location, after accounting for individual-level factors. Overall, a 1 °C increase in HI[neighborhood] was associated with 0.20 °C [95% CI (0.19, 0.21)] increase in HI[individual]. After adjusting for ambient condition differences, we found higher HI[individual] in the rural location, and increased HI[individual] during non-rest time (5 a.m. to midnight) and on weekdays.

Examining runner’s outdoor heat exposure using urban microclimate modeling and GPS trajectory mining

It is important to quantify human heat exposure in order to evaluate and mitigate the negative impacts of heat on human well-being in the context of global warming. This study proposed a human-centric framework to examine human personal heat exposure based on anonymous GPS trajectories data mining and urban microclimate modeling. The mean radiant temperature (T-mrt) that represents human body’s energy balance was used to indicate human heat exposure. The meteorological data and high-resolution 3D urban model generated from multispectral remotely sensed images and LiDAR data were used as inputs in urban microclimate modeling to map the spatio-temporal distribution of the T-mrt, in the Boston metropolitan area. The anonymous human GPS trajectory data collected from fitness Apps was used to map the spatio-temporal distribution of human outdoor activities. By overlaying the anonymous GPS trajectories on the generated spatio-temporal maps of T-mrt, this study further examined the heat exposure of runners in different age-gender groups in the Boston area. Results show that there is no significant difference in terms of heat exposure for female and male runners. The female runners in the age of 45-54 are exposed to more heat than female runners of 18-24 and 25-34, while there is no significant difference among male runners. This study proposed a novel method to estimate human heat exposure, which would shed new light on mitigating the negative impacts of heat on human health.

A socio-ecological approach to align tree stewardship programs with public health benefits in marginalized neighborhoods in Los Angeles, USA

Extreme heat in the United States is a leading cause of weather-related deaths, disproportionately affecting low-income communities of color who tend to live in substandard housing with limited indoor cooling and fewer trees. Trees in cities have been documented to improve public health in many ways and provide climate regulating ecosystem services via shading, absorbing, and transpiring heat, measurably reducing heat-related illnesses and deaths. Advancing “urban forest equity” by planting trees in marginalized neighborhoods is acknowledged as a climate health equity strategy. But information is lacking about the efficacy of tree planting programs in advancing urban forest equity and public wellbeing. There is a need for frameworks to address the mismatch between policy goals, governance, resources, and community desires on how to green marginalized neighborhoods for public health improvement-especially in water-scarce environments. Prior studies have used environmental management-based approaches to evaluate planting programs, but few have focused on equity and health outcomes. We adapted a theory-based, multi-dimensional socio-ecological systems (SES) framework regularly used in the public health field to evaluate the Tree Ambassador, or Promotor Forestal, program in Los Angeles, US. The program is modeled after the community health worker model-where frontline health workers are trusted community members. It aims to address urban forest equity and wellbeing by training, supporting, and compensating residents to organize their communities. We use focus groups, surveys, and ethnographic methods to develop our SES model of community-based tree stewardship. The model elucidates how interacting dimensions-from individual to society level-drive urban forest equity and related public health outcomes. We then present an alternative framework, adding temporal and spatial factors to these dimensions. Evaluation results and our SES model highlight drivers aiding or hindering program trainees in organizing communities, including access to properties, perceptions about irrigation responsibilities, and lack of trust in local government. We also find that as trainee experience increases, measures including self- and collective efficacy and trust in their neighbors increase. Findings can inform urban forestry policy, planning, and management actions at the government and non-profit levels that aim to increase tree cover and reduce heat exposure in marginalized communities.

Adaptive transit scheduling to reduce rider vulnerability during heatwaves

Extreme heat events induced by climate change present a growing risk to transit passenger comfort and health. To reduce exposure, agencies may consider changes to schedules that reduce headways on heavily trafficked bus routes serving vulnerable populations. This paper develops a schedule optimization model to minimize heat exposure and applies it to local bus services in Phoenix, Arizona, using agent-based simulation to inform travel demand and rider characteristics. Rerouting as little as 10% of a fleet is found to reduce network-wide exposure by as much as 35% when operating at maximum fleet capacity. Outcome improvements are notably characterized by diminishing returns, owing to skewed ridership and the inverse relationship between fleet size and passenger wait time. Access to spare vehicles can also ensure significant reductions in exposure, especially under the most extreme temperatures. Rerouting, therefore, presents a low-cost, adaptable resilience strategy to protect riders from extreme heat exposure.

Community assessment of extreme heat preparedness in Milwaukee, Wisconsin

BACKGROUND: This article describes the first Community Assessment for Public Health Emergency Response (CASPER) rapid needs assessment project to be conducted in Wisconsin. The project focused on extreme heat preparedness. METHODS: Fifteen teams conducted household surveys in 30 census blocks in the city of Milwaukee, Wisconsin. RESULTS: Survey results indicated that the majority of households were unaware of the location of a nearby cooling center. Although the vast majority of households reported some form of air conditioning in their house, over half felt too hot inside their home sometimes, most of the time, or always. DISCUSSION: The community partnerships ensured that this project was conducted with local partner input and that the data could be used to inform extreme heat response.

Planning for extreme heat: A national survey of U.S. planners

Problem, research strategy, and findings Extreme heat is the deadliest climate hazard in the United States. Climate change and the urban heat island effect are increasing the number of dangerously hot days in cities worldwide and the need for communities to plan for extreme heat. Existing literature on heat planning focuses on heat island mapping and modeling, whereas few studies delve into heat planning and governance processes. We surveyed planning professionals from diverse cities across the United States to establish critical baseline information for a growing area of planning practice and scholarship that future research can build on. Survey results show that planners are concerned with extreme heat risks, particularly environmental and public health impacts from climate change. Planners already report impacts from extreme heat, particularly to energy and water use, vegetation and wildlife, public health, and quality of life. Especially in affected communities, planners claim they address heat in plans and implement heat mitigation and management strategies such as urban forestry, emergency response, and weatherization, but perceive many barriers related to human and financial resources and political will. Takeaway for practice Planners are concerned about extreme heat, especially in the face of climate change. They are beginning to address heat through different strategies and plan types, but we see opportunities to better connect planners to existing heat information sources and leverage existing planning tools, including vegetation, land use regulations, and building codes, to mitigate risks. Although barriers to heat planning persist, including human and capital resources, planners are uniquely qualified to coordinate communities’ efforts to address the rising threat of extreme heat.

Understanding the interaction between human activities and physical health under extreme heat environment in Phoenix, Arizona

Long-term community resilience, which privileges a long view look at chronic issues influencing communities, has begun to draw more attention from city planners, researchers and policymakers. In Phoenix, resilience to heat is both a necessity and a way of life. In this paper, we attempt to understand how residents living in Phoenix experience and behave in an extreme heat environment. To achieve this goal, we introduced a smartphone application (ActivityLog) to study spatio-temporal dynamics of human interaction with urban environments. Compared with traditional paper activity log results we have in this study, the smartphone-based activity log has higher data quality in terms of total number of logs, response rates, accuracy, and connection with GPS and temperature sensors. The research results show that low-income residents in Phoenix mostly stay home during the summer but experience a relatively high indoor temperature due to the lack/low efficiency of air-conditioning (AC) equipment or lack of funds to run AC frequently. Middle-class residents have a better living experience in Phoenix with better mobility with automobiles and good quality of AC. The research results help us better understand user behaviors for daily log activities and how human activities interact with the urban thermal environment, informing further planning policy development. The ActivityLog smartphone application is also presented as an open-source prototype to design a similar urban climate citizen science program in the future.

Adaptive capacity to extreme urban heat: The dynamics of differing narratives

Extreme heat does not affect all urban residents equally. While vulnerability is often defined as a combination of exposure, sensitivity, and adaptive capacity, many scholars have argued that the quantitative representation of adaptive capacity is particularly difficult. How people who live in vulnerable situations change their behavior to cope with and manage extreme urban temperatures, and the resources necessary to prevent adverse health effects, highlight different adaptive capacity within a city. Our understanding and depiction of how and why the impacts of urban heat vary between individuals and groups is constrained by contemporary approaches to quantify vulnerability using aggregate-scale data drawn from censuses, surveys, and administrative records. Thus, adaptive capacity is likely poorly represented in modern heat vulnerability analyses and their applications. This article explores how different city residents understand and adapt to increasing extreme urban heat, the tradeoffs different populations must make between generic and specific adaptive capacity, and the coping strategies that influence heat adaptive capacity at various scales. Using metropolitan Phoenix as a test site, open-ended interviews were conducted in which residents told their stories about past and present extreme heat adaptive capacity and adaptive behaviors. Three narratives emerged: heat is an inconvenience, heat is a manageable problem, and heat is a catastrophe. Framing heat vulnerability using these differing narratives can help evaluate if standard recommendations for coping with heat adequately represent solutions for the lived experiences of different vulnerable groups. Learning how and under what circumstances vulnerable people are motivated to make necessary changes to increase thermal comfort and safeguard public health will ensure that targeted heat mitigation and adaptation policies are widely adopted. Heat adaptation and mitigation policy makers need to be cognizant of the gap in heat risk perception across different segments of the population and reflect on whether those decisions reflect their experience (of likely belonging to the inconvenience group) or incorporate differing scales of heat adaptive capacity.

Developing a geospatial framework for coupled large scale thermal comfort and air quality indices using high resolution gridded meteorological and station based observations

Current bioclimate and air quality indices provide insufficient information about the combined effect on human physiology in outdoor spaces. This work examined, large scale gridded meteorological observations, including air temperature, wind speed, solar radiation, and relative humidity, to derive Universal Thermal Climate Index (UTCI) at hourly intervals along with the air quality index (AQI) derived from Environmental Protection Agency (EPA) observation stations. UTCI and AQI were combined into a single framework using geospatial analytics and a newly developed lookup table approach. High risk areas for heat stress and poor air quality were identified using Moran’s I and Getis-Ord GI* statistics. Moderate to strong heat stress was observed during the summer months of 2015-2019, with UTCI ranging from 26 degrees C to 38 degrees C. Coastal regions consistently experienced higher UTCI during noon due to higher humidity but the effect subsided with cooler air circulation from the ocean, especially in the morning and evening. Results also indicated the vulnerability of this region due to the combined impact of heat stress and poor air quality based on 95th percentile values. The final products from this analysis can provide valuable insights for urban planning and preventative measures to ensure improved public health in outdoor environments.

Dimensions of thermal inequity: Neighborhood social demographics and urban heat in the southwestern U.S

Exposure to heat is a growing public health concern as climate change accelerates worldwide. Different socioeconomic and racial groups often face unequal exposure to heat as well as increased heat-related sickness, mortality, and energy costs. We provide new insight into thermal inequities by analyzing 20 Southwestern U.S. metropolitan regions at the census block group scale for three temperature scenarios (average summer heat, extreme summer heat, and average summer nighttime heat). We first compared average temperatures for top and bottom decile block groups according to demographic variables. Then we used spatial regression models to investigate the extent to which exposure to heat (measured by land surface temperature) varies according to income and race. Large thermal inequities exist within all the regions studied. On average, the poorest 10% of neighborhoods in an urban region were 2.2 °C (4 °F) hotter than the wealthiest 10% on both extreme heat days and average summer days. The difference was as high as 3.3-3.7 °C (6-7 °F) in California metro areas such as Palm Springs and the Inland Empire. A similar pattern held for Latinx neighborhoods. Temperature disparities at night were much smaller (usually ~1 °F). Disparities for Black neighborhoods were also lower, perhaps because Black populations are small in most of these cities. California urban regions show stronger thermal disparities than those in other Southwestern states, perhaps because inexpensive water has led to more extensive vegetation in affluent neighborhoods. Our findings provide new details about urban thermal inequities and reinforce the need for programs to reduce the disproportionate heat experienced by disadvantaged communities.

Evaluating the effects of heat vulnerability on heat-related emergency medical service incidents: Lessons from Austin, Texas

Extreme heat exposure and sensitivity have been a growing concern in urban regions as the effects of extreme heat pose a threat to public health, the water supply, and the infrastructure. Heat-related illnesses demand an immediate Emergency Medical Service (EMS) response since they might result in death or serious disability if not treated quickly. Despite increased concerns about urban heat waves and relevant health issues, a limited amount of research has investigated the effects of heat vulnerability on heat-related illnesses. This study explores the geographical distribution of heat vulnerability in the city of Austin and Travis County areas of Texas and identifies neighborhoods with a high degree of heat vulnerability and restricted EMS accessibility. We conducted negative binomial regressions to investigate the effects of heat vulnerability on heat-related EMS incidents. Heat-related EMS calls have increased in neighborhoods with more impervious surfaces, Hispanics, those receiving social benefits, people living alone, and the elderly. Higher urban capacity, including efficient road networks, water areas, and green spaces, is likely to reduce heat-related EMS incidents. This study provides data-driven evidence to help planners prioritize vulnerable locations and concentrate local efforts on addressing heat-related health concerns.

Deaths attributable to anomalous temperature: A generalizable metric for the health impact of global warming

The U-shaped association between health outcomes and ambient temperatures has been extensively investigated. However, such analyses cannot fully estimate the mortality burden of climate change because the features of the association (e.g., minimum mortality temperature) vary with human adaptation; thus, they are not generalizable to different locations. In this study, we assumed that humans could adapt to regular temperature variations; and thus examined the all-cause mortality attributable to temperature anomaly (TA), an indicator widely utilized in climate science to measure irregular temperature fluctuations, across 115 cities in the United States (US). We first used quasi-Poisson regressions to obtain the city-specific TA-mortality associations, then used meta-regression to pool these city-specific estimates. Finally, we calculated the number of TA-related deaths using the uniform pooled association, then compared it to the estimates from city-specific associations, which had been controlled for adaptation. Meta-regression showed a U-shaped TA-mortality association, centered at a TA near 0. According to the pooled association, 0.579 % (95 % confidence interval [CI]: 0.465-0.681 %), 0.394 % (95 % CI: 0.332-0.451 %), and 0.185 % (95 % CI: 0.107-0.254 %) of all-cause deaths were attributable to all anomalous temperatures (TA ≠ 0), anomalous heat (TA > 0), and anomalous cold (TA < 0), respectively. At the city level, heat-related deaths estimated from the pooled association were in good agreement with heat-related deaths estimated from the city-specific associations (R(2) = 0.84). However, the cold-related deaths estimated from the two methods showed a weaker correlation (R(2) = 0.07). Our findings suggest that TA constitutes a generalizable indicator that can uniformly evaluate deaths attributable to anomalous heat in distinct geographical locations.

What to expect when it gets hotter the impacts of prenatal exposure to extreme temperature on maternal health

We use temperature variation within narrowly defined geographic and demographic cells to show that exposure to extreme temperature increases the risk of maternal hospitalization during pregnancy. This effect is driven by emergency hospitalizations for various pregnancy complications, suggesting that it represents a deterioration in underlying maternal health rather than a change in women’s ability to access health care. The effect is larger for black women than for women of other races, suggesting that without significant adaptation, projected increases in extreme temperatures over the next century may further exacerbate racial disparities in maternal health.

Analysis of community deaths during the catastrophic 2021 heat dome: Early evidence to inform the public health response during subsequent events in greater Vancouver, Canada

BACKGROUND: British Columbia, Canada, was impacted by a record-setting heat dome in early summer 2021. Most households in greater Vancouver do not have air conditioning, and there was a 440% increase in community deaths during the event. Readily available data were analyzed to inform modifications to the public health response during subsequent events in summer 2021 and to guide further research. METHODS: The 434 community deaths from 27 June through 02 July 2021 (heat dome deaths) were compared with all 1,367 community deaths that occurred in the same region from 19 June through 09 July of 2013-2020 (typical weather deaths). Conditional logistic regression was used to examine the effects of age, sex, neighborhood deprivation, and the surrounding environment. Data available from homes with and without air conditioning were also used to illustrate the indoor temperatures differences. RESULTS: A combined index of material and social deprivation was most predictive of heat dome risk, with an adjusted odds ratio of 2.88 [1.85, 4.49] for the most deprived category. Heat dome deaths also had lower greenness within 100 m than typical weather deaths. Indoor temperatures in one illustrative home without air conditioning ranged between 30°C and 40°C. CONCLUSIONS: Risk of death during the heat dome was associated with deprivation, lower neighborhood greenness, older age, and sex. High indoor temperatures likely played an important role. Public health response should focus on highly deprived neighborhoods with low air conditioning prevalence during extreme heat events. Promotion of urban greenspace must continue as the climate changes.

Improving the passive survivability of residential buildings during extreme heat events in the Pacific Northwest

Extreme heat events are becoming more frequent and more severe in the Pacific Northwest and in comparable dry-summer climates worldwide, increasing the occurrence of heat-related illness and death. Much of this risk is attributed to overheating in multifamily dwellings, particularly in neighborhoods with abundant asphalt, few trees, and limited financial resources. Air-conditioning expansion is problematic, however, because it creates vulnerability to operational costs and power outages, while expelled hot air intensifies urban heat island effects. In contrast, passive cooling strategies that deflect solar radiation and recruit the cool night air typical of Mediterranean, semi-arid, and arid climates are quite promising, but their abilities to improve residential survivability during extreme heat have not yet been explored. To understand this potential, here we investigate the extent to which well-controlled shading and natural ventilation, in some cases with fan assistance, could have diminished the hours in which indoor heat index levels exceeded ‘caution’, ‘extreme caution’, ‘danger’, and ‘extreme danger’ thresholds during the June 2021 heat wave in the Pacific Northwest; building thermal performance was simulated in EnergyPlus under conditions experienced by Vancouver BC, Seattle WA, Spokane WA, Portland OR, and Eugene OR. Strikingly, we find that in Portland, where the highest temperatures occurred, integrated shading and natural ventilation eliminated all hours above the danger threshold during the 3-day event, lowering peak indoor air temperatures by approximately 14 degrees C (25 degrees F); without cooling, all 72h exceeded this threshold. During the encompassing 10-day period, these passive measures provided 130-150h of thermal relief; baseline conditions without cooling provided none. Additionally, passive cooling reduced active cooling loads by up to 80%. Together, these results show the immediate, substantial value of requiring effective operable shading and secure operable windows in apartments in mild dry-summer climates with rising heatwave intensity, as well as public health messaging to support the productive operation of these elements.

City-heat equity adaptation tool (city-heat): Multi-objective optimization of environmental modifications and human heat exposure reductions for urban heat adaptation under uncertainty

Rising global temperatures and the urban heat island effect can amplify heat-related health risks to urban res-idents. Cities are considering various heat adaptation actions to improve public health, enhance social equity, and cope with future conditions beyond past experience. We present the City-Heat Equity Adaptation Tool (City -HEAT), which suggests optimal investments for mitigating urban heat and reducing health impacts through modifications of built (cool roofs/pavements) and natural (urban afforestation) environments and reductions of people’s heat exposure (cooling centers). The optimization considers multiple public health and social objectives under a wide range of future scenarios. An application to Baltimore, MD (USA) demonstrates how City-HEAT can generate Pareto-efficient multi-year heat adaptation plans. We quantify effectiveness-efficiency-equity tradeoffs among alternative plans and show the advantages of flexible decision-making. City-HEAT can be adapted to the natural, built, and social environments of other cities to support their urban heat adaptation planning, recog-nizing local objectives and uncertainty.

Temporal changes in associations between high temperature and hospitalizations by greenspace: Analysis in the Medicare population in 40 U.S. northeast counties

Although research indicates health and well-being benefits of greenspace, little is known regarding how greenspace may influence adaptation to health risks from heat, particularly how these risks change over time. Using daily hospitalization rates of Medicare beneficiaries ≥65 years for 2000-2016 in 40 U.S. Northeastern urban counties, we assessed how temperature-related hospitalizations from cardiovascular causes (CVD) and heat stroke (HS) changed over time. We analyzed effect modification of those temporal changes by Enhanced Vegetation Index (EVI), approximating greenspace. We used a two-stage analysis including a generalized additive model and meta-analysis. Results showed that relative risk (RR) (per 1 °C increase in lag0-3 temperature) for temperature-HS hospitalization was higher in counties with the lowest quartile EVI (RR = 2.7, 95% CI: 2.0, 3.4) compared to counties with the highest quartile EVI (RR = 0.40, 95% CI: 0.14, 1.13) in the early part of the study period (2000-2004). RR of HS decreased to 0.88 (95% CI: 0.31, 2.53) in 2013-2016 in counties with the lowest quartile EVI. RR for HS changed over time in counties in the highest quartile EVI, with RRs of 0.4 (95% CI: -0.7, 1.4) in 2000-2004 and 2.4 (95% CI: 1.6, 3.2) in 2013-2016. Findings suggest that adaptation to heat-health associations vary by greenness. Greenspace may help lower risks from heat but such health risks warrant continuous local efforts such as heat-health plans.

A comparative assessment of cooling center preparedness across twentyfive U.S. cities

Cooling centers have played a significant role in reducing the risks of adverse health impacts of extreme heat exposure. However, there have been no comparative studies investigating cooling center preparedness in terms of population coverage, location efficiency, and population coverage disparities among different subpopulation groups. Using a catchment area method with a 0.8 km walking distance, we compared three aspects of cooling center preparedness across twenty-five cities in the U.S. We first calculated the percentage of the population covered by a single cooling center for each city. Then, the extracted values were separately compared to the city’s heat indexes, latitudes, and spatial patterns of cooling centers. Finally, we investigated population coverage disparities among multiple demographics (age, race/ethnicity) and socioeconomic (insurance, poverty) subpopulation groups by comparing the percentage of population coverage between selected subpopulation groups and reference subpopulation groups. Our results showed that cooler cities, higher latitude cities, and cities with dispersed cooling centers tend to be more prepared than warmer cities, lower latitude cities, and cities with clustered cooling centers across the U.S. Moreover, older people (≥65) had 9% lower population coverage than younger people (≤64). Our results suggest that the placement of future cooling centers should consider both the location of other nearby cooling centers and the spatial distribution of subpopulations to maximize population coverage and reduce access disparities among several subpopulations.

Evaluating the 35°C wet-bulb temperature adaptability threshold for young, healthy subjects (PSU heat project)

A wet-bulb temperature of 35°C has been theorized to be the limit to human adaptability to extreme heat, a growing concern in the face of continued and predicted accelerated climate change. Although this theorized threshold is based in physiological principles, it has not been tested using empirical data. This study examined the critical wet-bulb temperature (T(wb,crit)) at which heat stress becomes uncompensable in young, healthy adults performing tasks at modest metabolic rates mimicking basic activities of daily life. Across six experimentally determined environmental limits, no subject’s T(wb,crit) reached the 35°C limit and all means were significantly lower than the theoretical 35°C threshold. Mean T(wb,crit) values were relatively constant across 36°C -40°C humid environments and averaged 30.55 ± 0.98°C but progressively decreased (higher deviation from 35°C) in hotter, dry ambient environments. T(wb,crit) was significantly associated with mean skin temperature (and a faster warming rate of the skin) due to larger increases in dry heat gain in the hot-dry environments. As sweat rates did not significantly differ among experimental environments, evaporative cooling was outpaced by dry heat gain in hot-dry conditions, causing larger deviations from the theoretical 35°C adaptability threshold. In summary, a wet-bulb temperature threshold cannot be applied to human adaptability across all climatic conditions and where appropriate (high humidity), that threshold is well below 35°C.NEW & NOTEWORTHY This study is the first to use empirical physiological observations to examine the well-publicized theoretical 35°C wet-bulb temperature limit for human to extreme environments. We find that uncompensable heat stress in humid environments occurs in young, healthy adults at wet-bulb temperatures significantly lower than 35°C. In addition, uncompensable heat stress occurs at widely different wet-bulb temperatures as a function of ambient vapor pressure.

Green infrastructure and energy justice in health adaptation: Leveraging climate policy innovation and vulnerability-readiness nexus

In this study, we examine how climatic heat stress can be mediated by green infrastructure outcomes and how energy justice effort contributes to health adaptation within the U.S. Great Lakes regions and their primary metropolitan areas over a recent 10-year period (2005–2015). Through the lens of policy innovation and the vulnerability-readiness nexus, we explore how climate policy intervention contributes to the mitigation of heat stress by using a quantitative approach. Empirical results suggest that green infrastructure outcomes and energy justice efforts have the potential to mitigate heat stress and enhance health adaptation. Additional results reflect that climate policy innovation and readiness efforts were viable factors in health adaptation to heat events.

Aerobic fitness as a parameter of importance for labour loss in the heat

OBJECTIVES: To derive an empirical model for the impact of aerobic fitness (maximal oxygen consumption; V̇O(2max) in mL∙kg(-1)∙min(-1)) on physical work capacity (PWC) in the heat. DESIGN: Prospective, repeated measures. METHODS: Total work completed during 1 h of treadmill walking at a fixed heart rate of 130 b∙min(-1) was assessed in 19 young adult males across a variety of warm and hot climate types, characterised by wet-bulb globe temperatures (WBGT) ranging from 12 to 40 °C. For data presentation and obtaining initial parameter estimates for modelling, participants were grouped into low (n = 6, 74 trials), moderate (n = 8, 76 trials), and high (n = 5, 29 trials) fitness, with group mean V̇O(2max) 42, 52, and 64 mL∙kg(-1)∙min(-1)(,) respectively. For the heated conditions (WBGT 18 to 40 °C), we calculated PWC% by expressing total energy expenditure (kJ above resting) in each trial relative to that achieved in a cool reference condition (WBGT = 12 °C = 100% PWC). RESULTS: The relative reduction in energy expenditure (PWC%) caused by heat was significantly smaller by up to 16% for the fit participants compared to those with lower aerobic capacity. V̇O(2max) also modulated the relationship between sweat rate and body temperature changes to increasing WBGT. Including individual V̇O(2max) data in the PWC prediction model increased the predicting power by 4%. CONCLUSIONS: Incorporating individual V̇O(2max) improved the predictive power of the heat stress index WBGT for Physical Work Capacity in the heat. The largest impact of V̇O(2max) on PWC was observed at a WBGT between 25 and 35 °C.

Effects of trees, gardens, and nature trails on heat index and child health: Design and methods of the Green Schoolyards Project

BACKGROUND: Latinx children in the United States are at high risk for nature-deficit disorder, heat-related illness, and physical inactivity. We developed the Green Schoolyards Project to investigate how green features-trees, gardens, and nature trails-in school parks impact heat index (i.e., air temperature and relative humidity) within parks, and physical activity levels and socioemotional well-being of these children. Herein, we present novel methods for a) observing children’s interaction with green features and b) measuring heat index and children’s behaviors in a natural setting, and a selection of baseline results. METHODS: During two September weeks (high temperature) and one November week (moderate temperature) in 2019, we examined three joint-use elementary school parks in Central Texas, United States, serving predominantly low-income Latinx families. To develop thermal profiles for each park, we installed 10 air temperature/relative humidity sensors per park, selecting sites based on land cover, land use, and even spatial coverage. We measured green features within a geographic information system. In a cross-sectional study, we used an adapted version of System for Observing Play and Recreation in Communities (SOPARC) to assess children’s physical activity levels and interactions with green features. In a cohort study, we equipped 30 3rd and 30 4th grade students per school during recess with accelerometers and Global Positioning System devices, and surveyed these students regarding their connection to nature. Baseline analyses included inverse distance weighting for thermal profiles and summing observed counts of children interacting with trees. RESULTS: In September 2019, average daily heat index ranged 2.0 °F among park sites, and maximum daily heat index ranged from 103.4 °F (air temperature = 33.8 °C; relative humidity = 55.2%) under tree canopy to 114.1 °F (air temperature = 37.9 °C; relative humidity = 45.2%) on an unshaded playground. 10.8% more girls and 25.4% more boys interacted with trees in September than in November. CONCLUSIONS: We found extreme heat conditions at select sites within parks, and children positioning themselves under trees during periods of high heat index. These methods can be used by public health researchers and practitioners to inform the redesign of greenspaces in the face of climate change and health inequities.

Climate change and infrastructure risk: Indoor heat exposure during a concurrent heat wave and blackout event in Phoenix, Arizona

Concurrent with a rapid rise in temperatures within US cities, the frequency of regional electric grid system failures is also rising in recent decades, resulting in a growing number of blackouts during periods of extreme heat. As mechanical air conditioning is a primary adaptive technology for managing rising temperatures in cities, we examine in this paper the impact of a prolonged blackout on heat exposure in residential structures during heat wave conditions, when air conditioning is most critical to human health. Our approach combines a regional climate modeling system with a building energy model to simulate how a concurrent heat wave and grid failure event impacts residential building-interior temperatures across Phoenix. Our results find a substantial increase in heat exposure across residential buildings in response to the loss of electrical power and mechanical cooling systems, with such an event potentially exposing more than one million residents to hazardous levels of heat. We further find the installation of cool roofing to measurably lower the risk of extreme heat exposure for residents of single-story structures.

Thermal inequity in Richmond, VA: The effect of an unjust evolution of the urban landscape on urban heat islands

The urban heat island (UHI) effect is caused by intensive development practices in cities and the diminished presence of green space that results. The evolution of these phenomena has occurred over many decades. In many cities, historic zoning and redlining practices barred Black and minority groups from moving into predominately white areas and obtaining financial resources, a practice that still affects cities today, and has forced these already disadvantaged groups to live in some of the hottest areas. In this study, we used a new dataset on the spatial distribution of temperature during a heat wave in Richmond, Virginia to investigate potential associations between extreme heat and current and historical demographic, socioeconomic, and land use factors. We assessed these data at the census block level to determine if blocks with large differences in temperature also had significant variation in these covariates. The amount of canopy cover, percent impervious surface, and poverty level were all shown to be strong correlates of UHI when analyzed in conjunction with afternoon temperatures. We also found strong associations of historical policies and planning decisions with temperature using data from the University of Richmond’s Digital Scholarship Lab’s “Mapping Inequality” project. Finally, the Church Hill area of the city provided an interesting case study due to recent data suggesting the area’s gentrification. Differences in demographics, socioeconomic factors, and UHI were observed between north and (more gentrified) south Church Hill. Both in Church Hill and in Richmond overall, our research found that areas occupied by people of low socioeconomic status or minority groups disproportionately experienced extreme heat and corresponding impacts on health and quality of life.

Building community resilience to disasters: A review of interventions to improve and measure public health outcomes in the northeastern United States

Climate change-related natural disasters, including wildfires and extreme weather events, such as intense storms, floods, and heatwaves, are increasing in frequency and intensity. These events are already profoundly affecting human health in the United States and globally, challenging the ability of communities to prepare, respond, and recover. The purpose of this research was to examine the peer-reviewed literature on community resilience initiatives in one of the most densely populated and economically important regions, the Northeastern United States, and to identify evidence-based interventions and metrics that had been field-tested and evaluated. This paper addresses two critical gaps in the literature: (1) what strategies or interventions have been implemented to build or enhance community resilience against climate change-related natural disasters; and (2) what metrics were used to measure community resilience as an outcome of those strategies or interventions? This review provides a succinct list of effective interventions with specific health outcomes. Community or state-level health officials can use the results to prioritize public health interventions. This review used existing database search tools to discover 205 studies related to community resilience and health outcomes. Methods set criteria to assess if interventions were able to measure and change levels of community resilience to the health impacts associated with a changing climate. Criteria included: (a) alignment with the United States’ National Preparedness Goal for reducing risks to human health and for recovering quickly from disasters; (b) derived from publicly available data sources; (c) developed for use by communities at a local scale; and (d) accessible to modestly resourced municipalities and county health agencies. Five (5) peer-reviewed, evidence-based studies met all of the selection criteria. Three of these articles described intervention frameworks and two reported on the use of standardized tools. Health-related outcomes included mental health impacts (PTSD/depression), mental stress, emergency preparedness knowledge, social capital skills, and emergency planning skills. The paper recommends the COAST project, COPEWELL Rubric for self-assessment, and Ready CDC intervention as examples of strategies that could be adapted by any community engaged in building community resilience.

Association between ambient heat and risk of emergency department visits for mental health among us adults, 2010 to 2019

IMPORTANCE: The implications of extreme heat for physical health outcomes have been well documented. However, the association between elevated ambient temperature and specific mental health conditions remains poorly understood. OBJECTIVE: To investigate the association between ambient heat and mental health-related emergency department (ED) visits in the contiguous US among adults overall and among potentially sensitive subgroups. DESIGN, SETTING, AND PARTICIPANTS: This case-crossover study used medical claims data obtained from OptumLabs Data Warehouse (OLDW) to identify claims for ED visits with a primary or secondary discharge psychiatric diagnosis during warm-season months (May to September) from 2010 through 2019. Claims for adults aged 18 years or older with commercial or Medicare Advantage health insurance who were living in 2775 US counties were included in the analysis. Emergency department visits were excluded if the Clinical Classifications Software code indicated that the visits were for screening for mental health outcomes and impulse control disorders. EXPOSURES: County-specific daily maximum ambient temperature on a continuous scale was estimated using the Parameter-Elevation Relationships on Independent Slopes model. Extreme heat was defined as the 95th percentile of the county-specific warm-season temperature distribution. MAIN OUTCOMES AND MEASURES: The daily incidence rate of cause-specific mental health diagnoses and a composite end point of any mental health diagnosis were assessed by identifying ED visit claims using primary and secondary discharge diagnosis International Classification of Diseases, Ninth Revision and International Statistical Classification of Diseases and Related Health Problems, Tenth Revision codes. Conditional logistic regression models were used to estimate the incidence rate ratio (IRR) and 95% CIs for the association between daily temperature and incidence rates of ED visits. RESULTS: Data from 3 496 762 ED visits among 2 243 395 unique individuals were identified (56.8% [1 274 456] women; mean [SD] age, 51.0 [18.8] years); of these individuals, 14.3% were aged 18 to 26 years, 25.6% were aged 27 to 44 years, 33.3% were aged 45 to 64 years, and 26.8% were aged 65 years or older. Days of extreme heat were associated with an IRR of 1.08 (95% CI, 1.07-1.09) for ED visits for any mental health condition. Associations between extreme heat and ED visits were found for specific mental health conditions, including substance use disorders (IRR, 1.08; 95% CI, 1.07-1.10); anxiety, stress-related, and somatoform disorders (IRR, 1.07; 95% CI, 1.05-1.09); mood disorders (IRR, 1.07; 95% CI, 1.05-1.09); schizophrenia, schizotypal, and delusional disorders (IRR, 1.05; 95% CI, 1.03-1.07); self-harm (IRR, 1.06; 95% CI, 1.01-1.12); and childhood-onset behavioral disorders (IRR, 1.11; 95% CI, 1.05-1.18). In addition, associations were higher among men (IRR, 1.10; 95% CI, 1.08-1.12) and in the US Northeast (IRR, 1.10; 95% CI, 1.07-1.13), Midwest (IRR, 1.11; 95% CI, 1.09-1.13), and Northwest (IRR, 1.12; 95% CI, 1.03-1.21) regions. CONCLUSIONS AND RELEVANCE: In this case-crossover study of a large population of US adults with health insurance, days of extreme heat were associated with higher rates of mental health-related ED visits. This finding may be informative for clinicians providing mental health services during periods of extreme heat to prepare for increases in health service needs when times of extreme heat are anticipated.

Impacts of weather abnormalities on to mental health problems related suicidal behaviours: An economic approach

This study aims to estimate the impacts of climate variation on suicide rates in the USA by using county-level data on temperature, and mental health-related suicides between 2011 and 2020. In addition to climate factors, several socio-economic factors such as uninsured population rate, access to mental health providers, and unemployment rate are included to estimate their impacts on suicides. The estimation is separately performed for female, male and overall groups. The results indicate that while there is limited evidence of the impact of precipitation on suicidal behaviours, the average daily minimum air temperature is an important determinant of the suicides in the US counties.

Impact of Ontario’s harmonized heat warning and information system on emergency department visits for heat-related illness in Ontario, Canada: A population-based time series analysis

INTERVENTION: Ontario’s Harmonized Heat Warning and Information System (HWIS) brings harmonized, regional heat warnings and standard heat-health messaging to provincial public health units prior to periods of extreme heat. RESEARCH QUESTION: Was implementation of the harmonized HWIS in May 2016 associated with a reduction in emergency department (ED) visits for heat-related illness in urban locations across Ontario, Canada? METHODS: We conducted a population-based interrupted time series analysis from April 30 to September 30, 2012-2018, using administrative health and outdoor temperature data. We used autoregressive integrated moving average models to examine whether ED rates changed following implementation of the harmonized HWIS, adjusted for maximum daily temperature. We also examined whether effects differed in heat-vulnerable groups (≥65 years or <18 years, those with comorbidities, those with a recent history of homelessness), and by heat warning region. RESULTS: Over the study period, heat alerts became more frequent in urban areas (6 events triggered between 2013 and 2015 and 14 events between 2016 and 2018 in Toronto, for example). The mean rate of ED visits was 47.5 per 100,000 Ontarians (range 39.7-60.1) per 2-week study interval, with peaks from June to July each year. ED rates were particularly high in those with a recent history of homelessness (mean rate 337.0 per 100,000). Although rates appeared to decline following implementation of HWIS in some subpopulations, the change was not statistically significant at a population level (rate 0.04, 95% CI: -0.03 to 0.1, p=0.278). CONCLUSION: In urban areas across Ontario, ED encounters for heat-related illness may have declined in some subpopulations following HWIS, but the change was not statistically significant. Efforts to continually improve HWIS processes are important given our changing Canadian climate.

Increasing urban albedo to reduce heat-related mortality in Toronto and Montreal, Canada

Heat-related mortality (HRM) is increasing because of the climate change and urbanization leading to extreme heat events. This paper summarizes the results of the excess mortality attributed to excessive heat events in two largest cities in Canada, Toronto and Montreal, during three heat wave periods. We present an application of a fine-resolution, urban-mesoscale model to assess the impacts of heat and heat mitigation strategy on heat death. The Weather Research and Forecasting model (WRF) is coupled with a multi-layer of the Urban Canopy Model (ML-UCM) to assess the impacts of heat and heat mitigation strategy on heat-related death. The background albedo of 0.2 for urban surfaces are respectively increased to 0.65, 0.60, and 0.45 for roofs, walls, and grounds. The changes of the air mass category, ambient and apparent temperatures interpret the impacts of extreme heat and the potential of increasing surface albedo (ISA) on HRM. Here, the calculations and estimations of HRM is based on the data obtained from Canadian Environmental Health Atlas (CEHA) indicating an average of 120 heat-induced deaths in Toronto and Montreal. ISA affords a reduction in air temperature (1-2 degrees C), a decrease in dew point temperature (0.2-0.5 degrees C), and a slight increase in near-surface wind speed (-0.01 to-0.4 m/s). Increase in albedo shifts days into more benign conditions by nearly 60%. The HRM will lessen by 3-7%, pointing that seven to eighteen lives could be saved. Cooling the urban climate will improve discomfort index, lessen the impacts of elevated temperature, enhance human thermal comfort, and decrease HRM to some significant extent. (c) 2020 Elsevier B.V. All rights reserved.

Indoor temperatures in the 2018 heat wave in Quebec, Canada: Exploratory study using Ecobee smart thermostats

BACKGROUND: Climate change, driven by human activity, is rapidly changing our environment and posing an increased risk to human health. Local governments must adapt their cities and prepare for increased periods of extreme heat and ensure that marginalized populations do not suffer detrimental health outcomes. Heat warnings traditionally rely on outdoor temperature data which may not reflect indoor temperatures experienced by individuals. Smart thermostats could be a novel and highly scalable data source for heat wave monitoring. OBJECTIVE: The objective of this study was to explore whether smart thermostats can be used to measure indoor temperature during a heat wave and identify houses experiencing indoor temperatures above 26°C. METHODS: We used secondary data-indoor temperature data recorded by ecobee smart thermostats during the Quebec heat waves of 2018 that claimed 66 lives, outdoor temperature data from Environment Canada weather stations, and indoor temperature data from 768 Quebec households. We performed descriptive statistical analyses to compare indoor temperatures differences between air conditioned and non-air conditioned houses in Montreal, Gatineau, and surrounding areas from June 1 to August 31, 2018. RESULTS: There were significant differences in indoor temperature between houses with and without air conditioning on both heat wave and non-heat wave days (P<.001). Households without air conditioning consistently recorded daily temperatures above common indoor temperature standards. High indoor temperatures persisted for an average of 4 hours per day in non-air conditioned houses. CONCLUSIONS: Our findings were consistent with current literature on building warming and heat retention during heat waves, which contribute to increased risk of heat-related illnesses. Indoor temperatures can be captured continuously using smart thermostats across a large population. When integrated with local heat health action plans, these data could be used to strengthen existing heat alert response systems and enhance emergency medical service responses.

Development and implementation of a heat alert and response system in rural British Columbia

SETTING: In 2018, a regional health authority in British Columbia (BC) initiated a multi-year project to support planning and response to extreme heat. Climate projections indicate that temperatures in the southern interior of BC will continue to increase, with concomitant negative impacts on human health. Successful climate change adaptation must include cross-sectoral action, inclusive of the health sector, to plan for and respond to climate-related events, including extreme heat. INTERVENTION: The objective of this project was to support the development and implementation of a Heat Alert and Response System (HARS) in a small, rural community. The health authority facilitated collaboration among provincial and local governments, community organizations, and First Nations partners to assess community assets, draft a plan for extreme heat, and prepare for a community-supported response during heat events. OUTCOMES: Stakeholders expressed the importance of utilizing existing partnerships and community resources, such as physical and procedural infrastructure, in which to embed the HARS. It was imperative that the plan be simple, concise, and considerate of the community’s unique context. Educational materials and a tailored method of dissemination were important for collective and individual risk mitigation. IMPLICATIONS: A community-driven approach that utilized existing assets allowed for integration of HARS within municipal response plans and established infrastructure. The result is a sustainable public health intervention that has the potential to mitigate the negative health effects of extreme heat. Knowledge acquired through this initiative is informing similar HARS planning processes in other rural BC communities.

Benchmarking drinking water consumption during construction phase

As global warming impacts the climate, severe cases of droughts, abnormalities in precipitations, unusual patterns of hurricanes, and excessive heat are becoming more frequent. Excessive heat and droughts in US have made dehydration a problem on construction job sites. Despite the studies about the efficient use of water in buildings post occupancy, little has been explored about water consumption during the construction phase. Given this lack of focus, this study investigates drinking water consumption by construction personnel during construction of a new academic building located in Fort Myers, Florida. Daily potable water consumption data on a jobsite have been recorded during construction through daily interviews with site personnel. Regression analysis is used to examine the existence of correlations between daily humidity, temperature and precipitation data, and daily drinking water consumption by each construction worker. An artificial neural network model is also deployed to examine the existence of such a link.

Climate change will increase aflatoxin presence in US corn

The impacts of climate change on agricultural production are a global concern and have already begun to occur (Kawasaki 2018 Am. J. Agric. Econ. 101 172-92; Ortiz-Bobea et al 2021 Nat. Clim. Change 11 306-12), with major drivers including warmer temperatures and the occurrence of extreme weather events (Lobell and Field 2007 Environ. Res. Lett. 2 014002; Challinor et al 2014 Nat. Clim. Change 4 287; Rosenzweig et al 2001 Glob. Change Hum. Health 2 90-104; Schlenker and Roberts 2009 Proc. Natl Acad. Sci. USA 106 15594-8; Lobell et al 2014 Science 344 516-9; Ortiz-Bobea et al 2019 Environ. Res. Lett. 14 064003). An important dimension of the climate change-crop yield relationship that has often been overlooked in the empirical literature is the influence that warming temperatures can have on plant damage arriving through biotic channels, such as pest infestation or fungal infection (Rosenzweig et al 2001 Glob. Change Hum. Health 2 90-104). Aflatoxins are carcinogenic chemicals produced by the fungi Aspergillus flavus and A. parasiticus, which commonly infect food crops. Currently, in the United States, aflatoxin is a perennial contaminant in corn grown in the South, but rare in the Corn Belt and northern states. Climate change may expand aflatoxin’s geographical prevalence, however; because hot, dry summers promote aflatoxin accumulation. Here we model aflatoxin risk as a function of corn plant growth stages and weather to predict US regions with high aflatoxin risk in 2031-2040, based on 16 climate change models. Our results suggest that over 89.5% of corn-growing counties in 15 states, including the Corn Belt, will experience increased aflatoxin contamination in 2031-2040 compared to 2011-2020. Interestingly, the results are spatially heterogeneous and include several southern counties expected to have lower aflatoxin risk, because the causative fungi become inactivated at very high temperatures.

Mental health and air temperature: Attributable risk analysis for schizophrenia hospital admissions in arid urban climates

Health researchers have examined the physiological impacts of extreme air temperature on the human body. Yet, the mental health impacts of temperature have been understudied. Research has shown that the environment can create circumstances that exacerbate mental health issues. This may be particularly challenging for some of the fastest growing cities, located in hot, dry climates. Given the theoretical relationship between air temperature and mental health, we seek to measure the association between temperature and schizophrenia hospital admissions in an arid urban climate and quantify the associated public health burden. We collected 86,672 hospitalization records for schizophrenia from 2006 to 2014 in Maricopa County, Arizona, USA. Using a distributed lag non-linear model (DLNM), we tested for a statistical association between temperature and schizophrenia hospital admissions after controlling for year, season, weekends, and holidays. We calculated the cumulative attributable risk of nighttime temperature on schizophrenia for the entire dataset as well as among demographic subgroups. The relative risk of schizophrenia hospital admissions increased with both high and low temperatures. Statistical models using daily minimum temperature were more strongly associated with hospitalization than those using mean or maximum. Schizophrenia hospital admissions increased on days with minimum temperatures above 30 °C and below 3 °C, with some subgroups experiencing higher rates of hospitalization. The total fraction of schizophrenia hospital admissions attributable to non-optimal minimum temperature is 3.45 % (CI: -4.91-10.80 %) and high minimum temperature is 0.28 % (CI: -1.18-1.78 %). We found that non-whites and males appear to be at a slightly increased risk than the general population, although there did not appear to be a statistically significant difference. A conservative estimate of healthcare costs annually from non-optimal temperature attributed schizophrenia hospitalization is $1.95 million USD. Therefore, nighttime cooling strategies and efforts could increase the accessibility of shelters to reduce overnight exposure to extreme air temperature.

Mortality, temperature, and public health provision: Evidence from Mexico

We examine the impact of temperature on mortality in Mexico using daily data over the period 1998-2017 and find that 3.8 percent of deaths in Mexico are caused by suboptimal temperature (26,000 every year). However, 92 percent of weather-related deaths are induced by cold (<12 degrees C) or mildly cold (12-20 degrees C) days and only 2 percent by outstandingly hot days (>32 degrees C). Furthermore, temperatures are twice as likely to kill people in the bottom half of the income distribution. Finally, we show causal evidence that the Seguro Popular, a universal health care policy, has saved at least 1,600 lives per year from cold weather since 2004.

Temperature-mortality relationship in North Carolina, USA: Regional and urban-rural differences

BACKGROUND: Health disparities exist between urban and rural populations, yet research on rural-urban disparities in temperature-mortality relationships is limited. As inequality in the United States increases, understanding urban-rural and regional differences in the temperature-mortality association is crucial. OBJECTIVE: We examined regional and urban-rural differences of the temperature-mortality association in North Carolina (NC), USA, and investigated potential effect modifiers. METHODS: We applied time-series models allowing nonlinear temperature-mortality associations for 17 years (2000-2016) to generate heat and cold county-specific estimates. We used second-stage analysis to quantify the overall effects. We also explored potential effect modifiers (e.g. social associations, greenness) using stratified analysis. The analysis considered relative effects (comparing risks at 99th to 90th temperature percentiles based on county-specific temperature distributions for heat, and 1st to 10th percentiles for cold) and absolute effects (comparing risks at specific temperatures). RESULTS: We found null effects for heat-related mortality (relative effect: 1.001 (95% CI: 0.995-1.007)). Overall cold-mortality risk for relative effects was 1.019 (1.015-1.023). All three regions had statistically significant cold-related mortality risks for relative and absolute effects (relative effect: 1.019 (1.010-1.027) for Coastal Plains, 1.021 (1.015-1.027) for Piedmont, 1.014 (1.006-1.023) for Mountains). The heat mortality risk was not statistically significant, whereas the cold mortality risk was statistically significant, showing higher cold-mortality risks in urban areas than rural areas (relative effect for heat: 1.006 (0.997-1.016) for urban, 1.002 (0.988-1.017) for rural areas; relative effect for cold: 1.023 (1.017-1.030) for urban, 1.012 (1.001-1.023) for rural areas). Findings are suggestive of higher relative cold risks in counties with the less social association, higher population density, less green-space, higher PM(2.5,) lower education level, higher residential segregation, higher income inequality, and higher income (e.g., Ratio of Relative Risks 1.72 (0.68, 4.35) comparing low to high education). CONCLUSION: Results indicate cold-mortality risks in NC, with potential differences by regional, urban-rural areas, and community characteristics.

A 1-km hourly air-temperature model for 13 Northeastern U.S. states using remotely sensed and ground-based measurements

BACKGROUND: Accurate and precise estimates of ambient air temperatures that can capture fine-scale within-day variability are necessary for studies of air temperature and health. METHOD: We developed statistical models to predict temperature at each hour in each cell of a 927-m square grid across the Northeast and Mid-Atlantic United States from 2003 to 2019, across ~4000 meteorological stations from the Integrated Mesonet, using inputs such as elevation, an inverse-distance-weighted interpolation of temperature, and satellite-based vegetation and land surface temperature. We used a rigorous spatial cross-validation scheme and spatially weighted the errors to estimate how well model predictions would generalize to new cell-days. We assess the within-county association of temperature and social vulnerability in a heat wave as an example application. RESULTS: We found that a model based on the XGBoost machine-learning algorithm was fast and accurate, obtaining weighted root mean square errors (RMSEs) around 1.6 K, compared to standard deviations around 11.0 K. We found similar accuracy when validating our model on an external dataset from Weather Underground. Assessing predictions from the North American Land Data Assimilation System-2 (NLDAS-2), another hourly model, in the same way, we found it was much less accurate, with RMSEs around 2.5 K. This is likely due to the NLDAS-2 model’s coarser spatial resolution, and the dynamic variability of temperature within its grid cells. Finally, we demonstrated the health relevance of our model by showing that our temperature estimates were associated with social vulnerability across the region during a heat wave, whereas the NLDAS-2 showed a much weaker association. CONCLUSION: Our high spatiotemporal resolution air temperature model provides a strong contribution for future health studies in this region.

Association between temperature exposure and cognition: A cross-sectional analysis of 20,687 aging adults in the United States

BACKGROUND: Older adults are particularly vulnerable to the adverse health effects of extreme temperature-related events. A growing body of literature highlights the importance of the natural environment, including air pollution and sunlight, on cognitive health. However, the relationship between exposure to outdoor temperatures and cognitive functioning, and whether there exists any differences across climate region, remains largely unexplored. We address this gap by examining the temperature-cognition association, and whether there exists any variation across climate regions in a national cohort of aging adults. METHODS: In this cross-sectional study, we obtained data on temperature exposure based on geocoded residential location of participants in the REasons for Geographic And Racial Differences in Stroke (REGARDS) study. For each participant, this information was linked to their cognitive scores from Word List Learning and Recall tests to assess cognitive functioning. We used distributed lag non-linear models (dlnm) to model temperature effects over 2 days. Multivariable linear regression was used to compute temperature-cognitive functioning associations, adjusted for important covariates. Region-specific (“Dry”, “Mediterranean/oceanic”, “Tropical” and “Continental”) associations were examined by including an interaction term between climate region and temperature. RESULTS: Amongst 20,687 individuals (mean age = 67.8; standard deviation = 9.2), exposure to region-specific extreme cold temperatures in the “dry” region (e.g., Arizona) over 2 days was associated with lower cognitive scores (Mean Difference [MD]: -0.76, 95% Confidence Interval [CI]: - 1.45, - 0.07). Associations remained significant for cumulative effects of temperature over 2 days. Extremely cold exposure in the “Mediterranean/oceanic” region (e.g., California) over 2 days was also associated with significantly lower cognitive performance (MD: -0.25, 95% CI: - 0.47, - 0.04). No significant associations were observed for exposure to hot temperatures. Cognitive performance was slightly higher in late summer and fall compared to early summer. CONCLUSION: We noted adverse cognitive associations with cold temperatures in traditionally warmer regions of the country and improved cognition in summer and early fall seasons. While we did not observe very large significant associations, this study deepens understanding of the impact of climate change on the cognitive health of aging adults and can inform clinical care and public health preparedness plans.

City-level vulnerability to temperature-related mortality in the USA and future projections: A geographically clustered meta-regression

BACKGROUND: Extreme heat exposure can lead to premature death. Climate change is expected to increase the frequency, intensity, and duration of extreme heat events, resulting in many additional heat-related deaths globally, as well as changing the nature of extreme cold events. At the same time, vulnerability to extreme heat has decreased over time, probably due to a combination of physiological, behavioural, infrastructural, and technological adaptations. We aimed to account for these changes in vulnerability and avoid overstated projections for temperature-related mortality. We used the historical observed decrease in vulnerability to improve future mortality estimates. METHODS: We used historical mortality and temperature data from 208 US cities to quantify how observed changes in vulnerability from 1973 to 2013 affected projections of temperature-related mortality under various climate scenarios. We used geographically structured meta-regression to characterise the relationship between temperature and mortality for these urban populations over the specified time period. We then used the fitted relationships to project mortality under future climate conditions. FINDINGS: Between Oct 26, 2018, and March 9, 2020, we established that differences in vulnerability to temperature were geographically structured. Vulnerability decreased over time in most areas. US mortalities projected from a 2°C increase in mean temperature decreased by more than 97% when using 2003-13 data compared with 1973-82 data. However, these benefits declined with increasing temperatures, with a 6°C increase showing only an 84% decline in projected mortality based on 2003-13 data. INTERPRETATION: Even after accounting for adaptation, the projected effects of climate change on premature mortality constitute a substantial public health risk. Our work suggests large increases in temperature will require additional mitigation to avoid excess mortality from heat events, even in areas with high air conditioning coverage in place. FUNDING: The US Environmental Protection Agency and Abt Associates.

Imported dengue case numbers and local climatic patterns are associated with dengue virus transmission in Florida, USA

Aedes aegypti mosquitoes are the main vector of dengue viruses globally and are present throughout much of the state of Florida (FL) in the United States of America. However, local transmission of dengue viruses in FL has mainly occurred in the southernmost counties; specifically Monroe and Miami-Dade counties. To get a better understanding of the ecologic risk factors for dengue fever incidence throughout FL, we collected and analyzed numerous environmental factors that have previously been connected to local dengue cases in disease-endemic regions. We analyzed these factors for each county-year in FL, between 2009-2019, using negative binomial regression. Monthly minimum temperature of 17.5-20.8 °C, an average temperature of 26.1-26.7 °C, a maximum temperature of 33.6-34.7 °C, rainfall between 11.4-12.7 cm, and increasing numbers of imported dengue cases were associated with the highest risk of dengue incidence per county-year. To our knowledge, we have developed the first predictive model for dengue fever incidence in FL counties and our findings provide critical information about weather conditions that could increase the risk for dengue outbreaks as well as the important contribution of imported dengue cases to local establishment of the virus in Ae. aegypti populations.

Climate change influences on the geographic distributional potential of the spotted fever vectors Amblyomma maculatum and Dermacentor andersoni

Amblyomma maculatum (Gulf Coast tick), and Dermacentor andersoni (Rocky Mountain wood tick) are two North American ticks that transmit spotted fevers associated Rickettsia. Amblyomma maculatum transmits Rickettsia parkeri and Francisella tularensis, while D. andersoni transmits R. rickettsii, Anaplasma marginale, Coltivirus (Colorado tick fever virus), and F. tularensis. Increases in temperature causes mild winters and more extreme dry periods during summers, which will affect tick populations in unknown ways. Here, we used ecological niche modeling (ENM) to assess the potential geographic distributions of these two medically important vector species in North America under current condition and then transfer those models to the future under different future climate scenarios with special interest in highlighting new potential expansion areas. Current model predictions for A. maculatum showed suitable areas across the southern and Midwest United States, and east coast, western and southern Mexico. For D. andersoni, our models showed broad suitable areas across northwestern United States. New potential for range expansions was anticipated for both tick species northward in response to climate change, extending across the Midwest and New England for A. maculatum, and still farther north into Canada for D. andersoni.

Habitat segregation patterns of container breeding mosquitos: The role of urban heat islands, vegetation cover, and income disparity in cemeteries of New Orleans

Aedes aegypti and Aedes albopictus are important pathogen-carrying vectors that broadly exhibit similar habitat suitability, but that differ at fine spatial scales in terms of competitive advantage and tolerance to urban driven environmental parameters. This study evaluated how spatial and temporal patterns drive the assemblages of these competing species in cemeteries of New Orleans, LA, applying indicators of climatic variability, vegetation, and heat that may drive habitat selection at multiple scales. We found that Ae. aegypti was well predicted by urban heat islands (UHI) at the cemetery scale and by canopy cover directly above the cemetery vase. As predicted, UHI positively correlate to Ae. aegypti, but contrary to predictions, Ae. aegypti, was more often found under the canopy of trees in high heat cemeteries. Ae. albopictus was most often found in low heat cemeteries, but this relationship was not statistically significant, and their overall abundances in the city were lower than Ae. aegypti. Culex quinquefasciatus, another important disease vector, was also an abundant mosquito species during the sampling year, but we found that it was temporally segregated from Aedes species, showing a negative association to the climatic variables of maximum and minimum temperature, and these factors positively correlated to its more direct competitor Ae. albopictus. These findings help us understand the mechanism by which these three important vectors segregate both spatially and temporally across the city. Our study found that UHI at the cemetery scale was highly predictive of Ae. aegypti and strongly correlated to income level, with low-income cemeteries having higher UHI levels. Therefore, the effect of excessive heat, and the proliferation of the highly competent mosquito vector, Ae. aegypti, may represent an unequal disease burden for low-income neighborhoods of New Orleans that should be explored further. Our study highlights the importance of considering socioeconomic aspects as indirectly shaping spatial segregation dynamics of urban mosquito species.

Potential geographic distribution of Ixodes cookei, the vector of Powassan virus

Ixodes cookei Packard, the groundhog tick or woodchuck tick, is the main known vector of Powassan virus (POWV) disease in North America and an ectoparasite that infests diverse small- and mid-size mammals for blood meals to complete its life stages. Since I. cookei spends much of its life cycle off the host and needs hosts for a blood meal in order to pass to the next life stage, it is susceptible to changes in environmental conditions. We used a maximum-entropy approach to ecological niche modeling that incorporates detailed model-selection routes to link occurrence data to climatic variables to assess the potential geographic distribution of I. cookei under current and likely future climate conditions. Our models identified suitable areas in the eastern United States, from Tennessee and North Carolina north to southern Canada, including Nova Scotia, New Brunswick, eastern Newfoundland and Labrador, southern Quebec, and Ontario; suitable areas were also in western states, including Washington and Oregon and restricted areas of northern Idaho, northwestern Montana, and adjacent British Columbia, in Canada. This study produces the first maps of the potential geographic distribution of I. cookei. Documented POWV cases overlapped with suitable areas in the northeastern states; however, the presence of this disease in areas classified by our models as not suitable by our models but with POWV cases (Minnesota and North Dakota) requires more study.

Relations of peri-residential temperature and humidity in tick-life-cycle-relevant time periods with human Lyme disease risk in Pennsylvania, USA

How weather affects tick development and behavior and human Lyme disease remains poorly understood. We evaluated relations of temperature and humidity during critical periods for the tick lifecycle with human Lyme disease. We used electronic health records from 479,344 primary care patients in 38 Pennsylvania counties in 2006-2014. Lyme disease cases (n = 9657) were frequency-matched (5:1) by year, age, and sex. Using daily weather data at ~4 km(2) resolution, we created cumulative metrics hypothesized to promote (warm and humid) or inhibit (hot and dry) tick development or host-seeking during nymph development (March 1-May 31), nymph activity (May 1-July 30), and prior year larva activity (Aug 1-Sept 30). We estimated odds ratios (ORs) of Lyme disease by quartiles of each weather variable, adjusting for demographic, clinical, and other weather variables. Exposure-response patterns were observed for higher cumulative same-year temperature, humidity, and hot and dry days (nymph-relevant), and prior year hot and dry days (larva-relevant), with same-year hot and dry days showing the strongest association (4th vs. 1st quartile OR = 0.40; 95% confidence interval [CI] = 0.36, 0.43). Changing temperature and humidity could increase or decrease human Lyme disease risk.

Biting insects in a rapidly changing Arctic

Biting insects have a long-standing reputation for being an extreme presence in the Arctic, but it is unclear how they are responding to the rapid environmental changes currently taking place in the region. We review recent advances in our understanding of climate change responses by several key groups of biting insects, including mosquitoes, blackflies, and warble/botflies, and we highlight the significant knowledge gaps on this topic. We also discuss how changes in biting insect populations could impact humans and wildlife, including disease transmission and the disruption of culturally and economically important activities. Future work should integrate scientific with local and traditional ecological knowledge to better understand global change responses by biting insects in the Arctic and the associated consequences for the environmental security of Arctic communities.

Climate change, extreme events, and increased risk of salmonellosis: Foodborne diseases active surveillance network (FoodNet), 2004-2014

BACKGROUND: Infections with nontyphoidal Salmonella cause an estimated 19,336 hospitalizations each year in the United States. Sources of infection can vary by state and include animal and plant-based foods, as well as environmental reservoirs. Several studies have recognized the importance of increased ambient temperature and precipitation in the spread and persistence of Salmonella in soil and food. However, the impact of extreme weather events on Salmonella infection rates among the most prevalent serovars, has not been fully evaluated across distinct U.S. regions. METHODS: To address this knowledge gap, we obtained Salmonella case data for S. Enteriditis, S. Typhimurium, S. Newport, and S. Javiana (2004-2014; n = 32,951) from the Foodborne Diseases Active Surveillance Network (FoodNet), and weather data from the National Climatic Data Center (1960-2014). Extreme heat and precipitation events for the study period (2004-2014) were identified using location and calendar day specific 95(th) percentile thresholds derived using a 30-year baseline (1960-1989). Negative binomial generalized estimating equations were used to evaluate the association between exposure to extreme events and salmonellosis rates. RESULTS: We observed that extreme heat exposure was associated with increased rates of infection with S. Newport in Maryland (Incidence Rate Ratio (IRR): 1.07, 95% Confidence Interval (CI): 1.01, 1.14), and Tennessee (IRR: 1.06, 95% CI: 1.04, 1.09), both FoodNet sites with high densities of animal feeding operations (e.g., broiler chickens and cattle). Extreme precipitation events were also associated with increased rates of S. Javiana infections, by 22% in Connecticut (IRR: 1.22, 95% CI: 1.10, 1.35) and by 5% in Georgia (IRR: 1.05, 95% CI: 1.01, 1.08), respectively. In addition, there was an 11% (IRR: 1.11, 95% CI: 1.04-1.18) increased rate of S. Newport infections in Maryland associated with extreme precipitation events. CONCLUSIONS: Overall, our study suggests a stronger association between extreme precipitation events, compared to extreme heat, and salmonellosis across multiple U.S. regions. In addition, the rates of infection with Salmonella serovars that persist in environmental or plant-based reservoirs, such as S. Javiana and S. Newport, appear to be of particular significance regarding increased heat and rainfall events.

Impact of the future coastal water temperature scenarios on the risk of potential growth of pathogenic Vibrio marine bacteria

Vibrio (V), a genus of marine bacteria, are common inhabitants of warm coastal waters and estuaries. Vibrio includes V. parahaemolyticus and V. vulnificus species that can cause human infections through the consumption of contaminated shellfish (as bivalve molluscs). The growth of pathogenic Vibrio is related to ambient water temperature and seems to increase at 15 degrees C and over. The expansion of Vibrio infection outbreak is increasing worldwide due to the increase of the sea surface temperature as a result of ocean warming. Canada’s coast is not an exception to this worldwide Vibrio spread. Faced with this issue, this study focuses on modelling the future potential Vibrio growth risk along the coasts of the St. Lawrence Gulf and Estuary, where the shellfish industry is well developed. This is done using the adequate machine learning model with explanatory variables that include air temperature and wind speed for predicting future water temperatures. Based on the predicted future water temperature scenarios and a threshold of 15 degrees C to determine the conditions favorable to the growth of Vibrio bacteria, we modelled the Vibrio growth risk indicator, i.e. the number of days exceeding the minimum temperature for Vibrio pathogenic growth (15 degrees C), in the horizon 2040-2100. Simulations show that the number of days, where the minimum temperature (15 degrees C) will be reached, will increase spatially and even seasonally and all the shellfish beds would meet the temperature condition for Vibrio growth regardless of the climate scenario (optimistic and pessimistic).

Economic valuation of coccidioidomycosis (valley fever) projections in the United States in response to climate change

Coccidioidomycosis, or valley fever, is an infectious fungal disease currently endemic to the southwestern United States. Symptoms of valley fever range in severity from flu-like illness to severe morbidity and mortality. Warming temperatures and changes in precipitation patterns may cause the area of endemicity to expand northward throughout the western United States, putting more people at risk for contracting valley fever. This may increase the health and economic burdens from this disease. We developed an approach to describe the relationship between climate conditions and valley fever incidence using historical data and generated projections of future incidence in response to both climate change and population trends using the Climate Change Impacts and Risk Analysis (CIRA) framework developed by the U.S. Environmental Protection Agency. We also developed a method to estimate economic impacts of valley fever that is based on case counts. For our 2000-15 baseline time period, we estimated annual medical costs, lost income, and economic welfare losses for valley fever in the United States were $400,000 per case, and the annual average total cost was $3.9 billion per year. For a high greenhouse gas emission scenario and accounting for population growth, we found that total annual costs for valley fever may increase up to 164% by year 2050 and up to 380% by 2090. By the end of the twenty-first century, valley fever may cost $620,000 per case and the annual average total cost may reach $18.5 billion per year. This work contributes to the broader effort to monetize climate change-attributable damages in the United States.

Combined effects of air pollution and extreme heat events among ESKD patients within the Northeastern United States

BACKGROUND: Increasing number of studies have linked air pollution exposure with renal function decline and disease. However, there is a lack of data on its impact among end-stage kidney disease (ESKD) patients and its potential modifying effect from extreme heat events (EHE). METHODS: Fresenius Kidney Care records from 28 selected northeastern US counties were used to pool daily all-cause mortality (ACM) and all-cause hospital admissions (ACHA) counts. County-level daily ambient PM(2.5) and ozone (O(3)) were estimated using a high-resolution spatiotemporal coupled climate-air quality model and matched to ESKD patients based on ZIP codes of treatment sites. We used time-stratified case-crossover analyses to characterize acute exposures using individual and cumulative lag exposures for up to 3 days (Lag 0-3) by using a distributed lag nonlinear model framework. We used a nested model comparison hypothesis test to evaluate for interaction effects between air pollutants and EHE and stratification analyses to estimate effect measures modified by EHE days. RESULTS: From 2001 to 2016, the sample population consisted of 43,338 ESKD patients. We recorded 5217 deaths and 78,433 hospital admissions. A 10-unit increase in PM(2.5) concentration was associated with a 5% increase in ACM (rate ratio [RR(Lag0)(-)(3)]: 1.05, 95% CI: 1.00-1.10) and same-day O(3) (RR(Lag0): 1.02, 95% CI: 1.01-1.03) after adjusting for extreme heat exposures. Mortality models suggest evidence of interaction and effect measure modification, though not always simultaneously. ACM risk increased up to 8% when daily ozone concentrations exceeded National Ambient Air Quality Standards established by the United States, but the increases in risk were considerably higher during EHE days across lag periods. CONCLUSION: Our findings suggest interdependent effects of EHE and air pollution among ESKD patients for all-cause mortality risks. National level assessments are needed to consider the ESKD population as a sensitive population and inform treatment protocols during extreme heat and degraded pollution episodes.

Modeling complex effects of exposure to particulate matter and extreme heat during pregnancy on congenital heart defects: A U.S. population-based case-control study in the national birth defects prevention study

BACKGROUND/OBJECTIVE: Research suggests gestational exposure to particulate matter ≤2.5 μm (PM(2.5)) and extreme heat may independently increase risk of birth defects. We investigated whether duration of gestational extreme heat exposure modifies associations between PM(2.5) exposure and specific congenital heart defects (CHDs). We also explored nonlinear exposure-outcome relationships. METHODS: We identified CHD case children (n = 2824) and non-malformed live-birth control children (n = 4033) from pregnancies ending between 1999 and 2007 in the National Birth Defects Prevention Study, a U.S. population-based multicenter case-control study. We assigned mothers 6-week averages of PM(2.5) exposure during the cardiac critical period (postconceptional weeks 3-8) using the closest monitor within 50 km of maternal residence. We assigned a count of extreme heat days (EHDs, days above the 90th percentile of daily maximum temperature for year, season, and weather station) during this period using the closest weather station. Using generalized additive models, we explored logit-nonlinear exposure-outcome relationships, concluding logistic models were reasonable. We estimated joint effects of PM(2.5) and EHDs on six CHDs using logistic regression models adjusted for mean dewpoint and maternal age, education, and race/ethnicity. We assessed multiplicative and additive effect modification. RESULTS: Conditional on the highest observed EHD count (15) and at least one critical period day during spring/summer, each 5 μg/m(3) increase in average PM(2.5) exposure was significantly associated with perimembranous ventricular septal defects (VSDpm; OR: 1.54 [95% CI: 1.01, 2.41]). High EHD counts (8+) in the same population were positively, but non-significantly, associated with both overall septal defects and VSDpm. Null or inverse associations were observed for lower EHD counts. Multiplicative and additive effect modification estimates were consistently positive in all septal models. CONCLUSIONS: Results provide limited evidence that duration of extreme heat exposure modifies the PM(2.5)-septal defects relationship. Future research with enhanced exposure assessment and modeling techniques could clarify these relationships.

Impact of acute temperature and air pollution exposures on adult lung function: A panel study of asthmatics

BACKGROUND: Individuals with respiratory conditions, such as asthma, are particularly susceptible to adverse health effects associated with higher levels of ambient air pollution and temperature. This study evaluates whether hourly levels of fine particulate matter (PM2.5) and dry bulb globe temperature (DBGT) are associated with the lung function of adult participants with asthma. METHODS AND FINDINGS: Global positioning system (GPS) location, respiratory function (measured as forced expiratory volume at 1 second (FEV1)), and self-reports of asthma medication usage and symptoms were collected as part of the Exposure, Location, and Lung Function (ELF) study. Hourly ambient PM2.5 and DBGT exposures were estimated by integrating air quality and temperature public records with time-activity patterns using GPS coordinates for each participant (n = 35). The relationships between acute PM2.5, DBGT, rescue bronchodilator use, and lung function collected in one week periods and over two seasons (summer/winter) were analyzed by multivariate regression, using different exposure time frames. In separate models, increasing levels in PM2.5, but not DBGT, were associated with rescue bronchodilator use. Conversely DBGT, but not PM2.5, had a significant association with FEV1. When DBGT and PM2.5 exposures were placed in the same model, the strongest association between cumulative PM2.5 exposures and the use of rescue bronchodilator was identified at the 0-24 hours (OR = 1.030; 95% CI = 1.012-1.049; p-value = 0.001) and 0-48 hours (OR = 1.030; 95% CI = 1.013-1.057; p-value = 0.001) prior to lung function measure. Conversely, DBGT exposure at 0 hours (β = 3.257; SE = 0.879; p-value>0.001) and 0-6 hours (β = 2.885; SE = 0.903; p-value = 0.001) hours before a reading were associated with FEV1. No significant interactions between DBGT and PM2.5 were observed for rescue bronchodilator use or FEV1. CONCLUSIONS: Short-term increases in PM2.5 were associated with increased rescue bronchodilator use, while DBGT was associated with higher lung function (i.e. FEV1). Further studies are needed to continue to elucidate the mechanisms of acute exposure to PM2.5 and DBGT on lung function in asthmatics.

The role of temperature in modifying the risk of ozone-attributable mortality under future changes in climate: A proof-of-concept analysis

Air pollution risk assessments typically estimate ozone-attributable mortality counts using concentration-response (C-R) parameters from epidemiologic studies that treat temperature as a potential confounder. However, some recent epidemiologic studies have indicated that temperature can modify the relationship between short-term ozone exposure and mortality, which has potentially important implications when considering the impacts of climate change on public health. This proof-of-concept analysis quantifies counts of temperature-modified ozone-attributable mortality using temperature-stratified C-R parameters from a multicity study in which the pooled ozone-mortality effect coefficients change in concert with daily temperature. Meteorology downscaled from two global climate models is used with a photochemical transport model to simulate ozone concentrations over the 21st century using two emission inventories: one holding air pollutant emissions constant at 2011 levels and another accounting for reduced emissions through the year 2040. The late century climate models project increased summer season temperatures, which in turn yields larger total counts of ozone-attributable deaths in analyses using temperature-stratified C-R parameters compared to the traditional temperature confounder approach. This analysis reveals substantial heterogeneity in the magnitude and distribution of the temperature-stratified ozone-attributable mortality results, which is a function of regional variability in both the C-R relationship and the model-predicted temperature and ozone.

Heat and air quality related cause-based elderly mortalities and emergency visits

The combined effects of heat events and poor air quality conditions can severely affect population health. A novel correlational method was developed to assess the impact of the short-term variations of environmental variables (air pollutants and ambient conditions) on community health responses (mortalities and emergency department visits). A multi-dimensional clustering approach was proposed by combining hierarchical and k-means clustering to promote flexibility and robustness to improve the correlation procedure. The study focused on the health records of the elderly population and people diagnosed with cardiorespiratory causes. The study investigated multiple health records on different levels of investigation: total, elderly, cause-based, and elderly cause-based records. The developed method was validated by investigating the short-term impact of ambient air temperature, relative humidity, ground-level ozone, and fine particulate matter on the health records during hot and warm seasons in the municipalities of Mississauga and Brampton, Peel Region, Ontario, Canada for 15 years. The analysis confirmed the association between moderate levels of environmental variables and increased short-term daily total deaths and emergency department visits, while the elderly sector showed higher vulnerability to environmental changes. Furthermore, the association with extreme heat conditions and poor air quality levels was affirmed with cause-based mortalities and emergency visits; the correlation was strongest with elderly cause-based health records. Findings confirm that cardiorespiratory patients, especially elderly people, were at the greatest risk of poor environmental conditions.

Compound risk of air pollution and heat days and the influence of wildfire by SES across California, 2018-2020: Implications for environmental justice in the context of climate change

Major wildfires and heatwaves have begun to increase in frequency throughout much of the United States, particularly in western states such as California, causing increased risk to public health. Air pollution is exacerbated by both wildfires and warmer temperatures, thus adding to such risk. With climate change and the continued increase in global average temperatures, the frequency of major wildfires, heat days, and unhealthy air pollution episodes is projected to increase, resulting in the potential for compounding risks. Risks will likely vary by region and may disproportionately impact low-income communities and communities of color. In this study, we processed daily particulate matter (PM) data from over 18,000 low-cost PurpleAir sensors, along with gridMET daily maximum temperature data and government-compiled wildfire perimeter data from 2018-2020 in order to examine the occurrence of compound risk (CR) days (characterized by high temperature and high PM2.5) at the census tract level in California, and to understand how such days have been impacted by the occurrence of wildfires. Using American Community Survey data, we also examined the extent to which CR days were correlated with household income, race/ethnicity, education, and other socioeconomic factors at the census tract level. Results showed census tracts with a higher frequency of CR days to have statistically higher rates of poverty and unemployment, along with high proportions of child residents and households without computers. The frequency of CR days and elevated daily PM2.5 concentrations appeared to be strongly related to the occurrence of nearby wildfires, with over 20% of days with sensor-measured average PM2.5 > 35 mu g/m(3) showing a wildfire within a 100 km radius and over two-thirds of estimated CR days falling on such days with a nearby wildfire. Findings from this study are important to policymakers and government agencies who preside over the allocation of state resources as well as organizations seeking to empower residents and establish climate resilient communities.

Compound heat wave, drought, and dust events in California

California is one of the nation’s top agriculture producers and is vulnerable to extreme events such as droughts and heat waves. Concurrent extreme events may further stress water and energy resources, exerting greater adverse socioeconomic, environmental, and health impacts than individual events. Here we examine the features of compound drought, heat wave, and dust events in California during spring and summer. From 2003 to 2020, 16 compound events are found in warm seasons, with a mean duration of similar to 4 days. Compound events are characterized by enhanced surface temperature up to 4.5 degrees C over northern and western California, reduced soil moisture and vegetation density, and an increase in dust optical depth (DOD) by 0.05-0.1 over central and southern California. The enhanced DOD is largely associated with severe vegetation dieback that favors dust emissions and southeasterly wind anomalies that support northward transport of dust from source regions in southern California. Surface fine dust and PM2.5 concentrations also increase by more than 0.5 and 5 mu g m(-3), respectively, during compound events associated with both enhanced dust emissions and a relatively stable atmosphere that traps pollutants. The development of the compound events is related to an anomalous high over the west coast in the lower to middle troposphere, which is a pattern favoring sinking motion and dry conditions in California. The anomalous high is embedded in a wave train that develops up to 7 days before the events. In comparison with heat wave extremes alone, compound events show significantly higher DOD and lower vegetation density associated with droughts.

A new combined air quality and heat index in relation to mortality in Monterrey, Mexico

The negative synergistic effects of air pollution and sensible heat on public health have been noted in numerous studies. While separate, simplified, and public-facing indices have been developed to communicate the risks of unhealthful levels of air pollution and extreme heat, a combined index containing elements of both has rarely been investigated. Utilizing air quality, meteorology, and mortality data in Monterrey, Mexico, we investigated whether the association between the air quality index (AQI) and mortality was improved by considering elements of the heat index (HI). We created combined indices featuring additive, multiplicative, and either/or formulations and evaluated their relationship to mortality. Results showed increased associations with mortality for models employing indices that combined the AQI and the HI in an additive or multiplicative manner, with increases in the interquartile relative risk of 3-5% over that resulting from models employing the AQI alone.

Spatial variation in the joint effect of extreme heat events and ozone on respiratory hospitalizations in California

Extreme heat and ozone are co-occurring exposures that independently and synergistically increase the risk of respiratory disease. To our knowledge, no joint warning systems consider both risks; understanding their interactive effect can warrant use of comprehensive warning systems to reduce their burden. We examined heterogeneity in joint effects (on the additive scale) between heat and ozone at small geographical scales. A within-community matched design with a Bayesian hierarchical model was applied to study this association at the zip code level. Spatially varying relative risks due to interaction (RERI) were quantified to consider joint effects. Determinants of the spatial variability of effects were assessed using a random effects metaregression to consider the role of demographic/neighborhood characteristics that are known effect modifiers. A total of 817,354 unscheduled respiratory hospitalizations occurred in California from 2004 to 2013 in the May to September period. RERIs revealed no additive interaction when considering overall joint effects. However, when considering the zip code level, certain areas observed strong joint effects. A lower median income, higher percentage of unemployed residents, and exposure to other air pollutants within a zip code drove stronger joint effects; a higher percentage of commuters who walk/bicycle, a marker for neighborhood wealth, showed decreased effects. Results indicate the importance of going beyond average measures to consider spatial variation in the health burden of these exposures and predictors of joint effects. This information can be used to inform early warning systems that consider both heat and ozone to protect populations from these deleterious effects in identified areas.

Physiological Equivalent Temperature (PET) index and cardiovascular hospital admissions in Ahvaz, southwest of Iran

Evidence shows that climate change may have adverse effects on human health. The purpose of this study was to investigate the relation between Physiologically Equivalent Temperature (PET) and cardiovascular hospital admissions in Ahvaz. Distributed Lag Non-linear Models (DLNM) combined with quasi-Poisson regression models were used to investigate the effect of PET on hospital admissions. Low PET values (6.4 °C, 9.9 °C and 16.9 °C) in all lags, except lag 0-30, significantly decreased the risk of hospital admissions for total cardiovascular diseases, hypertension, ischemic heart diseases, and cardiovascular admissions in men, women and ≤65 years. But, low PET (6.4 °C) in lags 0 and 0-2 significantly increased the risk of hospital admissions for cerebrovascular diseases; and high PET values increased the risk of ischemic heart diseases and in men. Both cold and hot stress are involved in cardiovascular hospital admissions.

Association between Physiological Equivalent Temperature (PET) with adverse pregnancy outcomes in Ahvaz, southwest of Iran

Background: There are few epidemiological studies on the relation between temperature changes and adverse pregnancy outcomes. The purpose of this study was to determine the relation between Physiological Equivalent Temperature (PET) with adverse pregnancy outcomes including stillbirth, low birth weight (LBW), preterm labor (PTL), spontaneous abortion (SA), preeclampsia and hypertension in Ahvaz, Iran. Methods: Distributed Lag Non-linear Models (DLNM) combined with quasi-Poisson regression were used to investigate the effect of PET on adverse pregnancy outcomes. In this study the effect of time trend, air pollutants (NO2, SO2 and PM10), and weekdays were adjusted. Results: High PET (45.4 C°, lag = 0) caused a significant increase in risk of stillbirth. Also, high levels of PET (45.4, 43.6, 42.5 C°, lag = 0–6) and low levels of PET (9.9, 16.9 C°, lags = 0, 0–13, 0–21) significantly increased the risk of LBW. But, low levels of PET (6.4, 9.9, 16.9 C°, lags = 0–6, 0–13) reduced the risk of gestational hypertension. Conclusion: The results of this study showed that hot and cold thermal stress may be associated with increased risk of stillbirth, and LBW in Ahvaz.

Estimation of farmworkers’ exposure to heat extremes in upcoming years in the southern part of Iran

Excessive ambient air temperature due to global warming and climate change is capable of imposing heat stress on outdoor workers. This study had a quantitative, secondary, and analytical design. The present study aimed at modelling the trend of climate change by Hadley atmosphere-ocean general circulation model (HadCM) and Long Ashton Climate Generator (LARS) to predict future climate change trends, and determining heat stress in exposed farmworkers with high working energy demand who work full time in the unsheltered farm area. In this study, the data of the three synoptic metrological monitoring stations (located at the cities of Dezful (32.3831 degrees N, 48.4236 degrees E), Ahvaz (31.3183 degrees N, 48.6706 degrees E), and Dehdez (31.7011 degrees N, 50.2946 degrees E)) in a 30 years duration (1986-2016) was used. To predict the future trend of air temperature, HadCM and LARS were applied. Also, the Wet-Bulb Globe Temperature (WBGT) index was used to determine heat stress. The results showed that the temperature will increase throughout the coming years in the 3 cities (Ahvaz, Dezful, and Dehdez). The determination coefficient (R-2) ranges from 0.91 to 0.96 for the results. The rise of temperature rate between the time duration of 2011-2040 and 2041-2070 will be about 5 degrees C, and the WBGT indexes in June, July, and August were obtained as very hot (danger; > 28 degrees C). And the rate of increase in air temperature in the city of Ahvaz will be higher than in the other two cities. According to the results, it was revealed that heat stress coincidence with global warming will increase and exposure to heat for farmworkers will be much more severe.

Higher ambient temperature is associated with worsening of HbA1c levels in a Saudi population

BACKGROUND: Ambient temperature is predicted to rise in Saudi Arabia, and how this will impact the health of its population has not been investigated. Saudi Arabia is one of the top ten countries with the highest prevalence of diabetes. The current study investigates the correlation between ambient temperature and HbA1c levels in a group of Saudis in Riyadh. METHODS: Age, gender, and HbA1c data for six years were obtained from patients’ records. The maximum daily temperature of Riyadh city for the same period was obtained. RESULTS: A total of 168,614 patient records were obtained. There was a statistically significant positive correlation between ambient temperature and HbA1c levels, where for each 1°C increase in average weekly temperature HbA1c increased by 0.007%. Patients were at higher risk of having HbA1c ≥ 7% in high and moderate temperature than in low temperature (P < 0.001, odds ratio (OR): 1.134, and P < 0.001, odds ratio (OR): 1.034; respectively). The mean of HbA1c in females (7.27±1.96) was significantly lower than in males (7.40±1.86), and the probability of males having HbA1c ≥ 7% was about 17.4% higher than females. However, the HbA1c levels in females were significantly more affected by rising temperature compared to males (B = 0.003, P = 0.008). CONCLUSION: Overall, rise in ambient temperature is associated with worsening HbA1c, which could be harmful to the health of Saudis suffering from diabetes. Possible reasons for the increase in HbA1c could include reduced physical activity, reduced sunlight exposure, and dehydration during hot weather. More research on the relationship between climate change and public health in Saudi Arabia is needed.

Climate change and diarrhoeal disease burdens in the Gaza Strip, Palestine: Health impacts of 1.5 °C and 2 °C global warming scenarios

The Gaza Strip is one of the world’s most fragile states and faces substantial public health and development challenges. Climate change is intensifying existing environmental problems, including increased water stress. We provide the first published assessment of climate impacts on diarrhoeal disease in Gaza and project future health burdens under climate change scenarios. Over 1 million acute diarrhoea cases presenting to health facilities during 2009−2020 were linked to weekly temperature and rainfall data and associations assessed using time-series regression analysis employing distributed lag non-linear models (DLNMs). Models were applied to climate projections to estimate future burdens of diarrhoeal disease under 2 °C and 1.5 °C global warming scenarios. There was a significantly raised risk of diarrhoeal disease associated with both mean weekly temperature above 19 °C and total weekly rainfall below 6 mm in children 0−3 years. A heat effect was also present in subjects aged > 3 years. Annual diarrhoea cases attributable to heat and low rainfall was 2209.0 and 4070.3, respectively, in 0−3-year-olds. In both age-groups, heat-related cases could rise by over 10% under a 2 °C global warming level compared to baseline, but would be limited to below 2% under a 1.5 °C scenario. Mean rises of 0.9% and 2.7% in diarrhoea cases associated with reduced rainfall are projected for the 1.5 °C and 2 °C scenarios, respectively, in 0−3-year-olds. Climate change impacts will add to the considerable development challenges already faced by the people of Gaza. Substantial health gains could be achieved if global warming is limited to 1.5 °C.

Ability to adapt to seasonal temperature extremes among atrial fibrillation patients. A nation-wide study of hospitalizations in Israel

BACKGROUND: In recent years, temperature fluctuations and adverse weather events have become major concerns, influencing overall mortality and morbidity. While the association between extreme temperatures and atrial fibrillation (AF) has been supported by research, there is limited evidence on the ability of AF patients to adapt to the changing temperatures. We explored this question among AF patients in Israel featured by extreme temperature conditions. METHODS: We examined the association between exposure to extreme temperatures and hospitalizations related to AF in a nationwide cohort in Israel. A case-crossover design with a distributed nonlinear model (DLNM) was applied to assess possible effects of temperature fluctuations during each season. We considered the 7 days prior to the event as the possible window period. RESULTS: During 2004-2018 we recorded a total of 54,909 hospitalizations for AF. Low temperatures in winter and high in summer adversely affected AF-related hospitalizations. The effect recorded for the first few weeks of each season was of higher magnitude and decreased or faded off completely as the seasons progressed (OR in winter: from 1.14, 95%CI 0.98, 1.32 to 0.90, 95%CI: 0.77, 1.06;OR in summer: from 1.95, 95%CI: 1.51, 2.52 to 1.22, 95%CI: 0.90, 1.65). Patients living in the south region and patients with low socioeconomic status were more susceptible to extreme temperatures. CONCLUSIONS: Although extreme hot and cold temperatures are associated with an increased risk of hospitalization for AF, the patients are likely to adapt to temperature change over the course of the first weeks of the season.

Climate change and health in Kuwait: Temperature and mortality projections under different climatic scenarios

It is uncertain what climate change could bring to populations and countries in the hot desert environment of the Arabian Peninsula. Not only because they are already hot, countries in this region also have unique demographic profiles, with migrant populations potentially more vulnerable and constituting a large share of the population. In Kuwait, two-thirds of the population are migrant workers and record-high temperatures are already common. We quantified the temperature-related mortality burdens in Kuwait in the mid- (2050-2059) and end-century (2090-2099) decades under moderate (SSP2-4.5) and extreme (SSP5-8.5) climate change scenarios. We fitted time series distributed lag non-linear models to estimate the baseline temperature-mortality relationship which was then applied to future daily mean temperatures from the latest available climate models to estimate decadal temperature-mortality burdens under the two scenarios. By mid-century, the average temperature in Kuwait is predicted to increase by 1.80 degrees C (SSP2-4.5) to 2.57 degrees C (SSP5-8.5), compared to a 2000-2009 baseline. By the end of the century, we could see an increase of up to 5.54 degrees C. In a moderate scenario, climate change would increase heat-related mortality by 5.1% (95% empirical confidence intervals: 0.8, 9.3) by end-century, whereas an extreme scenario increases heat-related mortality by 11.7% (2.7, 19.0). Heat-related mortality for non-Kuwaiti migrant workers could increase by 15.1% (4.6, 22.8). For every 100 deaths in Kuwait, 13.6 (-3.6, 25.8) could be attributed to heat driven by climate change by the end of the century. Climate change induced warming, even under more optimistic mitigation scenarios, may markedly increase heat-related mortality in Kuwait. Those who are already vulnerable, like migrant workers, could borne a larger impact from climate change.

Low and high ambient temperatures during pregnancy and birth weight among 624,940 singleton term births in Israel (2010-2014): An investigation of potential windows of susceptibility

BACKGROUND: Exposure to heat during pregnancy has been associated with reduced fetal growth. Less is known about associations with cold and the potential for critical time windows of exposure. OBJECTIVES: We aimed to evaluate, in a national retrospective cohort, critical windows of susceptibility during pregnancy to extreme temperatures (low and high) and fetal growth, among 624,940 singleton term births in Israel during the period 2010-2014. METHODS: Temperature exposures were estimated using a spatially refined gridded climate data set with a 1-h and 1-km2 resolution. Percentiles of temperature were categorized by climatic zone for the entire pregnancy and by trimesters and weeks. Generalized additive models with the distributed lag nonlinear model framework were used to estimate unadjusted and adjusted associations between percentiles and categories of temperature and fetal growth markers: term [births after 36 weeks of gestational age (GA)] mean birth weight and term low birth weight (tLBW, term infants with birth weight below 2,500 g). RESULTS: After adjustment, extreme temperatures (percentiles) during the entire pregnancy were associated with a lower mean birth weight { ≤ 10th vs. 41st-50th percentile: – 56 g [95% confidence interval (CI): – 63 g, – 50 g)];  > 90th vs. 41st-50th percentile: – 65 g; 95% CI: – 72 g, – 58 g}. Similar inverse U-shaped patterns were observed for all trimesters, with stronger associations for heat than for cold and for exposures during the third trimester. For heat, results suggest critical windows between 3-9 and 19-34 GA-weeks, with the strongest association estimated at 3 GA-weeks (temperature  > 90th vs. 41st-50th percentiles: – 3.8 g; 95% CI: – 7.1 g, – 0.4 g). For cold, there was a consistent trend of null associations early in pregnancy and stronger inverse associations over time, with the strongest association at 36 GA-week ( ≤ 10th vs. 41st-50th percentiles: – 2.9 g; 95% CI: – 6.5 g, 0.7g). For tLBW, U-shape patterns were estimated for the entire pregnancy and third trimester exposures, as well as nonsignificant associations with heat for 29-36 GA-weeks. Generally, the patterns of associations with temperatures during the entire pregnancy were consistent when stratified by urbanicity and geocoding hierarchy, when estimated for daily minimum and maximum temperatures, when exposures were classified based on temperature distributions in 49 natural regions, and when estimated for all live births. DISCUSSION: Findings from our study of term live births in Israel (2010-2014) suggest that exposure to extreme temperatures, especially heat, during specific time windows may result in reduced fetal growth. https://doi.org/10.1289/EHP8117.

Adherence of healthcare workers to Saudi management guidelines of heat-related illnesses during Hajj pilgrimage

Heat-related illnesses (HRIs), such as heatstroke (HS) and heat exhaustion (HE), are common complications during Hajj pilgrims. The Saudi Ministry of Health (MoH) developed guidelines on the management of HRIs to ensure the safety of all pilgrims. This study aimed to assess healthcare workers’ (HCWs) adherence to the updated national guidelines regarding pre-hospital and in-hospital management of HRIs. This was a cross-sectional study using a questionnaire based on the updated HRI management interim guidelines for the Hajj season. Overall, compliance with HE guidelines scored 5.5 out of 10 for basic management and 4.7 out of 10 for advanced management. Medical staff showed an average to above average adherence to pre-hospital HS management, including pre-hospital considerations (7.2), recognition of HS (8.1), case assessment (7.7), stabilizing airway, breathing, and circulation (8.7), and cooling (5). The overall compliance to in-hospital guidelines for HS management were all above average, except for special conditions (4.3). In conclusion, this survey may facilitate the evaluation of the adherence to Saudi HRIs guidelines by comparing annual levels of compliance. These survey results may serve as a tool for the Saudi MoH to develop further recommendations and actions.

Analysis of outdoor thermal discomfort over the Kingdom of Saudi Arabia

In this study, the variability and trends of the outdoor thermal discomfort index (DI) in the Kingdom of Saudi Arabia (KSA) were analyzed over the 39-year period of 1980-2018. The hourly DI was estimated based on air temperature and relative humidity data obtained from the next-generation global reanalysis from the European Center for Medium-Range Weather Forecasts and in-house high-resolution regional reanalysis generated using an assimilative Weather Research Forecast (WRF) model. The DI exceeds 28°C, that is, the threshold for human discomfort, in all summer months (June to September) over most parts of the KSA due to a combination of consistently high temperatures and relative humidity. The DI is greater than 28°C for 8-16 h over the western parts of KSA and north of the central Red Sea. A DI of >28°C persistes for 7-9 h over the Red Sea and western KSA for 90% of summer days. The spatial extent and number of days with DI > 30°C, that is, the threshold for severe human discomfort, are significantly lower than those with DI > 28°C. Long-term trends in the number of days with DI > 28°C indicate a reduced rate of increase or even a decrease over some parts of the southwestern KSA in recent decades (1999-2018). Areas with DI > 30°C, in particular the northwestern regions of the Arabian Gulf and its adjoining regions, also showed improved comfort levels during recent decades. Significant increases in population and urbanization have been reported throughout the KSA during the study period. Analysis of five-years clinical data suggests a positive correlation between higher temperatures and humidity with heat-related deaths during the Hajj pilgrimage. The information provided herein is expected to aid national authorities and policymakers in developing necessary strategies to mitigate the exposure of humans to high levels of thermal discomfort in the KSA.

Knowledge, attitude and practice towards heat related illnesses of the general public of Jeddah, Saudi Arabia

Background: Heat related illness can be avoided; it may also be present in a milder form to a life threatening condition. Objectives: To explore the pattern of KAP towards HRIs among the subjects in Jeddah city. Method: It was a cross-sectional study of 378 subjects, who gave their responses through an online Google form. Data were analyzed using SPSS software version 23. The level of significance was 0.05%. Results: 18.2% of the subjects suffered from HRls, and 49% never received health education about HRIs. Increased KAP score was associated with increased age (b= 0.177, p<0.000), more encountered in the females (b= -2.25, p <0.000), in those who owned air conditioning (b = 5.3, p < 0.024), in the smokers (b= 1.77, p<0.35), and in those who received health education about HRIs (b=2.327, p< 0.000). Conclusions: The subjects' awareness of the prevention of HRIs needs to be strengthened.

Evaluating the understanding about kidney stones among adults in the United Arab Emirates

OBJECTIVES: The prevalence of kidney stones is increasing worldwide. Multiple risk factors are believed to contribute to the development of kidney stones such as lifestyle, diet, and global warming. In the United Arab Emirates (UAE), there has been limited research exploring the prevalence and risk factors of kidney stones. This study attempts to assess the understanding and prevalence of kidney stones among adults in the UAE. METHODS: In this cross-sectional study, data were collected using a self-administered questionnaire, distributed among 515 participants (20-49 years old) from Abu Dhabi, Dubai, Ajman, and Sharjah states. IBM SPSS version 25 was used for data analysis. RESULTS: The mean of knowledge score was 56.4% (n = 500). There was no correlation between the knowledge of those who had experienced kidney stones and those who did not. Furthermore, a family history of kidney stones increased the risk of developing stones by 2.27 times. Among participants reporting signs, symptoms, diagnosis, and the management of kidney stones, the knowledge and understanding about kidney stones was high. However, the perceptions of the same cohort about dietary precautions were limited. While analysing the sources of knowledge, the Internet and mass media were twice as important as physicians in educating the population. CONCLUSION: This study shows that the study cohort from the UAE population was aware of certain aspects of kidney stones but was quite naïve about its consequential risk factors. This highlights the importance of promoting education about kidney stones through health campaigns.

Data-driven analysis of climate change in Saudi Arabia: Trends in temperature extremes and human comfort indicators

We have analyzed the long-term temperature trends and extreme temperature events in Saudi Arabia between 1979 and 2019. Our study relies on high-resolution, consistent, and complete ERA5 reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). We evaluated linear trends in several climate descriptors, including temperature, dewpoint temperature, thermal comfort, and extreme event indices. Previous works on this topic used data from weather station observations over limited time intervals and did not include temperature data for recent years. The years 2010-19 have been the warmest decade ever observed by instrumental temperature monitoring and are the eight warmest years on record. Therefore, the earlier results may be incomplete, and their results may no longer be relevant. Our findings indicate that, over the past four decades, Saudi Arabia has warmed up at a rate that is 50% higher than the rest of the landmass in the Northern Hemisphere. Moreover, moisture content of the air has significantly increased in the region. The increases of temperature and humidity have resulted in the soaring of dewpoint temperature and thermal discomfort across the country. These increases are more substantial during summers, which are already very hot relative to winters. Such changes may be dangerous to people over vast areas of the country. If the current trend persists into the future, human survival in the region will be impossible without continuous access to air conditioning.

Extreme temperatures and mortality in Latin America: Voices are needed from the global south

Recent work by Kephart et al.(1) updates estimates for mortality burden attributable to non-optimal ambient temperatures in Latin America, which helps to understand the climate-related health risks and burden in less-developed areas. Here, we discuss the main findings and focus on methodology that remains controversial in heat health field.

Influence of temperature on mortality in the French overseas regions: A pledge for adaptation to heat in tropical marine climates

CONTEXT: Tropical areas and small islands are identified as highly vulnerable to climate change, and already experiencing shifts in their temperature distribution. However, the knowledge on the health impacts of temperatures under tropical marine climate is limited. We explored the influence of temperature on mortality in four French overseas regions located in French Guiana, French West Indies, and in the Indian Ocean, between 2000 and 2015. METHOD: Distributed lag non-linear generalized models linking temperature and mortality were developed in each area, and relative risks were combined through a meta-analysis. Models were used to estimate the fraction of mortality attributable to non-optimal temperatures. The role of humidity was also investigated. RESULTS: An increased risk of mortality was observed when the temperature deviated from median. Results were not modified when introducing humidity. Between 2000 and 2015, 979 deaths [confidence interval (CI) 95% 531:1359] were attributable to temperatures higher than the 90th percentile of the temperature distribution, and 442 [CI 95% 178:667] to temperature lower than the 10th percentile. DISCUSSION: Heat already has a large impact on mortality in the French overseas regions. Results suggest that adaptation to heat is relevant under tropical marine climate.

Extreme heat, preterm birth, and stillbirth: A global analysis across 14 lower-middle income countries

Stillbirths and complications from preterm birth are two of the leading causes of neonatal deaths across the globe. Lower- to middle-income countries (LMICs) are experiencing some of the highest rates of these adverse birth outcomes. Research has suggested that environmental determinants, such as extreme heat, can increase the risk of preterm birth and stillbirth. Under climate change, extreme heat events have become more severe and frequent and are occurring in differential seasonal patterns. Little is known about how extreme heat affects the risk of preterm birth and stillbirth in LMICs. Thus, it is imperative to examine how exposure to extreme heat affects adverse birth outcomes in regions with some of the highest rates of preterm and stillbirths. Most of the evidence linking extreme heat and adverse birth outcomes has been generated from high-income countries (HICs) notably because measuring temperature in LMICs has proven challenging due to the scarcity of ground monitors. The paucity of health data has been an additional obstacle to study this relationship in LMICs. In this study, globally gridded meteorological data was linked with spatially and temporally resolved Demographic and Health Surveys (DHS) data on adverse birth outcomes. A global analysis of 14 LMICs was conducted per a pooled time-stratified case-crossover design with distributed-lag nonlinear models to ascertain the relationship between acute exposure to extreme heat and PTB and stillbirths. We notably found that experiencing higher maximum temperatures and smaller diurnal temperature range during the last week before birth increased the risk of preterm birth and stillbirth. This study is the first global assessment of extreme heat events and adverse birth outcomes and builds the evidence base for LMICs.

A cross-tabulated analysis for the influence of climate conditions on the incidence of dengue fever in Jeddah City, Saudi Arabia during 2006-2009

OBJECTIVE: Increased temperature and humidity across the world and emergence of mosquito-borne diseases, notably dengue both continue to present public health problems, but their relationship is not clear as conflicting evidence abound on the association between climate conditions and risk of dengue fever. This characterization is important as mitigation of climate change-related variables will contribute toward efficient planning of health services. The purpose of this study was to determine whether humidity in addition to high temperatures increase the risk of dengue transmission. METHODS: We have assessed the joint association between temperature and humidity with the incidence of dengue fever at Jeddah City in Saudi Arabia. We obtained weekly data from Jeddah City on temperature and humidity between 2006 and 2009 for 200 weeks starting week 1/2006 and ending week 53/2009. We also collected incident case data on dengue fever in Jeddah City. RESULTS: The cross-tabulated analysis showed an association between temperature or humidity conditions and incident cases of dengue. Our data found that hot and dry conditions were associated with a high risk of dengue incidence in Jeddah City. CONCLUSION: Hot and dry conditions are risk factors for dengue fever.

Rift Valley Fever and West Nile virus vectors in Morocco: Current situation and future anticipated scenarios

Rift Valley Fever (RVF) and West Nile virus (WNV) are two important emerging Arboviruses transmitted by Aedes and Culex mosquitoes, typically Ae. caspius, Ae. detritus and Cx. pipiens in temperate regions. In Morocco, several outbreaks of WNV (1996, 2003 and 2010), affecting horses mostly, have been reported in north-western regions resulting in the death of 55 horses and one person cumulatively. Serological evidence of WNV local circulation, performed one year after the latest outbreak, revealed WNV neutralizing bodies in 59 out of 499 tested participants (El Rhaffouli et al., 2012). The country also shares common borders with northern Mauritania, where RVF is often documented. Human movement, livestock trade, climate changes and the availability of susceptible mosquito vectors are expected to increase the spread of these diseases in the country. Thus, in this study, we gathered a data set summarizing occurrences of Ae. caspius, Ae. detritus and Cx. pipiens in the country, and generated model prediction for their potential distribution under both current and future (2050) climate conditions, as a proxy to identify regions at-risk of RVF and WNV probable expansion. We found that the north-western regions (where the population is most concentrated), specifically along the Atlantic coastline, are highly suitable for Ae. caspius, Ae. detritus and Cx. pipiens, under present-day conditions. Future model scenarios anticipated possible range changes for the three mosquitoes under all climatic assumptions. All of the studied species are prospected to gain new areas that are currently not suitable, even under the most optimist scenario, thus placing additional human populations at risk. Our maps and predictions offer an opportunity to strategically target surveillance and control programmes. Public health officials, entomological surveillance and control delegation must augment efforts and continuously monitor these areas to reduce and minimize human infection risk.

Disentangling snakebite dynamics in Colombia: How does rainfall and temperature drive snakebite temporal patterns?

The role of climate driving zoonotic diseases’ population dynamics has typically been addressed via retrospective analyses of national aggregated incidence records. A central question in epidemiology has been whether seasonal and interannual cycles are driven by climate variation or generated by socioeconomic factors. Here, we use compartmental models to quantify the role of rainfall and temperature in the dynamics of snakebite, which is one of the primary neglected tropical diseases. We took advantage of space-time datasets of snakebite incidence, rainfall, and temperature for Colombia and combined it with stochastic compartmental models and iterated filtering methods to show the role of rainfall-driven seasonality modulating the encounter frequency with venomous snakes. Then we identified six zones with different rainfall patterns to demonstrate that the relationship between rainfall and snakebite incidence was heterogeneous in space. We show that rainfall only drives snakebite incidence in regions with marked dry seasons, where rainfall becomes the limiting resource, while temperature does not modulate snakebite incidence. In addition, the encounter frequency differs between regions, and it is higher in regions where Bothrops atrox can be found. Our results show how the heterogeneous spatial distribution of snakebite risk seasonality in the country may be related to important traits of venomous snakes’ natural history.

Drought-heatwave nexus in Brazil and related impacts on health and fires: A comprehensive review

Climate change is drastically altering the frequency, duration, and severity of compound drought-heatwave (CDHW) episodes, which present a new challenge in environmental and socioeconomic sectors. These threats are of particular importance in low-income regions with growing populations, fragile infrastructure, and threatened ecosystems. This review synthesizes emerging progress in the understanding of CDHW patterns in Brazil while providing insights about the impacts on fire occurrence and public health. Evidence is mounting that heatwaves are becoming increasingly linked with droughts in northeastern and southeastern Brazil, the Amazonia, and the Pantanal. In those regions, recent studies have begun to build a better understanding of the physical mechanisms behind CDHW events, such as the soil moisture-atmosphere coupling, promoted by exceptional atmospheric blocking conditions. Results hint at a synergy between CDHW events and high fire activity in the country over the last decades, with the most recent example being the catastrophic 2020 fires in the Pantanal. Moreover, we show that HWs were responsible for increasing mortality and preterm births during record-breaking droughts in southeastern Brazil. This work paves the way for a more in-depth understanding on CDHW events and their impacts, which is crucial to enhance the adaptive capacity of different Brazilian sectors.

Effects of environmental and socioeconomic inequalities on health outcomes: A multi-region time-series study

The gradual increase in temperatures and changes in relative humidity, added to the aging and socioeconomic conditions of the population, may represent problems for public health, given that future projections predict even more noticeable changes in the climate and the age pyramid, which require analyses at an appropriate spatial scale. To our knowledge, an analysis of the synergic effects of several climatic and socioeconomic conditions on hospital admissions and deaths by cardiorespiratory and mental disorders has not yet been performed in Brazil. Statistical analyses were performed using public time series (1996-2015) of daily health and meteorological data from 16 metropolitan regions (in a subtropical climate zone in South America). Health data were stratified into six groups according to gender and age ranges (40-59; 60-79; and ≥80 years old) for each region. For the regression analysis, two distributions (Poisson and binomial negative) were tested with and without zero adjustments for the complete series and percentiles. Finally, the relative risks were calculated, and the effects based on exposure-response curves were evaluated and compared among regions. The negative binomial distribution fit the data best. High temperatures and low relative humidity were the most relevant risk factors for hospitalizations for cardiovascular diseases (lag = 0), while minimum temperatures were important for respiratory diseases (lag = 2 or 3 days). Temperature extremes, both high and low, were the most important risk factors for mental illnesses at lag 0. Groups with people over 60 years old presented higher risks for cardiovascular and respiratory diseases, while this was observed for the adult group (40-59 years old) in relation to mental disorders. In general, no major differences were found in the results between men and women. However, regions with higher urbanization levels presented risks, mainly for respiratory diseases, while the same was observed for cardiovascular diseases for regions with lower levels of urbanization. The Municipal Human Development Index is an important factor for the occurrence of diseases and deaths for all regions, depending on the evaluated group, representing high risks for health outcomes (the value for hospitalization for cardiovascular diseases was 1.6713 for the female adult group in the metropolitan region Palmas, and the value for hospitalization for respiratory diseases was 1.7274 for the female adult group in the metropolitan region Campo Mourão). In general, less developed regions have less access to adequate health care and better living conditions.

Projections of excess cardiovascular mortality related to temperature under different climate change scenarios and regionalized climate model simulations in Brazilian cities

BACKGROUND: There is an urgent need for more information about the climate change impact on health in order to strengthen the commitment to tackle climate change. However, few studies have quantified the health impact of climate change in Brazil and in the Latin America region. In this paper, we projected the impacts of temperature on cardiovascular (CVD) mortality according to two climate change scenarios and two regionalized climate model simulations in Brazilian cities. METHODS: We estimated the temperature-CVD mortality relationship in 21 Brazilian cities, using distributed lag non-linear models in a two-stage time-series analysis. We combined the observed exposure-response functions with the daily temperature projected under two representative concentration pathways (RCP), RCP8.5 and RCP4.5, and two regionalized climate model simulations, Eta-HadGEM2-ES and Eta-MIROC5. RESULTS: We observed a trend of reduction in mortality related to low temperatures and a trend of increase in mortality related to high temperatures, according to all the investigated models and scenarios. In most places, the increase in mortality related to high temperatures outweighed the reduction in mortality related to low temperatures, causing a net increase in the excess temperature-related mortality. These trends were steeper according to the higher emission scenario, RCP8.5, and to the Eta-HadGEM2-ES model. According to RCP8.5, our projections suggested that the temperature-related mortality fractions in 2090-99 compared to 2010-2019 would increase by 8.6% and 1.7%, under Eta-HadGEM2-ES and Eta-MIROC5, respectively. According to RCP4.5, these values would be 0.7% and -0.6%. CONCLUSIONS: For the same climate model, we observed a greater increase trend in temperature-CVD mortality according to RCP8.5, highlighting a greater health impact associated with the higher emission scenario. Our results may be useful to support public policies and strategies for mitigation of and adaptation to climate change, particularly in the health sector.

Ambient temperature and term birthweight in latin american cities

BACKGROUND: Extreme temperatures may lead to adverse pregnancy and birth outcomes, including low birthweight. Studies on the impact of temperature on birthweight have been inconclusive due to methodological challenges related to operationalizing temperature exposure, the definitions of exposure windows, accounting for gestational age, and a limited geographic scope. METHODS: We combined data on individual-level term live births (N≈15 million births) from urban areas in Brazil, Chile, and Mexico from 2010 to 2015 from the SALURBAL study (Urban Health in Latin America) with high-resolution daily air temperature data and computed average ambient temperature for every month of gestation for each newborn. Associations between full-term birthweight and average temperature during gestation were analyzed using multi-level distributed lag non-linear models that adjusted for newborn’s sex, season of conception, and calendar year of child’s birth; controlled for maternal age, education, partnership status, presence of previous births, and climate zone; and included a random term for the sub-city of mother’s residence. FINDINGS: Higher temperatures during the entire gestation are associated with lower birthweight, particularly in Mexico and Brazil. The cumulative effect of temperature on birthweight is mostly driven by exposure to higher temperatures during months 7-9 of gestation. Higher maternal education can attenuate the temperature-birthweight associations. INTERPRETATION: Our work shows that climate-health impacts are likely to be context- and place-specific and warrants research on temperature and birthweight in diverse climates to adequately anticipate global climate change. Given the high societal cost of suboptimal birthweight, public health efforts should be aimed at diminishing the detrimental effect of higher temperatures on birthweight. FUNDING: The Wellcome Trust.

City-level impact of extreme temperatures and mortality in Latin America

Climate change and urbanization are rapidly increasing human exposure to extreme ambient temperatures, yet few studies have examined temperature and mortality in Latin America. We conducted a nonlinear, distributed-lag, longitudinal analysis of daily ambient temperatures and mortality among 326 Latin American cities between 2002 and 2015. We observed 15,431,532 deaths among ≈2.9 billion person-years of risk. The excess death fraction of total deaths was 0.67% (95% confidence interval (CI) 0.58-0.74%) for heat-related deaths and 5.09% (95% CI 4.64-5.47%) for cold-related deaths. The relative risk of death was 1.057 (95% CI 1.046-1.067%) per 1 °C higher temperature during extreme heat and 1.034 (95% CI 1.028-1.040%) per 1 °C lower temperature during extreme cold. In Latin American cities, a substantial proportion of deaths is attributable to nonoptimal ambient temperatures. Marginal increases in observed hot temperatures are associated with steep increases in mortality risk. These risks were strongest among older adults and for cardiovascular and respiratory deaths.

Modification of temperature-related human mortality by area-level socioeconomic and demographic characteristics in Latin American cities

BACKGROUND: In Latin America, where climate change and rapid urbanization converge, non-optimal ambient temperatures contribute to excess mortality. However, little is known about area-level characteristics that confer vulnerability to temperature-related mortality. OBJECTIVES: Explore city-level socioeconomic and demographic characteristics associated with temperature-related mortality in Latin American cities. METHODS: The dependent variables quantify city-specific associations between temperature and mortality: heat- and cold-related excess death fractions (EDF, or percentages of total deaths attributed to cold/hot temperatures), and the relative mortality risk (RR) associated with 1 °C difference in temperature in 325 cities during 2002-2015. Random effects meta-regressions were used to investigate whether EDFs and RRs associated with heat and cold varied by city-level characteristics, including population size, population density, built-up area, age-standardized mortality rate, poverty, living conditions, educational attainment, income inequality, and residential segregation by education level. RESULTS: We find limited effect modification of cold-related mortality by city-level demographic and socioeconomic characteristics and several unexpected associations for heat-related mortality. For example, cities in the highest compared to the lowest tertile of income inequality have all-age cold-related excess mortality that is, on average, 3.45 percentage points higher (95% CI: 0.33, 6.56). Higher poverty and higher segregation were also associated with higher cold EDF among those 65 and older. Large, densely populated cities, and cities with high levels of poverty and income inequality experience smaller heat EDFs compared to smaller and less densely populated cities, and cities with little poverty and income inequality. DISCUSSION: Evidence of effect modification of cold-related mortality in Latin American cities was limited, and unexpected patterns of modification of heat-related mortality were observed. Socioeconomic deprivation may impact cold-related mortality, particularly among the elderly. The findings of higher levels of poverty and income inequality associated with lower heat-related mortality deserve further investigation given the increasing importance of urban adaptation to climate change.

Happiness in the tropics: Climate variables and subjective wellbeing

Changes in climatic patterns are expected to have significant effects on health and wellbeing. However, the literature on the effect of climate on subjective wellbeing remains scant and existing studies focus mostly on developed countries or cross-country analyses. This paper aims to identify the relationship between climate conditions on happiness after controlling for individual and social characteristics. Ecuador, a geographically fragmented country with varying climate conditions across municipalities, constitutes an ideal case study to assess the effect of climate variables on happiness. We employ a cross-section analysis to identify the effect of temperature, precipitation and humidity on happiness. The paper shows that climate conditions constitute an important determinant of people’s subjective wellbeing. The results also suggest that income and education attenuate the effect of temperature on happiness and that substantial differences are observed depending on whether places are hot/humid or cold/dry.

Energy efficiency, thermal resilience, and health during extreme heat events in low-income housing in Argentina

Extreme heat events result in higher indoor temperatures in buildings, increased energy consumption, and more frequent health problems, mainly between the children, the elderly over 65, and vulnerable low-income people. The indoor environment plays a key role in reducing the effects of extreme heat events. While the benefits of passive cooling measures on thermal and environmental aspects are well known, their effects on resilience are less well explored. This paper aims at studying the indoor environment in low-income housing from the energy and heat resilience points of view, during extreme hot periods, together with possible passive cooling measures to be applied in the houses in order to improve both, heat resilience and energy efficiency. A low-income neighbourhood in La Pampa, central Argentina, was selected as a case study. Transient thermal simulation, electricity consumption bills obtained from the Energy Company, and health statistics from the data-base of the nearby hospital were used. We conclude that the houses are not capable to manage hot/heat wave periods in a resilient way because of their energy inefficient design. Moreover, the cooling equipment is sub-used due to economic reasons. Indoor temperatures exceeded 33 degrees C and Heat Index reached “Extreme caution” health risk level. Sudden changes in the meteorological conditions seems to increase the number of consultations of health disorders previous or after the hot periods. The best set of passive strategies is to favour night ventilation together with shading of the envelope (i.e., by trees, climbing plants, green walls, or by installing ventilated opaque facades) and an improved roof (light colour coating and addition of thermal insulation). These strategies could both, improve the heat resilience and the thermal behavior of the indoor environment while reducing the electricity consumption in the hottest months of summer. (C) 2020 Elsevier B.V. All rights reserved.

Mortality risk during heat waves in the summer 2013-2014 in 18 provinces of Argentina: Ecological study

Increased frequency of heat waves (HWs) is one of the prominent consequences of climate change. Its impact on human health has been mostly reported in the northern hemisphere but has been poorly studied in the southern hemisphere. The aim of this study was to analyze the effects of the HWs waves occurred in the warm season 2013-14 on mortality in the center-north region of Argentina, where 22 million people live. It was carried out an observational study of ecological-type contrasting the mortality occurred during the HWs of the summer 2013-14 with the mortality in the summers 2010-11 to 2012-13, free from HWs. The mortality was analyzed according to the following variables: place of residence, age, sex and cause of death. During the HWs of the summer 2013-14, 1877 (RR=1.23, 95%CI 1.20-1.28) deaths in excess were registered. Moreover, the death risk significantly increased in 13 of the 18 provinces analyzed. The mortality rates by sex revealed heterogeneous behaviour regarding both the time and spatial scale. The death risk increased with age; it was particularly significant in four provinces for the 60-79 years group and in six provinces in people of 80 years and over. The death causes that showed significantly increments were respiratory, cardiovascular, renal diseases and diabetes.

Deforestation and climate change are projected to increase heat stress risk in the Brazilian Amazon

Complete savannization of the Amazon Basin would enhance the effects of climate change on local heat exposure and pose a risk to human health, according to climate model projections. Land use change and deforestation can influence local temperature and climate. Here we use a coupled ocean-atmosphere model to assess the impact of savannization of the Amazon Basin on the wet-bulb globe temperature heat stress index under two climate change scenarios (RCP4.5 and RCP8.5). We find that heat stress exposure due to deforestation was comparable to the effect of climate change under RCP8.5. Our findings suggest that heat stress index could exceed the human adaptation limit by 2100 under the combined effects of Amazon savannization and climate change. Moreover, we find that risk of heat stress exposure was highest in Northern Brazil and among the most socially vulnerable. We suggest that by 2100, savannization of the Amazon will lead to more than 11 million people will be exposed heat stress that poses an extreme risk to human health under a high emission scenario.

Kidney function in rice workers exposed to heat and dehydration in Costa Rica

The aim of this study was to evaluate heat exposure, dehydration, and kidney function in rice workers over the course of three months, in Guanacaste, Costa Rica. We collected biological and questionnaire data across a three-month-period in male field (n = 27) and other (n = 45) workers from a rice company where chronic kidney disease of unknown origin (CKDu) is endemic. We used stepwise forward regression to determine variables associated with estimated glomerular filtration rate eGFR at enrollment and/or change in eGFR, and Poisson regression to assess associations with incident kidney injury (IKI) over the course of three months. Participants were 20−62 years old (median = 40 in both groups). Dehydration was common (≥37%) in both groups, particularly among other workers at enrollment, but field workers were more exposed to heat and had higher workloads. Low eGFR (<60 mL/min/1.73 m2) was more prevalent in field workers at enrollment (19% vs. 4%) and follow-up (26% vs. 7%). Field workers experienced incident kidney injury (IKI) more frequently than other workers: 26% versus 2%, respectively. Age (β = −0.71, 95%CI: −1.1, −0.4), current position as a field worker (β = −2.75, 95%CI: −6.49, 0.99) and past work in construction (β = 3.8, 95%CI: −0.1, 7.6) were included in the multivariate regression model to explain eGFR at enrollment. The multivariate regression model for decreased in eGFR over three month included current field worker (β = −3.9, 95%CI: −8.2, 0.4), current smoking (β= −6.2, 95%CI: −13.7−1.3), dehydration (USG ≥ 1.025) at both visits (β= −3.19, 95%CI: −7.6, 1.2) and pain medication at follow-up (β= −3.2, 95%CI: −8.2, 1.95). Current fieldwork [IR (incidence rate) = 2.2, 95%CI 1.1, 5.8) and being diabetic (IR = 1.8, 95%CI 0.9, 3.6) were associated with IKI. Low eGFR was common in field workers from a rice company in Guanacaste, and being a field worker was a risk factor for IKI, consistent with the hypothesis that occupational heat exposure is a critical risk factor for CKDu in Mesoamerica.

Assessment of the impact of higher temperatures due to climate change on the mortality risk indexes in Ecuador until 2070

Extreme weather conditions, including intense heat stress due to higher temperatures, could trigger an increase in mortality risk. One way to evaluate the increase in mortality risk due to higher temperatures is the high risk warming (HRW) index, which evaluates the difference between the future and base period of a given percentile of daily maximum temperature (Tmax). Another is to calculate the future increase in the number of days over the temperature of such percentile, named high risk days (HRD) index. Previous studies point to the 84th percentile as the optimum temperature. Thus, this study aims to evaluate HRW and HRD indexes in Ecuador from 2011 to 2070 over the three natural climate zones, e.g., Coast, Andes, and Amazon. This climate analysis is based on historical data from meteorological stations and projections from CSIRO-MK36, GISS-E2, and IPSL-CM5A-MR, CMIP5 global climate models with dynamical scale reduction through weather research forecasting (WRF). The representative concentration pathways (RCPs), 8.5, were considered, which are related to the highest increases in future temperature. The results indicate that HRW and HRD will experience a larger increase in the period 2041-2070 compared with the period 1980-2005; in particular, these two indices will have a progressively increasing trend from 2011 onward. Specifically, the HRW calculated from the CMIP5 models for all stations is expected to grow from 0.6 degrees C to 1.4 degrees C and 1.8 degrees C to 4.6 degrees C for 2010-2040 and 2041-2070, respectively. Also, it is expected that the HRD for all stations will increase from 42 to 74 and 120 to 227 warming days for 2011-2040 and 2041-2070, respectively. The trends derived using Sen’s slope test show an increase in the HRW between 0.5 degrees C and 0.9 degrees C/decade and of the HRD between 2.88 and 4.9 days/decade since 1985. These results imply a high increase in heat-related mortality risks related to climate change in Ecuador. In terms of spatial distribution, three Ecuadorian regions experienced more critical temperature conditions with higher values of HRW and HRD for 2070. As a response to the increased frequency trends of warming periods in tropical areas, urgent measures should be taken to review public policies and legislation to mitigate the impacts of heat as a risk for human health in Ecuador.

Climate trends at a hotspot of chronic kidney disease of unknown causes in Nicaragua, 1973-2014

An ongoing epidemic of chronic kidney disease of uncertain etiology (CKDu) afflicts large parts of Central America and is hypothesized to be linked to heat stress at work. Mortality rates from CKDu appear to have increased dramatically since the 1970s. To explore this relationship, we assessed trends in maximum and minimum temperatures during harvest months between 1973 and 2014 as well as in the number of days during the harvest season for which the maximum temperature surpassed 35 °C. Data were collected at a weather station at a Nicaraguan sugar company where large numbers of workers have been affected by CKDu. Monthly averages of the daily maximum temperatures between 1996 and 2014 were also compared to concurrent weather data from eight Automated Surface Observing System Network weather stations across Nicaragua. Our objectives were to assess changes in temperature across harvest seasons, estimate the number of days that workers were at risk of heat-related illness and compare daily maximum temperatures across various sites in Nicaragua. The monthly average daily maximum temperature during the harvest season increased by 0.7 °C per decade between 1973 and 1990. The number of days per harvest season with a maximum temperature over 35 °C increased by approximately five days per year between 1974 and 1990, from 32 days to 114 days. Between 1991 and 2013, the number of harvest days with a maximum temperature over 35 °C decreased by two days per year, and the monthly average daily maximum temperature decreased by 0.3 °C per decade. Comparisons with weather stations across Nicaragua demonstrate that this company is located in one of the consistently hottest regions of the country.

Tropical deforestation accelerates local warming and loss of safe outdoor working hours

Climate change has increased heat exposure in many parts of the tropics, negatively impacting outdoor worker productivity and health. Although it is known that tropical deforestation is associated with local warming, the extent to which this additional heat exposure affects people across the tropics is unknown. In this modeling study, we combine worker health guidelines with satellite, reanalysis, and population data to investigate how warming associated with recent deforestation (2003-2018) affects outdoor working conditions across low-latitude countries, and how future global climate change will magnify heat exposure for people in deforested areas. We find that the local warming from 15 years of deforestation was associated with losses in safe thermal working conditions for 2.8 million outdoor workers. We also show recent large-scale forest loss was associated with particularly large impacts on populations in locations such as the Brazilian states of Mato Grosso and Para ‘. Future global warming and additional forest loss will magnify these impacts.

An ecological study of chronic kidney disease in five Mesoamerican countries: Associations with crop and heat

BACKGROUND: Mesoamerica is severely affected by an epidemic of Chronic Kidney Disease of non-traditional origin (CKDnt), an epidemic with a marked variation within countries. We sought to describe the spatial distribution of CKDnt in Mesoamerica and examine area-level crop and climate risk factors. METHODS: CKD mortality or hospital admissions data was available for five countries: Mexico, Guatemala, El Salvador, Nicaragua and Costa Rica and linked to demographic, crop and climate data. Maps were developed using Bayesian spatial regression models. Regression models were used to analyze the association between area-level CKD burden and heat and cultivation of four crops: sugarcane, banana, rice and coffee. RESULTS: There are regions within each of the five countries with elevated CKD burden. Municipalities in hot areas and much sugarcane cultivation had higher CKD burden, both compared to equally hot municipalities with lower intensity of sugarcane cultivation and to less hot areas with equally intense sugarcane cultivation, but associations with other crops at different intensity and heat levels were not consistent across countries. CONCLUSION: Mapping routinely collected, already available data could be a first step to identify areas with high CKD burden. The finding of higher CKD burden in hot regions with intense sugarcane cultivation which was repeated in all five countries agree with individual-level studies identifying heavy physical labor in heat as a key CKDnt risk factor. In contrast, no associations between CKD burden and other crops were observed.

Effect of particulate matter (PM(2.5) and PM(10)) on health indicators: Climate change scenarios in a Brazilian metropolis

Recife is recognized as the 16th most vulnerable city to climate change in the world. In addition, the city has levels of air pollutants above the new limits proposed by the World Health Organization (WHO) in 2021. In this sense, the present study had two main objectives: (1) To evaluate the health (and economic) benefits related to the reduction in mean annual concentrations of PM(10) and PM(2.5) considering the new limits recommended by the WHO: 15 µg/m(3) (PM(10)) and 5 µg/m(3) (PM(2.5)) and (2) To simulate the behavior of these pollutants in scenarios with increased temperature (2 and 4 °C) using machine learning. The averages of PM(2.5) and PM(10) were above the limits recommended by the WHO. The scenario simulating the reduction in these pollutants below the new WHO limits would avoid more than 130 deaths and 84 hospital admissions for respiratory or cardiovascular problems. This represents a gain of 15.2 months in life expectancy and a cost of almost 160 million dollars. Regarding the simulated temperature increase, the most conservative (+ 2 °C) and most drastic (+ 4 °C) scenarios predict an increase of approximately 6.5 and 15%, respectively, in the concentrations of PM(2.5) and PM(10), with a progressive increase in deaths attributed to air pollution. The study shows that the increase in temperature will have impacts on air particulate matter and health outcomes. Climate change mitigation and pollution control policies must be implemented for meeting new WHO air quality standards which may have health benefits.

Extreme weather conditions and cardiovascular hospitalizations in southern Brazil

This research concerns the identification of a pattern between the occurrence of extreme weather conditions, such as cold waves and heat waves, and hospitalization for cardiovascular diseases (CVDs), in the University Hospital of Santa Maria (HUSM) in southern Brazil between 2012 and 2017. The research employed the field experiment method to measure the biometeorological parameters associated with hospital admissions in different seasons, such as during extreme weather conditions such as a cold wave (CW) or a heat wave (HW), using five thermal comfort indices: physiologically equivalent temperature (PET), new standard effective temperature (SET), predicted mean vote (PMV), effective temperatures (ET), and effective temperature with wind (ETW). The hospitalizations were recorded as 0.775 and 0.726 admissions per day for the winter and entire study periods, respectively. The records for extreme events showed higher admission rates than those on average days. The results also suggest that emergency hospitalizations for heart diseases during extreme weather events occurred predominantly on days with thermal discomfort. Furthermore, there was a particularly high risk of hospitalization for up to seven days after the end of the CW. Further analyses showed that cardiovascular hospitalizations were higher in winter than in summer, suggesting that CWs are more life threatening in wintertime.

Analysis of future climate scenarios for northeastern Brazil and implications for human thermal comfort

A thermal comfort index for the Northeast of Brazil was analyzed for two scenarios of climatic changes, A1B and A2, for 2021-2080, and compared with the reference period 1961-1990. A technique of regionalization was applied to rainfall, maximum and minimum temperature data from meteorological stations, obtained by statistical downscaling of projections from four global climate models. The results pointed to a significant reduction of rainfall and an increase of temperature for three different climatically homogeneous subregions. Regarding the thermal comfort index, the results point to an increase in days with heat discomfort between 2021 and 2080. In the northern portion, the higher percentage of days with heat discomfort will be significant since the first half of the period under appreciation, i.e., from 2021 to 2050. Conversely, in the eastern of northeastern Brazil, the increase of days with heat discomfort should happen in the period from 2051 to 2080, whereas the central-western part of the region, which, in the reference period, had recorded less than 1% of days with heat discomfort, might see an elevation of that percentage to 7% between 2021 and 2050, potentially reaching 48% of its days made uncomfortable by heat between 2051 and 2080.

Meteorological conditions and thermal comfort during the athletic events of the olympic games in Rio de Janeiro in 2016

This work is taken up to evaluate the relationship between the thermal comfort of spectators and athletes and the prevailing meteorological conditions during Rio 2016 Olympic Games. Empirical and physiological thermal comfort indices are calculated from data collected from an automatic weather station installed near the Olympic Stadium and interviews with the spectators. The study period was marked by a gradual rise in air temperature and by the occurrence of two significant weather events associated with wind gusts, which caused disturbances in some areas of the competitions. ET and NET were below the air temperature, indicating that both humidity and wind contributed to the reduction of the human-biometeorological indices. Majority of the interviewed persons reported comfortable sensation and weather conditions. These perceptions corroborate results of the thermal comfort indices calculated for these resting spectators. The comfort indices calculated for the athletes with high level of physical activity showed that PET estimated hotter thermal sensation those for the individuals at rest, indicating that the physical type of a person may strongly influence the thermal sensation and comfort during intense physical activity. Increasing trend observed in all the indices of human thermal comfort during the period of study shows consistency among them.

Dengue prediction in Latin America using machine learning and the one health perspective: A literature review

Dengue fever is a serious and growing public health problem in Latin America and elsewhere, intensified by climate change and human mobility. This paper reviews the approaches to the epidemiological prediction of dengue fever using the One Health perspective, including an analysis of how Machine Learning techniques have been applied to it and focuses on the risk factors for dengue in Latin America to put the broader environmental considerations into a detailed understanding of the small-scale processes as they affect disease incidence. Determining that many factors can act as predictors for dengue outbreaks, a large-scale comparison of different predictors over larger geographic areas than those currently studied is lacking to determine which predictors are the most effective. In addition, it provides insight into techniques of Machine Learning used for future predictive models, as well as general workflow for Machine Learning projects of dengue fever.

Predicted distribution of sand fly (Diptera: Psychodidae) species involved in the transmission of Leishmaniasis in Sao Paulo state, Brazil, utilizing maximum entropy ecological niche modeling

Leishmaniasis is a public health problem worldwide. We aimed to predict ecological niche models (ENMs) for visceral (VL) and cutaneous (CL) leishmaniasis and the sand flies involved in the transmission of leishmaniasis in São Paulo, Brazil. Phlebotomine sand flies were collected between 1985 and 2015. ENMs were created for each sand fly species using Maximum Entropy Species Distribution Modeling software, and 20 climatic variables were determined. Nyssomyia intermedia (Lutz & Neiva, 1912) and Lutzomyia longipalpis (Lutz & Neiva, 1912), the primary vectors involved in CL and VL, displayed the highest suitability across the various regions, climates, and topographies. L. longipalpis was found in the border of Paraná an area currently free of VL. The variables with the greatest impact were temperature seasonality, precipitation, and altitude. Co-presence of multiple sand fly species was observed in the cuestas and coastal areas along the border of Paraná and in the western basalt areas along the border of Mato Grosso do Sul. Human CL and VL were found in 475 of 546 (86.7%) and 106 of 645 (16.4%) of municipalities, respectively. Niche overlap between N. intermedia and L. longipalpis was found with 9208 human cases of CL and 2952 cases of VL. ENMs demonstrated that each phlebotomine sand fly species has a unique geographic distribution pattern, and the occurrence of the primary vectors of CL and VL overlapped. These data can be used by public authorities to monitor the dispersion and expansion of CL and VL vectors in São Paulo state.

Zika virus outbreak in Brazil under current and future climate

INTRODUCTION: Zika virus (ZIKV) is primarily transmitted byAedes aegypti and Aedes albopictus mosquitoes between humans and non-human primates. Climate change may enhance virus reproduction in Aedes spp. mosquito populations, resulting in intensified ZIKV outbreaks. The study objective was to explore how an outbreak similar to the 2016 ZIKV outbreak in Brazil might unfold with projected climate change. METHODS: A compartmental infectious disease model that included compartments for humans and mosquitoes was developed to fit the 2016 ZIKV outbreak data from Brazil using least squares optimization. To explore the impact of climate change, published polynomial relationships between temperature and temperature-sensitive mosquito population and virus transmission parameters (mosquito mortality, development rate, and ZIKV extrinsic incubation period) were used. Projections for future outbreaks were obtained by simulating transmission with effects of projected average monthly temperatures on temperature-sensitive model parameters at each of three future time periods: 2011-2040, 2041-2070, and 2071-2100. The projected future climate was obtained from an ensemble of regional climate models (RCMs) obtained from the Co-Ordinated Regional Downscaling Experiment (CORDEX) that used Representative Concentration Pathways (RCP) with two radiative forcing values, RCP4.5 and RCP8.5. A sensitivity analysis was performed to explore the impact of temperature-dependent parameters on the model outcomes. RESULTS: Climate change scenarios impacted the model outcomes, including the peak clinical case incidence, cumulative clinical case incidence, time to peak incidence, and the duration of the ZIKV outbreak. Comparing 2070-2100 to 2016, using RCP4.5, the peak incidence was 22,030 compared to 10,473; the time to epidemic peak was 12 compared to 9 weeks, and the outbreak duration was 52 compared to 41 weeks. Comparing 2070-2100 to 2016, using RCP8.5, the peak incidence was 21,786 compared to 10,473; the time to epidemic peak was 11 compared to 9 weeks, and the outbreak duration was 50 compared to 41weeks. The increases are due to optimal climate conditions for mosquitoes, with the mean temperature reaching 28 °C in the warmest months. Under a high emission scenario (RCP8.5), mean temperatures extend above optimal for mosquito survival in the warmest months. CONCLUSION: Outbreaks of ZIKV in locations similar to Brazil are expected to be more intense with a warming climate. As climate change impacts are becoming increasingly apparent on human health, it is important to quantify the effect and use this knowledge to inform decisions on prevention and control strategies.

Conflicting diagnostic and prognostic framing of epidemics? Newspaper representations of dengue as a public health problem in Peru

The way newspapers frame infectious disease outbreaks and their connection to the environmental determinants of disease transmission matter because they shape how we understand and respond to these major events. In 2017, following an unexpected climatic event named “El Niño Costero,” a dengue epidemic in Peru affected over seventy-five thousand people. This paper examines how the Peruvian news media presented dengue, a climate-sensitive disease, as a public health problem by analyzing a sample of 265 news stories on dengue from two major newspapers published between January 1st and December 31st of 2017. In analyzing the construction of responsibility for the epidemic, I find frames that blamed El Niño Costero’s flooding and Peru’s poorly prepared cities and public health infrastructure as the causes of the dengue outbreak. However, when analyzing frames that offer solutions to the epidemic, I find that news articles call for government-led, short-term interventions (e.g., fogging) that fail to address the decaying public health infrastructure and lack of climate-resilient health systems. Overall, news media tended to over-emphasize dengue as requiring technical solutions that ignore the root causes of health inequality and environmental injustice that allow dengue to spread in the first place. This case speaks to the medicalization of public health and to a long history of disease-control programs in the Global South that prioritized top-down technical approaches, turning attention away from the social and environmental determinants of health, which are particularly important in an era of climate change.

Chagas disease in the context of the 2030 agenda: Global warming and vectors

The 2030 Agenda for Sustainable Development is a plan of action for people, planet and prosperity. Thousands of years and centuries of colonisation have passed the precarious housing conditions, food insecurity, lack of sanitation, the limitation of surveillance, health care programs and climate change. Chagas disease continues to be a public health problem. The control programs have been successful in many countries in reducing transmission by T. cruzi; but the results have been variable. WHO makes recommendations for prevention and control with the aim of eliminating Chagas disease as a public health problem. Climate change, deforestation, migration, urbanisation, sylvatic vectors and oral transmission require integrating the economic, social, and environmental dimensions of sustainable development, as well as the links within and between objectives and sectors. While the environment scenarios change around the world, native vector species pose a significant public health threat. The man-made atmosphere change is related to the increase of triatomines’ dispersal range, or an increase of the mobility of the vectors from their sylvatic environment to man-made constructions, or humans getting into sylvatic scenarios, leading to an increase of Chagas disease infection. Innovations with the communities and collaborations among municipalities, International cooperation agencies, local governmental agencies, academic partners, developmental agencies, or environmental institutions may present promising solutions, but sustained partnerships, long-term commitment, and strong regional leadership are required. A new world has just opened up for the renewal of surveillance practices, but the lessons learned in the past should be the basis for solutions in the future.

Health-related vulnerability to climate extremes in homoclimatic zones of Amazonia and Northeast region of Brazil

Amazonia and the Northeast region of Brazil exhibit the highest levels of climate vulnerability in the country. While Amazonia is characterized by an extremely hot and humid climate and hosts the world largest rainforest, the Northeast is home to sharp climatic contrasts, ranging from rainy areas along the coast to semiarid regions that are often affected by droughts. Both regions are subject to extremely high temperatures and are susceptible to many tropical diseases. This study develops a multidimensional Extreme Climate Vulnerability Index (ECVI) for Brazilian Amazonia and the Northeast region based on the Alkire-Foster method. Vulnerability is defined by three components, encompassing exposure (proxied by seven climate extreme indicators), susceptibility (proxied by sociodemographic indicators), and adaptive capacity (proxied by sanitation conditions, urbanization rate, and healthcare provision). In addition to the estimated vulnerability levels and intensity, we break down the ECVI by indicators, dimensions, and regions, in order to explore how the incidence levels of climate-sensitive infectious and parasitic diseases correlate with regional vulnerability. We use the Grade of Membership method to reclassify the mesoregions into homoclimatic zones based on extreme climatic events, so climate and population/health data can be analyzed at comparable resolutions. We find two homoclimatic zones: Extreme Rain (ER) and Extreme Drought and High Temperature (ED-HT). Vulnerability is higher in the ED-HT areas than in the ER. The contribution of each dimension to overall vulnerability levels varies by homoclimatic zone. In the ER zone, adaptive capacity (39%) prevails as the main driver of vulnerability among the three dimensions, in contrast with the approximately even dimensional contribution in the ED-HT. When we compare areas by disease incidence levels, exposure emerges as the most influential dimension. Our results suggest that climate can exacerbate existing infrastructure deficiencies and socioeconomic conditions that are correlated with tropical disease incidence in impoverished areas.

High ambient temperature and risk of hospitalization for gastrointestinal infection in Brazil: A nationwide case-crossover study during 2000-2015

BACKGROUND: The burden of gastrointestinal infections related to hot ambient temperature remains largely unexplored in low-to-middle income countries which have most of the cases globally and are experiencing the greatest impact from climate change. The situation is particularly true in Brazil. OBJECTIVES: Using medical records covering over 78 % of population, we quantify the association between high temperature and risk of hospitalization for gastrointestinal infection in Brazil between 2000 and 2015. METHODS: Data on hospitalization for gastrointestinal infection and weather conditions were collected from 1814 Brazilian cities during the 2000-2015 hot seasons. A time-stratified case-crossover design was used to estimate the association. Stratified analyses were performed by region, sex, age-group, type of infection and early/late study period. RESULTS: For every 5 °C increase in mean daily temperature, the cumulative odds ratio (OR) of hospitalization over 0-9 days was 1.22 [95 % confidence interval (CI): 1.21, 1.23] at the national level, reaching its maximum in the south and its minimum in the north. The strength of association tended to decline across successive age-groups, with infants < 1 year most susceptible. The effect estimates were similar for men and women. Waterborne and foodborne infections were more associated with high temperature than the 'others' and 'idiopathic' groups. There was no substantial change in the association over the 16-year study period. DISCUSSION: Our findings indicate that exposure to high temperature is associated with increased risk of hospitalization for gastrointestinal infection in the hot season, with the strength varying by region, population subgroup and infection type. There was no evidence to indicate adaptation to heat over the study duration.

Climate change determines future population exposure to summertime compound dry and hot events

Compound dry and hot events (CDHEs) have increased significantly and caused agricultural losses and adverse impacts on human health. It is thus critical to investigate changes in CDHEs and population exposure in responding to climate change. Based on the simulations of the Coupled Model Intercomparison Project Phase 6 (CMIP6), future changes in CDHEs and population exposure are estimated under four Shared Socioeconomic Pathways climate scenarios (SSPs) at first. And then the driving forces behind these changes are analyzed and discussed. The results show that the occurrence of CDHEs is expected to increase by larger magnitudes by the end of the 21st century (the 2080s) than that by the mid-21st century (2050s). Correspondingly, population exposure to CDHEs is expected to increase significantly responding to higher global warming (SSP3-7.0 and SSP5-8.5) but is limited to a relatively low level under the modest emission scenarios (SSP1-2.6). Globally, compared to 1985-2014, the exposure is expected to increase by 8.5 and 7.7 times under SSP3-7.0 and SSP5-8.5 scenarios by the 2080s, respectively. Regionally, Sahara has the largest increase in population exposure to CDHEs, followed by the Mediterranean, Northeast America, Central America, Africa, and Central Asia. The contribution of climate change to the increase of exposure is about 75% by the 2080s under the SSP5-8.5 scenarios, while that of population change is much lower. The conclusion highlights the importance and urgency of implementing mitigation strategies to alleviate the influence of CDHEs on human society.

Global increases in lethal compound heat stress: Hydrological drought hazards under climate change

Previous studies seldom consider humidity when examining heat-related extremes, and none have explored the effects of humidity on concurrent extremes of high heat stress and low river streamflow. Here, we present the first global picture of projected changes in compound lethal heat stress (T-h)-drought hazards (CHD) across 11,637 catchments. Our observational datasets show that atmospheric conditions (e.g., energy and vapor flux) play an important role in constraining the heat extremes, and that T-h (32% +/- 11%) yields a higher coincidence rate of global CHD than wet-bulb temperature (28% +/- 11%), driven by lower relative humidity (RH) and thus air dryness in T-h extremes. Our large model ensemble projects a 10-fold intensification of bivariate CHD risks by 2071-2100, mainly driven by increases in heat extremes. Future declines in RH, wind, snow, and precipitation in many regions are likely to exacerbate such water and weather-related hazards (e.g., drought and CHD).

Assessment of macroclimate and microclimate effects on outdoor thermal comfort via artificial neural network models

Outdoor thermal comfort is significantly affected by climate, including macroclimate, local climate, and microclimate. However, the combined impacts of macroclimate and microclimate factors are less understood in previous thermal comfort studies. This paper employed 43 previ-ously published studies to comprehensively explore the impacts of macro-and micro-climatic factors on the outdoor thermal comfort. The relative importance of these influencing factors was assessed via five verified artificial neural network (ANN) models. For studies employing subjec-tive thermal indices which collected participants’ thermal perceptions, the neutral temperature expressed by physiologically equivalent temperature (PET) was found to be significantly corre-lated with macroclimate factors, especially the latitude and season. In studies employing only objective thermal indices, it was found that macroclimate factors, such as the latitude, distance from the sea, and altitude, have similar contribution to the outdoor thermal comfort as micro-climate factors, such as height to width ratio (H/W) and sky view factor. Results resonated with previous findings that outdoor comfort can be improved by changing urban geometry, vegetation, surfaces, and waterbodies. Future design and planning works should consider both macroclimate and microclimate factors and carefully design urban geometry and morphology to improve out-door thermal comfort for regions with disadvantageous macroclimates.

Biomarkers for warfighter safety and performance in hot and cold environments

Exposure to extreme environmental heat or cold during military activities can impose severe thermal strain, leading to impairments in task performance and increasing the risk of exertional heat (including heat stroke) and cold injuries that can be life-threatening. Substantial individual variability in physiological tolerance to thermal stress necessitates an individualized approach to mitigate the deleterious effects of thermal stress, such as physiological monitoring of individual thermal strain. During heat exposure, measurements of deep-body (T(c)) and skin temperatures and heart rate can provide some indication of thermal strain. Combining these physiological variables with biomechanical markers of gait (in)stability may provide further insight on central nervous system dysfunction – the key criterion of exertional heat stroke (EHS). Thermal strain in cold environments can be monitored with skin temperature (peripheral and proximal), shivering thermogenesis and T(c). Non-invasive methods for real-time estimation of T(c) have been developed and some appear to be promising but require further validation. Decision-support tools provide useful information for planning activities and biomarkers can be used to improve their predictions, thus maximizing safety and performance during hot- and cold-weather operations. With better understanding on the etiology and pathophysiology of EHS, the microbiome and markers of the inflammatory responses have been identified as novel biomarkers of heat intolerance. This review aims to (i) discuss selected physiological and biomechanical markers of heat or cold strain, (ii) how biomarkers may be used to ensure operational readiness in hot and cold environments, and (iii) present novel molecular biomarkers (e.g., microbiome, inflammatory cytokines) for preventing EHS.

Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: A three-stage modelling study

BACKGROUND: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. METHODS: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5° × 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature-mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature-mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division. FINDINGS: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967-5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58-11·07) of all deaths (8·52% [6·19-10·47] were cold-related and 0·91% [0·56-1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60-87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000-03 to 2016-19, the global cold-related excess death ratio changed by -0·51 percentage points (95% eCI -0·61 to -0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13-0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe. INTERPRETATION: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios. FUNDING: Australian Research Council and the Australian National Health and Medical Research Council.

A review of construction workforce health challenges and strategies in extreme weather conditions

Construction sites continue to operate despite inclement weather, exposing workers to unpleasant working circumstances that can lead to various physical and mental health challenges. A thorough literature review yielded 21 challenges for hot weather conditions such as heat stroke, kidney disease, heat cramps, anxiety and depression, and 20 challenges for cold weather conditions like asthma, frostbite, musculoskeletal disorders and hallucination. Workers vulnerable to hot and cold weather based on demographic characteristics were identified. The study also provides 27 strategies to address the challenges experienced in hot and cold weather conditions. Some of these include ensuring that workers stay hydrated, scheduling sufficient rest periods and allowing workers to self-pace. The results of this study will help construction decision-makers and project managers understand the difficulties faced by a field workforce who labors in extreme working conditions on construction sites and will facilitate adoption of strategies that can prevent weather-related physical and mental health problems.

Combined effect of hot weather and outdoor air pollution on respiratory health: Literature review

Association between short-term exposure to ambient air pollution and respiratory health is well documented. At the same time, it is widely known that extreme weather events intrinsically exacerbate air pollution impact. Particularly, hot weather and extreme temperatures during heat waves (HW) significantly affect human health, increasing risks of respiratory mortality and morbidity. Concurrently, a synergistic effect of air pollution and high temperatures can be combined with weather–air pollution interaction during wildfires. The purpose of the current review is to summarize literature on interplay of hot weather, air pollution, and respiratory health consequences worldwide, with the ultimate goal of identifying the most dangerous pollution agents and vulnerable population groups. A literature search was conducted using electronic databases Web of Science, Pubmed, Science Direct, and Scopus, focusing only on peer-reviewed Researchs published in English from 2000 to 2021. The main findings demonstrate that the increased level of PM10 and O3 results in significantly higher rates of respiratory and cardiopulmonary mortality. Increments in PM2.5 and PM10, O3, CO, and NO2 concentrations during high temperature episodes are dramatically associated with higher admissions to hospital in patients with chronic obstructive pulmonary disease, daily hospital emergency transports for asthma, acute and chronic bronchitis, and premature mortality caused by respiratory disease. Excessive respiratory health risk is more pronounced in elderly cohorts and small children. Both heat waves and outdoor air pollution are synergistically linked and are expected to be more serious in the future due to greater climate instability, being a crucial threat to global public health that requires the responsible involvement of researchers at all levels. Sustainable urban planning and smart city design could significantly reduce both urban heat islands effect and air pollution.

The effects of combined exposure to noise and heat on human salivary cortisol and blood pressure

Purpose. Noise and heat are the most important physical hazardous agents that can affect physiological parameters. This study investigated the independent and combined effects of noise and heat exposure on human saliva cortisol and blood pressure. Methods. In this experimental study, 72 students were exposed to noise (at sound pressure levels of 45, 75, 85 and 95 dB(A)) and heat (at wet bulb globe temperatures [WBGTs] of 22, 29 and 34 °C) for 30 min. Samples of saliva and blood pressure were taken before and after each independent and combined exposure. Results. The results revealed that the average saliva cortisol and blood pressure in male and female subjects increased significantly after independent exposure to noise at 95 dB(A) and a WBGT of 34 °C. The combined exposure to noise and heat increased saliva cortisol and blood pressure, which was statistically significant for three combinations of 95 dB(A) at 34 °C, 95 dB(A) at 29 °C and 85 dB(A) at 34 °C. Conclusions. Combined exposure to noise and heat could affect saliva cortisol and blood pressure in both male and female groups. Further studies are recommended to capture other combinations of physical hazardous agents, especially in the field.

The unresolved epidemic of chronic kidney disease of uncertain origin (CKDu) around the world: A review and new insights

EPIDEMIOLOGY: An increasing number of inhabitants of Central America have developed a form of chronic kidney disease of unknown cause, named Mesoamerican nephropathy (MeN). Because similar epidemics have been reported in other parts of the world, such as Sri Lanka, India, Egypt, and Tunisia, this condition is currently called chronic kidney disease of uncertain origin (CKDu). CLINICAL PRESENTATION: This disease is characterized by minimal proteinuria, leukocyturia, hyperuricemia, hypokalemia reduced glomerular filtration rate, and renal tubular dysfunctions. Pathology: The kidneys manifest tubulo-interstitial nephritis and glomerulosclerosis. Electron microscopy shows large dimorphic lysosomes with dark electron-dense aggregates. Potential causes: The cause(s) of this disease remain largely unknown. Several hypotheses have been proposed including infections, dehydration, global warming, hyperuricemia, exposure to agro-chemicals or heavy metals, and genetic susceptibility. This review addresses a mounting body of evidence suggesting that the disease may be the result of exposure to a variety of water contaminants combined with volume depletion. THERAPY: Absent a clear understanding of the causes of the disease, no specific therapeutic interventions can be recommended. Preliminary studies suggest that reduction of working hours, frequent rest in shaded area, and administration of purified water may reduce the risk of CKDu.

Understanding linkages between environmental risk factors and noncommunicable diseases – A review

Environmental factors such as climate change are now underway, which have substantial impacts on health and well-being of human kind, but still imprecisely quantified, implications for human health. At present, one of the most significant discussions among scientists worldwide is interdependency of escalating environmental risk factors and the increasing rates of noncommunicable diseases (NCDs), which are the leading cause of death and disability worldwide. Climate change also triggers the occurrence of NCDs through a variety of direct and indirect pathways. Therefore, it is likely that the interdependence of climate change, environmental risk factors, and NCDs as a whole poses great threat to global health. Hence, this paper aims to review the latest evidence on impacts of environmental risk factors on NCDs and methods used in establishing the cause or correlation of environmental risk factors and NCDs. The literature review leveraged online databases such as PubMed and Google Scholar with articles that matched keywords “climate change”, “environmental risk factors,” and “noncommunicable diseases”. This review shows that the burden of NCDs is increasing globally and attribution of environmental risk factors such as climate change is significant. Understanding the nature of the relation between NCDs and the environment is complex and has relied on evidence generated from multiple study designs. This paper reviews eight types of study designs that can be used to identify and measure causal and correlational nature between environment and NCDs. Future projections suggest that increases in temperatures will continue and also increase the public health burden of NCDs.

Occupational heat stress and economic burden: A review of global evidence

BACKGROUND: The adverse effects of heat on workers’ health and work productivity are well documented. However, the resultant economic consequences and productivity loss are less understood. This review aims to summarize the retrospective and potential future economic burden of workplace heat exposure in the context of climate change. METHODS: Literature was searched from database inception to October 2020 using Embase, PubMed, and Scopus. Articles were limited to original human studies investigating costs from occupational heat stress in English. RESULTS: Twenty studies met criteria for inclusion. Eighteen studies estimated costs secondary to heat-induced labor productivity loss. Predicted global costs from lost worktime, in US$, were 280 billion in 1995, 311 billion in 2010 (≈0.5% of GDP), 2.4-2.5 trillion in 2030 (>1% of GDP) and up to 4.0% of GDP by 2100. Three studies estimated heat-related healthcare expenses from occupational injuries with averaged annual costs (US$) exceeding 1 million in Spain, 1 million in Guangzhou, China and 250,000 in Adelaide, Australia. Low- and middle-income countries and countries with warmer climates had greater losses as a proportion of GDP. Greater costs per worker were observed in outdoor industries, medium-sized businesses, amongst males, and workers aged 25-44 years. CONCLUSIONS: The estimated global economic burden of occupational heat stress is substantial. Climate change adaptation and mitigation strategies should be implemented to likely minimize future costs. Further research exploring the relationship between occupational heat stress and related expenses from lost productivity, decreased work efficiency and healthcare, and costs stratified by demographic factors, is warranted. Key messages. The estimated retrospective and future economic burden from occupational heat stress is large. Responding to climate change is crucial to minimize this burden. Analyzing heat-attributable occupational costs may guide the development of workplace heat management policies and practices as part of global warming strategies.

A systematic review of hot weather impacts on infant feeding practices in low-and middle-income countries

BACKGROUND: Increased rates of exclusive breastfeeding could significantly improve infant survival in low- and middle-income countries. There is a concern that increased hot weather due to climate change may increase rates of supplemental feeding due to infants requiring fluids, or the perception that infants are dehydrated. OBJECTIVE: To understand how hot weather conditions may impact infant feeding practices by identifying and appraising evidence that exclusively breastfed infants can maintain hydration levels under hot weather conditions, and by examining available literature on infant feeding practices in hot weather. METHODS: Systematic review of published studies that met inclusion criteria in MEDLINE, EMBASE, Global Health and Web of Science databases. The quality of included studies was appraised against predetermined criteria and relevant data extracted to produce a narrative synthesis of results. RESULTS: Eighteen studies were identified. There is no evidence among studies of infant hydration that infants under the age of 6months require supplementary food or fluids in hot weather conditions. In some settings, healthcare providers and relatives continue to advise water supplementation in hot weather or during the warm seasons. Cultural practices, socio-economic status, and other locally specific factors also affect infant feeding practices and may be affected by weather and seasonal changes themselves. CONCLUSION: Interventions to discourage water/other fluid supplementation in breastfeeding infants below 6 months are needed, especially in low-middle income countries. Families and healthcare providers should be advised that exclusive breastfeeding (EBF) is recommended even in hot conditions.

Climate change and nephrology

Climate change should be of special concern for the nephrologist as the kidney has a critical role in protecting the host from dehydration, but is also a favorite target of heat stress and dehydration. Here we discuss how rising temperatures and extreme heat events may affect the kidney. The most severe presentation of heat stress is heat stroke, which can result in severe electrolyte disturbance and both acute and chronic kidney disease. However, lesser levels of heat stress also have multiple effects, including exacerbating kidney disease and precipitating cardiovascular events in subjects with established kidney disease. Heat stress can also increase the risk for kidney stones, cause multiple electrolyte abnormalities, and induce both acute and chronic kidney disease. Recently there have been multiple epidemics of chronic kidney disease of uncertain etiology in various regions of the world, including Mesoamerica, Sri Lanka, India and Thailand. There is increasing evidence that climate change and heat stress may have a contributory role in these conditions, although other causes including toxins could also be involved. As climate change worsens, the nephrologist should prepare for an increase in diseases associated with heat stress and dehydration.

Climate change and neurodegenerative diseases

The climate change induced global warming, and in particular the increased frequency and intensity of heat waves, have been linked to health problems. Among them, scientific works have been reporting an increased incidence of neurological diseases, encompassing also neurodegenerative ones, such as Dementia of Alzheimer’s type, Parkinson’s Disease, and Motor Neuron Diseases. Although the increase in prevalence of neurodegenerative diseases is well documented by literature reports, the link between global warming and the enhanced prevalence of such diseases remains elusive. This is the main theme of our work, which aims to examine the connection between high temperature exposure and neurodegenerative diseases. Firstly, we evaluate the influence of high temperatures exposure on the pathophysiology of these disorders. Secondly, we discuss its effects on the thermoregulation, already compromised in affected patients, and its interference with processes of excitotoxicity, oxidative stress and neuroinflammation, all of them related with neurodegeneration. Finally, we investigate chronic versus acute stressors on body warming, and put forward a possible interpretation of the beneficial or detrimental effects on the brain, which is responsible for the incidence or progression of neurological disorders.

GSDM-WBT: Global station-based daily maximum wet-bulb temperature data for 1981-2020

The wet-bulb temperature (WBT; T-W) comprehensively characterizes the temperature and humidity of the thermal environment and is a relevant variable to describe the energy regulation of the human body. The daily maximum TW can be effectively used in monitoring humid heat waves and their effects on health. Because meteorological stations differ in temporal resolution and are susceptible to non-climatic influences, it is difficult to provide complete and homogeneous long-term series. In this study, based on the sub-daily station-based HadISD (Met Office Hadley Centre Integrated Surface Database) dataset and integrating the NCEP-DOE reanalysis dataset, the daily maximum T-W series of 1834 stations that have passed quality control were homogenized and reconstructed using the method of Climatol. These stations form a new dataset of global station-based daily maximum T-W (GSDM-WBT) from 1981 to 2020. Compared with other station-based and reanalysis-based datasets of TW, the average bias was -0.48 and 0.34 degrees C, respectively. The GSDM-WBT dataset handles stations with many missing values and possible inhomogeneities, and also avoids the underestimation of the TW calculated from reanalysis data. The GSDM-WBT dataset can effectively support the research on global or regional extreme heat events and humid heat waves. The dataset is available at (Dong et al., 2022).

Heat stress nephropathy: What have we learned?

The unbearable heat waves that we are experiencing these days around the world are the result of increasing global warming, leading to heat stress and a constant health issue for the existing population. The thermoregulatory dysfunction of the human body due to climatological changes might result in fluid and electrolyte imbalance and transforms the human body from a normal physiological condition to a distorted pathological state. Subsequently, at one point in time, the human body may fail to handle its normal thermoregulatory function in the form of sudden unconsciousness and health defects. There might be associated dehydration that imposes renal damage, even to the extent to cause acute kidney injury (AKI), followed by chronic kidney disease (CKD). Thus, we cannot deny CKD as a major cause of death, mainly in patients having long-standing medical issues such as cardiac dysfunction, hypertension, diabetes, and obesity, heat stress nephropathy (HSN) might therefore become a major health problem. There is always a hopeful way in our hands, fortunately, which is of course prevention, that comes through government policies and human awareness. The present review brings out light on the alarming resultant facts of heat stress, dehydration, its pathology, molecular derangements, and recommendations for the prevention of heat stress nephropathy.

Research progress of heat stroke during 1989-2019: A bibliometric analysis

BACKGROUND: Heat stroke (HS) is an acute physical disorder that is associated with a high risk of organ dysfunction and even death. HS patients are usually treated symptomatically and conservatively; however, there remains a lack of specific and effective drugs in clinical practice. An analysis of publication contributions from institutions, journals and authors in different countries/regions was used to study research progress and trends regarding HS. METHODS: We extracted all relevant publications on HS between 1989 and 2019 from Web of Science. Using the Statistical Package for Social Science (SPSS, version 24) and the software GraphPad Prism 8, graphs were generated and statistical analyses were performed, while VOSviewer software was employed to visualize the research trends in HS from the perspectives of co-occurring keywords. RESULTS: As of April 14, 2020, we identified 1443 publications with a citation frequency of 5216. The United States accounted for the largest number of publications (36.2%) and the highest number of citations (14,410), as well as the highest H-index at 74. Although the sum of publications from China ranked second, there was a contradiction between the quantity and quality of publications. Furthermore, Medicine & Science in Sports & Exercise published the most papers related to HS, with Lin MT publishing the most papers in this field (112), while the review by Knochel JP received the highest citation frequency at 969. The keyword heat-stress appeared most recently, with an average appearing year of 2015.5. In the clinical research cluster, exertional heat-stroke was determined to be the hotspot, while ambient-temperature and heat waves were the new trends in the epidemiological research cluster. CONCLUSIONS: Corresponding to this important field, while the contributions of the publications from the United States were significant, the mismatch between the quantity and quality of publications from China must be examined. Moreover, it is hypothesized that clinical and epidemiological studies may become hotspots in the near future.

Understanding policy and technology responses in mitigating urban heat islands: A literature review and directions for future research

Policy and technology responses to increased temperatures in urban heat islands (UHIs) are discussed in a variety of research; however, their interaction is overlooked and understudied. This is an important oversight because policy and technology are often developed in isolation of each other and not in conjunction. Therefore, they have limited synergistic effects when aimed at solving global issues. To examine this aspect, we conducted a systematic literature review and synthesised 97 articles to create a conceptual structuring of the topic. We identified the following categories: (a) evidence base for policymaking including timescale analysis, effective policymaking instruments as well as decision support and scenario planning; (b) policy responses including landscape and urban form, green and blue area ratio, albedo enhancement policies, transport modal split as well as public health and participation; (c) passive technologies including green building envelopes and development of cool surfaces; and (d) active technologies including sustainable transport as well as energy consumption, heating, ventilation and air conditioning, and waste heat. Based on the findings, we present a framework to guide future research in analysing UHI policy and technology responses more effectively in conjunction with each other.

Global health impacts for economic models of climate change: A systematic review and meta-analysis

Rationale: Avoiding excess health damages attributable to climate change is a primary motivator for policy interventions to reduce greenhouse gas emissions. However, the health benefits of climate mitigation, as included in the policy assessment process, have been estimated without much input from health experts. Objectives: In accordance with recommendations from the National Academies in a 2017 report on approaches to update the social cost of greenhouse gases (SC-GHG), an expert panel of 26 health researchers and climate economists gathered for a virtual technical workshop in May 2021 to conduct a systematic review and meta-analysis and recommend improvements to the estimation of health impacts in economic-climate models. Methods: Regionally resolved effect estimates of unit increases in temperature on net all-cause mortality risk were generated through random-effects pooling of studies identified through a systematic review. Results: Effect estimates and associated uncertainties varied by global region, but net increases in mortality risk associated with increased average annual temperatures (ranging from 0.1% to 1.1% per 1°C) were estimated for all global regions. Key recommendations for the development and utilization of health damage modules were provided by the expert panel and included the following: not relying on individual methodologies in estimating health damages; incorporating a broader range of cause-specific mortality impacts; improving the climate parameters available in economic models; accounting for socioeconomic trajectories and adaptation factors when estimating health damages; and carefully considering how air pollution impacts should be incorporated in economic-climate models. Conclusions: This work provides an example of how subject-matter experts can work alongside climate economists in making continued improvements to SC-GHG estimates.

Extreme heat and occupational injuries in different climate zones: A systematic review and meta-analysis of epidemiological evidence

BACKGROUND: The link between heat exposure and adverse health outcomes in workers is well documented and a growing body of epidemiological evidence from various countries suggests that extreme heat may also contribute to increased risk of occupational injuries (OI). Previously, there have been no comparative reviews assessing the risk of OI due to extreme heat within a wide range of global climate zones. The present review therefore aims to summarise the existing epidemiological evidence on the impact of extreme heat (hot temperatures and heatwaves (HW)) on OI in different climate zones and to assess the individual risk factors associated with workers and workplace that contribute to heat-associated OI risks. METHODS: A systematic review of published peer-reviewed articles that assessed the effects of extreme heat on OI among non-military workers was undertaken using three databases (PubMed, Embase and Scopus) without temporal or geographical limits from database inception until July 2020. Extreme heat exposure was assessed in terms of hot temperatures and HW periods. For hot temperatures, the effect estimates were converted to relative risks (RR) associated with 1 °C increase in temperature above reference values, while for HW, effect estimates were RR comparing heatwave with non-heatwave periods. The patterns of heat associated OI risk were investigated in different climate zones (according to Köppen Geiger classification) based on the study locations and were estimated using random-effects meta-analysis models. Subgroup analyses according to workers’ characteristics (e.g. gender, age group, experience), nature of work (e.g. physical demands, location of work i.e. indoor/outdoor) and workplace characteristics (e.g. industries, business size) were also conducted. RESULTS: A total of 24 studies published between 2005 and 2020 were included in the review. Among these, 22 studies met the eligibility criteria, representing almost 22 million OI across six countries (Australia, Canada, China, Italy, Spain, and USA) and were included in the meta-analysis. The pooled results suggested that the overall risk of OI increased by 1% (RR 1.010, 95% CI: 1.009-1.011) for 1 °C increase in temperature above reference values and 17.4% (RR 1.174, 95% CI: 1.057-1.291) during HW. Among different climate zones, the highest risk of OI during hot temperatures was identified in Humid Subtropical Climates (RR 1.017, 95% CI: 1.014-1.020) followed by Oceanic (RR 1.010, 95% CI: 1.008-1.012) and Hot Mediterranean Climates (RR 1.009, 95% CI: 1.008-1.011). Similarly, Oceanic (RR 1.218, 95% CI: 1.093-1.343) and Humid Subtropical Climates (RR 1.213, 95% CI: 0.995-1.431) had the highest risk of OI during HW periods. No studies assessing the risk of OI in Tropical regions were found. The effects of hot temperatures on the risk of OI were acute with a lag effect of 1-2 days in all climate zones. Young workers (age < 35 years), male workers and workers in agriculture, forestry or fishing, construction and manufacturing industries were at high risk of OI during hot temperatures. Further young workers (age < 35 years), male workers and those working in electricity, gas and water and manufacturing industries were found to be at high risk of OI during HW. CONCLUSIONS: This review strengthens the evidence on the risk of heat-associated OI in different climate zones. The risk of OI associated with extreme heat is not evenly distributed and is dependent on underlying climatic conditions, workers' attributes, the nature of work and workplace characteristics. The differences in the risk of OI across different climate zones and worker subgroups warrant further investigation along with the development of climate and work-specific intervention strategies.

The effect of air pollution when modified by temperature on respiratory health outcomes: A systematic review and meta-analysis

BACKGROUND: Respiratory diseases are a leading cause of mortality and morbidity, and are exacerbated by air pollution and temperature. AIM: To assess published literature on the effect of air pollution modified by temperature on respiratory mortality and hospital admissions. METHODS: We identified 26,656 papers in PubMed and Web of Science, up to March 2021, and selected for analysis; inclusion criteria included observational studies, short-term air pollution, and temperature exposure. Air pollutants considered were particulate matter with a diameter of 2.5 μg/m(3), and 10 μg/m(3) (PM(2.5), and PM(10)), ozone (O(3)), and nitrogen dioxide (NO(2)). A random-effects model was used for our meta-analysis. RESULTS: For respiratory mortality we found that when the effect PM(10) is modified by high temperatures there is an increased pooled Odds Ratio [OR, 95% Confidence Interval (CI)] of 1.021 (1.008 to 1.034) and for the effect of O(3) the pooled OR is 1.006 (1.001-1.012) during the warm season. For hospital admissions, the effects of PM(10) and O(3) respectively, during the warm season found an increased pooled OR of 1.011 (0.999-1.024), and 1.015 (0.995-1.036). In our analysis for low temperatures, results were inconsistent. CONCLUSIONS: Exposure to air pollution when modified by high temperature is likely to increase the odds of respiratory mortality and hospital admissions. Analysis on the interaction effect of air pollution and temperature on health outcomes is a relatively new research field and results are largely inconsistent; therefore, further research is encouraged to establish a more conclusive conclusion on the strength and direction of this effect.

Accuracy of algorithm to non-invasively predict core body temperature using the Kenzen wearable device

With climate change increasing global temperatures, more workers are exposed to hotter ambient temperatures that exacerbate risk for heat injury and illness. Continuously monitoring core body temperature (T(C)) can help workers avoid reaching unsafe T(C). However, continuous T(C) measurements are currently cost-prohibitive or invasive for daily use. Here, we show that Kenzen’s wearable device can accurately predict T(C) compared to gold standard T(C) measurements (rectal probe or gastrointestinal pill). Data from four different studies (n = 52 trials; 27 unique subjects; >4000 min data) were used to develop and validate Kenzen’s machine learning T(C) algorithm, which uses subject’s real-time physiological data combined with baseline anthropometric data. We show Kenzen’s T(C) algorithm meets pre-established accuracy criteria compared to gold standard T(C): mean absolute error = 0.25 °C, root mean squared error = 0.30 °C, Pearson r correlation = 0.94, standard error of the measurement = 0.18 °C, and mean bias = 0.07 °C. Overall, the Kenzen T(C) algorithm is accurate for a wide range of T(C), environmental temperatures (13-43 °C), light to vigorous heart rate zones, and both biological sexes. To our knowledge, this is the first study demonstrating a wearable device can accurately predict T(C) in real-time, thus offering workers protection from heat injuries and illnesses.

Heat stress modeling using neural networks technique

Rising temperature especially in summer is currently a hot debate. Scientists around the world have raised concerns about Heat Stress Assessment (HSA). It depends on the urban geometry, building materials, greenery, environmental factor of the region, psychological and behavioral factors of the inhabitants. Effective and accurate heat stress forecasts are useful for managing thermal comfort in the area. A widely used technique is artificial intelligence (AI), especially neural networks, which can be trained on weather variables. In this study, the five most important meteorological parameters such as air temperature, global radiation, relative humidity, surface temperature and wind speed are considered for HSA. System dynamic approach and a new version of the Gated Recurrent Unit (GRU) method is used for the prediction of the mean radiant temperature, the mean predicted vote and the physiological equivalent temperature. GRU is a promising technology, the results with higher accuracy are obtained from this algorithm. The results obtained from the model are validated with the output of reference software named Rayman. Django’s graphical user interface was created which allows users to select the range of thermal comfort scales based on their perception which depends on the age factor, local weather adaptability, and habit of tolerating the heat events. It also gives a warning to the user by color code about the level of discomfort which helps them to schedule and manage their outdoor activities. Future work consists of coupling this model with urban greenery factors to analyze the impact on the estimation of heat stress. Copyright (C) 2022 The Authors.

Fluctuating temperature modifies heat-mortality association around the globe

Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days’ minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: -0.33 to 1.69), 1.34% (95% CI: -0.14 to 2.73), 1.99% (95% CI: 0.29-3.57), and 2.73% (95% CI: 0.76-4.50) of total deaths for Q1-Q4 (first quartile-fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25-9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: -0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health.

Weather shocks, climate change and human health

We examine the effect of short-run weather shocks and long-run climate change on a variety of national health outcomes for a sample of 170 countries between 1960 and 2016. We find that changing climate conditions – especially in the form of increasing temperatures – lead to health losses (e.g., increased infant mortality and lower life expectancy) both in the short and long run. The adverse effect of increasing temperatures is much more strongly felt in relatively poor countries, indicating that these countries are more vulnerable. Predicted health losses in poor countries due to weather shocks and climate change have already been substantial. Future health losses especially in less developed countries will likely also be considerable unless adequate adaptation and mitigation efforts are undertaken. (C) 2020 Elsevier Ltd. All rights reserved.

Climate change will amplify the inequitable exposure to compound heatwave and ozone pollution

Health risks associated with heatwaves and ozone pollution are projected to rise significantly under the effects of climate change. Although the literature has considered the future health risks of heatwaves and ozone pollution separately, the compound effects remain unexplored, and this could potentially impair risk-prevention plans. Here, using a model from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and four shared socioeconomic pathway (SSPs) scenarios, we explore the global tempo-spatial trend and country disparity of compound-event days and population-exposure person-days. We find that compared with the baseline of 1995-2014, by 2071-2090 under the high-emission scenario of SSP3-7.0, an increased annual mean of 34.6 compound-event days and mean population-exposure of 93.5 million person-days is expected. Furthermore, lower-income countries are facing dramatically higher exposure compared with higher-income countries. These projections could contribute to developing targeted mitigation and adaptation plans.

Does air pollution modify temperature-related mortality? A systematic review and meta-analysis

INTRODUCTION: There is an increasing interest in understanding whether air pollutants modify the quantitative relationships between temperature and health outcomes. The results of available studies were, however, inconsistent. This study aims to sum up the current evidence and provide a comprehensive understanding of this topic. METHODS: We conducted an electronic search in PubMed (MEDLINE), EMBASE, Web of Science Core Collection, and ProQuest Dissertations and Theses. The modified Navigation Guide was applied to evaluate the quality and strength of evidence. We calculated pooled temperature-related mortality at low and high pollutant levels respectively, using the random-effects model. RESULTS: We identified 22 eligible studies, eleven of which were included in the meta-analysis. Significant effect modification was observed on heat effects for all-cause and non-accidental mortality by particulate matter with an aerodynamic diameter of <10 μm (PM(10)) and ozone (O(3)) (p < 0.05). The excess risks (ERs) for all-cause and non-accidental mortality were 5.4% (4.4%, 6.4%) and 6.3% (4.8%, 7.8%) at the low PM(10) level, 8.8% (7.5%, 10.1%) and 11.4% (8.7%, 14.2%) at the high PM(10) level, respectively. As for O(3), the ERs for all-cause and non-accidental mortality were 5.1% (3.9%, 6.3%) and 3.6% (0.1%, 7.2%) at the low O(3) level, 7.6% (6.3%, 9.0%) and 12.5% (4.7%, 20.9%) at the high O(3) level, respectively. Surprisingly, the heat effects on cardiovascular mortality were found to be lower at high carbon monoxide (CO) levels [ERs = 5.4% (3.9%, 6.9%)] than that at low levels [ERs = 9.4% (7.0%, 11.9%)]. The heterogeneity varied, but the results of sensitivity analyses were generally robust. Significant effect modification by air pollutants was not observed for heatwave or cold effects. CONCLUSIONS: PM(10) and O(3) modify the heat-related all-cause and non-accidental mortality, indicating that policymakers should consider air pollutants when establishing heat-health warning systems. Future studies with comparable designs and settings are needed.

Climate change and environmental pollution induced risks on children’s health: Are pediatricians prepared to meet the challenge?

Immunity to invasive fungal diseases

Invasive fungal diseases are rare in individuals with intact immunity. This, together with the fact that there are only a few species that account for most mycotic diseases, implies a remarkable natural resistance to pathogenic fungi. Mammalian immunity to fungi rests on two pillars, powerful immune mechanisms and elevated temperatures that create a thermal restriction zone for most fungal species. Conditions associated with increased susceptibility generally reflect major disturbances of immune function involving both the cellular and humoral innate and adaptive arms, which implies considerable redundancy in host defense mechanisms against fungi. In general, tissue fungal invasion is controlled through either neutrophil or granulomatous inflammation, depending on the fungal species. Neutrophils are critical against Candida spp. and Aspergillus spp. while macrophages are essential for controlling mycoses due to Cryptococcus spp., Histoplasma spp., and other fungi. The increasing number of immunocompromised patients together with climate change could significantly increase the prevalence of fungal diseases.

Climate change and the prevention of cardiovascular disease

Climate change is a worsening global crisis that will continue negatively impacting population health and well-being unless adaptation and mitigation interventions are rapidly implemented. Climate change-related cardiovascular disease is mediated by air pollution, increased ambient temperatures, vector-borne disease and mental health disorders. Climate change-related cardiovascular disease can be modulated by climate change adaptation; however, this process could result in significant health inequity because persons and populations of lower socioeconomic status have fewer adaptation options. Clear scientific evidence for climate change and its impact on human health have not yet resulted in the national and international impetus and policies necessary to slow climate change. As respected members of society who regularly communicate scientific evidence to patients, clinicians are well-positioned to advocate on the importance of addressing climate change. This narrative review summarizes the links between climate change and cardiovascular health, proposes actionable items clinicians and other healthcare providers can execute both in their personal life and as an advocate of climate policies, and encourages communication of the health impacts of climate change when counseling patients. Our aim is to inspire the reader to invest more time in communicating the most crucial public health issue of the 21st century to their patients.

A relationship between temperature, oxygen dissolved in blood and viral infections

An investigation is made on the environmental factors that may determine the seasonal cycle of respiratory affections. The driving role of temperature is examined, for its inverse synergism with the dissolution of oxygen in human plasma. Two best-fit equations are discussed to interpolate the experimental data about the oxygen solubility and the saturation levels reached at various temperatures, referring to the value of the basic alveolar temperature. A vulnerable condition is when the airways temperature is lowered, e.g. breathing cold air, or increasing the breathing frequency. In winter, the upper airways reach lower temperatures and greater oxygen concentrations; the opposite occurs in summer. As low temperatures increase the dissolution of oxygen in plasma, and blood oxidation favours viral activity, an explanation is given to the seasonality of infections affecting the respiratory system.

Ambient high temperature exposure and global disease burden during 1990-2019: An analysis of the Global Burden of Disease Study 2019

BACKGROUND: A warming climate throughout the 21st century makes ambient high temperature exposure a major threat to population health worldwide. Mitigating the health impact of high temperature requires a timely, comprehensive and reliable assessment of disease burden globally, regionally and temporally. AIM: Based on Global Burden of Disease (GBD) Study 2019, this study aimed to evaluate the disease burden attributable to high temperature from various epidemiology perspectives. METHODS: A three-stage analysis was undertaken to investigate the number and age-standardized rates of death and disability-adjusted life years (DALY) attributable to high temperature from GBD Study 2019. First, we reported the high temperature-related disease burden for the whole world and for different groups by gender, age, region, country and disease. Second, we examined the temporal trend of the disease burden attributable to high temperature from 1990 to 2019. Finally, we explored if and how the high temperature-related disease burden was modified by a number of country-level indicators. RESULTS: Globally, high temperature accounted for 0.54% of death and 0.46% of DALY in 2019, equating to the age-standardized rates of death and DALY (per 100,000 population) of 3.99 (95% uncertainty interval (UI): 2.88, 5.93) and 156.81 (95% UI: 107.98, 261.98), respectively. In 2019, the high temperature-related DALY and death rates were the highest for lower respiratory infections, although they showed a downward trend. In contrast, during 1990-2019, high temperature-related non-communicable diseases burden exhibited an upward trend. Meanwhile, the disease burden attributable to high temperature varied spatially, with the heaviest burden in regions with low sociodemographic index (SDI) and the lightest burden in regions with high SDI. In addition, high temperature-related disease burden appeared to be higher in a country with a higher population density and PM(2.5) concentration background but lower in a country with a higher density of greenness. CONCLUSION: This study for the first time provided a comprehensive understanding of the global disease burden attributable to high temperature, underscoring the policy priority to protect human health worldwide in the context of global warming with particular attention to vulnerable countries or regions as well as susceptible population and diseases.

Assessing climate change’s contribution to global catastrophic risk

Many have claimed that climate change is an imminent threat to humanity, but there is no way to verify such claims. This is concerning, especially given the prominence of some of these claims and the fact that they are confused with other well verified and settled aspects of climate science. This paper seeks to build an analytical framework to help explore climate change’s contribution to Global Catastrophic Risk (GCR), including the role of its indirect and systemic impacts. In doing so it evaluates the current state of knowledge about catastrophic climate change and integrates this with a suite of conceptual and evaluative tools that have recently been developed by scholars of GCR and Existential Risk. These tools connect GCR to planetary boundaries, classify its key features, and place it in a global policy context. While the goal of this paper is limited to producing a framework for assessment; we argue that applying this framework can yield new insights into how climate change could cause global catastrophes and how to manage this risk. We illustrate this by using our framework to describe the novel concept of possible’ global systems death spirals,’ involving reinforcing feedback between collapsing sociotechnological and ecological systems.

Biomimetics provides lessons from nature for contemporary ways to improve human health

Homo sapiens is currently living in serious disharmony with the rest of the natural world. For our species to survive, and for our well-being, we must gather knowledge from multiple perspectives and actively engage in studies of planetary health. The enormous diversity of species, one of the most striking aspects of life on our planet, provides a source of solutions that have been developed through evolution by natural selection by animals living in extreme environments. The food system is central to finding solutions; our current global eating patterns have a negative impact on human health, driven climate change and loss of biodiversity. We propose that the use of solutions derived from nature, an approach termed biomimetics, could mitigate the effects of a changing climate on planetary health as well as human health. For example, activation of the transcription factor Nrf2 may play a role in protecting animals living in extreme environments, or animals exposed to heat stress, pollution and pesticides. In order to meet these challenges, we call for the creation of novel interdisciplinary planetary health research teams.

Cardiac parasympathetic withdrawal and sympathetic activity: Effect of heat exposure on heart rate variability

(1) Background: Research on heart rate variability has increased in recent years and the temperature has not been controlled in some studies assessing repeated measurements. This study aimed to analyze how heart rate variability may change based on environmental temperature during measurement depending on parasympathetic and sympathetic activity variations. (2) Methods: A total of 22 volunteers participated in this study divided into an experimental (n = 12) and control group (n = 10). Each participant was assessed randomly under two different environmental conditions for the experimental group (19 °C and 35 °C) and two identical environmental conditions for the control group (19 °C). During the procedure, heart rate variability measurements were carried out for 10 min. (3) Results: Significantly changes were observed for time and frequency domains as well as Poincaré plot variables after heat exposure (p < 0.05). These findings were not observed in the control group, whose conditions between measurements did not change. (4) Conclusions: The reduction of heart rate variability due to exposure to hot conditions appears to be produced mostly by a parasympathetic withdrawal rather than a sympathetic activation. Therefore, if consecutive measurements have to be carried out, these should always be done under the same temperature conditions.

Climate change and global issues in allergy and immunology

The steady increase in global temperatures, resulting from the combustion of fossil fuels and the accumulation of greenhouse gases (GHG), continues to destabilize all ecosystems worldwide. Although annual emissions must halve by 2030 and reach net-zero by 2050 to limit some of the most catastrophic impacts associated with a warming planet, the world’s efforts to curb GHG emissions fall short of the commitments made in the 2015 Paris Agreement (1). To this effect, July 2021 was recently declared the hottest month ever recorded in 142 years (2). The ramifications of these changes on global temperatures are complex and further promote outdoor air pollution, pollen exposure, and extreme weather events. Besides worsening respiratory health, air pollution, promotes atopy and susceptibility to infections. The GHG effects on pollen affect the frequency and severity of asthma and allergic rhinitis. Changes in temperature, air pollution, and extreme weather events exert adverse multisystemic health effects and disproportionally affect disadvantaged and vulnerable populations. This article is an update for allergists and immunologists about the health impacts of climate change, already evident in our daily practices. It is also a call to action and advocacy, including integrating climate change-related mitigation, education, and adaptation measures to protect our patients and avert further injury to our planet.

Climate change and population: An assessment of mortality due to health impacts

We develop a model of population dynamics accounting for the impact of climate change on mortality through five channels (heat, diarrhoeal disease, malaria, dengue, undernutrition). An age-dependent mortality, which depends on global temperature increase, is introduced and calibrated. We consider three climate scenarios (RCP 6.0, RCP 4.5 and RCP 2.6) and find that the five risks induce deaths in the range from 135,000 per annum (in the near term) to 280,000 per annum (at the end of the century) in the RCP 6.0 scenario. We examine the number of life-years lost due to the five selected risks and find figures ranging from 4 to 9 million annually. These numbers are too low to impact the aggregate dynamics but they have interesting evolution patterns. The number of life years lost is constant (RCP 6.0) or decreases over time (RCP 4.5 and RCP 2.6). For the RCP 4.5 and RCP 2.6 scenarios, we find that the number of life-years lost is higher today than in 2100, due to improvements in generic mortality conditions, the bias of those improvements towards the young, and an ageing population. From that perspective, the present generation is found to bear the brunt of the considered climate change impacts.

Effects of global warming on patients with dementia, motor neuron or Parkinson’s diseases: A comparison among cortical and subcortical disorders

Exposure to global warming can be dangerous for health and can lead to an increase in the prevalence of neurological diseases worldwide. Such an effect is more evident in populations that are less prepared to cope with enhanced environmental temperatures. In this work, we extend our previous research on the link between climate change and Parkinson’s disease (PD) to also include Alzheimer’s Disease and other Dementias (AD/D) and Amyotrophic Lateral Sclerosis/Motor Neuron Diseases (ALS/MND). One hundred and eighty-four world countries were clustered into four groups according to their climate indices (warming and annual average temperature). Variations between 1990 and 2016 in the diseases’ indices (prevalence, deaths, and disability-adjusted life years) and climate indices for the four clusters were analyzed. Unlike our previous work on PD, we did not find any significant correlation between warming and epidemiological indices for AD/D and ALS/MND patients. A significantly lower increment in prevalence in countries with higher temperatures was found for ALS/MND patients. It can be argued that the discordant findings between AD/D or ALS/MND and PD might be related to the different features of the neuronal types involved and the pathophysiology of thermoregulation. The neurons of AD/D and ALS/MND patients are less vulnerable to heat-related degeneration effects than PD patients. PD patients’ substantia nigra pars compacta (SNpc), which are constitutively frailer due to their morphology and function, fall down under an overwhelming oxidative stress caused by climate warming.

Global warming and neurological practice: Systematic review

BACKGROUND: Climate change, including global warming, will cause poorer global health and rising numbers of environmental refugees. As neurological disorders account for a major share of morbidity and mortality worldwide, global warming is also destined to alter neurological practice; however, to what extent and by which mechanisms is unknown. We aimed to collect information about the effects of ambient temperatures and human migration on the epidemiology and clinical manifestations of neurological disorders. METHODS: We searched PubMed and Scopus from 01/2000 to 12/2020 for human studies addressing the influence of ambient temperatures and human migration on Alzheimer’s and non-Alzheimer’s dementia, epilepsy, headache/migraine, multiple sclerosis, Parkinson’s disease, stroke, and tick-borne encephalitis (a model disease for neuroinfections). The protocol was pre-registered with PROSPERO (2020 CRD42020147543). RESULTS: Ninety-three studies met inclusion criteria, 84 of which reported on ambient temperatures and nine on migration. Overall, most temperature studies suggested a relationship between increasing temperatures and higher mortality and/or morbidity, whereas results were more ambiguous for migration studies. However, we were unable to identify a single adequately designed study addressing how global warming and human migration will change neurological practice. Still, extracted data indicated multiple ways by which these aspects might alter neurological morbidity and mortality soon. CONCLUSION: Significant heterogeneity exists across studies with respect to methodology, outcome measures, confounders and study design, including lack of data from low-income countries, but the evidence so far suggests that climate change will affect the practice of all major neurological disorders in the near future. Adequately designed studies to address this issue are urgently needed, requiring concerted efforts from the entire neurological community.

Global warming and testis function: A challenging crosstalk in an equally challenging environmental scenario

Environmental pollution, accounting for both chemical and physical factors, is a major matter of concern due to its health consequences in both humans and animals. The release of greenhouse gases with the consequent increase in environmental temperature is acknowledged to have a major impact on the health of both animals and humans, in current and future generations. A large amount of evidence reports detrimental effects of acute heat stress on testis function, particularly on the spermatogenetic and steroidogenetic process, in both animal and human models, wich is largely related to the testis placement within the scrotal sac and outside the abdomen, warranting an overall scrotal temperature of 2°C-4°C lower than the core body temperature. This review will provide a thorough evaluation of environmental temperature’s effect on testicular function. In particular, basic concepts of body thermoregulation will be discussed together with available data about the association between testis damage and heat stress exposure. In addition, the possible association between global warming and the secular decline of testis function will be critically evaluated in light of the available epidemiological studies.

Heat stress affects fetal brain and intestinal function associated with the alterations of placental barrier in late pregnant mouse

High ambient temperature-induced heat stress (HS) during pregnancy may affect the placental function and fetal development. Late gestation is a critical period of the developing fetal brain and intestine. The study aimed to investigate the effects of HS during late pregnancy on the function of placenta, fetal brain and intestine in a mouse model. We found that the number of stillborn fetal mice were increased due to maternal HS. Transcriptome analysis revealed that the expression of genes enriched in nutrients transport and metabolism of HS group were up-regulated in the placenta, but down-regulated in the fetal duodenum and jejunum. Interestingly, the concentration of triglyceride (TG) in the HS group was raised in the placenta, but reduced both in the fetal duodenum and jejunum compared with the thermal-neutral (TN) group. Additionally, maternal HS also reduced total cholesterol (TC) contents in the fetal duodenum. The mRNA expression and protein levels of placental fatty acid binding protein 2 and 4 (fabp2 and fabp4) were not affected by maternal HS, but the mRNA expression and protein levels of cluster of differentiation 36 (CD36) and diacylglycerol acyltransferase-2 (Dgat2) were decreased in the fetal intestine. Furthermore, maternal HS reduced the mRNA expression and protein levels of the placental 11beta-hydroxysteroid dehydrogenase type 2 (Hsd11b2) and 5-hydroxytryptamine receptor 1D (Htr1d). The concentrations of corticosterone and the expression of heat shock protein 90 beta family member 1 (hsp90b1), hypoxia up-regulated 1 (hyou1) and corticotropin releasing hormone receptor 1 (crhr1) enriched in response to glucocorticoids in the fetal brain were increased by maternal HS. Taken together, our findings demonstrated that maternal HS disrupted the placental glucocorticoid barrier and serotonin system associated with the raised corticosterone levels in the fetal brain, which might contribute to the decreased capacity of nutrients transport and metabolism in the fetal intestine.

Impact of environmental factors on human semen quality and male fertility: A narrative review

Background Worldwide rising trend in infertility has been observed in the past few years with male infertility arising as a major problem. One main reason for the rise in male infertility cases is declining semen quality. It was found that any factor that affects semen quality can affect male fertility. There are several modifiable factors affecting semen quality including air pollution, use of pesticides and harmful chemicals, exposure to excessive heat, and can lead to decreased male fertility. Main body The present review focuses on some of these environmental factors that affect semen quality and hence, can cause male infertility. The literature from 2000 till June 2021 was searched from various English peer-reviewed journals and WHO fact sheets using the USA National Library of Medicine (PubMed) database, the regional portal of Virtual Health Library, and Scientific Electronic Library Online. The search terms used were: “Air pollution and male fertility”, “Chemicals and male infertility”, “Heat exposure and infertility”, “heavy metals and male fertility”. Conclusion Adverse environmental factors have a significant impact on semen quality, leading to decreased sperm concentration, total sperm count, motility, viability, and increased abnormal sperm morphology, sperm DNA fragmentation, ultimately causing male infertility. However, all these factors are modifiable and reversible, and hence, by mere changing of lifestyle, many of these risk factors can be avoided.

Impact of environmental quality on healthcare expenditures in developing countries: A panel data approach

OBJECTIVE: The deterioration in environmental quality has an economic and social cost. The aim of this study is to analyze the impact of environmental factors on health expenditures in developing countries. METHOD: To analyze the relationship between environmental quality (air pollution and temperature) and health expenditure in thirty-three developing countries, the study uses system generalized method of moments (GMM) using data from 2000 to 2017. RESULTS: The results suggest a positive effect of both air pollution and temperature on health expenditure. However, the effect is highest for government health expenditure, followed by private and total health expenditure in the studied countries. The results further suggest that the impact of environmental factors is greater in higher-income countries when we divide the studied countries into two groups, i.e., higher- and lower-income countries. CONCLUSION: Our results are interesting and informative for the policy makers to design such policies to attain better environmental quality and social well-being. The increased healthcare expenditures due to increased air pollution and climate change necessitate for an efficient, reliable, affordable and modern energy policy by emphasizing the use of clean and renewable energy in these countries that ensure better health for the masses. Furthermore, a smart and sustainable environmentally friendly economic growth policy is necessary to ensure better health for the masses.

Insect migration and changes in venom allergy due to climate change

Insects are highly successful animals. They have limited ability to regulate their temperature and therefore will expand range in response to warming temperatures. Climate change and associated rising global temperature is impacting the range and distribution of stinging insects. There is evidence that many species are expanding range toward the poles, primarily in response to warming. With expanded distribution of stinging insects, increased interaction with humans is anticipated with consequently increased rates of sting-related reactions and need for intervention. This article focuses on evidence that insects are expanding their range in response to warming temperature, increasing likelihood of human interaction.

Physiological, cognitive and neuromuscular effects of heat exposure on firefighters after a live training scenario

This study investigated physiological, cognitive and neuromuscular performances in firefighters after a structural live-fire scenario. Changes in vital signs, environmental parameters and cognitive and neuromuscular performance were measured before and after a live-fire training session in a closed environment, in conditions similar to those one could encounter in a structural fire. Very high ambient temperature peaks were reached during the 30-min sessions. After the session, the forehead temperature was increased by 0.5 °C, mean water body loss was 639 ml and the mean heart rate increase was 7.5 bpm. Mental calculation speed did not vary significantly, however we observed a reduction in reaction time. These findings demonstrated that after 30 min of exposure, heat stress had little impact on firemen. Stress activation seems beneficial after firefighting operations. Normal vital parameters should allow re-engagement for a second firefighting task. This result must be compared with longer exposures.

Reviewing the scope and thematic focus of 100 000 publications on energy consumption, services and social aspects of climate change: A big data approach to demand-side mitigation*

As current action remains insufficient to meet the goals of the Paris agreement let alone to stabilize the climate, there is increasing hope that solutions related to demand, services and social aspects of climate change mitigation can close the gap. However, given these topics are not investigated by a single epistemic community, the literature base underpinning the associated research continues to be undefined. Here, we aim to delineate a plausible body of literature capturing a comprehensive spectrum of demand, services and social aspects of climate change mitigation. As method we use a novel double-stacked expert-machine learning research architecture and expert evaluation to develop a typology and map key messages relevant for climate change mitigation within this body of literature. First, relying on the official key words provided to the Intergovernmental Panel on Climate Change by governments (across 17 queries), and on specific investigations of domain experts (27 queries), we identify 121 165 non-unique and 99 065 unique academic publications covering issues relevant for demand-side mitigation. Second, we identify a literature typology with four key clusters: policy, housing, mobility, and food/consumption. Third, we systematically extract key content-based insights finding that the housing literature emphasizes social and collective action, whereas the food/consumption literatures highlight behavioral change, but insights also demonstrate the dynamic relationship between behavioral change and social norms. All clusters point to the possibility of improved public health as a result of demand-side solutions. The centrality of the policy cluster suggests that political actions are what bring the different specific approaches together. Fourth, by mapping the underlying epistemic communities we find that researchers are already highly interconnected, glued together by common interests in sustainability and energy demand. We conclude by outlining avenues for interdisciplinary collaboration, synthetic analysis, community building, and by suggesting next steps for evaluating this body of literature.

The burden of heat-related mortality attributable to recent human-induced climate change

Climate change affects human health; however, there have been no large-scale, systematic efforts to quantify the heat-related human health impacts that have already occurred due to climate change. Here, we use empirical data from 732 locations in 43 countries to estimate the mortality burdens associated with the additional heat exposure that has resulted from recent human-induced warming, during the period 1991-2018. Across all study countries, we find that 37.0% (range 20.5-76.3%) of warm-season heat-related deaths can be attributed to anthropogenic climate change and that increased mortality is evident on every continent. Burdens varied geographically but were of the order of dozens to hundreds of deaths per year in many locations. Our findings support the urgent need for more ambitious mitigation and adaptation strategies to minimize the public health impacts of climate change.

Aging hearts in a hotter, more turbulent world: The impacts of climate change on the cardiovascular health of older adults

PURPOSE OF REVIEW: Climate change has manifested itself in multiple environmental hazards to human health. Older adults and those living with cardiovascular diseases are particularly susceptible to poor outcomes due to unique social, economic, and physiologic vulnerabilities. This review aims to summarize those vulnerabilities and the resultant impacts of climate-mediated disasters on the heart health of the aging population. RECENT FINDINGS: Analyses incorporating a wide variety of environmental data sources have identified increases in cardiovascular risk factors, hospitalizations, and mortality from intensified air pollution, wildfires, heat waves, extreme weather events, rising sea levels, and pandemic disease. Older adults, especially those of low socioeconomic status or belonging to ethnic minority groups, bear a disproportionate health burden from these hazards. The worldwide trends responsible for global warming continue to worsen climate change-mediated natural disasters. As such, additional investigation will be necessary to develop personal and policy-level interventions to protect the cardiovascular wellbeing of our aging population.

Climate change and health in informal settlements: A narrative review of the health impacts of extreme weather events

In this paper, we present a narrative review of primary research on the health impacts of extreme weather events in urban informal settlements published between 1990 and June 2021. We include 54 studies and examine the health impacts of extreme weather events and how these were determined. We find that these events impact health directly by causing mortality, injury and disease and through indirect pathways by impacting livelihoods, access to healthcare, coping strategies and adaptive capacity. Drawing on the social determinants of health framework to frame our analysis, we find that health impacts are determined by multiple intersecting factors, relating to individual circumstances, material conditions, health status, and political and socio-economic context. Consequently, vulnerability varies between and within informal settlements. Overall, we show that responding to and minimising these health impacts requires an intersectional approach to understand and address these contextual root causes of vulnerability.

Learning from the past in moving to the future: Invest in communication and response to weather early warnings to reduce death and damage

As climate change increases the frequency and intensity of extreme weather events, governments and civil society organizations are making large investments in early warning systems (EWS) with the aim to avoid death and destruction from hydro-meteorological events. Early warning systems have four components: (1) risk knowledge, (2) monitoring and warning, (3) warning dissemi-nation and communication, and (4) response capability. While there is room to improve all four of these components, we argue that the largest gaps in early warning systems fall in the latter two categories: warning dissemination/communication and response capability. We illustrate this by examining the four components of early warning systems for the deadliest and costliest meteo-rological disasters of this century, demonstrating that the lack of EWS protection is not a lack of forecasts or warnings, but rather a lack of adequate communication and lack of response capa-bility. Improving the accuracy of weather forecasts is unlikely to offer major benefits without resolving these gaps in communication and response capability. To protect vulnerable groups around the world, we provide recommendations for investments that would close such gaps, such as improved communication channels, impact forecasts, early action policies and infrastructure. It is our hope that further investment to close these gaps can better deliver on the goal of reducing deaths and damages with EWS.

Impact of high temperature on road injury mortality in a changing climate, 1990-2019: A global analysis

BACKGROUND: Previous studies have shown that extreme heat likely increases the risk of road injuries. However, the global burden of road injuries due to high temperature and contributing factors remain unclear. This study aims to characterize the global, regional and national burden of road injuries due to high temperature from 1990 to 2019. METHODS: Based on the Global Burden of Disease (GBD) study 2019, we obtained the numbers and age-standardized mortality rates (ASMR) and age-standardized disability-adjusted life years (DALY) rates (ASDR) of the road injury due to high temperature at global, regional, and national levels from 1990 to 2019. The world is divided into five climate zones according to the average annual temperature of each country: tropical, subtropical, warm temperate, cold temperate, and boreal. We used the generalized additive models (GAM) to model the trends of road injuries globally and by region. RESULTS: Globally, between 1990 and 2019, the deaths of road injury attributable to high temperature increased significantly from 20,270 (95% uncertainty interval [UI], 7836 to 42,716) to 28,396 (95% UI, 13,311 to 51,178), and the DALYs increased from 1,169,309 (95% UI, 450,834 to 2,491,075) to 1,414,527 (95% UI, 658,347 to 2,543,613). But the ASMR and the ASDR slightly decreased by 8.49% and 13.16%, respectively. The burden of road injury death attributable to high temperature remained high in low SDI and tropical regions. In addition, road transport infrastructure investment per inhabitant is associated with the burden of road injuries attributable to high temperature. CONCLUSIONS: Globally, the ASMR and ASDR for road injuries attributable to high temperature decreased from 1990 to 2019, but the absolute death and DALYs continued to increase. Thus, concerning global warming, implementation of prevention and interventions to reduce road injuries from heat exposure should be stressed globally.

A moderate mitigation can significantly delay the emergence of compound hot extremes

Compound hot extremes (ChotEs) that refer to continuous heats throughout days and nights are projected to increase, causing more serious impacts on human health than daytime or nighttime heats alone. Previous studies have focused on daytime heats, but the timing of substantial increase in ChotEs relative to natural variability, which is defined as the time of emergence (ToE) for ChotEs, remains unknown. Here we examine ToE for duration of summertime ChotEs from coupled model intercomparison project phase 6 climate model projections under two shared socioeconomic pathway scenarios (i.e., SSP245 and SSP585). We further quantify the cumulative fraction of areal and population exposed to the emergence at global and continental scales. We find that, without implementation of climate mitigation policies (i.e., SSP585), global mean ToE is around 2062 (with 16%-84% uncertainty range of 2048-2072). On the basis of the ToE for each grid cell, 80.7% (with uncertainty range of 64.2%-96.7%) of global lands will expose to the emergence by 2080. Such substantial increases in ChotEs will lead to 75.2% (66.8%-93%) of global population exposed to the emergence by the end of 21st century. A moderate mitigation (i.e., SSP245) can delay the ToE by over 14 years and, more importantly, reduce the global land areal and population exposures by 50.3% and 39.7% respectively. Regionally, northern Europe, central America and western North America benefit the most. Therefore, early action towards moderate development socioeconomic pathways can remarkably cut back the possibility of large population exposure to ChotEs and relevant impacts.

Accelerated exacerbation of global extreme heatwaves under warming scenarios

It is generally believed that global warming drives an increase in heatwaves, but these changes vary regionally. Projected trends of heatwaves and comparisons between observed and projected heatwave trends are poorly understood. We selected multiple characteristics of global heatwave events, including indicators on heat-related health impacts under historical and future scenarios from the NASA Earth Exchange/Global Daily Downscaled Projections (NEX-GDDP) dataset. We quantified the trends in the frequency, intensity, duration and peak temperature of heatwave events and identified heatwave hotspots that respond dramatically to radiative forcing. Future simulations suggest a four-fold increase in the duration of heatwaves by 2050s, spatially concentrated in central Africa, northern South America and Southeast Asia, and the maximum duration of single heatwave event will be up to 44 days under a high emission scenario. Accelerated increasing trends are also detected in intensity, total duration and temperature of heatwaves with up to 2-fold, 8-fold and 9-fold larger than the trends of the baseline period under the high emission scenario. Considering socioeconomic exposure to extreme heatwaves, we identified some hotspot areas in western Europe, eastern North America and northern China that will face greater potential risks in the coming future and therefore need to urgently strengthen their adaptation capacity.

Association of ambient extreme heat with pediatric morbidity: A scoping review

Global climate change is leading to higher ambient temperatures and more frequent heatwaves. To date, impacts of ambient extreme heat on childhood morbidity have been understudied, although-given children’s physiologic susceptibility, with smaller body surface-to-mass ratios, and many years of increasing temperatures ahead-there is an urgent need for better information to inform public health policies and clinical approaches. In this review, we aim to (1) identify pediatric morbidity outcomes previously associated with extreme heat, (2) to identify predisposing co-morbidities which may make children more susceptible to heat-related outcomes, and (3) to map the current body of available literature. A scoping review of the current full-text literature was conducted using the Arksey and O’Malley framework Int J Soc Res Methodol 8:19-32, (2015). Search terms for (1) pediatric population, (2) heat exposures, (3) ambient conditions, and (4) adverse outcomes were combined into a comprehensive PubMed and Medline literature search. Of the 1753 publications identified, a total of 20 relevant studies were ultimately selected based on selection criteria of relevance to US urban populations. Most identified studies supported positive associations between high extreme temperature exposures and heat-related illness, dehydration/electrolyte imbalance, general symptoms, diarrhea and digestion disorders, infectious diseases/infections, asthma/wheeze, and injury. Most studies found no association with renal disease, cardiovascular diseases, or diabetes mellitus. Results were mixed for other respiratory diseases and mental health/psychological disorders. Very few of the identified studies examined susceptibility to pre-existing conditions; Cystic Fibrosis was the only co-morbidity for which we found significant evidence. Further research is needed to understand the nuances of associations between extreme heat and specific outcomes-particularly how associations may vary by child age, sex, race/ ethnicity, community characteristics, and other pre-existing conditions.

Climate and the nephrologist: The intersection of climate change, kidney disease, and clinical care

Climate change is upon us, and it will have a major effect on both kidney disease and the nephrology practice. But the converse is also true: our treatment of kidney disease has an effect on the climate. Much attention has focused on how rising temperatures can lead to acute and CKD and health exacerbations in patients with established kidney disease. Climate change is also associated with rising air pollution from wildfires and industrial wastes and infectious diseases associated with flooding and changing habitats, all of which heighten the risk of acute and CKD. Less well recognized or understood are the ways nephrology practices, in turn, contribute to still more climate change. Hemodialysis, although lifesaving, can be associated with marked water usage (up to 600 L per dialysis session), energy usage (with one 4-hour session averaging as much as one fifth of the total energy consumed by a household per day), and large clinical wastes (with hemodialysis accounting for one third of total clinical medicine-associated waste). Of note, >90% of dialysis occurs in highly affluent countries, whereas dialysis is much less available in the poorer countries where climate change is having the highest effect on kidney disease. We conclude that not only do nephrologists need to prepare for the rise in climate-associated kidney disease, they must also urgently develop more climate-friendly methods of managing patients with kidney disease.

Concentrated and intensifying humid heat extremes in the IPCC AR6 regions

Extreme humid heat events have seen rapid increases globally in recent decades, but regional changes and higher-order temporal characteristics, such as interannual and intra-annual clustering, have not been widely explored. Using ERA5 reanalysis data from 1979 to 2019, we find increasing trends of varying magnitudes in extreme wet-bulb temperatures at the Intergovernmental Panel on Climate Change Sixth Assessment Report (IPCC AR6) regional scale. In many locations, interannual variations in extremes show a strong relationship with the El Nino-Southern Oscillation. The temporal proximity of precipitation events to humid heat days in arid regions suggests that local moisture effects may lead to clustering. Knowledge of these spatial and temporal patterns aids in understanding how potential heat stress is increasing, as well as facilitates the development of regionally specific adaptation and mitigation strategies for combating the associated societal impacts. Plain Language Summary Extreme humid heat, or the combination of high temperature and humidity, poses a more severe threat to human health than does dry heat alone. Though extremes are particularly dangerous, even moderate levels of humid heat can lead to a variety of health and socioeconomic effects. Motivated by the growing demand for regional, decision-relevant climate information, we calculate historical changes in the intensity of humid heat extremes in the regions used in the Intergovernmental Panel on Climate Change Sixth Assessment Report. Humid heat extremes have intensified in most regions, though some areas have experienced greater increases than others. The timing of extremes also affects their impacts, and thus we additionally analyze how humid heat extremes are distributed, both within the year and across all years. In many locations across the world, extreme humid heat is more common during strong El Nino episodes. In some typically dry regions, extremes tend to occur near each other within a given year and around the same time as rainfall events. Our results help advance the understanding of potential heat stress and the development of regionally specific strategies for combating its impacts.

Disaster microbiology-a new field of study

Natural and human-made disasters can cause tremendous physical damage, societal change, and suffering. In addition to their effects on people, disasters have been shown to alter the microbial population in the area affected. Alterations for microbial populations can lead to new ecological interactions, with additional potentially adverse consequences for many species, including humans. Disaster-related stressors can be powerful forces for microbial selection. Studying microbial adaptation in disaster sites can reveal new biological processes, including mechanisms by which some microbes could become pathogenic and others could become beneficial (e.g., used for bioremediation). Here we survey examples of how disasters have affected microbiology and suggest that the topic of “disaster microbiology” is itself a new field of study. Given the accelerating pace of human-caused climate change and the increasing encroachment of the natural word by human activities, it is likely that this area of research will become increasingly relevant to the broader field of microbiology. Since disaster microbiology is a broad term open to interpretation, we propose criteria for what phenomena fall under its scope. The basic premise is that there must be a disaster that causes a change in the environment, which then causes an alteration to microbes (either a physical or biological adaptation), and that this adaptation must have additional ramifications.

Drowning risk and climate change: A state-of-the-art review

Drowning and climate change are both significant global health threats, yet little research links climate change to drowning risk. Research into the epidemiology, risk factors and preventive strategies for unintentional drowning in high-income and in low-income and middle-income countries has expanded understanding, but understanding of disaster and extreme weather-related drowning needs research focus. As nation states and researchers call for action on climate change, its impact on drowning has been largely ignored. This state-of-the-art review considers existing literature on climate change as a contributor to changes in drowning risks globally. Using selected climate change-related risks identified by the World Meteorological Organization and key risks to the Sustainable Development Goals as a framework, we consider the drowning risks associated with heat waves, hydrometeorological hazards, drought and water scarcity, damaged infrastructure, marine ecosystem collapse, displacement, and rising poverty and inequality. Although the degree of atmospheric warming remains uncertain, the impact of climate change on drowning risk is already taking place and can no longer be ignored. Greater evidence characterising the links between drowning and climate change across both high-income and low-income and middle-income contexts is required, and the implementation and evaluation of drowning interventions must reflect climate change risks at a local level, accounting for both geographical variation and the consequences of inequality. Furthermore, collaboration between the injury prevention, disaster risk reduction and climate change mitigation sectors is crucial to both prevent climate change from stalling progress on preventing drowning and further advocate for climate change mitigation as a drowning risk reduction mechanism.

Effect of elevated ambient temperature on maternal, foetal, and neonatal outcomes: A scoping review

This scoping review provides an overview of the published literature, identifies research gaps, and summarises the current evidence of the association between elevated ambient temperature exposure during pregnancy and adverse maternal, foetal, and neonatal outcomes. Following the PRISMA extension for scoping reviews reporting guidelines, a systematic search was conducted on CINAHL, PubMed, and Embase and included original articles published in the English language from 2015 to 2020 with no geographical limitations. A total of seventy-five studies were included, conducted across twenty-four countries, with a majority in the USA (n = 23) and China (n = 13). Study designs, temperature metrics, and exposure windows varied considerably across studies. Of the eighteen heat-associated adverse maternal, foetal, and neonatal outcomes identified, pre-term birth was the most common outcome (n = 30), followed by low birth weight (n = 11), stillbirth (n = 9), and gestational diabetes mellitus (n = 8). Overall, papers reported an increased risk with elevated temperature exposures. Less attention has been paid to relationships between heat and the diverse range of other adverse outcomes such as congenital anomalies and neonatal mortality. Further research on these less-reported outcomes is needed to improve understanding and the effect size of these relationships with elevated temperatures, which we know will be exacerbated by climate change.

Environmental, health, and equity co-benefits in urban climate action plans: A descriptive analysis for 27 c40 member cities

Many actions to reduce greenhouse gases (GHGs) in cities have benefits for environmental quality, public health, and equity. These local and immediate “co-benefits” can include cleaner air, expanded green space, improved physical activity, and reduced noise. However, progress incorporating co-benefits assessments into climate mitigation planning has been limited. Here, we capitalized on the new availability of climate action plans (CAPs) from dozens of C40 cities to explore the stated role of environmental quality, health, and equity in urban GHG mitigation planning. Specifically, we qualitatively reviewed how four topics-equity, exposure to environmental risk factors, health effects of climate change, and health co-benefits of GHG mitigation-were addressed in CAPs from 27 C40 member cities. The cities span Africa, Asia, Australia, Europe, North America, and South America. We found that more references pertained to exposures (57% of all identified references across the four topics) than to equity (21%), health co-benefits of GHG mitigation (15%), or health effects of climate change (7%). On average across all cities, five exposure categories represented the majority of exposure references: green space (23% of total coded exposure references), disasters (20%), physical activity (24%), heat (16%), and air quality (12%). Approximately two-thirds of health effects and health co-benefits references noted a link with health generally, without specificity to disease or other health outcome. Our results indicate that while environmental quality is commonly considered in CAPs, health effects of climate change and health co-benefits of GHG mitigation are mentioned less frequently. Future work should further develop methods to qualitatively and quantitatively assess health consequences of action and inaction to reduce GHG emissions, using approaches that are appropriate for and accessible to multiple levels of governments.

Extreme heat and cardiovascular health: What a cardiovascular health professional should know

As global temperatures continue to rise, extreme heat events are becoming more frequent and intense. Extreme heat affects cardiovascular health as it is associated with a greater risk of adverse cardiovascular events, especially for adults with preexisting cardiovascular diseases. Nonetheless, the pathophysiology underlying the association between extreme heat and cardiovascular risk remains understudied. Furthermore, specific recommendations to mitigate the effects of extreme heat on cardiovascular health remain limited to guide clinical practice within the context of a warming climate. The overall objective of this review article is to raise awareness that extreme heat poses a risk for cardiovascular health. Specifically, the review discusses why cardiovascular healthcare professionals should care about extreme heat, how extreme heat affects cardiovascular health, and recommendations to minimise the cardiovascular consequences of extreme heat. Future research directions are also provided to further our understating of the cardiovascular health consequences of extreme heat. A better awareness and understanding of the cardiovascular consequences of extreme heat will help cardiovascular health professionals assess the risk and optimise the care of their patients exposed to an increasingly warm climate.

Extreme heat and pregnancy outcomes: A scoping review of the epidemiological evidence

BACKGROUND: Extreme heat caused by climate change is a major public health concern, disproportionately affecting poor and racialized communities. Gestational heat exposure is a well-established teratogen in animal studies, with a growing body of literature suggesting human pregnancies are similarly at risk. Characterization of extreme heat as a pregnancy risk is problematic due to nonstandard definitions of heat waves, and variable study designs. To better focus future research in this area, we conducted a scoping review to assess the effects of extreme heat on pregnancy outcomes. METHODS: A scoping review of epidemiological studies investigating gestational heat-exposure and published 2010 and 2020, was conducted with an emphasis on study design, gestational windows of sensitivity, adverse pregnancy outcomes and characterization of environmental temperatures. RESULTS: A sample of 84 studies was identified, predominantly set in high-income countries. Preterm birth, birthweight, congenital anomalies and stillbirth were the most common pregnancy outcome variables. Studies reported race/ethnicity and/or socioeconomic variables, however these were not always emphasized in the analysis. CONCLUSION: Use of precise temperature data by most studies avoided pitfalls of imprecise, regional definitions of heat waves, however inconsistent study design, and exposure windows are a significant challenge to systematic evaluation of this literature. Despite the high risk of extreme heat events and limited mitigation strategies in the global south, there is a significant gap in the epidemiological literature from these regions. Greater consistency in study design and exposure windows would enhance the rigor of this field.

Impacts of environmental insults on cardiovascular aging

PURPOSE OF REVIEW: With cardiovascular disease (CVD) being the top cause of deaths worldwide, it is important to ensure healthy cardiovascular aging through enhanced understanding and prevention of adverse health effects exerted by external factors. This review aims to provide an updated understanding of environmental influences on cardiovascular aging, by summarizing epidemiological and mechanistic evidence for the cardiovascular health impact of major environmental stressors, including air pollution, endocrine-disrupting chemicals (EDCs), metals, and climate change. RECENT FINDINGS: Recent studies generally support positive associations of exposure to multiple chemical environmental stressors (air pollution, EDCs, toxic metals) and extreme temperatures with increased risks of cardiovascular mortality and morbidity in the population. Environmental stressors have also been associated with a number of cardiovascular aging-related subclinical changes including biomarkers in the population, which are supported by evidence from relevant experimental studies. The elderly and patients are the most vulnerable demographic groups to majority environmental stressors. Future studies should account for the totality of individuals’ exposome in addition to single chemical pollutants or environmental factors. Specific factors most responsible for the observed health effects related to cardiovascular aging remain to be elucidated.

Heat exposure and cardiovascular health outcomes: A systematic review and meta-analysis

BACKGROUND: Heat exposure is an important but underappreciated risk factor contributing to cardiovascular disease. Warming temperatures might therefore pose substantial challenges to population health, especially in a rapidly aging population. To address a potential increase in the burden of cardiovascular disease, a better understanding of the effects of ambient heat on different types of cardiovascular disease and factors contributing to vulnerability is required, especially in the context of climate change. This study reviews the current epidemiological evidence linking heat exposures (both high temperatures and heatwaves) with cardiovascular disease outcomes, including mortality and morbidity. METHODS: In this systematic review and meta-analysis, we searched PubMed, Embase, and Scopus for literature published between Jan 1, 1990, and March 10, 2022, and evaluated the quality of the evidence following the Navigation Guide Criteria. We included original research on independent study populations in which the exposure metric was high temperatures or heatwaves, and observational studies using ecological time series, case crossover, or case series study designs comparing risks over different exposures or time periods. Reviews, commentaries, grey literature, and studies that examined only seasonal effects without explicitly considering temperature were excluded. The risk estimates were derived from included articles and if insufficient data were available we contacted the authors to provide clarification. We did a random-effects meta-analysis to pool the relative risk (RR) of the association between high temperatures and heatwaves and cardiovascular disease outcomes. The study protocol was registered with PROSPERO (CRD42021232601). FINDINGS: In total, 7360 results were returned from our search of which we included 282 articles in the systematic review, and of which 266 were eligible for the meta-analysis. There was substantial heterogeneity for both mortality (high temperatures: I(2)=93·6%, p<0·0001; heatwaves: I(2)=98·9%, p<0·0001) and morbidity (high temperatures: I(2)=98·8%, p<0·0001; heatwaves: I(2)=83·5%, p<0·0001). Despite the heterogeneity in environmental conditions and population dynamics among the reviewed studies, results showed that a 1°C increase in temperature was positively associated with cardiovascular disease-related mortality across all considered diagnoses. The overall risk of cardiovascular disease-related mortality increased by 2·1% (RR 1·021 [95%CI 1·020-1·023]), with the highest specific disease risk being for stroke and coronary heart disease. A 1°C temperature rise was also associated with a significant increase in morbidity due to arrhythmias and cardiac arrest and coronary heart disease. Our findings suggest heat exposure leads to elevated risk of morbidity and mortality for women, people 65 years and older, individuals living in tropical climates, and those in countries of lower-middle income. Heatwaves were also significantly associated with a 17% increase in risk of mortality (RR 1·117 [95% CI 1·093-1·141]), and increasing heatwave intensity with an increasing risk (RR 1·067 [95% CI 1·056-1·078] for low intensity, 1·088 [1·058-1·119] for middle intensity, and 1·189 [1·109-1·269] for high intensity settings). INTERPRETATION: This review strengthens the evidence on the increase in cardiovascular disease risk due to ambient heat exposures in different climate zones. The widespread prevalence of exposure to hot temperatures, in conjunction with an increase in the proportion of older people in the population, might result in a rise in poor cardiovascular disease health outcomes associated with a warming climate. Evidence-based prevention measures are needed to attenuate peaks in cardiovascular events during hot spells, thereby lowering the worldwide total heat-related burden of cardiovascular disease-related morbidity and death. FUNDING: Australian Research Council Discovery Program.

Impacts of high environmental temperatures on congenital anomalies: A systematic review

Links between heat exposure and congenital anomalies have not been explored in detail despite animal data and other strands of evidence that indicate such links are likely. We reviewed articles on heat and congenital anomalies from PubMed and Web of Science, screening 14,880 titles and abstracts in duplicate for articles on environmental heat exposure during pregnancy and congenital anomalies. Thirteen studies were included. Most studies were in North America (8) or the Middle East (3). Methodological diversity was considerable, including in temperature measurement, gestational windows of exposure, and range of defects studied. Associations were detected between heat exposure and congenital cardiac anomalies in three of six studies, with point estimates highest for atrial septal defects. Two studies with null findings used self-reported temperature exposures. Hypospadias, congenital cataracts, renal agenesis/hypoplasia, spina bifida, and craniofacial defects were also linked with heat exposure. Effects generally increased with duration and intensity of heat exposure. However, some neural tube defects, gastroschisis, anopthalmia/microphthalmia and congenital hypothyroidism were less frequent at higher temperatures. While findings are heterogenous, the evidence raises important concerns about heat exposure and birth defects. Some heterogeneity may be explained by biases in reproductive epidemiology. Pooled analyses of heat impacts using registers of congenital anomalies are a high priority.

Knowledge gaps and research priorities on the health effects of heatwaves: A systematic review of reviews

Although extreme weather events have played a constant role in human history, heatwaves (HWs) have become more frequent and intense in the past decades, causing concern especially in light of the increasing evidence on climate change. Despite the increasing number of reviews suggesting a relationship between heat and health, these reviews focus primarily on mortality, neglecting other important aspects. This systematic review of reviews gathered the available evidence from research syntheses conducted on HWs and health. Following the PRISMA guidelines, 2232 records were retrieved, and 283 reviews were ultimately included. Information was extracted from the papers and categorized by topics. Quantitative data were extracted from meta-analyses and, when not available, evidence was collected from systematic reviews. Overall, 187 reviews were non-systematic, while 96 were systematic, of which 27 performed a meta-analysis. The majority evaluated mortality, morbidity, or vulnerability, while the other topics were scarcely addressed. The following main knowledge gaps were identified: lack of a universally accepted definition of HW; scarce evidence on the HW-mental health relationship; no meta-analyses assessing the risk perception of HWs; scarcity of studies evaluating the efficacy of adaptation strategies and interventions. Future efforts should meet these priorities to provide high-quality evidence to stakeholders.

The effect of the heatwave on the morbidity and mortality of diabetes patients; a meta-analysis for the era of the climate crisis

INTRODUCTION: From the perspective of public health, the climate crisis is also causing many health problems worldwide. In contrast with the cardiovascular, respiratory, and urinary system, the adverse effects of heatwaves on the endocrine system, particularly in people with diabetes mellitus (DM), are not well established to date. In this study, the author investigated the morbidity and mortality changes of DM patients during heatwave periods, using the meta-analysis method. METHODS: The author searched MEDLINE, EMBASE, and the Cochrane Library until March 12, 2020. The quality of each included study was assessed using the National Institutes of Health (NIH) Quality Assessment tools. The meta-analysis was conducted using the studies with a relative risk (RR) estimate and odds ratio (OR) estimate. The subgroup analysis and the meta-ANOVA analysis were conducted using various covariates, including lag days considered. RESULTS: Only 36 articles were included in the meta-analysis. The pooled RR of mortality and of morbidity for diabetics under the heatwave were 1.18 (95% CI 1.13-1.25) and 1.10 (95% CI 1.06-1.14). For mortality studies, whether or not the lag days considered were 10 days or more was only a significant covariate for the meta-ANOVA analysis (Q = 3.17, p = 0.075). For morbidity studies, the definition of the heatwave (Q = 65.94, p < 0.0001), whether or not the maximum temperature was 40 °C or more (Q = 4.78, p = 0.0288), and the type of morbidity (Q = 60.23, p < 0.0001) were significant covariates for the analysis. DISCUSSION: The mortality and morbidity risks of diabetes patients under the heatwave were mildly increased by about 18 percent for mortality and 10 percent for overall morbidity. The mortality risk of diabetics can increase more when lag days of 10 days or more are considered than when lag days of less than 10 days are considered. These valuable findings can be used in developing public health strategies to cope with heatwaves in the current era of aggravating global warming and climate crisis.

A novel mouse model of heatstroke accounting for ambient temperature and relative humidity

Background Heatstroke is associated with exposure to high ambient temperature (AT) and relative humidity (RH), and an increased risk of organ damage or death. Previously proposed animal models of heatstroke disregard the impact of RH. Therefore, we aimed to establish and validate an animal model of heatstroke considering RH. To validate our model, we also examined the effect of hydration and investigated gene expression of cotransporter proteins in the intestinal membranes after heat exposure. Methods Mildly dehydrated adult male C57/BL6J mice were subjected to three AT conditions (37 degrees C, 41 degrees C, or 43 degrees C) at RH > 99% and monitored with WetBulb globe temperature (WBGT) for 1 h. The survival rate, body weight, core body temperature, blood parameters, and histologically confirmed tissue damage were evaluated to establish a mouse heatstroke model. Then, the mice received no treatment, water, or oral rehydration solution (ORS) before and after heat exposure; subsequent organ damage was compared using our model. Thereafter, we investigated cotransporter protein gene expressions in the intestinal membranes of mice that received no treatment, water, or ORS. Results The survival rates of mice exposed to ATs of 37 degrees C, 41 degrees C, and 43 degrees C were 100%, 83.3%, and 0%, respectively. From this result, we excluded AT43. Mice in the AT 41 degrees C group appeared to be more dehydrated than those in the AT 37 degrees C group. WBGT in the AT 41 degrees C group was > 44 degrees C; core body temperature in this group reached 41.3 +/- 0.08 degrees C during heat exposure and decreased to 34.0 +/- 0.18 degrees C, returning to baseline after 8 h which showed a biphasic thermal dysregulation response. The AT 41 degrees C group presented with greater hepatic, renal, and musculoskeletal damage than did the other groups. The impact of ORS on recovery was greater than that of water or no treatment. The administration of ORS with heat exposure increased cotransporter gene expression in the intestines and reduced heatstroke-related damage. Conclusions We developed a novel mouse heatstroke model that considered AT and RH. We found that ORS administration improved inadequate circulation and reduced tissue injury by increasing cotransporter gene expression in the intestines.

Critical environmental limits for young, healthy adults (PSU HEAT Project)

Critical environmental limits are those combinations of ambient temperature and humidity above which heat balance cannot be maintained for a given metabolic heat production, limiting exposure time, and placing individuals at increased risk of heat-related illness. The aim of this study was to establish those limits in young (18-34 yr) healthy adults during low-intensity activity approximating the metabolic demand of activities of daily living. Twenty-five (12 men/13 women) subjects were exposed to progressive heat stress in an environmental chamber at two rates of metabolic heat production chosen to represent minimal activity (MinAct) or light ambulation (LightAmb). Progressive heat stress was performed with either 1) constant dry-bulb temperature (T(db)) and increasing ambient water vapor pressure (P(a)) (P(crit) trials; 36°C, 38°C, or 40°C) or 2) constant P(a) and increasing T(db) (T(crit) trials; 12, 16, or 20 mmHg). Each subject was tested during MinAct and LightAmb in two to three experimental conditions in random order, for a total of four to six trials per participant. Higher metabolic heat production (P < 0.001) during LightAmb compared with MinAct trials resulted in significantly lower critical environmental limits across all P(crit) and T(crit) conditions (all P < 0.001). These data, presented graphically herein on a psychrometric chart, are the first to define critical environmental limits for young adults during activity resembling those of light household tasks or other activities of daily living and can be used to develop guidelines, policy decisions, and evidence-based alert communications to minimize the deleterious impacts of extreme heat events.NEW & NOTEWORTHY Critical environmental limits are those combinations of temperature and humidity above which heat balance cannot be maintained, placing individuals at increased risk of heat-related illness. Those limits have been investigated in young adults during exercise at 30% V_(O2max), but not during metabolic rates that approximate those of light activities of daily living. Herein, we establish critical environmental limits for young adults at two metabolic rates that reflect activities of daily living and leisurely walking.

Effect of heat stress on DNA damage: A systematic literature review

Thermal stress has a direct effect on various types of DNA damage, which depends on the stage of the cell cycle when the cell is exposed to different climate conditions. A literature review was conducted to systematically investigate and assess the overall effect of heat stress and DNA damage following heat exposure. In this study, electronic databases including PubMed, Scopus, and Web of Science were searched to find relevant literature on DNA damage in different ambient temperatures. Outcomes included (1) measurement of DNA damage in heat exposure, (2) three different quantification methods (comet assay, 8-hydroxy-2-deoxyguanosine (8-OHdG), and γ-H2AX), and (3) protocols used for moderate (31) and high temperatures (42). The evidence shows that long exposure and very high temperature can induce an increase in DNA damage through aggregate in natural proteins, ROS generation, cell death, and reproductive damage in hot-humid and hot-dry climate conditions. A substantial increase in DNA damage occurs following acute heat stress exposure, especially in tropical and subtropical climate conditions. The results of this systematic literature review showed a positive association between thermal stress exposure and inhibition of repair of DNA damage.

EMS methods to cool a patient in the field

Hyperthermia is defined as a body temperature greater than 40 degrees C. Several conditions can cause hyperthermia. In sepsis, the immunologic reaction to the infection most often manifests as a fever. Some toxic ingestions and withdrawal states can cause elevated body temperature. Certain medications can cause a hyperthermic response, such as in neuroleptic malignant syndrome. The most common disease that can be treated by cooling alone is heat-related illness and heat stroke. Heat-related illness is a spectrum of disease that occurs when the body’s thermoregulatory system does not work properly. Heat exhaustion is characterized by elevated core body temperature associated with orthostatic hypotension, tachycardia, diaphoresis, and tachypnea. Heat stroke is defined as elevated core body temperature plus central nervous system involvement (delirium, decreased the level of consciousness, or ataxia). Heat-related illness most often affects athletes (exertional hyperthermia), but can also occur during the warm weather months or in locations with extreme temperatures. Patients with impaired thermoregulation (those at extremes of age, the obese or mentally ill) are at higher risk. The definitive treatment for heat-related illness is total body cooling. Conduction and evaporation are the two modes of cooling employed in the treatment of heat-related illness. Studies have shown ice water immersion to be the most effective and most rapid. However, there are obvious barriers to performing this in an emergency department. Marathons and other athletic events that have frequent heat-related illness sometimes have this capability. Evaporation (mist and fan) is the second most rapid way to cool a patient. Ice packs to the groin, axilla, neck, and areas near other great vessels have been shown to be less effective. Cooled intravenous fluids have been studied, but there is no clear consensus regarding their benefit (preservation of neurologic function) versus potential harm (induced shivering), but they may be considered. This article will discuss the procedure for performing evaporative cooling with other adjuncts in the field. The priority in heat-related illness is early recognition and intervention. Military and sports literature has identified 40 degrees C as the target, and the faster the target is achieved, the lower the patient mortality.

Effects of climate change on combined labour productivity and supply: An empirical, multi-model study

BACKGROUND: Although effects on labour is one of the most tangible and attributable climate impact, our quantification of these effects is insufficient and based on weak methodologies. Partly, this gap is due to the inability to resolve different impact channels, such as changes in time allocation (labour supply) and slowdown of work (labour productivity). Explicitly resolving those in a multi-model inter-comparison framework can help to improve estimates of the effects of climate change on labour effectiveness. METHODS: In this empirical, multi-model study, we used a large collection of micro-survey data aggregated to subnational regions across the world to estimate new, robust global and regional temperature and wet-bulb globe temperature exposure-response functions (ERFs) for labour supply. We then assessed the uncertainty in existing labour productivity response functions and derived an augmented mean function. Finally, we combined these two dimensions of labour into a single compound metric (effective labour effects). This combined measure allowed us to estimate the effect of future climate change on both the number of hours worked and on the productivity of workers during their working hours under 1·5°C, 2·0°C, and 3·0°C of global warming. We separately analysed low-exposure (indoors or outdoors in the shade) and high-exposure (outdoor in the sun) sectors. FINDINGS: We found differentiated empirical regional and sectoral ERF’s for labour supply. Current climate conditions already negatively affect labour effectiveness, particularly in tropical countries. Future climate change will reduce global total labour in the low-exposure sectors by 18 percentage points (range -48·8 to 5·3) under a scenario of 3·0°C warming (24·8 percentage points in the high-exposure sectors). The reductions will be 25·9 percentage points (-48·8 to 2·7) in Africa, 18·6 percentage points (-33·6 to 5·3) in Asia, and 10·4 percentage points (-35·0 to 2·6) in the Americas in the low-exposure sectors. These regional effects are projected to be substantially higher for labour outdoors in full sunlight compared with indoors (or outdoors in the shade) with the average reductions in total labour projected to be 32·8 percentage points (-66·3 to 1·6) in Africa, 25·0 percentage points (-66·3 to 7·0) in Asia, and 16·7 percentage points (-45·5 to 4·4) in the Americas. INTERPRETATION: Both labour supply and productivity are projected to decrease under future climate change in most parts of the world, and particularly in tropical regions. Parts of sub-Saharan Africa, south Asia, and southeast Asia are at highest risk under future warming scenarios. The heterogeneous regional response functions suggest that it is necessary to move away from one-size-fits-all response functions to investigate the climate effect on labour. Our findings imply income and distributional consequences in terms of increased inequality and poverty, especially in low-income countries, where the labour effects are projected to be high. FUNDING: COST (European Cooperation in Science and Technology).

Enhanced intestinal permeability and intestinal co-morbidities in heat strain: A review and case for autodigestion

Enhanced intestinal permeability is a pervasive issue in modern medicine, with implications demonstrably associated with significant health consequences such as sepsis, multiorgan failure, and death. Key issues involve the trigger mechanisms that could compromise intestinal integrity and increase local permeability allowing the passage of larger, potentially dangerous molecules. Heat stress, whether exertional or environmental, may modulate intestinal permeability and begs interesting questions in the context of global climate change, increasing population vulnerabilities, and public health. Emerging evidence indicates that intestinal leakage of digestive enzymes and associated cell dysfunctions–a process referred to as autodigestion–may play a critical role in systemic physiological damage within the body. This increased permeability is exacerbated in the presence of elevated core temperatures. We employed Latent Dirichlet Allocation (LDA) topic modeling methods to analyze the relationship between heat stress and the nascent theory of autodigestion in a systematic, quantifiable, and unbiased manner. From a corpus of 11,233 scientific articles across four relevant scientific journals (Gut, Shock, Temperature, Gastroenterology), it was found that over 1,000 documents expressed a relationship between intestine, enhanced permeability, core temperature, and heat stress. The association has grown stronger in recent years, as heat stress and potential autodigestion are investigated in tandem, yet still by a limited number of specific research studies. Such findings justify the design of future studies to critically test novel interventions against digestive enzymes permeating the intestinal tract, especially the small intestine.

Explicit calculations of wet-bulb globe temperature compared with approximations and why it matters for labor productivity

Wet-bulb globe temperature (WBGT) is a widely applied heat stress index. However, most applications of WBGT within the heat stress impact literature that do not use WBGT at all, but use one of the ad hoc approximations, typically the simplified WBGT (sWBGT) or the environmental stress index (ESI). Surprisingly, little is known about how well these approximations work for the global climate and climate change settings that they are being applied to. Here, we assess the bias distribution as a function of temperature, humidity, wind speed, and radiative conditions of both sWBGT and ESI relative to a well-validated, explicit physical model for WBGT developed by Liljegren, within an idealized context and the more realistic setting of ERA5 reanalysis data. sWBGT greatly overestimates heat stress in hot-humid areas. ESI has much smaller biases in the range of standard climatological conditions. Over subtropical dry regions, both metrics can substantially underestimate extreme heat. We show systematic overestimation of labor loss by sWBGT over much of the world today. We recommend discontinuing the use of sWBGT. ESI may be acceptable for assessing average heat stress or integrated impact over a long period like a year, but less suitable for health applications, extreme heat stress analysis, or as an operational index for heat warning, heatwave forecasting, or guiding activity modification at the workplace. Nevertheless, Liljegren’s approach should be preferred over these ad hoc approximations and we provide a fast Python implementation to encourage its widespread use.

Extending the heat index

The heat index is a widely used measure of apparent temperature that accounts for the effects of humidity using Steadman’s model of human thermoregulation. Steadman’s model, however, gives unphysical results when the air is too hot and humid or too cold and dry, leading to an undefined heat index. For example, at a relative humidity of 80%, the heat index is only defined for temperatures in the range of 288-304 K (59 degrees-88 degrees F). Here, Steadman’s thermoregulation model is extended to define the heat index for all combinations of temperature and humidity, allowing for an assessment of Earth’s future habitability. The extended heat index can be mapped onto physiological responses of an idealized human, such as heat exhaustion, heat stroke, and even heat death, providing an indication of regional health outcomes for different degrees of global warming. Significance StatementThe existing heat index is well-defined for most combinations of high temperature and humidity experienced on Earth in the preindustrial climate, but global warming is increasingly generating conditions for which the heat index is undefined. Therefore, an extension of the original heat index is needed. When extending the heat index, we use the same physiological model as in the original work of Steadman to ensure backward compatibility. Following Steadman, each value of the heat index is mapped onto a measurable physiological variable, which can be useful for assessing the health impacts of various combinations of temperature and humidity, especially for outdoor workers.

Fiber-spinning asymmetric assembly for janus-structured bifunctional nanofiber films towards all-weather smart textile

Given health threat by global warming and increased energy consumption in regulating body temperature, it is an urgent need to construct smart temperature-regulating materials. Herein, a novel fiber-spinning asymmetric chemical assembly (FACA) method is proposed to construct nanofiber materials with asymmetric photothermal properties. The silver nanowires (AgNWs) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with opposite thermal radiation are assembled on reduced graphene oxide (rGO) film, imparting AgNW/rGO/PVDF-HFP film with Janus structure that can realize the AgNWs side consistently keeps temperature of ca. 11 °C lower than the side of PVDF-HFP nanofiber regardless of the irradiation directions under 1 sun, suggesting the adjustable photothermal regulation. Such photothermally selective hybrid nanofiber film provides great potential as fabrics to achieve all-weather smart clothes, promoting controllable and comprehensive utilization of solar energy.

Heat stress on agricultural workers exacerbates crop impacts of climate change

The direct impacts of climate change on crop yields and human health are individually well-studied, but the interaction between the two have received little attention. Here we analyze the consequences of global warming for agricultural workers and the crops they cultivate using a global economic model (GTAP) with explicit treatment of the physiological impacts of heat stress on humans’ ability to work. Based on two metrics of heat stress and two labor functions, combined with a meta-analysis of crop yields, we provide an analysis of climate, impacts both on agricultural labor force, as well as on staple crop yields, thereby accounting for the interacting effect of climate change on both land and labor. Here we analyze the two sets of impacts on staple crops, while also expanding the labor impacts to highlight the potential importance on non-staple crops. We find, worldwide, labor and yield impacts within staple grains are equally important at +3 C warming, relative to the 1986-2005 baseline. Furthermore, the widely overlooked labor impacts are dominant in two of the most vulnerable regions: sub-Saharan Africa and Southeast Asia. In those regions, heat stress with 3 C global warming could reduce labor capacity in agriculture by 30%-50%, increasing food prices and requiring much higher levels of employment in the farm sector. The global welfare loss at this level of warming could reach $136 billion, with crop prices rising by 5%, relative to baseline.

Heat stress, labor productivity, and economic impacts: Analysis of climate change impacts using two-way coupled modeling

Climate change affects various fundamental human activities, and understanding the consequences of its impacts is essential. Among them, heat stress considerably affects economic conditions. Furthermore, when analyzing the socioeconomic impacts of climate change, both socioeconomic and climate systems must be considered simultaneously, though such studies are scarce. This study aimed to evaluate the socioeconomic impacts of changes in labor productivity due to heat stress (measured by wet bulb globe temperature) under various climate change scenarios through a new modeling framework that coupled a computable general equilibrium model and an Earth system model of intermediate complexity to realize the interactions between the two systems through the relationship between heat stress and labor productivity. Results indicated that labor productivity declined as climate change progressed (particularly in hot and humid regions), driving a gradual decline in total global gross domestic product (GDP). Although regional GDP largely decreased where labor productivity considerably declined, it slightly increased in some areas because of a comparative advantage brought about by the difference in the impact on labor productivity by region. Consequently, carbon dioxide (CO2) emissions and concentrations and the resulting temperature were slightly reduced when examining the impact of climate change on labor productivity. These tendencies were similar in both business-as-usual and climate change mitigation scenarios, but the overall impacts were smaller under the latter. There was a limited impact on CO2 emissions, CO2 concentrations, and temperature via integrated socioeconomic and climate systems. However, this study focused on only a single channel of the various interactions between the two systems. For a more complete evaluation of the impacts of climate change, further development of the integrated model is required.

Human temperature regulation under heat stress in health, disease, and injury

The human body constantly exchanges heat with the environment. Temperature regulation is a homeostatic feedback control system that ensures deep body temperature is maintained within narrow limits despite wide variations in environmental conditions and activity-related elevations in metabolic heat production. Extensive research has been performed to study the physiological regulation of deep body temperature. This review focuses on healthy and disordered human temperature regulation during heat stress. Central to this discussion is the notion that various morphological features, intrinsic factors, diseases, and injuries independently and interactively influence deep body temperature during exercise and/or exposure to hot ambient temperatures. The first sections review fundamental aspects of the human heat stress response, including the biophysical principles governing heat balance and the autonomic control of heat loss thermoeffectors. Next, we discuss the effects of different intrinsic factors (morphology, heat adaptation, biological sex, and age), diseases (neurological, cardiovascular, metabolic, and genetic), and injuries (spinal cord injury, deep burns, and heat stroke), with emphasis on the mechanisms by which these factors enhance or disturb the regulation of deep body temperature during heat stress. We conclude with key unanswered questions in this field of research.

Impacts of climate change and heat stress on farmworkers’ health: A scoping review

Due to the continuous rise of global temperatures and heatwaves worldwide as a result of climate change, concerns for the health and safety of working populations have increased. Workers in the food production chain, particularly farmworkers, are especially vulnerable to heat stress due to the strenuous nature of their work, which is performed primarily outdoors under poor working conditions. At the cross-section of climate change and farmworkers’ health, a scoping review was undertaken to summarize the existing knowledge regarding the health impacts associated with climate change and heat stress, guide future research toward better understanding current and future climate change risks, and inform policies to protect the health and safety of agricultural workers. A systematic search of 5 electronic databases and gray literature websites was conducted to identify relevant literature published up until December 2021. A total of 9045 records were retrieved from the searches, of which 92 articles were included in the final review. The majority of the reviewed articles focused on heat-related illnesses (n = 57) and kidney diseases (n = 28). The risk factors identified in the reviewed studies included gender, dehydration, heat strain, wearing inappropriate clothing, workload, piece-rate payment, job decision latitude, and hot environmental conditions. On the other hand, various protective and preventive factors were identified including drinking water, changing work hours and schedule of activities, wearing appropriate clothing, reducing soda consumption, taking breaks in shaded or air-conditioned areas, and increasing electrolyte consumption in addition to improving access to medical care. This review also identified various factors that are unique to vulnerable agricultural populations, including migrant and child farmworkers. Our findings call for an urgent need to expand future research on vulnerable agricultural communities including migrant workers so as to develop effective policies and interventions that can protect these communities from the effects of heat stress.

Improvement in heat stress-induced multiple organ dysfunction and intestinal damage through protection of intestinal goblet cells from prostaglandin E1 analogue misoprostol

AIMS: Heat stroke is a life-threatening disorder triggered by thermoregulatory failure. Hyperthermia-induced splanchnic hypoperfusion has been reported to induce intestinal barrier dysfunction and systemic immune response that ultimately cause multiple-organ failure and death. Intestinal goblet cells contribute greatly to the formation of mucus barrier, which hinders translocation of gut microorganisms. Studies have reported that misoprostol can not only alleviate ischemic injury but also protect GI mucosal layer. Therefore, we evaluated the effects of misoprostol on intestinal goblet cells after heat stress and on multiple-organ dysfunction in heat stroke rats. MAIN METHODS: Heat stress was established in the heating chamber and followed by misoprostol treatment. Changes in hemodynamics, organ function indices, inflammation, oxidative stress, and survival rate were analyzed. Furthermore, ilea and LS174T cells were used to examine intestinal functions. KEY FINDINGS: Heat stress caused dysfunction of intestinal goblet cells and damage to ilea by increasing oxidative stress and apoptosis. Increased nitrosative stress and inflammation accompanied by hypotension, hypoperfusion, tachycardia, multiple-organ dysfunction, and death were observed in the heat stroke rat model. Treatment of LS174T cells with misoprostol not only decreased oxidative stress and apoptosis but also reduced cytotoxicity caused by heat stress. Moreover, misoprostol prevented disruption of the enteric barrier, multiple-organ injury, and death in rats with heat stroke. SIGNIFICANCE: This study indicates that misoprostol could alleviate intestinal damage and organ injury caused by heat stress and be a potential therapy for heat-related illnesses.

Indicators to assess physiological heat strain – part 1: Systematic review

In a series of three companion papers published in this Journal, we identify and validate the available thermal stress indicators (TSIs). In this first paper of the series, we conducted a systematic review (registration: INPLASY202090088) to identify all TSIs and provide reliable information regarding their use (funded by EU Horizon 2020; HEAT-SHIELD). Eight databases (PubMed, Agricultural and Environmental Science Collection, Web of Science, Scopus, Embase, Russian Science Citation Index, MEDLINE, and Google Scholar) were searched from database inception to 15 April 2020. No restrictions on language or study design were applied. Of the 879 publications identified, 232 records were considered for further analysis. This search identified 340 instruments and indicators developed between 200 BC and 2019 AD. Of these, 153 are nomograms, instruments, and/or require detailed non-meteorological information, while 187 can be mathematically calculated utilizing only meteorological data. Of these meteorology-based TSIs, 127 were developed for people who are physically active, and 61 of those are eligible for use in occupational settings. Information regarding the equation, operating range, interpretation categories, required input data, as well as a free software to calculate all 187 meteorology-based TSIs is provided. The information presented in this systematic review should be adopted by those interested in performing on-site monitoring and/or big data analytics for climate services to ensure appropriate use of the meteorology-based TSIs. Studies two and three in this series of companion papers present guidance on the application and validation of these TSIs, to guide end users of these indicators for more effective use.

Quantifying the impact of heat on human physical work capacity; part II: The observed interaction of air velocity with temperature, humidity, sweat rate, and clothing is not captured by most heat stress indices

Increasing air movement can alleviate or exacerbate occupational heat strain, but the impact is not well defined across a wide range of hot environments, with different clothing levels. Therefore, we combined a large empirical study with a physical model of human heat transfer to determine the climates where increased air movement (with electric fans) provides effective body cooling. The model allowed us to generate practical advice using a high-resolution matrix of temperature and humidity. The empirical study involved a total of 300 1-h work trials in a variety of environments (35, 40, 45, and 50 °C, with 20 up to 80% relative humidity) with and without simulated wind (3.5 vs 0.2 m(s^(-1)), and wearing either minimal clothing or a full body work coverall. Our data provides compelling evidence that the impact of fans is strongly determined by air temperature and humidity. When air temperature is ≥ 35 °C, fans are ineffective and potentially harmful when relative humidity is below 50%. Our simulated data also show the climates where high wind/fans are beneficial or harmful, considering heat acclimation, age, and wind speed. Using unified weather indices, the impact of air movement is well captured by the universal thermal climate index, but not by wet-bulb globe temperature and aspirated wet-bulb temperature. Overall, the data from this study can inform new guidance for major public and occupational health agencies, potentially maintaining health and productivity in a warming climate.

Validity and reliability of a protocol to establish human critical environmental limits (PSU HEAT Project)

The PSU HEAT protocol has been used to determine critical environmental limits, i.e., those combinations of ambient temperature and humidity above which heat stress becomes uncompensable and core temperature rises continuously. However, no studies have rigorously investigated the reliability and validity of this experimental protocol. Here, we assessed the 1) between-visit reliability and 2) validity of the paradigm. Twelve subjects (5 M/7W; 25 ± 4 yr) completed a progressive heat stress protocol during which they walked on a treadmill (2.2 mph, 3% gradient) in a controllable environmental chamber. After an equilibration period, either dry-bulb temperature (T(db)) was increased every 5 min while ambient water vapor pressure (P(a)) was held constant (T(crit) experiments) or P(a) was increased every 5 min while T(db) was held constant (P(crit) experiments) until an upward inflection in gastrointestinal temperature (T(gi)) was observed. For reliability experiments, 11 subjects repeated the same protocol on a different day. For validity experiments, 10 subjects performed a T(crit) experiment at their previously determined P(crit) or vice versa. The between-visit reliability (intraclass correlation coefficient, ICC) for critical environmental limits was 0.98. Similarly, there was excellent agreement between original and validity trials for T(crit) (ICC = 0.95) and P(crit) (ICC = 0.96). Furthermore, the wet-bulb temperature at the T(gi) inflection point was not different during reliability (P = 0.78) or validity (P = 0.32) trials compared with original trials. These findings support the reliability and validity of this experimental paradigm for the determination of critical environmental limits for maintenance of human heat balance.NEW & NOTEWORTHY The PSU HEAT progressive heat stress protocol has been used to identify critical environmental limits for various populations, clothing ensembles, and metabolic intensities. However, no studies have rigorously investigated the reliability and validity of this experimental model. Here, we demonstrate excellent reliability and validity of the PSU HEAT protocol.

Impact of low-intensity heat events on mortality and morbidity in regions with hot, humid summers: A scoping literature review

The objective of this study is to determine the impacts of low-intensity heat on human health in regions with hot, humid summers. Current literature has highlighted an increase in mortality and morbidity rates during significant heat events. While the impacts on high-intensity events are established, the impacts on low-intensity events, particularly in regions with hot, humid summers, are less clear. A scoping review was conducted searching three databases (PubMed, EMBASE, Web of Science) using key terms based on the inclusion criteria. We included papers that investigated the direct human health impacts of low-intensity heat events (single day or heatwaves) in regions with hot, humid summers in middle- and high-income countries. We excluded papers written in languages other than English. Of the 600 publications identified, 33 met the inclusion criteria. Findings suggest that low-intensity heatwaves can increase all-cause non-accidental, cardiovascular-, respiratory- and diabetes-related mortality, in regions experiencing hot, humid summers. Impacts of low-intensity heatwaves on morbidity are less clear, with research predominantly focusing on hospitalisation rates with a range of outcomes. Few studies investigating the impact of low-intensity heat events on emergency department presentations and ambulance dispatches were found. However, the data from a limited number of studies suggest that both of these outcome measures increase during low-intensity heat events. Low-intensity heat events may increase mortality. There is insufficient evidence of a causal effect of low-intensity heat events on increasing morbidity for a firm conclusion. Further research on the impact of low-intensity heat on morbidity and mortality using consistent parameters is warranted.

Stakeholders’ perceptions of appropriate nature-based solutions in the urban context

The concept of nature-based solutions (NBSs) has become increasingly popular among urban policymakers and planners to help them tackle the urban challenges arising from urban expansion and climate change. Stakeholders’ involvement is a fundamental step, and stakeholders’ perceptions and preferences can affect the development of NBS projects. This study aims to identify stakeholders’ perceptions of the most critical urban challenges, the priority interventions, the preferred NBSs and the benefits of the NBSs, and to identify the determinants of these perceptions. A survey was administered to assess stakeholders’ perceptions and views on implementing NBSs in two Portuguese cities with distinct urban, geographical, and socio-economic contexts. A binary logistic regression model was used to understand the determinants of the likelihood of the stakeholders’ answers. According to the stakeholders, climate change is one of the main concerns in the urban context. It is usually associated with the incidence of heatwaves and water scarcity. Additionally, stakeholders are concerned about the low quantity and poor management of green spaces (GSs). They believe that it will be necessary to increase the GS, to recover some degraded areas, and to increase mobility. The preferred NBSs were planting more urban trees, making green shaded areas, and rehabilitating riverbanks. The main expected benefits were benefits for leisure and relaxation, reductions in air temperature, purer air, and improvements in public health. The results showed mostly coherent connections between the main concerns/priorities of the stakeholders and the perceived NBS benefits; however, some stakeholders did not present coherent connections, indicating low awareness of the current policy for implementing NBSs to overcome existing and future urban challenges.

Sport and climate change – How will climate change affect sport?

Climate change will have complex consequences for the environment, society, economy and people’s health. The issue of climate change has received comparatively little attention to date in the fields of sports science. Thus, sport-related health risks caused by climate change are discussed and summarized in a conceptual model presented here for the first time. Climate change is associated with the following increases of health-related risks for athletes in particular: Direct consequences caused by extreme temperature and other extreme weather events (e.g. increasing risks due to heatwaves, thunderstorms, floods, lightning, ultraviolet radiation) and indirect consequences as a result of climate-induced changes to our ecosystem (e.g. due to increased air pollution by ozone, higher exposures to allergens, increasing risks of infection by viruses and bacteria and the associated vectors and reservoir organisms). Each aspect is supplemented with advice on the prevention of health hazards. Not only individual athletes but also sports organizations and local clubs will have to respond to the changes in our climate, so that they can appropriately protect both athletes and spectators and ensure a plannable continuation of the sport in the future.

Heat illnesses in clinical practice

Evidence-based heatstroke management in the emergency department

INTRODUCTION: Climate change is causing an increase in the frequency and intensity of extreme heat events, which disproportionately impact the health of vulnerable populations. Heatstroke, the most serious heat-related illness, is a medical emergency that causes multiorgan failure and death without intervention. Rapid recognition and aggressive early treatment are essential to reduce morbidity and mortality. The objective of this study was to evaluate current standards of care for the emergent management of heatstroke and propose an evidence-based algorithm to expedite care. METHODS: We systematically searched PubMed, Embase, and key journals, and reviewed bibliographies. Original research articles, including case studies, were selected if they specifically addressed the recognition and management of heatstroke in any prehospital, emergency department (ED), or intensive care unit population. Reviewers evaluated study quality and abstracted information regarding demographics, scenario, management, and outcome. RESULTS: In total, 63 articles met full inclusion criteria after full-text review and were included for analysis. Three key themes identified during the qualitative review process included recognition, rapid cooling, and supportive care. Rapid recognition and expedited external or internal cooling methods coupled with multidisciplinary management were associated with improved outcomes. Delays in care are associated with adverse outcomes. We found no current scalable ED alert process to expedite early goal-directed therapies. CONCLUSION: Given the increased risk of exposure to heat waves and the time-sensitivity of the condition, EDs and healthcare systems should adopt processes for rapid recognition and management of heatstroke. This study proposes an evidence-based prehospital and ED heat alert pathway to improve early diagnosis and resource mobilization. We also provide an evidence-based treatment pathway to facilitate efficient patient cooling. It is hoped that this protocol will improve care and help healthcare systems adapt to changing environmental conditions.

Application of Gagge’s energy balance model to determine humidity-dependent temperature thresholds for healthy adults using electric fans during heatwaves

Heatwaves are one of the most dangerous natural hazards causing more than 166,000 deaths from 1998-2017. Their frequency is increasing, and they are becoming more intense. Electric fans are an efficient, and sustainable solution to cool people. They are, for most applications, the cheapest cooling technology available. However, many national and international health guidelines actively advise people not to use them when indoor air temperatures exceed the skin temperature, approximately 35 degrees C. We used a human energy balance model, to verify the validity of those recommendations and to determine under which environmental (air temperature, relative humidity, air speed and mean radiant temperature) and personal (metabolic rate, clothing) conditions the use of fans would be beneficial. We found that current guidelines are too restrictive. Electric fans can be used safely even if the indoor dry-bulb temperature exceeds 35 degrees C since they significantly increase the amount of sweat that evaporates from the skin. The use of elevated air speeds (0.8 m/s) increases the critical operative temperature at which heat strain is expected to occur by an average of 14 degrees C for relative humidity values above 22 %. We also analyzed the most extreme weather events from 1990 to 2014 recorded in the 115 most populous cities worldwide, and we determined that in 93 of them the use of fans would have been beneficial. We developed a free, open-source, and easy-to-use online tool to help researchers, building practitioners, and policymakers better understand under which conditions electric fans can be safely used to cool people.

Changes in regional wet heatwave in Eurasia during summer (1979-2017)

Wet heatwaves can have more impact on human health than hot dry heatwaves. However, changes in these have received little scientific attention. Using the ECMWF Reanalysis v5 reanalysis dataset, wet-bulb temperatures (T (w)) were used to investigate the spatial-temporal variation of wet heatwaves in Eurasia for 1979-2017. Wet heatwaves were defined as three day or longer periods when T (w) was above the 90th percentile of the summer distribution and characterized by amplitude, duration and frequency. Maximum values of amplitude, close to 31 degrees C, occur in the Indus-Ganges plain, the lower Yangtze valley, and the coasts of the Persian Gulf and Red Sea. Significant positive trends in the frequency and amplitude of wet heatwaves have occurred over most of Eurasia though with regional variations. Changes in heatwave amplitude (HWA) are largely driven by changes in summer mean T (w). For Eurasia as a whole, increases in temperature contribute more than six times the impact of changes in relative humidity (RH) to changes in T (w) HWA. Changes in T (w) have a strong dependence on climatological RH with an increase in RH of 1% causing a T (w) increase of 0.2 degrees C in arid regions, and only increasing T (w) by 0.1 degrees C in humid regions. During T (w) heatwaves in Europe, parts of Tibet, India, East Asia and parts of the Arabian Peninsula both temperature and humidity contribute to the increase in T (w), with temperature the dominant driver. During wet heatwaves in part of Russia, changes in humidity are weak and the increase in T (w) is mainly caused by an increase in temperature. In the Mediterranean and Central Asia, RH has fallen reducing the increase in T (w) from general warming.

Classic and exertional heatstroke

In the past two decades, record-breaking heatwaves have caused an increasing number of heat-related deaths, including heatstroke, globally. Heatstroke is a heat illness characterized by the rapid rise of core body temperature above 40 °C and central nervous system dysfunction. It is categorized as classic when it results from passive exposure to extreme environmental heat and as exertional when it develops during strenuous exercise. Classic heatstroke occurs in epidemic form and contributes to 9-37% of heat-related fatalities during heatwaves. Exertional heatstroke sporadically affects predominantly young and healthy individuals. Under intensive care, mortality reaches 26.5% and 63.2% in exertional and classic heatstroke, respectively. Pathological studies disclose endothelial cell injury, inflammation, widespread thrombosis and bleeding in most organs. Survivors of heatstroke may experience long-term neurological and cardiovascular complications with a persistent risk of death. No specific therapy other than rapid cooling is available. Physiological and morphological factors contribute to the susceptibility to heatstroke. Future research should identify genetic factors that further describe individual heat illness risk and form the basis of precision-based public health response. Prioritizing research towards fundamental mechanism and diagnostic biomarker discovery is crucial for the design of specific management approaches.

Comparison of two mathematical models for predicted human thermal responses to hot and humid environments

PURPOSE: We compared the accuracy and design of two thermoregulatory models, the US Army’s empirically designed Heat Strain Decision Aid (HSDA) and the rationally based Health Risk Prediction (HRP) for predicting human thermal responses during exercise in hot and humid conditions and wearing chemical protective clothing. METHODS: Accuracy of the HSDA and HRP model predictions of core body and skin temperature (Tc, Ts) were compared to each other and relative to measured outcomes from eight male volunteers (age 24 ± 6 years; height 178 ± 5 cm; body mass 76.6 ± 8.4 kg) during intermittent treadmill marching in an environmental chamber (air temperature 29.3 ± 0.1 °C; relative humidity 56 ± 1%; wind speed 0.4 ± 0.1 m∙s(-1)) wearing three separate chemical protective ensembles. Model accuracies and precisions were evaluated by the bias, mean absolute error (MAE), and root mean square error (RMSE) compared to observed data mean ± SD and the calculated limits of agreement (LoA). RESULTS: Average predictions of Tc were comparable and acceptable for each method, HSDA (Bias 0.02 °C; MAE 0.18 °C; RMSE 0.21 °C) and HRP (Bias 0.10 °C; MAE 0.25 °C; RMSE 0.34 °C). The HRP averaged predictions for Ts were within an acceptable agreement to observed values (Bias 1.01 °C; MAE 1.01 °C; RMSE 1.11 °C). CONCLUSION: Both HSDA and HRP acceptably predict Tc and HRP acceptably predicts Ts when wearing chemical protective clothing during exercise in hot and humid conditions.

Cooling degree models and future energy demand in the residential sector. A seven-country case study

The intensity and duration of hot weather and the number of extreme weather events, such as heatwaves, are increasing, leading to a growing need for space cooling energy demand. Together with the building stock’s low energy performance, this phenomenon may also increase households’ energy consumption. On the other hand, the low level of ownership of cooling equipment can cause low energy consumption, leading to a lack of indoor thermal comfort and several health-related problems, yet increasing the risk of energy poverty in summer. Understanding future temperature variations and the associated impacts on building cooling demand will allow mitigating future issues related to a warmer climate. In this respect, this paper analyses the effects of change in temperatures in the residential sector cooling demand in 2050 for a case study of nineteen cities across seven countries: Cyprus, Finland, Greece, Israel, Portugal, Slovakia, and Spain, by estimating cooling degree days and hours (CDD and CDH). CDD and CDH are calculated using both fixed and adaptive thermal comfort temperature thresholds for 2020 and 2050, understanding their strengths and weaknesses to assess the effects of warmer temperatures. Results suggest a noticeable average increase in CDD and CDH values, up to double, by using both thresholds for 2050, with a particular interest in northern countries where structural modifications in the building stock and occupants’ behavior should be anticipated. Furthermore, the use of the adaptive thermal comfort threshold shows that the projected temperature increases for 2050 might affect people’s capability to adapt their comfort band (i.e., indoor habitability) as temperatures would be higher than the maximum admissible values for people’s comfort and health.

Cultural factors, migrant status, and vulnerability to increasing temperatures among Hispanic/Latino farmworkers: A systematic review

HIGHLIGHTS: Cultural factors and acculturative stressors affect the health and safety behaviors of Hispanic/Latino farmworkers. Cultural factors and stressors also increase their risk of heat-related illnesses (HRIs). Interventions targeting HRIs in this population should account for cultural factors. ABSTRACT: Hispanic/Latino farmworkers have been widely recognized as a particularly vulnerable population in the U.S., with among the lowest levels of income and education in the country. Existing research has identified and explored factors, including cultural and demographic characteristics, that increase the vulnerability of these workers to adverse occupational health and safety outcomes. This review assesses Hispanic/Latino farmworkers’ vulnerability to increasing temperatures and intense heat events, focusing on the role of demographic and cultural factors in heat-related health outcomes. A systematic literature search was conducted using the search terms “heat” and “(Hispanic or Latino) farmworkers” and “health” over the years 2000 to 2020. A total of 348 articles were screened through a title review. The articles included in this review focused on heat-related illnesses (HRIs) and related symptoms among the population of interest. Hispanic/Latino workers were at heightened risk of HRI symptoms as a result of their work environments, working conditions, acculturative stressors, and other cultural factors.

Estimating the burden of disease attributable to high ambient temperature across climate zones: Methodological framework with a case study

BACKGROUND: With high temperature becoming an increasing health risk due to a changing climate, it is important to quantify the scale of the problem. However, estimating the burden of disease (BoD) attributable to high temperature can be challenging due to differences in risk patterns across geographical regions and data accessibility issues. METHODS: We present a methodological framework that uses Köppen-Geiger climate zones to refine exposure levels and quantifies the difference between the burden observed due to high temperatures and what would have been observed if the population had been exposed to the theoretical minimum risk exposure distribution (TMRED). Our proposed method aligned with the Australian Burden of Disease Study and included two parts: (i) estimation of the population attributable fractions (PAF); and then (ii) estimation of the BoD attributable to high temperature. We use suicide and self-inflicted injuries in Australia as an example, with most frequent temperatures (MFTs) as the minimum risk exposure threshold (TMRED). RESULTS: Our proposed framework to estimate the attributable BoD accounts for the importance of geographical variations of risk estimates between climate zones, and can be modified and adapted to other diseases and contexts that may be affected by high temperatures. CONCLUSIONS: As the heat-related BoD may continue to increase in the future, this method is useful in estimating burdens across climate zones. This work may have important implications for preventive health measures, by enhancing the reproducibility and transparency of BoD research.

Increasing heat-stress inequality in a warming climate

Adaptation is key to minimizing heatwaves’ societal burden; however, our understanding of adaptation capacity across the socioeconomic spectrum is incomplete. We demonstrate that observed heatwave trends in the past four decades were most pronounced in the lowest-quartile income region of the world resulting in >40% higher exposure from 2010 to 2019 compared to the highest-quartile income region. Lower-income regions have reduced adaptative capacity to warming, which compounds the impacts of higher heatwave exposure. We also show that individual contiguous heatwaves engulfed up to 2.5-fold larger areas in the recent decade (2010-2019) as compared to the 1980s. Widespread heatwaves can overwhelm the power grid and nullify the electricity dependent adaptation efforts, with significant implications even in regions with higher adaption capacity. Furthermore, we compare projected global heatwave exposure using per-capita gross domestic product as an indicator of adaptation capacity. Hypothesized rapid adaptation in high-income regions yields limited changes in heatwave exposure through the 21st century. By contrast, lagged adaptation in the lower-income region translates to escalating heatwave exposure and increased heat-stress inequality. The lowest-quartile income region is expected to experience 1.8- to 5-fold higher heatwave exposure than each higher income region from 2060 to 2069. This inequality escalates by the end of the century, with the lowest-quartile income region experiencing almost as much heatwave exposure as the three higher income regions combined from 2090 to 2099. Our results highlight the need for global investments in adaptation capabilities of low-income countries to avoid major climate-driven human disasters in the 21st century.

Recent increases in exposure to extreme humid-heat events disproportionately affect populated regions

Extreme heat research has largely focused on dry-heat, while humid-heat that poses a substantial threat to human-health remains relatively understudied. Using hourly high-resolution ERA5 reanalysis and HadISD station data, we provide the first spatially comprehensive, global-scale characterization of the magnitude, seasonal timing, and frequency of dry- and wet-bulb temperature extremes and their trends. While the peak dry- and humid-heat extreme occurrences often coincide, their timing differs in climatologically wet regions. Since 1979, dry- and humid-heat extremes have become more frequent over most land regions, with the greatest increases in the tropics and Arctic. Humid-heat extremes have increased disproportionately over populated regions (similar to 5.0 days per-person per-decade) relative to global land-areas (similar to 3.6 days per-unit-land-area per-decade) and population exposure to humid-heat has increased at a faster rate than to dry-heat. Our study highlights the need for a multivariate approach to understand and mitigate future harm from heat stress in a warming world.

Retrospection of heatwave and heat index

The frequency and intensity of extreme events especially heat waves (HW) are growing all around the world which ultimately poses a serious threat to the health of individuals. To quantify the effects of extreme temperature, appropriate information, and the importance of HW and heat index (HI) are carefully discussed for different parts of the world. Varied definitions of the HW and HI formula proposed and used by different countries are carried out systematically continent-wise. Different studies highlighted the number of definitions of HW; however, mostly used Steadman’s formulae, which was developed in the late 1970s, for the calculation of HI that uses surface air temperature and relative humidity as climatic fields. Since then, dramatic changes in climatic conditions have been observed as evident from the ERA5 datasets which need to be addressed; likewise, the definition of HW, which is modified by the researchers as per the geographic conditions. It is evident from the ERA5 data that the temperature has increased by 1-2 ??C as compared to the 1980s. There is a threefold increase in the number of heatwave days over most of the continents in the last 40 years. This study will help the researcher community to understand the importance of HW and HI. Furthermore, it opens the scope to develop an equation based on the present scenario keeping in mind the basics of an index as considered by Steadman.

The driving influences of human perception to extreme heat: A scoping review

Prior research demonstrates a link between heat risk perception and population response to a heat warning. Communicating a precise and understandable definition of “heat” or “heatwaves” can affect how a population perceives and responds to extreme heat. Still, little is known about how heat perception affects behavior changes to heat and heat communication across diverse populations. This scoping review aims to identify and describe the main themes and findings of recent heat perception research globally and map critical research gaps and priorities for future studies. Results revealed risk perception influences a person’s exposure to and behavioral response to excessive heat. Risk perception varied geographically along the rural-urban continuum and was typically higher among vulnerable subgroups, including populations who were low-income, minority, and in poor health. A more integrated approach to refining risk communication strategies that result in a behavioral change and incorporates the individual, social, and cultural components of impactful group-based or community-wide interventions is needed. Research employing longitudinal or quasi-experimental designs and advanced statistical techniques are required to tease apart the independent and interacting factors that causally influence risk communication, heat perception, and adaptive behaviors. We advance a framework to conceptualize the structural, environmental, personal, and social drivers of population heat risk perception and how they interact to influence heat perception and adaptive behaviors. Our findings map future research priorities needed for heat perception and a framework to drive future research design.

The relative contributions of temperature and moisture to heat stress changes under warming

Increases in the severity of heat stress extremes are potentially one of the most impactful consequences of climate change, affecting human comfort, productivity, health, and mortality in many places on Earth. Heat stress results from a combination of elevated temperature and humidity, but the relative contributions of each of these to heat stress changes have yet to be quantified. Here, conditions for the baseline specific humidity are derived for when specific humidity or temperature dominates heat stress changes, as measured using the equivalent potential temperature (theta(E)). Separate conditions are derived over ocean and over land, in addition to a condition for when relative humidity changes make a larger contribution than the Clausius-Clapeyron response at fixed relative humidity. These conditions are used to interpret the theta(E) responses in transient warming simulations with an ensemble of models participating in phase 6 of the Climate Model Intercomparison Project. The regional pattern of theta(E) changes is shown to be largely determined by the pattern of specific humidity changes, with the pattern of temperature changes playing a secondary role. This holds whether considering changes in seasonal-mean theta(E) or in extreme (98th-percentile) theta(E) events, and uncertainty in the response of specific humidity to warming is shown to be the leading source of uncertainty in the theta(E) response at most land locations. Finally, analysis of ERA5 data demonstrates that the pattern of observed theta(E) changes is also well explained by the pattern of specific humidity changes. These results demonstrate that understanding regional changes in specific humidity is largely sufficient for understanding regional changes in heat stress.

Comfort and performance improvement through the use of cooling vests for construction workers

Purpose The purpose of this study is to analyze the question “In what order of magnitude does the comfort and performance improvement lie with the use of a cooling vest for construction workers?”. Design/methodology/approach The use of personal cooling systems, in the form of cooling vests, is not only intended to reduce the heat load, in order to prevent disruption of the thermoregulation system of the body, but also to improve work performance. A calculation study was carried out on the basis of four validated mathematical models, namely a cooling vest model, a thermophysiological human model, a dynamic thermal sensation model and a performance loss model for construction workers. Findings The use of a cooling vest has a significant beneficial effect on the thermal sensation and the loss of performance, depending on the thermal load on the body. Research limitations/implications Each cooling vest can be characterized on the basis of the maximum cooling power (Pmax; in W/m(2)), the cooling capacity (Auc; in Wh/m2) and the time (tc; in minutes) after which the cooling power is negligible. In order to objectively compare cooling vests, a (preferably International and/or European) standard/guideline must be compiled to determine the cooling power and the cooling capacity of cooling vests. Practical implications It is recommended to implement the use of cooling vests in the construction process so that employees can use them if necessary or desired. Social implications Climate change, resulting in global warming, is one of the biggest problems of present times. Rising outdoor temperatures will continue in the 21st century, with a greater frequency and duration of heat waves. Some regions of the world are more affected than others. Europe is one of the regions of the world where rising global temperatures will adversely affect public health, especially that of the labor force, resulting in a decline in labor productivity. It will be clear that in many situations air conditioning is not an option because it does not provide sufficient cooling or it is a very expensive investment; for example, in the situation of construction work. In such a situation, personal cooling systems, such as cooling vests, can be an efficient and financially attractive solution to the problem of discomfort and heat stress. Originality/value The value of the study lies in the link between four validated mathematical models, namely a cooling vest model, a thermophysiological human model, a dynamic thermal sensation model and a performance loss model for construction workers.

Heatstroke-induced coagulopathy: Biomarkers, mechanistic insights, and patient management

Heatstroke is increasingly becoming a significant concern due to global warming. Systemic inflammation and coagulopathy are the two major factors that provoke life-threatening organ dysfunction in heatstroke. Dysregulated thermo-control induces cellular injury, damage-associated molecular patterns release, hyperinflammation, and hypercoagulation with suppressed fibrinolysis to produce heatstroke-induced coagulopathy (HSIC). HSIC can progress to disseminated intravascular coagulation and multiorgan failure if severe enough. Platelet count, D-dimer, soluble thrombomodulin, and inflammation biomarkers such as interleukin-6 and histone H3 are promising markers for HSIC. In exertional heatstroke, the measurement of myoglobin is helpful to anticipate renal dysfunction. However, the optimal cutoff for each biomarker has not been determined. Except for initial cooling and hydration, effective therapy continues to be explored, and the use of antiinflammatory and anticoagulant therapies is under investigation. Despite the rapidly increasing risk, our knowledge is limited, and further study is warranted. In this review, we examine current information and what future efforts are needed to better understand and manage HSIC.

Looking ahead of 2021 Tokyo Summer Olympic Games: How does humid heat affect endurance performance? Insight into physiological mechanism and heat-related illness prevention strategies

The combination of high humidity and ambient temperature of the 2021 Tokyo Summer Olympic Game will undoubtfully result in greater physiological strains and thereby downregulates the endurance performance of athletes. Although many research studies have highlighted that the thermoregulatory strain is greater when the environment is hot and humid, no review articles have addressed the thermoregulatory and performance differences between dry and humid heat and such lack of consensuses in this area will lead to increase the risk of heat-related injuries as well as suboptimal preparation. Furthermore, specific strategies to counteract this stressful environment has not been outlined in the current literature. Therefore, the purposes of this review are: 1) to provide a clear evidence that humid heat is more stressful than dry heat for both male and female athletes and therefore the preparation for the Tokyo Summer Olympic should be environmental specific instead of a one size fits all approach; 2) to highlight why female athletes may be facing a disadvantage when performing a prolonged endurance event under high humidity environment and 3) to highlight the potential interventional strategies to reduce thermal strain in hot-humid environment. The summaries of this review are: both male and female should be aware of the environmental condition in Tokyo as humid heat is more stressful than dry heat; Short-term heat acclimation may not elicit proper thermoregulatory adaptations in hot-humid environment; cold water immersion with proper hydration and some potential per-cooling modalities may be beneficial for both male and female athletes in hot-humid environment.

The environmental role of hydration in kidney health and disease

Clinical Background: Hydration status, which is influenced by environment and self-behavior is associated with kidney health and disease. Epidemiology: Lack of safe water, sanitation, and high temperatures are environmental issues that affect a significant part of the worldwide population. Occupational factors that discourage proper hydration, as well as low water intake in favorable environment conditions, are also highly prevalent. As a consequence, inadequate water intake can lead to several kidney problems ranging from uncomplicated urinary tract infections to kidney stones, acute kidney injury, and chronic disorders with high mortality rates. Challenges: Increasing water intake is an individual effort when self-behavior is the main reason for inadequate hydration status. When the environment is an obstacle, it might require complex changes in a concerted multidisciplinary effort from employers, health authorities, researchers, and governments. Prevention and Treatment: Strategies can be implemented at global, local, and individual levels. Global efforts include actions to decrease poverty and climate change consequences, while increasing access to safe water and sanitation. Local actions can improve working conditions and access to water and toilets to workers. At an individual level, self-monitoring through regular observation of thirst sensation, acute weight loss, urine frequency, and urine color are recommended tools to monitor hydration status.

A review of thermal comfort in residential buildings: Comfort threads and energy saving potential

Residential buildings instigate a vital role in creating a safe and comfortable indoor living environment. The phenomenon of overheating, an impact of climate change, can cause a negative effect on residents’ productiveness and heat-related illnesses and can even force high pressure on electricity generation by increasing the risk of power outages due to excessive peak cooling and heating requirements. Various issues on building thermal comfort are being evolved and discussed in review articles. However, there are few articles that review the current condition of adaptive thermal comfort studies and the potential for energy savings in residential buildings. Therefore, the aims for this paper are to: identify comfort temperature ranges in residential buildings, investigate the correlation of comfort temperature with indoor and outdoor temperatures with the aid of ‘comfort threads’, and clarify the effect of adaptive measures on residential energy saving potential. This study obtained a large variation of residential comfort temperatures, which mostly depend on the climate and operation modes of the building. ‘Comfort threads’ explains that people are adapting to a large variation of indoor and outdoor temperatures and the wide range of comfort temperature could provide significant energy savings in residential buildings. This review provides insight on and an overview of thermal comfort field studies in residential buildings.

A low-cost, easy-to-assemble device to prevent infant hyperthermia under conditions of high thermal stress

High ambient temperature and humidity greatly increase the risk of hyperthermia and mortality, particularly in infants, who are especially prone to dehydration. World areas at high risk of heat stress include many of the low- and middle-income countries (LMICs) where most of their inhabitants have no access to air conditioning. This study aimed to design, evaluate, and test a novel low-cost and easy-to-assemble device aimed at preventing the risk of infant hyperthermia in LMICs. The device is based on optimizing negative heat transfer from a small amount of ice and transferring it directly to the infant by airflow of refrigerated air. As a proof of concept, a device was assembled mainly using recycled materials, and its performance was assessed under laboratory-controlled conditions in a climatic chamber mimicking realistic stress conditions of high temperature and humidity. The device, which can be assembled by any layperson using easily available materials, provided sufficient refrigerating capacity for several hours from just 1-2 kg of ice obtained from a domestic freezer. Thus, application of this novel device may serve to attenuate the adverse effects of heat stress in infants, particularly in the context of the evolving climatic change trends.

Personal assessment of urban heat exposure: A systematic review

To fully address the multi-faceted challenges of urban heat, it is paramount that humans are placed at the center of the agenda. This is manifested in a recent shift in urban heat studies that aim to achieve a ‘human-centric’ approach, i.e. focusing on personalized characteristics of comfort, well-being, performance, and health, as opposed to the one-size-fits-all solutions and guidelines. The proposed article is focused on systematically reviewing personalized urban heat studies and detailing the objectives posed, methodologies utilized, and limitations yet to be addressed. We further summarize current knowledge and challenges in addressing the impact of personal heat exposure on human life by discussing the literature linked with urban heat studies at the human, building, and city scales. Lastly, this systematic review reveals the need for future evaluations focused on accuracy and standardization of human-centric data collection and analytics, and more importantly, addressing critical geographic and socio-economic knowledge gaps identified in the field.

Is there an association between hot weather and poor mental health outcomes? A systematic review and meta-analysis

BACKGROUND: Mental health is an important public health issue globally. A potential link between heat exposure and mental health outcomes has been recognised in the scientific literature; however, the associations between heat exposure (both high ambient temperatures and heatwaves) and mental health-related mortality and morbidity vary between studies and locations. OBJECTIVE: To fill gaps in knowledge, this systematic review aims to summarize the epidemiological evidence and investigate the quantitative effects of high ambient temperatures and heatwaves on mental health-related mortality and morbidity outcomes, while exploring sources of heterogeneity. METHODS: A systematic search of peer-reviewed epidemiological studies on heat exposure and mental health outcomes published between January 1990 and November 2020 was conducted using five databases (PubMed, Embase, Scopus, Web of Science and PsycINFO). We included studies that examined the association between high ambient temperatures and/or heatwaves and mental health-related mortality and morbidity (e.g. hospital admissions and emergency department visits) in the general population. A range of mental health conditions were defined using ICD-10 classifications. We performed random effects meta-analysis to summarize the relative risks (RRs) in mental health outcomes per 1 °C increase in temperature, and under different heatwaves definitions. We further evaluated whether variables such as age, sex, socioeconomic status, and climate zone may explain the observed heterogeneity. RESULTS: The keyword search yielded 4560 citations from which we identified 53 high temperatures/heatwaves studies that comprised over 1.7 million mental health-related mortality and 1.9 million morbidity cases in total. Our findings suggest associations between heat exposures and a range of mental health-related outcomes. Regarding high temperatures, our meta-analysis of study findings showed that for each 1 °C increase in temperature, the mental health-related mortality and morbidity increased with a RR of 1.022 (95%CI: 1.015-1.029) and 1.009 (95%CI: 1.007-1.015), respectively. The greatest mortality risk was attributed to substance-related mental disorders (RR, 1.046; 95%CI: 0.991-1.101), followed by organic mental disorders (RR, 1.033; 95%CI: 1.020-1.046). A 1 °C temperature rise was also associated with a significant increase in morbidity such as mood disorders, organic mental disorders, schizophrenia, neurotic and anxiety disorders. Findings suggest evidence of vulnerability for populations living in tropical and subtropical climate zones, and for people aged more than 65 years. There were significant moderate and high heterogeneities between effect estimates in overall mortality and morbidity categories, respectively. Lower heterogeneity was noted in some subgroups. The magnitude of the effect estimates for heatwaves varied depending on definitions used. The highest effect estimates for mental health-related morbidity was observed when heatwaves were defined as “mean temperature ≥90th percentile for ≥3 days” (RR, 1.753; 95%CI: 0.567-5.421), and a significant effect was also observed when the definition was “mean temperature ≥95th percentile for ≥3 days”, with a RR of 1.064 (95%CI: 1.006-1.123). CONCLUSIONS: Our findings support the hypothesis of a positive association between elevated ambient temperatures and/or heatwaves and adverse mental health outcomes. This problem will likely increase with a warming climate, especially in the context of climate change. Further high-quality studies are needed to identify modifying factors of heat impacts.

Corals as canaries in the coalmine: Towards the incorporation of marine ecosystems into the ‘One Health’ concept

‘One World – One Health’ is a developing concept which aims to explicitly incorporate linkages between the environment and human society into wildlife and human health care. Past work in the field has concentrated on aspects of disease, particularly emerging zoonoses, and focused on terrestrial systems. Here, we argue that marine environments are crucial components of the ‘One World – One Health’ framework, and that coral reefs are the epitome of its underlying philosophy. That is, they provide vast contributions to a wide range of ecosystem services with strong and direct links to human well-being. Further, the sensitivity of corals to climate change, and the current emergence of a wide range of diseases, make coral reefs ideal study systems to assess links, impacts, and feedback mechanisms that can affect human and ecosystem health. There are well established protocols for monitoring corals, as well as global networks of coral researchers, but there remain substantial challenges to understanding these complex systems, their health and links to provisioning of ecosystem services. We explore these challenges and conclude with a look at how developing technology offers potential ways of addressing them. We argue that a greater integration of coral reef research into the ‘One World – One Health’ framework will enrich our understanding of the many links within, and between, ecosystems and human society. This will ultimately support the development of measures for improving the health of both humans and the environment.

Establishing intensifying chronic exposure to extreme heat as a slow onset event with implications for health, wellbeing, productivity, society and economy

The Warsaw International Mechanism for Loss and Damage has identified increasing temperatures as a key slow onset event. However, it is the resulting increases in short-term heat events – heatwaves – that have so far been the primary focus of risk assessment and policy, while gradual and sustained increases in temperature have received less attention. This is a global issue but particularly important in tropical and subtropical regions already chronically exposed to extreme heat. This paper reviews recent analyses of intensifying seasonal and year-round extreme heat exposures and how this affects daily life, including worker productivity, health and wellbeing, reduced GDP and economic viability. It frames this as a slow onset event and closes with a brief indication of tools available to assess and address these risks.

Conceptualising a resilient cooling system: A socio-technical approach

Prolonged and/or extreme heat has become a natural hazard that presents a significant risk to humans and the buildings, technologies, and infrastructure on which they have previously relied on to provide cooling. This paper presents a conceptual model of a resilient cooling system centred on people, the socio-cultural-technical contexts they inhabit, and the risks posed by the temperature hazard. An integrative literature review process was used to undertake a critical and comprehensive evaluation of published research and grey literature with the objective of adding clarity and detail to the model. Two databases were used to identify risk management and natural hazard literature in multiple disciplines that represent subcomponents of community resilience (social, economic, institutional, infrastructure and environment systems). This review enabled us to characterise in more detail the nature of the temperature hazard, the functionality characteristics of a resilient cooling system, and key elements of the four subsystems: people, buildings, cooling technologies and energy infrastructure. Six key messages can be surmised from this review, providing a guide for future work in policy and practice.

Global urban population exposure to extreme heat

Increased exposure to extreme heat from both climate change and the urban heat island effect-total urban warming-threatens the sustainability of rapidly growing urban settlements worldwide. Extreme heat exposure is highly unequal and severely impacts the urban poor. While previous studies have quantified global exposure to extreme heat, the lack of a globally accurate, fine-resolution temporal analysis of urban exposure crucially limits our ability to deploy adaptations. Here, we estimate daily urban population exposure to extreme heat for 13,115 urban settlements from 1983 to 2016. We harmonize global, fine-resolution (0.05°), daily temperature maxima and relative humidity estimates with geolocated and longitudinal global urban population data. We measure the average annual rate of increase in exposure (person-days/year(-1)) at the global, regional, national, and municipality levels, separating the contribution to exposure trajectories from urban population growth versus total urban warming. Using a daily maximum wet bulb globe temperature threshold of 30 °C, global exposure increased nearly 200% from 1983 to 2016. Total urban warming elevated the annual increase in exposure by 52% compared to urban population growth alone. Exposure trajectories increased for 46% of urban settlements, which together in 2016 comprised 23% of the planet’s population (1.7 billion people). However, how total urban warming and population growth drove exposure trajectories is spatially heterogeneous. This study reinforces the importance of employing multiple extreme heat exposure metrics to identify local patterns and compare exposure trends across geographies. Our results suggest that previous research underestimates extreme heat exposure, highlighting the urgency for targeted adaptations and early warning systems to reduce harm from urban extreme heat exposure.

A system dynamics model to facilitate the development of policy for urban heat island mitigation

This article presents a customized system dynamics model to facilitate the informed development of policy for urban heat island mitigation within the context of future climate change, and with special emphasis on the reduction of heat-related mortality. The model incorporates a variety of components (incl.: the urban heat island effect; population dynamics; climate change impacts on temperature; and heat-related mortality) and is intended to provide urban planning and related professionals with: a facilitated means of understanding the risk of heat-related mortality within the urban heat island; and location-specific information to support the development of reasoned and targeted urban heat island mitigation policy.

Adverse heat-health outcomes and critical environmental limits (Pennsylvania State University human environmental age thresholds project)

BACKGROUND: The earth’s climate is warming and the frequency, duration, and severity of heat waves are increasing. Meanwhile, the world’s population is rapidly aging. Epidemiological data demonstrate exponentially greater increases in morbidity and mortality during heat waves in adults ≥65 years. Laboratory data substantiate the mechanistic underpinnings of age-associated differences in thermoregulatory function. However, the specific combinations of environmental conditions (i.e., ambient temperature and absolute/relative humidity) above which older adults are at increased risk of heat-related morbidity and mortality are less clear. METHODS: This review was conducted to (1) examine the recent (past 3 years) literature regarding heat-related morbidity and mortality in the elderly and discuss projections of future heat-related morbidity and mortality based on climate model data, and (2) detail the background and unique methodology of our ongoing laboratory-based projects aimed toward identifying the specific environmental conditions that result in elevated risk of heat illness in older adults, and the implications of using the data toward the development of evidence-based safety interventions in a continually-warming climate (PSU HEAT; Human Environmental Age Thresholds). RESULTS: The recent literature demonstrates that extreme heat continues to be increasingly detrimental to the health of the elderly and that this is apparent across the world, although the specific environmental conditions above which older adults are at increased risk of heat-related morbidity and mortality remain unclear. CONCLUSION: Characterizing the environmental conditions above which risk of heat-related illnesses increase remains critical to enact policy decisions and mitigation efforts to protect vulnerable people during extreme heat events.

Changes in the risk of extreme temperatures in megacities worldwide

Globally, extreme temperatures have severe impacts on the economy, human health, food and water security, and ecosystems. Mortality rates have been increased due to heatwaves in several regions. Specifically, megacities have high impacts with the increasing temperature and everexpanding urban areas; it is important to understand extreme temperature changes in terms of duration, magnitude, and frequency for future risk management and disaster mitigation. Here we framed a novel Semi-Parametric quantile mapping method to bias-correct the CMIP6 minimum and maximum temperature projections for 199 megacities worldwide. The changes in maximum and minimum temperature are quantified in terms of climate indices (ETCCDI and HDWI) for the four Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Cities in northern Asia and northern North America (Kazan, Samara, Heihe, Montre ‘ al, Edmonton, and Moscow) are warming at a higher rate compared to the other regions. There is an increasing and decreasing trend for the warm and cold extremes respectively. Heatwaves increase exponentially in the future with the increase in warming, that is, from SSP1-2.6 to SSP5-8.5. Among the CMIP6 models, a huge variability is observed, and this further increases as the warming increases. All climate indices have steep slopes for the far future (2066-2100) compared to the near future (2031-2065). Yet the variability among CMIP6 models in near future is high compared to the far future for cold indices.

Global long-term mapping of surface temperature shows intensified intra-city urban heat island extremes

Surface temperatures are generally higher in cities than in rural surroundings. This phenomenon, known as Surface Urban Heat Island (SUHI), increases the risk of heat-related human illnesses and mortality. Past global studies analysed this phenomenon aggregated at city scale or over seasonal and annual time periods, while human impacts strongly depend on shorter term heat stress experienced locally. Here we develop a global longterm high-resolution dataset of daytime SUHI, offering an insight into the space-time variability of the urban-rural temperature differences which is unprecedented at global scale. Our results show that across urban areas worldwide over the period 2003-2020, 3-day SUHI extremes are on average more than twice as high as the warm-season median SUHI, with local exceedances up to 10 K. Over this period, SUHI extremes have increased more rapidly than warm-season medians, and averaged worldwide are now 1.04 K or 31% higher compared to 2003. This can be linked with increasing urbanisation, more frequent heatwaves, and greening of the earth, processes that are all expected to continue in the coming decades. Within many cities there are hotspots where extreme SUHI intensity is 10-15 K higher compared to relatively cooler city parts. Given the limited human adaptability to heat stress, our results advocate for mitigation strategies targeted at reducing SUHI extremes in the most vulnerable and exposed city neighbourhoods.

Global urban exposure projections to extreme heatwaves

Over the past decades, the world has experienced increasing heatwave intensity, frequency, and duration. This trend is projected to increase into the future with climate change. At the same time, the global population is also projected to increase, largely in the world’s cities. This urban growth is associated with increased heat in the urban core, compared to surrounding areas, exposing residents to both higher temperatures and more intense heatwaves than their rural counterparts. Regional studies suggest that Asia and Africa will be significantly affected. How many people may be exposed to levels of extreme heat events in the future remains unclear. Identifying the range in number of potentially exposed populations and where the vulnerable are located can help planners prioritize adaption efforts. We project the ranges of population exposed to heatwaves at varying levels to 2,100 for three future periods of time (2010-2039, 2040-2069, 2070-2099) using the Shared Socio-Economic Pathways (SSPs) and the Representative Concentration Pathways (RCPs). We hypothesize that the largest populations that will be exposed to very warm heatwaves are located in Asia and Africa. Our projections represent the warmest heatwaves for 15 days during these three periods. By the 2070-2099 period, the exposure levels to extreme heatwaves (>42 degrees) exceed 3.5 billion, under the sustainability scenario (RCP2.6-SSP1). The number of those exposed in cities climbs with greater projected climate change. The largest shares of the exposed populations are located in Southern Asia and tropical countries Western and Central Africa. While this research demonstrates the importance of this type of climate change event, urban decision-makers are only recently developing policies to address heat. There is an urgent need for further research in this area.

Utilizing world urban database and access portal tools (WUDAPT) and machine learning to facilitate spatial estimation of heatwave patterns

Climate change lead to more intense, higher frequent and prolonged heat extremes. Under-standing the spatial pattern of heatwave is vital for providing the corresponding weather services, making climate change adaptation strategies and heat-health actions. In this study, we present an approach to estimate the heatwave spatial patterns by utilizing the WUDAPT Level 0 data and machine learning. The analysis is based on two years (2009 and 2016) of air temperature data from 86 meteorological monitoring stations in Guangdong province of China, a subtropical region with frequent hot and sultry weather in summer. First, heatwave conditions were quantified by calculating the number of hot days and frequency of heatwave events in each year and used as the response variables. Then, random forest models were built by using a geospatial dataset con-sisting of WUDAPT and urban canopy parameters (UCP) as predictor variables. Based on the resultant models, spatial patterns of heatwave were estimated and mapped at 100 m spatial -resolution. The results show that this approach is able to estimate heatwave spatial patterns using open data and inform urban policy and decision-making. The study is also a new perspective and a feasible pathway of utilizing WUDPAT Level 0 product to facilitate urban environment applications.

Integrated assessment of urban overheating impacts on human life

Urban overheating, driven by global climate change and urban development, is a major contemporary challenge that substantially impacts urban livability and sustainability. Overheating represents a multifaceted threat to the well-being, performance, and health of individuals as well as the energy efficiency and economy of cities, and it is influenced by complex interactions between building, city, and global scale climates. In recent decades, extensive discipline-specific research has characterized urban heat and assessed its implications on human life, including ongoing efforts to bridge neighboring disciplines. The research horizon now encompasses complex problems involving a wide range of disciplines, and therefore comprehensive and integrated assessments are needed that address such interdisciplinarity. Here, our objective is to go beyond a review of existing literature and instead provide a broad overview and integrated assessments of urban overheating, defining holistic pathways for addressing the impacts on human life. We (a) detail the characterization of heat hazards and exposure across different scales and in various disciplines, (b) identify individual sensitivities to urban overheating that increase vulnerability and cause adverse impacts in different populations, (c) elaborate on adaptive capacities that individuals and cities can adopt, (d) document the impacts of urban overheating on health and energy, and (e) discuss frontiers of theoretical and applied urban climatology, built environment design, and governance toward reduction of heat exposure and vulnerability at various scales. The most critical challenges in future research and application are identified, targeting both the gaps and the need for greater integration in overheating assessments.

Perspectives on spatial representation of urban heat vulnerability

Extreme heat, the deadliest summer weather-related hazard in the USA, is projected to increase in intensity, duration, frequency, and magnitude, especially in urban areas that account for 80% of the population. Spatial visualization and representation are crucial in establishing the hotspots of vulnerability to the heat hazard. However, despite the progress in the science of vulnerability, there lacks a systematic and consistent conceptual framework. The quantification of variables is unchecked, resulting in subjective decisions regarding the weighting of variables, selection of indicators, and the suitability of the proxies. Moreover, contradicting approaches generate disparate outputs such as; inductive versus deductive, area-based versus population-based, and raster versus vector designs. The qualitative approach, meant to provide supplementary data, is often ignored. This review provides a perspective of the lacunae in the existing literature and builds on these gaps to derive a conceptual framework towards harmonizing theoretical and statistical relationships. The framework is anchored on the longitudinal study approach as the socioeconomic, biophysical, and geodemographic dimensions have an inherent temporal variance. The review calls for a precise and accurate depiction of heat vulnerability in urban areas to inform targeted adaptation and mitigation measures and the long term projection of coupled systems behavior.

Future heat adaptation and exposure among urban populations and why a prospering economy alone won’t save us

When inferring on the magnitude of future heat-related mortality due to climate change, human adaptation to heat should be accounted for. We model long-term changes in minimum mortality temperatures (MMT), a well-established metric denoting the lowest risk of heat-related mortality, as a function of climate change and socio-economic progress across 3820 cities. Depending on the combination of climate trajectories and socio-economic pathways evaluated, by 2100 the risk to human health is expected to decline in 60% to 80% of the cities against contemporary conditions. This is caused by an average global increase in MMTs driven by long-term human acclimatisation to future climatic conditions and economic development of countries. While our adaptation model suggests that negative effects on health from global warming can broadly be kept in check, the trade-offs are highly contingent to the scenario path and location-specific. For high-forcing climate scenarios (e.g. RCP8.5) the maintenance of uninterrupted high economic growth by 2100 is a hard requirement to increase MMTs and level-off the negative health effects from additional scenario-driven heat exposure. Choosing a 2 °C-compatible climate trajectory alleviates the dependence on fast growth, leaving room for a sustainable economy, and leads to higher reductions of mortality risk.

Greenery as a mitigation and adaptation strategy to urban heat

The absence of vegetation in urban areas contributes to the establishment of the urban heat island, markedly increasing thermal stress for residents, driving morbidity and mortality. Mitigation strategies are, therefore, needed to reduce urban heat, particularly against a background of urbanization, anthropogenic warming and increasing frequency and intensity of heatwaves. In this Review, we evaluate the potential of green infrastructure as a mitigation strategy, focusing on greenery on the ground (parks) and greenery on buildings (green roofs and green walls). Green infrastructure acts to cool the urban environment through shade provision and evapotranspiration. Typically, greenery on the ground reduces peak surface temperature by 2-9 degrees C, while green roofs and green walls reduce surface temperature by similar to 17 degrees C, also providing added thermal insulation for the building envelope. However, the cooling potential varies markedly, depending on the scale of interest (city or building level), greenery extent (park shape and size), plant selection and plant placement. Urban planners must, therefore, optimize design to maximize mitigation benefits, for example, by interspersing parks throughout a city, allocating more trees than lawn space and using multiple strategies in areas where most cooling is required. To do so, improved translation of scientific understanding to practical design guidelines is needed.

Exertional heat stroke: Nutritional considerations

NEW FINDINGS: What is the topic of this review? The potential role of nutrition in exertional heat stroke. What advances does it highlight? Certain nutritional and dietary strategies used by athletes and workers may exert a protective effect the pathophysiological processes of exertional heat stroke, whereas others may be detrimental. While current evidence suggests that some of these practices may be leveraged as a potential countermeasure to exertional heat stroke, further research on injury-related outcomes in humans is required. ABSTRACT: Exertional heat stroke (EHS) is a life-threatening illness and an enduring problem among athletes, military servicemen and -women, and occupational labourers who regularly perform strenuous activity, often under hot and humid conditions or when wearing personal protective equipment. Risk factors for EHS and mitigation strategies have generally focused on the environment, health status, clothing, heat acclimatization and aerobic conditioning, but the potential role of nutrition is largely underexplored. Various nutritional and dietary strategies have shown beneficial effects on exercise performance and health and are widely used by athletes and other physically active populations. There is also evidence that some of these practices may dampen the pathophysiological features of EHS, suggesting possible protection or abatement of injury severity. Promising candidates include carbohydrate ingestion, appropriate fluid intake and glutamine supplementation. Conversely, some nutritional factors and low energy availability may facilitate the development of EHS, and individuals should be cognizant of these. Therefore, the aims of this review are to present an overview of EHS along with its mechanisms and pathophysiology, discuss how selected nutritional considerations may influence EHS risk focusing on their impact on the key pathophysiological processes of EHS, and provide recommendations for future research. With climate change expected to increase EHS risk and incidence in the coming years, further investigation on how diet and nutrition may be optimized to protect against EHS would be highly beneficial.

Epidemiology and risk factors for heat illness: 11 years of heat stress monitoring programme data from the FIVB Beach Volleyball World Tour

OBJECTIVES: To analyse 11 years of FIVB heat stress-monitoring data to determine the relative influence of the different environmental parameters in increasing the likelihood of a heat-related medical time-out (MTOheat). METHODS: A total of 8530 matches were recorded. The referee measured air temperature, black globe temperature, relative humidity and wet-bulb globe temperature (WBGT) before the matches, and registered the MTOheat. The absolute humidity was computed at posteriori. RESULTS: There were 20 MTOheat cases, but only 3 resulted in forfeiting the match. MTOheat incidence was not statistically impacted by sex (p=0.59). MTOheat cases were more prevalent during the games played in Asia during the 4th quarter of the year (p<0.001). Two cases of MTOheat experienced diarrhoea or gastroenteritis during the 5 preceding days; both of them forfeited the match. A principal component analysis showed a specific environmental profile for the matches with MTOheat. They occurred at higher WBGT, temperatures and absolute humidity (p<0.001), but with a lower relative humidity (p=0.027). CONCLUSIONS: The current data showed that an increase in ambient or black globe temperature, but not relative humidity, increased the risk of a MTOheat; but that the absolute risk remained low in elite beach volleyball players. However, suffering or recovering from a recent illness may represent a risk factor for a MTOheat to lead to player forfeit.

Sports health quantification method and system implementation based on multiple thermal physiology simulation

People exercising under high ambient temperature will cause changes in physiological indicators. In order to study the thermal physiological state of the human body, we randomly selected 18 volunteers into the thermal environment exercise group and the room temperature exercise group. Two groups of volunteers performed aerobic exercises in different thermal environments. In the case of exercise performed every 15 min, the volunteers’ hemorheology, physical performance rating (RPE) value and rectal temperature (Tre) were tested. At the same time, we recorded the physiological indicators of the volunteers and simulated the thermal physiology. The results showed that there was a difference in the thermal physiology of the two groups of volunteers, and the hemorheology and the self-strain rating scale were highly correlated in the thermal environment (r=0.839, P<0.01). For this reason, we can conclude that exercising in a hot environment will make people have a heavier heat stress response, and thus render them more likely to undergo muscle fatigue. It is advised that exercising at high temperatures may be avoided as much as possible.

Evaluations of heat action plans for reducing the health impacts of extreme heat: Methodological developments (2012-2021) and remaining challenges

The recent report of the Intergovernmental Panel on Climate Change is stark in its warnings about the changing climate, including future increases in the frequency and intensity of extremely hot weather. The well-established impacts of extreme heat on human health have led to widespread implementation of national and city-wide heat plans for mitigating such impacts. Evaluations of the effectiveness of some heat plans have been published, with previous reviews highlighting key methodological challenges. This article reviews methods used since and that address those challenges, so helping to set an agenda for improving evaluations of heat plans in terms of their effectiveness in reducing heat-health impacts. We examined the reviews that identified the methodological challenges and systematically searched the literature to find evaluations that had since been conducted. We found 11 evaluations. Their methods help address the key challenge of identifying study control groups and address other challenges to a limited extent. For future evaluations, we recommend: utilising recent evaluation methodologies, such as difference-in-differences quasi-experimental designs where appropriate; cross-agency working to utilise data on morbidity and confounders; adoption of a proposed universal heat index; and greater publication of evaluations. More evaluations should assess morbidity outcomes and be conducted in low- and middle-income countries. Evaluations of heat plans globally should employ robust methodologies, as demonstrated in existing studies and potentially transferrable from other fields. Publication of such evaluations will advance the field and thus help address some of the health challenges resulting from our changing climate.

Cooling the city? A scientometric study on urban green and blue infrastructure and climate change-induced public health effects

Climate change causes global effects on multiple levels. The anthropogenic input of greenhouse gases increases the atmospheric mean temperature. It furthermore leads to a higher probability of extreme weather events (e.g., heat waves, floods) and thus strongly impacts the habitats of humans, animals, and plants. Against this background, research and innovation activities are increasingly focusing on potential health-related aspects and feasible adaptation and mitigation strategies. Progressing urbanization and demographic change paired with the climate change-induced heat island effect exposes humans living in urban habitats to increasing health risks. By employing scientometric methods, this scoping study provides a systematic bird’s eye view on the epistemic landscapes of climate change, its health-related effects, and possible technological and nature-based interventions and strategies in order to make urban areas climate proof. Based on a literature corpus consisting of 2614 research articles collected in SCOPUS, we applied network-based analysis and visualization techniques to map the different scientific communities, discourses and their interrelations. From a public health perspective, the results demonstrate the range of either direct or indirect health effects of climate change. Furthermore, the results indicate that a public health-related scientific discourse is converging with an urban planning and building science driven discourse oriented towards urban blue and green infrastructure. We conclude that this development might mirror the socio-political demand to tackle emerging climate change-induced challenges by transgressing disciplinary boundaries.

Electric fan use for cooling during hot weather: A biophysical modelling study

BACKGROUND: In hot weather, electric fans can potentially provide effective cooling for people, with lower greenhouse gas emissions and cost than air conditioning. However, international public health organisations regularly discourage fan use in temperatures higher than 35°C, despite little evidence. We aimed to determine humidity-dependent temperature thresholds at which electric fans would become detrimental in different age groups. METHODS: We used biophysical modelling to determine the upper humidity-dependent temperature thresholds at which fan use would become detrimental (ie, worsen heat stress) for healthy young adults (aged 18-40 years), healthy older adults (aged ≥65 years), and older adults taking anticholinergic medication. We also obtained hourly environmental data for the period Jan 1, 2007, to Dec 31, 2019, for 108 populous cities to determine the number of days fan use would be effective for cooling, standardised to a 31-day hot weather month. We established simplified temperature thresholds for future fan use recommendations on the basis of temperatures below which fan use would never have been detrimental between Jan 1, 2007, and Dec 31, 2019, across all prevailing levels of ambient humidity. FINDINGS: According to our model, fan use would have been beneficial on 30·0 (96·6%) of 31 hot weather days for healthy young adults and 29·4 (94·9%) of 31 hot weather days for both older adults and older adults taking anticholinergic medication between Jan 1, 2007, and Dec 31, 2019. Adherence to the current WHO recommendation of fan use below temperatures of 35°C only, fan use would have been recommended on 27·2 days (87·7%) of 31 hot weather days. According to our simplified thresholds for fan use (at temperatures <39·0°C for healthy young adults, <38·0°C for healthy older adults, and <37·0°C for older adults taking anticholinergic medication), fan use would have been recommended on 29·6 (95·5%) of 31 hot weather days in healthy young adults, 29·4 (94·8%) days in healthy older adults, and 28·8 (93·0%) days in older adults taking anticholinergic medication between Jan 1, 2007, and Dec 31, 2019. INTERPRETATION: Electric fan use, particularly for healthy young adults, would not have worsened heat stress on the majority of study days between 2007 and 2019. Our newly proposed thresholds for fan use provide simple guidelines that improve future heatwave fan use recommendations. FUNDING: None.

Climate change projections for sustainable and healthy cities

The ambition to develop sustainable and healthy cities requires city-specific policy and practice founded on a multidisciplinary evidence base, including projections of human-induced climate change. A cascade of climate models of increasing complexity and resolution is reviewed, which provides the basis for constructing climate projections-from global climate models with a typical horizontal resolution of a few hundred kilometres, through regional climate models at 12-50 km to convection-permitting models at 1 km resolution that permit the representation of urban induced climates. Different approaches to modelling the urban heat island (UHI) are also reviewed-focusing on how climate model outputs can be adjusted and coupled with urban canopy models to better represent UHI intensity, its impacts and variability. The latter can be due to changes induced by urbanisation or to climate change itself. City interventions such as greater use of green infrastructure also have an effect on the UHI and can help to reduce adverse health impacts such as heat stress and the mortality associated with increasing heat. Examples for the Complex Urban Systems for Sustainability and Health (CUSSH) partner cities of London, Rennes, Kisumu, Nairobi, Beijing and Ningbo illustrate how cities could potentially make use of more detailed models and projections to develop and evaluate policies and practices targeted at their specific environmental and health priorities. PRACTICE RELEVANCE: Large-scale climate projections for the coming decades show robust trends in rising air temperatures, including more warm days and nights, and longer/more intense warm spells and heatwaves. This paper describes how more complex and higher resolution regional climate and urban canopy models can be combined with the aim of better understanding and quantifying how these larger scale patterns of change may be modified at the city or finer scale. These modifications may arise due to urbanisation and effects such as the UHI, as well as city interventions such as the greater use of grey and green infrastructures.There is potential danger in generalising from one city to another-under certain conditions some cities may experience an urban cool island, or little future intensification of the UHI, for example. City-specific, tailored climate projections combined with tailored health impact models contribute to an evidence base that supports built environment professionals, urban planners and policymakers to ensure designs for buildings and urban areas are fit for future climates.

On the impact of modified urban albedo on ambient temperature and heat related mortality

Urban heat island and regional climate change raise the ambient temperature in cities and increase the levels of heat related mortality. Higher albedo values lower the ambient temperature and reduce the impact of excess urban heat on health. The present work reviews and analyses fourteen detailed studies investigating the impact of increased urban albedo on the ambient temperature and heat related mortality. It is found that the real magnitude of the afternoon temperature drop caused by the albedo increase is close to 0.09C per 0.1 rise of the albedo, and it is highly determined by the specific climatic, landscape and layout characteristic of cities. A statistically significant association of the temperature drop with the albedo increase, the greenery and street ratio in cities is found. It is observed that the levels of heat related mortality increase significantly as a function of the population size of the cities and the local poverty levels, Increased urban albedo is found to reduce heat related mortality between 0.1 and 4 deaths per day, corresponding to an average decrease of deaths close to 19.8% per degree of temperature drop, or 1.8% per 0.1 increase of the albedo. Mortality drop is found to be in statistically significant association with the initial heat related mortality levels, albedo increase and socioeconomic parameters like the local poverty levels. Accurate parametric functions to predict the magnitude of the temperature drop and heat mortality reduction are developed.

Impacts of climate change on organized sport: A scoping review

The relationship between sport and the environment has been primarily examined to understand how sport impacts the natural environment. However, as the influence of climate change has become more apparent, there is a need to establish a systematic understanding of the impacts of climate change on the operations of sport. The aim of this review is to take stock of existing literature on climate change’s impacts on organized competitive sport entities, with further attention paid to their adaptation efforts. A scoping review was conducted to identify relevant studies published between 1995 and 2021. After evaluating more than 2100 publications, we retained 57 articles and analyzed them to answer the research questions: (1) What evidence is available regarding the impacts of climate change on the operation of organized competitive sport entities? (2) What is known from the literature about the measures taken by organized competitive sport entities to adapt to the impacts of climate change? Our analysis yielded five major themes: (1) Heat impacts on athlete and spectator health; (2) heat impacts on athlete performance; (3) adaptive measures taken in sport; (4) suitability of various cities for event hosting; and (5) benchmarking and boundary conditions. This review reveals that there is evidence of some climate change impacts on sport, but the literature reflects only a small share of the global sport sector. Equally, much remains to be understood about the nature of adaptation. This article is categorized under: Assessing Impacts of Climate Change > Evaluating Future Impacts of Climate Change

The role of outdoor microclimatic features at long-term care facilities in advancing the health of its residents: An integrative review and future strategies

Projections show that Earth’s climate will continue to warm concurrent with increases in the percentage of the world’s elderly population. With an understanding that the body’s resilience to the heat degrades as it ages, these coupled phenomena point to serious concerns of heat-related mortality in growing elderly populations. As many of the people in this age cohort choose to live in managed long-term care facilities, it’s imperative that outdoor spaces of these communities be made thermally comfortable so that connections with nature and the promotion of non-sedentary activities are maintained. Studies have shown that simply being outside has a positive impact on a broad range of the psychosocial well-being of older adults. However, these spaces must be designed to afford accessibility, safety, and aesthetically pleasing experiences so that they are taken full advantage of. Here, we employ an integrative review to link ideas from the disciplines of climate science, health and physiology, and landscape architecture to explain the connections between heat, increased morbidity and mortality in aging adults, existing gaps in thermal comfort models, and key strategies in the development of useable, comfortable outdoor spaces for older adults. Integrative reviews allow for new frameworks or perspectives on a subject to be introduced. Uncovering the synergy of these three knowledge bases can contribute to guiding microclimatic research, design practitioners, and care providers as they seek safe, comfortable and inviting outdoor spaces for aging adults.

Addressing the urban heat islands effect: A cross-country assessment of the role of green infrastructure

The Urban Heat Islands (UHI) effect is a microclimatic phenomenon that especially affects urban areas. It is associated with significant temperature increases in the local microclimate, and may amplify heat waves. Due to their intensity, UHI causes not only thermal discomfort, but also reductions in the levels of life quality. This paper reviews the important role of green infrastructure as a means through which the intensity of UHI may be reduced, along with their negative impact on human comfort and wellbeing. Apart from a comprehensive review of the available literature, the paper reports on an analysis of case studies in a set of 14 cities in 13 countries representing various geographical regions and climate zones. The results obtained suggest that whereas UHI is a common phenomenon, green infrastructure in urban areas may under some conditions ameliorate their impacts. In addition, the study revealed that the scope and impacts of UHI are not uniform: depending on peculiarities of urban morphologies, they pose different challenges linked to the microclimate peculiar to each city. The implications of this paper are threefold. Firstly, it reiterates the complex interrelations of UHIs, heat waves and climate change. Secondly, it outlines the fact that keeping and increasing urban green resources leads to additional various benefits that may directly or indirectly reduce the impacts of UHI. Finally, the paper reiterates the need for city planners to pay more attention to possible UHI effects when initiating new building projects or when adjusting current ones.

Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality

In buildings, energy is primarily consumed by mechanical air conditioning systems. Low energy alternatives, such as natural ventilation, are needed. However, they need to be able to cope with increasing heatwaves and pollution, particularly in warm climates. This review paper looked at the ability of natural ventilation to provide adequate thermal comfort, resilience against heatwaves, and good Indoor Air Quality in warm climates. Single sided ventilation demonstrates the poorest ability to provide thermal comfort, while cross ventilation highlights better performance in terms of reducing indoor air temperatures compared to outdoor. However, windcatchers and solar chimneys displayed even better performance by producing relatively high ventilation rates. During heatwaves and future climatic scenarios, natural ventilation, by cross-ventilation, was not able to meet internal thermal comfort standards. A potential low energy solution could be combining solar chimneys or windcatchers with water evaporation cooling. A critical synthesis of the literature suggests that these systems can generate high ventilation rates and keep indoor temperatures around 8 degrees C cooler than outdoor temperatures in warm weather (>35 degrees C). However, no studies were found testing these systems against future climate scenarios, and further studies are recommended. The literature supported natural ventilation being effective in removing pollution generated indoors due to adequate ventilation rates. However, using unfiltered natural ventilation for areas with high outdoor pollution can increase the indoor deposition of harmful particulate matter. With increasing air pollution, further studies are urgently required to investigate filter enabled natural ventilation, particularly with solar chimney/windcatcher incorporated.

A study on the capacity of a ventilation cooling vest with pressurized air in hot and humid environments

Hot and humid working environments exist in civil engineering, exploration, shipping, and so on. Especially in mines and textile workplaces, the air humidity is usually close to saturation. Frontline workers perform physically demanding work, which will make the body sweat greatly and increase the occurrence of heat-related illnesses. The microenvironment under clothing can be improved by a ventilation cooling vest with pressurized air (denoted VCV), and the trunk skin temperature will be decreased. However, the amount of heat that a VCV removes from a working human body in hot and humid environments is unclear. In this study, human experiments were carried out, the ambient temperature was controlled at 30 degrees C, 32 degrees C or 34 degrees C, and the air humidity was 90%. The subjects wore a labor suit (denoted LS) or a VCV, running on a treadmill at 5 km/h or 7.5 km/h. The results showed that the total trunk heat loss was increased by 169-237%, and the cooling power of the VCV was between 79.5 and 97.6 W when wearing the VCV. However, the actual skin wettedness is often less than the calculated value, and the calculated cooling power should be considered the upper limit. The study indicated that the cooling capacity of the VCV increased as the ambient temperature and labor intensity increased, and the heat dissipation of the body also increased.

Increased labor losses and decreased adaptation potential in a warmer world

Working in hot and potentially humid conditions creates health and well-being risks that will increase as the planet warms. It has been proposed that workers could adapt to increasing temperatures by moving labor from midday to cooler hours. Here, we use reanalysis data to show that in the current climate approximately 30% of global heavy labor losses in the workday could be recovered by moving labor from the hottest hours of the day. However, we show that this particular workshift adaptation potential is lost at a rate of about 2% per degree of global warming as early morning heat exposure rises to unsafe levels for continuous work, with worker productivity losses accelerating under higher warming levels. These findings emphasize the importance of finding alternative adaptation mechanisms to keep workers safe, as well as the importance of limiting global warming.

Effect modification of greenness on the association between heat and mortality: A multi-city multi-country study

BACKGROUND: Identifying how greenspace impacts the temperature-mortality relationship in urban environments is crucial, especially given climate change and rapid urbanization. However, the effect modification of greenspace on heat-related mortality has been typically focused on a localized area or single country. This study examined the heat-mortality relationship among different greenspace levels in a global setting. METHODS: We collected daily ambient temperature and mortality data for 452 locations in 24 countries and used Enhanced Vegetation Index (EVI) as the greenspace measurement. We used distributed lag non-linear model to estimate the heat-mortality relationship in each city and the estimates were pooled adjusting for city-specific average temperature, city-specific temperature range, city-specific population density, and gross domestic product (GDP). The effect modification of greenspace was evaluated by comparing the heat-related mortality risk for different greenspace groups (low, medium, and high), which were divided into terciles among 452 locations. FINDINGS: Cities with high greenspace value had the lowest heat-mortality relative risk of 1·19 (95% CI: 1·13, 1·25), while the heat-related relative risk was 1·46 (95% CI: 1·31, 1·62) for cities with low greenspace when comparing the 99(th) temperature and the minimum mortality temperature. A 20% increase of greenspace is associated with a 9·02% (95% CI: 8·88, 9·16) decrease in the heat-related attributable fraction, and if this association is causal (which is not within the scope of this study to assess), such a reduction could save approximately 933 excess deaths per year in 24 countries. INTERPRETATION: Our findings can inform communities on the potential health benefits of greenspaces in the urban environment and mitigation measures regarding the impacts of climate change. FUNDING: This publication was developed under Assistance Agreement No. RD83587101 awarded by the U.S. Environmental Protection Agency to Yale University. It has not been formally reviewed by EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this publication. Research reported in this publication was also supported by the National Institute on Minority Health and Health Disparities of the National Institutes of Health under Award Number R01MD012769. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Also, this work has been supported by the National Research Foundation of Korea (2021R1A6A3A03038675), Medical Research Council-UK (MR/V034162/1 and MR/R013349/1), Natural Environment Research Council UK (Grant ID: NE/R009384/1), Academy of Finland (Grant ID: 310372), European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655 and 874990), Czech Science Foundation (22-24920S), Emory University’s NIEHS-funded HERCULES Center (Grant ID: P30ES019776), and Grant CEX2018-000794-S funded by MCIN/AEI/ 10.13039/501100011033 The funders had no role in the design, data collection, analysis, interpretation of results, manuscript writing, or decision to publication.

Kidney physiology and pathophysiology during heat stress and the modification by exercise, dehydration, heat acclimation and aging

The kidneys’ integrative responses to heat stress aid thermoregulation, cardiovascular control, and water and electrolyte regulation. Recent evidence suggests the kidneys are at increased risk of pathological events during heat stress, namely acute kidney injury (AKI), and that this risk is compounded by dehydration and exercise. This heat stress related AKI is believed to contribute to the epidemic of chronic kidney disease (CKD) occurring in occupational settings. It is estimated that AKI and CKD affect upwards of 45 million individuals in the global workforce. Water and electrolyte disturbances and AKI, both of which are representative of kidney-related pathology, are the two leading causes of hospitalizations during heat waves in older adults. Structural and physiological alterations in aging kidneys likely contribute to this increased risk. With this background, this comprehensive narrative review will provide the first aggregation of research into the integrative physiological response of the kidneys to heat stress. While the focus of this review is on the human kidneys, we will utilize both human and animal data to describe these responses to passive and exercise heat stress, and how they are altered with heat acclimation. Additionally, we will discuss recent studies that indicate an increased risk of AKI due to exercise in the heat. Lastly, we will introduce the emerging public health crisis of older adults during extreme heat events and how the aging kidneys may be more susceptible to injury during heat stress.

A comprehensive review of different types of green infrastructure to mitigate urban heat islands: Progress, functions, and benefits

Climate change and rapid urbanization increase/amplify urban heat islands (UHIs). Green infrastructure (GI) is an effective and popularly strategy used to moderate UHIs. This paper aims to better understand the progress of different GI types (urban parks, urban forests, street trees, green roofs, green walls) in mitigating UHIs, and what benefits they provide. Firstly, this paper used CiteSpace to analyze 1243 publications on the Web of Science from 1990 to 2021, then analyzed the function/regulation of ecosystem services/benefits and values of GI types in reducing UHIs. The historical review results show that research on all GI types showed rapid growth since 2013, and their GR increased rapidly. The highest-ranking keywords were urban heat island/heat island, climate/climate change/microclimate, and temperature/land surface temperature/air temperature. “Design,” “vegetation,” “quality,” and “reduction” are the top four strongest keyword bursts. The most published countries are the People’s Republic of China, USA, Australia, Germany, and Italy, and the top three institutions are the Chinese Academy of Sciences, Arizona State University, and the National University of Singapore. Landscape and Urban Planning, Building and Environment, Energy and Building, and Urban Forestry and Urban Greening are the most published journals. In urban areas, different GI types as a form of ecosystem hardware provide multiple functions (reduced land surface temperatures, lower building energy usage, improved thermal comfort and enhanced human health, reduced morbidity and mortality, etc.). GI thus provides a regulated ecosystem service to ameliorate UHIs primarily through temperature regulation and shade. At the same time, GI provides benefits and values (ecological, economic, social, and cultural) to humans and urban sustainable development. GI types determine the functions they provide, afford corresponding regulated ecosystem services, and provide benefits and values in a logical/recycle system. Overall, this review highlights the development and importance of GI, as well as the relationship of GI types and functions of regulating the ecosystem service benefits and values to mitigate UHI, and advances the study of climate change adaptation in cities.

How are nature based solutions helping in the greening of cities in the context of crises such as climate change and pandemics? A comprehensive review

Urban areas are expanding due to rural-urban migration and due to population increases. Their resilience is being challenged due to socio-political consequences of increasingly frequent and severe storms, due to climate changes, influx of human and animal refugees and as a consequence of the COVID-19 pandemic. The authors prepared a systematic literature of ways cities can be transformed into more resilient, and sustainable regions by creatively enhancing the quality and quantity of blue and green areas in and around them. The literature review was conducted to provide holistic insights into selection, implementation monitoring, assessment, and valuation of Nature-based Solutions in diverse urban regions. The authors reviewed no fewer than 298 articles from 109 academic journals and related sources, published within 1997-2020. The focus of the articles was upon ‘nature-based’ changes that are being implemented in urban areas, globally to enhance their resilience and the ‘quality-of-life’ of humans and other species. By implementing nature-based solutions, and complimentary ‘urban wilding’ approaches, urban areas and their hinterlands are expanding their ‘blue’ and ‘green’ areas and are thereby decreasing the ‘heat-island’ effects, while improving human health by surrounding them with rich bio-diversities of locally adapted, aquatic and terrestrial plants and animals. Although, many NBS options have been documented to be beneficial, their environmental, economic and social/psychological dimensions have not been adequately quantified, especially in the context of climate changes, and with regard to COVID-19. It is essential that the benefits of NBS are quantified with easily measurable outcomes, that are readily understood by practitioners, city policy-makers and members of community organizations, based upon specific geographical and climatological contexts. This will help them accelerate implementation of NBS and wilding into their urban systems. The reviewers found that more research is needed on anticipatory learning, backcasting and community participation to help to effectively implement the appropriate NBS for improving the sustainability of urban systems. The reviewers provide guidance for urban leaders to incorporate NBS into their policies and strategies to improve urban resilience and equity and to more effectively reduce impacts of climate change, population growth and pandemics. (C) 2020 Elsevier Ltd. All rights reserved.

Effect of co-exposure to heat and psychological stressors on sperm DNA and semen parameters

The present study aims to investigate the effects of co-exposure to heat and psychological stress on sperm DNA and semen parameters among male rats. The study was conducted on 40 healthy adult male Wistar rats. The rats were randomly categorized into four groups of same size consisting of a control group, a heat stress, psychological and co-exposure groups. The heat stress group was exposed to a temperature of 36 °C at 20% relative humidity. The psychological stress exposure group was subjected to three stressors including exposure to strobe light, noise and tilting cage. According the results,the co-exposure group had lower mean sperm parameters including sperm count (17.22 ± 4.22 10^6/ml), motility (42.63 ± 12.95 %), viability (48.50 ± 23.25 %), normal morphology (56 ± 7.5%), progressive motility (11.61 ± 7.81%), non-progressive motility (31.18 ± 7.77%), curvilinear velocity (24.11 ± 3.81 μm/s) and straight-line velocity (3.2 ± 1.4 μm/s) when compared with those of the other groups (P=0.001). Mean sperm immobility (57.36 ± 12.95%) and non-progressive motility (37.93 ± 11.15%) in the co-exposure group was higher compared to the other groups (P = 0.001 and P = 0.333, respectively). Assessment of damage to sperm DNA revealed that the heat exposure group had a higher percentage of sperm DNA damage (9.44 ± 6.80 %) compared to others (P=0.185). In case of all of exposure scenario, the chance that the semen quality decreased compared to the control group has been increased. In general the combined stress had a greater significant effect on sperm parameters compared to other exposure groups, except for DNA damage.

Extreme events and gender-based violence: A mixed-methods systematic review

The intensity and frequency of extreme weather and climate events are expected to increase due to anthropogenic climate change. This systematic review explores extreme events and their effect on gender-based violence (GBV) experienced by women, girls, and sexual and gender minorities. We searched ten databases until February, 2022. Grey literature was searched using the websites of key organisations working on GBV and Google. Quantitative studies were described narratively, whereas qualitative studies underwent thematic analysis. We identified 26 381 manuscripts. 41 studies were included exploring several types of extreme events (ie, storms, floods, droughts, heatwaves, and wildfires) and GBV (eg, sexual violence and harassment, physical violence, witch killing, early or forced marriage, and emotional violence). Studies were predominantly cross-sectional. Although most qualitative studies were of reasonable quality, most quantitative studies were of poor quality. Only one study included sexual and gender minorities. Most studies showed an increase in one or several GBV forms during or after extreme events, often related to economic instability, food insecurity, mental stress, disrupted infrastructure, increased exposure to men, tradition, and exacerbated gender inequality. These findings could have important implications for sexual-transformative and gender-transformative interventions, policies, and implementation. High-quality evidence from large, ethnographically diverse cohorts is essential to explore the effects and driving factors of GBV during and after extreme events.

Climate change and children’s mental health: A developmental perspective

Climate change is a major global public-health challenge that will have wide-ranging impacts on human psychological health and well-being. Children and adolescents are at particular risk because of their rapidly developing brain, vulnerability to disease, and limited capacity to avoid or adapt to threats and impacts. They are also more likely to worry about climate change than any other age group. Drawing on a developmental life-course perspective, we show that climate-change-related threats can additively, interactively, and cumulatively increase psychopathology risk from conception onward; that these effects are already occurring; and that they constitute an important threat to healthy human development worldwide. We then argue that monitoring, measuring, and mitigating these risks is a matter of social justice and a crucial long-term investment in developmental and mental health sciences. We conclude with a discussion of conceptual and measurement challenges and outline research priorities going forward.

Correlating heatwaves and relative humidity with suicide (fatal intentional self-harm)

Empirical evidence suggests that the effects of anthropogenic climate change, and heat in particular, could have a significant impact on mental health. This article investigates the correlation between heatwaves and/or relative humidity and suicide (fatal intentional self-harm) on a global scale. The covariance between heat/humidity and suicide was modelled using a negative binomial Poisson regression with data from 60 countries between 1979-2016. Statistically significant increases and decreases in suicide were found, as well as many cases with no significant correlation. We found that relative humidity showed a more significant correlation with suicide compared to heatwaves and that both younger age groups and women seemed to be more significantly affected by changes in humidity and heatwave counts in comparison with the rest of the population. Further research is needed to provide a larger and more consistent basis for epidemiological studies; to understand better the connections among heat, humidity and mental health; and to explore in more detail which population groups are particularly impacted and why.

Effects of extreme weather events on child mood and behavior

Extreme weather events (EWEs) are increasing in frequency and severity as the planet continues to become warmer. Resulting disasters have the potential to wreak havoc on the economy, infrastructure, family unit, and human health. Global estimates project that children will be disproportionately impacted by the changing climate – shouldering 88% of the related burdens. Exposure to EWEs in childhood is traumatic, with ramifications for mental health specifically. Symptoms of posttraumatic stress, depression, and anxiety have all been associated with childhood EWE exposure and have the potential to persist under certain circumstances. Conversely, many childhood survivors of EWE also demonstrate resilience and experience only transient symptoms. While the majority of studies are focused on the effects resulting from one specific type of disaster (hurricanes), we have synthesized the literature across the various types of EWEs. We describe psychological symptoms and behavior, the potential for long-term effects, and potential protective factors and risk factors. What this paper adds Climate change-related phenomena such as extreme weather events (EWEs) have the potential to impact mood and behavior in children. Posttraumatic stress (PTS) is the most common mental health consequence in child survivors of EWEs. PTS is often comorbid with depression and/or anxiety in this group.

The damage effect of heat stress and psychological stress combined exposure on uterus in female rats

AIMS: Explore the effects of heat stress and psychological stress combined exposure on the uterus and its underlying mechanisms. MAIN METHODS: Sixty female Sprague-Dawley rats were randomly assigned to four groups: control group, psychological stress group, high ambient temperature group, and high ambient temperature combined with psychological stress group. All treatments were administered for two weeks. During this period, the estrous cycle, body weights and rectal temperature were measured regularly. Then, ovarian weight coefficient, serum estradiol (E(2)) and progesterone (P) concentration, uterine histomorphological alterations, levels of tumor necrosis factor alpha (TNF-α), malondialdehyde (MDA) and superoxide dismutase (SOD), and the expressions of ovarian hormone receptors, leukemia inhibitory factor (LIF) and its receptor, homeobox gene A10 (HoxA10), Wnt5a, Wnt7a, β-catenin, and P-β-catenin(Y142) in the uterus and endometrium were detected. KEY FINDINGS: High temperature combined with psychological stress lead to body weight, body temperature, ovarian hormones and estrus cycle disorder, uterine gland ducts expansion and endometrial thickness reduction, and the decreased expression of endometrial receptivity markers (LIF and HoxA10). Further, disturbed expression of E(2) and P receptors in endometrium, elevated MDA and TNF-α levels, and decreased Wnt5a, Wnt7a and P-β-catenin(Y142) content were found. Our data suggested that co-exposure to high temperature and psychological stress could aggravate uterine damage probably by inducing ovarian hormonal disorder and the subsequent oxidative stress and inflammation, and reduce the endometrial function through suppressing Wnt signaling. SIGNIFICANCE: This will provide the scientific basis for improving female reproductive health, and preventing and treating reproductive disorders.

Global projections of temperature-attributable mortality due to enteric infections: A modelling study

BACKGROUND: Mortality due to enteric infections is projected to increase because of global warming; however, the different temperature sensitivities of major enteric pathogens have not yet been considered in projections on a global scale. We aimed to project global temperature-attributable enteric infection mortality under various future scenarios of sociodemographic development and climate change. METHODS: In this modelling study, we generated global projections in two stages. First, we forecasted baseline mortality from ten enteropathogens (non-typhoidal salmonella, Shigella, Campylobacter, cholera, enteropathogenic Escherichia coli, enterotoxigenic E coli, typhoid, rotavirus, norovirus, and Cryptosporidium) under several future sociodemographic development and health investment scenarios (ie, pessimistic, intermediate, and optimistic). We then estimated the mortality change from baseline attributable to global warming using the product of projected annual temperature anomalies and pathogen-specific temperature sensitivities. FINDINGS: We estimated that in the period 2080-95, the global mean number of temperature-attributable deaths due to enteric infections could be as low as 6599 (95% empirical CI 5441-7757) under the optimistic sociodemographic development and climate change scenario, or as high as 83 888 (67 760-100 015) under the pessimistic scenario. Most of the projected temperature-attributable deaths were from shigellosis, cryptosporidiosis, and typhoid fever in sub-Saharan Africa and South Asia. Considerable reductions in the number of attributable deaths were from viral infections, such as rotaviral and noroviral enteritis, which resulted in net reductions in attributable enteric infection mortality under optimistic scenarios for Latin America and the Caribbean and East Asia and the Pacific. INTERPRETATION: Temperature-attributable mortality could increase under warmer climate and unfavourable sociodemographic conditions. Mitigation policies for limiting global warming and sociodemographic development policies for low-income and middle-income countries might help reduce mortality from enteric infections in the future. FUNDING: Japan Society for the Promotion of Science, Japan Science and Technology Agency, and Spanish Ministry of Economy, Industry, and Competitiveness.

Burden of diabetes and kidney disease attributable to non-optimal temperature from 1990 to 2019: A systematic analysis from the global burden of disease study 2019

INTRODUCTION: This study quantitatively described the disease burden of diabetes and kidney disease attributable to non-optimal temperatures and explored the influencing factors. METHODS: We quantitatively described the mortality burden of diabetes and kidney disease attributable to non-optimal temperatures in six countries (China, USA, South Africa, Australia, Iraq, Portugal), and compare trends in mortality in six countries from 1990 to 2019. We used the APC model to analyse age, period, and cohort effects on mortality in six countries. We used restricted cubic splines and quantile regression to analyse the association of SDI with mortality and YLL using data from 21 regions in the world. RESULTS: The mortality rates of diabetes and kidney disease in the six countries in 2019 were 1.72% (Australia), 1.83% (China), 2.99% (USA), 3% (Portugal), 7.45% (South Africa) and 8.71% (Iraq) attributable to non-optimal temperatures. Cold was more harmful than heat. The mortality, YLLs of diabetes and kidney disease of male were higher than females. The mortality rate showed an upwards trend with age. The period effect had little changes or showed a slight upwards trend. The cohort effect showed a downwards trend. The regions with higher mortality or YLLs rates were mainly had SDI values of 0.45-0.80. CONCLUSIONS: Among the death burdens of diabetes and kidney disease attributed to non-optimal temperatures, cold had a greater burden than heat. The burden of death was affected by sex, age, period, cohort, and SDI.

Estimates of country level temperature-related mortality damage functions

Many studies project that climate change is expected to cause a significant number of excess deaths. Yet, in integrated assessment models that determine the social cost of carbon (SCC), human mortality impacts do not reflect the latest scientific understanding. We address this issue by estimating country-level mortality damage functions for temperature-related mortality with global spatial coverage. We rely on projections from the most comprehensive published study in the epidemiology literature of future temperature impacts on mortality (Gasparrini et al. in Lancet Planet Health 1:e360-e367, 2017), which estimated changes in heat- and cold-related mortality for 23 countries over the twenty-first century. We model variation in these mortality projections as a function of baseline climate, future temperature change, and income variables and then project future changes in mortality for every country. We find significant spatial heterogeneity in projected mortality impacts, with hotter and poorer places more adversely affected than colder and richer places. In the absence of income-based adaptation, the global mortality rate in 2080-2099 is expected to increase by 1.8% [95% CI 0.8-2.8%] under a lower-emissions RCP 4.5 scenario and by 6.2% [95% CI 2.5-10.0%] in the very high-emissions RCP 8.5 scenario relative to 2001-2020. When the reduced sensitivity to heat associated with rising incomes, such as greater ability to invest in air conditioning, is accounted for, the expected end-of-century increase in the global mortality rate is 1.1% [95% CI 0.4-1.9%] in RCP 4.5 and 4.2% [95% CI 1.8-6.7%] in RCP 8.5. In addition, we compare recent estimates of climate-change induced excess mortality from diarrheal disease, malaria and dengue fever in 2030 and 2050 with current estimates used in SCC calculations and show these are likely underestimated in current SCC estimates, but are also small compared to more direct temperature effects.

Factors associated with older adults’ perception of health risks of hot and cold weather event exposure: A scoping review

INTRODUCTION: Hot and cold weather events are increasingly becoming a global burden resulting in premature and preventable morbidity and mortality, particularly in vulnerable groups such as older people and people with chronic health conditions. However, risk perception regarding weather is generally poor among vulnerable groups which often acts as a barrier to the uptake of critical health-protective behaviours. A more cohesive understanding of determinants of risk perception is needed to inform public health risk communication and behaviour change interventions that promote protective health behaviours. This scoping literature review aimed to understand factors influencing perception of personal health risks in vulnerable groups as a result of exposure to hot and cold weather events. METHODS: A five-stage scoping review framework was followed. Searches were run across Medline, PsychInfo, Web of Science and EMBASE. Papers were included if they provided rationale for risk perceptions in vulnerable groups in indoor/domestic environments and focussed on samples from OECD countries. RESULTS: In total, 13 out of 15,554 papers met the full inclusion criteria. The majority of papers focused on hot weather events: one study exclusively examined cold weather events and one study addressed both cold and hot weather events. Included papers focused on older adults aged 65+ years. The papers identified eight factors that were associated with older adults’ personal health risk perception of hot and cold weather events: (1) Knowledge of the relationship between hot/cold weather and health risks, (2) presence of comorbidities, (3) age and self-identity, (4) perceived weather severity, (5) Beliefs associated with regional climate, (6) past experience with weather, (7) misconceptions of effectiveness of protective behaviours, and (8) external locus of control. CONCLUSIONS: Future research should explore risk communication methods by implementing the identified risk perception determinants from this review into health protection interventions targeting older adults. Further understanding is needed regarding risk perceptions in non-elderly vulnerable groups, for examples individuals with chronic diseases or disabilities.

Systematic review of ambient temperature exposure during pregnancy and stillbirth: Methods and evidence

BACKGROUND: Associations between ambient temperature exposure during pregnancy and stillbirth have been reviewed and described in the literature. However, there is no existing review of environmental and epidemiologic methods applied to measure stillbirths resulting from exposure to ambient temperatures during pregnancy. The objective of this study is to systematically review published methods, data sources, and data linkage practices to characterize associations between ambient temperature and stillbirth to inform stillbirth prevention and risk management strategies. METHODS: A systematic review of published studies that assess the association between ambient temperature exposure during pregnancy using any measures or approach and stillbirth was undertaken in Cochrane Library, PubMed, Medline, Scopus, Embase, and Web of Science of studies (2000-2020, inclusive). Selection of studies were assessed by pre-specified eligibility criteria and documented using PRISMA. Citations were managed using EndNote X8 whilst selection, reviewing, and data extraction were performed using Covidence. The screening, selection, and data extraction process consisted of two blind, independent reviews followed by a tertiary independent review. An adapted Critical Appraisal Skills Program (CASP) checklist was used to assess quality and bias. The main findings and characteristics of all studies was extracted and summarized. Where appropriate, a meta-analysis will be performed for measures of association. RESULTS: Among 538 original records, 12 eligible articles were identified that analysed associations between ambient temperature exposure and stillbirth for 42,848 stillbirths among 3.4 million births across seven countries. Varied definitions of stillbirth were reported based on gestational age, birthweight, both, or neither. The overall rate of stillbirth ranged from 1.9 to 38.4 per 1000 among six high-income countries and one low-middle-income country. All study designs were retrospective and included ten cohort studies, three case-crossover studies, and two additional case-control subgroup analysis. Exposure data for ambient temperature was mostly derived from standard municipal or country-level monitors based on weather stations (66.6%) or a forecasting model (16.7%); otherwise, not reported (16.7%). Results were not statistically pooled for a meta-analysis due to heterogeneity of methods and models among included studies. All studies reported associations of increased risk of stillbirth with ambient temperature exposures throughout pregnancy, particularly in late pregnancy. One study estimates 17-19% (PAR) of stillbirths are potentially attributable to chronic exposure to hot and cold ambient temperatures during pregnancy. Overall, risk of stillbirth was observed to increase below 15 °C and above 23.4 °C, where highest risk is above 29.4 °C. CONCLUSION: Exposure to hot and cold temperatures during pregnancy may increase the risk of stillbirth, although a clear causative mechanism remains unknown. Despite lack of causal evidence, existing evidence across diverse settings observed similar effects of increased risk of stillbirth using a variety of statistical and methodological approaches for exposure assessments, exposure windows, and data linkage. Managing exposure to ambient temperatures during pregnancy could potentially decrease risk of stillbirth, particularly among women in low-resource settings where access to safe antenatal and obstetric care is challenging. To fully understand the effects or dose-response relationship of maternal exposure to ambient temperatures and stillbirth, future studies should focus on biological mechanisms and contributing factors in addition to improving measurement of ambient temperature exposure.

The effects of exercise at different temperatures on cognitive function: A systematic review

To date, no review has focused specifically on the potential modulating role of environmental temperature on the effects of exercise on cognitive function. Despite this, a range of occupations and performance contexts exist (e.g., military personnel, emergency services, sport) where the maintenance of cognitive function in environmentally challenging environments is crucial. Therefore, this systematic review aimed to evaluate the experimental research investigating how manipulating environmental temperature influenced the effects of acute bouts exercise on cognitive functioning from pre-to-post exercise, or during exercise. Studies to be included were assessed by two authors reviewing title, abstract, and then full-text. From the searches conducted, twenty articles were identified which met the inclusion criteria. For the purpose of this review, exercise involved in each study was categorised into low, moderate, and vigorous dosages (dependent on intensity and duration). The results indicate that moderate dosages of exercise help stimulate improved cognitive performance from pre-to-post exercise in temperate conditions, where cold exposure appears to blunt these effects. In addition, hot environments led to cognitive decrements during and post exercise which were often identified in studies that implemented prolonged moderate or vigorous exercise protocols. Therefore, suggesting a combination of heightened physiological strain from increased dose of exercise, alongside heat exposure, can be detrimental to optimal cognitive functioning, whereby executive functioning tasks appeared to be most affected. The findings from this systematic review highlight the potential modulating role of environmental temperature on the effects of exercise on cognitive function. Thus, highlighting the importance of considering the role of environmental temperature for individuals either exercising to elicit desired cognitive benefits or for those involved in physically demanding occupations or performance domains.

Thermal comfort in school classes in the era of global warming: A prospective multicenter study

BACKGROUND: We investigated adolescents’ feelings of thermal comfort during the educational process in various geographical locations far apart and present recommendations for the adjustment of the thermal environment in schools. METHODS: The prospective international multicenter study took place in 8 locations on different continents. The survey in the form of a questionnaire was carried out among 2800 healthy high school students. The study was divided into “cold season survey,” “warm-season survey,” and heat wave survey. RESULTS: The statistically significant difference between the “cold season survey” score of 4.04 (discomfort) and “warm-season survey” score of 3.47 (slight discomfort) (p = .04) indicates that students feel more thermal discomfort during winter months in all 8 locations. The heat wave survey score was 4.53 (discomfort). During the cold season, 29.24% of high school students felt themselves in full thermal comfort and 76.48% of the students felt themselves relatively comfortable (slightly cool-comfortable-slightly warm). CONCLUSIONS: Even during the ongoing process of climate change, the cold season discomfort remains the main problem for students in classes. This tendency is present in different continents as a universal problem. We recommend keeping an entrance hall and classroom temperatures at different levels and to advise students about proper clothing.

Abnormal ambient temperature change increases the risk of out-of-hospital cardiac arrest: A systematic review and meta-analysis of exposure types, risk, and vulnerable populations

BACKGROUND: There is growing evidence in support of a short-term association between ambient temperature and cardiac arrest attacks that is a serious manifestation of cardiovascular disease and has a high incidence and low survival rate. However, it remains unrecognized about the hazardous temperature exposure types, exposure risk magnitude, and vulnerable populations. OBJECTIVES: We comprehensively summarize prior epidemiological studies looking at the short-term associations of out-of-hospital cardiac arrest (OHCA) with various temperature exposures among different populations. METHODS: We searched PubMed and Web of Science databases from inception to October 2021 for eligible English language. Temperature exposure was categorized into three types: heat (included high temperature, extreme heat, and heatwave), cold (included low temperature and extreme cold), and temperature variation (included diurnal temperature range and temperature change between two adjacent days). Meta-analysis weighted by inverse variance was used to pool effect estimates. RESULTS: This study included 15 studies from 8 countries, totaling around 1 million OHCA events. Extreme heat and extreme cold were significantly associated with an increased risk of OHCA, and the pooled relative risks (RRs) were 1.071 [95 % confidence interval (CI): 1.019-1.126] and 1.662 (95%CI: 1.138-2.427), respectively. The risk of OHCA was also elevated by heatwaves (RR = 1.248, 95%CI: 1.091-1.427) and more intensive heatwaves had a greater effect. Notably, the elderly and males seemed to be more vulnerable to the effects of heat and cold. However, we did not observe a significant association between temperature variation and the risk of OHCA (1.005, 95%CI: 0.999-1.012). CONCLUSION: Short-term exposure to heat and cold may be novel risk factors for OHCA. Considering available studies in limited regions, the temperature effect on OHCA should be urgently confirmed in different regions.

Ambient temperature and infarct size, microvascular obstruction, left ventricular function and clinical outcomes after ST-segment elevation myocardial infarction

OBJECTIVES: Incidence and prognosis of ST-segment elevation myocardial infarction (STEMI) vary according to ambient temperature and season. We sought to assess whether season and temperature on the day of STEMI are associated with infarct size, microvascular obstruction (MVO), left ventricular ejection fraction (LVEF) and clinical outcomes after primary percutaneous coronary intervention (PCI). METHODS: Individual patient data from 1598 patients undergoing primary PCI in six randomized clinical trials were pooled. Infarct size was evaluated by cardiac magnetic resonance within 30 days in all trials. Patients were categorized either by whether they presented on a day of temperature extremes (minimum temperature <0 °C or maximum temperature >25 °C) or according to season. RESULTS: A total of 558/1598 (34.9%) patients presented with STEMI on a day of temperature extremes, and 395 (24.7%), 374 (23.4%), 481 (30.1%) and 348 (21.8%) presented in the spring, summer, fall and winter. After multivariable adjustment, temperature extremes were independently associated with larger infarct size (adjusted difference 2.8%; 95% CI, 1.3-4.3; P < 0.001) and smaller LVEF (adjusted difference -2.3%; 95% CI, -3.5 to -1.1; P = 0.0002) but not with MVO (adjusted P = 0.12). In contrast, infarct size, MVO and LVEF were unrelated to season (adjusted P = 0.67; P = 0.36 and P = 0.95, respectively). Neither temperature extremes nor season were independently associated with 1-year risk of death or heart failure hospitalization (adjusted P = 0.79 and P = 0.90, respectively). CONCLUSION: STEMI presentation during temperature extremes was independently associated with larger infarct size and lower LVEF but not with MVO after primary PCI, whereas season was unrelated to infarct severity.

Associations between extreme temperatures and cardiovascular cause-specific mortality: Results from 27 countries

BACKGROUND: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. METHODS: We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS: The analyses included deaths from any cardiovascular cause (32 154  935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate.

Asthma triggered by extreme temperatures: From epidemiological evidence to biological plausibility

BACKGROUND: There is rapidly growing evidence indicating that extreme temperature is a crucial trigger and potential activator of asthma; however, the effects of extreme temperature on asthma are inconsistently reported and the its potential mechanisms remain undefined. OBJECTIVES: This review aims to estimate the impacts of extreme heat, extreme cold, and temperature variations on asthma by systematically summarizing the existing studies from epidemiological evidence to biological plausibility. METHODS: We conducted a systematic search in PubMed, Embase, and Web of Science from inception to June 30, 2022, and we retrieved articles of epidemiology and biological studies which assessed associations between extreme temperatures and asthma. This protocol was registered with PROSPERO (CRD42021273613). RESULTS: From 12,435 identified records, 111 eligible studies were included in the qualitative synthesis, and 37 articles were included in the meta-analysis (20 for extreme heat, 16 for extreme cold, and 15 for temperature variations). For epidemiological evidence, we found that the synergistic effects of extreme temperatures, indoor/outdoor environments, and individual vulnerabilities are important triggers for asthma attacks, especially when there is extreme heat or cold. Meta-analysis further confirmed the associations, and the pooled relative risks for asthma attacks in extreme heat and extreme cold were 1.07 (95%CI: 1.03-1.12) and 1.20 (95%CI: 1.12-1.29), respectively. Additionally, this review discussed the potential inflammatory mechanisms behind the associations between extreme temperatures and asthma exacerbation, and highlighted the regulatory role of immunological pathways and transient receptor potential ion channels in asthma triggered by extreme temperatures. CONCLUSIONS: We concluded that both extreme heat and cold could significantly increase the risk of asthma. Additionally, we proposed a potential mechanistic framework, which is important for understanding the disease pathogenesis that uncovers the complex mechanisms of asthma triggered by extreme temperatures and protects the sensitive individuals from impacts of extreme weather events and climate change.

Death following extreme temperature exposure: Histological, biochemical and immunohistochemical markers

INTRODUCTION: Defining extreme temperatures as the cause of death remains challenging. It is mostly based on circumstantial, macroscopic and microscopic features. METHODS: We retrospectively compared groups of cases of fatal hypothermia, fatal hyperthermia and non-extreme temperature-related deaths. We analysed specific histological findings, focusing on samples from the liver, pancreas and kidney. RESULTS: Between 1 January 2013 and 31 December 2016, 15 autopsies were performed for deaths related to extreme temperatures. They included 11 cases of fatal hypothermia (group A), four cases of fatal hyperthermia (group B) and eight controls (group C). Perinuclear hepatocyte vacuolisation was observed in seven cases of hypothermia, one case of hyperthermia and four controls. Pancreatic cytoarchitecture was well preserved in two cases of hypothermia, one case of hyperthermia and two controls. No particular microscopic feature was found in pancreatic samples. Renal epithelial tubular cell vacuolisation was observed in seven cases of hypothermia and one case of hyperthermia, while it was absent in all controls. Chromogranin A (CgA) was markedly positive in the pancreatic tissue of five cases of fatal hypothermia and one control, and mildly positive in one case of fatal hyperthermia. No significant p-values were observed for any comparisons (p > 0.05), except when hypothermia cases group were compared to the control group for the Armanni-Ebstein phenomenon test (p = 0.0078). CONCLUSIONS: Although our study did not find a specific microscopic marker, hepatocyte vacuolisation, the Armanni-Ebstein phenomenon and pancreatic CgA positivity, taken together, may be useful tools to confirm hypo- and hyperthermia-related deaths, in addition to circumstantial and macroscopic findings.

Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: A two-part modelling approach applied to the global burden of disease study

BACKGROUND: Associations between high and low temperatures and increases in mortality and morbidity have been previously reported, yet no comprehensive assessment of disease burden has been done. Therefore, we aimed to estimate the global and regional burden due to non-optimal temperature exposure. METHODS: In part 1 of this study, we linked deaths to daily temperature estimates from the ERA5 reanalysis dataset. We modelled the cause-specific relative risks for 176 individual causes of death along daily temperature and 23 mean temperature zones using a two-dimensional spline within a Bayesian meta-regression framework. We then calculated the cause-specific and total temperature-attributable burden for the countries for which daily mortality data were available. In part 2, we applied cause-specific relative risks from part 1 to all locations globally. We combined exposure-response curves with daily gridded temperature and calculated the cause-specific burden based on the underlying burden of disease from the Global Burden of Diseases, Injuries, and Risk Factors Study, for the years 1990-2019. Uncertainty from all components of the modelling chain, including risks, temperature exposure, and theoretical minimum risk exposure levels, defined as the temperature of minimum mortality across all included causes, was propagated using posterior simulation of 1000 draws. FINDINGS: We included 64·9 million individual International Classification of Diseases-coded deaths from nine different countries, occurring between Jan 1, 1980, and Dec 31, 2016. 17 causes of death met the inclusion criteria. Ischaemic heart disease, stroke, cardiomyopathy and myocarditis, hypertensive heart disease, diabetes, chronic kidney disease, lower respiratory infection, and chronic obstructive pulmonary disease showed J-shaped relationships with daily temperature, whereas the risk of external causes (eg, homicide, suicide, drowning, and related to disasters, mechanical, transport, and other unintentional injuries) increased monotonically with temperature. The theoretical minimum risk exposure levels varied by location and year as a function of the underlying cause of death composition. Estimates for non-optimal temperature ranged from 7·98 deaths (95% uncertainty interval 7·10-8·85) per 100 000 and a population attributable fraction (PAF) of 1·2% (1·1-1·4) in Brazil to 35·1 deaths (29·9-40·3) per 100 000 and a PAF of 4·7% (4·3-5·1) in China. In 2019, the average cold-attributable mortality exceeded heat-attributable mortality in all countries for which data were available. Cold effects were most pronounced in China with PAFs of 4·3% (3·9-4·7) and attributable rates of 32·0 deaths (27·2-36·8) per 100 000 and in New Zealand with 3·4% (2·9-3·9) and 26·4 deaths (22·1-30·2). Heat effects were most pronounced in China with PAFs of 0·4% (0·3-0·6) and attributable rates of 3·25 deaths (2·39-4·24) per 100 000 and in Brazil with 0·4% (0·3-0·5) and 2·71 deaths (2·15-3·37). When applying our framework to all countries globally, we estimated that 1·69 million (1·52-1·83) deaths were attributable to non-optimal temperature globally in 2019. The highest heat-attributable burdens were observed in south and southeast Asia, sub-Saharan Africa, and North Africa and the Middle East, and the highest cold-attributable burdens in eastern and central Europe, and central Asia. INTERPRETATION: Acute heat and cold exposure can increase or decrease the risk of mortality for a diverse set of causes of death. Although in most regions cold effects dominate, locations with high prevailing temperatures can exhibit substantial heat effects far exceeding cold-attributable burden. Particularly, a high burden of external causes of death contributed to strong heat impacts, but cardiorespiratory diseases and metabolic diseases could also be substantial contributors. Changes in both exposures and the composition of causes of death drove changes in risk over time. Steady increases in exposure to the r

Extreme weather events and death based on temperature and CO(2) emission – a global retrospective study in 77 low-, middle- and high-income countries from 1999 to 2018

Due to rising temperatures and CO(2) emissions, climate change has become one of the most important global issues. We described the relationship between extreme weather-related events and death, globally, from 1999 through 2018. We used data from the emergency events database of the Université Catholique de Louvain. We also categorized the countries’ income according to the World Bank GDP and we used the CO(2) emission levels data from the Carbon Dioxide Information Analysis Center to link the GDP and CO(2) emissions to years of extreme weather conditions in each country. We conducted descriptive and Poisson Regression analysis to analyze the data. A total of 77 countries reported 425 extreme weather-related events from1999 through 2018. Mortality related events were highest in middle-income countries due to severe winter conditions (N = 2,020) and cold-waves (N = 70,972). The total number of recorded deaths due to heat waves was highest in high-income countries (N = 84,344). Furthermore, the number of deaths in high-income countries, compared to low-income countries, was five-fold higher (IRR 5.18; 95%CI 4.58; 5.85, p < 0.001). The mortality rate in heat season was almost seven-fold higher than that in cold/severe winter (IRR 33.43; 95%CI 32.85; 34.02, p < 0.001). The number of deaths increased significantly with the repetition of extreme events (IRR 6.82; 95%CI 6.68; 6.96, p < 0.001). We found the number of deaths increased in high-income countries, and this was associated with an increase in the number of times extreme events occurred per year and with heat wave.

Global population exposure to extreme temperatures and disease burden

The frequency and duration of extreme temperature events continues to increase worldwide. However, the scale of population exposure and its quantitative relationship with health risks remains unknown on a global scale, limiting our ability to identify policy priorities in response to climate change. Based on data from 171 countries between 2010 and 2019, this study estimated the exposure of vulnerable populations to extreme temperatures, and their contemporary and lag associations with disease burden attributed to non-optimal temperatures. Fixed-effects models and dynamic panel models were applied. Increased vulnerable population exposure to extreme temperatures had adverse contemporary effects on the burden of disease attributed to non-optimal temperature. Health risks stemming from extreme cold could accumulate to a greater extent, exhibiting a larger lag effect. Population exposure to extreme cold was mainly distributed in high-income countries, while extreme heat occurred more in low-income and middle-income countries. However, the association between population exposure to extreme cold and burden of disease was much stronger in low-income and middle-income countries than in high-income countries, whereas the effect size of population exposure to extreme heat was similar. Our study highlighted that differential strategies should be determined and implemented according to the characteristics in different countries.

Health and safety of construction field workforce active in extreme weather conditions

Workplace hazards and accidents occur more frequently in the construction industry than in any other industries. Occupational hazards cannot be completely eliminated but can be reduced to an extent where workers can perform activities in a safe environment. Health and safety of workers in construction site is of at most importance to employers, which when ignored can lead to fatal injuries and even death affecting the progress of work and project completion time. The goal of this study is to identify critical factors affecting workers health in extreme weather conditions and to identify the vulnerable workers based on age, gender, and ethnicity. Therefore, a questionnaire survey was developed and distributed to identify critical health challenges faced by construction workers while working in unfavorable weather conditions. The results revealed that workers with pre-existing medical condition like hyper-tension face higher unfavorable impacts on their health while working in extreme hot weather. Based on gender, female workers suffer from more heat related disorders compared to male workers. Based on age, workers above 50 years are more affected when working in extreme weather conditions compared to workers of other age groups. In addition, some workers reported increased irritation and distraction from work due to physical discomfort of working in unfavorable environment leading to more accidents at workplace. Moreover, some workers reported increased onset of muscle fatigue due to tight thermal clothing during cold weather conditions. Prolonged exposure to cold winds tends to distract the workers, leading to workers becoming more hallucinatory and disoriented. The results of this study will help employers and project managers to take proper actions against the unforeseen factors affecting the workers’ health and safety in the construction sites with extreme weather conditions.

Impact of high, low, and non-optimum temperatures on chronic kidney disease in a changing climate, 1990-2019: A global analysis

BACKGROUND: Although a few studies have reported the relationship between high and low temperatures and chronic kidney disease (CKD), the global burden of CKD attributable to extreme heat and cold in recent decades remains unknown. METHODS: Based on the Global Burden of Disease Study (GBD) 2019, we obtained data on age-standardized mortality rates (ASMR) and age-standardized rates of disability-adjusted life years (ASDR) per 100 000 population of the CKD attributable to non-optimum temperatures from 1990 to 2019. The annual mean temperature of each country was used to divide each country into five climate zones (tropical, subtropical, warm-temperate, cool-temperate, and boreal). The locally weighted regression model was used to estimate the burden for different climate zones and Socio-demographic index (SDI) regions. RESULTS: In 1990, the ASMR and ASDR due to high temperature estimated -0.01 (95% UI, -0.74 to 0.44) and -0.32 (-21.66 to 12.66) per 100 000 population, respectively. In 2019, the ASMR and ASDR reached 0.10 (-0.28 to 0.38) and 2.71 (-8.07 to 10.46), respectively. The high-temperature burden increased most rapidly in tropical and low SDI regions. There were 0.99 (0.59 to 1.39) ASMR attributable to low-temperature in 1990, which increased to 1.05 (0.61-1.49) in 2019. While the ASDR due to low temperature declined from 22.03 (12.66 to 30.64) in 1990 to 20.43 (11.30 to 29.26) in 2019. Overall, the burden of CKD attributable to non-optimal temperatures has increased from 1990 to 2019. CKD due to hypertension and diabetes mellitus were the primary causes of CKD death attributable to non-optimum temperatures in 2019 with males and older adults being more susceptible to these temperatures. CONCLUSIONS: The CKD burden due to high, low, and non-optimum temperatures varies considerably by regions and countries. The burden of CKD attributable to high temperature has been increasing since 1990.

Impacts of climate change and air pollution on neurologic health, disease, and practice: A scoping review

BACKGROUND AND OBJECTIVES: Although the international community collectively seeks to reduce global temperature rise to less than 1.5°C before 2100, irreversible environmental changes have already occurred, and as the planet warms, these changes will continue to occur. As we witness the effects of a warming planet on human health, it is imperative that neurologists anticipate how the epidemiology and incidence of neurologic disease may change. In this review, we organized our analysis around 3 key themes related to climate change and neurologic health: extreme weather events and temperature fluctuations, emerging neuroinfectious diseases, and pollutant impacts. Across each of these themes, we appraised and reviewed recent literature relevant to neurologic disease and practice. METHODS: Studies were identified using search terms relating to climate change, pollutants, and neurologic disease in PubMed, OVID MEDLINE, EMBASE, PsycInfo, and gray literature. Studies published between 1990 and 2022 were included if they pertained to human incidence or prevalence of disease, were in English, and were relevant to neurologic disease. RESULTS: We identified a total of 364 articles, grouped into the 3 key themes of our study: extreme weather events and temperature fluctuations (38 studies), emerging neuroinfectious diseases (37 studies), and pollutant impacts (289 studies). The included studies highlighted the relationships between neurologic symptom exacerbation and temperature variability, tick-borne infections and warming climates, and airborne pollutants and cerebrovascular disease incidence and severity. DISCUSSION: Temperature extremes and variability both associated with stroke incidence and severity, migraine headaches, hospitalization in patients with dementia, and multiple sclerosis exacerbations. Exposure to airborne pollutants, especially PM2.5 and nitrates, associated with stroke incidence and severity, headaches, dementia risk, Parkinson disease, and MS exacerbation. Climate change has demonstrably expanded favorable conditions for zoonotic diseases beyond traditional borders and poses the risk of disease in new, susceptible populations. Articles were biased toward resource-rich regions, suggesting a discordance between where research occurs and where changes are most acute. As such, 3 key priorities emerged for further study: neuroinfectious disease risk mitigation, understanding the pathophysiology of airborne pollutants on the nervous system, and methods to improve delivery of neurologic care in the face of climate-related disruptions.

What are the effects of meteorological factors on exacerbations of chronic obstructive pulmonary disease?

Chronic obstructive pulmonary disease (COPD) is one of the greatest global public health challenges. Acute exacerbations of COPD lead to the accelerated deterioration of lung function, reduced quality of life, a higher number of hospitalizations, and increased mortality. The factor causing the exacerbation is usually an infectious agent, but the impact of environmental factors is being studied more thoroughly. Among them, meteorological factors are the least examined. Multiple studies have shown that lower temperatures during the cold season, as well as sudden temperature changes regardless of the season, have the most significant negative effect on patients with COPD. However, higher temperatures, especially during summer heatwaves, can also cause COPD exacerbation and it is expected that this will be an even more important health problem in the future considering climate changes. The effects of other meteorological factors on acute exacerbation of COPD, such as atmospheric pressure, solar radiation, rainfall, wind speed, and humidity are far less investigated and opposing results have been obtained in different studies. Thus, there is a need for further research in this area that would result in clinical recommendations and public health interventions that could decrease the global burden of COPD.

The impacts of climate change on occupational heat strain in outdoor workers: A systematic review

The present systematic review was conducted by gathering the impacts of climate change on occupational heat strain, gathering risk factors that may increase susceptibility to climate-related occupational hazards, and gathering measures for controlling the impacts of climate change on occupational heat strain in outdoor workers. Materials and methods: In this study, three main databases PubMed, Scopus, and Web of Science were searched to find relevant literature on climate change and its effects using subject headings, appropriate Mesh terms and experts’ opinion. Results: The evidence suggests an imprecise but positive relationship between climate change and occupational heat strain in outdoor workers, and the most likely mechanism involves dehydration, fatigue, dizziness, confusion, reduced brain function, loss of concentration and discomfort. Conclusion: With predictions of increasing temperatures, the baseline heat strain incidence data from this systematic review study in tropical and subtropical countries with low and middle income may be used to help stakeholders in policy-making, promotion campaigns, occupational health interventions, and choosing appropriate control methods. Strong evidence indicates that, to manage adverse effects of heat stress on outdoor workers, key factors include anticipating, recognizing, evaluating, controlling, researching, risk management, and applying suitable policy development may be useful tools.

Climate change and temperature-related mortality: Implications for health-related climate policy

Imidazothiazole derivatives exhibited potent effects against brain-eating amoebae

Naegleria fowleri (N. fowleri) is a free-living, unicellular, opportunistic protist responsible for the fatal central nervous system infection, primary amoebic meningoencephalitis (PAM). Given the increase in temperatures due to global warming and climate change, it is estimated that the cases of PAM are on the rise. However, there is a current lack of awareness and effective drugs, meaning there is an urgent need to develop new therapeutic drugs. In this study, the target compounds were synthesized and tested for their anti-amoebic properties against N. fowleri. Most compounds exhibited significant amoebicidal effects against N. fowleri; for example, 1h, 1j, and 1q reduced N. fowleri’s viability to 15.14%, 17.45% and 28.78%, respectively. Furthermore, the majority of the compounds showed reductions in amoeba-mediated host death. Of interest are the compounds 1f, 1k, and 1v, as they were capable of reducing the amoeba-mediated host cell death to 52.3%, 51%, and 56.9% from 100%, respectively. Additionally, these compounds exhibit amoebicidal properties as well; they were found to decrease N. fowleri’s viability to 26.41%, 27.39%, and 24.13% from 100%, respectively. Moreover, the MIC(50) values for 1e, 1f, and 1h were determined to be 48.45 µM, 60.87 µM, and 50.96 µM, respectively. Additionally, the majority of compounds were found to exhibit limited cytotoxicity, except for 1l, 1o, 1p, 1m, 1c, 1b, 1zb, 1z, 1y, and 1x, which exhibited negligible toxicity. It is anticipated that these compounds may be developed further as effective treatments against these devastating infections due to brain-eating amoebae.

Harmful algal blooms and their eco-environmental indication

Harmful algal blooms (HABs) in freshwater lakes and oceans date back to as early as the 19th century, which can cause the death of aquatic and terrestrial organisms. However, it was not until the end of the 20th century that researchers had started to pay attention to the hazards and causes of HABs. In this study, we analyzed 5720 published literatures on HABs studies in the past 30 years. Our review presents the emerging trends in the past 30 years on HABs studies, the environmental and human health risks, prevention and control strategies and future developments. Therefore, this review provides a global perspective of HABs and calls for immediate responses.

Lessons learned from applying adaptation pathways in heatwave risk management in Antwerp and key challenges for further development

Heat exposure is a well-known health hazard, which causes several problems ranging from thermal discomfort or productivity reduction to the aggravation of existing illnesses and death. Climate projections foresee an increase in the frequency and intensity of heat-related impacts on human health. To reduce these climate risks, governments need a better understanding of not only the scale and the factors affecting those risks, but also how to prepare and protect the city and citizens against these risks and prevent them through effective policy making. Therefore, climate adaptation decisions need to be made in complex systems with manifold uncertainties. In response to these deep uncertainties, different planning approaches have been developed to assist policymakers in decision making. This paper is focused on one of the dynamic adaptive policy planning approaches: the adaptation pathway. This approach allows designing alternative feasible plans that are flexible and can respond when new information appears or when conditions in the environment change. This paper presents a structured methodology for designing adaptation pathways. The work describes a high-level adaptation pathway covering heatwave impacts on productivity and health at city level in Antwerp to ensure the city adapts to future conditions. Lastly, a summary is provided of the lessons learned and the challenges of this approach are discussed.

Evidences on adaptive mechanisms for cardiorespiratory diseases regarding extreme temperatures and air pollution: A comparative systematic review

The negative cardiorespiratory health outcomes due to extreme temperatures and air pollution are widely studied, but knowledge about the effectiveness of the implementation of adaptive mechanisms remains unclear. The objective of this paper is to explore the evidence of adaptive mechanisms for cardiorespiratory diseases regarding extreme temperatures and air pollution by comparing the results of two systematic literature review (SLR) processes sharing the same initial research question but led by two research groups with different academic backgrounds working in the same multidisciplinary team. We start by presenting the methodological procedures and the results of the SLR triggered by the research group mainly composed by researchers with a background in geography (named geographical strategy). We then compare these results with those achieved in the SLR led by the research group with a background in epidemiology (named epidemiological strategy). Both SLR were developed under the EU Horizon 2020 Project “EXHAUSTION “. The results showed: 1) the lack of evidence regarding the effectiveness of adaptation measures, namely due to the limited number of studies about the topic, the preponderance of studies dedicated to heat extremes or the unbalance between different adaptation measures; 2) that the choice of search terms in the geographical strategy, despite being more comprehensive at first sight, ended up retrieving less results, but it brought new studies that can complement the results of the epidemiological strategy. Therefore, it is suggested that to strengthen the empirical evidence of the effectiveness of adaptation measures, powerful multidisciplinary teams should work together in the preparation of SLR in topics of great complexity, such as the one presented in this paper.

Prenatal ambient temperature and risk for schizophrenia

OBJECTIVE: We conducted a systematic review of the published literature to test the hypothesis that maternal exposure to extremes of ambient temperatures during pregnancy is associated with the risk for psychiatric disorders or congenital malformations in offspring, both of which are indicative of perturbations of fetal neurodevelopment. METHOD: This study was conducted in accordance with the recommendations outlined in the Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting proposal. Electronic databases (Ovid MEDLINE, Ovid Embase, Ovid PsycINFO, Ovid Global Health, Web of Science, and Cochrane Library) were searched. Four independent reviewers selected studies with the following criteria: (1) prenatal maternal ambient temperature exposure; (2) outcome of offspring psychiatric disorder or congenital defects; (3) empirical study; (4) full-length article, no conference presentations or abstracts. RESULTS: Twenty-two studies met criteria and one was added from a reference list (n = 23). Of these, schizophrenia (n = 5), anorexia nervosa (n = 3) and congenital cardiovascular malformations (n = 6) studies were the most common. Each of these categories showed some evidence of association with an early pregnancy maternal ambient heat exposure effect, with other evidence for a late pregnancy cold effect. CONCLUSION: Some evidence supports a role for early pregnancy maternal exposure to extreme ambient heat in the development of psychiatric disorders, but large-scale, prospective cohort data on individual births is essential. Optimal studies will be conducted in seasonally variable climates, accounting for actual maternal residence over the pregnancy and at parturition, local environmental temperature records, and appropriate covariates, similar to studies identified by this systematic review for congenital malformations.

Experimental evolution of West Nile virus at higher temperatures facilitates broad adaptation and increased genetic diversity

West Nile virus (WNV, Flaviviridae, Flavivirus) is a mosquito-borne flavivirus introduced to North America in 1999. Since 1999, the Earth’s average temperature has increased by 0.6 °C. Mosquitoes are ectothermic organisms, reliant on environmental heat sources. Temperature impacts vector-virus interactions which directly influence arbovirus transmission. RNA viral replication is highly error-prone and increasing temperature could further increase replication rates, mutation frequencies, and evolutionary rates. The impact of temperature on arbovirus evolutionary trajectories and fitness landscapes has yet to be sufficiently studied. To investigate how temperature impacts the rate and extent of WNV evolution in mosquito cells, WNV was experimentally passaged 12 times in Culex tarsalis cells, at 25 °C and 30 °C. Full-genome deep sequencing was used to compare genetic signatures during passage, and replicative fitness was evaluated before and after passage at each temperature. Our results suggest adaptive potential at both temperatures, with unique temperature-dependent and lineage-specific genetic signatures. Further, higher temperature passage was associated with significantly increased replicative fitness at both temperatures and increases in nonsynonymous mutations. Together, these data indicate that if similar selective pressures exist in natural systems, increases in temperature could accelerate emergence of high-fitness strains with greater phenotypic plasticity.

Future scenarios of risk of vibrio infections in a warming planet: A global mapping study

BACKGROUND: Infections caused by non-cholera Vibrio species have undergone a global expansion over the past few decades reaching new areas of the world that were previously considered adverse for these organisms. The geographical extent of the expansion has not been uniform, and some areas have shown a rapid increase in infections. METHODS: We applied a new generation of models combining climate, population, and socioeconomic projections to map future scenarios of distribution and season suitability for pathogenic Vibrio. We used the Coupled Model Intercomparison Project 6 framework. Three datasets were used: Geophysical Fluid Dynamics Laboratory’s CM4.0 sea surface temperature and sea surface salinity; the coastline length dataset from the World Resources Institute; and Inter-Sectoral Impact Model Intercomparison Project 2b annual global population data. Future projections were used up to the year 2100 and historical simulations from 1850 to 2014. We also project human population at risk under different shared socioeconomic pathways worldwide. FINDINGS: Projections showed that coastal areas suitable for Vibrio could cover 38000 km of new coastal areas by 2100 under the most unfavourable scenario with an expansion rate of season suitability in these regions of around 1 month every 30 years. Population at risk in suitable regions almost doubled from 1980 to 2020 (from 610 million to 1100 million under the scenario of medium challenges to mitigation and adaptation, shared socioeconomic pathway 2-4.5), although the increment will be more moderate in the future and stabilises after 2050 at 1300 million. Finally, we provide the first global estimate for Vibrio infections, with values around half a million of cases worldwide in 2020. INTERPRETATION: Our projections anticipated an expansion of both the temporal and spatial disease burden for Vibrio infections, in particular at high latitudes of the northern hemisphere. However, the largest extent occurred from 1980 to 2020 and a more moderate increase is expected for the future. The most positive outcome is that the projections showed that Vibrio morbidity will remain relatively stable over the coming decades.

Existential threats to the summer olympic and paralympic games? A review of emerging environmental health risks

This review highlights two intersecting environmental phenomena that have significantly impacted the Tokyo Summer Olympic and Paralympic Games: infectious disease outbreaks and anthropogenic climate change. Following systematic searches of five databases and the gray literature, 15 studies were identified that addressed infectious disease and climate-related health risks associated with the Summer Games and similar sports mega-events. Over two decades, infectious disease surveillance at the Summer Games has identified low-level threats from vaccine-preventable illnesses and respiratory conditions. However, the COVID-19 pandemic and expansion of vector-borne diseases represent emerging and existential challenges for cities that host mass gathering sports competitions due to the absence of effective vaccines. Ongoing threats from heat injury among athletes and spectators have also been identified at international sports events from Asia to North America due to a confluence of rising Summer temperatures, urban heat island effects and venue crowding. Projections for the Tokyo Games and beyond suggest that heat injury risks are reaching a dangerous tipping point, which will necessitate relocation or mitigation with long-format and endurance events. Without systematic change to its format or staging location, the Summer Games have the potential to drive deleterious health outcomes for athletes, spectators and host communities.

Climate change vulnerability, adaptation assessment, and policy development for occupational health

Global climate change exposes workers to increased air temperature, polluted air, and ultraviolet radiation due to ozone depletion, increased extreme weather events, and evolving patterns of vector-borne diseases. These climate change hazards are causing acute and chronic health problems to workers. The occupational distribution of the population is the most vulnerable to the negative impacts of climate change worldwide. Climate change-related adverse health hazards to the general population is getting evident around the globe. A limited focus has been made on developing a relationship between climate change and related occupational health hazards. This policy paper aims to guide health officials and policymakers to develop a climate change mitigation policy for the occupational distribution of the population. Absolute magnitude determination of climate changerelated health risks is essential to developing projecting models and predicting future hazards and risks. These models will help us to estimate climate change and environmental exposure, susceptibility of the exposed population, and capacity of public health practice and services to reduce climate change impact. Adaptation policies in international, national, and local occupational settings are required to acclimatize the workers and mitigate climate change-related adverse effects.

Projecting the risk of mosquito-borne diseases in a warmer and more populated world: A multi-model, multi-scenario intercomparison modelling study

BACKGROUND: Mosquito-borne diseases are expanding their range, and re-emerging in areas where they had subsided for decades. The extent to which climate change influences the transmission suitability and population at risk of mosquito-borne diseases across different altitudes and population densities has not been investigated. The aim of this study was to quantify the extent to which climate change will influence the length of the transmission season and estimate the population at risk of mosquito-borne diseases in the future, given different population densities across an altitudinal gradient. METHODS: Using a multi-model multi-scenario framework, we estimated changes in the length of the transmission season and global population at risk of malaria and dengue for different altitudes and population densities for the period 1951-99. We generated projections from six mosquito-borne disease models, driven by four global circulation models, using four representative concentration pathways, and three shared socioeconomic pathways. FINDINGS: We show that malaria suitability will increase by 1·6 additional months (mean 0·5, SE 0·03) in tropical highlands in the African region, the Eastern Mediterranean region, and the region of the Americas. Dengue suitability will increase in lowlands in the Western Pacific region and the Eastern Mediterranean region by 4·0 additional months (mean 1·7, SE 0·2). Increases in the climatic suitability of both diseases will be greater in rural areas than in urban areas. The epidemic belt for both diseases will expand towards temperate areas. The population at risk of both diseases might increase by up to 4·7 additional billion people by 2070 relative to 1970-99, particularly in lowlands and urban areas. INTERPRETATION: Rising global mean temperature will increase the climatic suitability of both diseases particularly in already endemic areas. The predicted expansion towards higher altitudes and temperate regions suggests that outbreaks can occur in areas where people might be immunologically naive and public health systems unprepared. The population at risk of malaria and dengue will be higher in densely populated urban areas in the WHO African region, South-East Asia region, and the region of the Americas, although we did not account for urban-heat island effects, which can further alter the risk of disease transmission. FUNDING: UK Space Agency, Royal Society, UK National Institute for Health Research, and Swedish Research Council.

Disaster preparedness in assisted reproductive technology

The American Society for Reproductive Medicine compels centers providing reproductive medicine care to develop and implement an emergency preparedness plan in the event of a disaster. Reproductive care is vulnerable to disruptions in energy, transportation, and supply chains as well as may have potential destructive impacts on infrastructure. With the relentless progression of events related to climate change, centers can expect a growing number of such disruptive events and must prepare to deal with them. This article provides a case study of the impact of Hurricane Sandy on one center in New York City and proposes recommendations for future preparedness and mitigation.

Healthy ecosystems for human and animal health: Science diplomacy for responsible development in the Arctic – The Nordic Centre of Excellence, Clinf.org (climate-change effects on the epidemiology of infectious diseases and the impacts on Northern societi

Climate warming is occurring most rapidly in the Arctic, which is both a sentinel and a driver of further global change. Ecosystems and human societies are already affected by warming. Permafrost thaws and species are on the move, bringing pathogens and vectors to virgin areas. During a five-year project, the CLINF – a Nordic Center of Excellence, funded by the Nordic Council of Ministers, has worked with the One Health concept, integrating environmental data with human and animal disease data in predictive models and creating maps of dynamic processes affecting the spread of infectious diseases. It is shown that tularemia outbreaks can be predicted even at a regional level with a manageable level of uncertainty. To decrease uncertainty, rapid development of new and harmonised technologies and databases is needed from currently highly heterogeneous data sources. A major source of uncertainty for the future of contaminants and infectious diseases in the Arctic, however, is associated with which paths the majority of the globe chooses to follow in the future. Diplomacy is one of the most powerful tools Arctic nations have to influence these choices of other nations, supported by Arctic science and One Health approaches that recognise the interconnection between people, animals, plants and their shared environment at the local, regional, national and global levels as essential for achieving a sustainable development for both the Arctic and the globe.

Marine parasites and disease in the era of global climate change

Climate change affects ecological processes and interactions, including parasitism. Because parasites are natural components of ecological systems, as well as agents of outbreak and disease-induced mortality, it is important to summarize current knowledge of the sensitivity of parasites to climate and identify how to better predict their responses to it. This need is particularly great in marine systems, where the responses of parasites to climate variables are less well studied than those in other biomes. As examples of climate’s influence on parasitism increase, they enable generalizations of expected responses as well as insight into useful study approaches, such as thermal performance curves that compare the vital rates of hosts and parasites when exposed to several temperatures across a gradient. For parasites not killed by rising temperatures, some simple physiological rules, including the tendency of temperature to increase the metabolism of ectotherms and increase oxygen stress on hosts, suggest that parasites’ intensity and pathologies might increase. In addition to temperature, climate-induced changes in dissolved oxygen, ocean acidity, salinity, and host and parasite distributions also affect parasitism and disease, but these factors are much less studied. Finally, because parasites are constituents of ecological communities, we must consider indirect and secondary effects stemming from climate-induced changes in host-parasite interactions, which may not be evident if these interactions are studied in isolation.

A review: Aedes-borne arboviral infections, controls and Wolbachia-based strategies

Arthropod-borne viruses (Arboviruses) continue to generate significant health and economic burdens for people living in endemic regions. Of these viruses, some of the most important (e.g., dengue, Zika, chikungunya, and yellow fever virus), are transmitted mainly by Aedes mosquitoes. Over the years, viral infection control has targeted vector population reduction and inhibition of arboviral replication and transmission. This control includes the vector control methods which are classified into chemical, environmental, and biological methods. Some of these control methods may be largely experimental (both field and laboratory investigations) or widely practised. Perceptively, one of the biological methods of vector control, in particular, Wolbachia-based control, shows a promising control strategy for eradicating Aedes-borne arboviruses. This can either be through the artificial introduction of Wolbachia, a naturally present bacterium that impedes viral growth in mosquitoes into heterologous Aedes aegypti mosquito vectors (vectors that are not natural hosts of Wolbachia) thereby limiting arboviral transmission or via Aedes albopictus mosquitoes, which naturally harbour Wolbachia infection. These strategies are potentially undermined by the tendency of mosquitoes to lose Wolbachia infection in unfavourable weather conditions (e.g., high temperature) and the inhibitory competitive dynamics among co-circulating Wolbachia strains. The main objective of this review was to critically appraise published articles on vector control strategies and specifically highlight the use of Wolbachia-based control to suppress vector population growth or disrupt viral transmission. We retrieved studies on the control strategies for arboviral transmissions via arthropod vectors and discussed the use of Wolbachia control strategies for eradicating arboviral diseases to identify literature gaps that will be instrumental in developing models to estimate the impact of these control strategies and, in essence, the use of different Wolbachia strains and features.

High temperature cycles result in maternal transmission and dengue infection differences between Wolbachia strains in Aedes aegypti

Environmental factors play a crucial role in the population dynamics of arthropod endosymbionts, and therefore in the deployment of Wolbachia symbionts for the control of dengue arboviruses. The potential of Wolbachia to invade, persist, and block virus transmission depends in part on its intracellular density. Several recent studies have highlighted the importance of larval rearing temperature in modulating Wolbachia densities in adults, suggesting that elevated temperatures can severely impact some strains, while having little effect on others. The effect of a replicated tropical heat cycle on Wolbachia density and levels of virus blocking was assessed using Aedes aegypti lines carrying strains wMel and wAlbB, two Wolbachia strains currently used for dengue control. Impacts on intracellular density, maternal transmission fidelity, and dengue inhibition capacity were observed for wMel. In contrast, wAlbB-carrying Ae. aegypti maintained a relatively constant intracellular density at high temperatures and conserved its capacity to inhibit dengue. Following larval heat treatment, wMel showed a degree of density recovery in aging adults, although this was compromised by elevated air temperatures. IMPORTANCE In the past decades, dengue incidence has dramatically increased all over the world. An emerging dengue control strategy utilizes Aedes aegypti mosquitoes artificially transinfected with the bacterial symbiont Wolbachia, with the ultimate aim of replacing wild mosquito populations. However, the rearing temperature of mosquito larvae is known to impact on some Wolbachia strains. In this study, we compared the effects of a temperature cycle mimicking natural breeding sites in tropical climates on two Wolbachia strains, currently used for open field trials. When choosing the Wolbachia strain to be used in a dengue control program it is important to consider the effects of environmental temperatures on invasiveness and virus inhibition. These results underline the significance of understanding the impact of environmental factors on released mosquitoes, in order to ensure the most efficient strategy for dengue control.

How will mosquitoes adapt to climate warming?

The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology-evolutionary rescue models-can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change.

Modelling the ecological dynamics of mosquito populations with multiple co-circulating wolbachia strains

Wolbachia intracellular bacteria successfully reduce the transmissibility of arthropod-borne viruses (arboviruses) when introduced into virus-carrying vectors such as mosquitoes. Despite the progress made by introducing Wolbachia bacteria into the Aedes aegypti wild-type population to control arboviral infections, reports suggest that heat-induced loss-of-Wolbachia-infection as a result of climate change may reverse these gains. Novel, supplemental Wolbachia strains that are more resilient to increased temperatures may circumvent these concerns, and could potentially act synergistically with existing variants. In this article, we model the ecological dynamics among three distinct mosquito (sub)populations: a wild-type population free of any Wolbachia infection; an invading population infected with a particular Wolbachia strain; and a second invading population infected with a distinct Wolbachia strain from that of the first invader. We explore how the range of possible characteristics of each Wolbachia strain impacts mosquito prevalence. Further, we analyse the differential system governing the mosquito populations and the Wolbachia infection dynamics by computing the full set of basic and invasive reproduction numbers and use these to establish stability of identified equilibria. Our results show that releasing mosquitoes with two different strains of Wolbachia did not increase their prevalence, compared with a single-strain Wolbachia-infected mosquito introduction and only delayed Wolbachia dominance.

Climate change impacts on ticks and tick-borne infections

Evidence climate change is impacting ticks and tick-borne infections is generally lacking. This is primarily because, in most parts of the world, there are no long-term and replicated data on the distribution and abundance of tick populations, and the prevalence and incidence of tick-borne infections. Notable exceptions exist, as in Canada where the northeastern advance of Ixodes scapularis and Lyme borreliosis in the USA prompted the establishment of tick and associated disease surveillance. As a result, the past 30 years recorded the encroachment and spread of I. scapularis and Lyme borreliosis across much of Canada concomitant with a 2-3 degrees C increase in land surface temperature. A similar northerly advance of I. ricinus [and associated Lyme borreliosis and tick-borne encephalitis (TBE)] has been recorded in northern Europe together with expansion of this species’ range to higher altitudes in Central Europe and the Greater Alpine Region, again concomitant with rising temperatures. Changes in tick species composition are being recorded, with increases in more heat tolerant phenotypes (such as Rhipicephalus microplus in Africa), while exotic species, such as Haemaphysalis longicornis and Hyalomma marginatum, are becoming established in the USA and Southern Europe, respectively. In the next 50 years these trends are likely to continue, whereas, at the southern extremities of temperate species’ ranges, diseases such as Lyme borreliosis and TBE may become less prevalent. Where socioeconomic conditions link livestock with livelihoods, as in Pakistan and much of Africa, a One Health approach is needed to tackling ticks and tick-borne infections under the increasing challenges presented by climate change.

Ticks, human babesiosis and climate change

The effects of current and future global warming on the distribution and activity of the primary ixodid vectors of human babesiosis (caused by Babesia divergens, B. venatorum and B. microti) are discussed. There is clear evidence that the distributions of both Ixodes ricinus, the vector in Europe, and I. scapularis in North America have been impacted by the changing climate, with increasing temperatures resulting in the northwards expansion of tick populations and the occurrence of I. ricinus at higher altitudes. Ixodes persulcatus, which replaces I. ricinus in Eurasia and temperate Asia, is presumed to be the babesiosis vector in China and Japan, but this tick species has not yet been confirmed as the vector of either human or animal babesiosis. There is no definite evidence, as yet, of global warming having an effect on the occurrence of human babesiosis, but models suggest that it is only a matter of time before cases occur further north than they do at present.

Acute neurologic emerging flaviviruses

The COVID-19 pandemic has shed light on the challenges we face as a global society in preventing and containing emerging and re-emerging pathogens. Multiple intersecting factors, including environmental changes, host immunological factors, and pathogen dynamics, are intimately connected to the emergence and re-emergence of communicable diseases. There is a large and expanding list of communicable diseases that can cause neurological damage, either through direct or indirect routes. Novel pathogens of neurotropic potential have been identified through advanced diagnostic techniques, including metagenomic next-generation sequencing, but there are also known pathogens which have expanded their geographic distribution to infect non-immune individuals. Factors including population growth, climate change, the increase in animal and human interface, and an increase in international travel and trade are contributing to the expansion of emerging and re-emerging pathogens. Challenges exist around antimicrobial misuse giving rise to antimicrobial-resistant infectious neurotropic organisms and increased susceptibility to infection related to the expanded use of immunomodulatory treatments. In this article, we will review key concepts around emerging and re-emerging pathogens and discuss factors associated with neurotropism and neuroinvasion. We highlight several neurotropic pathogens of interest, including West Nile virus (WNV), Zika Virus, Japanese Encephalitis Virus (JEV), and Tick-Borne Encephalitis Virus (TBEV). We emphasize neuroinfectious diseases which impact the central nervous system (CNS) and focus on flaviviruses, a group of vector-borne pathogens that have expanded globally in recent years and have proven capable of widespread outbreak.

Dengue outbreak and severity prediction: Current methods and the future scope

Dengue virus (DENV) is the causative agent of dengue fever and severe dengue. Every year, millions of people are infected with this virus. There is no vaccine available for this disease. Dengue virus is present in four serologically varying strains, DENV 1, 2, 3, and 4, and each of these serotypes is further classified into various genotypes based on the geographic distribution and genetic variance. Mosquitoes play the role of vectors for this disease. Tropical countries and some temperate parts of the world witness outbreaks of dengue mainly during the monsoon (rainy) seasons. Several algorithms have been developed to predict the occurrence and prognosis of dengue disease. These algorithms are mainly based on epidemiological data, climate factors, and online search patterns in the infected area. Most of these algorithms are based on either machine learning or deep learning techniques. We summarize the different software tools available for predicting the outbreaks of dengue based on the aforementioned factors, briefly outline the methodology used in these algorithms, and provide a comprehensive list of programs available for the same in this article.

Biogeography of black mold Aspergillus niger: Global situation and future perspective under several climate change scenarios using maxent modeling

Climate change impacts represent one of the most important ecological and medical issues during this century. Several fungal species will change their distribution through space and time as a response to climate changes. This will rearrange many fungal diseases throughout the world. One of the most important and very common fungi is the black mold Aspergillus niger. The COVID-19 pandemic reforms the way in which mycologists think about this fungus as an emerging healthy issue. Through this work, about one thousand records of Aspergillus niger were used to model its current and future global distribution using 19 bioclimatic variables under several climate change scenarios. Maximum entropy implemented in Maxent was chosen as the modeling tool, especially with its accuracy and reliability over the other modeling techniques. The annual mean temperature (bio 1) forms the most contributed climatological parameter to black mold distribution. The produced current distribution model came compatible with the real distribution of the species with a cosmopolitan range. The rise of temperature due to global warming will form a limitation to Aspergillus niger through several parts of its range. The generated maps of the future status of this fungus under two different RCPs for 2050 and 2070, indicate several parts that become free from black mold due to temperature limitations. The present results need more intensive future evaluation using data science and GIS, especially on a local scale including more ecological parameters other than climatological data.

Associations between ambient temperature and enteric infections by pathogen: A systematic review and meta-analysis

BACKGROUND: Numerous studies have quantified the associations between ambient temperature and enteric infections, particularly all-cause enteric infections. However, the temperature sensitivity of enteric infections might be pathogen dependent. Here, we sought to identify pathogen-specific associations between ambient temperature and enteric infections. METHODS: We did a systematic review and meta-analysis by searching PubMed, Web of Science, and Scopus for peer-reviewed research articles published from Jan 1, 2000, to Dec 31, 2019, and also hand searched reference lists of included articles and excluded reviews. We included studies that quantified the effects of ambient temperature increases on common pathogen-specific enteric infections in humans. We excluded studies that expressed ambient temperature as a categorical or diurnal range, or in a standardised format. Two authors screened the search results, one author extracted data from eligible studies, and four authors verified the data. We obtained the overall risks by pooling the relative risks of enteric infection by pathogen for each 1°C temperature rise using random-effects modelling and robust variance estimation for the correlated effect estimates. Between-study heterogeneity was measured using I(2), τ(2), and Q-statistic. Publication bias was determined using funnel plot asymmetry and the trim-and-fill method. Differences among pathogen-specific pooled estimates were determined using subgroup analysis of taxa-specific meta-analysis. The study protocol was not registered but followed the PRISMA guidelines. FINDINGS: We identified 2981 articles via database searches and 57 articles from scanning reference lists of excluded reviews and included articles, of which 40 were eligible for pathogen-specific meta-analyses. The overall increased risks of incidence per 1°C temperature rise, expressed as relative risks, were 1·05 (95% CI 1·04-1·07; I(2) 97%) for salmonellosis, 1·07 (1·04-1·10; I(2) 99%) for shigellosis, 1·02 (1·01-1·04; I(2) 98%) for campylobacteriosis, 1·05 (1·04-1·07; I(2) 36%) for cholera, 1·04 (1·01-1·07; I(2) 98%) for Escherichia coli enteritis, and 1·15 (1·07-1·24; I(2) 0%) for typhoid. Reduced risks per 1°C temperature increase were 0·96 (95% CI 0·90-1·02; I(2) 97%) for rotaviral enteritis and 0·89 (0·81-0·99; I(2) 96%) for noroviral enteritis. There was evidence of between-pathogen differences in risk for bacterial infections but not for viral infections. INTERPRETATION: Temperature sensitivity of enteric infections can vary according to the enteropathogen causing the infection, particularly for bacteria. Thus, we encourage a pathogen-specific health adaptation approach, such as vaccination, given the possibility of increasingly warm temperatures in the future. FUNDING: Japan Society for the Promotion of Science (Kakenhi) Grant-in-Aid for Scientific Research.

Climate risk, culture and the Covid-19 mortality: A cross-country analysis

Why have some countries done significantly better than others in fighting the Covid-19 pandemic? Had some countries been better prepared than others? This paper attempts to shed light on these questions by examining the role of climate risk and culture in explaining the cross-country variation in the Covid-19 mortality, while controlling for other potential drivers. In our analysis, we consider climate risk, readiness to climate change and individualism as main indicators reflecting the climate and culture status of individual countries. Using data from 110 countries, we find that the greater the climate risk; the lower the readiness to climate change and the more individualistic the society, the higher the pandemic mortality rate. We also present a series of sensitivity checks and show that our findings are robust to different specifications, alternative definitions of the mortality rate; and different estimation methods. One policy implication arising from our results is that countries that were better prepared for the climate emergency were also better placed to fight the pandemic. Overall, countries in which individuals look after each other and the environment, creating sustainable societies, are better able to cope with climate and public health emergencies.

Climate, carbon dioxide, and plant-based aero-allergens: A deeper botanical perspective

There is global evidence of a general increase in the incidence and prevalence of respiratory diseases including allergic rhinitis and associated asthma. This increase in turn, has been related, in part, to concurrent increases in carbon dioxide (CO(2)) and temperature on pollen production and allergic disease generated from plant-based sources of pollen. Such links to anthropogenic climate change has suggested three significant and interrelated consequences associated with respiratory allergies or disease. First, warmer temperatures and a longer frost-free growing season can influence pollen season length and temporal exposure to airborne aeroallergens. Second, both warmer temperatures and additional CO(2) can increase the amount of pollen, the seasonal intensity, from spring through fall. Thirdly, there is evidence from oak and ragweed that rising levels of CO(2) could increase the allergen concentration of the pollen and symptom severity. However, while these outcomes are of obvious consequence, they do not fully encompass all of the plant derived changes that could, directly or indirectly, influence aeroallergen production, exposure, and consequences for public health. In this overview, I will delve deeper into other plant-based links to climate/CO(2) that are consequential either directly or indirectly to allergic rhinitis and associated disease. Such interactions range from pollen morphology to fire occurrence, from volatile organic compounds to potential changes in pesticide usage. The goal in doing so is to provide a broader context and appreciation for the interactions between plant biology and climate that can also affect allergen production and human impact but which, to date, have received little recognition or research.

Combined impacts of climate and air pollution on human health and agricultural productivity

Climate change and air pollution can interact to amplify risks to human health and crop production. This has significant implications for our ability to reach the Sustainable Development Goals (e.g. SDGs 2, 3, 13, 15) and for the design of effective mitigation and adaptation policies and risk management. To be able to achieve the SDG targets, closer integration of climate change and air pollution both in terms of impact assessment for human health and agricultural productivity and respective policy development is needed. Currently, studies estimating the impacts of climate and air pollutants on human health and crops mostly treat these stressors separately, and the methods used by the health and agricultural science communities differ. Better insights into the methods applied in the different communities can help to improve existing and develop new methods to advance our knowledge about the combined impacts of climate change and air pollution on human health and crops. This topical review provides an overview of current methodologies applied in the two fields of human health and agricultural crop impact studies, ranging from empirical regression-based and experimental methods to more complex process-based models. The latter are reasonably well developed for estimating impacts on agricultural crops, but not for health impacts. We review available literature addressing the combined effects of climate and air pollution on human health or agricultural productivity to provide insights regarding state-of-the-art knowledge and currently available methods in the two fields. Challenges to assess the combined effect of climate and air pollution on human health and crops, and opportunities for both fields to learn from each other, are discussed.

Borderless heat hazards with bordered impacts

Heatwaves are increasing in frequency, duration, and intensity due to climate change. They are associated with high mortality rates and cross-sectional impacts including a reduction in crop yield and power outages. Here we demonstrate that there are large deficiencies in reporting of heatwave impacts in international disasters databases, international organization reports, and climate bulletins. We characterize the distribution of heat stress across the world focusing on August in the Northern Hemisphere, when notably heatwaves have taken place (i.e., 2003, 2010, and 2020) for the last 20 years using the ERA5-HEAT reanalysis of the Universal Thermal Comfort Index and establish heat stress has grown larger in extent, more so during a heatwave. Comparison of heat stress against the emergency events impacts database and climate reports reveals underreporting of heatwave-related impacts. This work suggests an internationally agreed protocol should be put in place for impact reporting by organizations and national government, facilitating implementation of preparedness measures, and early warning systems.

Sooty bark disease of maples: The risk for hypersensitivity pneumonitis by fungal spores not only for woodman

In the middle of the twentieth century, the from North America sooty bark disease (SBD) of maples was first discovered in England and has spread in the last decades in Central Europe, in particular. The trigger of SBD is the mould fungus Cryptostroma (C.) corticale. The most common infested maple is the sycamore, Acer pseudoplatanus, a common tree in woods and parks. The disease is characterised by peeling of the outer layer of the bark and brownish-black spores under the peeled off bark. These spores can cause maple bark disease (MBD) in humans, a hypersensitivity pneumonitis (HP) with similar symptoms like COPD, allergic asthma, influenza or flu-like infections and interstitial pneumonia. Persons who have intensive respectively occupational contact with infested trees or wood, e.g., woodman, foresters, sawyers or paper mill workers, are at risk in particular. Since C. corticale favours hot summers and host trees weakened by drought, SBD will increasingly spread in the future due to ongoing climate change. Consequently, the risk of developing MBD will increase, too. As with all HPs, e.g., farmer’s lung and pigeon breeder’s disease, the diagnosis of MBD is intricate because it has no clear distinguishing characteristics compared to other interstitial lung diseases. Therefore, the establishment of consistent diagnosis guidelines is required. For correct diagnosis and successful therapy, multidisciplinary expertise including pulmonologists, radiologists, pathologists and occupational physicians is recommended. If MBD is diagnosed in time, the removal of the triggering fungus or the infested maple wood leads to complete recovery in most cases. Chronic HP can lead to lung fibrosis and a total loss of lung function culminating in death. HP and, thus, MBD, is a disease with a very high occupational amount. To avoid contact with spores of C. corticale, persons working on infested wood or trees have to wear personal protective equipment. To protect the public, areas with infested maples have to be cordoned off, and the trees should be removed. This is also for impeding further spreading of the spores.

Inventories of extreme weather events and impacts: Implications for loss and damage from and adaptation to climate extremes

Extreme and impactful weather events of the recent past provide a vital but under-utilised data source for understanding present and future climate risks. Extreme event attribution (EEA) enables us to quantify the influence of anthropogenic climate change (ACC) on a given event in a way that can be tailored to stakeholder needs, thereby enhancing the potential utility of studying past events. Here we set out a framework for systematically recording key details of high-impact events on a national scale (using the UK and Puerto Rico as examples), combining recent advances in event attribution with the risk framework. These `inventories’ inherently provide useful information depending on a user’s interest. For example, as a compilation of the impacts of ACC, we find that in the UK since 2000, at least 1500 excess deaths are directly attributable to human-induced climate change, while in Puerto Rico the increased intensity of Hurricane Maria alone led to the deaths of up to 3670 people. We also explore how inventories form a foundation for further analysis, learning from past events. This involves identifying the most damaging hazards and crucially also vulnerabilities and exposure characteristics over time. To build a risk assessment for heat-related mortality in the UK we focus on a vulnerable group, elderly urban populations, and project changes in the hazard and exposure within the same framework. Without improved preparedness, the risk to this group is likely to increase by similar to 50% by 2028 and similar to 150% by 2043. In addition, the framework allows the exploration of the likelihood of otherwise unprecedented events, or ‘Black Swans’. Finally, not only does it aid disaster preparedness and adaptation at local and national scales, such inventories also provide a new source of evidence for global stocktakes on adaptation and loss and damage such as mandated by the Paris Climate Agreement.

Characteristics and impacts of itch in children with inflammatory skin disorders

BACKGROUND: Itch is a cardinal feature of paediatric disorders and can impair quality of life. However, few studies have addressed symptoms and impacts of itch in paediatric patients. OBJECTIVES: We focused on understanding the child’s experience of itch and the impact of itch specifically on affected children, including comparison with the adult experience. METHODS: Semistructured interviews (nine parents, 15 children with itch) explored concerns related to paediatric itch experiences and effects. Themes were compared with those of previous adult interviews. Literature was reviewed to identify the need for a more comprehensive measure of paediatric itch. RESULTS: Itch quality, intensity, duration and environmental triggers (sweating, climate change, stress and certain fabrics) are important aspects of the child’s itch experience. Skin disruption, physical function, concentration, emotional reactions, stigma and relationships/social effects are itch impact themes that emerged. No paediatric-specific scale comprehensively captures the paediatric patient itch experience. However, differences between child and adult reports of itch-related pain, functional limitations, fatigue and restlessness, emotional reactions to itch, and treatment effects emphasize the need for a paediatric-specific measurement tool. CONCLUSIONS: Children and parents endorse the importance of capturing the paediatric-focused characteristics and impacts of itch in measuring disease severity and response to intervention.

Expanded orientation of urban public health policy in the climate change era: Response to and prevention of heat wave in Paris and Seoul: A brief review

The policies of response to and prevention of heat waves in France in 2003 and in South Korea in 2018 were compared and reviewed to see how public health policy orientation was being expanded in connection with urban and social policies. The statistics of the patients with heat illness and resulted death in France in 2003 and South Korea in 2018 were analyzed. The results and limitations of the French and Korean responses to heat waves were compared and discussed. The heat wave in France in 2003 caused an excess death of 14,802. The 2018 heat wave in South Korea resulted in 4,526 cases of heat illness and 48 deaths. France’s National Heat wave Plan established in 2004 introduced the warning system and strengthened support for the vulnerable. The heat wave in South Korea in 2018 revealed the success and limitations of the national measures that have been gradually implemented since the mid-2000s. Both France and South Korea are making efforts in preventing heat illness and managing health risk through the warning systems, providing public and social support for the vulnerable, and expanding urban infrastructure. Paris puts priority on the long-term prevention of heat wave, in the wider context of climate change response, while Seoul shows a relatively strong point in immediate infrastructural expansion. In order to respond to the climate crisis and the following health risk, public health policies need to be contrived with deeper connection with urban social policies for sustainable development.

Performance and thermoregulation of Dutch Olympic and Paralympic athletes exercising in the heat: Rationale and design of the Thermo Tokyo study: The journal Temperature toolbox

The environmental conditions during the Tokyo Olympic and Paralympic Games are expected to be challenging, which increases the risk for participating athletes to develop heat-related illnesses and experience performance loss. To allow safe and optimal exercise performance of Dutch elite athletes, the Thermo Tokyo study aimed to determine thermoregulatory responses and performance loss among elite athletes during exercise in the heat, and to identify personal, sports-related, and environmental factors that contribute to the magnitude of these outcomes. For this purpose, Dutch Olympic and Paralympic athletes performed two personalized incremental exercise tests in simulated control (15°C, relative humidity (RH) 50%) and Tokyo (32°C, RH 75%) conditions, during which exercise performance and (thermo)physiological parameters were obtained. Thereafter, athletes were invited for an additional visit to conduct anthropometric, dual-energy X-ray absorptiometry (DXA), and 3D scan measurements. Collected data also served as input for a thermophysiological computer simulation model to estimate the impact of a wider range of environmental conditions on thermoregulatory responses. Findings of this study can be used to inform elite athletes and their coaches on how heat impacts their individual (thermo)physiological responses and, based on these data, advise which personalized countermeasures (i.e. heat acclimation, cooling interventions, rehydration plan) can be taken to allow safe and maximal performance in the challenging environmental conditions of the Tokyo 2020 Olympic and Paralympic Games.

A step to develop heat-health action plan: Assessing heat waves’ impacts on mortality

Climate change is one of the biggest health threats facing humanity and can directly affect human health through heat waves. This study aims to evaluate excess deaths during heat waves between the summer months of 2004 and 2017 in Istanbul and to determine a definition of heat waves that can be used in the development of an early warning system, a part of prospective urban heat-health action plans. In this study, heat waves were determined using the Excess Heat Factor, an index based on a three-day-averaged daily mean temperature. The death rates during heat waves and non-heat wave days of the summer months were compared with a Z test of the difference of natural logarithms. Thirty heat waves were recorded in Istanbul during the summer months of 2004-2017. In 67% of the heat waves, the death rate was significantly higher than the reference period and 4281 excess deaths were recorded. The mortality risk was especially higher during heat waves of higher intensity. The study showed an excess risk of mortality during heat waves in Istanbul, and the findings suggest that the Excess Heat Factor could be an appropriate tool for an early warning system in Istanbul.

Climate change and NaTech events: A step towards local-scale awareness and preparedness

The present paper aims at verifying the awareness and preparedness of urban and local planners to cope with NaTech risk, together with the availability of dedicated tools. Since most of the natural events that can trigger technological hazards are influenced by climate change (i.e. flood, heavy rains, storms, etc.), NaTech risk is expected to be strongly increasing in the next years. However, dedicated NaTech planning actions and methods or tools to support them are still rarely available. The requirements of European Adaptation Strategy for Climate were examined considering the issues posed by the Seveso III Directive in terms of NaTech, focusing on the strategies adopted in the European countries, and in particular in Italy. Based on such analysis, a ‘NaTech tool’ dedicated to local planners was developed. Practical and easy to use methods and procedures were proposed in order to allow the use of the method by the local authorities, in the absence of sectorial experts.

Socio-economic and environmental vulnerability to heat-related phenomena in Bucharest metropolitan area

In the recent years, the effects of extreme climate phenomena (mainly heat-related) on agricultural crops, infrastructure and human health have become increasingly severe as a result of their complex interactions with the particularities of the urban/rural habitat, as well as the social and economic factors. In Romania, heat-related phenomena (e.g. drought, heat waves) are affecting wide areas in the southern half of the territory where the study area (Bucharest Metropolitan Area) lies. The paper aims to develop a multi-criteria vulnerability assessment using both quantitative and qualitative methods. 23 indicators were selected and processed in order to assess various components of socio-economic and environmental vulnerability to heat-related phenomena using the statistical data available at local administrative units (LAU). The indicators were grouped into the three key components of vulnerability (potential exposure, sensitivity and adaptive capacity) on two dimensions (socio-economic and environmental) resulting two indexes: Socio-Economic Vulnerability Index (SEVI) and Environmental Vulnerability Index (EVI). Finally, an integrated Heat Vulnerability Index (HVI) (using Hull score, average 50 and standard deviation 14) was computed.

The assessment of human bioclimate of Vranje health research (Serbia) based on Universal Thermal Climate Index (UTCI) with the focus on extreme biothermal conditions

The study deals with an assessment and interpretation of the bioclimatic conditions in Vranje (southern Serbia). The study aims at temporal distributions of bioclimatic conditions focussing on extreme thermal stress based on the Universal Thermal Climate Index (UTCI). The meteorological data required for the calculation of UTCI concern hourly (7 and 14 CET) weather data collected for the period 2000-2017. The frequency of very strong heat stress (VSHS), very strong cold stress (VSCS) and extreme cold stress (ECS) for both morning and midday hours. Furthermore, the daily difference of the UTCI hourly values (diurnal UTCI change) are specified, giving the daily variance of heat and cold stress. The results revealed the frequency of days in which thermal stress prevails for the studied period. The obtained results show an increase in extreme heat biothermal conditions, while extreme cold biothermal conditions are in decline, especially in the last 10 years. However, the frequency (the number of days) of very strong heat stress (VSHS) increased since 2007. A spectacular increase in heat stress was observed in the month of September, particularly in 2015.

Nationwide analysis of the heat- and cold-related mortality trends in Switzerland between 1969 and 2017: The role of population aging

BACKGROUND: Because older adults are particularly vulnerable to nonoptimal temperatures, it is expected that the progressive population aging will amplify the health burden attributable to heat and cold due to climate change in future decades. However, limited evidence exists on the contribution of population aging on historical temperature-mortality trends. OBJECTIVES: We aimed to a) assess trends in heat- and cold-related mortality in Switzerland between 1969 and 2017 and b) to quantify the contribution of population aging to the observed patterns. METHODS: We collected daily time series of all-cause mortality by age group ( < 65, 65-79, and 80 y and older) and mean temperature for each Swiss municipality (1969-2017). We performed a two-stage time-series analysis with distributed lag nonlinear models and multivariate longitudinal meta-regression to obtain temperature-mortality associations by canton, decade, and age group. We then calculated the corresponding excess mortality attributable to nonoptimal temperatures and compared it to the estimates obtained in a hypothetical scenario of no population aging. RESULTS: Between 1969 and 2017, heat- and cold-related mortality represented 0.28% [95% confidence interval (CI): 0.18, 0.37] and 8.91% (95% CI: 7.46, 10.21) of total mortality, which corresponded to 2.4 and 77 deaths per 100,000 people annually, respectively. Although mortality rates for heat slightly increased over time, annual number of deaths substantially raised up from 74 (12;125) to 181 (39;307) between 1969-78 and 2009-17, mostly driven by the  ≥ 80-y-old age group. Cold-related mortality rates decreased across all ages, but annual cold-related deaths still increased among the  ≥ 80, due to the increase in the population at risk. We estimated that heat- and cold-related deaths would have been 52.7% and 44.6% lower, respectively, in the most recent decade in the absence of population aging. DISCUSSION: Our findings suggest that a substantial proportion of historical temperature-related impacts can be attributed to population aging. We found that population aging has attenuated the decrease in cold-related mortality and amplified heat-related mortality. https://doi.org/10.1289/EHP9835.

New execution process of a panel-based facade system that reduces project duration and improves workers’ working conditions

This study tries to solve some issues in the construction sector related to Sustainable Development Goals (SDG) numbers 3 (health and well-being) and 8 (decent work and economic growth) of the 2030 Agenda, improving the working conditions of workers in the construction sector, at certain latitudes, since they are constantly exposed to inclement weather conditions and their safety may be adversely affected. Therefore, a design of a new procedure for the installation of a panel-based facade is proposed, which allows the complete closing of the building during its execution and thus improves the comfort and safety of workers. In addition to the constructive definition of the proposed system, its implementation procedure and the energy consumption during the interior air conditioning phase are analyzed. In addition, a comparative study of execution times between the proposed procedure and a conventional solution is performed. The conclusions of the study highlight that the proposed system improves: the working conditions in extreme climates and prevents risks derived from work in extreme weather conditions; the precision in the formation of window and door openings and their coordination with the modular facades; the ease of execution and delays the placement of the exterior scaffolding. Overall, the proposed procedure reduces the weight of the facade and the thermal transmittance by 13.5% and reduces not only costs due to the modulation of the system, but also execution times in the facade and interior work phases (around 40%) and the structure phase (around 32%).

Where to go or where not to go – A method for advising communities during extreme temperatures

Climate change is producing more extremes and increasing the number and magnitude of risks that impact people’s lives, so identifying and understanding local climate risks is a long but essential process for defining adaptation strategies. The availability of technologies to sensitize and educate people about risks, and to assist people with becoming active observers and monitors of climatic elements has helped to promote permanent surveillance and proactive attitudes towards climatic phenomena that lead to undesirable risks. This paper proposes a methodological approach to guide citizens moving around the city when extreme temperatures occur, minimizing climatic risks and negative health comes, using a very simple method based on Landsat 8 temperature data images at a subsection spatial scale level. The results obtained indicate the places of higher extreme temperatures risks, as well as some of the potential places that people can use to protect themselves. This work demonstrates the value of mapping climatic factors at a local scale and deliver tailored and accurate maps with the places suitable for alleviating bioclimatic stresses and the places that should be avoided.

ClimApp – Integrating personal factors with weather forecasts for individualised warning and guidance on thermal stress

This paper describes the functional development of the ClimApp tool (available for free on iOS and Android devices), which combines current and 24 h weather forecasting with individual information to offer personalised guidance related to thermal exposure. Heat and cold stress assessments are based on ISO standards and thermal models where environmental settings and personal factors are integrated into the ClimApp index ranging from -4 (extremely cold) to +4 (extremely hot), while a range of -1 and +1 signifies low thermal stress. Advice for individuals or for groups is available, and the user can customise the model input according to their personal situation, including activity level, clothing, body characteristics, heat acclimatisation, indoor or outdoor situation, and geographical location. ClimApp output consists of a weather summary, a brief assessment of the thermal situation, and a thermal stress warning. Advice is provided via infographics and text depending on the user profile. ClimApp is available in 10 languages: English, Danish, Dutch, Swedish, Norwegian, Hellenic (Greek), Italian, German, Spanish and French. The tool also includes a research functionality providing a platform for worker and citizen science projects to collect individual data on physical thermal strain and the experienced thermal strain. The application may therefore improve the translation of heat and cold risk assessments and guidance for subpopulations. ClimApp provides the framework for personalising and downscaling weather reports, alerts and advice at the personal level, based on GPS location and adjustable input of individual factors.

Projections of temperature-attributable mortality in Europe: A time series analysis of 147 contiguous regions in 16 countries

BACKGROUND: Europe has emerged as a major climate change hotspot, both in terms of an increase in seasonal averages and climate extremes. Projections of temperature-attributable mortality, however, have not been comprehensively reported for an extensive part of the continent. Therefore, we aim to estimate the future effect of climate change on temperature-attributable mortality across Europe. METHODS: We did a time series analysis study. We derived temperature-mortality associations by collecting daily temperature and all-cause mortality records of both urban and rural areas for the observational period between 1998 and 2012 from 147 regions in 16 European countries. We estimated the location-specific temperature-mortality relationships by using standard time series quasi-Poisson regression in conjunction with a distributed lag non-linear model. These associations were used to transform the daily temperature simulations from the climate models in the historical period (1971-2005) and scenario period (2006-2099) into projections of temperature-attributable mortality. We combined the resulting risk functions with daily time series of future temperatures simulated by four climate models (ie, GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5) under three greenhouse gas emission scenarios (ie, Representative Concentration Pathway [RCP]2.6, RCP6.0, and RCP8.5), providing projections of future mortality attributable fraction due to moderate and extreme cold and heat temperatures. FINDINGS: Overall, 7·17% (95% CI 5·81-8·50) of deaths registered in the observational period were attributed to non-optimal temperatures, cold being more harmful than heat by a factor of ten (6·51% [95% CI 5·14-7·80] vs 0·65% [0·40-0·89]), and with large regional differences across countries-eg, ranging from 4·85% (95% CI 3·75-6·00) in Germany to 9·87% (8·53-11·19) in Italy. The projection of temperature anomalies by RCP scenario depicts a progressive increase in temperatures, more exacerbated in the high-emission scenario RCP8.5 (4·54°C by 2070-2099) than in RCP6.0 (2·89°C) and RCP2.6 (1·67°C). This increase in temperatures was transformed into attributable fraction. Projections consistently indicated that the increase in heat attributable fraction will start to exceed the reduction of cold attributable fraction in the second half of the 21st century, especially in the Mediterranean and in the higher emission scenarios. The comparison between scenarios highlighted the important role of mitigation, given that the total attributable fraction will only remain stable in RCP2.6, whereas the total attributable fraction will rapidly start to increase in RCP6.0 by the end of the century and in RCP8.5 already by the middle of the century. INTERPRETATION: The increase in heat attributable fraction will start to exceed the reduction of cold attributable fraction in the second half of the 21st century. This finding highlights the importance of implementing mitigation policies. These measures would be especially beneficial in the Mediterranean, where the high vulnerability to heat will lead to an imbalance between the decreasing cold and increasing heat-attributable mortality. FUNDING: None.

A functional seasonal thermal hot-spot classification: Focus on industrial sites

This study was focused on the metropolitan area of Florence in Tuscany (Italy) with the aim to provide a functional spatial thermal anomaly indicator obtained throughout a thermal summer and winter hot-spot detection. The hot-spot analysis was performed by applying Getis-Ord Gi* spatial statistics to Land Surface Temperature (LST) layers, obtained from Landsat 8 remote sensing data during the 2015-2019 daytime summer and winter period, to delimitate summer hot- and cool-spots, and winter warm- and cold-spots. Further, these ones were spatially combined thus obtaining a comprehensive summer-winter Thermal Hot-Spot (THS(SW)) spatial indicator. Winter and summer mean daily thermal comfort profiles were provided for the study area assessing the Universal Thermal Climate Index (UTCI) by using meteorological data available from seven local weather stations, located at a maximum distance of 350 m from industrial sites. A specific focus on industrial sites was carried out by analyzing the industrial buildings characteristics and their surrounding areas (50 m buffer), through the following layers: industrial building area (BA), surface albedo of buildings (ALB), impervious area (IA), tree cover (TC), and grassland area (GA). The novel THS(SW) classification applied to industrial buildings has shown that about 50% of the buildings were located in areas characterized by summer hot-spots. Increases in BA and IA revealed warming effects on industrial buildings, whereas increases in ALB, TC, and GA disclosed cooling effects. A decrease of about 10% of IA replaced by TC and GA was associated with about 2 °C decrease of LST. Very strong outdoor heat stress conditions were observed during summer daytime, whereas moderate winter outdoor cold stress conditions were recorded during nighttime until the early morning. The thermal spatial hot-spot classification in industrial areas provides a very useful source of information for thermal mitigation strategies aimed to reduce the heat-related health risk for workers.

Assessment of the effect of land use change on bioclimatic comfort conditions in Usak Province

Bioclimatic comfort is the state of people in which they feel comfortable, happy, and fit in the atmospheric environment they are. The bioclimatic comfort conditions of cities have changed depending on anthropogenic factors. The aim of this study is to compare the bioclimatic comfort conditions of Usak city between 1990 and 2018. In the first stage, the bioclimatic comfort conditions of the city centre between 1990 and 2018 were determined according to the Physiological Equivalent Temperature (PET) index obtained from the RayMan model by using hourly data of the meteorological station in the city centre; air temperature (degrees C), relative humidity (%), wind velocity(m/s) and cloudiness (octa). By using Geographic Information Systems in the spatial distribution of bioclimatic comfort conditions, calculations were made with base maps of elevation, land use, solar radiation, mean radiant temperature (MRT), and wind speed. In the second stage, the land cover was classified according to the general appearance for the period covering 28 years (from 1990 to 2018), and the rates of change were calculated. As a result, it was determined that the most comfortable areas are the agricultural areas, followed by the forest and natural areas, and the most uncomfortable conditions are in the artificial areas. Intense urbanization and construction have increased the uncomfortable conditions in the city. It is thought that the plans to be made by prioritizing bioclimatic comfort conditions will contribute to decelerating the climate change caused by global warming, as well as improving the existing problems.

Climate change impacts on thermal stress in four climatically diverse European cities

The thermal conditions that prevail in cities pose a number of challenges to urban residents and policy makers related to quality of life, health and welfare as well as to sustainable urban development. However, the changes in thermal stress due to climate change are probably not uniform among cities with different background climates. In this work, a comparative analysis of observed and projected thermal stress (cold stress, heat stress, no thermal stress) across four European cities (Helsinki, Rotterdam, Vienna, and Athens), which are representative of different geographical and climatic regions of the continent, for a recent period (1975 - 2004) and two future periods (2029 - 2058, 2069 - 2098) has been conducted. Applying a rational thermal index (Universal Thermal Climate Index) and considering two models of the EURO-CORDEX experiment (RCA4-MOHC, RCA4-MPI) under two Representative Concentration Pathways (RCP4.5, RCP8.5), the projected future changes in thermal conditions are inspected. The distribution of thermal stress in the current climate varies greatly between the cities, reflecting their climatic and urban heterogeneity. In the future climate, a reduction in the frequency of cold stress is expected across all cities, ranging between - 2.9% and - 16.2%. The projected increase in the frequency of optimal thermal conditions increases with increasing latitude, while the projected increase in the frequency of heat stress (ranging from + 0.2 to + 14.6%) decreases with increasing latitudes. Asymmetrical changes in cold- and heat-related stress between cities were found to affect the annual percentage of optimal (no thermal stress) conditions in future. Although future projections are expected to partly bridge the gap between the less-privileged cities (with respect to annual frequency of optimal thermal conditions) like Helsinki and Rotterdam and the more privileged ones like Athens, the former will still lag behind on an annual basis.

The influence of external environment on workers on scaffolding illustrated by UTCI

The aim of the article was to present the influence of the external environment on people working on scaffolding. For this purpose, the heat load of a man was determined using the universal thermal climate index. The research was carried out on 40 facade scaffolds located in four voivodeships in Poland: Lower Silesia, Lublin, Lodzkie, and Masovian. The conducted analysis showed that employees may experience strong or very strong heat stress, and also extreme heat stress in isolated cases. The highest probability at 0.30 level occurs on scaffolds located in the Lodzkie voivodeship. Environmental conditions are therefore unfavourable for people working outside. This can lead to reduced concentration, longer reaction time, and greater fatigue, contributing to an increase in situations that could lead to accidents. Hazard identification allows to take safety measures that improve the comfort of work on scaffolding.

Ambient heat exposure and COPD hospitalisations in England: A nationwide case-crossover study during 2007-2018

BACKGROUND: There is emerging evidence suggesting a link between ambient heat exposure and chronic obstructive pulmonary disease (COPD) hospitalisations. Individual and contextual characteristics can affect population vulnerabilities to COPD hospitalisation due to heat exposure. This study quantifies the effect of ambient heat on COPD hospitalisations and examines population vulnerabilities by age, sex and contextual characteristics. METHODS: Individual data on COPD hospitalisation at high geographical resolution (postcodes) during 2007-2018 in England was retrieved from the small area health statistics unit. Maximum temperature at 1 km ×1 km resolution was available from the UK Met Office. We employed a case-crossover study design and fitted Bayesian conditional Poisson regression models. We adjusted for relative humidity and national holidays, and examined effect modification by age, sex, green space, average temperature, deprivation and urbanicity. RESULTS: After accounting for confounding, we found 1.47% (95% Credible Interval (CrI) 1.19% to 1.73%) increase in the hospitalisation risk for every 1°C increase in temperatures above 23.2°C (lags 0-2 days). We reported weak evidence of an effect modification by sex and age. We found a strong spatial determinant of the COPD hospitalisation risk due to heat exposure, which was alleviated when we accounted for contextual characteristics. 1851 (95% CrI 1 576 to 2 079) COPD hospitalisations were associated with temperatures above 23.2°C annually. CONCLUSION: Our study suggests that resources should be allocated to support the public health systems, for instance, through developing or expanding heat-health alerts, to challenge the increasing future heat-related COPD hospitalisation burden.

Current and future burdens of heat-related dementia hospital admissions in England

INTRODUCTION: The impacts of a changing climate on current and future dementia burdens have not been widely explored. METHODS: Time-series negative binomial regression analysis was used to assess acute associations between daily ambient temperature and counts of emergency admissions for dementia in each Government region of England, adjusting for season and day-of-week. Using the latest climate and dementia projections data, we then estimate future heat-related dementia burdens under a high emission scenario (Representative Concentration Pathway (RCP8.5), where global greenhouse gas (GHG) emissions continue to rise, and a low emissions scenario (RCP2.6), where GHG emissions are sizeably reduced under a strong global mitigation policy. RESULTS: A raised risk associated with high temperatures was observed in all regions. Nationally, a 4.5% (95% Confidence interval (CI) 2.9%-6.1%) increase in risk of dementia admission was observed for every 1 °C increase in temperature above 17 °C associated with current climate. Under a high emissions scenario, heat-related admissions are projected to increase by almost 300% by 2040 compared to baseline levels. CONCLUSIONS: People living with dementia should be considered a high-risk group during hot weather. Our results support arguments for more stringent climate change mitigation policies.

Global warming, renal function and heart failure over 20 years

BACKGROUND: The impact of increasing temperatures on renal function in heart failure (HF) outpatients has never been specifically analyzed. METHODS: We retrieved creatinine and estimated glomerular filtration rate (eGFR) values of all HF outpatients followed at a HF clinic and temperature data from 2002 to 2021. For each patient and each year we averaged values of creatinine, eGFR and monthly temperatures during summer and the rest of the year. RESULTS: The study cohort included 2167 HF patients undergoing 25,865 elective visits, with a median of 14 visits for each patient (interquartile range 7-23). At the first visit, patients (70% men) had an age of 67 ± 13 years, and a left ventricular ejection fraction of 35 ± 14%. Creatinine was 1.25 ± 0.51 mg/dL, and eGFR was 65 ± 25 mL/min/1.73 m(2). When pooling together all average values of creatinine and eGFR measured during summer or in the rest of the year, creatinine was significantly higher in summer (difference 0.04, 95% confidence interval [CI] 0.04 to 0.05, p < 0.001), and eGFR was slightly lower (difference - 2.0, 95% CI -2.3 to -1.8, p < 0.001). Temperature rise during summer increased from 2002 to 2021. The absolute (Δ) and percent (Δ%) elevation in temperature during summer displayed independent associations with Δ and Δ% creatinine and eGFR after adjusting for age, sex, plasma creatinine, and HF therapies. CONCLUSIONS: The magnitude of temperature elevation during summer has increased over 20 years. This elevation correlates with the decline in renal function during summer. This might be an example of how global warming is affecting human health.

Green curiocity: A study protocol for a European birth cohort study analysing childhood heat-related health impacts and protective effects of urban natural environments

INTRODUCTION: The European climate is getting warmer and the impact on childhood health and development is insufficiently understood. Equally, how heat-related health risks can be reduced through nature-based solutions, such as exposure to urban natural environments, is unknown. Green CURe In Outdoor CITY spaces (Green CURIOCITY) will analyse how heat exposure during pregnancy affects birth outcomes and how long-term heat exposure may influence children’s neurodevelopment. We will also investigate if adverse effects can be mitigated by urban natural environments. A final goal is to visualise intraurban patterns of heat vulnerability and assist planning towards healthier cities. METHODS AND ANALYSIS: We will use existing data from the Human Early-Life Exposure cohort, which includes information on birth outcomes and neurodevelopment from six European birth cohorts. The cohort is linked to data on prenatal heat exposure and impact on birth outcomes will be analysed with logistic regression models, adjusting for air pollution and noise and sociobehavioural covariates. Similarly, impact of cumulative and immediate heat exposure on neurodevelopmental outcomes at age 5 will be assessed. For both analyses, the potentially moderating impact of natural environments will be quantified. For visualisation, Geographical information systems data will be combined to develop vulnerability maps, demonstrating urban ‘hot spots’ where the risk of negative impacts of heat is aggravated due to sociodemographic and land use patterns. Finally, geospatial and meteorological data will be used for informing GreenUr, an existing software prototype developed by the WHO Regional Office for Europe to quantify health impacts and augment policy tools for urban green space planning. ETHICS AND DISSEMINATION: The protocol was approved by the Comité Ético de Investigación Clínica Parc de Salut MAR, Spain. Findings will be published in peer-reviewed journals and presented at policy events. Through stakeholder engagement, the results will also reach user groups and practitioners.

Increase in surgical site infections caused by gram-negative bacteria in warmer temperatures: Results from a retrospective observational study

OBJECTIVE: Surgical site infections (SSIs) occur more frequently during periods of warmer temperatures. We aimed to investigate for which pathogens this association is particularly strong. DESIGN: A retrospective observational study was conducted. METHODS: Data from the SSI-module of the German nosocomial infection surveillance system between 2000 and 2016 were linked with data from the German Meteorological Service. Patient- and procedure-related data were associated with monthly aggregated meteorological data. Due to high correlation with other meteorological parameters, we focused on the outside temperature. Adjusted odds ratios were calculated for SSI rates relating to temperature. SSIs were stratified by pathogen. A P value of <.05 was considered significant. RESULTS: Altogether, 2,004,793 procedures resulting in 32,118 SSIs were included. Generally, warmer temperatures were associated with a higher SSI risk, especially for SSIs with gram-negative pathogens. This association was particularly prominent for Acinetobacter spp, Pseudomonas aeruginosa, and certain Enterobacteriaceae. Per additional 1°C, we observed a 6% increase in the SSI risk for Acinetobacter spp and a 4% increase for Enterobacter spp. Superficial SSIs with Acinetobacter spp were 10 times more likely to occur when comparing surgeries in months with mean temperatures of ≥20°C to mean temperatures of <5°C. CONCLUSIONS: Higher temperatures were associated with increased SSI rates caused by gram-negative bacteria. Future SSI prevention measures should consider this aspect. Underlying shifts in microbiome composition due to climate factors should be included in further analyses. Given the expected rise of global temperatures until the end of the century, this topic has relevance from multiple perspectives.

Post-conception heat exposure increases clinically unobserved pregnancy losses

Evidence of the relationship between temperature during pregnancy and human embryo mortality is limited. Most importantly, the literature lacks causal estimations and studies on early pregnancy losses. Here, we estimate the impact of early pregnancy temperature exposure on the clinically unobserved pregnancy loss rate. We use administrative data of clinically observed pregnancies from more than three decades for Hungary. We apply an empirical approach that allows us to infer the impact of temperature on the clinically unobserved pregnancy loss rate from the estimated effects on the clinically observed conception rate. The results show that exposure to hot temperatures during the first few weeks after the conception week increases the clinically unobserved pregnancy loss rate, whereas exposure to colder temperatures seems to decrease it. Importantly, the temperature-induced changes represent changes in the total number of pregnancy losses rather than a compositional change between clinically observed and clinically unobserved pregnancy losses.

Prevalence of premature birth in conditions of global warming

The dynamics and likely associative link between global warming and the prevalence of preterm births in Ukraine over the years 2009-2018 was studied. to form modern ideas about the prognosis and prevention of this pathology. Data on medical care for pregnant women, mothers and parturients and adverse effects of pregnancy on preterm birth (form 21) for the period 2009-2018 were obtained from the municipal non-profit enterprise “Ternopil Regional Center of Public Health of Ternopil Regional Council”. The correlation between the number of premature births per 100 births according to the average annual air temperature according to the Global Historical Climatology Network from the US Department of Ocean and Atmospheric Research in the climatically homogeneous regions of Ukraine was estimated. Predictive analysis of time series was performed by the method of integrated autoregression of the moving average (ARIMA). The model error was estimated by calculating the absolute percentage error of the mean (MAPE). Statistical processing of materials was performed using programs Statistica 6.0 (StatSoft, USA) and open statistical package “R”. The study meets modern requirements of moral and ethical standards regarding the provisions of legislative acts of Ukraine. Analysis of these reports of women’s counseling shows an increase in the average number of preterm births from 2.88 per 100 births in the total number of births in Ukraine – 491445 in 2009 to 3.33, per 100 births in the total number of 309191 in 2018, which testifies to a significant increase in premature births in our country. Since 2009, there has been an annual, varying degree of increase in average annual air temperature in Ukraine. As a result of the correlation analysis, a significant strong direct correlation was established between the average level of premature birth and the average annual air temperature in Ukraine (r=0.84, p<0.05). Regression analysis revealed a significant increase in the number of premature births (per 100 births) in 1, 2, 5, 6, 7, 8 and 10 climatically homogeneous regions and a tendency to increase in, respectively, 3, 4, 9, 11 and 12 climatically homogeneous regions of Ukraine. Based on the analysis of data on the average annual air temperature in Ukraine for 20092018, the average annual air temperature in Ukraine is projected to increase by 0.3 degrees C in 3 years (MAPE <10%, p<0.05). The annual number of premature births is expected to increase (cases per 100 births) in 3 years by 0.4 cases per 100 births (MAPE <10%, p <0.05). In the context of global warming, the number of negative consequences of pregnancy is increasing, namely idiopathic premature termination of pregnancy with the birth of premature infants. Strong correlations have been established between the annual number of premature births and the average annual air temperature in Ukraine. Regression models of preterm birth showed a significant increase in 1, 2, 5, 6, 7, 8, and 10 climatically homogeneous regions and a tendency to increase in 3, 4, 9, 11 and 12 climatically homogeneous regions. The annual number of premature births in Ukraine is projected to increase by 2023 by 20 cases per 100 births compared to 2018. The strategy for preventing premature births and related adverse effects of pregnancy should include the identification of global warming as a risk factor for increasing level of this pathology.

The association between the biometeorological indicators and emergency interventions due to fainting: A retrospective cohort study

The association of fainting with specific situations and circumstances, such as the sight of blood, response to pain, prolonged standing position and fatigue, is well recognized and described in medical literature. Clinical experience also indicates that specific, local physical conditions, such as exposure to heat or remaining in a small, stuffy room may also trigger fainting. This paper verifies the hypothesis concerning the association between atmospheric conditions and the incidence of fainting. This is a retrospective cohort study of data relating to fainting collected in the city of Olsztyn (Poland). In total, 10,449 emergency service interventions in the period 2012-2019 that concluded with the R55 (syncope and collapse) diagnosis according to the ICD 10 were analyzed. The obtained data were matched with meteorological data, including basic parameters (temperature, humidity, atmospheric pressure) and complex parameters, with special attention given to the Universal Thermal Climate Index (UTCI). This index is derived from an analysis of human thermal balance and is particularly useful for describing the organism’s response to thermal stress. Statistically significant differences in the occurrences of fainting depending on the season were revealed (more in the summer), but only for women. Among the analyzed meteorological and biometeorological parameters, statistical significance was found for parameters relating to temperature, with the greatest usefulness revealed for the UTCI. Periods with heat stress were more conducive to fainting, whereas the result for the general population was influenced by women in two age groups: 25-45 and 46-60. To our best knowledge, this is the first attempt worldwide to utilize the UTCI as a predictor of fainting. Our results confirmed the applicability of the UTCI as a universal biometeorological tool for the assessment of relationships between atmospheric conditions and the incidence of fainting.

Downscaling ensemble climate projections to urban scale: Brussels’s future climate at 1.5 degrees C, 2 degrees C, and 3 degrees C global warming

There is an increasing need to obtain climate projections for cities using an ensemble approach for uncertainty estimation. Yet, current-day computational resources are too limited to dynamically downscale GCM ensembles to urban scale. Here, a recently developed and validated statistical-dynamical computationally-cheap method is employed to downscale ten EURO-CORDEX climate projections over Brussels (Belgium) covering the period 1971-2100. Results show that, under the Paris agreement, summer mean projected temperature in Brussels will rise by 3.6 degrees C to 4.1 degrees C [+ – 0.7 degrees C] on average. The Urban Heat Island (UHI) intensity does not increase under future global warming with even a slight decrease under heatwave (HW) conditions by 0.1 degrees C (+/- 0.1 degrees C). However, the number of HW days is projected to be 30.6% and 158.9% higher for the 2 degrees C and 3 degrees C Global Warming Levels (GWL), respectively, as compared to 1.5 degrees C GWL. The heat stress during HW periods also follows the same trend: compared to a 1.5 degrees C GWL, the number of extreme heat stress days at 2 degrees C (3 degrees C) GWL will increase by 29% (91%) on average inside the city. The results can be used in support of adaptation measures, which should be considered for future resilience of the city of Brussels.

Spatial variation of physiologically equivalent temperature in different Local Climate Zones of a large city during a hot spell

Global warming increases the risk of heat stress in Europe. Hence, heat stress must be considered as a health hazard for individuals working in outdoors and indoors conditions. Physiologically equivalent temperature (PET) is more related to the perceived temperature, but most of the current Local Climate Zone (LCZ) studies focus on measured temperature, instead of PET. Therefore, in this research, PET was applied to evaluate the thermal component of the outdoor microclimate for the f rst time in Berlin during a (1) hot spell, and (2) a normal period during July to August 2018. The aim of the present study is to explore the impacts of outdoor surroundings on human thermal comfort and its perception during the day and nighttime. Based on 32 micrometeorological stations located in different LCZs, the outdoor thermal sensation was investigated in order to f nd hourly thermal stress level conditions. Based on the mean hourly thermal sensation, the highest PET value was observed in, LCZ 4, “open high-rise” with 33.76 degrees C at 1400 CET, which represents a thermal stress level of “moderate heat stress”. The LCZ 2 showed “slight heat stress”, at the same time. High Sky View Factor (SVF) and relative humidity in “open high-rise” caused the highest PET. From the afternoon around 1800 CET to early morning 0600 CET, LCZ 2 is one thermal stress level warmer than all other existing LCZs in Berlin. During the hot spell, the hottest time period of the day was between 1600 CET to 1700 CET. In the morning from 0700 CET and midnight, the LCZ 2 was warmer than other local climate zones as the heat capacity of the buildings is high. Maximum hourly PET values illustrate that LCZ 4 was the warmest LCZ in which thermal sensation was ‘very hot’ between 0800 CET to 1700 CET. According to minimum hourly of PET, LCZ 4 was the coldest LCZs during the night and early in the morning.

Exercise heat acclimation and post-exercise hot water immersion improve resting and exercise responses to heat stress in the elderly

OBJECTIVES: To investigate the efficacy of heat acclimation (HA) in the young (Y(EX)) and elderly (E(EX)) following exercise-HA, and the elderly utilising post-exercise hot water immersion HA (E(HWI)). DESIGN: Cross-sectional study. METHOD: Twenty-six participants (Y(EX): n = 11 aged 22 ± 2 years, E(EX:)n = 8 aged 68 ± 3 years, E(HWI): n = 7 aged 73 ± 3 years) completed two pre-/post-tests, separated by five intervention days. Y(EX) and E(EX) exercised in hot conditions to raise rectal temperature (T(rec)) ≥38.5 °C within 60 min, with this increase maintained for a further 60 min. E(HWI) completed 30 min of cycling in temperate conditions, then 30 min of HWI (40 °C), followed by 30 min seated blanket wrap. Pre- and post-testing comprised 30 min rest, followed by 30 min of cycling exercise (3.5 W·kg(-1) Ḣ(prod),) and a six-minute walk test (6MWT), all in 35 °C, 50% RH. RESULTS: The HA protocols did not elicit different mean heart rate (HR), T(rec), and duration T(rec) ≥ 38.5 °C (p > 0.05) between Y(EX), E(EX), and E(HWI) groups. Resting T(rec), peak skin temperature, systolic and mean arterial pressure, perceived exertion and thermal sensation decreased, and 6MWT distance increased pre- to post-HA (p < 0.05), with no difference between groups. Y(EX) also demonstrated a reduction in resting HR (p < 0.05). No change was observed in peak T(rec) or HR, vascular conductance, sweat rate, or thermal comfort in any group (p > 0.05). CONCLUSIONS: Irrespective of age or intervention, HA induced thermoregulatory, perceptual and exercise performance improvements. Both exercise-HA (E(EX)), and post-exercise HWI (E(HWI)) are considered viable interventions to prepare the elderly for heat stress.

Geographic and socioeconomic differences in heat-related mortality among the Dutch population: A time series analysis

OBJECTIVES: This study was conducted to examine modification in heat-related mortality in the Netherlands by sociodemographic and geographical factors including socioeconomic position and population density (PD). DESIGN: This observational study applied time series analysis on daily mortality counts according to mean daily temperature (°C). SETTING: Statistics Netherlands. PARTICIPANTS: Death registrations in 2006, 2018 and 2019 from residents registered at the Dutch Personal Records Database, restricted to deaths in the period between April and October. MAIN OUTCOME MEASURES: Assuming a V-like relation between temperature and mortality, a segmented linear model was used to estimate the temperature effects on mortality. In order to estimate the effects of severe heat, a second model including a heat threshold of 22°C was included in the model. We stratified by sociodemographic groups, calendar year and the five main causes of death (cardiovascular, respiratory, neoplasm, psychological and nervous system, and other) and controlled for time trend and seasonality. RESULTS: The effect of 1°C increase in temperature whereby the mean daily temperature exceeded 16°C was a 1.57% (95% CI 1.51% to 1.63%) increase in mortality among the total population. In temperature segments whereby the mean daily temperature exceeded 22°C, this effect was 2.84% (95% CI 2.73% to 2.93%). Low-income groups were at higher risk of heat-related mortality, compared with high-income groups. Areas with a high PD show relatively weak effects within both the warm and heat segments. CONCLUSION: Results of this study highlight the variation in terms of heat vulnerability among the Dutch population, whereby poor living conditions specifically may increase the effect on high temperature on mortality.

Current and future burdens of heat-related hyponatremia: A nationwide register-based study

CONTEXT: A seasonal variation in hyponatremia, with higher incidence rates during hot summer days, has been demonstrated. Whether this applies to cool temperate regions is currently unknown. OBJECTIVE: The aim of this study was to investigate the influence of ambient temperature on hyponatremia in the Swedish population under current and future climate scenarios. METHODS: This nationwide cohort study identified all patients hospitalized with a first-ever principal diagnosis of hyponatremia between October 2005 and December 2014. Incidence rates for hyponatremia were calculated as number of hospitalizations divided by person-days at risk in the adult Swedish population at a given temperature, in increments of 1 °C. RESULTS: The incidence of hyponatremia was stable at 0.3 per million person-days from -10 to 10 °C, but increased rapidly at 24-hour mean temperatures above 15 °C, with 2.26 hospitalizations per million days at the highest recorded temperature of 25 °C. Women and elderly carried the greatest risk, with an incidence of 35 hospitalizations per million days in individuals ≥ 80 years of age on the hottest days, corresponding to a 15-fold increase in incidence compared with cool days. A future 1 or 2 °C increase in mean temperature is expected to increase the incidence of hyponatremia by 6.3% and 13.9%, respectively. CONCLUSION: The risk of hospitalization due to hyponatremia increases rapidly at temperatures above 15 °C, indicating a threshold effect. Over the next decades, rising global temperatures are expected to increase the inpatient burden of hyponatremia by approximately 10%. Strategies for protecting vulnerable groups are necessary to reduce this risk.

A holistic modeling framework for estimating the influence of climate change on indoor air quality

The IPCC 2021 report predicts rising global temperatures and more frequent extreme weather events in the future, which will have different effects on the regional climate and concentrations of ambient air pollutants. Consequently, changes in heat and mass transfer between the inside and outside of buildings will also have an increasing impact on indoor air quality. It is therefore surprising that indoor spaces and occupant well-being still play a subordinate role in the studies of climate change. To increase awareness for this topic, the Indoor Air Quality Climate Change (IAQCC) model system was developed, which allows short and long-term predictions of the indoor climate with respect to outdoor conditions. The IAQCC is a holistic model that combines different scenarios in the form of submodels: building physics, indoor emissions, chemical-physical reaction and transformation, mold growth, and indoor exposure. IAQCC allows simulation of indoor gas and particle concentrations with outdoor influences, indoor materials and activity emissions, particle deposition and coagulation, gas reactions, and SVOC partitioning. These key processes are fundamentally linked to temperature and relative humidity. With the aid of the building physics model, the indoor temperature and humidity, and pollutant transport in building zones can be simulated. The exposure model refers to the calculated concentrations and provides evaluations of indoor thermal comfort and exposure to gaseous, particulate, and microbial pollutants.

Extreme heat and acute air pollution episodes: A need for joint public health warnings?

Recent evidence suggests a synergistic acute effect between temperature, ozone and particulate matter (PM) on premature mortality. Several studies reported higher air pollution-related mortality risks during warm days, and higher heat-related mortality risk during polluted days. We investigated if interactions between temperature and air pollution modified the mortality response to an extent that would support the need for joint heat and air pollution warning systems. We developed a multicentre time-series design for 17 French cities for the period 2000-2015, investigating the influence of season and temperature on the air pollution (PM10 and ozone)-mortality relationship, and the in-fluence of air pollution on the temperature-mortality relationship. Ozone and PM10 mortality risks exhibit an increasing gradient between spring, summer and heat waves. For instance, a 10 mu g/m(3) increase in PM10 was associated with a 3% [Confidence interval (CI) 95% 2.1:3.9] increase in mortality during summer, and with a 14.2% [CI 95% 5.6:23.4] increase in mortality during heat waves. The heat-mortality response was slightly influenced by air pollution, especially during the most extreme heat waves. Our results suggest that air pollution warnings should take season into account, using lower thresholds during summer and heat waves. Heat warning systems may not be improved by air pollution data, as its added value would be limited, compared to the complexity it would add to the warning systems. Efforts should be made to reduce ozone and PM10 concentrations during heat waves, even when they are already below regulatory thresholds.

Indicators for climate change-driven urban health impact assessment

Climate change can cause multiply potential health issues in urban areas, which is the most susceptible environment in terms of the presently increasing climate volatility. Urban greening strategies make an important part of the adaptation strategies which can ameliorate the negative impacts of climate change. It was aimed to study the potential impacts of different kinds of greenings against the adverse effects of climate change, including waterborne, vector-borne diseases, heat-related mortality, and surface ozone concentration in a medium-sized Hungarian city. As greening strategies, large and pocket parks were considered, based on our novel location identifier algorithm for climate risk minimization. A method based on publicly available data sources including satellite pictures, climate scenarios and urban macrostructure has been developed to evaluate the health-related indicator patterns in cities. The modelled future- and current patterns of the indicators have been compared. The results can help the understanding of the possible future state of the studied indicators and the development of adequate greening strategies. Another outcome of the study is that it is not the type of health indicator but its climate sensitivity that determines the extent to which it responds to temperature rises and how effective greening strategies are in addressing the expected problem posed by the factor.

Computer simulations of air quality and bio-climatic indices for the city of Sofia

Air pollution is responsible for many adverse effects on human beings. Thermal discomfort, on the other hand, is able to overload the human body and eventually provoke health implications due to the heat imbalance. Methods: The aim of the presented work is to study the behavior of two bio-climatic indices and statistical characteristics of the air quality index for Sofia city-the capital of Bulgaria for the period 2008-2014. The study is based on the WRF-CMAQ model system simulations with a spatial resolution of 1 km. The air quality is estimated by the air quality index, taking into account the influence of different pollutants and the thermal conditions by two indices, respectively, for hot and cold weather. It was found that the recurrence of both the heat and cold index categories and of the air quality categories have heterogeneous space distribution and well manifested diurnal and seasonal variability. For all of the situations, only O-3 and PM10 are the dominant pollutants-these which determine the AQI category. It was found that AQI1, AQI2, and AQI3, which fall in the “Low” band, have the highest recurrence during the different seasons, up to more than 70% in some places and situations. The recurrence of AQI10 (very high) is rather small-no more than 5% and concentrated in small areas, mostly in the city center. The Heat index of category “Danger” never appears, and the Heat index of category “Extreme caution” appears only in the spring and summer with the highest recurrence of less than 5% in the city center. For the Wind-chill index category, “Very High Risk” never appears, and the category “High Risk” appears with a frequency of about 1-2%. The above leads to the conclusion that both from a point of view of bioclimatic and air quality indices, the human health risks in the city of Sofia are not as high.

Heat vulnerability index mapping: A case study of a medium-sized city (Amiens)

Urbanization, anthropogenic activities, and social determinants such as poverty and literacy rate greatly contribute to heat-related mortalities. The 2003 strong heat wave (Lucifer) in France resulted in catastrophic health consequences in the region that may be attributed to urbanization and other anthropogenic activities. Amiens is a medium-sized French city, where the average temperature has increased since the year 2000. In this study, we evaluated the Heat Vulnerability Index (HVI) in Amiens for extreme heat days recorded during three years (2018-2020). We used the principal component analysis (PCA) technique for fine-scale vulnerability mapping. The main types of considered data included (a) socioeconomic and demographic data, (b) air pollution, (c) land use and cover, (d) elderly heat illness, (e) social vulnerability, and (f) remote sensing data (land surface temperature (LST), mean elevation, normalized difference vegetation index (NDVI), and normalized difference water index (NDWI)). The output maps identified the hot zones through comprehensive GIS analysis. The resultant maps showed that high HVI exists in three typical areas: (1) areas with dense population and low vegetation, (2) areas with artificial surfaces (built-up areas), and (3) industrial zones. Low-HVI areas are in natural landscapes such as rivers and grasslands. Our analysis can be implemented in other cities to highlight areas at high risk of extreme heat and air pollution.

Assessing local heat stress and air quality with the use of remote sensing and pedestrian perception in urban microclimate simulations

Cities are increasingly confronted with multiple environmental and climatic stressors. Especially during heatwaves, street canyons are both producers and sufferers of air pollution and urban heat island (UHI) effects, with severe risks on public health. To better design mitigation measures, it is important to consider both the microclimate behaviors as well as the perceptions of the local population. Therefore, this study examined pedestrian perceptions and microclimate modelings to understand outdoor thermal comfort conditions and air pollution dispersion in the case study neighborhood of Dortmund Marten, Germany. A field survey with measurement points at two street canyons for climatic variables and questionnaires on subjective thermal comfort and air pollution was conducted on a hot day during the heatwave period in August 2020. As a cost-effective method for modeling input generation, we extracted spatial and spectral data like albedo, roof materials and tree locations out of remote sensing imageries. Finally, we compared the modeling results of the physiological equivalent temperature (PET) index, particulate matter concentrations and air temperatures with empirical field measurement data and the questionnaire responses. Results indicate that during hot summer days with light winds from the east, the north-south orientated street canyon with tree arrangements tends to act as a tunnel for particulate matter accumulation. Coincidently, pedestrians show less thermal discomfort than calculated PET values in that particular area during morning and daytime, which underlines the dichotomy of such places. On the other hand, the low rise east-west orientated street canyon shows higher PET votes than predicted by the model. However, particulate matter concentrations were considerably underestimated by the model, while air temperature predictions provided meaningful results. The proposed workflow shows the potential to accelerate future preparations of input data for microclimate modelings, while the results can enhance wind-sensitive planning procedures and heat stress resilience in mid-latitude urban neighborhoods.

Intra-urban microclimate investigation in urban heat island through a novel mobile monitoring system

Monitoring microclimate variables within cities with high accuracy is an ongoing challenge for a better urban resilience to climate change. Assessing the intra-urban characteristics of a city is of vital importance for ensuring fine living standards for citizens. Here, a novel mobile microclimate station is applied for monitoring the main microclimatic variables regulating urban and intra-urban environment, as well as directionally monitoring shortwave radiation and illuminance and hence systematically map for the first time the effect of urban surfaces and anthropogenic heat. We performed day-time and night-time monitoring campaigns within a historical city in Italy, characterized by substantial urban structure differentiations. We found significant intra-urban variations concerning variables such as air temperature and shortwave radiation. Moreover, the proposed experimental framework may capture, for the very first time, significant directional variations with respect to shortwave radiation and illuminance across the city at microclimate scale. The presented mobile station represents therefore the key missing piece for exhaustively identifying urban environmental quality, anthropogenic actions, and data driven modelling toward risk and resilience planning. It can be therefore used in combination with satellite data, stable weather station or other mobile stations, e.g. wearable sensing techniques, through a citizens’ science approach in smart, livable, and sustainable cities in the near future.

Health vs. wealth: Employer, employee and policy-maker perspectives on occupational heat stress across multiple European industries

Successful implementation of cooling strategies obviously depends on identifying effective interventions, but in industrial settings, it is equally important to consider feasibility and economic viability. Many cooling interventions are available, but the decision processes affecting adoption by end-users are not well elucidated. We therefore arranged two series of meetings with stakeholders to identify knowledge gaps, receive feedback on proposed cooling interventions, and discuss factors affecting implementation of heat-health interventions. This included four meetings attended by employers, employees, and health and safety officers (n = 41), and three meetings attended primarily by policy makers (n = 74), with feedback obtained via qualitative and quantitative questionnaires and focus group discussions. On a 10-point scale, both employers and employees valued worker safety (9.1 ± 1.8; mean±SD) and health (8.5 ± 1.9) as more important than protecting company profits (6.3 ± 2.3). Of the respondents, 41% were unaware of any cooling strategies at their company and of those who were aware, only 30% thought the interventions were effective. Following presentation of proposed interventions, the respondents rated “facilitated hydration”, “optimization of clothing/protective equipment”, and “rescheduling of work tasks” as the top-three preferred solutions. The main barriers for adopting cooling interventions were cost, feasibility, employer perceptions, and legislation. In conclusion, preventing negative health and safety effects was deemed to be more important than preventing productivity loss. Regardless of work sector or occupation, both health and wealth were emphasized as important parameters and considered as somewhat interrelated. However, a large fraction of the European worker force lacks information on effective measures to mitigate occupational heat stress. List of abbreviations: OH-Stress: Occupational heat stress; WBGT: Wet Bulb Globe Temperature.

Predicted and user perceived heat strain using the Climapp mobile tool for individualized alert and advice

Thermal models and indices integrated into a mobile application could provide relevant information regarding thermal stress and strain to the general public. The aim of the current paper is to validate such a mobile application, ClimApp, to the users needs in the heat. ClimApp combines weather data with personal user data, thermal models and indices to estimate the thermal strain of the user. The output of ClimApp ranges from -4 to +4, where values below 0 indicate cold strain and values above 0 indicate heat strain. 134 Participants filled in the required personal settings into the app, and indicated if the estimated thermal strain by ClimApp matched their thermal perception. 45 of the participants filled in a user satisfaction questionnaire. Results show that ClimApp is able to predict the heat strain of the user, but may underestimate perceived heat strain when ambient temperature increases. Furthermore, participants were positive about the user-friendliness of ClimApp, but did not think they would use ClimApp frequently and believed the information was irrelevant for them. This is quite remarkable as the number of heat illness cases are increasing and the negative effects of heat occur in all populations exposing themselves to the heat. There needs to be more focus on making people aware of the negative health risks of the heat. ClimApp could play a role as a tool to make heat warnings more accessible for everyone and make people aware of appropriate behavior during periods with high ambient temperatures.

The elderly’s physiological and perceptual responses to cooling during simulated activities of daily living in UK summer climatic conditions

OBJECTIVES: The elderly are the most at-risk population for heat-related illness and mortality during the periods of hot weather. However, evidence-based elderly-specific cooling strategies to prevent heat-illness are limited. The aim of this investigation was to quantify the elderly’s physiological and perceptual responses to cooling through cold water ingestion (COLD) or an L-menthol mouth rinse (MENT) during simulated activities of daily living in UK summer climatic conditions. STUDY DESIGN: Randomised, controlled repeated measures research design. METHODS: A total of ten participants (men n = 7, women n = 3: age; 69 ± 3 yrs, height; 168 ± 10 cm, body mass; 68.88 ± 13.72 kg) completed one preliminary and three experimental trials; control (CON), COLD and MENT. Experimental trials consisted of 40 min rest followed by 30 min of cycling exercise at 6 metabolic equivalents and a 6-min walk test (6MWT), within a 35 °C, 50% relative humidity environment. Experimental interventions (every 10 min); cold water (4 °C) ingestion (total of 1.5L) or menthol (5 ml mouth swill for 5 s, menthol concentration of 0.01%). RESULTS: Peak rectal temperature (T(re)) was significantly (P < 0.05) lower in COLD compared with CON (-0.34 ± 0.16 °C) and MENT (-0.36 ± 0.20 °C). End exercise heart rate (HR) decreased in COLD compared with CON (-7 ± 9 b min(-1)) and MENT (-6 ± 7 b min(-1)). There was no difference in end exercise thermal sensation (TS) (CON; 6.1 ± 0.4, COLD; 6.0 ± 0.4, MENT; 6.4 ± 0.6) or thermal comfort (TC) (CON; 4 ± 1, COLD; 4 ± 1, MENT; 4 ± 1) between trials. The participants walked significantly further during the COLD 6MWT compared with CON (40 m ± 40 m) and MENT (40 m ± 30 m). There was reduced physiological strain in the COLD 6MWT compared with CON (T(re); -0.21 ± 0.24 °C, HR; -7 ± 8 b min(-1)) and MENT (T(re); -0.23 ± 0.24 °C, HR; -4 ± 7 b min(-1)). CONCLUSION: The elderly have reduced physiological strain (T(re) and HR) during activities of daily living and a 6MWT in hot UK climatic conditions, when they drink cold water. Furthermore, the elderly's perception (TS and TC) of the hot environment did not differ from CON at the end of exercise with COLD or MENT interventions. Menthol provided neither perceptual benefit to exercise in the heat nor functional gain. The TS data indicate that elderly may be at increased risk of heat illness, due to not feeling hot and uncomfortable enough to implement physiological strain reducing strategies such as cold-water ingestion.

Climate change awareness: Empirical evidence for the European Union*

In this paper, we assess public attitudes on climate change in Europe over the last decade. Using aggregate figures from the Special Eurobarometer surveys on Climate Change, we find that environmental concern is directly re-lated to per capita income, social trust, secondary education, the physical distress associated with hot weather, media coverage, the share of young people in the total population, and monetary losses caused by extreme weather episodes. It is also inversely related to greenhouse gas emissions, relative power position of right-wing parties in government and tertiary education. Moreover, we find a significant, opposite impact for two dummies for years 2017 and 2019, which we respectively associate with the effects of Donald Trump’s denial campaigns and the U.S. Paris Agreement withdrawal announcement, and Greta Thunberg’s environmental activism. (c) 2021 Elsevier B.V. All rights reserved. In this paper, we assess public attitudes on climate change in Europe over the last decade. Using aggregate figures from the Special Eurobarometer surveys on Climate Change, we find that environmental concern is directly related to per capita income, social trust, secondary education, the physical distress associated with hot weather, media coverage, the share of young people in the total population, and monetary losses caused by extreme weather episodes. It is also inversely related to greenhouse gas emissions, relative power position of rightwing parties in government and tertiary education. Moreover, we find a significant, opposite impact for two dummies for years 2017 and 2019, which we respectively associate with the effects of Donald Trump?s denial campaigns and the U.S. Paris Agreement withdrawal announcement, and Greta Thunberg?s environmental activism.

Energy balances, thermal performance, and heat stress: Disentangling occupant behaviour and weather influences in a Dutch net-zero energy neighborhood

Decarbonizing the building stock is a central component of global climate change mitigation efforts. In practice, this decarbonization can be achieved by a variety of different measures, including improvements in building energy efficiency, electrification of energy demand to reduce reliance on fossil fuels, and installation of distributed (renewable) generation in conjunction with flexible storage. However, these large-scale, often disruptive changes to the built environment also raise a number of concerns, such as loss of occupant comfort exacerbated by climate change, and introduction of additional stressors on the distribution grid. In this paper, we demonstrate several conclusions using detailed sub-hourly data of two years (2019-2020) collected from 40 homes in a recently refurbished net-zero energy neighborhood in the Netherlands. This paper shows that, in renovation projects like the case study, net-zero energy balances should be considered on a neighborhood, rather than building level to minimize worst case planning by accounting for occupant influences and seasonal effects. Furthermore, the energy flexibility and climate resilience in the buildings seems to be rather limited, as a result of energy efficiency improvements. While helpful in climate change mitigation efforts, the large seasonal differences in energy demand and generation imply that this evolution is perhaps sub-optimal from the grid perspective. The results illustrate that all homes in the study were net-zero energy over the two year period, sometimes net positive by up to a factor of three. This led to considerable excess generation especially during the summer months. In addition, it was found that indoor air temperature sensors in a number of buildings showed overheating beyond guideline thermal comfort temperature of 25 degrees C, showing potential thermal comfort and heat stress for vulnerable occupants. These results motivate energy storage or modifications of the installed heat pumps to leverage summer excess generation while reducing the impact of summer heat waves. These findings should enable the Netherlands and other countries aiming to fully decarbonize the building stock formulate better, future-proof policies.(c) 2022 Elsevier B.V. All rights reserved.

Examining the magnitude and perception of summertime overheating in London care homes

This paper brings together objective and subjective data on indoor temperature and thermal comfort to examine the magnitude and perception of summertime overheating in two London-based care homes occupying modern and older buildings. Continuous monitoring of indoor and outdoor temperature, relative humidity and CO2 levels was conducted in summer 2019 along with thermal comfort surveys and semi-structured interviews with older residents and staff of the care settings. Indoor temperatures were found to be high (>30 degrees C) with bedroom temperatures often higher at night than daytime across both care settings. Limited opening due to window restrictors constrained night-time ventilation. Overheating was prevalent with four out of the five monitored bedrooms failing all four overheating metrics investigated. While 35-42% of staff responses perceived indoor temperatures to be uncomfortably hot, only 13-19% of resident responses were found to do so, indicating that elderly residents tend to be relatively insensitive to heat, leaving them open to overheating without realising it. Residents and staff in the modern care setting were less satisfied with their thermal conditions. As hybrid buildings, care settings need to keep both residents and staff comfortable and healthy during hot weather through night-time ventilation, management of heating and supportive institutional practices.

Heat stress and cardiac strain in French vineyard workers

Agricultural workers often produce considerable excess heat due to the physically demanding nature of their activities, increasing their risk of thermal stress in even moderately warm conditions. Few studies have examined the physiological responses to heat load in agriculture. We aimed to assess the heat strain experienced by vineyard workers during canopy management in dry field conditions, and to disentangle the effects of the heat produced by the body and the thermal environment. Thirty workers from five Bordeaux vineyards of southern France were monitored during vine-lifting and trellising (June 2012). The mean heart rate, net cardiac cost, relative cardiac cost, and cardiac workload score were assessed during field activity. As the workers were nested within vineyards, multilevel linear regression models were used for correct inference. Skin temperature increased by an average of 1.0°C. Cardiac indices showed marked differences between individuals. The workload was evaluated as ‘heavy’ or ‘very heavy’ for more than one-third of the workers, of whom one experienced heat exhaustion. Above some individual characteristics, we highlighted a contextual effect (air temperature) for the mean heart rate (P = 0.03), the relative cardiac cost (P = 0.01) and, to a lesser extent, a cardiac workload score (P = 0.07). Canopy management by hand in vineyards causes considerable cardiac and thermoregulatory strain. Appropriate instruments should be developed to simultaneously evaluate work intensity, work quality, and productivity at the vineyard level to raise the awareness of both managers and employees about taking preventive measures.

Using meteorological data to estimate heat stress of construction workers on scaffolds for improved safety standards

The analysis of susceptibility of construction workers to heat stress, the results of which are presented in this paper, was an important research module of the large research project focused on safety of workers on construction sites. The paper assesses the possibility of using different sets of data gathered in full scale on the scaffolding and on the meteorological station to estimate the heat stress of people working on scaffolding. The main purpose is to check if the use of public data from meteorological stations can provide reliable estimation. A simplified formula of Universal Thermal Climate Index (UTCI*) is used in analyses. The values of UTCI* calculated on the basis of two sets of input parameters are compared to each other and analysed. The measurements and UTCI* calculations are presented for 24 scaffolding structures located in Poland in L ‘ odz ‘ and Lower Silesian provinces. Test results based on construction sites and meteorological stations data are different, but statistical analysis shows their correlation. A stronger correlation occurs for scaffolding structures located in L ‘ odz ‘ province, while it is weaker for the results obtained in Lower Silesian province. The results show the possibility of simplified evaluation of comfort/discomfort of people working on scaffolding on the basis of publicly available environmental data measured at meteorological stations.

Analysis of the impact of heat waves on daily mortality in urban and rural areas in Madrid

The objective of this study was to analyze and compare the effect of high temperatures on daily mortality in the urban and rural populations in Madrid. Data were analyzed from municipalities in Madrid with a population of over 10,000 inhabitants during the period from January 1, 2000 to December 31, 2020. Four groups were generated: Urban Metropolitan Center, Rural Northern Mountains, Rural Center, and Southern Rural. The dependent variable used was the rate of daily mortality due to natural causes per million inhabitants (CIE-X: A00-R99) between the months of June and September for the period. The primary independent variable was maximum daily temperature. Social and demographic “context variables” were included: population >64 years of age (%), deprivation index and housing indicators. The analysis was carried out in three phases: 1) determination of the threshold definition temperature of a heat wave (Tumbral) for each study group; 2) determination of relative risks (RR) attributable to heat for each group using Poisson linear regression (GLM), and 3) calculation of odds ratios (OR) using binomial family GLM for the frequency of the appearance of heat waves associated with context variables. The resulting percentiles (for the series of maximum daily temperatures for the summer months) corresponding to Tthreshold were: 74th percentile for Urban Metropolitan Center, 76th percentile for Southern Rural, 83rd for Rural Northern Mountains and 98th percentile for Center Rural (98). Greater vulnerability was found for the first two. In terms of context variables that explained the appearance of heat waves, deprivation index level, population >64 years of age and living in the metropolitan area were found to be risk factors. Rural and urban areas behaved differently, and socioeconomic inequality and the composition of the population over age 64 were found to best explain the vulnerability of the Rural Center and Southern Rural zones.

The effectiveness of intervening on social isolation to reduce mortality during heat waves in aged population: A retrospective ecological study

BACKGROUND: Heat waves are correlated with increased mortality in the aged population. Social isolation is known as a vulnerability factor. This study aims at evaluating the correlation between an intervention to reduce social isolation and the increase in mortality in the population over 80 during heat waves. METHODS: This study adopted a retrospective ecologic design. We compared the excess mortality rate (EMR) in the over-80 population during heat waves in urban areas of Rome (Italy) where a program to reduce social isolation was implemented, to others where it was not implemented. We measured the mortality of the summer periods from 2015 to 2019 compared with 2014 (a year without heat waves). Winter mortality, cadastral income, and the proportion of people over 90 were included in the multivariate Poisson regression. RESULTS: The EMR in the intervention and controls was 2.70% and 3.81%, respectively. The rate ratio was 0.70 (c.i. 0.54-0.92, p-value 0.01). The incidence rate ratio (IRR) of the interventions, with respect to the controls, was 0.76 (c.i. 0.59-0.98). After adjusting for other variables, the IRR was 0.44 (c.i. 0.32-0.60). CONCLUSIONS: Reducing social isolation could limit the impact of heat waves on the mortality of the elderly population.

Effects of urban greenery on health. A study from remote sensing

Global warming is causing increasing Heat Waves that affect human health. High temperatures markedly increase morbidity and mortality. Urban Heat Islands increase the effects of Heat Waves and are a serious inconvenience to human health and comfort. Cities can substantially increase local temperatures and reduce temperature drop at night. During the night, the greater thermal inertia of the central areas reduces their cooling capacity. On the other hand, it is important to highlight that urban vegetation plays a key role in adapting cities to Global Warming and Urban Heat Island. Green areas have lower temperatures than the rest of land uses and generate a cooling effect that spreads to their surroundings creating a “cool island” effect. The main objective of this paper is to establish the nocturnal land surface temperature and land surface air temperature of Barcelona Metropolitan Area (35 municipalities, 636 km(2), 3.3 million inhabitants) in an episode of a nocturnal heatwave and to estimate its possible impact on health and mortality. Subsequently, nighttime temperatures are analysed in this extreme heat context to determine their spatial distribution and detect the urban landscapes that are most vulnerable to extreme night heat. Modelling of land surface temperature must reveal the elements that determine night Urban Heat Island and consequently identify actions that can be implemented at urban planning level to refresh the environment during the night and thus increase the resilience of the most vulnerable landscapes and improve residents’ health. This paper studies the effect of urban greenery and green infrastructures on Nighttime Urban Heat Island and propose climate adaptation measures and design for urban green areas to decrease high temperature in a Heat Wave context, which contributes to reducing the serious negative impacts on people’s health.

Excess heat factor climatology, trends, and exposure across European functional urban areas

In Europe, regional climate change prospects indicate the urgency of adapting to extreme weather events. While increasing temperature trends have already been detected, in the last decades, the adoption of a European heatwave (HW) early-warning index is not yet consensual, partially due to the significant number of alternative algorithms, in some cases adjusted to the measurement of sector-specific impacts (as per the Expert Team on Climate Risk and Sector-specific Indices (ET-SCI)). In particular, the Excess Heat Factor (EHF) has been shown to accurately predict heat-related human health outcomes, in mid-latitude climates, provided that local summer exposure to excess heat is mostly driven by extreme air temperatures, with a lower contribution from relative humidity. Here, annual summaries of EHF-based HW detection were calculated for the European region, using daily maximum and minimum temperatures from the homogenised version of the E-OBS gridded dataset. Annual HW frequencies, duration, mean magnitude, maximum amplitude, and severity were subject to climatology and trend analysis across the European biogeographical regions, considering the 1961-1990 period as the baseline reference for anomaly detection in the more recent (1991-2018) decades. As HW-dependent morbidity/mortality affects mostly the elderly, an EHF-based HW Exposure Index was also calculated, by multiplying the recent probability of severe events per the number of people aged 65, or more, in the European Functional Urban Areas (FUAs). Results show that recent historical EHF-based patterns diverge across European Biogeographical regions, with a clear latitudinal gradient. Both the historical mean and recent trends point towards the greater exposure in the southern European Mediterranean region, driven by the significant increase of HW frequency, duration and maximum severity, especially in the last 3 decades; conversely, annual maximum EHF intensities (i.e., greatest deviations from the local 90th daily mean temperature) are mostly found in the northern and/or high altitude Boreal, Alpine and Continental regions, as a consequence of the latitudinal effect of local climatology on the HWM/HWA indices (this also translates into greater magnitudes of change, in this regions). Nonetheless, by simultaneously considering the probability of Severe HW occurrence in the last three decades, together with the log transformation of people aged 65 or more, results show that greater HW Exposure Indices affect FUAs across the whole Europe, irrespective of its regional climate, suggesting that more meaningful vulnerability assessments, early warning and adaptation measures should be prioritized accordingly.

Combinative study of urban heat island in Ascoli Piceno City with remote sensing and CFD simulation-climate change and urban health resilience-ccuhre project

This paper presents a new methodological approach for analysing the impacts of climate change on the urban habitat and improving the quality of life for citizens. The study falls within the diagnostic phase of the Climate Change and Urban Health Resilience (CCUHRE) research project applied to the rationalist neighbourhood of Monticelli, a suburb of Ascoli Piceno (Italy). The methodological approach tests innovative and multidisciplinary cognitive tools to quantify the impacts of climate change and create refined risk maps combining remote sensing, spatial data, satellite images, and thermal fluid dynamic (CFD) simulations. These tools created an atlas of green areas and surfaces using scientific indexes that describe the relationship between the urban form and heat and between the type of ground and materials. The information yielded by geoprocessing will allow critical aspects in the context to be addressed with site-specific strategies. In fact, through downscaling, it is possible to analyse the thermal fluid dynamics characteristics of the most significant urban areas and identify the related weather/climate characteristics, perceptual scenarios, and thermal stressed regions. The results have provided a dataset that defines the degree of vulnerability of the neighbourhood and identifies the areas exposed to thermal risk.

Excess mortality in England during the 2019 summer heatwaves

There is increasing evidence that rising temperatures and heatwaves in the United Kingdom are associated with an increase in heat-related mortality. However, the Public Health England (PHE) Heatwave mortality monitoring reports, which use provisional death registrations to estimate heat-related mortality in England during heatwaves, have not yet been evaluated. This study aims to retrospectively quantify the impact of heatwaves on mortality during the 2019 summer period using daily death occurrences. Second, using the same method, it quantifies the heat-related mortality for the 2018 and 2017 heatwave periods. Last, it compares the results to the estimated excess deaths for the same period in the PHE Heatwave mortality monitoring reports. The number of cumulative excess deaths during the summer 2019 heatwaves were minimal (161) and were substantially lower than during the summer 2018 heatwaves (1700 deaths) and summer 2017 heatwaves (1489 deaths). All findings were at variance with the PHE Heatwave mortality monitoring reports which estimated cumulative excess deaths to be 892, 863 and 778 during the heatwave periods of 2019, 2018 and 2017, respectively. Issues are identified in the use of provisional death registrations for mortality monitoring and the reduced reliability of the Office for National Statistics (ONS) daily death occurrences database before 2019. These findings may identify more reliable ways to monitor heat mortality during heatwaves in the future.

Extreme heat, birth outcomes, and socioeconomic heterogeneity

We investigate the effect of extreme heat on birth outcomes and how this effect may vary by family socioeconomic status (SES). We create a detailed data set by linking individual-level data on approximately 4 million newborns in Spanish provincial capitals between 1990 and 2016 with precise meteorological data on the temperatures children experienced throughout their gestation. The outcomes are preterm birth, low birth weight, and very low birth weight. Socioeconomic status is assessed using parents’ highest occupational level. We find that the incidence of negative birth outcomes increased for children exposed to extreme heat in early gestation. Further, the effect is concentrated mostly among children from a low socioeconomic background. Given the importance of birth outcomes for the next generation’s well-being, our results highlight the potential contributions of extreme temperatures to the widening of preexisting socioeconomic inequalities. The forecasted increase in extreme climatic events makes the results of this study concerning, especially for low-SES children.

Extreme occupational heat exposure is associated with elevated haematological and inflammatory markers in Fire Service Instructors

NEW FINDINGS: What is the central question of this study? Fire service instructors are frequently exposed to live fire scenarios, representing the most extreme chronic occupational heat exposure. These individuals report a series of unique health issues. We sought to identify whether the number of exposures completed was associated with inflammatory and immunological markers and symptoms of ill health. What is the main finding and its importance? Fire service instructors exhibit greater levels of inflammatory markers in comparison to firefighters. The number of exposures to fire is positively related to the prevalence of ill health and inflammation. Implementation of a proposed limit of nine exposures per month might be appropriate to minimize health issues. ABSTRACT: Fire Service Instructors (FSIs) experience ∼10 times more fire exposures than firefighters (FFs), and the increased physiological stress from this potentially puts them at risk of ill health and future cardiac events. The aim of the study was to establish whether FSIs exhibit elevated biomarkers associated with cardiac event risk, identify whether FSIs experience systemic inflammation linked to the frequency of fire exposure and evaluate a proposed exposure limit of nine exposures per month. Blood samples were collected from 110 Fire Service personnel (mean ± SD, age,44 ± 7 years; height, 178.1 ± 7.1 cm; and body mass, 84.3 ± 12.0 kg; FSIs n = 53 and FFs n = 57) for biomarker analysis. Work history details were collected from all participants. Participants with biomarker concentrations above healthy reference ranges were classified as being ‘at risk’. The neutrophil-to-lymphocyte ratio, platelet count, cardiac troponin T, interleukin (IL)-6, IL-1β, C-reactive protein and immunoglobulin G were greater in FSIs than in FFs (P < 0.05). Multiple regression analysis revealed that 18.8% of IL-6, 24.9% of IL-1β, 29.2% of C-reactive protein and 10.9% of immunoglobulin G variance could be explained by the number of exposures to heat per month. Odds ratios revealed that those FSIs above the nine per month exposure limit were six to 12 times more likely to be classified as 'at risk' and were 16 times more likely to experience symptoms of ill health. Increased cytokine levels suggest that FSIs experience systemic inflammation, which is related to symptoms of ill health. We propose that an exposure limit could reduce the prevalence of these biomarker risk factors and ill health.

Gender-specific differences of renal heat tolerance in older adults during heat waves

BACKGROUND: Heat waves are known to cause increased morbidity and mortality in susceptible populations like old and functionally impaired people. The objective of the study was to assess renal tubular stress, a predictor for development of acute kidney injury, during heat waves in Central Europe. As a marker of renal tubular stress tissue inhibitor of metalloproteinases-2 [TIMP-2]∙insulin-like growth factor binding protein-7 [IGFBP7], a new FDA-cleared renal tubular stress biomarker, was used. MATERIALS AND METHODS: 68 residents from facilities of sheltered housing with urine samples collected at heat waves in 2015 and at control visits were included. Urinary [TIMP-2]∙[IGFBP7] was compared between the heat waves and the control visits. Multivariate linear models were adjusted for age, frailty index, and functional comorbidity index. RESULTS: The median age was 82.0 years, 82.3% were women. The percentage of elevated levels of urinary [TIMP-2]∙[IGFBP7] (>0.3 [ng/mL]2/1,000) in the total study population was higher at the heat waves than at the control visits (25.0% vs. 17.7%). The effect of the heat waves on urinary [TIMP-2]∙[IGFBP7] was stronger in men than in women: The percentage of elevated levels was 75.0% in men and 14.3% in women. In the multivariate analysis, the mean urinary [TIMP-2]∙[IGFBP7] was 0.48 (95% CI 0.25; 0.70) (ng/mL)2/1,000 higher in men than in women. Except gender, a number of additional variables did not show an association with urinary [TIMP-2]∙[IGFBP7] at the heat waves or the control visits. CONCLUSIONS: At heat waves, urinary [TIMP-2]∙[IGFBP7] was elevated and higher in men than in women. This suggests gender-specific differences in renal heat tolerance in older people.

Heatwaves: An invisible risk in UK policy and research

In 2019, a heatwave – an unusual extended period of hot weather – broke the UK’s highest recorded temperature of 38.7 degrees C set in 2003. Of concern is that for summer 2019, this resulted in 892 excess deaths. With the intensity and frequency of UK heatwaves projected to increase, and summer temperatures predicted to be 5 degrees C hotter by 2070, urgent action is needed to prepare for, and adapt to, the changes now and to come. Yet it remains unclear what actions are needed and by whom. In response, a systematic literature review of UK heatwaves peer reviewed publications, inclusive of keyword criteria (total papers returned = 183), was conducted to understand what lessons have been learnt and what needs to happen next. Our research shows that heatwaves remain largely an invisible risk in the UK. Communication over what UK residents should do, the support needed to make changes, and their capacity to enact those changes, is often lacking. In turn, there is an inherent bias where research focuses too narrowly on the health and building sectors over other critical sectors, such as agriculture. An increased amount of action and leadership is therefore necessary from the UK government to address this.

Machine learning approaches to identify thresholds in a heat-health warning system context

During the last two decades, a number of countries or cities established heat-health warning systems in order to alert public health authorities when some heat indicator exceeds a predetermined threshold. Different methods were considered to establish thresholds all over the world, each with its own strengths and weaknesses. The common ground is that current methods are based on exposure-response function estimates that can fail in many situations. The present paper aims at proposing several data-driven methods to establish thresholds using historical data of health issues and environmental indicators. The proposed methods are model-based regression trees (MOB), multivariate adaptive regression splines (MARS), the patient rule-induction method (PRIM) and adaptive index models (AIM). These methods focus on finding relevant splits in the association between indicators and the health outcome but do it in different fashions. A simulation study and a real-world case study hereby compare the discussed methods. Results show that proposed methods are better at predicting adverse days than current thresholds and benchmark methods. The results nonetheless suggest that PRIM is overall the more reliable method with low variability of results according to the scenario or case.

Public attitudes to, and behaviours taken during, hot weather by vulnerable groups: Results from a national survey in England

BACKGROUND: Hot weather leads to increased illness and deaths. The Heatwave Plan for England (HWP) aims to protect the population by raising awareness of the dangers of hot weather, especially for those most vulnerable. Individuals at increased risk to the effects of heat include older adults, particularly 75+, and those with specific chronic conditions, such as diabetes, respiratory and heart conditions. The HWP recommends specific protective actions which relate to five heat-health alert levels (levels 0-4). This study examines the attitudes to hot weather of adults in England, and the protective measures taken during a heatwave. METHODS: As part of a wider evaluation of the implementation and effects of the HWP, a survey (n = 3153) and focus groups, a form of group interview facilitated by a researcher, were carried out after the June 2017 level 3 heat-health alert. Survey respondents were categorised into three groups based on their age and health status: ‘vulnerable’ (aged 75+), ‘potentially vulnerable’ (aged 18-74 in poor health) and ‘not vulnerable’ (rest of the adult population) to hot weather. Multivariable logistic regression models identified factors associated with these groups taking protective measures. In-person group discussion, focused on heat-health, were carried out with 25 people, mostly aged 75 + . RESULTS: Most vulnerable and potentially vulnerable adults do not consider themselves at risk of hot weather and are unaware of the effectiveness of important protective behaviours. Only one-quarter of (potentially) vulnerable adults reported changing their behaviour as a result of hearing hot weather-related health advice during the level 3 alert period. Focus group findings showed many vulnerable adults were more concerned about the effects of the sun’s ultra-violet radiation on the skin than on the effects of hot temperatures on health. CONCLUSIONS: Current public health messages appear to be insufficient, given the low level of (potentially) vulnerable adults changing their behaviour during hot weather. In the context of increasingly warmer summers in England due to climate change, public health messaging needs to convince (potentially) vulnerable adults of all the risks of hot weather (not just effects of sunlight on the skin) and of the importance of heat protective measures.

Using citizen sensing to identify heat-exposed neighbourhoods

Rural areas cool off by night but built-up urban areas lack similar relief and may threaten vulnerable people’s health during heat waves. Temperature varies within a city due to the heterogenous nature of urban environments, but official measurement stations are unable to capture local variations, since they use few measurement stations typically set up outside of urban areas. Meteorological measurements may as such be at odds with citizen sensing, where absolute accuracy is sacrificed in pursuit of increased coverage. In this article, we use geographic information processing methodologies and generate 144 hourly apparent temperature surfaces for Rotterdam during a six-day heat wave that took place in July 2019 in The Netherlands. These surfaces are used to generate a humidex degree hours (HDH) composite map. The HDH metric integrates apparent temperature intensity with duration into one spatially explicit value and is used to identify geographical areas in Rotterdam where citizens may experience adverse health effects of prolonged heat exposure. Combining the HDH map with demographic data allows us to identify the most heat-exposed areas with the largest share of vulnerable population. These neighbourhoods may be the locations most in need of adaptation measures.

Vulnerability and adaptation to heat waves in preschools: Experiences, impacts and responses by unit heads, educators and parents

With global warming, heat waves are becoming more frequent and intense, particularly in northern latitudes, where the pace of warming is faster. Due to its northern location, Swedish society has been built primarily to manage a cold climate, and is less prepared to manage heat, which the 2018 heat wave demonstrated. While young children are recognized as vulnerable to heat, and are reliant on preschool care, few studies have examined how the young and vulnerable people are cared for during heat waves in the institutional preschool setting. This exploratory study demonstrates how children in preschool environments are vulnerable to heat, in order to identify management needs by assessing experienced impacts and responses to the 2018 heat wave in Sweden. Empirically, the study builds on a survey completed by 33 unit heads responsible for 77 preschools in the focused municipality, and qualitative interviews with five educators and five parents, as well as temperature measurements in three selected preschools. This study shows that: (i) children and educators are exposed to both high indoor and outdoor temperatures in the preschools; (ii) both children and educators were affected by the heat wave in the preschools, and their sensitivity is deeply intertwined due to their dependency relationship, rendering a form of double sensitivity to heat; and (iii) the preschool heads and educators were unprepared to sufficiently cope with the heat wave, and organizational strategies for managing heat were lacking, indicating weak adaptive capacity. The significant exposure to heat in preschool environments, the dual sensitivity of children and preschool educators, and the low organizational readiness resulting in uncoordinated responses to reduce heat stress suggest a pronounced vulnerability to heat waves in preschools.

Integrating CFD-GIS modelling to refine urban heat and thermal comfort assessment

Constant urban growth exacerbates the demand for residential, commercial and traffic areas, leading to progressive surface sealing and urban densification. With climate change altering precipitation and temperature patterns worldwide, cities are exposed to multiple risks, demanding holistic and anticipatory urban planning strategies and adaptive measures that are multi-beneficial. Sustainable urban planning requires comprehensive tools that account for different aspects and boundary conditions and are capable of mapping and assessing crucial processes of land-atmosphere interactions and the impacts of adaptation measures on the urban climate system. Here, we combine Computational Fluid Dynamics (CFD) and Geographic Information System (GIS) capabilities to refine an existing 2D urban micro- and bioclimatic modelling approach. In particular, we account for the vertical and horizontal variability in wind speed and air temperature patterns in the urban canopy layer. Our results highlight the importance of variability of these patterns in analysing urban heat development, intensity and thermal comfort at multiple heights from the ground surface. Neglecting vertical and horizontal variability, non-integrated CFD modelling underestimates mean land surface temperature by 7.8 °C and the Universal Thermal Climate Index by 6.9 °C compared to CFD-integrated modelling. Due to the strong implications of wind and air temperature patterns on the relationship between surface temperature and human thermal comfort, we urge caution when relying on studies solely based on surface temperatures for urban heat assessment and hot spot analysis as this could lead to misinterpretations of hot and cool spots in cities and, thus, mask the anticipated effects of adaptation measures. The integrated CFD-GIS modelling approach, which we demonstrate, improves urban climate studies and supports more comprehensive assessments of urban heat and human thermal comfort to sustainably develop resilient cities.

Burnt by the sun: Disaggregating temperature’s current and future impact on mortality in the Turkish context

Our study plans to quantify the effect of higher temperatures on different critical Turkish health outcomes mainly to chart future developments and to identify locations in Turkey that may be potential vulnerable hotspots. The general structure of the temperature mortality function was estimated with different fixed-level effects, with a specific focus on the mortality effect of maximum apparent temperature. Regional models were fitted to pinpoint the thresholds where the temperature-mortality relation changes, thus investigating whether the thresholds are determined nationally or regionally. The future patterns were estimated by extrapolating from future temperature trends: analyzing possible future mortality trends under the restricting assumption of minimal acclimation. Using the fixed effect regression structure, social and developmental variables acting as heat effect modifiers were also identified. In the largest dataset, the initial fixed effect regression specification supports the hypothesis summarized by the U-shaped relationship between temperature and mortality. This is a first corroboration for Turkish climate and health research. In addition, intermediation effects were substantiated for the level of urbanization and population density, and the human development and health development within provinces. Regional heterogeneity is substantiated by the mortality-temperature relationship and the significant threshold deviations from the national average.

Future projections of heat mortality risk for major European cities

Over the last few decades, heat waves have intensified and have led to excess mortality. While the probability of being affected by heat stress has significantly increased, the risk of heat mortality is rarely quantified. This quantification of heat mortality risk is necessary for systematic adaptation measures. Furthermore, heat mortality records are sparse and short, which presents a challenge for assessing heat mortality risk for future climate projections. It is therefore crucial to derive indicators for a systematic heat mortality risk assessment. Here, risk indicators based on temperature and mortality data are developed and applied tomajor cities in Germany, France, and Spain using regional climatemodel simulations. Biascorrected dailymaximum, minimum, and wet-bulb temperatures show increasing trends in future climate projections for most considered cities. In addition, we derive a relationship between daily maximum temperatures and mortality for producing future projections of heatmortality risk fromextreme temperatures that is based on low(representative concentration pathway RCP2.6) and high (RCP8.5) emission scenario future climate projections. Our results illustrate that heatmortality increases by about 0.9% decade(-1) in Germany, 1.7% decade(-1) in France, and 7.9% decade(-1) in Spain for RCP8.5 by 2050. The future climate projections also show that wet-bulb temperatures above 30 degrees C will be reached regularly, withmaxima above 40 degrees C likely by 2050. Our results suggest a significant increase of heat mortality in the future, especially in Spain. On average, our results indicate that themortality risk trend is almost 2 times as high in all three countries for the RCP8.5 scenario relative to RCP2.6. SIGNIFICANCE STATEMENT: Anthropogenic greenhouse gas emissions have led to an increase in temperatures over the last century. This general warming leads to more intensive and more frequent heat waves that affect humans adversely. Extreme temperatures exert heat stress on the human body and can lead to reduced productivity, sickness, and death. Herewe derive a statistical relationship between extreme temperatures and the number of deaths inmajor cities in three European countries so as to be able to use future climate simulations to determine likely numbers of heat-related deaths. Our results show that the number of heat-related deaths will increase in major European cities by 2050 and will be 2 times as high for high greenhouse gas emissions simulations as for low greenhouse gas emissions simulations.

Performance and thermal perceptions of runners competing in the London Marathon: Impact of environmental conditions

The 2018 Virgin Money London Marathon (2018 VMLM) was the hottest in the race’s 37-year history. The aims of this research were to (1) survey novice mass participation marathoners to examine the perceptual thermal demands of this extreme weather event and (2) investigate the effect of the air temperature on finish times. A mixed-methods design involving the collection of survey data (n = 364; male = 63, female = 294) and secondary analysis of environmental and marathon performance (676,456 finishers) between 2001 and 2019 was used. The 2018 VMLM mean finishing time was slower than the mean of all other London marathons; there were positive correlations between maximum race day temperature and finish time for mass-start participants, and the difference in maximum race day temperature and mean maximum daily temperature for the 60 days before the London Marathon (p < 0.05). Of the surveyed participants, 23% classified their thermal sensation as 'warm', 'hot' or 'very hot' and 68% 'thermally comfortable' during training, compared with a peak of 95% feeling 'warm', 'hot' or 'very hot' and 77% 'uncomfortable' or 'very uncomfortable' during the 2018VMLM. Organisers should use temperature forecasting and plan countermeasures such as adjusting the start time of the event to avoid high temperatures, help runners predict finish time and adjust pacing strategies accordingly and provide safety recommendations for participants at high-risk time points as well as cooling strategies.

Towards a generic residential building model for heat-health warning systems

A strong heat load in buildings and cities during the summer is not a new phenomenon. However, prolonged heat waves and increasing urbanization are intensifying the heat island effect in our cities; hence, the heat exposure in residential buildings. The thermophysiological load in the interior and exterior environments can be reduced in the medium and long term, through urban planning and building physics measures. In the short term, an increasingly vulnerable population must be effectively informed of an impending heat wave. Building simulation models can be favorably used to evaluate indoor heat stress. This study presents a generic simulation model, developed from monitoring data in urban multi-unit residential buildings during a summer period and using statistical methods. The model determines both the average room temperature and its deviations and, thus, consists of three sub-models: cool, average, and warm building types. The simulation model is based on the same mathematical algorithm, whereas each building type is described by a specific data set, concerning its building physical parameters and user behavior, respectively. The generic building model may be used in urban climate analyses with many individual buildings distributed across the city or in heat-health warning systems, with different building and user types distributed across a region. An urban climate analysis (with weather data from a database) may evaluate local differences in urban and indoor climate, whereas heat-health warning systems (driven by a weather forecast) obtain additional information on indoor heat stress and its expected deviations.

An unwell patient with Parkinson’s disease: Hyperpyrexia syndrome in a heatwave

Hyperpyrexia syndrome in Parkinson’s disease (PD) is a medical emergency requiring prompt action. This can be precipitated by numerous provoking factors, in particular withdrawal of dopaminergic medication. We report a case of a patient with PD presenting with confusion, dramatic worsening of PD symptoms and pyrexia in the context of a heatwave, potentially mediating its effect through dehydration and impaired medication absorption. Precipitous cooling and conversion of dopaminergic medication to a rotigotine patch due to drowsiness led to her rapid improvement. The possibility of infection was covered however no source of infection or evidence of inflammatory response was found, but remained an important differential. This case highlights the importance of recognising and managing hyperpyrexia syndrome in PD and the possibility of uncharacteristically hot weather being a cause.

Association between high temperature and heatwaves with heat-related illnesses: A systematic review and meta-analysis

BACKGROUND: A large body of scientific evidence has established the impact of increased temperatures on human health. There is a relationship between extreme heat (either incremental temperature increase or heatwaves), and heat-related illnesses. This study aimed to collate the research findings on the effects of extreme heat on heat-related illness in a systematic review and meta-analysis, and to provide robust evidence for needed public health intervention. METHODS: We conducted a search of peer-reviewed articles in three electronic databases (PubMed, EMBASE, and SCOPUS), from database inception until January 2022. A random-effects meta-analysis model was used to calculate the pooled relative risks (RRs) of the association between high temperature and heat-related illness outcomes. A narrative synthesis was also performed for studies analysing heatwave effects. Assessment of evidence was performed in three parts: individual study risk of bias; quality of evidence across studies; and overall strength of evidence. RESULTS: A total of 62 studies meeting the eligibility criteria were included in the review, of which 30 were qualified to be included in the meta-analysis. The pooled results showed that for every 1 °C increase in temperature, when measured from study-specific baseline temperatures, direct heat illness morbidity and mortality increased by 18 % (RR 1.18, 95%CI: 1.16-1.19) and 35 % (RR 1.35, 95%CI: 1.29-1.41), respectively. For morbidity, the greatest increase was for direct heat illness (RR 1.45, 95%CI: 1.38-1.53), compared to dehydration (RR 1.02, 95%CI: 1.02-1.03). There was higher risk for people aged >65 years (RR 1.25; 95 % CI: 1.20-1.30), and those living in subtropical climates (RR 1.25; 95 % CI: 1.21-1.29). CONCLUSION: Increased temperature leads to higher burden of disease from heat-related illness. Preventative efforts should be made to reduce heat-related illness during hot weather, targeting on the most vulnerable populations. This is especially important in the context of climate change.

Effect of a simulated heat wave on physiological strain and labour productivity

BACKGROUND: The aim of the study was to investigate the effect of a simulated heat-wave on the labour productivity and physiological strain experienced by workers. METHODS: Seven males were confined for ten days in controlled ambient conditions. A familiarisation day was followed by three (pre, during, and post-heat-wave) 3-day periods. During each day volunteers participated in a simulated work-shift incorporating two physical activity sessions each followed by a session of assembly line task. Conditions were hot (work: 35.4 °C; rest: 26.3 °C) during, and temperate (work: 25.4 °C; rest: 22.3 °C) pre and post the simulated heat-wave. Physiological, biological, behavioural, and subjective data were collected throughout the study. RESULTS: The simulated heat-wave undermined human capacity for work by increasing the number of mistakes committed, time spent on unplanned breaks, and the physiological strain experienced by the participants. Early adaptations were able to mitigate the observed implications on the second and third days of the heat-wave, as well as impacting positively on the post-heat-wave period. CONCLUSIONS: Here, we show for first time that a controlled simulated heat-wave increases workers’ physiological strain and reduces labour productivity on the first day, but it promotes adaptations mitigating the observed implications during the subsequent days.

Effects of hot nights on mortality in Southern Europe

BACKGROUND: There is strong evidence concerning the impact of heat stress on mortality, particularly from high temperatures. However, few studies to our knowledge emphasize the importance of hot nights, which may prevent necessary nocturnal rest. OBJECTIVES: In this study, we use hot-night duration and excess to predict daily cause-specific mortality in summer, using multiple cities across Southern Europe. METHODS: We fitted time series regression models to summer cause-specific mortality, including natural, respiratory, and cardiovascular causes, in 11 cities across four countries. We included a distributed lag nonlinear model with lags up to 7 days for hot night duration and excess adjusted by daily mean temperature. We summarized city-specific associations as overall-cumulative exposure-response curves at the country level using meta-analysis. RESULTS: We found positive but generally nonlinear associations between relative risk (RR) of cause-specific mortality and duration and excess of hot nights. RR of duration associated with nonaccidental mortality in Portugal was 1.29 (95% confidence interval [CI] = 1.07, 1.54); other associations were imprecise, but we also found positive city-specific estimates for Rome and Madrid. Risk of hot-night excess ranged from 1.12 (95% CI = 1.05, 1.20) for France to 1.37 (95% CI = 1.26, 1.48) for Portugal. Risk estimates for excess were consistently higher than for duration. CONCLUSIONS: This study provides new evidence that, over a wider range of locations, hot night indices are strongly associated with cause-specific deaths. Modeling the impact of thermal characteristics during summer nights on mortality could improve decisionmaking for preventive public health strategies.

Elderly people’s perceptions of heat stress and adaptation to heat: An interview study

OBJECTIVES: Heatwaves are having a disproportionate impact on the elderly population, as demonstrated by pronounced mortality and morbidity. The present study aimed to explore elders’ subjective experiences of heat impacts and adaptive strategies. METHODS: Semi-structured interviews with 19 elderly Swedes were conducted, focusing on their experiences of the extremely hot summer of 2018. RESULTS: Most informants suffered during the heatwave, although some found it pleasant. The readiness to implement adaptive measures was generally high among the healthiest, who were able to avoid excessive heat and adjust their daily routines. In contrast, those highly dependent on care from others had limited options for avoiding the heat, and little capacity to take up adaptive measures. DISCUSSION: With heat becoming an increasing problem, it is important to adjust elderly care so that the most vulnerable elderly people can avoid excessive heat exposure.

Evaluating heat extremes in the UK Climate Projections (UKCP18)

In recent years, UK summer heatwaves have resulted in thousands of excess deaths, with both extreme temperatures and high humidity increasing health risks. Here, the UK Climate Projections 2018 (UKCP18) are compared to observational (HadUK-Grid) and reanalysis data (ERA5) to quantify model performance at capturing mean, extremes (95th to 99.5th percentiles) and variability in the climate state and heat stress metrics (simplified wet bulb global temperature, sWBGT; Humidex; apparent temperature). Simulations carried out for UKCP18 generally perform as well as or better than CMIP5 models in reproducing observed spatial patterns of UK climate relating to extreme heat, with RMSE values on average similar to 30% less than for the CMIP5 models. Increasing spatial resolution in UKCP18 simulations is shown to yield a minor improvement in model performance (RMSE values on average similar to 5% less) compared to observations, however there is considerable variability between ensemble members within resolution classes. For both UKCP18 and CMIP5 models, model error in capturing characteristics of extreme heat generally reduces when using heat stress metrics with a larger vapour pressure component, such as sWBGT. Finally, the 95th percentile of observed UK summer temperature is shown to have similar to 60% greater interannual variability than the summer mean over the recent past (1981-2000). This effect is underestimated in UKCP18 models (similar to 33%) compared to HadUK-grid and ERA5. Compared to projected future changes in the global mean temperature, UK summer mean and 95th percentile temperatures are shown in increase at a faster rate than the global mean.

Forest structure and composition alleviate human thermal stress

Current climate change aggravates human health hazards posed by heat stress. Forests can locally mitigate this by acting as strong thermal buffers, yet potential mediation by forest ecological characteristics remains underexplored. We report over 14 months of hourly microclimate data from 131 forest plots across four European countries and compare these to open-field controls using physiologically equivalent temperature (PET) to reflect human thermal perception. Forests slightly tempered cold extremes, but the strongest buffering occurred under very hot conditions (PET >35°C), where forests reduced strong to extreme heat stress day occurrence by 84.1%. Mature forests cooled the microclimate by 12.1 to 14.5°C PET under, respectively, strong and extreme heat stress conditions. Even young plantations reduced those conditions by 10°C PET. Forest structure strongly modulated the buffering capacity, which was enhanced by increasing stand density, canopy height and canopy closure. Tree species composition had a more modest yet significant influence: that is, strongly shade-casting, small-leaved evergreen species amplified cooling. Tree diversity had little direct influences, though indirect effects through stand structure remain possible. Forests in general, both young and mature, are thus strong thermal stress reducers, but their cooling potential can be even further amplified, given targeted (urban) forest management that considers these new insights.

Heat-health action planning in the WHO European region: Status and policy implications

Adverse health effects from extreme heat remain a major risk, especially in a changing climate. Several European countries have implemented heat health action plans (HHAPs) to prevent ill health and excess mortality from heat. This paper assesses the state of implementation of HHAPs in the WHO European Region and discusses barriers and successes since the early 2000s. The results are based on a web-based survey among 53 member states on the current national and federal HHAPs in place. Guided by the eight core elements of HHAPs as outlined by the WHO Regional Office for Europe guidance from 2008, we analyzed which elements were fully or partially implemented and which areas of improvement countries identified. HHAP adaptations to account for COVID-19 were sought via literature search and expert consultations. 27 member states provided information, of which 17 countries reported having a HHAP. Five out of eight core elements, namely agreement on a lead body, accurate and timely alert systems, heat-related health information plans, strategies to reduce health exposure, and care for vulnerable groups, were at least partially implemented in all 17 plans. Alert systems were implemented most often at 94%. The least often implemented items were real-time surveillance, long-term urban planning, and preparedness of health and social systems. Five countries had published COVID-19 guidance online. Our findings suggest a progressive improvement in the development and rollout of HHAPs overall and awareness of vulnerable population groups in WHO/Europe, while integration of HHAPs into long-term climate change and health planning remains a challenge.

Impact of heat waves on hospitalisation and mortality in nursing homes: A case-crossover study

Climate change leads to more days with extremely hot temperatures. Previous analyses of heat waves have documented a short-term rise in mortality. The results on the relationship between high temperatures and hospitalisations, especially in vulnerable patients admitted to nursing homes, are inconsistent. The objective of this research was to examine the discrepancy between heat-related mortality and morbidity in nursing homes. A time-stratified case-crossover study about the impact of heat waves on mortality and hospitalisations between 1 January 2013 and 31 December 2017 was conducted in 10 nursing homes over 5 years in Flanders, Belgium. In this study, the events were deaths and hospitalisations. We selected our control days during the same month as the events and matched them by day of the week. Heat waves were the exposure. Conditional logistic regression models were applied. The associations were reported as odds ratios at lag 0, 1, 2, and 3 and their 95% confidence intervals. In the investigated time period, 3048 hospitalisations took place and 1888 residents died. The conditional logistic regression showed that odds ratios of mortality and hospitalisations during heat waves were 1.61 (95% confidence interval 1.10-2.37) and 0.96 (95% confidence interval 0.67-1.36), respectively, at lag 0. Therefore, the increase in mortality during heat waves was statistically significant, but no significant changes in hospitalisations were obtained. Our result suggests that heat waves have an adverse effect on mortality in Flemish nursing homes but have no significant effect on the number of hospitalisations.

Modelling the spatial pattern of heatwaves in the city of Bern using a land use regression approach

Heatwaves have been the deadliest weather extreme events in Europe in the last decades. People living in cities are especially prone to such events due to the urban heat island (UHI) effect which increases the heat stress in urban surroundings especially during calm, steady, and radiation intensive synoptic situations. Since official measurement stations in cities are scarce, studies on spatial patterns of UHIs often rely on satellite data, hobby meteorologists’ data, or on model outputs. Additionally, analyses of spatial UHI patterns using point-based measurements need adequate and cost-effective methods for spatial interpolation. In this study, air temperature data retrieved by 60 low cost measurement devices (LCD) are used to model the spatial pattern of the UHI with a land use regression (LUR) approach in Bern, Switzerland. For this purpose, 14 spatial variables with different buffer radii were calculated to evaluate their effect on the UHI and to interpolate the air temperature data. As a result, three models covering three different heatwaves at nighttime were developed. Given good model performance throughout the different scenarios, the here presented study demonstrates the successful interpolation of low cost temperature data by LUR modelling based on publicly accessible spatial information within a city.

Multi-annual changes in heat stress occurrence and its circulation conditions in the Polish-Saxon border region

Heat stress is one of the most critical factors affecting human life. In Central Europe, its influence is noticeable, especially in the Polish-Saxon region, which is a very popular tourist region also inhabited by a high number of elders. The main goal of this paper was to assess multi-annual changes in heat stress occurring in the region, considering the frequency of heat days, the UTCI (Universal Thermal Climate Index), and circulation conditions. The research showed that all the thermal and biothermal indices in this region significantly increased during 1971-2019 in the lowlands, the mountain foreland, and the lower mountain zone. In terms of the UTCI, a negative trend for cold stress frequency was noticed in the entire region in favor of an increase in a tendency toward thermoneutral conditions and heat stress. This concerns especially strong and very strong heat stress (UTCI > 32 degrees C), in which positive trends were observed for most of the stations located in the lower hypsometric zones. The results also showed that heat stress mainly occurs on days with anticyclonic circulation. Analysis of selected cases of heat waves in the 21st century indicated that the lower hypsometric zones are characterized by a very high UTCI, while the summit zone is free from heat stress occurrence.

The HEAT-SHIELD project – Perspectives from an inter-sectoral approach to occupational heat stress

OBJECTIVES: To provide perspectives from the HEAT-SHIELD project (www.heat-shield.eu): a multi-national, inter-sectoral, and cross-disciplinary initiative, incorporating twenty European research institutions, as well as occupational health and industrial partners, on solutions to combat negative health and productivity effects caused by working on a warmer world. METHODS: In this invited review, we focus on the theoretical and methodological advancements developed to combat occupational heat stress during the last five years of operation. RESULTS: We outline how we created climate forecast models to incorporate humidity, wind and solar radiation to the traditional temperature-based climate projections, providing the basis for timely, policy-relevant, industry-specific and individualized information. Further, we summarise the industry-specific guidelines we developed regarding technical and biophysical cooling solutions considering effectiveness, cost, sustainability, and the practical implementation potential in outdoor and indoor settings, in addition to field-testing of selected solutions with time-motion analyses and biophysical evaluations. All recommendations were adjusted following feedback from workshops with employers, employees, safety officers, and adjacent stakeholders such as local or national health policy makers. The cross-scientific approach was also used for providing policy-relevant information based on socioeconomic analyses and identification of vulnerable regions considered to be more relevant for political actions than average continental recommendations and interventions. DISCUSSION: From the HEAT-SHIELD experiences developed within European settings, we discuss how this inter-sectoral approach may be adopted or translated into actionable knowledge across continents where workers and societies are affected by escalating environmental temperatures.

An adaptation strategy to urban heat: Hospital rooms with radiant cooling accelerate patient recovery

BACKGROUND: Patients with respiratory diseases are vulnerable to the effects of heat. Therefore, it is important to develop adaptation strategies for heat exposure. One option is to optimise the indoor environment. To this end, we equipped hospital patient rooms with radiant cooling. We performed a prospective randomised clinical trial to investigate potentially beneficial effects of the hospitalisation in rooms with radiant cooling on patients with a respiratory disease exacerbation. METHODS: Recruitment took place in June, July and August 2014 to 2016 in the Charité – Universitätsmedizin Berlin, Germany. We included patients with COPD, asthma, pulmonary hypertension, interstitial lung disease and pneumonia. 62 patients were allocated to either a standard patient room without air conditioning or a room with radiant cooling set to 23°C (73°F). We analysed the patients’ length of stay with a Poisson regression. Physiological parameters, fluid intake and daily step counts were tested with mixed regression models. RESULTS: Patients hospitalised in a room with radiant cooling were discharged earlier than patients in standard rooms (p=0.003). The study participants in chambers with radiant cooling had a lower body temperature (p=0.002), lower daily fluid intake (p<0.001), higher systolic blood pressure (p<0.001) and an increased daily step count (p<0.001). CONCLUSION: The results indicate that a radiant cooling system in hospital patient rooms provides clinical benefits for patients with respiratory disease exacerbations during the warm summer months, which may contribute to an earlier mobilisation. Radiant cooling is commended as a suitable adaptation strategy to reduce the clinical impact of climate warming.

Analysis of vulnerability to heat in rural and urban areas in Spain: What factors explain heat’s geographic behavior?

INTRODUCTION: There is currently little knowledge and few published works on the subject of vulnerability to heat in rural environments at the country level. Therefore, the objective of this study was to determine whether rural areas are more vulnerable to extreme heat than urban areas in Spain. This study aimed to analyze whether a pattern of vulnerability depends on contextual, environmental, demographic, economic and housing variables. METHODS: An ecological, longitudinal and retrospective study was carried out based on time series data between January 01, 2000 and December 31, 2013 in 42 geographic areas in 10 provinces in Spain. We first analyzed the functional relationship between the mortality rate per million inhabitants and maximum daily temperature (Tmax). We then determined the summer temperature threshold (Pthreshold) (June-September) at which increases in mortality are produced that are attributable to heat. In a second phase, based on Pthreshold, a vulnerability variable was calculated, and its distribution was analyzed using mixed linear models from the Poisson family (link = log). In these models, the dependent variable was vulnerability, and the independent variables were exposure to high temperatures, aridity of the climate, deprivation index, percentage of people over age 65, rurality index, percentage of housing built prior to 1980 and condition of dwellings. RESULTS: Rurality was a protective factor, and vulnerability in urban areas was six times greater. In contrast, risk factors included aridity (RR = 5.89 (2.26 15.36)), living in cool summer zones (2.69 (1.23, 5.91)), poverty (4.05 (1.91 8.59)) and the percentage of dysfunctional housing (1.13 (1.04 1.24)). CONCLUSIONS: Rural areas are less vulnerable to extreme heat than the urban areas analyzed. Also, population groups with worse working conditions and higher percentages of dwellings in poor conditions are more vulnerable.

Evolution of the threshold temperature definition of a heat wave vs. evolution of the minimum mortality temperature: A case study in Spain during the 1983-2018 period

Background An area of current study concerns analysis of the possible adaptation of the population to heat, based on the temporal evolution of the minimum mortality temperature (MMT). It is important to know how is the evolution of the threshold temperatures (Tthreshold) due to these temperatures provide the basis for the activation of public health prevention plans against high temperatures. The objective of this study was to analyze the temporal evolution of threshold temperatures (Tthreshold) produced in different Spanish regions during the 1983-2018 period and to compare this evolution with the evolution of MMT. The dependent variable used was the raw rate of daily mortality due to natural causes ICD X: (A00-R99) for the considered period. The independent variable was maximum daily temperature (Tmax) during the summer months registered in the reference observatory of each region. Threshold values were determined using dispersion diagrams (annual) of the prewhitened series of mortality temperatures and Tmax. Later, linear fit models were carried out between the different values of Tthreshold throughout the study period, which permitted detecting the annual rate of change in Tthreshold. Results The results obtained show that, on average, Tthreshold has increased at a rate of 0.57 oC/decade in Spain, while Tmax temperatures in the summer have increased at a rate of 0.41 oC/decade, suggesting adaptation to heat. This rate of evolution presents important geographic heterogeneity. Also, the rate of evolution of Tthreshold was similar to what was detected for MMT. Conclusions The temporal evolution of the series of both temperature measures can be used as indicators of population adaptation to heat. The temporal evolution of Tthreshold has important geographic variation, probably related to sociodemographic and economic factors, that should be studied at the local level.

Gender differences in adaptation to heat in Spain (1983-2018)

In Spain the average temperature has increased by 1.7 °C since pre-industrial times. There has been an increase in heat waves both in terms of frequency and intensity, with a clear impact in terms of population health. The effect of heat waves on daily mortality presents important territorial differences. Gender also affects these impacts, as a determinant that conditions social inequalities in health. There is evidence that women may be more susceptible to extreme heat than men, although there are relatively few studies that analyze differences in the vulnerability and adaptation to heat by sex. This could be related to physiological causes. On the other hand, one of the indicators used to measure vulnerability to heat in a population and its adaptation is the minimum mortality temperature (MMT) and its temporal evolution. The aim of this study was to analyze the values of MMT in men and women and its temporal evolution during the 1983-2018 period in Spain’s provinces. An ecological, longitudinal retrospective study was carried out of time series data, based on maximum daily temperature and daily mortality data corresponding to the study period. Using cubic and quadratic fits between daily mortality rates and the temperature, the minimum values of these functions were determined, which allowed for determining MMT values. Furthermore, we used an improved methodology that provided for the estimation of missing MMT values when polynomial fits were inexistent. This analysis was carried out for each year. Later, based on the annual values of MMT, a linear fit was carried out to determine the rate of evolution of MMT for men and for women at the province level. Average MMT for all of Spain’s provinces was 29.4 °C in the case of men and 28.7 °C in the case of women. The MMT for men was greater than that of women in 86 percent of the total provinces analyzed, which indicates greater vulnerability among women. In terms of the rate of variation in MMT during the period analyzed, that of men was 0.39 °C/decade, compared to 0.53 °C/decade for women, indicating greater adaptation to heat among women, compared to men. The differences found between men and women were statistically significant. At the province level, the results show great heterogeneity. Studies carried out at the local level are needed to provide knowledge about those factors that can explain these differences at the province level, and to allow for incorporating a gender perspective in the implementation of measures for adaptation to high temperatures.

Outdoor heat stress at preschools during an extreme summer in Gothenburg, Sweden – Preschool teachers’ experiences contextualized by radiation modelling

Using a mixed-method approach consisting of interviews with preschool teachers and modelling of the outdoor thermal conditions using the mean radiant temperature as an indicator of heat stress, the occurrence of heat stress in Gothenburg preschools during the summer of 2018 and its effects have been studied. One third of 440 preschool yards modelled have more than 50% of the preschool yard-area exposed to strong heat stress during a warm and sunny summer day, implying children in many preschools have considerably less play area than current guidelines deem sufficient. Shade, where present, was mostly from trees within the preschool yards themselves rather from objects in surrounding areas, provided effective heat mitigation. In-terviews confirmed that excessive heat conditions at preschool yards resulted in tired, drowsy and overheated children as well as forcing the preschool to prioritise care over pedagogical activities. The results demonstrated that heat stress occurs at Gothenburg preschools, with difficulties in ensuring the well-being of children at many preschools as a consequence. Many preschools need more shade, preferably from trees to provide healthy and secure environments for preschool children. Finally, the study highlights the need for more research on how weather and outdoor environments affect children’s activity and well-being.

Evaluation and application of a low-cost measurement network to study intra-urban temperature differences during summer 2018 in Bern, Switzerland

The understanding of intra-urban air temperature variations is crucial to assess strategies for cities’ adaptation to impacts of present and future anthropogenic climate change. Depending on extensive measurement networks, high-resolution air temperature measurements in urban environments are challenging due to high instrumentation and maintenance costs. Here, we present a low-cost measurement device (LCD) consisting of a temperature logger and a custom-made, naturally ventilated radiation shield. Besides intercomparisons with automated weather stations (AWS) at three reference sites during record-dry summer 2018, we tested the potential of the devices using a network of 79 LCDs to assess the intra-urban variability of urban heat island (UHI) patterns in the city of Bern, Switzerland. We found positive mean measurement biases between LCDs and AWS of 0.61 to 0.93 K (RMSE: 0.78 to 1.17 K) during daytime, of which up to 82.8% of the variance could be explained statistically by solar irradiance (radiative heating) and wind speed (insufficient ventilation). During night, average measurement biases were markedly lower and eventually negative with -0.12 to 0.23 K (RMSE: 0.19 to 0.34 K). Our results highlight the importance of sensor intercomparisons being conducted at multiple locations with differing urban land-cover, structure, and metabolism given that biases varied considerably between the reference sites. Data retrieved by the city-wide measurement network showed that the LCD approach is well suited for the analysis of spatiotemporal UHI patterns during night and adds considerable value compared to the few existing AWS in detecting fine-scale air temperature variability. In conclusion, the current LCD measurement approach represents a valuable option for cost-effective analyses of urban air temperature variability across multiple scales, which may be of particular value for the development, appliance, and monitoring of adaptation strategies to climate change in cities with restricted financial resources.

Effectiveness of passive climate change adaptation measures in Switzerland: A climate-based analysis on natural ventilation and overheating risks reduction in dwellings

Building energy codes have been implemented in Switzerland as well as across the world to reduce building energy consumption, however, due to the progressive effect of climate change phenomena and the precipitate change in occupancy patterns due to the global pandemic, their effectiveness and limitations must be constantly re-examined. This paper explores the effectiveness of natural ventilation as a passive cooling strategy, as well as the overheating patterns in dwellings across the Swiss territory. The work is based on a climate-based simulation model at a territorial scale, from which the building performance is further analysed considering the heating energy consumption and overheating risk hours above 26.5 degrees C. The effectiveness of natural ventilation through the operable window operable area in reducing overheating risk was also estimated. The results show the effectiveness across the whole territory of the current regulation (SIA 380/1:2016), which is focused on the performance of the building envelope to reduce heat losses. An unattended alarming overheating pattern was spotted in locations with altitudes below 1500 meters as a direct consequence of the climate change phenomena, hence a series of recommendations are proposed to update and improve the current legal requirements.

Heat-related cardiovascular morbidity and mortality in Switzerland: A clinical perspective

AIMS: Previous studies found increased cardiovascular mortality during hot days, while emergency hospital admissions were decreasing. We explored potential underlying reasons by analysing clinically similar cardiovascular disease groups taking into account primary, underlying and immediate causes of death. METHODS AND RESULTS: We assessed associations of daytime maximum temperature in relation to cardiovascular deaths and emergency hospital admissions between 1998 and 2016 in Switzerland. We applied conditional quasi-Poisson models with non-linear distributed lag functions to estimate relative risks (RRs) of daily cardiovascular mortality and morbidity for temperature increases from the median (22°C) to the 98th percentile (32°C) of the warm season temperature distribution with 10 days of lag. Cardiovascular mortality (n = 163,856) increased for total cardiovascular disease (RR 1.13, 95% confidence interval [CI] 1.08-1.19) and the disease groups hypertension (1.18, 1.02-1.38), arrhythmia (1.29, 1.08-1.55), heart failure (1.22, 1.05-1.43) and stroke of unknown origin (1.20, 1.02-1.4). In contrast, emergency hospital admissions (n = 447,577) decreased for total cardiovascular disease (0.91, 0.88-0.94), hypertension (0.72, 0.64-0.81), heart failure (0.83, 0.76-0.9) and myocardial infarction (0.88, 0.82-0.95). Opposing heat effects were most pronounced for disease groups associated with diuretic and antihypertensive drug use, with the age group ≥75 years at highest risk. CONCLUSIONS: Volume depletion and vasodilation from heat stress plausibly explain the risk reduction of heat-related emergency hospital admissions for hypertension and heart failure. Since primary cause of death mostly refers to the underlying chronic disease, the seemingly paradoxical heat-related mortality increase can plausibly be explained by an exacerbation of heat effects by antihypertensive and diuretic drugs. Clinical guidelines should consider recommending strict therapy monitoring of such medication during heatwaves, particularly in the elderly.

Biometeorological conditions during the august 2015 mega-heat wave and the summer 2010 mega-heat wave in Ukraine

The human-biometeorological conditions in Ukraine during two mega-heat waves were analyzed. The evaluation is based on physiologically equivalent temperature (PET). The calculation of PET is performed utilizing the RayMan model. The results revealed these two mega-heat waves produced strenuous human-biometeorological conditions on the territory of Ukraine. During the summer 2010 mega-heat wave, strong and extreme heat stress prevailed at about midday at the stations where this atmospheric phenomenon was observed. The mega-heat wave of August 2015 was characterized by a lower heat load. The diurnal variation of PET values during the researched mega-HW was similar to that of the diurnal variation of air temperature with minimum values in the early morning and maximum values in the afternoon. On the territory where mega-heat waves were observed, the number of days during which heat stress occurred for 9 h amounted to 97.6% for the period from 31 July to 12 August 2010 and 77.1% for the mega-heat wave of August 2015.

Heat risk of mortality in two different regions of the United Kingdom

Heatwaves pose a protracted health risk depending on its intensity and exposure time. Not only cities but countryside areas are also exposed to risk of summertime heat which has not been recently updated at the bucolic scale. This study aims to associate temperature and mortality and explore its temporal variation. A Poisson regression model combined with a distributed lag non-linear model was applied over daily mortality and maximum temperature data from 1981 to 2018 to formulate the lagged response of summer temperature. The relative risk (RR) and mortality attributable fraction (AF) with respect to minimum mortality temperature (MMT) in Southeast England and Aberdeenshire, UK was calculated. The RR and AF for high and extreme (95th and 99th percentile) temperature with respect to MMT have increased (RR- 1% and 7%; AF- 1.33 and 1.9 times, respectively) in Southeast England but reduced in Aberdeenshire (RR- 2% and 6%; AF- 0.49 and 0.15 times, respectively) in last two decades. However, lagged risk persists for very extreme temperature after several days of exposure at both sites and the hazard cannot be underestimated and neglected. Hence, action is needed to update the heat action plan for extreme temperature management formulating appropriate heat-mitigation strategies focused on vulnerable populations.

Climate change mitigation: Thermal comfort improvement in Mediterranean social dwellings through dynamic test cells modelling

Global warming will lead to adverse consequences for human health and well-being. This research ought to determine whether passive low-cost strategies freely controlled by users (ventilation strategies, solar shadings or window operation) could be applied in low-income dwellings to meet acceptable thermal comfort to retrofit the Mediterranean social housing stock of southern Spain towards climate change. On-site measurements registered in some test cells (controlled environment with no users’ influence) were used to calibrate dynamic energy simulation models. The impact of several future periods, climate zones of southern Spain and orientations on thermal comfort was assessed. The results show that climate change triggers a more significant increase in outdoor temperatures in summer than in winter. Should ventilation be kept to minimum and blinds opened during daytime in winter, higher comfort would be achieved, with great differences between orientations and south reporting the best results. The higher the outdoor temperatures due to climate change, the higher the percentage of comfort hours (i.e. 23-68% in the present and 50-75% in 2080). In summer, natural night ventilation and blinds closed during daytime lead to the best comfort result, with negligible temperature differences between orientations. Future climate change scenarios worsen the percentage of comfort hours (i.e. 96-100% in the present, while up to 17% in 2080). Mechanical ventilation and blind aperture schedules were found to have the highest influence on overheating discomfort. Likewise, mechanical and natural ventilation schedules had the highest impact on undercooling discomfort.

A practical approach to the evaluation of local urban overheating – A coastal city case-study

In response to urbanization and global warming, which amplify heatwave effects and might lead to urban heat stress, this paper proposes a practical approach to characterize the local microclimate at the neigh-borhood scale. In this approach, the local urban climate is described using suitable indicators, to support the ecodistrict design process or refurbishment. Experimental and numerical results illustrate the approach in a case study of a French coastal city, La Rochelle. In the first step, we set up urban and rural weather stations to characterize the local urban climate over a summer period and to identify local tem-perature differences. The measurements highlighted a daytime urban cooling effect due to the local sea breeze. While the Urban Weather Generator (UWG) simulation tool used for this study does not capture coastal effects, the results were consistent with the urban heat island (UHI) measurements. We proposed two indicators to quantify the local climate modifications: local UHI and overheating intensity. The parameters of the adaptation strategies were assessed through a sensitivity analysis for these two indi-cators. For this case-study, we identified vegetation cover, building height and road albedo as key param-eters that can be used to mitigate local overheating. (c) 2021 Elsevier B.V. All rights reserved.

Evaluation of bioclimatic discomfort trend in a central area of the Mediterranean Sea

Effects of climate change are perceived in ever larger areas of the planet. Heat waves occur with increasing frequency, constituting a risk to the population, especially for the most sensitive subjects. Preventive information to the population on the characteristics of the phenomenon and on the behavior to be supported is the means to reduce the health risks. To monitor the intensity of heat and the physiological discomfort perceived by humans, there are indices based on the perception of meteorological parameters such as temperature and relative humidity. In this work, by applying the Thom Discomfort Index (TDI), the first bioclimatic characterization of the provinces that make up Sicily, a Mediterranean region defined as a hotspot for climate change, was performed by the authors. The nonparametric Mann-Kendall test was applied to the daily values of the TDI in all provinces in order to verify the presence of significant trends. The test results highlighted the existence of increasing trends, especially in the months of August and September, when the TDI value undergoes a significant increase due not only to high temperatures, as one might expect, but above all to a high humidity rate. When these two meteorological parameters reach certain values, the physiological discomfort from humid heat represents a risk to the population.

Definition of urban built environment climate adaptive design actions aided by environmental data-driven design processes

Environmental and technological design for climate adaptation in the urban built environment can no longer be separated from the generation, collection, or use of data (big data). ICT tools (Information and Communication Technologies), for the modelling and simulation of the built urban environment are identified as measuring devices and provide knowledge on the impacts of climate change in design practice based on an environmentally data-driven approach. This study aims to define a framework for the evaluation of environmental health and comfort parameters applicable to simulation tools, with a specific focus on thermal and environmental exchanges between indoor and outdoor spaces, to define those factors that affect the perception of user’s well-being in thermal stress conditions (e.g., heatwaves), both indoor and outdoor. Through the definition of two study cases in the city of Naples, Italy, special attention was paid to investigating the interaction between outdoor and indoor performance when urban temperatures rise. A comparison between a daily survey for occupants and simulations was conducted to confirm the validity of the data obtainable from the perceived thermal sensations. The obtained results show that the designed framework can reliably simulate real outdoor and indoor conditions according to comfort indices such as the predicted mean vote and adaptive comfort model. The methodological framework developed can guarantee the interoperability of data to simulate indoor and outdoor environments responding to real conditions and determine a favourable condition for the development of urban redevelopment interventions through the application of climate adaptive design strategies.

Heat waves and adaptation strategies in a mediterranean urban context

BACKGROUND: Heat waves can be considered as an emerging challenge among the potential health risks generated by urbanization and climate changes. Heat waves are becoming more frequent, long and intense, and can be defined as meteorological extreme events consisting in prolonged time of extremely high temperatures in a particular region. The following paper addresses health threats due to heat waves presenting the case study of Lecce, a city located in Southern Italy; the Mediterranean area is already recognized in international literature as a hot-spot for climate changes. This work assesses the potential impact of two different adaptation strategies. METHODS: We have tested the effectiveness of cool surfaces and urban forestry as adaptation approaches to cope with heat waves. The microclimate computer-based model “ENVI-met” was adopted to predict thermal scenarios arising from the two proposed interventions. The parameters analysed consisted in temperature and relative humidity. RESULTS: Urban forestry approach seem to lower temperature (that represents the major cause of urban overheating) better than cool surfaces strategy, but relative humidity produced by the evapotranspiration processes of urban forestry has also negative influences on temperature perceived by pedestrians (thermal discomfort). CONCLUSION: Vegetation represents both an adaptation and a mitigation strategy to climate changes that guarantees an improvement of air quality, with consequent psychological and physical benefits. Wide campaigns aimed at planting trees and increasing the urban green coverage should be systematically planned and fostered by national, regional and local institutions preferably with the involvement of research departments, schools and citizens’ associations.

Evaluating urban greening scenarios for urban heat mitigation: A spatially explicit approach

Urban green infrastructure, especially trees, are widely regarded as one of the most effective ways to reduce urban temperatures in heatwaves and alleviate the adverse impacts of extreme heat events on human health and well-being. Nevertheless, urban planners and decision-makers are still lacking methods and tools to spatially evaluate the cooling effects of urban green spaces and exploit them to assess greening strategies at the urban agglomeration scale. This article introduces a novel spatially explicit approach to simulate urban greening scenarios by increasing the tree canopy cover in the existing urban fabric and evaluating their heat mitigation potential. The latter is achieved by applying the InVEST urban cooling model to the synthetic land use/land cover maps generated for the greening scenarios. A case study in the urban agglomeration of Lausanne, Switzerland, illustrates the development of tree canopy scenarios following distinct spatial distribution strategies. The spatial pattern of the tree canopy strongly influences the human exposure to the highest temperatures, and small increases in the abundance of tree canopy cover with the appropriate spatial configuration can have major impacts on human health and well-being. The proposed approach supports urban planning and the design of nature-based solutions to enhance climate resilience.

Extending the adaptive thermal comfort models for courtyards

Temperatures in Mediterranean cities are rising due to the effects of climate change, with a consequent increase in the heat waves frequency. Recent research has shown the tempering potential of semi-outdoor spaces such as courtyards, which are semi-enclosed spaces that are widely used by the users of buildings in Mediterranean cities. International standards addressing thermal comfort parameters provide technical guidelines for indoor spaces only. Expanding this concept, this paper focuses on the potential to extend and interpret the existing calculation models for indoor thermal comfort, EN 16798 and ASHRAE 55, to determine thermal comfort, monitoring two different courtyards in Cordoba, Spain, during both typical summer and heat wave periods. The results show that during the typical summer, the monitored courtyards can reach temperatures up to 8.4 degrees C cooler than outside. Subsequently can be considered to be in thermal comfort on average for 88% of the time according to EN 16798, and 75% according to ASHRAE 55, which drop to 71% and 52% respectively during heat wave (HW) periods, in spite of increasing thermal gap (TG) up to 13.9 degrees C. The results are also compared with the PET indicator used for evaluation of outdoor thermal comfort, which provides comparable figures: 81% summer and 73% HW. Implications of implementing passive shading strategies to increase comfort in these transition spaces are also evaluated. The research highlights the thermal potential and usefulness of courtyards in warm climates, so they can ultimately be included in the building analysis as a potentially comfortable and habitable space.

Influence of the proportion, height and proximity of vegetation and buildings on urban land surface temperature

Urban areas are characterised by the dominance of impervious surfaces and decreased presence of vegetation compared to their rural surroundings. The resultant increase in temperature is known to amplify global warming, with negative impacts on health and increased energy requirements for cooling. Intra-urban variations in temperature have received less attention than urban-rural variations, although the former can be even larger than the latter. Land cover composition is known to influence surface temperature, while the influence of heights, of buildings and vegetation, is less explored. There are also fewer studies in high-latitude cities although extreme heat events are increasing in frequency and severity in these cities, and high-resolution geospatial datasets are often available for detailed analysis. The aim of this study is therefore to assess the influence of selected land cover variables on the estimated surface temperature in the four largest cities in Denmark-Copenhagen, Aarhus, Odense and Aalborg. Land surface temperatures (LST) of the four cities were estimated using Band 10 (10.60-11.19 mu m) from Landsat 8 imagery. Vegetation cover, building cover, vegetation height and building height were estimated using 4-band aerial imagery, building footprints and LiDAR-based elevation models, and their correlations with LST were estimated. Moving average filters, with window sizes from 3 x 3 (90 m x 90 m) to 11 x 11 (330 m x 330 m), were used to understand the area of influence of surrounding land cover on the LST within 30-m cells. When vegetation cover and building cover increased from 0-5% to 95-100%, median values of LST decreased by 4.16 +/- 0.76 degrees C and increased by 4.31 +/- 0.69 degrees C, respectively. Land cover variables within 7 x 7 windows (210 m x 210 m) are shown to have strong correlations with the LST of 30-m cells. The area of influence of building heights on the LST of 30-m cells was the largest in Copenhagen, which also has the tallest buildings among the cities. LST reduced by 4.10 degrees C when the mean vegetation height within a 30-m cell increased from 0-2 m to 20-22 m, and by 5.75 degrees C for 210 m x 210 m patches with the same height range. A combination of increased vegetation cover and height could therefore be used to regulate temperature in or close to hot spots in cities depending on the availability of space.

Lower urban humidity moderates outdoor heat stress

Surface temperature is often used to examine heat exposure in multi-city studies and for informing urban heat mitigation efforts due to scarcity of urban air temperature measurements. Cities also have lower relative humidity, traditionally not accounted for in large-scale observational urban heat risk assessments. Here, using crowdsourced measurements from over 40,000 weather stations in approximate to 600 urban clusters in Europe, we show the moderating effect of this urbanization-induced humidity reduction on outdoor heat stress during the 2019 heatwave. We demonstrate that daytime differences in heat index between urban clusters and their surroundings are weak, and associations of this urban-rural difference with background climate, generally examined from the surface temperature perspective, are diminished due to moisture feedbacks. We also examine the spatial variability of surface temperature, air temperature, and heat index within these clusters-relevant for detecting hotspots and potential disparities in heat exposure-and find that surface temperature is a poor proxy for the intra-urban distribution of heat index during daytime. Finally, urban vegetation shows much weaker (similar to 1/6th as strong) associations with heat index than with surface temperature, which has broad implications for optimizing urban heat stress mitigation strategies. These findings are valid for operational metrics of heat stress for shaded conditions (apparent temperature and humidex), thermodynamic proxies (wet-bulb temperature), and empirical heat indices. Based on this large-scale empirical evidence, surface temperature, used due to the lack of better alternatives, may not be suitable for accurately informing heat mitigation strategies within and across cities, necessitating more urban-scale observations and better urban-resolving models.

Moving from adaptation capacities to implementing adaptation to extreme heat events in urban areas of the European union: Introducing the u-adapt! Research approach

Extreme Heat Events (EHE) are a major concern for many urban areas worldwide and are considered as one of the deadliest natural hazards globally. Climate change and socioeconomic trends (exposure and susceptibility) are expected to exacerbate the risk of urban heat stress. Several urban areas have recently declared a climate emergency and initiated the adaptation process, but progress is still patchy, uncoordinated, and of varied quality. The main constraint is the lack of mechanisms for monitoring and reporting adaptation strategies, not allowing the supervision and evaluation of the adaptation process. The EU-funded project U-ADAPT! (Urban-Adaptation) focuses on the concrete expression of adaptation to evaluate the current implementation and effectiveness of adaptation measures and strategies to reduce Heat Disaster Risk (HDR), moving the emphasis from the study of vulnerability, resilience, and potential adaptation (adaptation capacity) of communities to the actual depth and pace of the past and current adaptation process. In this article, we discuss the theoretical support and design of the project and set the base for next project stages, which ultimately aims to create a unique interdisciplinary framework and a replicable multidimensional indicator on adaptation to EHE that empower European Union citizens to demand a safe and sustainable environment and hold institutions accountable for the adaptation process to current and upcoming risks.

Temperature-related mortality in Helsinki compared to its surrounding region over two decades, with special emphasis on intensive heatwaves

Urbanization and ongoing climate change increase the exposure of the populations to heat stress, and the urban heat island (UHI) effect may magnify heat-related mortality, especially during heatwaves. We studied temperature-related mortality in the city of Helsinki-with urban and suburban land uses-and in the surrounding Helsinki-Uusimaa hospital district (HUS-H, excluding Helsinki)-with more rural types of land uses-in southern Finland for two decades, 2000-2018. Dependence of the risk of daily all-cause deaths (all-age and 75+ years) on daily mean temperature was modelled using the distributed lag nonlinear model (DLNM). The modelled relationships were applied in assessing deaths attributable to four intensive heatwaves during the study period. The results showed that the heat-related mortality risk was substantially higher in Helsinki than in HUS-H, and the mortality rates attributable to four intensive heatwaves (2003, 2010, 2014 and 2018) were about 2.5 times higher in Helsinki than in HUS-H. Among the elderly, heat-related risks were also higher in Helsinki, while cold-related risks were higher in the surrounding region. The temperature ranges recorded in the fairly coarse resolution gridded datasets were not distinctly different in the two considered regions. It is therefore probable that the modelling underestimated the actual exposure to the heat stress in Helsinki. We also studied the modifying, short-term impact of air quality on the modelled temperature-mortality association in Helsinki; this effect was found to be small. We discuss a need for higher resolution data and modelling the UHI effect, and regional differences in vulnerability to thermal stress.

Rethinking urban heat stress: Assessing risk and adaptation options across socioeconomic groups in Bonn, Germany

With climate change and socioeconomic trends expected to exacerbate the risk of urban heat stress, implementing adaptation measures is paramount to limit adverse impacts of heat on urban inhabitants. Identification of the best options needs to be based on sound, localised assessments of risk, understood as the interaction of hazard, exposure and vulnerability. Yet a review of the literature reveals that minimal research to date considers the perceived impacts of heat among urban residents. Based on a household survey in Bonn, Germany, this paper adopts an integrated approach to assess how different socioeconomic groups are affected by heat stress and explores the connections between perceived impacts of heat and indicators of exposure and vulnerability across groups. Results indicate that all socioeconomic groups are at risk of urban heat stress, though to differing extents and for different reasons. Exposure was found to be lowest in groups typically considered to be of higher risk, such as older respondents, who at the same time have the highest susceptibility. Students and other younger respondents, on the other hand, face comparably high exposure and have the lowest coping and adaptive capacities. At the same time, each group has its own capacities with the potential to mitigate risk. The study shows that urban inhabitants beyond “classic risk groups” usually addressed in literature and policy are affected by heat stress in ways that may not be accounted for in current urban policy.

Heat vulnerability and adaptation of low-income households in Germany

Heat waves associated with global warming are a significant hazard to human health, and they particularly endanger low-income households. In this study, we systematically analyze how the different components of heat vulnerability are related to household income, and present empirical evidence on the determinants of heat adaptation, focusing on the role of income. We contribute the first empirical analysis of heat vulnerability using household-level data at the national level, based on a longitudinal survey, including data points for 10,226 households in Germany in the period 2012-2020. Our results indicate that low income households are significantly more heat sensitive and have lower adaptive capacity than high income households, measured inter alia by health status, household composition, and economic and psychological resources to implement adaptation measures. However, heat hazard and exposure levels are comparable between income groups, hence there is no sorting of richer households into less hazardous or exposed locations on a national scale. We also contribute robust empirical evidence on the factors influencing household decisions to implement technical adaptation measures (e.g. installation of air conditioning), ultimately showing that the adaptation behavior of the most vulnerable households (e.g. people with poor health conditions or the elderly) is not limited by financial constraints.

Linking science and practice in participatory future-oriented assessment and planning of human heat stress vulnerability in Bonn, Germany

The juxtaposition of climate change and development changes is vital for understanding the future impacts of heat stress in urban areas. However, an approach that considers the relationship between climatic factors and socio-economic vulnerability in a forward-looking and stakeholder-involved manner is challenging. This article demonstrates the application of a future-oriented vulnerability scenarios approach to address human heat stress in Bonn, Germany, in 2035. The study highlights the interplays between climate trajectories and heat exposure associated with urban development scenario corridors. Moreover, this method allows for changing combinations of intersections and conditionalities of projected individual socio-economic vulnerability indicators in response to social and climate governance. However, this study found that a conventional structure within city departments might limit this integrative approach in practice. Thus, the theoretical background and the concept of alternative futures and uncertainties should be the focus of communication with practitioners to maximize the utilization of the results.

Heat perception and coping strategies: A structured interview-based study of elderly people in Cologne, Germany

The transdisciplinary project “Heat-Health Action Plan for Elderly People in Cologne” addresses the most heat-vulnerable risk group, people over 65 years of age. A quantitative study aimed to better understand heat perception and coping strategies of elderly people during heat waves to inform heat-health action plans. We conducted a representative quantitative survey via structured interviews with 258 randomly chosen people over 65 years old, living in their own homes in four areas of Cologne, Germany. These areas varied, both in terms of social status and heat strain. Data regarding demographics, health status, coping strategies, and heat perception were collected in personal interviews from August to October 2019. The majority of the participants perceived heat strain as moderate to very challenging. Women, people with a lower monthly income, and those with a lower health status found the heat more challenging. We found that participants adapted to heat with a number of body-related, home-protective, and activity-related coping strategies. The number of coping strategies was associated with perceived personal heat strain. There is a definite underuse of water-related heat adaption strategies among the elderly. This is of increasing relevance, as rising heat impact will lead to more heat-related geriatric morbidity. Our results are seminal to inform elderly-specific, socio-adapted local heat-health action plans.

Heat-related mortality in Germany from 1992 to 2021

BACKGROUND: 2018-2020 were unusually warm years in Germany, and the summer of 2018 was the second warmest summer since record-keeping began in 1881. Higher temperatures regularly lead to increased mortality, particularly among the elderly. METHODS: We used weekly data on all-cause mortality and mean temperature from the period 1992-2021 and estimated the number of heat-related deaths in all of Germany, and in the northern, central, and southern regions of Germany, employing a generalized additive model (GAM). To characterize long-term trends, we compared the effect of heat on mortality over the decades. RESULTS: Our estimate reveals that the unusually high summer temperatures in Germany between 2018 and 2020 led to a statistically significant number of deaths in all three years. There were approximately 8700 heat-related deaths in 2018, 6900 in 2019, and 3700 in 2020. There was no statistically significant heat-related increase in deaths in 2021. A comparison of the past three decades reveals a slight overall decline in the effect of high temperatures on mortality. CONCLUSION: Although evidence suggests that there has been some adaptation to heat over the years, the data from 2018-2020 in particular show that heat events remain a significant threat to human health in Germany.

Climate change and thermal comfort in top tourist destinations-The case of Santorini (Greece)

The Mediterranean area is one of the most visited tourist destinations of the world, but it has also been recognized as one of the most vulnerable to climate change areas worldwide with respect to increased thermal risk. The study focuses on a top worldwide tourist destination of the Mediterranean, Santorini Island in Greece, and aims to assess the past, present and future thermal environment in the island based on the advanced Universal Thermal Climate Index (UTCI). The study utilizes historical observations capturing past (late 19th to early 20th century) and more recent (1982-2019) time periods, while future projections are realized based on four regional climate models (RCMs) under the weak mitigation scenario (RCP4.5) and the non-mitigation scenario with high emissions (RCP8.5). The frequency of cold stress conditions at midday decreases during winter and early spring months by up to 19.8% (January) in the recent period compared to the historical one, while heat stress conditions increase in summer by up to 22.4% (August). Future projections suggest progressive shifts of the UTCI towards higher values in the future and an increase in the exposure time under heat stress depending on the RCM and adopted scenario. The increase in moderate and strong heat stress conditions is mainly expected during the summer months (June, July, August); nevertheless, a noticeable increase is also foreseen in September and May. The highest occurrences of favorable (no thermal stress) conditions are also projected to shift by one month, from June to May and from September to October, in the future.

Defining heatwaves with respect to human biometeorology. The case of Attica Region, Greece

To date, due to climate change, heatwaves are more frequent, with greater intensity and duration resulting in deleterious impacts on human health. To be able to manage heatwaves and quantify the impacts on human health, it is crucial to define them and implement policy preventive measures. However, heatwaves are relative to the climate of a location: The same meteorological conditions can constitute a heatwave in one place but not in another. Due to different climatic conditions, social characteristics, and adaptation, heatwaves should be defined on a local scale, which poses difficulties when it comes to comparison of different definitions. The aim of the present study is to define heatwaves, implementing robust statistical analysis for three different indicators (temperature, physiological equivalent temperature (PET), and universal thermal climate index (UTCI)) for three causes of mortality (i.e., cardiological and respiratory mortality and cardiorespiratory mortality) using Attica (Greece) as a case study. Our results define a heatwave for Attica as a period of at least 3 days when the mean temperature is higher than the 97.5th percentile. Afterwards, we encapsulate the harvesting effect by implementing robust statistical analysis, using the Superposed Epoch analysis. Consequently, quantifying heatwaves is crucial so as to create early warning systems and prevent avoidable mortality.

Assessing current and future heat risk in Dublin city, Ireland

Populations in high-density urban areas are exposed to higher levels of heat stress in comparison to rural areas. New spatially explicit approaches that identify highly exposed and vulnerable areas are needed to inform current urban planning practices to cope with heat hazards. This study proposes an extreme heat stress risk index for Dublin city across multiple decades (2020s-2050s) and for two representative concentration pathways (RCPs). In order to consider the interactions between greenhouse gas emissions and urban expansion, a climate-based urban land cover classification and a simple climate model have been combined to compute air temperature values accounting for urban heat island effect. This allowed the derivation of an improved hazard indicator in terms of extreme heat stress which, when integrated with information on current levels of vulnerability (i.e., socioeconomic factors assessed using principal component analysis (PCA), provides a heat hazard risk index for Dublin city at a fine spatial scale. Between the 2020s and 2050s, urban areas considered at highest risk are expected to increase by about 70% and 96% under RCP 4.5 and 8.5 respectively. For the 2050s, enhanced levels of heat risk under the RCP 8.5 scenario are particularly visible in the core city centre and in the northern and western suburbs. This study provides a valuable reference for decision makers for urban planning and provides an approach to help prioritise management decisions for the development of heat resilient and sustainable cities.

Climate justice in the city: Mapping heat-related risk for climate change mitigation of the urban and peri-urban area of Padua (Italy)

The mitigation of urban heat islands (UHIs) is crucial for promoting the sustainable development of urban areas. Geographic information systems (GISs) together with satellite-derived data are powerful tools for investigating the spatiotemporal distribution of UHIs. Depending on the availability of data and the geographic scale of the analysis, different methodologies can be adopted. Here, we show a complete open source GIS-based methodology based on satellite-driven data for investigating and mapping the impact of the UHI on the heat-related elderly risk (HERI) in the Functional Urban Area of Padua. Thermal anomalies in the territory were mapped by modelling satellite data from Sentinel-3. After a socio-demographic analysis, the HERI was mapped according to five levels of risk. The highest vulnerability levels were localised within the urban area and in three municipalities near Padua, which represent about 20% of the entire territory investigated. In these municipalities, a percentage of elderly people over 20%, a thermal anomaly over 2.4 degrees C, and a HERI over 0.65 were found. Based on these outputs, it is possible to define nature-based solutions for reducing the UHI phenomenon and promote a sustainable development of cities. Stakeholders can use the results of these investigations to define climate and environmental policies.

Characterization of the 2017 summer heat waves and their effects on the population of an area of southern Italy

Knowledge of bioclimatic comfort is paramount for improving people’s quality of life. To this purpose, several studies related to climatic comfort/discomfort have been recently published. These studies mainly focus on the analysis of temperature and relative humidity, i.e., the main variables influencing the environmental stress in the human body. In this context, the present work aims to analyze the number of visits to the hospital emergency department made by the inhabitants of the Crati River valley (Calabria region, southern Italy) during the heat waves that accompanied the African anticyclone in the summer of 2017. The analysis of the bioclimatic comfort was performed using the humidity index. Results showed that greater the index, the higher the number of accesses to the emergency department, in particular by the most vulnerable population groups, such as children and the elderly.

Mapping daytime thermal patterns of Bologna Municipality (Italy) during a heatwave: A new methodology for cities adaptation to global climate change

Remotely sensed Land Surface Temperature (LST) is widely used to characterize Surface Urban Heat Island (SUHI) intensity and spatial variability. SUHI may differ significantly from the Urban Heat Island (UHI), which is related to air temperature and is more representative of human wellbeing. The lack of information and results on UHI development is due to the difficulty in having measurements with high spatial density within the city and the uncertainties in finding relationships between air and surface temperatures. Characterizing UHI is fundamental when dealing with human thermal wellbeing especially when extreme events occur. A new index, named Urban Heatwave Thermal Index (UHTI), was presented here to quantify daytime air temperature variability patterns in an urban environment during a meteorological heatwave. UHTI integrates a) air temperature recorded by local sensors; b) structural microclimatic Envi-met fluidodynamic modeling simulations; and c) remotely sensed environmental indicators. UHTI is a reliable representation of thermal criticalities in the city for its inhabitants. A case study on Bologna (Italy) municipality is presented. Moreover, UHTI was calculated and compared with the Urban Thermal Field Variance Index (UTFVI), commonly used for urban climate character-ization. Results showed a high degree of correlation (R2 = 0.795) between the two indexes; re-sidual mapping and hot-spot detection indicated that their biggest differences are next to dense urban fabric areas like historical centers and water body areas.

Emergency department visits and summer temperatures in Bologna, Northern Italy, 2010-2019: A case-crossover study and geographically weighted regression methods

The aim of the study is to evaluate the association between summer temperatures and emergency department visits (EDVs) in Bologna (Italy) and assess whether this association varies across areas with different socioeconomic and microclimatic characteristics. We included all EDVs within Bologna residences during the summers of 2010-2019. Each subject is attributed a deprivation and a microclimatic discomfort index according to the residence. A time-stratified case-crossover design was conducted to estimate the risk of EDV associated with temperature and the effect modification of deprivation and microclimatic characteristics. In addition, a spatial analysis of data aggregated at the census block level was conducted by applying a Poisson and a geographically weighted Poisson regression model. For each unit increase in temperature above 26 °C, the risk of EDV increases by 0.4% (95%CI: 0.05-0.8). The temperature-EDV relationship is not modified by the microclimatic discomfort index but rather by the deprivation index. The spatial analysis shows that the EDV rate increases with deprivation homogeneously, while it diminishes with increases in median income and microclimatic discomfort, with differences across areas. In conclusion, in Bologna, the EDV risk associated with high temperatures is not very relevant overall, but it tends to increase in areas with a low socioeconomic level.

Performances of limited area models for the WORKLIMATE heat-health warning system to protect worker’s health and productivity in Italy

Outdoor workers are particularly exposed to climate conditions, and in particular, the increase of environmental temperature directly affects their health and productivity. For these reasons, in recent years, heat-health warning systems have been developed for workers generally using heat stress indicators obtained by the combination of meteorological parameters to describe the thermal stress induced by the outdoor environment on the human body. There are several studies on the verification of the parameters predicted by meteorological models, but very few relating to the validation of heat stress indicators. This study aims to verify the performance of two limited area models, with different spatial resolution, potentially applicable in the occupational heat health warning system developed within the WORKLIMATE project for the Italian territory. A comparison between the Wet Bulb Globe Temperature predicted by the models and that obtained by data from 28 weather stations was carried out over about three summer seasons in different daily time slots, using the most common skill of performance. The two meteorological models were overall comparable for much of the Italian explored territory, while major limits have emerged in areas with complex topography. This study demonstrated the applicability of limited area models in occupational heat health warning systems.

Specificity of meteorological and biometeorological conditions in central Europe in centre of urban areas in June 2019 (Bydgoszcz, Poland)

The work describes diurnal meteorological and biometeorological conditions in June 2019 in the urban areas of Central Europe. UTCI, STI, Oh_H, WL, and OV indices were calculated based on 24-h data from Bydgoszcz (Poland) for hot days. The degree of risk connected with heat stress of different intensities, risk of hyperthermia, body water loss, and decreased oxygen volume was determined. The studies showed that June 2019 was an example of an extreme situation with a heatwave that generated high stress for the inhabitants of urban areas. The conditions were burdensome mostly due to “very strong” and “strong” heat stress and periodic risk of dehydration, situations that could quickly lead to overheating of the body and a decreased oxygen volume leading to stress.

Heat-related mortality in two regions of Poland: Focus on urban and rural areas during the most severe and long-lasting heatwaves

The vast majority of studies on heat-related mortality are focused on large cities. The aim of this study is to fill this research gap and to estimate the impact of high temperatures on the risk of death in smaller towns and villages. The results show that increased mortality is not only a problem in large cities. The risk of death, although usually slightly lower than in highly populated areas, may be higher for the age-related risk group. At temperatures above 35 degrees C, it may exceed 1.3 in smaller towns and even 1.6 in villages. The increase in mortality during five selected heat waves of high intensity and long duration was also studied for two regions of Poland: Malopolska and Wielkopolska. Towns with a population of less than 10,000 in Malopolska region, during the 2006 heatwave, experienced an increase in the number of deaths by as much as 18%. At the same time in the largest city of Malopolska-Krakow, the death toll rose by 4%. This paper also presents some differences between regions in terms of the impact of heat waves: in the lowland region of Wielkopolska, the mortality rate is generally higher than in the upland region of Malopolska.

Bioclimatic conditions of June 2019 in Poland on a multi-year background (1966-2019)

The study objective was to characterise human-biometeorological conditions in the summer season in the period 1966-2019 in Poland, with particular consideration of June 2019. The study was conducted based on data from the Institute of Meteorology and Water Management-National Research Institute (IMGW-PIB) for the years 1966-2019. The data provided the basis for the calculation of the Universal Thermal Climate Index (UTCI). The study revealed high spatial variability of human-biometeorological conditions in Poland, with strenuous character intensifying from the north to the south of the country. An increase in UTCI in the summer season was recorded in the studied multi-annual period. It was the most intensive in the north-eastern Poland. The consequence of the observed changes was an increase in the frequency of days with heat stress categories (days with UTCI > 26.0 degrees C), and a decrease in the frequency of days with cold stress categories (days with UTCI < 9.0 degrees C). Season 2019 stood out at the scale of the entire country in the context of the multi-annual period. This particularly concerns June, when mean monthly UTCI values were the highest in the analysed multi-annual period.

Association between respiratory hospital admissions and air quality in Portugal: A count time series approach

Although regulatory improvements for air quality in the European Union have been made, air pollution is still a pressing problem and, its impact on health, both mortality and morbidity, is a topic of intense research nowadays. The main goal of this work is to assess the impact of the exposure to air pollutants on the number of daily hospital admissions due to respiratory causes in 58 spatial locations of Portugal mainland, during the period 2005-2017. To this end, INteger Generalised AutoRegressive Conditional Heteroskedastic (INGARCH)-based models are extensively used. This family of models has proven to be very useful in the analysis of serially dependent count data. Such models include information on the past history of the time series, as well as the effect of external covariates. In particular, daily hospitalisation counts, air quality and temperature data are endowed within INGARCH models of optimal orders, where the automatic inclusion of the most significant covariates is carried out through a new block-forward procedure. The INGARCH approach is adequate to model the outcome variable (respiratory hospital admissions) and the covariates, which advocates for the use of count time series approaches in this setting. Results show that the past history of the count process carries very relevant information and that temperature is the most determinant covariate, among the analysed, for daily hospital respiratory admissions. It is important to stress that, despite the small variability explained by air quality, all models include on average, approximately two air pollutants covariates besides temperature. Further analysis shows that the one-step-ahead forecasts distributions are well separated into two clusters: one cluster includes locations exclusively in the Lisbon area (exhibiting higher number of one-step-ahead hospital admissions forecasts), while the other contains the remaining locations. This results highlights that special attention must be given to air quality in Lisbon metropolitan area in order to decrease the number of hospital admissions.

Assessment of outdoor thermal comfort in Serbia’s urban environments during different seasons

The urban microclimate is gradually changing due to climate change, extreme weather conditions, urbanization, and the heat island effect. In such an altered environment, outdoor thermal comfort can have a strong impact on public health and quality of life in urban areas. In this study, three main urban areas in Serbia were selected: Belgrade (Central Serbia), Novi Sad (Northern Serbia), and Nis (Southern Serbia). The focus was on the temporal assessment of OTC, using the UTCI over a period of 20 years (1999-2018) during different seasons. The main aim is the general estimation of the OTC of Belgrade, Novi Sad, and Nis, in order to gain better insight into the bioclimatic condition, current trends and anomalies that have occurred. The analysis was conducted based on an hourly (7 h, 14 h, and 21 h CET) and “day by day” meteorological data set. Findings show the presence of a growing trend in seasonal UTCI anomalies, especially during summer and spring. In addition, there is a notable increase in the number of days above the defined UTCI thresholds for each season. Average annual UTCIs values also show a positive, rising trend, ranging from 0.50 degrees C to 1.33 degrees C. The most significant deviations from the average UTCI values, both seasonal and annual, were recorded in 2000, 2007, 2012, 2015, 2017, and 2018.

Temporal analysis of urban-suburban PET, mPET and UTCI indices in Belgrade (Serbia)

The analysis of the bioclimatic conditions is becoming increasingly relevant in climate interpretations for human needs, particularly in spatial planning, tourism, public health, sports events, bio-prognosis, etc. In this context, our study presents general temporal bioclimatic conditions in Belgrade, defined based on the PET, mPET and UTCI heat budget indices. Monthly, seasonal and annual indices were analyzed for urban and suburban weather stations based on 43 annual sets of meteorological data obtained by hourly observations at 7 h and 14 h CET. This study aims to present the distribution of PET, mPET and UTCI indices to show the pattern of each index in a mild climate location and to examine annual and seasonal differences of each index in the Belgrade urban center and suburban part of the city. The study results indicate higher biothermal stress in the urban area compared to the suburban zone and that the indices are congruent during the summer. At the same time, during the winter, they are more difficult to compare due to their peculiarities becoming more noticeable. The results obtained of all mean monthly and mean annual values of all three indices clearly indicate the difference that follows the definition of the urban heat island (UHI), particularly those from morning observation and winter season. The UTCI index shows the most significant monthly, seasonal and annual difference between urban and suburban areas for both observations. The annual difference of ΔUTCI7h amounts to 1.5 °C is the same as the annual difference of minimum temperatures (Δtmin). In contrast, the annual differences of ΔPET7h ΔmPET7h are °smaller (0.8 °C and 0.7 °C) and closer to the annual differences of maximum temperatures Δtmax amounted of 0.6 °C.

Does the meteorological origin of heat waves influence their impact on health? A 6-year morbidity and mortality study in Madrid (Spain)

BACKGROUND: In Spain, two synoptic-scale conditions influence heat wave formation. The first involves advection of warm and dry air masses carrying dust of Saharan origin (North African Dust (NAF) = 1). The second entails anticyclonic stagnation with high insolation and stability (NAF) = 0). Some studies show that the meteorological origin of these heat waves may affect their impact on morbidity and mortality. OBJECTIVE: To determine whether the impact of heat waves on health outcomes in Madrid (Spain) during 2013-2018 varied by synoptic-scale condition. METHODOLOGY: Outcome data consist of daily mortality and daily hospital emergency admissions (morbidity) for natural, circulatory, and respiratory causes. Predictors include daily maximum and minimum temperatures and daily mean concentrations of NO(2), PM(10), PM(2.5), NO(2), and O(3). Analyses adjust for insolation, relative humidity, and wind speed. Generalized linear models were performed with Poisson link between the variables controlling for trend, seasonality, and auto-regression in the series. Relative Risks (RR) and Attributable Risks (AR) were determined. The RRs for mortality attributable to high temperatures were similar regardless of NAF status. For hospital admissions, however, the RRs for hot days with NAF = 0 are higher than for days with NAF = 1. We also found that atmospheric pollutants worsen morbidity and mortality, especially PM(10) concentrations when NAF = 1 and O(3) concentrations when NAF = 0. RESULTS: The effect of heat waves on morbidity and mortality depends on the synoptic situation. The impact is greater under anticyclonic stagnation conditions than under Saharan dust advection. Further, the health impact of pollutants such as PM(10) and O(3) varies according to the synoptic situation. CONCLUSIONS: Based on these findings, we strongly recommend prevention plans to include data on the meteorological situation originating the heat wave, on a synoptic-scale, as well as comprehensive preventive measures against the compounding effect of high temperatures and pollution.

Green regeneration for more justice? An analysis of the purpose, implementation, and impacts of greening policies from a justice perspective in Lodz Stare Polesie (Poland) and Leipzig’s inner east (Germany)

Greening and green regeneration have been developed as a major strategy for improving quality of life in cities and neighbourhoods. Greening policies and projects are being applied at both the citywide and the neigh-bourhood level for various reasons, such as adaptation to climate change and the improvement of housing and living conditions as well as wellbeing and health. Urban policies, plans, and programmes have increasingly employed greening strategies to make urban neighbourhoods more attractive, to improve quality of life, and to provide residents with recreational space. At the same time, greening is increasingly “exploited” by market -oriented regeneration and construction strategies. The new critical debates on eco-gentrification-or distribu-tional, procedural, and interactional injustices-are discussing emerging conflicts or trade-offs between green regeneration and the social or housing market impacts, as well as analysing the role of greening and green regeneration with respect to the (re)production of socio-spatial inequalities and injustices.Set against this background, our paper provides a comparative analysis of two cases-L acute accent odz acute accent Stare Polesie (Poland) and Leipzig’s inner east (Germany)-and has a threefold purpose: first, it seeks to analyse in-terconnections between greening policies and justice concerns. To operationalise the aforementioned in-terconnections, we will, second, develop an operational model that looks at interconnections as a process and applies a justice perspective that focuses on a multidimensional, intersectional, relational, and context-and policy-sensitive understanding of justice. Third, the paper seeks to detect how a contrasting comparison can help us to come to a better and more comprehensive understanding of the interconnections between green regen-eration and justice. The study itself builds on primary research about the two cases from earlier projects.

How to deal with sleep problems during heatwaves: Practical recommendations from the European Insomnia Network

Heatwaves are occurring more frequently and are known to affect particularly night-time temperatures. We review here literature on how night-time ambient temperature changes affect body temperature and sleep quality. We then discuss how these temperature effects impact particularly vulnerable populations such as older adults, children, pregnant women, and those with psychiatric conditions. Several ways of dealing with sleep problems in the context of heatwaves are then suggested, adapted from elements of cognitive behavioural therapy for insomnia, with more specific advice for vulnerable populations. By better dealing with sleep problems during heatwaves, general health effects of heatwaves may be more limited. However, given the sparse literature, many links addressed in this review on sleep problems affected by temperature changes should be the focus of future research.

Association of daily temperature with suicide mortality: A comparison with other causes of death and characterization of possible attenuation across 5 decades

Suicide is one of the leading causes of death in young adults in many Western countries. We examined the short-term association of temperature with cause-specific mortality, comparing suicide with other causes of death and describing possible attenuation of associations with temperature across decades. We considered all deaths that occurred in France between 1968 and 2016. For each cause of death, we conducted a 2-stage meta-analysis of associations with daily temperature. We stratified the association across time periods. A total of 502,017 deaths by suicide were recorded over 49 years. Temperature was monotonically associated with suicide mortality. The strongest association was found at lag 0 days. The relative risk of suicide mortality at the 99th (compared with the 1st) temperature percentile was 1.54 (95% confidence interval, 1.46, 1.63). Among all causes of death, suicide was the only cause displaying a monotonic trend with temperature and ranked seventh for heat-related mortality; 2 other causes of death implying the nervous system ranked third and fourth. Associations with temperature attenuated between the 1968-1984 and 1985-2000 periods for all-cause mortality and suicide mortality, without clear further attenuation in the 2001-2016 period. The robust short-term monotonic association between temperature and suicide risk could be considered in heat effects- and suicide-related prevention campaigns.

Indicators of climate risk in the UK at different levels of warming

Assessments of the impacts of climate change are typically made using climate scenarios based on assumptions about future emissions of greenhouse gases, but policymakers and climate risk communicators are increasingly asking for information on impacts at different levels of warming. This paper provides this information for a set of indicators of climate risks in the UK for levels of warming up to 4 degrees C above pre-industrial levels. The results show substantial increases in climate risks at 2 degrees C, which is often inferred in the media to be a ‘safe’ level of climate change. In a 2 degrees C world, the chance of a heatwave is doubled, and the frequency of heat stress affecting people, crops and animals can be increased by a factor of five. Cooling degree days more than double, wildfire danger can increase by 40%-70%, the frequency of agricultural and water resources droughts doubles in England, and flood frequency in Wales increases by 50%. At 4 degrees C the increases in risk are considerably greater: heatwaves occur in virtually every year. The frequency of cold weather extremes reduces, but is not eliminated, with increasing warming. The rate of change in an indicator with warming varies across the UK. For temperature-based indicators this reflects variability in current climate, but for rainfall-based indicators reflects variations in the change in climate. Most indicators show a generally linear increase in risk with level of warming (although the change in risk from now is around 2.4 times higher in a 4 degrees C world than a 2 degrees C world because of warming experienced so far). However, some indicators-particularly relating to heat extremes-show a highly non-linear increase with level of warming. The range in change in indicator at a given level of warming is primarily caused by uncertainty in the estimated regional response of to increasing forcing.

Exposures to psycholeptics, psychoanaleptics, and cardiovascular drugs reported to the pic erfurt during heat waves from 2003 to 2018

Psycholeptics, psychoanaleptics, and cardiovascular drugs alter individual tolerance to extreme heat. To explore the influence of heat waves on their toxicity in acute overdose, we retrospectively analyzed all human exposures to psycholeptics and psychoanaleptics (PLAexp) as well as cardiovascular drugs (CVDexp) registered by the Poisons Information Center (PIC) Erfurt between June to September of the years 2003 to 2018 for frequency, age groups, sex, circumstances of exposure, and symptom severity. The results of the non-heat years (NHY) 2004-2005 and 2007-2014 (average air temperature June-September 16.2 °C) were compared to the results of the heat years (HY) 2003, 2006 and 2015-2018 (average air temperature June-September 17.5 °C). In total, 13,191 cases (HY 5,117; NHY 8,074) of PLAexp and 2,960 cases (HY 1,168; NHY 1,792) of CVDexp were registered. During HY, accidental PLAexp (11.2% versus 9.7%) and CVDexp (40.6% versus 36.8%) were more often seen. Severe symptoms were less frequent in PLAexp (4.4% versus 6.3%) and CVDexp (3.3% versus 4.9%). Although in HY, no higher rates of moderate or severe PLAexp and CVDexp were detected than in NHY, patients with these medications should be observed carefully during heat waves because of affected body’s usual cooling mechanisms.

Aggressive incidents in psychiatric hospitals on heat days

This study explores the relationship between temperature and the number of aggressive incidents and coercive interventions in the years 2007-2019 in six psychiatric hospitals in the south of the Germany with a total of 1007 beds. The number of aggressive incidents among 164 435 admissions was significantly higher on ‘heat days’ (≥30°C). Furthermore, there was a dose-response relationship between the number of aggressive incidents and increasing temperature. In contrast, the number of coercive interventions was not related to temperature. Considering the background of global warming, rising temperature could result in more frequent aggressive behaviour during in-patient treatment of psychiatric patients.

The need for collective awareness of attempted suicide rates in a warming climate

Background: Climate factors may offer a stronger explanation of the variations in suicide rates compared with economic variables, even in the case of patients admitted involuntarily. Aims: We assessed the role of temperature as a determinant of the increased prevalence of suicide attempts (SA). Method: The sample comprised all cases of hospitalization for SA at the Psychiatric Clinic of the IRCCS Ospedale Policlinico San Martino between August 2013 and July 2018. For ambient temperature, data were provided by the Meteorological Observatory of the University of Genoa. Results: We noted a peak in suicides that was typically found in late spring and early summer due to global warming. Limitations: Other environmental/psychological factors contributing to the onset of an acute clinical event were not considered. The cross-sectional design of the study is another limitation. Conclusion: Further studies are needed to clarify the impact of climatic factors on suicide behavior and implement early intervention and preventive strategies for mental health.

Changes in recreation use in response to urban heat differ between migrant and non-migrant green space users in Vienna, Austria

Previous research has found higher levels of heatwave mortality and morbidity among urban residents with a migration background because of their social, health and environmental conditions. The purpose of the study was to investigate and compare heat induced changes in the outdoor recreation behaviours of Turkish migrants with those of non-migrants on hot days in Vienna. Specifically, the study compared coping behaviours due to heat such as inter-area, intra-area, temporal and activity displacement between migrants and non-migrants. The study interviewed 400 migrants and non-migrants in four public green spaces of different area sizes and asked about their outdoor recreation motives and activities, as well as behavioural changes, due to summer heat. Results show that migrants have different motives for visiting urban green spaces on hot days, and that they visit these less frequently on hot days compared to non-migrants. While both groups shift their outdoor uses more to shady areas and the cooler times of the day, more migrants visit green spaces in the afternoon, perform more energetic recreational activities, and use sunnier sites more frequently than non-migrants on hot days. Few migrants and non-migrants stated that they would visit alternative green spaces when it is hot. The results indicate that migrants’ behaviours result in higher heat exposure, while making less use of the opportunities larger green spaces such as forests can provide for heat relief. Recommendations on how green and city planners could reduce heat related health risks for both study groups are presented.

Don’t blame it on the sunshine! An exploration of the spatial distribution of heat injustice across districts in Antwerp, Belgium

Cities experience temperature differences during heat events, in part modulated by green spaces. In the face of climate change, vegetation and green infrastructure are increasingly important for residents’ thermal comfort. Generally, socio-economically marginalised communities are more likely to live in neighbourhoods with less access to green spaces, which can lead to the experience of hotter temperatures and higher incidences of poor health during heat-waves. Building on three bodies of literature – thermal inequity and green space planning, risk and vulnerability, and critical urban theory – an interdisciplinary approach was employed to understand residents’ perceptions of heat and vulnerability, and disparities in distribution of green space arising due to urban planning in Antwerp, Belgium. Using census data, a high and low-vulnerability district – Borgerhout and Wilrijk – were selected as case studies. Park audits and interviews were carried out to provide insights into parks’ cooling ability and residents’ potential responses to extreme heat. Results demonstrated an unequal distribution, access and quality of green spaces between inner-city Borgerhout and suburban Wilrijk, suggesting that lower-income, vulnerable residents are systematically disadvantaged by municipal green space planning. All Borgerhout interviewees described feeling too hot in summer, whilst the opposite held true for interviewees in Wilrijk. Results were situated within Antwerp planning documents to understand how neoliberalism and social exclusion drive and reproduce patterns of injustice, introducing the term heat injustice to describe entrenched injustice in green space distribution and corresponding resident perceptions, experiences of and vulnerabilities to heat within the city.

Association between temperature and natural mortality in Belgium: Effect modification by individual characteristics and residential environment

BACKGROUND: There is strong evidence of mortality being associated to extreme temperatures but the extent to which individual or residential factors modulate this temperature vulnerability is less clear. METHODS: We conducted a multi-city study with a time-stratified case-crossover design and used conditional logistic regression to examine the association between extreme temperatures and overall natural and cause-specific mortality. City-specific estimates were pooled using a random-effect meta-analysis to describe the global association. Cold and heat effects were assessed by comparing the mortality risks corresponding to the 2.5(th) and 97.5(th) percentiles of the daily temperature, respectively, with the minimum mortality temperature. For cold, we cumulated the risk over lags of 0 to 28 days before death and 0 to 7 days for heat. We carried out stratified analyses and assessed effect modification by individual characteristics, preexisting chronic health conditions and residential environment (population density, built-up area and air pollutants: PM(2.5), NO(2), O(3) and black carbon) to identify more vulnerable population subgroups. RESULTS: Based on 307,859 deaths from natural causes, we found significant cold effect (OR = 1.42, 95%CI: 1.30-1.57) and heat effect (OR = 1.17, 95%CI: 1.12-1.21) for overall natural mortality and for respiratory causes in particular. There were significant effects modifications for some health conditions: people with asthma were at higher risk for cold, and people with psychoses for heat. In addition, people with long or frequent hospital admissions in the year preceding death were at lower risk. Despite large uncertainties, there was suggestion of effect modification by air pollutants: the effect of heat was higher on more polluted days of O(3) and black carbon, and a higher cold effect was observed on more polluted days of PM(2.5) and NO(2) while for O(3), the effect was lower. CONCLUSIONS: These findings allow for targeted planning of public-health measures aiming to prevent the effects of extreme temperatures.

Biometeorological conditions during hot summer days in diverse urban environments of Banja Luka (Bosnia and Herzegovina)

Intensive urbanization and global warming are impacting the health and well-being of urban population. Nevertheless, urban environments with different designs will have different micro and local climate conditions. This study used data from micrometeorological measurements performed in different urban spaces (downtown, urban park, riverside) in Banja Luka, Bosnia and Herzegovina, on hot summer days in June 2021. Air temperature, relative humidity, wind speed, and globe temperature were measured and Mean Radiant Temperature (Tmrt), Psychologically Equivalent Temperature (PET), and modified Psychologically Equivalent Temperature (mPET) were calculated for each location. Results show that the downtown is the most uncomfortable area in terms of the highest Ta, Tg, Tmrt, PET, and mPET values registered at this location. The urban park is the most comfortable area with the lowest values of Tg, Tmrt, PET, and mPET. Relative humidity is the highest at the riverside and the lowest in downtown. Furthermore, riverside had lower average Ta during summer daytime compared to urban park and downtown likely due to the synergy between river cooling effect (evaporation and sensible heat transfer) and tree shade.

Importance of assessing outdoor thermal comfort and its use in urban adaptation strategies: A case study of Banja Luka (Bosnia and Herzegovina)

Climate change at the regional and local levels is forcing strong implementation of urban adaptation strategies related to climate-conscious urbanization and public health. Accordingly, the application of parameters that assess thermal stress in urban areas, such as outdoor thermal comfort (OTC) indices, is of paramount importance. As a contribution to this statement, long-term (1961-2020) datasets of daily OTC indices for the city of Banja Luka (Bosnia and Hercegovina) were used. Detailed temporal analysis using Physiologically Equivalent Temperature (PET), Universal Thermal Climate Index (UTCI), and Mean Radiant Temperature (Tmrt) was performed for (a) the entire research period, (b) the decadal level, and (c) defined heat/cold stress subcategories. The results show an intensive increase in extreme/strong heat days in the last 20 years, and the number of these days is five times higher than in the’70 s and’80 s. Decreasing tendencies are noticed in extreme/strong cold days towards the last two decades.

Thermal conditions and hospital admissions: Analysis of longitudinal data from Cyprus (2009-2018)

The state of the thermal environment can affect human health and well-being. Heat stress is associated with a wide range of health outcomes increasing morbidity and mortality and is recognized as an important health risk posed by climate change. This study aims at examining the effect of thermal conditions on the daily number of hospital admissions in Cyprus. Data from eight public hospitals located in five districts of Cyprus were analyzed from 2009 to 2018. Meteorological hourly gridded data were extracted by the ERA-5 Land reanalysis database with a spatial horizontal resolution of 0.1° × 0.1°. The Physiologically Equivalent Temperature (PET) and the Universal Thermal Climate Index (UTCI) were calculated as measures of the integrated effect of meteorological variables. Negative binomial regression was fitted to examine associations between the daily number of hospital admissions and meteorological variables, PET, and UTCI. The results showed that the mean daily temperature (Tair) was positively associated with hospital admissions from any cause. Hospital admissions increased by 0.6% (p < 0.001) for each 1 °C increase of Tair and by 0.4% (p < 0.001) for each 1 °C increase of PET and UTCI. Ozone and nitrogen oxides act as confounding factors. An effect of particulate matter (less than 10 μm in diameter) was observed when the analysis focused on April to August. Thresholds above which hospital admissions are likely to increase include daily mean Tair = 26.1 °C, PET = 29 °C, and UTCI = 26 °C. Studies on heat-related health effects are necessary to monitor health patterns, raise awareness, and design adaptation and mitigation measures.

Mortality risk related to heatwaves in Finland – Factors affecting vulnerability

BACKGROUND: Heatwaves are known to increase mortality. However, there is a need for more quantitative information on factors affecting sensitivity to the adverse health effects, particularly in countries with cool summer temperatures. OBJECTIVES: We evaluated mortality risk related to heatwave days in Finland. Risk was examined by age, sex, cause of death, and place of death, including health and social care facilities and homes. Mortality was also analysed for different patient subgroups in healthcare facilities. METHODS: Heatwaves were defined as periods when the daily average temperature exceeded the 90th percentile of that from May to August in 2000-2014 for ≥4 days. In addition to all heatwave days, risk was analysed for short (4-5 days) and long (≥10 days) heatwaves. Mortality analyses were based on linking registry data on i) daily non-accidental and cause-specific mortality and ii) admissions to a health or social care facility. Statistical analyses were conducted using generalised estimating equations for longitudinal data analysis, assuming a Poisson distribution for the daily mortality count. RESULTS: During all heatwave days, mortality increased among those aged 65-74 years (6.7%, 95% confidence interval 2.9-10.8%) and ≥75 years (12.8%, 95% CI 9.8-15.9%). Mortality increased in both sexes, but the risk was higher in women. Positive associations were observed for deaths due to respiratory diseases, renal diseases, mental and behavioural disorders, diseases of the nervous system, and cardiovascular diseases. Overall, effects were stronger for long than short heatwaves. During all heatwave days, mortality increased in healthcare facilities in outpatients (26.9%, 95% CI 17.3-37.2%) and inpatients. Among inpatients, the risk was higher in long-term inpatients (stay in ward > 30 days, 13.1%, 95% CI 8.6-17.7%) than others (5.8%, 95% CI 2.7-9.0%). At homes, mortality increased by 8.1% (95% CI 1.9-14.6%). Elevated risk estimates were also detected for social care facilities. CONCLUSIONS: In Finland, a cold-climate Northern country, heatwaves increase mortality risk significantly among the elderly. Women are more susceptible than men, and many chronic diseases are important risk factors. To reduce heatwave-related deaths, preparedness should be improved particularly in hospital and healthcare centre wards, where the most vulnerable are long-term inpatients. However, measures are also needed to protect the elderly at home and in social care facilities, especially during prolonged hot periods.

Climate change and health: Consequences of high temperatures among vulnerable groups in finland

In this article, we examine the effects of high temperatures on hospital visits and mortality in Finland. This provides new information of the topic in a context of predominantly cool temperatures. Unique, individual-level data are used to examine the relationship at the municipality-month level over a span of 20 years. Linear regression methods alongside high-dimensional fixed effects are used to minimize confounding variation. Analysis is conducted with special emphasis on the elderly population, as well as on specific elderly risk groups identified in previous literature. We show that for an additional day per month above 25°C, monthly all-cause mortality increases by 1.5 percent (95% CI: 0.4%-2.6%) and acute hospital visits increase by 1.1 percent (95% CI: 0.7%-1.6%). We also find some evidence that these effects are elevated in selected population subgroups, the low-income elderly, and people with dementia. Hospital visits also increase among younger age groups, illustrating the importance of using multiple health indicators. Such detailed evidence is important for identifying vulnerable groups as extreme heat waves are expected to become more frequent and intense in northern countries.

Comparison of various heat waves definitions and the burden of heat-related mortality in France: Implications for existing early warning systems

INTRODUCTION: In France, a heat warning system (HWS) has been implemented almost two decades ago and rely on some official heat wave (HW) definitions. However, no study has compared the burden associated with a large set of alternative HW definitions to the official definitions. Such comparison could be particularly helpful to identify HW conditions for which effective HWS would minimize the health burden across various geographical contexts and possibly update thresholds to trigger HWS. The aim of this study is to identify (and rank) definitions that drive the highest health burden in terms of mortality to inform future HWS across multiple cities in France. METHODS: Based on weather data for 16 French cities, we compared the two official definitions used in France to: i) the Excess Heat Factor (EHF) used in Australia, and ii) 18 alternative hypothetical HW definitions based on various combinations of temperature metrics, intensity, and duration. Propensity score matching and Poisson regressions were used to estimate the effect of each HW exposure on non-accidental mortality for the May-September period from 2000 to 2015. RESULTS: The associations between HW and mortality differed greatly depending on the definition. The greatest burden of heat was 1,055 (95% confidence interval “CI”: [856; 1,302]) deaths per summer and was obtained with the EHF. The EHF identified HW with 2.46 (95% CI: [1.92; 3.58]) or 8.18 (95% CI: [6.63; 10.61]) times the global burden at the national level obtained with the climatological indicator of the French national weather service and the HW indicator of the French national HWS, respectively and was the most impactful definition pattern for both temperate oceanic and Mediterranean climate types. CONCLUSION: Identifying the set of extreme heat conditions that drive the highest health burden in a given geographical context is particularly helpful when designing or updating heat early warning systems.

Have health inequities, the COVID-19 pandemic and climate change led to the deadliest heatwave in France since 2003?

OBJECTIVES: Between 2015 and 2019, 5700 excess deaths were observed during heatwaves in France. The summer of 2020 combined exceptionally high temperatures with the COVID-19 pandemic. The associated health impacts of this unique situation are described in this study. STUDY DESIGN: This is an observational study based on indicators of the French heat prevention plan. METHODS: Mortality and morbidity data during heatwaves were compared between 2020 and previous years, alongside COVID-19 in-hospital mortality. RESULTS: In total, 1921 additional deaths (+18.2%) were observed during the 2020 heatwaves, which is the largest number of deaths observed since 2003. Less than 100 deaths were attributed to COVID-19 during the heatwaves of 2020. CONCLUSIONS: Exceptionally high temperatures driven by climate change, combined with health inequities exacerbated by the COVID-19 outbreak, may have increased vulnerability to heat in 2020.

Impact of global warming on weight in patients with heart failure during the 2019 heatwave in France

Heatwaves affect human health and should be more and more frequent because of global warming and could lead to increase mortality in general population, especially regarding cardiovascular mortality. During the summer 2019, Europe experienced a strong episode of heatwave. Telemonitoring of patients with heart failure (HF) provide an elegant tool to monitor closely the weights, and we assumed to be able to assess our hypothesis through a nationwide telemonitoring system. Here, we hypothesize that (i) there will be a change in patients’ weight during the heatwave and (ii) that the telemonitoring would enable us to follow these changes. The change in weight would be a surrogate for clinical worsening (with or without decompensated HF). Briefly, 1420 patients with a median age of 73.0 years and mean weight of 78.1 kg have been included in this analysis. The relationship between temperature and weight is very strong (P < 10(-7) ). The magnitude of the effect seems clinically relevant with a variation of 1.5 kg during a short period. This could expose patients to increased symptoms, HF decompensations, and poor outcomes. These results suggest a new way to implement weight telemonitoring in HF. This suggests also a direct impact of global warming on Human health, with acute episodes that are expected to occur more often, threatening patients with chronic diseases, especially patients with heart failure. In clinical practice, this urges to take into consideration the episodes of extreme heatwave and suggest that we have already useful tools including telemonitoring available in frail patients.

Heatwave preparedness in urban Georgia: A street survey in three cities

Background The frequency and intensity of heatwaves are expected to increase in the coming years. To promote resilient cities, it is key to have insights in populations with low preparedness levels. This study investigated personal characteristics associated with heatwave-protective knowledge, and preferred information channels and sources on this topic in cities in Georgia. Methods We undertook a street survey among three large cities in Georgia, including the capital Tbilisi. We collected demographic, socio-economic, medical and behavioural characteristics as potential risk factors for reduced heatwave-protective knowledge. Furthermore, we asked respondents about information channels and sources they use and prefer to obtain information on heatwave-protective measures. Results Being male, parent of children under the age of 12 and having a lower educational level are risk factors for lower knowledge levels on heatwave protection. Being homemakers, retiree, having fasted and using medication are protective factors. Television and internet are the channels more often used for obtaining information on heatwave-protective measures, and people prefer to receive information on this topic from health authorities. Conclusion Our findings identified characteristics that make people more vulnerable to heatwaves, due to a reduced knowledge level on heatwave protection. Targeted communication towards these groups, using information sources and media specifically aimed at this target audience, could improve this.

Threshold temperatures for subjective heat stress in urban apartments – Analysing nocturnal bedroom temperatures during a heat wave in Germany

As climate change progresses, it is causing more frequent and severe heat waves, resulting in higher indoor temperatures. Various temperature thresholds for indicating indoor overheating have been proposed in different contexts, extending from reduced comfort in buildings to subjective heat stress and onset of first or serious health problems. This study reviews these thresholds and identifies threshold values for subjective heat stress of occupants in the city of Augsburg, Germany, distinguishing between vulnerable and non-vulnerable households. Survey data from 427 private households are analysed using unpaired analysis of variances (ANOVA), t-tests and regression analysis to identify factors related to subjective heat stress at home during night-time. The findings imply that health implications during heat waves, age, local climate zones favouring the urban heat island effect and higher indoor temperature represent significant factors for subjective heat stress. A significant difference in subjective heat stress among different groups related to temperature could be identified for thresholds of 24.8 degrees C (people living alone) and 26.7 degrees C (people with chronic disease). As WHO threshold for health risk from overheating is 24 degrees C, people are apparently at heat-related risk without feeling that they are at risk, especially when they have chronic diseases; thus they may not see the urgency of taking adaptation measures.

The winter urban heat island: Impacts on cold-related mortality in a highly urbanized European region for present and future climate

Exposure to heat has a range of potential negative impacts on human health; hot weather may exacerbate cardiovascular and respiratory illness or lead to heat stroke and death. Urban populations are at increased risk due to the Urban Heat Island (UHI) effect (higher urban temperatures compared with rural ones). This has led to extensive investigation of the summertime UHI and its effects, whereas far less research focuses on the wintertime UHI. Exposure to low temperature also leads to a range of illnesses, and in fact, in the UK, annual cold-related mortality outweighs heat-related mortality. It is not clearly understood to what extent the wintertime UHI may protect against cold related mortality. In this study we quantify the UHI intensity in wintertime for a heavily urbanized UK region (West Midlands, including Birmingham) using a regional weather model, and for the first time, use a health impact assessment (HIA) to estimate the associated impact on cold-related mortality. We show that the population-weighted mean winter UHI intensity was +2.3 °C in Birmingham city center, and comparable with that of summer. Our results suggest a potential protective effect of the wintertime UHI, equivalent to 266 cold-related deaths avoided (~15% of total cold-related mortality over ~11 weeks). When including the impacts of climate change, our results suggest that the number of heat-related deaths associated with the summer UHI will increase from 96 (in 2006) to 221 in the 2080s, based on the RCP8.5 emissions pathway. The protective effect of the wintertime UHI is projected to increase only slightly from 266 cold-related deaths avoided in 2009 to 280 avoided in the 2080s. The different effects of the UHI in winter and summer should be considered when assessing interventions in the built environment for reducing summer urban heat, and our results suggest that the future burden of temperature-related mortality associated with the UHI is likely to increase in summer relative to winter.

Evaluation of the ERA5 reanalysis-based Universal Thermal Climate Index on mortality data in Europe

Air temperature has been the most commonly used exposure metric in assessing relationships between thermal stress and mortality. Lack of the high-quality meteorological station data necessary to adequately characterize the thermal environment has been one of the main limitations for the use of more complex thermal indices. Global climate reanalyses may provide an ideal platform to overcome this limitation and define complex heat and cold stress conditions anywhere in the world. In this study, we explored the potential of the Universal Thermal Climate Index (UTCI) based on ERA5 – the latest global climate reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) – as a health-related tool. Employing a novel ERA5-based thermal comfort dataset ERA5-HEAT, we investigated the relationships between the UTCI and daily mortality data in 21 cities across 9 European countries. We used distributed lag nonlinear models to assess exposure-response relationships between mortality and thermal conditions in individual cities. We then employed meta-regression models to pool the results for each city into four groups according to climate zone. To evaluate the performance of ERA5-based UTCI, we compared its effects on mortality with those for the station-based UTCI data. In order to assess the additional effect of the UTCI, the performance of ERA5-and station-based air temperature (T) was evaluated. Whilst generally similar heat- and cold-effects were observed for the ERA5-and station-based data in most locations, the important role of wind in the UTCI appeared in the results. The largest difference between any two datasets was found in the Southern European group of cities, where the relative risk of mortality at the 1st percentile of daily mean temperature distribution (1.29 and 1.30 according to the ERA5 vs station data, respectively) considerably exceeded the one for the daily mean UTCI (1.19 vs 1.22). These differences were mainly due to the effect of wind in the cold tail of the UTCI distribution. The comparison of exposure-response relationships between ERA5-and station-based data shows that ERA5-based UTCI may be a useful tool for definition of life-threatening thermal conditions in locations where high-quality station data are not available.

Evidence of rapid adaptation integrated into projections of temperature-related excess mortality

Few studies have used empirical evidence of past adaptation to project temperature-related excess mortality under climate change. Here, we assess adaptation in future projections of temperature-related excess mortality by employing evidence of shifting minimum mortality temperatures (MMTs) concurrent with climate warming of recent decades. The study is based on daily non-external mortality and daily mean temperature time-series from 11 Spanish cities covering four decades (1978-2017). It employs distributed lag non-linear models (DLNMs) to describe temperature-mortality associations, and multivariate mixed-effect meta-regression models to derive city- and subperiod-specific MMTs, and subsequently MMT associations with climatic indicators. We use temperature projections for one low- and one high-emission scenario (ssp126, ssp370) derived from five global climate models. Our results show that MMTs have closely tracked mean summer temperatures (MSTs) over time and space, with meta-regression models suggesting that the MMTs increased by 0.73 degrees C (95%CI: 0.65, 0.80) per 1 degrees C rise in MST over time, and by 0.84 degrees C (95%CI: 0.76, 0.92) per 1 degrees C rise in MST across cities. Future projections, which include adaptation by shifting MMTs according to observed temporal changes, result in 63.5% (95%CI: 50.0, 81.2) lower heat-related excess mortality, 63.7% (95%CI: 30.2, 166.7) higher cold-related excess mortality, and 11.2% (95%CI: -5.5, 39.5) lower total temperature-related excess mortality in the 2090s for ssp370 compared to estimates that do not account for adaptation. For ssp126, assumptions on adaptation have a comparatively small impact on excess mortality estimates. Elucidating the adaptive capacities of societies can motivate strengthened efforts to implement specific adaptation measures directed at reducing heat stress under climate change.

Mortality associated with seasonal changes in ambient temperature and humidity in Zenica-Doboj Canton

Aim To determine the relationship between seasonal changes in ambient temperature, humidity and general and specific mortality rates in the area of Zenica-Doboj Canton. Methods Changes in the average monthly mortality in the period from 2008 to 2019 were analysed (linear regression) in relation to the average temperatures and humidity in those months in the same time period in Zenica-Doboj Canton. Results Overall mortality increased from 7.9 ‰ in 2008 to 10.2 ‰ in 2019. Overall and specific mortality rates for cardiovascular, malignant, respiratory and metabolic diseases followed seasonal change of ambient temperature and humidity. The monitoring trend showed strong determination degree for overall mortality and mortality for cardiovascular, malignant and respiratory diseases, while for metabolic diseases it was somewhat lower. The highest mortality rates were found in January (cold month), and in August (warm month); the lowest one was in May, September and October. There was a strong significant negative correlation between temperature and mortality rates, while the correlation between humidity and mortality rates was not significant. Conclusion As we have proven that mortality rates followed seasonal changes in ambient temperature and determined months with the least mortality rate, the community must take measures to ensure microclimatic conditions for the survival of patients with cardiovascular, malignant, respiratory and metabolic diseases.

Projecting the impacts of housing on temperature-related mortality in London during typical future years

Climate change means the UK will experience warmer winters and hotter summers in the future. Concurrent energy efficiency improvements to housing may modify indoor exposures to heat or cold, while population aging may increase susceptibility to temperature-related mortality. We estimate heat and cold mortality and energy consumption in London for typical (non-extreme) future climates, given projected changes in population and housing. Building physics models are used to simulate summertime and wintertime indoor temperatures and space heating energy consumption of London dwellings for ‘baseline’ (2005-2014) and future (2030s, 2050s) periods using data from the English Housing Survey, historical weather data, and projected future weather data with temperatures representative of ‘typical’ years. Linking to population projections, we calculate future heat and cold attributable mortality and energy consumption with demolition, construction, and alternative scenarios of energy efficiency retrofit. At current retrofit rates, around 168-174 annual cold-related deaths per million population would typ-ically be avoided by the 2050s, or 261-269 deaths per million under ambitious retrofit rates. Annual heat deaths would typically increase by 1 per million per year under the current retrofit rate, and 12-13 per million under ambitious rates without population adaptation to heat. During typical future summers, an estimated 38-73% of heat-related deaths can be avoided using external shutters on windows, with their effectiveness lower during hotter weather. Despite warmer winters, ambitious retrofit rates are nec-essary to reduce typical annual energy consumption for heating below baseline levels, assuming no improvement in heating system efficiencies. Concerns over future overheating in energy efficient housing are valid but increases in heat attributable mortality during typical and hot (but not extreme) summers are more than offset by significant reductions in cold mortality and easily mitigated using passive mea-sures. More ambitious retrofit rates are critical to reduce energy consumption and offer co-benefits for reducing cold-related mortality. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

Amber Alert’ or ‘Heatwave Warning’: The role of linguistic framing in mediating understandings of early warning messages about heatwaves and cold spells

Periods of extremely hot and cold weather can cause significant mortality and morbidity in both temperate and more extreme climates. In the UK, their occurrence prompts the issuing of number and colour coded warnings providing an assessment of the level of risk. These are designed to minimize health impact by prompting timely and appropriate mitigating actions by the public. Drawing upon the interdisciplinary notion of framing, I report on a study that identified a central role for language in mediating how these warnings are interpreted and evaluated. I use an innovative approach that combines the quantitative tools of corpus linguistics to identify the language used to represent warnings and the risks of extreme temperature in the mass media, with qualitative analysis of focus group discussions of typical texts. A comparison of both datasets indicates a multi-layered interactivity between the myriad ways in which language can give salience to aspects of a risk scenario and an interpreter’s knowledge and perception of a threat, and that underlying such interactions, is the conceptualization of risk as scalar property.

Analysis of the heat- and cold-related cardiovascular mortality in an urban mediterranean environment through various thermal indices

During the last decades the effects of thermal stress on public health have been a great concern worldwide. Thermal stress is determined by air temperature in combination with other meteorological parameters, such as relative humidity and wind speed. The present study is focused on the Mediterranean city of Thessaloniki, Greece and it aims to explore the association between thermal stress and mortality from cardiovascular diseases, using both air temperature and other thermal indices as indicators. For that, an over-dispersed Poisson regression function was used, in combination with distributed lag non-linear models, in order to capture the delayed and nonlinear effects of temperature. Our results revealed a reverse J-shaped exposure-response curve for the total population and females and a U-shaped association for males. In all cases examined, the minimum mortality temperature was identified around the 80th percentile of each distribution. It is noteworthy that despite the fact that the highest risks of cardiovascular mortality were estimated for exposure to extreme temperatures, moderate temperatures were found to cause the highest burden of mortality. On the whole, our estimations demonstrated that the population in Thessaloniki is more susceptible to cold effects and in regard with gender, females seem to be more vulnerable to ambient thermal conditions.

Impact of extreme temperatures on emergency hospital admissions by age and socio-economic deprivation in England

Climate change poses an unprecedented challenge to population health and health systems’ resilience, with increasing fluctuations in extreme temperatures through pressures on hospital capacity. While earlier studies have estimated morbidity attributable to hot or cold weather across cities, we provide the first large-scale, population-wide assessment of extreme temperatures on inequalities in excess emergency hospital admissions in England. We used the universe of emergency hospital admissions between 2001 and 2012 combined with meteorological data to exploit daily variation in temperature experienced by hospitals (N = 29,371,084). We used a distributed lag model with multiple fixed-effects, controlling for seasonal factors, to examine hospitalisation effects across temperature-sensitive diseases, and further heterogeneous impacts across age and deprivation. We identified larger hospitalisation impacts associated with extreme cold temperatures than with extreme hot temperatures. The less extreme temperatures produce admission patterns like their extreme counterparts, but at lower magnitudes. Results also showed an increase in admissions with extreme temperatures that were more prominent among older and socioeconomically-deprived populations – particularly across admissions for metabolic diseases and injuries.

Early delivery following chronic and acute ambient temperature exposure: A comprehensive survival approach

BACKGROUND: Ambient temperature, particularly heat, is increasingly acknowledged as a trigger for preterm delivery but study designs have been limited and results mixed. We aimed to comprehensively evaluate the association between ambient temperature throughout pregnancy and preterm delivery. METHODS: We estimated daily temperature throughout pregnancy using a cutting-edge spatiotemporal model for 5347 live singleton births from three prospective cohorts in France, 2002-2018. We performed Cox regression (survival analysis) with distributed lags to evaluate time-varying associations with preterm birth simultaneously controlling for exposure during the first 26 weeks and last 30 days of pregnancy. We examined weekly mean, daytime, night-time and variability of temperature, and heatwaves accounting for adaptation to location and season. RESULTS: Preterm birth risk was higher following cold (5th vs 50th percentile of mean temperature) 7-9 weeks after conception [relative risk (RR): 1.3, 95% CI: 1.0-1.6 for 2°C vs 11.6°C] and 10-4 days before delivery (RR: 1.6, 95% CI: 1.1-2.1 for 1.2°C vs 12.1°C). Night-time heat (95th vs 50th percentile of minimum temperature; 15.7°C vs 7.4°C) increased risk when exposure occurred within 5 weeks of conception (RR: 2.0, 95% CI: 1.05-3.8) or 20-26 weeks after conception (RR: 2.9, 95% CI: 1.2-6.8). Overall and daytime heat (high mean and maximum temperature) showed consistent effects. We found no clear associations with temperature variability or heatwave indicators, suggesting they may be less relevant for preterm birth. CONCLUSIONS: In a temperate climate, night-time heat and chronic and acute cold exposures were associated with increased risk of preterm birth. These results suggest night-time heat as a relevant indicator. In the context of rising temperatures and more frequent weather hazards, these results should inform public health policies to reduce the growing burden of preterm births.

Heat-related mortality under climate change and the impact of adaptation through air conditioning: A case study from Thessaloniki, Greece

Climate change is expected to increase heat-related mortality across the world. Health Impact Assessment (HIA) studies are used to quantify the impact of higher temperatures, taking into account the effect of population adaptation. Although air-conditioning (AC) is one of the main drivers of technological adaptation to heat, the health impacts associated with AC-induced air pollution have not been examined in detail. This study uses the city of Thessaloniki, Greece as a case study and aims to estimate the future heat-related mortality, the residential cooling demand, and the adaptation trade-off between averted heat-related and increased air pollution cardiorespiratory mortality. Using temperature and population projections under different Coupled Model Intercomparison Project Phase 6 (CIMP6) Shared Socioeconomic Pathways scenarios (SSPs), a HIA model was developed for the future heat and air pollution cardiorespiratory mortality. Counterfactual scenarios of either black carbon (BC) or natural gas (NG) being the fuel source for electricity generation were included in the HIA. The results indicate that the heat-related cardiorespiratory mortality in Thessaloniki will increase and the excess of annual heat-related deaths in 2080-2099 will range from 2.4 (95% CI: 0.0-20.9) under SSP1-2.6 to 433.7 (95% CI: 66.9-1070) under SSP5-8.5. Population adaptation will attenuate the heat-related mortality, although the latter may be counterbalanced by the higher air pollution-related mortality due to increased AC, especially under moderate SSP scenarios and coal-fired power plants. Future studies examining the health effects of warmer temperatures need to account for the impact of both adaptation and increased penetration and use of AC.

Effects of local factors on adaptation to heat in Spain (1983-2018)

The European Union is currently immersed in policy development to address the effects of climate change around the world. Key plans and processes for facilitating adaptation to high temperatures and for reducing the adverse effects on health are among the most urgent measures. Therefore, it is necessary to understand those factors that influence adaptation. The aim of this study was to provide knowledge related to the social, climate and economic factors that are related to the evolution of minimum mortality temperatures (MMT) in Spain in the rural and urban contexts, during the 1983-2018 time period. For this purpose, local factors were studied regarding their relationship to levels of adaptation to heat. MMT is an indicator that allows for establishing a relationship to between mortality and temperature, and is a valid indicator to assess the capacity of adaptation to heat of a certain population. MMT is obtained through the maximum daily temperature and daily mortality of the study period. The evolution of MMT values for Spain was established in a previous paper. An ecological, longitudinal and retrospective study was carried out. Generalized linear models (GLM) were performed to identify the variables that appeared to be related to adaptation. The adaptation was calculated as the difference in variation in MMT based on the average increase in maximum daily temperatures. In terms of adaptation to heat, urban populations have adapted more than non-urban populations. Seventy-nine percent (n = 11) of urban provinces have adapted to heat, compared to twenty-one percent (n = 3) of rural provinces that have not adapted. In terms of urban zones, income level and habituation to heat (values over the 95th percentile) were variables shown to be related to adaptation. In contrast, among non-urban provinces, a greater number of housing rehabilitation licenses and a greater number of health professionals were variables associated with higher increases in MMT, and therefore, with adaptation. These results highlight the need to carry out studies that allow for identifying the local factors that are most relevant and influential in population adaptation. More studies carried out at a small scale are needed.

Evolution of the minimum mortality temperature (1983-2018): Is Spain adapting to heat?

The objective of this study was to analyze at the level of Spain’s 52 provinces province level the temporal evolution of minimum mortality temperatures (MMT) from 1983 to 2018, in order to determine whether the increase in MMT would be sufficient to compensate for the increase in environmental temperatures in Spain for the period. It also aimed to analyze whether the rate of evolution of MMT would be sufficient, were it to remain constant, to compensate for the predicted increase in temperatures in an unfavorable (RCP 8.5) emissions scenario for the time horizon 2051-2100. The independent variable was made up of maximum daily temperature data (Tmax) for the summer months in the reference observatories of each province for the 1983-2018 period. The dependent variable was daily mortality rate due to natural causes (ICD 10: A00-R99). For each year and province, MMT was determined using a quadratic or cubic fit (p < 0.05). Based on the annual MMT values, a linear fit was carried out that allowed for determining the time evolution of MMT. These values were compared with the evolution of Tmax registered in each observatory during the 1983-2018 analyzed period and with the predicted values of Tmax obtained for an RCP8.5 scenario for the period 2051-2100. The rate of global variance in Tmax in the summer months in Spain during the 1983-2018 period was 0.41 °C/decade, while MMT across the whole country increased at a rate of 0.64 °C/decade. Variations in the provinces were heterogeneous. For the 2051-2100 time horizon, there was predicted increase in Tmax values of 0.66 °C/decade, with marked geographical differences. Although at the global level it is possible to speak of adaptation, the heterogeneities among the provinces suggest that the local level measures are needed in order to facilitate adaptation in those areas where it is not occurring.

Climate-resilient robotic facades: Architectural strategies to improve thermal comfort in outdoor urban environments using robotic assembly

In the context of dense urban environments and climate change, pedestrians’ thermal experience plays an increasingly significant role in people’s health and well-being. In this research, the authors combine the fields of architecture, climate-responsive design, and robotic fabrication with the goal of investigating strategies to improve outdoor thermal comfort for pedestrians in cities with frequent extreme heat events. Based on a case study in the city of Munich, this paper presents findings into the technological approaches and methods for location-specific climate-resilient brick facades using robotic assembly. To achieve this goal, different bricklaying patterns were investigated to create a self-shading effect and thus reduce solar radiation and ultimately achieve an improved thermal condition for pedestrians moving along urban facades at street level. Using computer-aided microclimate simulation, generic self-shading brick pattern designs were tailored to highly location-specific microclimate requirements. Robotic assembly technology was used to produce such tailored, non-standard brickwork facades. The results of this research led to a data-informed design process with a demonstrator object being realized at 1:1 scale with a height of 2 m and a length of 3 m using a collaborative robot on site. Thermal measurements on the built demonstrator provided indications of reduced surface temperatures despite high solar radiation and thus validated the location-specific self-shading effects according to solar radiation simulation.

Greening is a promising but likely insufficient adaptation strategy to limit the health impacts of extreme heat

BACKGROUND: Adapting the urban environment to heat is a public health priority in the context of climate change. Cities are now considering interventions on specific urban characteristics known to contribute to the urban heat island (UHI) such as vegetation and imperviousness. OBJECTIVES: To explore how these urban characteristics influence the temperature-mortality relationship in the Paris region. METHODS: We modeled the temperature-mortality relationship for the 1300 municipalities of the region from 1990 to 2015, while including an interaction with indicators that summarize the municipalities’ main urban characteristics. Four indicators were tested: lack of green spaces, lack of trees, proportion of impervious surface, and overexposed population to a potential night UHI. RESULTS: The shape of the temperature-mortality relationship was similar across all municipalities, but with a higher slope at the highest temperatures in municipalities with less green spaces, less trees, and more impervious soil. For instance, in Paris and its close suburbs, the relative risk associated with a temperature in the 99th percentile of the temperature distribution (compared to the 50th percentile) was 2.17 [IC95% 1.98:2.38] in municipalities with 40% of their surface covered by trees compared to 2.57 [IC 95% 2.47:2.68] in municipalities with only 3% of their surface covered by trees. DISCUSSION: A lack of vegetation and a high degree of imperviousness were associated with a higher risk of heat-related mortality in the Paris region. Therefore, we can assume that interventions targeting these characteristics could reduce the health impacts of extreme heat. Such interventions should be coupled with other initiatives such as protecting the most vulnerable and promoting appropriate behaviors.

Heat adaptation measures in private households: An application and adaptation of the protective action decision model

Extreme heatwaves will occur more frequently and with higher intensity in future. Their consequences for human health can be fatal if adaptation measures will not be taken. This study analyses factors related to heat adaptation measures in private households in Germany. During the summer months of 2019, indoor temperatures were measured in over 500 private households in the City of Augsburg, Germany, accompanied by a survey to find out about heat perception and adaptation measures. Hypotheses deducted from the Protective Action Decision Model were tested using one-way ANOVAs, regression analysis and in the end a multiple hierarchical regression model. The results of the hypotheses tested imply an influence of knowledge and heat risk perception of heat adaptation behaviour and an influence of age on heat risk perception. The results of the regression model show an influence of the efficacy-related attribute, of age, indoor temperature, subjective heat stress and health implications to heat adaptation behaviour. In the end, this study proposes adjustments to the PADM according to the results of the hierarchical regression analysis.

Impact of summer heat on urban park visitation, perceived health and ecosystem service appreciation

Urbanization, environmental change and ageing are putting urban health at risk. In many cities, heat stress is projected to increase. Urban green spaces are considered as an important resource to strengthen the resilience of city dwellers. We conducted a questionnaire survey in two structurally distinct parks in Leipzig, Germany, on hot summer days in 2019. We assessed the respondents? activity patterns, satisfaction with the existing infrastructure, heat-related health impairment, changes in park use during heat waves and evaluation of the role of parks in coping with heat stress. We found that the old-grown, tree-rich park was used significantly more frequently for experiencing nature, while the newer, less tree-rich park developed on a former railway-brownfield site was used more often for socializing and having BBQs and picnics. Satisfaction with available drinking fountains and public toilets was generally low and satisfaction with lighting was assessed less satisfactory in the old-grown park. Safety was assessed as satisfactory in general but significantly less satisfactory by female respondents. The heat stress summary score indicating heat-related health impairment was significantly higher for participants in the newer park. A high share of respondents stated that they used parks during heat waves as frequently as usual in the summer (46 %), while some respondents stated that they adapted their park use behaviour (18 %), e.g., by coming later in the evening. Regarding the participants? responses about the role of parks under summer heat conditions, we matched 138 statements to several regulating and cultural ecosystem services, and we found cooling and recreation to be mentioned most often. We concluded that green space planning should diminish usage barriers, such as insufficient lighting and insufficient sanitary infrastructure, to ensure equal park use opportunities for all city dwellers. Specific local environmental and sociocultural conditions, changing environments and climate adaptation must be considered. To maintain ecological processes and functions and to cope with climate change, urban planning should preserve older parks with a large amount of tree coverage while respecting demands for particular built infrastructure.

Solar elevation impact on the heat stress mitigation of pedestrians on tree-lined sidewalks of E-W street canyons – Analysis under Central European heat wave conditions

For both tree-lined sidewalks of a shallow and deep E-W street canyon located in the city of Freiburg (Southwest Germany), the solar elevation impact on the magnitude of the daytime human heat stress mitigation (hhsm) is analysed in dependence of different tree scenarios. Identic ENVI-met simulations are carried out on the summer solstice day 21 June 2003 and heat wave day 4 August 2003. All simulation scenarios indicate an almost negligible solar elevation impact on hhsm in terms of spatiotemporal averaged air temperature. The results achieved on both simulation days for the spatiotemporal averaged mean radiation temperature (T-mrt) and physiologically equivalent temperature (PET) as well as spatially high-resolution PET reflect that the north-facing sidewalk in both street canyons is entirely shaded by the south-bounding building. Secondarily it is influenced by lower radiant flux densities from the trees near the curb edges of both sidewalks. On both simulation days, the south-facing sidewalk in the shallow street canyon is only shaded by the tree crowns. In the deep street canyon, however, the south-facing sidewalk is completely shaded on 4 August by the south-bounding building, while on 21 June this shade is limited to its southern half, i.e. its northern half is directly influenced by the shade of trees. Due to these shading conditions, the results focused on pedestrians on both sidewalks show different patterns of the solar elevation impact on T-mrt and PET as well as hhsm in terms of T-mrt and PET. While increasing tree crown projection areas lead to a lower solar elevation impact on T-mrt and PET, they cause a more distinct hhsm in terms of T-mrt and PET for higher solar elevations. The non-negligible magnitude of the solar elevation impact in all scenarios leads to the recommendation to carry out ensemble simulations in order to achieve T-mrt, PET, hhsm-T-mrt and hhsm-PET results, which are reliable for planning applications.

Sensitivities of heat-wave mortality projections: Moving towards stochastic model assumptions

This paper analyses the probabilistic future behaviour of heat-waves (HWs) in the city of Madrid in the twenty-first century, using maximum daily temperatures from twenty-one climate circulation models under two representative concentration pathways (RCP 8.5 & RCP 4.5). HWs are modelled considering three factors: number per annum, duration and intensity, characterised by three stochastic processes: Poisson, Gamma and truncated Gaussian, respectively. Potential correlations between these processes are also considered. The probabilistic temperature behaviour is combined with an epidemiological model with stochastic mortality risk following a generalized extreme value distribution (gev). The objective of this study is to obtain probability distributions of mortality and risk measures such as the mean value of the 5% of worst cases in the 21st century, in particular from 2025 to 2100. Estimates from stochastic models for characterising HWs and epidemiological impacts on human health can vary from one climate model to another, so relying on a single climate model can be problematic. For this reason, the calculations are carried out for 21 models and the average of the results is obtained. A sensitivity adaptation analysis is also performed. Under RCP 8.5 for 2100 for Madrid city a mean excess of 3.6 °C over the 38 °C temperature threshold is expected as the average of all models, with an expected attributable mortality of 1614 people, but these figures may be substantially exceeded in some cases if the highest-risk cases occur.

Behavioural thermal regulation explains pedestrian path choices in hot urban environments

Due to phenomena such as urban heat islands, outdoor thermal comfort of the cities’ residents emerges as a growing concern. A major challenge for mega-cities in changing climate is the design of urban spaces that ensure and promote pedestrian thermal comfort. Understanding pedestrian behavioural adaptation to urban thermal environments is critically important to attain this goal. Current research in pedestrian behaviour lacks controlled experimentation, which limits the quantitative modelling of such complex behaviour. Combining well-controlled experiments with human participants and computational methods inspired by behavioural ecology and decision theory, we examine the effect of sun exposure on route choice in a tropical city. We find that the distance walked in the shade is discounted by a factor of 0.86 compared to the distance walked in the sun, and that shadows cast by buildings have a stronger effect than trees. The discounting effect is mathematically formalised and thus allows quantification of the behaviour that can be used in understanding pedestrian behaviour in changing urban climates. The results highlight the importance of assessment of climate through human responses to it and point the way forward to explore scenarios to mitigate pedestrian heat stress.

Evaluating the cooling potential of a geothermal-assisted ventilation system for multi-family dwellings in the Scandinavian climate

In recent years, the increasing occurrence of heatwaves raises the cooling need of residential buildings in Scandinavian countries, which are traditionally not equipped with active cooling systems. Indoor overheating caused by such heatwaves leads to severe consequences for occupants, especially kids and seniors. Efficient and economical cooling solutions are urgently needed to cope with frequent heatwaves. The present study investigated the novel usage of the geothermal-assisted mechanical ventilation with heat recovery (GEO-MVHR) system for cooling purposes in typical Swedish multi-family dwellings. The cooling potential of the system and its contributions to thermal comfort were evaluated. Dynamic simulations were conducted to assess the system’s cooling performance under two climate scenarios: the climate of 2018 representing an extreme year with excessively hot summer and the climate of a typical meteorological year. The GEO-MVHR system shows great potential in mitigating indoor overheating with improved thermal comfort. A ventilation airflow rate of 0.50-0.70 l/s/m(2) is suggested for multi-family dwellings to maximize the cooling potential of the GEO-MVHR system. The indoor operative temperature could be reduced by up to 3 degrees C with the GEO-MVHR system operating for cooling. Modulating the supply air temperature of the GEO-MVHR system based on indoor thermal conditions is recommended, as it shows the advantage of avoiding unnecessary overcooling and energy saving.

Inconspicuous adaptations to climate change in everyday life: Sustainable household responses to drought and heat in Czech cities

Adaptation to climate change is often understood as a top-down decision-making and policy-implementing process, as well as application of expert knowledge, to prevent or reduce its (locally specific) negative consequences. In high-income societies, adaptation at the household level then frequently refers to adopting technological fixes distributed through the market, sometimes at a considerable cost. Informed by a study in the context of Central Europe, this article aims to discuss different practices of households and individuals that do not require increased consumption of energy or materials, but still help adapting to climate change in some of its local expressions, such as heatwaves and drought. They were described by participants in focus groups in six cities in the Czech Republic. I argue that such ‘inconspicuous adaptations’ emerge without connection to the climate change debate, or without deeper knowledge about the issue. Yet, they should not be overlooked as unimportant and short-term ‘coping responses’ and underestimated in this debate. They are part and parcel of the ongoing process of societal adaptation to climate change.

Prioritization of resilience initiatives for climate-related disasters in the metropolitan city of Venice

Increases in the magnitude and frequency of climate and other disruptive factors are placing environmental, economic, and social stresses on coastal systems. This is further exacerbated by land use transformations, urbanization, over-tourism, sociopolitical tensions, technological innovations, among others. A scenario-informed multicriteria decision analysis (MCDA) was applied in the Metropolitan City of Venice integrating qualitative (i.e., local stakeholder preferences) and quantitative information (i.e., climate-change projections) with the aim of enhancing system resilience to multiple climate-related threats. As part of this analysis, different groups of local stakeholders (e.g., local authorities, civil protection agencies, SMEs, NGOs) were asked to identify critical functions that needs to be sustained. Various policy initiatives were considered to support these critical functions. The MCDA was used to rank the initiatives across several scenarios describing main climate threats (e.g., storm surges, floods, heatwaves, drought). We found that many climate change scenarios were considered to be disruptive to stakeholders and influence alternative ranking. The management alternatives acting on physical domain generally enhance resilience across just a few scenarios while cognitive and informative initiatives provided resilience enhancement across most scenarios considered. With uncertainty of multiple stressors along with projected climate variability, a portfolio of cognitive and physical initiatives is recommended to enhance resilience.

Comparing temperature-related mortality impacts of cool roofs in winter and summer in a highly urbanized European region for present and future climate

Human health can be negatively impacted by hot or cold weather, which often exacerbates respiratory or cardiovascular conditions and increases the risk of mortality. Urban populations are at particular increased risk of effects from heat due to the Urban Heat Island (UHI) effect (higher urban temperatures compared with rural ones). This has led to extensive investigation of the summertime UHI, its impacts on health, and also the consideration of interventions such as reflective ‘cool’ roofs to help reduce summertime overheating effects. However, interventions aimed at limiting summer heat are rarely evaluated for their effects in wintertime, and thus their overall annual net impact on temperature-related health effects are poorly understood. In this study we use a regional weather model to simulate the winter 2009/10 period for an urbanized region of the UK (Birmingham and the West Midlands), and use a health impact assessment to estimate the impact of reflective ‘cool’ roofs (an intervention usually aimed at reducing the UHI in summer) on cold-related mortality in winter. Cool roofs have been shown to be effective at reducing maximum temperatures during summertime. In contrast to the summer, we find that cool roofs have a minimal effect on ambient air temperatures in winter. Although the UHI in summertime can increase heat-related mortality, the wintertime UHI can have benefits to health, through avoided cold-related mortality. Our results highlight the potential annual net health benefits of implementing cool roofs to reduce temperature-related mortality in summer, without reducing the protective UHI effect in winter. Further, we suggest that benefits of cool roofs may increase in future, with a doubling of the number of heat-related deaths avoided by the 2080s (RCP8.5) compared to summer 2006, and with insignificant changes in the impact of cool-roofs on cold-related mortality. These results further support reflective ‘cool’ roof implementation strategies as effective interventions to protect health, both today and in future.

Impact of short-term exposure to extreme temperatures on mortality: A multi-city study in Belgium

In light of climate change, health risks are expected to be exacerbated by more frequent high temperatures and reduced by less frequent cold extremes. To assess the impact of different climate change scenarios, it is necessary to describe the current effects of temperature on health. A time-stratified case-crossover design fitted with conditional quasi-Poisson regressions and distributed lag non-linear models was applied to estimate specific temperature-mortality associations in nine urban agglomerations in Belgium, and a random-effect meta-analysis was conducted to pool the estimates. Based on 307,859 all-cause natural deaths, the mortality risk associated to low temperature was 1.32 (95% CI: 1.21-1.44) and 1.21 (95% CI: 1.08-1.36) for high temperature relative to the minimum mortality temperature (23.1 °C). Both cold and heat were associated with an increased risk of cardiovascular and respiratory mortality. We observed differences in risk by age category, and women were more vulnerable to heat than men. People living in the most built-up municipalities were at higher risk for heat. Air pollutants did not have a confounding effect. Evidence from this study helps to identify specific populations at risk and is important for current and future public health interventions and prevention strategies.

Mortality due to circulatory causes in hot and cold environments in Greece

Ambient temperature can affect the survival rate of humans. Studies have shown a relationship between ambient temperature and mortality rate in hot and cold environments. This effect of ambient temperature on mortality seems to be more pronounced in older people. The aim of this study is to examine the effects of thermal stress on cardiovascular mortality and the associated relative risk per degree Celsius in Greek individuals ≥70 years old. Mortality data 1999-2012 were matched with the midday temperature. The present study found a higher circulatory mortality when ambient temperature is below or above the temperature range 6 to 39 °C.

Temperature-mortality association during and before the COVID-19 pandemic in Italy: A nationwide time-stratified case-crossover study

OBJECTIVES: To identify the associations of temperature with non-COVID-19 mortality and all-cause mortality in the pandemic 2020 in comparison with the non-COVID-19 period in Italy. METHODS: The data on 3,189,790 all-cause deaths (including 3,134,137 non-COVID-19 deaths) and meteorological conditions in 107 Italian provinces between February 1st and November 30th in each year of 2015-2020 were collected. We employed a time-stratified case-crossover study design combined with the distributed lag non-linear model to investigate the relationships of temperature with all-cause and non-COVID-19 mortality in the pandemic and non-pandemic periods. RESULTS: Cold temperature exposure contributed higher risks for both all-cause and non-COVID-19 mortality in the pandemic period in 2020 than in 2015-2019. However, no different change was found for the impacts of heat. The relative risk (RR) of non-COVID-19 deaths and all-cause mortality at extremely cold (2 °C) in comparison with the estimated minimum mortality temperature (19 °C) in 2020 were 1.63 (95% CI: 1.55-1.72) and 1.45 (95%CI: 1.31-1.61) respectively, which were higher than all-cause mortality risk in 2015-2019 with RR of 1.19 (95%CI: 1.17-1.21). CONCLUSION: Cold exposure indicated stronger impacts than high temperatures on all-cause and non-COVID-19 mortality in the pandemic year 2020 compared to its counterpart period in 2015-2019 in Italy.

Association between extreme temperature exposure and occupational injuries among construction workers in Italy: An analysis of risk factors

BACKGROUND/AIM: Extreme temperatures have impact on the health and occupational injuries. The construction sector is particularly exposed. This study aims to investigate the association between extreme temperatures and occupation injuries in this sector, getting an insight in the main accidents-related parameters. METHODS: Occupational injuries in the construction sector, with characteristic of accidents, were retrieved from Italian compensation data during years 2014-2019. Air temperatures were derived from ERA5-land Copernicus dataset. A region based time-series analysis, in which an over-dispersed Poisson generalized linear regression model, accounting for potential non-linearity of the exposure- response curve and delayed effect, was applied, and followed by a meta-analysis of region-specific estimates to obtain a national estimate. The relative risk (RR) and attributable cases of work-related injuries for an increase in mean temperature above the 75th percentile (hot) and for a decrease below the 25th percentile (cold) were estimated, with effect modifications by different accidents-related parameters. RESULTS: The study identified 184,936 construction occupational injuries. There was an overall significant effect for high temperatures (relative risk (RR) 1.216 (95% CI: (1.095-1.350))) and a protective one for low temperatures (RR 0.901 (95% CI: 0.843-0.963)). For high temperatures we estimated 3,142 (95% CI: 1,772-4,482) attributable cases during the studied period. RRs from 1.11 to 1.30 were found during heat waves days. Unqualified workers, as well as masons and plumbers, were found to be at risk at high temperatures. Construction, quarry and industrial sites were the risky working environments, as well as specific physical activities like working with hand-held tools, operating with machine and handling of objects. Contact with sharp, pointed, rough, coarse ‘Material Agent’ were the more risky mode of injury in hot conditions. CONCLUSIONS: Prevention policies are needed to reduce the exposure to high temperatures of construction workers. Such policies will become a critical issue considering climate change.

Economic burden of premature deaths attributable to non-optimum temperatures in Italy: A nationwide time-series analysis from 2015 to 2019

BACKGROUND: Human beings and society are experiencing substantial consequences caused by non-optimum temperatures. However, limited studies have assessed the economic burden of premature deaths attributable to non-optimum temperatures. OBJECTIVES: To characterize the association between daily mean temperature and the economic burden of premature deaths. METHODS: A total of 3 228 098 deaths were identified from a national mortality dataset in Italy during 2015 and 2019. We used the value of statistical life to quantify the economic losses of premature death. A two-stage time-series analysis was performed to evaluate the economic losses of premature deaths associated with non-optimum temperatures. Attributable burden for non-optimum temperatures compared with minimum risk temperature were estimated. Potential effect modifiers were further explored. RESULTS: From 2015 to 2019, the economic loss of premature deaths due to non-optimum temperatures was $525.52 billion (95% CI: $461.84-$580.80 billion), with the attributable fraction of 5.74% (95% CI: 5.04%-6.34%). Attributable economic burden was largely due to moderate cold temperatures ($309.54 billion, 95% CI: $249.49-$357.34 billion). A higher economic burden was observed for people above the age of 65, accounting for 75.97% ($452.42, 95%CI: $406.97-$488.76 billion) of the total economic burden. In particular, higher fractions attributable to heat temperatures were observed for provinces with the lowest level of GDP per capita but the highest level of urbanization. DISCUSSION: This study shows a considerable economic burden of premature deaths attributed to non-optimum temperatures. These figures can help inform tailored prevention to tackle the large economic burden imposed by non-optimum temperatures.

Health risks to the Russian population from temperature extremes at the beginning of the XXI century

Climate change and climate-sensitive disasters caused by climatic hazards have a significant and increasing direct and indirect impact on human health. Due to its vast area, complex geographical environment and various climatic conditions, Russia is one of the countries that suffers significantly from frequent climate hazards. This paper provides information about temperature extremes in Russia in the beginning of the 21st century, and their impact on human health. A literature search was conducted using the electronic databases Web of Science, Science Direct, Scopus, and e-Library, focusing on peer-reviewed Researchs published in English and in Russian from 2000 to 2021. The results are summarized in 16 studies, which are divided into location-based groups, including Moscow, Saint Petersburg and other large cities located in various climatic zones: in the Arctic, in Siberia and in the southern regions, in ultra-continental and monsoon climate. Heat waves in cities with a temperate continental climate lead to a significant increase in all-cause mortality than cold waves, compared with cities in other climatic zones. At the same time, in northern cities, in contrast to the southern regions and central Siberia, the influence of cold waves is more pronounced on mortality than heat waves. To adequately protect the population from the effects of temperature waves and to carry out preventive measures, it is necessary to know specific threshold values of air temperature in each city.

Temperature-related effects on respiratory medical prescriptions in Spain

BACKGROUND: The increased risk of mortality during periods of high and low temperatures has been well established. However, most of the studies used daily counts of deaths or hospitalisations as health outcomes, although they are the ones at the top of the health impact pyramid reflecting only a limited proportion of patients with the most severe cases. OBJECTIVES: This study evaluates the relationship between short-term exposure to the daily mean temperature and medication prescribed for the respiratory system in five Spanish cities. METHODS: We fitted time series regression models to cause-specific medical prescriptions, including different respiratory subgroups and age groups. We included a distributed lag non-linear model with lags up to 14 days for daily mean temperature. City-specific associations were summarised as overall-cumulative exposure-response curves. RESULTS: We found a positive association between cause-specific medical prescriptions and daily mean temperature with a non-linear inverted J- or V-shaped relationship in most cities. Between 0.3% and 0.6% of all respiratory prescriptions were attributed to cold for Madrid, Zaragoza and Pamplona, while in cities with only cold effects the attributable fractions were estimated as 19.2% for Murcia and 13.5% for Santander. Heat effects in Madrid, Zaragoza and Pamplona showed higher fractions between 8.7% and 17.2%. The estimated costs are in general higher for heat effects, showing annual values ranging between €191,905 and €311,076 for heat per 100,000 persons. CONCLUSIONS: This study provides novel evidence of the effects of the thermal environment on the prescription of medication for respiratory disorders in Spain, showing that low and high temperatures lead to an increase in the number of such prescriptions. The consumption of medication can reflect exposure to the environment with a lesser degree of severity in terms of morbidity.

Extreme temperature and mortality by educational attainment in Spain, 2012-2018

Extreme temperatures are a threat to public health, increasing mortality in the affected population. Moreover, there is substantial research showing how age and gender shape vulnerabilities to this environmental risk. However, there is only limited knowledge on how socioeconomic status (SES), operationalized using educational attainment, stratifies the effect of extreme temperatures on mortality. Here, we address this link using Poisson regression and administrative data from 2012 to 2018 for 50 Spanish Provinces on individuals aged above 65 matched with meteorological data provided by the E-OBS dataset. In line with previous studies, results show that hot and cold days increase mortality. Results on the interaction between SES and extreme temperatures show a positive and significant effect of exposure to heat and cold for individuals with medium and low SES level. Conversely, for high SES individuals we do not find evidence of a robust association with heat or cold. We further investigate how the local climate moderates these associations. A warmer climate increases risks with exposures to low temperatures and vice versa for hot temperatures in the pooled sample. Moreover, we observe that results are mostly driven by low SES individuals being particularly vulnerable to heat in colder climates and cold in warmer climates. In conclusion, results highlight how educational attainment stratifies the effect of extreme temperatures and the relevance of the local climate in shaping risks of low SES individuals aged above 65.

A comparative analysis of the temperature-mortality risks using different weather datasets across heterogeneous regions

New gridded climate datasets (GCDs) on spatially resolved modeled weather data have recently been released to explore the impacts of climate change. GCDs have been suggested as potential alternatives to weather station data in epidemiological assessments on health impacts of temperature and climate change. These can be particularly useful for assessment in regions that have remained understudied due to limited or low quality weather station data. However to date, no study has critically evaluated the application of GCDs of variable spatial resolution in temperature-mortality assessments across regions of different orography, climate, and size. Here we explored the performance of population-weighted daily mean temperature data from the global ERA5 reanalysis dataset in the 10 regions in the United Kingdom and the 26 cantons in Switzerland, combined with two local high-resolution GCDs (HadUK-grid UKPOC-9 and MeteoSwiss-grid-product, respectively) and compared these to weather station data and unweighted homologous series. We applied quasi-Poisson time series regression with distributed lag nonlinear models to obtain the GCD- and region-specific temperature-mortality associations and calculated the corresponding cold- and heat-related excess mortality. Although the five exposure datasets yielded different average area-level temperature estimates, these deviations did not result in substantial variations in the temperature-mortality association or impacts. Moreover, local population-weighted GCDs showed better overall performance, suggesting that they could be excellent alternatives to help advance knowledge on climate change impacts in remote regions with large climate and population distribution variability, which has remained largely unexplored in present literature due to the lack of reliable exposure data.

Evolution of temperature-attributable mortality trends looking at social inequalities: An observational case study of urban maladaptation to cold and heat

BACKGROUND: To date, little is known about the temporal variation of the temperature-mortality association among different demographic and socio-economic groups. The aim of this work is to investigate trends in cold- and heat- attributable mortality risk and burden by sex, age, education, marital status, and number of household occupants in the city of Turin, Italy. METHODS: We collected daily time-series of temperature and mortality counts by demographic and socio-economic groups for the period 1982-2018 in Turin. We applied standard quasi-Poisson regression models to data subsets of 25-year moving subperiods, and we estimated the temperature-mortality associations with distributed lag non-linear models (DLNM). We provided cross-linkages between the evolution of minimum mortality temperatures, relative risks of mortality and temperature-attributable deaths under cold and hot conditions. RESULTS: Our findings highlighted an overall increase in risk trends under cold and heat conditions. All-cause mortality at the 1st percentile increased from 1.15 (95% CI: 1.04; 1.28) in 1982-2006 to 1.24 (95% CI: 1.11; 1.38) in 1994-2018, while at the 99th percentile the risk shifted from 1.51 (95% CI: 1.41; 1.61) to 1.59 (95% CI: 1.49; 1.71). In relation to social differences, women were characterized by greater values in respect to men, and similar estimates were observed among the elderly in respect to the youngest subgroup. Risk trends by educational subgroups were mixed, according to the reference temperature condition. Finally, individuals living in conditions of isolation were characterized by higher risks, with an increasing vulnerability throughout time. CONCLUSIONS: The overall increase in cold- and heat- related mortality risk suggests a maladaptation to ambient temperatures in Turin. Despite alert systems in place increase public awareness and improve the efficiency of existing health services at the local level, they do not necessarily prevent risks in a homogeneous way. Targeted public health responses to cold and heat in Turin are urgently needed to adapt to extreme temperatures due to climate change.

Temperature, disease, and death in London: Analyzing weekly data for the century from 1866 to 1965

Using novel weekly mortality data for London spanning 1866-1965, we analyze the changing relationship between temperature and mortality as the city developed. Our main results show that warm weeks led to elevated mortality in the late nineteenth century, mainly due to infant deaths from digestive diseases. However, this pattern largely disappeared after WWI as infant digestive diseases became less prevalent. The resulting change in the temperature-mortality relationship meant that thousands of heat-related deaths-equal to 0.9-1.4 percent of all deaths- were averted. These findings show that improving the disease environment can dramatically alter the impact of high temperature on mortality.

Autochthonous human Dirofilaria repens infection in Austria

PURPOSE: This report describes a rare autochthonous case of human D. repens infection in Austria. Dirofilariosis is a mosquito-borne parasitic infection that predominantly affects dogs. Human D. repens infections have primarily been reported in Mediterranean countries, but are emerging throughout Central and Northern Europe. METHODS: The worm was removed surgically and identified using PCR and DNA sequencing. The consensus sequences were compared against reference sequences of Dirofilaria repens from GenBank. RESULTS: The 56-year-old woman acquired the infection, which presented as a subcutaneous nodule, in Vienna, Austria. This is the second autochthonous case of human D. repens infection in Austria. CONCLUSION: The reasons for the emergence of D. repens and other parasitic infections in Central and Northern Europe are manifold, including climate change and globalization. This case demonstrates that with the growing number of D. repens infections, health care professionals must place further emphasis on emerging infectious diseases to ensure appropriate diagnostics and treatment in the future.

Decoding the geography of natural TBEV microfoci in Germany: A geostatistical approach based on land-use patterns and climatological conditions

Background: Tickborne-encephalitis (TBE) is a potentially life-threating neurological disease that is mainly transmitted by ticks. The goal of the present study is to analyze the potential uniform environmental patterns of the identified TBEV microfoci in Germany. The results are used to calculate probabilities for the present distribution of TBEV microfoci in Germany based on a geostatistical model. Methods: We aim to consider the specification of environmental characteristics of locations of TBEV microfoci detected in Germany using open access epidemiological, geographical and climatological data sources. We use a two-step geostatistical approach, where in a first step, the characteristics of a broad set of environmental variables between the 56 TBEV microfoci and a control or comparator set of 3575 sampling points covering Germany are compared using Fisher’s Exact Test. In the second step, we select the most important variables, which are then used in a MaxEnt distribution model to calculate a high resolution (400 × 400 m) probability map for the presence of TBEV covering the entire area of Germany. Results: The findings from the MaxEnt prediction model indicate that multi annual actual evapotranspiration (27.0%) and multi annual hot days (22.5%) have the highest contribution to our model. These two variables are followed by four additional variables with a lower, but still important, explanatory influence: Land cover classes (19.6%), multi annual minimum air temperature (14.9%), multi annual sunshine duration (9.0%), and distance to coniferous and mixed forest border (7.0%). Conclusions: Our findings are based on defined TBEV microfoci with known histories of infection and the repeated confirmation of the virus in the last years, resulting in an in-depth high-resolution model/map of TBEV microfoci in Germany. Multi annual actual evapotranspiration (27%) and multi annual hot days (22.5%) have the most explanatory power in our model. The results may be used to tailor specific regional preventive measures and investigations.

A mosquito survey of culicidae species at Edirne central district for disease vector

Mosquitoes are the major vectors that can transmit many diseases agents to humans and animals. This study was conducted in Edirne central district between July 2017 and July 2018 to identify important mosquito vector species, to determine their seasonality and distribution pattern in general terms. Larvae, pupae, and adults were collected from areas assessed as being particularly suitable for medically important species of the genus Aedes Meigen, Culex Linnaeus, and Anopheles Meigen. In addition to the foci naturally found in the areas, ovitraps placed in suitable places for ovipositing were also used. As a result, a total of 3155 females and 353 males belonging to 11 species of 5 genera were obtained. Among these species, Anopheles sacharovi Favre (the primary vector of malaria in Turkey) and Culex pipiens s.l. Linnaeus (the primary vector of West Nile Fever) has been recognized as a public health threat to the province. Anopheles sacharovi was present at a very low population level, while Cx. pipiens s.l. was determined as the most common and numerous species in the study area. Known to have a high preference for warmer climate compared to members of the Anopheles maculipennis s.l. Meigen, An. sacharovi has the risk of increasing its population in the region with possible global warming in the future. The importance of this risk increases even more since rice production is widespread especially in Edirne and this species can use the paddy fields as an effective breeding place. While Aedes caspius Pallas was commonly encountered, Aedes albopictus Skuse was not found during the field observation and ovitrap controls.

A novel approach for predicting risk of vector-borne disease establishment in marginal temperate environments under climate change: West Nile virus in the UK

Vector-borne diseases (VBDs), such as dengue, Zika, West Nile virus (WNV) and tick-borne encephalitis, account for substantial human morbidity worldwide and have expanded their range into temperate regions in recent decades. Climate change has been proposed as a likely driver of past and future expansion, however, the complex ecology of host and vector populations and their interactions with each other, environmental variables and land-use changes makes understanding the likely impacts of climate change on VBDs challenging. We present an environmentally driven, stage-structured, host-vector mathematical modelling framework to address this challenge. We apply our framework to predict the risk of WNV outbreaks in current and future UK climates. WNV is a mosquito-borne arbovirus which has expanded its range in mainland Europe in recent years. We predict that, while risks will remain low in the coming two to three decades, the risk of WNV outbreaks in the UK will increase with projected temperature rises and outbreaks appear plausible in the latter half of this century. This risk will increase substantially if increased temperatures lead to increases in the length of the mosquito biting season or if European strains show higher replication at lower temperatures than North American strains.

Climate changes exacerbate the spread of Ixodes ricinus and the occurrence of Lyme borreliosis and tick-borne encephalitis in Europe-how climate models are used as a risk assessment approach for tick-borne diseases

Climate change has influenced the transmission of a wide range of vector-borne diseases in Europe, which is a pressing public health challenge for the coming decades. Numerous theories have been developed in order to explain how tick-borne diseases are associated with climate change. These theories include higher proliferation rates, extended transmission season, changes in ecological balances, and climate-related migration of vectors, reservoir hosts, or human populations. Changes of the epidemiological pattern have potentially catastrophic consequences, resulting in increasing prevalence of tick-borne diseases. Thus, investigation of the relationship between climate change and tick-borne diseases is critical. In this regard, climate models that predict the ticks’ geographical distribution changes can be used as a predicting tool. The aim of this review is to provide the current evidence regarding the contribution of the climatic changes to Lyme borreliosis (LB) disease and tick-borne encephalitis (TBE) and to present how computational models will advance our understanding of the relationship between climate change and tick-borne diseases in Europe.

The spatiotemporal distribution of historical malaria cases in Sweden: A climatic perspective

BACKGROUND: Understanding of the impacts of climatic variability on human health remains poor despite a possibly increasing burden of vector-borne diseases under global warming. Numerous socioeconomic variables make such studies challenging during the modern period while studies of climate-disease relationships in historical times are constrained by a lack of long datasets. Previous studies have identified the occurrence of malaria vectors, and their dependence on climate variables, during historical times in northern Europe. Yet, malaria in Sweden in relation to climate variables is understudied and relationships have never been rigorously statistically established. This study seeks to examine the relationship between malaria and climate fluctuations, and to characterise the spatio-temporal variations at parish level during severe malaria years in Sweden 1749-1859. METHODS: Symptom-based annual malaria case/death data were obtained from nationwide parish records and military hospital records in Stockholm. Pearson (r(p)) and Spearman’s rank (r(s)) correlation analyses were conducted to evaluate inter-annual relationship between malaria data and long meteorological series. The climate response to larger malaria events was further explored by Superposed Epoch Analysis, and through Geographic Information Systems analysis to map spatial variations of malaria deaths. RESULTS: The number of malaria deaths showed the most significant positive relationship with warm-season temperature of the preceding year. The strongest correlation was found between malaria deaths and the mean temperature of the preceding June-August (r(s) = 0.57, p < 0.01) during the 1756-1820 period. Only non-linear patterns can be found in response to precipitation variations. Most malaria hot-spots, during severe malaria years, concentrated in areas around big inland lakes and southern-most Sweden. CONCLUSIONS: Unusually warm and/or dry summers appear to have contributed to malaria epidemics due to both indoor winter transmission and the evidenced long incubation and relapse time of P. vivax, but the results also highlight the difficulties in modelling climate-malaria associations. The inter-annual spatial variation of malaria hot-spots further shows that malaria outbreaks were more pronounced in the southern-most region of Sweden in the first half of the nineteenth century compared to the second half of the eighteenth century.

Heatwave-associated Vibrio infections in Germany, 2018 and 2019

BackgroundVibrio spp. are aquatic bacteria that prefer warm seawater with moderate salinity. In humans, they can cause gastroenteritis, wound infections, and ear infections. During the summers of 2018 and 2019, unprecedented high sea surface temperatures were recorded in the German Baltic Sea.AimWe aimed to describe the clinical course and microbiological characteristics of Vibrio infections in Germany in 2018 and 2019.MethodsWe performed an observational retrospective multi-centre cohort study of patients diagnosed with domestically-acquired Vibrio infections in Germany in 2018 and 2019. Demographic, clinical, and microbiological data were assessed, and isolates were subjected to whole genome sequencing and antimicrobial susceptibility testing.ResultsOf the 63 patients with Vibrio infections, most contracted the virus between June and September, primarily in the Baltic Sea: 44 (70%) were male and the median age was 65 years (range: 2-93 years). Thirty-eight patients presented with wound infections, 16 with ear infections, six with gastroenteritis, two with pneumonia (after seawater aspiration) and one with primary septicaemia. The majority of infections were attributed to V. cholerae (non-O1/non-O139) (n = 30; 48%) or V. vulnificus (n = 22; 38%). Phylogenetic analyses of 12 available isolates showed clusters of three identical strains of V. vulnificus, which caused wound infections, suggesting that some clonal lines can spread across the Baltic Sea.ConclusionsDuring the summers of 2018 and 2019, severe heatwaves facilitated increased numbers of Vibrio infections in Germany. Since climate change is likely to favour the proliferation of these bacteria, a further increase in Vibrio-associated diseases is expected.

Heavy weather events, water quality and gastroenteritis in Norway

Climate change will lead to more extreme weather events in Europe. In Norway, little is known about how this will affect drinking water quality and population’s health due to waterborne diseases. The aim of our work was to generate new knowledge on the effect of extreme weather conditions and climate change on drinking water and waterborne disease. In this respect we studied the relationship between temperature, precipitation and runoff events, raw and treated water quality, and gastroenteritis consultations in Norway in 2006-2014 to anticipate the risk with changing climate conditions. The main findings are positive associations between extreme weather events and raw water quality, but only few with treated drinking water. Increase in maximum temperature was associated with an increase in risk of disease among all ages and 15-64 years olds for the whole year. Heavy rain and high runoff were associated with a decrease in risk of gastroenteritis for different age groups and time periods throughout the year. No evidence was found that increase in precipitation and runoff trigger increased gastroenteritis outbreaks. Large waterworks in Norway currently seem to manage extreme weather events in preventing waterborne disease. However, with more extreme weather in the future, this may change. Therefore, modelling future climate scenarios is necessary to assess the need for improved water treatment capacity in a future climate.

Climate change: Water temperature and invertebrate propagation in drinking-water distribution systems, effects, and risk assessment

This paper provides a summary of the knowledge of drinking-water temperature increases and present daily, seasonal, and yearly temperature data of drinking-water distribution systems (DWDS). The increasing water temperatures lead to challenges in DWDS management, and we must assume a promotion of invertebrates as pipe inhabitants. Macro-, meio-, and microinvertebrates were found in nearly all DWDS. Data in relation to diversity and abundance clearly point out a high probability of mass development, and invertebrate monitoring must be the focus of any DWDS management. The water temperature of DWDS is increasing due to climate change effects, and as a consequence, the growth and reproduction of invertebrates is increasing. The seasonal development of a chironomid (Paratanytarus grimmii) and longtime development of water lice (Asellus aquaticus) are given. Due to increased water temperatures, a third generation of water lice per year has been observed, which is one reason for the observed mass development. This leads to an impact on drinking-water quality and an increased health risk, as invertebrates can serve as a host or vehicle for potential harmful microbes. More research is needed especially on (i) water temperature monitoring in drinking-water distribution systems, (ii) invertebrate development, and (iii) health risks.

First report of the presence of Vibrio vulnificus in the Gulf of Gdansk

BACKGROUND: Vibrio infections are becoming more frequent in the Baltic Sea region, which is caused by an increase in the sea surface temperature. Climate change creates the conditions for the emergence of new environmental niches that are beneficial for Vibrio spp., especially in the summer months. Vibrio vulnificus, which causes wound infections and septicaemia, represents a particularly dangerous species of Vibrio spp. There are numerous publications on the prevalence of V. vulnificus in various regions of the Baltic Sea, but there is a lack of such data for the Polish coast. This prompted us to conduct a pilot study into the prevalence of the bacteria in the Gulf of Gdansk. The study aimed to detect Vibrio spp. in the coastal waters and the wet sand at the beaches and bathing areas in the Gulf of Gdansk. MATERIALS AND METHODS: During the period from June 16th to September 23rd 2020, 112 samples of seawater and 105 samples of wet sand were collected at 16 locations along the coast of the Gulf of Gdansk and Hel peninsula. Isolation of Vibrio spp. was conducted by filtering method and the isolated bacteria was cultured on CHROM agar Vibrio and TCBS agar. Final genus identification was performed by the MALDI TOF technique. RESULTS: In the present study, 10 isolates of Vibrio spp. were obtained from seawater and wet sand samples collected in the Gulf of Gdansk and Hel peninsula coast. Three of the isolates were identified as V. vulnificus; the presence of the species was confirmed in the seawater samples which had been collected in Hel (1 isolate), Jastarnia (1 isolate), and Chalupy (1 isolate). One strain of Vibrio alginolyticus was isolated from the seawater sample collected in Hel. Moreover, identification was incomplete for 6 of the isolated strains, these were identified as Vibrio cholerae/mimicus These strains were collected in Jastarnia (1 isolate), Kuznica (1 isolate), Gdansk-Brzezno (1 isolate), Puck (2 isolates), Chalupy (1 isolate). CONCLUSIONS: Our preliminary research study confirmed the presence of potentially pathogenic V. vulnificus in the Gulf of Gdansk in the summer months. Therefore, further monitoring of the presence of Vibrio spp. in the Baltic coast area is necessary.

Influence of air temperature and implemented veterinary measures on the incidence of human salmonellosis in the Czech Republic during 1998-2017

BACKGROUND: The aim of our study was to analyse the influence of air temperature and implemented veterinary measures on salmonellosis incidence in the Czech Republic (CZ). METHODS: We conducted a descriptive analysis of salmonellosis as reported to the Czech national surveillance system during 1998-2017 and evaluated the influence of applied veterinary measures (started in January 2008) on salmonellosis incidence by comparing two 9-year periods (1998-2006, 2009-2017). Using a generalized additive model, we analysed association between monthly mean air temperature and log-transformed salmonellosis incidence over the entire twenty-year period. RESULTS: A total of 410,533 salmonellosis cases were reported during the study period in the CZ. Annual mean incidences of salmonellosis were 313.0/100,000 inhabitants before and 99.0/100,000 inhabitants after implementation of the veterinary measures. The time course of incidence was non-linear, with a sharp decline during 2006-2010. Significant association was found between disease incidence and air temperature. On average, the data indicated that within a common temperature range every 1 °C rise in air temperature contributed to a significant 6.2% increase in salmonellosis cases. CONCLUSIONS: Significant non-linear effects of annual trend, within-year seasonality, and air temperature on the incidence of salmonellosis during 1998-2017 were found. Our study also demonstrates significant direct effect of preventive veterinary measures taken in poultry in reducing incidence of human salmonellosis in the CZ. The annual mean number of salmonellosis cases in the period after introducing the veterinary measures was only 32.5% of what it had been in the previous period.

Negative trend in seroprevalence of anti-toxoplasma Gondii igg antibodies among the general population of the province of Vojvodina, Serbia, 2008-2021

This study aimed to estimate dynamic changes in seroprevalence of Toxoplasma gondii within the general population living in the northern part of the Republic of Serbia (Province of Vojvodina) during a 14-year period. The differences in prevalence of anti-toxoplasma antibodies were analyzed in correlation with age, gender, residential area (rural/urban) and meteorological factors. In this cohort retrospective study, 24,440 subjects between 1 and 88 years old were enrolled. To determine the presence of T. gondii-specific IgM and IgG antibodies in serum samples, commercially available ELISA kits were used (Euroimmun, Luebeck, Germany). During the study period, the overall T. gondii seroprevalence was 23.5%. The seroprevalence continuously decreased over time from 31.7% in 2008 to 20.4% in 2021 (0.81% per year, p < 0.001). Approximately 2% of patients had a serologic profile positive for both anti-Toxoplasma IgG and IgM antibodies. The seroprevalence was higher (28.87%) among men compared to women (24.28%), while urban residents (24.94%) had lower seroprevalence than the rural population (28.17%). A statistically significant negative correlation (r = -0.559) was found between serologic profile of patients positive for both T. gondii IgG and IgM antibodies and the annual mean air temperature. No significant association was observed between seropositivity to T. gondii infection and examined meteorological factors. These data could be useful to national and regional health authorities to create an optimal health policy to reduce rate of T. gondii infections.

Heat-related mortality amplified during the COVID-19 pandemic

Excess mortality not directly related to the virus has been shown to have increased during the COVID-19 pandemic. However, changes in heat-related mortality during the pandemic have not been addressed in detail. Here, we performed an observational study crossing daily mortality data collected in Portugal (SICO/DGS) with high-resolution temperature series (ERA5/ECMWF), characterizing their relation in the pre-pandemic, and how it aggravated during 2020. The combined result of COVID-19 and extreme temperatures caused the largest annual mortality burden in recent decades (~ 12 000 excess deaths [~ 11% above baseline]). COVID-19 caused the largest fraction of excess mortality during March to May (62%) and from October onwards (85%). During summer, its direct impact was residual, and deaths not reported as COVID-19 dominated excess mortality (553 versus 3 968). A prolonged hot spell led mortality to the upper tertile, reaching its peak in mid-July (+ 45% deaths/day). The lethality ratio (+ 14 deaths per cumulated ºC) was higher than that observed in recent heatwaves. We used a statistical model to estimate expected deaths due to cold/heat, indicating an amplification of at least 50% in heat-related deaths during 2020 compared to pre-pandemic years. Our findings suggest mortality during 2020 has been indirectly amplified by the COVID-19 pandemic, due to the disruption of healthcare systems and fear of population in attending healthcare facilities (expressed in emergency room admissions decreases). While lockdown measures and healthcare systems reorganization prevented deaths directly related to the virus, a significant burden due to other causes represents a strong secondary impact. This was particularly relevant during summer hot spells, when the lethality ratio reached magnitudes not experienced since the 2003 heatwaves. This severe amplification of heat-related mortality during 2020 stresses the need to resume normal healthcare services and public health awareness.

Heatwave mortality in summer 2020 in England: An observational study

High ambient temperatures pose a significant risk to health. This study investigates the heatwave mortality in the summer of 2020 during the SARS-CoV-2 coronavirus (COVID-19) pandemic and related countermeasures. The heatwaves in 2020 caused more deaths than have been reported since the Heatwave Plan for England was introduced in 2004. The total and cause-specific mortality in 2020 was compared to previous heatwave events in England. The findings will help inform summer preparedness and planning in future years as society learns to live with COVID-19. Heatwave excess mortality in 2020 was similar to deaths occurring at home, in hospitals, and in care homes in the 65+ years group, and was comparable to the increases in previous years (2016-2018). The third heatwave in 2020 caused significant mortality in the younger age group (0-64) which has not been observed in previous years. Significant excess mortality was observed for cardiovascular disease, respiratory disease, and Alzheimer’s and Dementia across all three heatwaves in persons aged 65+ years. There was no evidence that the heatwaves affected the proportional increase of people dying at home and not seeking heat-related health care. The most significant spike in daily mortality in August 2020 was associated with a period of high night-time temperatures. The results provide additional evidence that contextual factors are important for managing heatwave risks, particularly the importance of overheating in dwellings. The findings also suggest more action is also needed to address the vulnerability in the community and in health care settings during the acute response phase of a heatwave.

Added value of convection-permitting simulations for understanding future urban humidity extremes: case studies for Berlin and its surroundings

Climate extremes affected cities and their populations during the last decades. Future climate projections indicate climate extremes will increasingly impact urban areas during the 21st century. Humidity related fluctuations and extremes directly underpin convective processes, as well as can influence human health conditions. Regional climate models are a powerful tool to understand regional-to-local climate change processes for cities and their surroundings. Convection-permitting regional climate models, operating on very high resolutions, indicate improved simulation of convective extremes, particularly on sub-daily timescales and in regions with complex terrain such as cities. This research aims to understand how crossing spatial resolutions from similar to 12.5 km to similar to 3 km grid size affect humidity extremes and related variables under future climate change for urban areas and its surroundings. Taking Berlin and its surroundings as the case study area, the research identifies two categories of unprecedented future extreme atmospheric humidity conditions happening under 1.5 degrees C and 2.0 degrees C mean warming based on statistical distributions, respectively near surface specific humidity >0.02 kg/kg and near surface relative humidity <30%. Two example cases for each future extreme condition are dynamically downscaled for a two months period from the 0.44 degrees horizontal resolution following a double-nesting approach: first to the 0.11 degrees (similar to 12.5 km) horizontal resolution with the regional climate model REMO and thereafter to the 0.0275 degrees (similar to 3 km) horizontal resolution with the non-hydrostatic version of REMO. The findings show that crossing spatial resolutions from similar to 12.5 km to similar to 3 km grid size affects humidity extremes and related variables under climate change. Generally, a stronger decrease in moisture (up to 0.0007-0.005 kg/kg SH and 10-20% RH) and an increase in temperature (1-2 degrees C) is found on the 0.0275 degrees compared to the 0.11 degrees horizontal resolution, which is more profound in Berlin than in the surroundings. The convection-permitting scale mitigates the specific humidity moist extreme and intensifies the relative humidity dry extreme in Berlin, posing challenges with respect to health for urban dwellers.

Climate change and air pollution: Translating their interplay into present and future mortality risk for Rome and Milan municipalities

Heat and cold temperatures associated with exposure to poor air quality lead to increased mortality. Using a generalized linear model with Poisson regression for overdispersion, this study quantifies the natural-caused mortality burden attributable to heat/cold temperatures and PM(10) and O(3) air pollutants in Rome and Milan, the two most populated Italian cities. We calculate local-specific mortality relative risks (RRs) for the period 2004-2015 considering the overall population and the most vulnerable age category (≥85 years). Combining a regional climate model with a chemistry-transport model under future climate and air pollution scenarios (RCP2.6 and RCP8.5), we then project mortality to 2050. Results show that for historical mortality the burden is much larger for cold than for warm temperatures. RR peaks during wintertime in Milan and summertime in Rome, highlighting the relevance of accounting for the effects of air pollution besides that of climate, in particular PM(10) for Milan and O(3) for Rome. Overall, Milan reports higher RRs while, in both cities, the elderly appear more susceptible to heat/cold and air pollution events than the average population. Two counterbalancing effects shape mortality in the future: an increase associated with higher and more frequent warmer daily temperatures – especially in the case of climate inaction – and a decrease due to declining cold-mortality burden. The outcomes highlight the urgent need to adopt more stringent and integrated climate and air quality policies to reduce the temperature and air pollution combined effects on health.

Flexible workflow for determining critical hazard and exposure scenarios for assessing SLODs risk in urban built environments

Urban Built Environments (UBE) are increasingly prone to SLow-Onset Disasters (SLODs) such as air pollution and heatwaves. The effectiveness of sustainable risk-mitigation solutions for the exposed individuals’ health should be defined by considering the effective scenarios in which emergency conditions can appear. Combining environmental (including climatic) conditions and exposed users’ presence and behaviors is a paramount task to support decision-makers in risk assessment. A clear definition of input scenarios and related critical conditions to be analyzed is needed, especially while applying simulation-based approaches. This work provides a methodology to fill this gap, based on hazard and exposure peaks identification. Quick and remote data-collection is adopted to speed up the process and promote the method application by low-trained specialists. Results firstly trace critical conditions by overlapping air pollution and heatwaves occurrence in the UBE. Exposure peaks (identified by remote analyses on the intended use of UBEs) are then merged to retrieve critical conditions due to the presence of the individuals over time and UBE spaces. The application to a significant case study (UBE in Milan, Italy) demonstrates the approach capabilities to identify key input scenarios for future human behavior simulation activities from a user-centered approach.

Multi-decade changes in pollen season onset, duration, and intensity: A concern for public health?

Longitudinal shifts in pollen onset, duration, and intensity are public health concerns for the growing number of individuals with pollen sensitization. National analyses of long-term pollen changes are influenced by how a plant’s main pollen season (MPS) is defined. Prior Swiss studies have inconsistently applied MPS definitions, leading to heterogeneous conclusions regarding the magnitude, directionality, and significance of multi-decade pollen trends. We examined national pollen data in Switzerland between 1990 and 2020, applying six MPS definitions (2 percentage-based and 4 threshold-based) to twelve relevant allergenic plants. We analyzed changes in pollen season using both linear regression and locally estimated scatterplot smoothing (LOESS). For 4 of the 12 plant species, there is unanimity between definitions regarding earlier onset of pollen season (p < 0.05), with magnitude of 31-year change dependent on specific MPS definition (hazel: 9-18 days; oak: 5-13 days; grasses: 8-25 days; and nettle/hemp: 6-25 days). There is also consensus (p < 0.05) for modified MPS duration among hazel (21-104% longer), nettle/hemp (8-52% longer), and ash (18-38% shorter). Between-definition agreement is highest for MPS intensity analysis, with consensus for significant increases in seasonal pollen quantity (p < 0.05) among hazel, birch, oak, beech, and nettle/hemp. The largest relative intensification is noted for hazel (110-146%) and beech (162-237%). LOESS analysis indicates that these multi-decade pollen changes are typically nonlinear. The robustness of MPS definitions is highly dependent on annual pollen accumulation, with definition choice particularly influential for long-term analysis of low-pollen plants such as ragweed. We identify systematic differences between MPS definitions and suggest future aerobiologic studies apply multiple definitions to minimize bias. In summary, national pollen onset, duration, and intensity have shifted for some plants in Switzerland, with MPS definition choice affecting magnitude and significance of these variations. Future public health research can determine whether these temporal and quantitative pollen changes correlate with longitudinal differences in population pollen sensitization.

Heat wave and bushfire meteorology in New South Wales, Australia: Air quality and health impacts

The depletion of air quality is a major problem that is faced around the globe. In Australia, the pollutants emitted by bushfires play an important role in making the air polluted. These pollutants in the air result in many adverse impacts on the environment. This paper analysed the air pollution from the bushfires from November 2019 to July 2020 and identified how it affects the human respiratory system. The bush fires burnt over 13 million hectares, destroying over 2400 buildings. While these immediate effects were devastating, the long-term effects were just as devastating, with air pollution causing thousands of people to be admitted to hospitals and emergency departments because of respiratory complications. The pollutant that caused most of the health effects throughout Australia was Particulate Matter (PM) PM(2.5) and PM(10). Data collection and analysis were covered in this paper to illustrate where and when PM(2.5) and PM(10,) and other pollutants were at their most concerning levels. Susceptible areas were identified by analysing environmental factors such as temperature and wind speed. The study identified how these pollutants in the air vary from region to region in the same time interval. This study also focused on how these pollutant distributions vary according to the temperature, which helps to determine the relationship between the heatwave and air quality. A computational model for PM(2.5) aerosol transport to the realistic airways was also developed to understand the bushfire exhaust aerosol transport and deposition in airways. This study would improve the knowledge of the heat wave and bushfire meteorology and corresponding respiratory health impacts.

Potential impacts of extreme heat and bushfires on dementia

Australia often experiences natural disasters and extreme weather conditions such as: flooding, sandstorms, heatwaves, and bushfires (also known as wildfires or forest fires). The proportion of the Australian population aged 65 years and over is increasing, alongside the severity and frequency of extreme weather conditions and natural disasters. Extreme heat can affect the entire population but particularly at the extremes of life, and patients with morbidities. Frequently identified as a vulnerable demographic in natural disasters, there is limited research on older adults and their capacity to deal with extreme heat and bushfires. There is a considerable amount of literature that suggests a significant association between mental disorders such as dementia, and increased vulnerability to extreme heat. The prevalence rate for dementia is estimated at 30%by age 85 years, but there has been limited research on the effects extreme heat and bushfires have on individuals living with dementia. This review explores the differential diagnosis of dementia, the Australian climate, and the potential impact Australia’s extreme heat and bushfires have on individuals from vulnerable communities including low socioeconomic status Indigenous and Non-Indigenous populations living with dementia, in both metropolitan and rural communities. Furthermore, we investigate possible prevention strategies and provide suggestions for future research on the topic of Australian bushfires and heatwaves and their impact on people living with dementia. This paper includes recommendations to ensure rural communities have access to appropriate support services, medical treatment, awareness, and information surrounding dementia.

Long-term trends of atmospheric hot-and-polluted episodes (HPE) and the public health implications in the Pearl River Delta region of China

Air pollution and extreme heat have been responsible for more than a million deaths in China every year, especially in densely urbanized regions. While previous studies intensively evaluated air pollution episodes and extreme heat events, a limited number of studies comprehensively assessed atmospheric hot-and-polluted-episodes (HPE) – an episode with simultaneously high levels of air pollution and temperature – which have potential adverse synergic impacts on human health. This study focused on the Pearl River Delta (PRD) region of China due to its high temperature in summer and poor air quality throughout a year. We employed geostatistical downscaling to model meteorology at a spatial resolution of 1 km, and applied a machine learning algorithm (XGBoost) to estimate a high-resolution (1 km) daily concentration of particulate matter with an aerodynamic diameter ≤2.5 μm (PM(2.5)) and ozone (O(3)) for June to October over 20 years (2000-2019). Our results indicate an increasing trend (∼50%) in the frequency of HPE occurrence in the first decade (2000-2010). Conversely, the annual frequency of HPE occurrence reduced (16.7%), but its intensity increased during the second decade (2010-2019). The northern cities in the PRD region had higher levels of PM(2.5) and O(3) than their southern counterparts. During HPEs, regional daily PM(2.5) exceeded the World Health Organization (WHO) and Chinese guideline levels by 75% and 25%, respectively, while the O(3) exceeded the WHO O(3) standard by up to 69%. Overall, 567,063 (95% confidence interval (CI): 510,357-623,770) and 52,231 (95%CI: 26,116-78,346) excessive deaths were respectively attributable to exposure to PM(2.5) and O(3) in the PRD region. Our findings imply the necessity and urgency to formulate co-benefit policies to mitigate the region’s air pollution and heat problems.

Interactive effects between temperature and PM(2.5) on mortality: A study of varying coefficient distributed lag model – Guangzhou, Guangdong Province, China, 2013-2020

INTRODUCTION: There is a large body of epidemiological evidence showing significantly increased mortality risks from air pollution and temperature. However, findings on the modification of the association between air pollution and mortality by temperature are mixed. METHODS: We used a varying coefficient distributed lag model to assess the complex interplay between air temperature and PM(2.5) on daily mortality in Guangzhou City from 2013 to 2020, with the aim of establishing the PM(2.5)-mortality association at different temperatures and exploring synergetic mortality risks from PM(2.5) and temperature on vulnerable populations. RESULTS: We observed near-linear concentration-response associations between PM(2.5) and mortality across different temperature levels. Each 10 μg/m³ increase of PM(2.5) in low, medium, and high temperature strata was associated with increments of 0.73% [95% confidence interval (CI): 0.38%, 1.09%], 0.12% (95% CI: -0.27%, 0.52%), and 0.46% (95% CI: 0.11%, 0.81%) in non-accidental mortality, with a statistically significant difference between low and medium temperatures (P=0.02). There were significant modification effects of PM(2.5) by low temperature for cardiovascular mortality and among individuals 75 years or older. CONCLUSIONS: Low temperatures may exacerbate physiological responses to short-term PM(2.5) exposure in Guangzhou, China.

The combined effects of fine particulate matter and temperature on preterm birth in Seoul, 2010-2016

Background: Preterm birth contributes to the morbidity and mortality of newborns and infants. Recent studies have shown that maternal exposure to particulate matter and extreme temperatures results in immune dysfunction, which can induce preterm birth. This study aimed to evaluate the association between fine particulate matter (PM(2.5)) exposure, temperature, and preterm birth in Seoul, Republic of Korea. Methods: We used 2010-2016 birth data from Seoul, obtained from the Korea National Statistical Office Microdata. PM(2.5) concentration data from Seoul were generated through the Community Multiscale Air Quality (CMAQ) model. Seoul temperature data were collected from the Korea Meteorological Administration (KMA). The exposure period of PM(2.5) and temperature were divided into the first (TR1), second (TR2), and third (TR3) trimesters of pregnancy. The mean PM(2.5) concentration was used in units of ×10 µg/m(3) and the mean temperature was divided into four categories based on quartiles. Logistic regression analyses were performed to evaluate the association between PM(2.5) exposure and preterm birth, as well as the combined effects of PM(2.5) exposure and temperature on preterm birth. Result: In a model that includes three trimesters of PM(2.5) and temperature data as exposures, which assumes an interaction between PM(2.5) and temperature in each trimester, the risk of preterm birth was positively associated with TR1 PM(2.5) exposure among pregnant women exposed to relatively low mean temperatures (<3.4 °C) during TR1 (OR 1.134, 95% CI 1.061-1.213, p < 0.001). Conclusions: When we assumed the interaction between PM(2.5) exposure and temperature exposure, PM(2.5) exposure during TR1 increased the risk of preterm birth among pregnant women exposed to low temperatures during TR1. Pregnant women should be aware of the risk associated with combined exposure to particulate matter and low temperatures during TR1 to prevent preterm birth.

Economic valuation of improving environmental degradations in Korea using choice experiment

This study aims to quantitatively identify the economic value of the comprehensive improvement of environmental degradations caused by climate change. The research method applied to that is the choice experiment. Fine particulate matter, algae bloom, and heat waves were selected as individual attributes constituting environmental problems. It was found that the willingness to pay could not be induced for any level of improvement in algal bloom. It was concluded that if heat waves improved to the medium level where the number of heat-related illnesses and estimated deaths decreased by 50% compared to the current level, there would be a loss in value by USD 13.33. The value of improving environmental problems is USD 7.69 per household per year, and the improvement of fine particulate matter was the highest value attributed by consumers. This study is significant in that it comprehensively evaluates severe environmental problems, reflects their priorities and importance, and assesses the value for each level. It provides important foundational data for establishing effective budget input strategies to maximize consumer benefits and aids in the preparation of effective policies by establishing more detailed goals to achieve net-zero carbon emissions and the Sustainable Development Goals.

Interaction of exposure to outdoor air pollution and temperature during pregnancy on childhood asthma: Identifying specific windows of susceptibility

Mounting studies have associated asthma with environmental and climatic factors, but their interaction during pregnancy on childhood asthma are unclear. This study aims to investigate the interaction of in utero air pollution and environmental temperature exposure on childhood asthma, to identify key timing windows for exposure. A retrospective cohort study with 2,598 pre-schoolers was conducted during 2011-2012 in Changsha, China. Maternal exposure to three critical ambient air pollutants (PM10, SO2 and NO2, as proxies of industrial and vehicular air pollution) and temperature (T), was assessed for the 40 gestational weeks, three trimesters of gestation, and entire pregnancy by an inverse distance weighted (IDW) method. Logistic regression analysis was used to examine the association of childhood asthma with air pollution and temperature exposure. Our results showed that pre-schooler’s asthma was significantly associated with SO2 and NO2 exposure in utero, ORs = 1.46 (95% CI: 1.12-1.89) and 1.67 (95% CI: 1.24-2.26) by inter quartile range (IQR) increase of their exposure respectively. Significant risk was observed for exposure of SO2 and NO2 particularly during the 1st and 2nd trimesters and their specific gestational weeks. Pre-schooler’s asthma was related with high temperature expo-sure during 1st trimester, OR = 2.33 (95% CI: 1.11-4.90) by IQR increase of T exposure. Low T and high T respectively increased the asthma risk of NO2 exposure in the 1st and 3rd trimester. Boys were more susceptible to the temperature-pollution interaction on asthma development. Our study indicates that low and high tem-perature respectively during early and late pregnancy significantly increased the impact of air pollution exposure in utero on pre-schooler’s asthma.

Interactive effects of cold spell and air pollution on outpatient visits for anxiety in three subtropical Chinese cities

BACKGROUND: Although low temperature and air pollution exposures have been associated with the risk of anxiety, their combined effects remain unclear. OBJECTIVE: To investigate the independent and interactive effects of low temperature and air pollution exposures on anxiety. METHOD: Using a case-crossover study design, the authors collected data from 101,636 outpatient visits due to anxiety in three subtropical Chinese cities during the cold season (November to April in 2013 through 2018), and then built conditional logistic regression models based on individual exposure assessments [temperature, relative humidity, particulate matter (PM(2.5), PM(10)), sulfur dioxide (SO(2)), and nitrogen dioxide (NO(2))] and twelve cold spell definitions. Additive-scale interactions were assessed using the relative excess risk due to interaction (RERI). RESULTS: Both cold spell and air pollution were significantly associated with outpatients for anxiety. The effects of cold spell increased with its intensity, ranging from 8.98% (95% CI: 2.02%, 16.41%) to 15.24% (95% CI: 6.75%, 24.39%) in Huizhou. Additionally, each 10 μg/m(3) increase of PM(2.5), PM(10), NO(2) and SO(2) was associated with a 1.51% (95% CI: 0.61%, 2.43%), 1.58% (95% CI: 0.89%, 2.28%), 13.95% (9.98%, 18.05%) and 11.84% (95% CI: 8.25%, 15.55%) increase in outpatient visits for anxiety. Synergistic interactions (RERI >0) of cold spell with all four air pollutants on anxiety were observed, especially for more intense cold spells. For particulate matters, these interactions were found even under mild cold spell definitions [RERI: 0.11 (95% CI: 0.02, 0.21) for PM(2.5), and 0.24 (95% CI: 0.14, 0.33) for PM(10)]. Stratified analyses yielded a pronounced results in people aged 18-65 years. CONCLUSIONS: These findings indicate that both cold spell and air pollution are important drivers of the occurrence of anxiety, and simultaneous exposure to these two factors might have synergistic effects on anxiety. These findings highlight the importance of controlling air pollution and improving cold-warning systems.

Maternal acute thermophysiological stress and stillbirth in western Australia, 2000-2015: A space-time-stratified case-crossover analysis

BACKGROUND: The extreme thermal environment driven by climate change disrupts thermoregulation in pregnant women and may threaten the survival of the developing fetus. OBJECTIVES: To investigate the acute effect of maternal exposure to thermophysiological stress (measured with Universal Thermal Climate Index, UTCI) on the risk of stillbirth and modification of this effect by sociodemographic disparities. METHODS: We conducted a space-time-stratified case-crossover analysis of daily UTCI and 2835 singleton stillbirths between 1st January 2000 and 31st December 2015 across multiple small areas in Western Australia. Distributed lag non-linear models were combined with conditional quasi-Poisson regression to investigate the effects of the UTCI exposure from the preceding 6 days to the day of stillbirth. We also explored effect modification by fetal and maternal sociodemographic factors. RESULTS: The median UTCI was 13.9 °C (representing no thermal stress) while the 1st and 99th percentiles were 0.7 °C (slight cold stress) and 31.7 °C (moderate heat stress), respectively. Relative to median UTCI, we found positive associations between acute maternal cold and heat stresses and higher risks of stillbirth, increasing with the intensity and duration of the thermal stress episodes. The cumulative risk from the preceding 6 days to the day of stillbirth was stronger in the 99th percentile (RR = 1.19, 95% CI: 1.17, 1.21) than the 1st percentile (RR = 1.14, 95% CI: 1.12, 1.15), relative to the median UTCI. The risks were disproportionately higher in term and male stillborn fetuses, smoking, unmarried, ≤19 years old, non-Caucasian, and low socioeconomic status mothers. DISCUSSION: Acute maternal exposure to both cold and heat stresses may contribute to the risk of stillbirth and be exacerbated by sociodemographic disparities. The findings suggest public health attention, especially for the identified higher-risk groups. Future studies should consider the use of a human thermophysiological index, rather than surrogates such as ambient temperature.

Changes in thermal comfortable condition in the Qinghai-Tibet Plateau from 1979 to 2020

Qinghai-Tibet Plateau (QTP) is one of the most sensitive regions to climate change in the world. As a result, people in the QTP are more likely to be sensitively affected by climate change than those in other regions, particularly in the poverty area. Using the Universal Thermal Climate Index (UTCI) derived from ERA5 and population data, changes in annual thermal comfort condition and population under such condition in the QTP are systematically analyzed. The results reveal that there is considerable regional heterogeneity in the distribution of UTCI and the number of comfortable days (CDs), mainly due to the complex geographic features. In most areas of the QTP, the increase in UTCI leads to an increased number of comfortable days. Spatial distribution and temporal change in the number of comfortable days are found to be principally related to altitude. In areas within altitudes of 3000-4500 m, the number of comfortable days increases by up to 6 d per decade, which is faster than that in higher elevation areas above 4500 m. Results also indicate that thermal comfortable condition has improved in areas of 2500-5000 m (medium to high altitude), particularly in spring and autumn. Further research indicates that population distribution also shows a regional clustering feature, with the majority of residents residing in cities and their vicinities, where a higher number of comfortable days were observed. Most areas with a greater number of comfortable days have experienced a more significant increase in population under thermal comfortable conditions. It implies that climate change more likely has a large influence on population in the QTP. These findings are expected to enhance tourism development and the assessment of the impact on the living environment. The findings can be helpful for optimizing of tourism development and better understanding how climate change affects population distribution.

Factors influencing resident and tourist outdoor thermal comfort: A comparative study in China’s cold region

Thermal comfort and environmental health in scenic open spaces, a communication bridge between tourists and their environment, are prerequisites for tourism activities. In this study, scenic open spaces in an urban area of Xi’an, China were selected. Thermal perception (thermal sensation, comfort and acceptability) of residents and tourists were investigated through meteorological measurement and questionnaire survey. Physiological equivalent temperature (PET) was used to determine thermal benchmarks of all visitors to the site. Variables that influence individual thermal perception assessment (physical, individual, society and psychology) were measured and compared. Finally, a series of strategies and suggestions were proposed based on meteorological characteristics and influencing factors of thermal perception from perspectives of designers and scenic spot managers. Results show that: 1) Neutral PET (NPET) of respondents were 17.3 °C (residents) and 15.5 °C (tourists). Neutral PET ranges (NPETR) were 8.9-25.8 °C (residents) and 7.2-23.8 °C (tourists). Preferred PET values were 20.1 °C (residents) and 19.7 °C (tourists). Thermal acceptability ranges (TAR) were 6.3-37.8 °C (residents) and 0.5-39.9 °C (tourists). 2) In winter, physical factors were primary influencers of residents’ thermal perception, followed by social factors, while tourists’ thermal perception was mainly influenced by physical factors. In spring, physical factors were still the primary influencers for residents, followed by individual factors. Physical factors were also dominant for tourists, followed by psychological. In summer, physical factors were the major influencing factors for residents and tourists’ thermal perceptions.

Field study of seasonal thermal comfort and adaptive behavior for occupants in residential buildings of Xi’an, China

The study aims to investigate the thermal comfort requirements in residential buildings and to establish an adaptive thermal comfort model in the cold zone of China. A year-long field study was conducted in residential buildings in Xi’an, China. A total of 2069 valid questionnaires, along with indoor environmental parameters were obtained. The results indicated occupants’ thermal comfort requirements varied with seasons. The neutral temperatures were 17.9, 26.1 (highest), 25.2, and 17.4 degrees C (lowest), and preferred temperatures were 23.2, 25.6 (highest), 24.8, and 22.4 degrees C (lowest), respectively for spring, summer, autumn, and winter. The neutral temperature and preferred temperature in autumn are close to the neutral temperature in summer, while the neutral temperature and preferred temperature in spring are close to that in winter. Besides, the 80% and 90% acceptable temperature ranges, adaptive thermal comfort models, and thermal comfort zones for each season were established. Human’s adaptability is related to his/her thermal experience of the current season and the previous season. Therefore, compared with the traditional year-round adaptive thermal comfort model, seasonal models can better reflect seasonal variations of human adaptation. This study provides fundamental knowledge of the thermal comfort demand for people in this region.

Association between income levels and prevalence of heat- and cold-related illnesses in Korean adults

BACKGROUND: Given that low income worsens health outcomes, income differences may affect health disparities in weather-related illnesses. The aim of this study was to investigate the association between income levels and prevalence of heat- and cold-related illnesses among Korean adults. METHODS: The current study comprised 535,186 participants with all variables on income and health behaviors. Patients with temperature-related illnesses were defined as individuals with outpatient medical code of heat- and cold-related illnesses. We categorized individual income into three levels: “low” for the fourth quartile (0-25%), “middle” for the second and the third quartiles (25-75%), and “high” for the first quartile (75-100%). To examine income-related health disparities, Cox proportional hazard regression was performed. Hazard ratios (HRs) and 95% CI (confidence interval) for heat- and cold-related illnesses were provided. The model adjusted for age, sex, smoking status, alcohol drinking, exercise, body mass index, hypertension, hyperglycemia, and local income per capita. RESULTS: A total of 5066 (0.95%) and 3302 (0.62%) cases identified patients with heat- and cold-related illnesses, respectively. Compared with high income patients, the adjusted HR for heat-related illnesses was significantly increased in the low income (adjusted HR = 1.103; 95% CI: 1.022-1.191). For cold-related illnesses, participants with low income were likely to have 1.217 times greater likelihood than those with high income (95% CI: 1.107-1.338), after adjusting for other covariates. In the stratified analysis of age (20-64 years and over 65 years) and sex, there was no difference in the likelihood of heat-related illnesses according to income levels. On the other hand, an HR for cold-related illnesses was higher in patients aged 20 to 64 years than in those aged over 65 years. Male with low income had also a higher HR for cold-related illnesses than female with low income. CONCLUSIONS: Our results showed that heat- or cold-related illnesses were more prevalent in Koreans with low income than those with high income. Strategies for low-income subgroups were needed to reduce greater damage due to the influence of extreme temperature events and to implement effective adaptation.

Outdoor thermal stress changes in South Korea: Increasing inter-annual variability induced by different trends of heat and cold stresses

Changes of thermal environment can lead to unfavorable impacts such as a decrease of thermal stratification, increase of energy consumption, and increase of thermal health risk. Investigating changes in outdoor thermal environments can provide meaningful information for addressing economic and social issues and related challenges. In this study, thermal environment changes in South Korea were investigated using a nonstationary two-component Gaussian mixture model (NSGMM) for air temperature and two thermal comfort indices. For this, the perceived temperature (PT) and universal thermal climate index (UTCI) were employed as the thermal comfort index. Thermal comfort indices were computed using observed meteorological data at 26 weather stations for 37 years in South Korea. Meanwhile, trends of thermal comforts in the warm and cool seasons were simultaneously modeled by the NSGMM. The results indicate significant increasing trends in thermal comfort indices for South Korea. The increasing trends in thermal comfort indices both the warm and cool seasons were detected while the magnitudes of the trends are significantly different. This difference between the magnitude of trends led to an increase in mean and inter-annual variability of thermal comfort indices based on PT, while an increase of mean and decrease of inter-annual variability were observed based on the UTCI. Moreover, the annual proportion of the category referring to days in comfort based on the results of PT has decreased due to the different trends of thermal comfort indices in the warm and cool seasons. This decrease may lead to an increase of thermal health risk that is larger than what would be expected from the results considering the increasing trend of the annual mean temperature in South Korea. From this result, it can be inferred that the thermal health risk in South Korea may be more adverse than what we originally expected from the current temperature trend.

Determining multiple thresholds for thermal health risk levels using the segmented poisson regression model

Determining the thresholds for risk assessment is critical for the successful implementation of thermal health warning systems. A risk assessment methodology with multiple thresholds must be developed to provide detailed warning information to the public and decision makers. This study developed a new methodology to identify multiple thresholds for different risk levels for heat or cold wave events by considering simultaneously impact on public health. A new objective function was designed to optimize segmented Poisson regression, which relates public health to temperature indicators. Thresholds were identified based on the values of the objective functions for all threshold candidates. A case study in identifying thresholds for cold and heat wave events in Seoul, South Korea, from 2014 to 2018, was conducted to evaluate the appropriateness of the proposed methodology. Daily minimum or maximum air temperature, mortality, and morbidity data were used for threshold identification and evaluation. The proposed methodology can successfully identify multiple thresholds to simultaneously represent different risk levels. These thresholds show comparable performance to those using the relative frequency approach.

The association of meteorological factors with cognitive function in older adults

Individual and meteorological factors are associated with cognitive function in older adults. However, how these two factors interact with each other to affect cognitive function in older adults is still unclear. We used mixed effects models to assess the association of individual and meteorological factors with cognitive function among older adults. Individual data in this study were from the database of China Family Panel Studies. A total of 3448 older adults from 25 provinces were included in our analysis. Cognitive functions were measured using a memory test and a logical sequence test. We used the meteorological data in the daily climate dataset of China’s surface international exchange stations, and two meteorological factors (i.e., average temperature and relative humidity) were assessed. The empty model showed significant differences in the cognitive scores of the older adults across different provinces. The results showed a main impact of residence (i.e., urban or rural) and a significant humidity-residence interaction on memory performance in older adults. Specifically, the negative association between humidity and memory performance was more pronounced in urban areas. This study suggested that meteorological factors may, in concert with individual factors, be associated with differences in memory function in older adults.

Independent and interactive effects of air pollutants and ambient heat exposure on congenital heart defects

Accumulating studies have been focused on the independent effects of air pollutants and ambient heat exposure on congenital heart defects (CHDs) but with inconsistent results, and their interactive effect remains unclear. A case-control study including 921 cases and 9210 controls was conducted in Changsha, China in warm season in 2015-2018. The gravidas were assigned monthly averages of daily air pollutants and daily maximum temperature using the nearest monitoring station method and city-wide average method, respectively, during the first trimester of pregnancy. Multivariate logistic regression models were used to estimate the independent effects of each air pollutant and different ambient heat exposure indicators. Their additive joint effects were quantified using attribute proportions of interaction (API). Increasing SO(2) consistently increased the risk of CHDs in the first trimester of pregnancy, with aORs ranging from 1.78 to 2.04. CO, NO(2) and PM(2.5) exposure in the first month of pregnancy, and O(3) exposure in the second and third month of pregnancy were also associated with elevated risks of CHDs, with aORs ranging from 1.04 to 1.15. Depending on the ambient heat exposure indicator used, air pollutants showed more apparent synergistic effects (API > 0) with less and moderately intense heat exposure. Maternal exposure to CO, NO(2), SO(2), PM(2.5) and O(3) during early pregnancy increased risk of CHDs, and ambient heat exposure may enhance these effects. Our findings help to understand the interactive effect of air pollution with ambient heat exposure on CHDs, which is of vital public health significance.

Multiple pathways and mediation effects of built environment on kidney disease rate via mitigation of atmospheric threats

Air pollution and high temperatures can increase kidney disease rate, especially under climate change. A well-designed urban environment has mediating effects on atmospheric environmental threats and promoting human health, but previous studies have overlooked these effects. This study used partial least squares modeling and urban-scale data from Taiwan to identify the crucial effects (i.e., direct, indirect, and total effects) and pathways of urban form (i.e., urban development intensity, land-use mix, and urban sprawl), urban greening (i.e., green coverage), urban industrial status (e.g., industrial level), atmospheric environment (i.e., high temperature and air pollution), and socioeconomic status (i.e., elderly ratio, medical resources, and economic status) on kidney disease rate. Maximizing land-use mix and green coverage and minimizing urban development intensity, urban sprawl, and industrial levels could help reduce kidney disease rate. Air pollution and high temperature had a mediation effect of built environment on kidney disease rate; with the mediation effect of air pollution was greater than that of high temperature. Furthermore, air pollution, high temperature, and elderly ratio increased kidney disease rate, whereas medical resources decreased kidney disease rate. This study is the first to consider the impact (i.e., direct, indirect, and total effects) and pathways of built environment characteristics on kidney disease rate. The findings revealed that an appropriate urban policy might be a practical strategy and lower kidney disease rate for a healthy city development. Moreover, this study provides a new approach for clarifying complex relationships and identifying crucial factors.

Perspectives on emerging pressures and their integrated impact on large river systems: An insight from the Yellow River basin

The Yellow River, with a developmental and historical significance to China, is now facing several emerging pressures, which are degrading the river status and creating challenges for high-quality development in the basin. Numerous studies on such emerging pressures, present scattered outcomes, and trigger uncertainties and deficient assumptions on the river’s problems. This review integrated such scattered information and investigated the emerging pressures, their drivers and integrated impacts at the basin level. The study intended to prioritize those pressures needing expeditious consideration, and carried a discussion on the alternative pathways to the solution. To determine the critical emerging pressures, a literature review was conducted and experts’ opinion was sought. The outcome further led to a comprehensive review, data collection, and analysis of three groups of emerging pressures. The review recognized ‘Water Stress’ in the lower reach, primarily caused by an abated flow, as the most distressing emerging pressure inflicting social, ecological, and economic consequences. Such decline in flow was mostly induced by a recent increase in ‘Anthropogenic activities’, such as intensive water withdrawal for irrigation (≥27 BCM), and construction of check dams in the Loess Plateau region (trapping~5 BCM water). The increasing ‘Pollution’ in the river, besides threatening public health and ecology, also contributed to the water stress by rendering certain stretches of the river biologically dead and unsuitable for any use. The ‘Climate Change’, with its key negative effect on precipitation in the middle sub-basin, overall contributed small (8-11 %) to the observed reduction in river flow. With increasing challenges for the adopted engineering solutions tackling the water stress, the study suggested the use of a demand management approach, employing adaptive policy measures, as an alternative or supplementary solution to the current approach. In addition, the study highlights that regular reviewing and reforming the key decisions based on evidence and updated information, and taking a participatory approach, may offer a sustainable pathway to the environment as well as socio-economic goals.

Risk factors for heat-related illnesses during the Hajj mass gathering: An expert review

Human exposure to a hot environment may result in various heat-related illnesses (HRIs), which range in severity from mild and moderate forms to life-threatening heatstroke. The Hajj is one of the largest annual mass gatherings globally and has historically been associated with HRIs. Hajj attracts over two million Muslim pilgrims from more than 180 countries to the holy city of Makkah, Kingdom of Saudi Arabia. Several modifiable and non-modifiable factors render Hajj pilgrims at increased risk of developing HRIs during Hajj. These include characteristics of the Hajj, its location, population, and rituals, as well as pilgrims’ knowledge of HRIs and their attitude and behavior. Makkah is characterized by a hot desert climate and fluctuating levels of relative humidity. Pilgrims are very diverse ethnically and geographically, with different adaptations to heat. Significant proportions of the Hajj population are elderly, obese, and with low levels of fitness. In addition, many have underlying health conditions and are on multiple medications that can interfere with thermoregulation. Other factors are inherent in the Hajj and its activities, including crowding, physically demanding outdoor rituals, and a high frequency of infection and febrile illness. Pilgrims generally lack awareness of HRIs, and their uptake of preventive measures is variable. In addition, many engage in hazardous behaviors that increase their risk of HRIs. These include performing rituals during the peak sunshine hours with no sun protection and with suboptimal sleep, nutrition, and hydration, while neglecting treatment for their chronic conditions. HRIs preventive plans for Hajj should incorporate measures to address the aforementioned factors to reduce the burden of these illnesses in future Hajj seasons. Lessons from the Hajj can be used to inform policy making and HRIs preventive measures in the general population worldwide.

Selecting thresholds of heat-warning systems with substantial enhancement of essential population health outcomes for facilitating implementation

Most heat-health studies identified thresholds just outside human comfort zones, which are often too low to be used in heat-warning systems for reducing climate-related health risks. We refined a generalized additive model for selecting thresholds with substantial health risk enhancement, based on Taiwan population records of 2000-2017, considering lag effects and different spatial scales. Reference-adjusted risk ratio (RaRR) is proposed, defined as the ratio between the relative risk of an essential health outcome for a threshold candidate against that for a reference; the threshold with the highest RaRR is potentially the optimal one. It was found that the wet-bulb globe temperature (WBGT) is a more sensitive heat-health indicator than temperature. At lag 0, the highest RaRR (1.66) with WBGT occurred in emergency visits of children, while that in hospital visits occurred for the working-age group (1.19), presumably due to high exposure while engaging in outdoor activities. For most sex, age, and sub-region categories, the RaRRs of emergency visits were higher than those of hospital visits and all-cause mortality; thus, emergency visits should be employed (if available) to select heat-warning thresholds. This work demonstrates the applicability of this method to facilitate the establishment of heat-warning systems at city or country scales by authorities worldwide.

Data analysis for thermal disease wearable devices

This study was conducted as a planning stage for development of wearable devices capable of managing the thermal diseases by applying the ICT (Information Communication Technology) in an endeavor to meet the urgent needs for countermeasures amid rapid increase in the number of patients with the thermal diseases caused as a result of global warming. The purpose of this study was to provide the basic data for development of wearable devices allowing the patients to be transported expeditiously to hospitals based on synchronization with medical institutions or enabling the prevention of diseases through the response system for each stage according to the reference values based on the data reflecting physical characteristics of individuals by applying the ICT, so that the thermal diseases can be managed effectively. For that, basic study will be conducted on expanding the role of the devices capable of protecting human lives from various thermal diseases caused by the scorching heat waves, which are affecting countries worldwide and expected to persist in the period ahead, by setting the goals of each stage for the thermal disease management platform and collecting necessary information. Based on the accumulated data, the functions of precise diagnosis and treatment can be expected through more accurate evidences pertaining to the thermal diseases.

The impact of the synergistic effect of temperature and air pollutants on chronic lung diseases in subtropical Taiwan

Previous studies have suggested an association between air pollution and lung disease. However, few studies have explored the relationship between chronic lung diseases classified by lung function and environmental parameters. This study aimed to comprehensively investigate the relationship between chronic lung diseases, air pollution, meteorological factors, and anthropometric indices. We conducted a cross-sectional study using the Taiwan Biobank and the Taiwan Air Quality Monitoring Database. A total of 2889 participants were included. We found a V/U-shaped relationship between temperature and air pollutants, with significant effects at both high and low temperatures. In addition, at lower temperatures (<24.6 °C), air pollutants including carbon monoxide (CO) (adjusted OR (aOR):1.78/Log 1 ppb, 95% CI 0.98-3.25; aOR:5.35/Log 1 ppb, 95% CI 2.88-9.94), nitrogen monoxide (NO) (aOR:1.05/ppm, 95% CI 1.01-1.09; aOR:1.11/ppm, 95% CI 1.07-1.15), nitrogen oxides (NO(x)) (aOR:1.02/ppm, 95% CI 1.00-1.05; aOR:1.06/ppm, 95% CI 1.04-1.08), and sulfur dioxide (SO(2)) (aOR:1.29/ppm, 95% CI 1.01-1.65; aOR:1.77/ppm, 95% CI 1.36-2.30) were associated with restrictive and mixed lung diseases, respectively. Exposure to CO, NO, NO(2), NO(x) and SO(2) significantly affected obstructive and mixed lung disease in southern Taiwan. In conclusion, temperature and air pollution should be considered together when evaluating the impact on chronic lung diseases.

Physiological interactions with personal-protective clothing, physically demanding work and global warming: An Asia-Pacific perspective

The Asia-Pacific contains over half of the world’s population, 21 countries have a Gross Domestic Product <25% of the world's largest economy, many countries have tropical climates and all suffer the impact of global warming. That 'perfect storm' exacerbates the risk of occupational heat illness, yet first responders must perform physically demanding work wearing personal-protective clothing and equipment. Unfortunately, the Eurocentric emphasis of past research has sometimes reduced its applicability to other ethnic groups. To redress that imbalance, relevant contemporary research has been reviewed, to which has been added information applicable to people of Asian, Melanesian and Polynesian ancestry. An epidemiological triad is used to identify the causal agents and host factors of work intolerance within hot-humid climates, commencing with the size dependency of resting metabolism and heat production accompanying load carriage, followed by a progression from the impact of single-layered clothing through to encapsulating ensembles. A morphological hypothesis is presented to account for inter-individual differences in heat production and heat loss, which seems to explain apparent ethnic- and gender-related differences in thermoregulation, at least within thermally compensable states. The mechanisms underlying work intolerance, cardiovascular insufficiency and heat illness are reviewed, along with epidemiological data from the Asia-Pacific. Finally, evidence-based preventative and treatment strategies are presented and updated concerning moisture-management fabrics and barriers, dehydration, pre- and post-exercise cooling, and heat adaptation. An extensive reference list is provided, with >25 recommendations enabling physiologists, occupational health specialists, policy makers, purchasing officers and manufacturers to rapidly extract interpretative outcomes pertinent to the Asia-Pacific.

Physiological response in a specialist paramedic during helicopter winch rescue in remote wilderness and extreme heat

Tasks performed by search and rescue (SAR) teams can be physically demanding. SAR organizations are faced with mounting challenges due to increased participation in recreation in remote locations and more frequent extreme weather. We sought to describe the physiological response and the methods for data collection during helicopter emergency medical service (HEMS) winch rescue from remote wilderness in extreme heat. A flight paramedic sustained 81% of maximum heart rate (VO₂ ~44.8 mL/kg/min) for ~10 minutes at a rate of perceived exertion of 19/20, and a relative heart rate of 77.5% in 37.1°C. Maximal acceptable work time for this task was calculated at 37.7 minutes. Our data collection methods were feasible, and the data captured demonstrated the level of physiological strain that may be encountered during HEMS SAR operations in austere environments and hot climate. It is essential that SAR teams that perform physically demanding tasks use a scientific approach to adapt and evolve. This is necessary to ensure personnel are appropriately selected, trained, and equipped to respond in an era of increasing demand and extreme environments.

The effect of heat events on prehospital and retrieval service utilization in rural and remote areas: A scoping review

INTRODUCTION: It is well-established that heatwaves increase demand for emergency transport in metropolitan areas; however, little is known about the impact of heat events on demand for prehospital retrieval services in rural and remote areas, or how heatwaves are defined in this context. INCLUSION CRITERIA: Papers were eligible for inclusion if they reported on the impact of a heat event on the activity of a prehospital and retrieval service in a rural or remote area. METHODS: A search of PubMed, Cochrane, Science Direct, CINAHL, and Google Scholar databases was undertaken on August 18, 2020 using search terms related to emergency medical transport, extreme heat, and rural or remote. Data relevant to the impact of heat on retrieval service activity were extracted, as well as definitions of extreme heat. RESULTS: Two papers were identified, both from Australia. Both found that heat events increased the number of road ambulance call-outs. Both studies used the Excess Heat Factor (EHF) to define heatwave periods of interest. CONCLUSIONS: This review found almost no primary literature on demand for prehospital retrieval services in rural and remote areas, and no data specifically related to aeromedical transport. The research did recognize the disproportionate impact of heat-related increase in service demand on Australian rural and regional health services. With the effects of climate change already being felt, there is an urgent need for more research and action in this area.

Development of a heat stress exposure metric-Impact of intensity and duration of exposure to heat on physiological thermal regulation

An innovative bioclimatic metric based on the Universal Thermal Climate Index (UTCI) is developed to quantify human thermal physiological heat stress. The Heat Stress Exposure (HSE) metric includes both duration and intensity dimensions of heat exposure, and in this paper it is applied to the Sydney Australia climatology. Geographic Information Systems (GIS) were used to spatially represent and visualize Sydney’s HSE. The first stage of the analysis collated observed meteorological data from 10 weather stations across the Sydney metropolitan region, extending from coastal Sydney to approximately 50 km inland in 2017. The second stage of the analysis integrated the radiative meteorological data into estimates of hourly Mean Radiant Temperature which were then applied to UTCI. In the final stage, a threshold UTCI value of 26 degrees C was selected for the calculation of HSE, which was then cumulated to represent the duration of heat exposure throughout the year. The difference between each UTCI hourly reading and the 26 degrees C threshold defined a UTCI exceedance (Delta UTCI; degrees C). The cumulative total of all Delta UTCI throughout the year defined n-ary sumation Delta UTCI in units of degree hours (degrees C.hr), thereby capturing both intensity and duration of exposure to heat stress. Weather systems driving westerly winds from the Australian continent’s central deserts brought the highest HSE to Sydney’s inland western suburbs, with values ranging between 4,000-6,000 n-ary sumation Delta UTCI (degrees C.hr). Coastal eastern Sydney experienced considerably lower HSE values ranging from 1,600-3,000 n-ary sumation Delta UTCI (degrees C.hr), reflecting the moderating influences of sea breezes and evaporative cooling.

Heat illness requiring emergency care for people experiencing homelessness: A case study series

Extreme heat and hot weather has a negative impact on human health and society. Global warming has resulted in an increase in the frequency and duration of heatwaves. Heat-related illnesses are a significant negative consequence of high temperatures and can be life-threatening medical emergencies. The severity of the symptoms can depend on the pre-existing medical conditions and vary from mild headaches to severe cases that can lead to coma and death. The risk of heat-related illness may be higher for people experiencing homelessness due to a lack of access to cool places and water, and the complex interactions between mental illness, medications and substance use disorder. This paper presents two cases of people experiencing homelessness who were admitted to the emergency department of a hospital in Sydney, Australia during a heatwave in November 2020. Both cases were adult males with known risk factors for heat-related illness including hypertension and schizophrenia (Case One) and hepatitis C, cirrhosis, and alcohol use disorder (Case Two). These cases show that severe weather can not only be detrimental to homeless people’s health but can also cause a significant economic toll, evident by the $70,184 AUD expenditure on the care for these two cases. This case report highlights the requirement to determine the risk of heat-related illness to people experiencing homelessness and need to protect this vulnerable population from weather-related illness and death.

Isolating the impacts of urban form and fabric from geography on urban heat and human thermal comfort

Public health risks resulting from urban heat in cities are increasing due to rapid urbanisation and climate change, motivating closer attention to urban heat mitigation and adaptation strategies that enable climate-sensitive urban design and development. These strategies incorporate four key factors influencing heat stress in cities: the urban form (morphology of vegetated and built surfaces), urban fabric, urban function (including human activities), and background climate and regional geographic settings (e.g. topography and distance to water bodies). The first two factors can be modified and redesigned as urban heat mitigation strategies (e.g. changing the albedo of surfaces, replacing hard surfaces with pervious vegetated surfaces, or increasing canopy cover). Regional geographical settings of cities, on the other hand, cannot be modified and while human activities can be modified, it often requires holistic behavioural and policy modifications and the impacts of these can be difficult to quantify. When evaluating the effectiveness of urban heat mitigation strategies in observational or traditional modelling studies, it can be difficult to separate the impacts of modifications to the built and natural forms from the interactions of the geographic influences, limiting the universality of results. To address this, we introduce a new methodology to determine the influence of urban form and fabric on thermal comfort, by utilising a comprehensive combination of possible urban forms, an urban morphology data source, and micro-climate modelling. We perform 9814 simulations covering a wide range of realistic built and natural forms (building, roads, grass, and tree densities as well as building and tree heights) to determine their importance and influence on thermal environments in urban canyons without geographical influences. We show that higher daytime air temperatures and thermal comfort indices are strongly driven by increased street fractions, with maximum air temperatures increases of up to 10 and 15 ? as street fractions increase from 10% (very narrow street canyons and/or extensive vegetation cover) to 80 and 90% (wide street canyons). Up to 5 ? reductions in daytime air temperatures are seen with increasing grass and tree fractions from zero (fully urban) to complete (fully natural) coverage. Similar patterns are seen with the Universal Thermal Climate Index (UTCI), with increasing street fractions of 80% and 90% driving increases of 6 and 12 ?, respectively. We then apply the results at a city-wide scale, generating heat maps of several Australian cities showing the impacts of present day urban form and fabric. The resulting method allows mitigation strategies to be tested on modifiable urban form factors isolated from geography, topography, and local weather conditions, factors that cannot easily be modified.

Experiences of heat stress while homeless on hot summer days in Adelaide

Historically, heat waves have resulted in more Australian deaths than any other natural hazard and continue to present challenges to the health and emergency management sectors. While people experiencing homelessness are particularly vulnerable to adverse effects of heat waves, little research has been reported about their hot weather experiences. This paper reports findings from interviews with 48 homeless people sleeping rough in Adelaide CBD on very hot days. While the majority reported drinking a litre or more of water in the previous 24 hours, 79% reported experiencing one or more heat stress symptoms. The research highlights that the protective actions people sleeping rough can take during hot weather are limited by their circumstances and may not be sufficient to prevent dehydration and heat stress. The levels of dehydration and heat stress symptoms suggest that immediate responses could include making drinking water more readily available. It may be helpful to provide information which highlights heat stress symptoms including indicators of dehydration. The role of outreach in providing connections, support and advice is most likely to ameliorate the risk of heat stress. However, the long-term response to protect people from heat stress is access to housing.

Sport and leisure activities in the heat: What safety resources exist?

OBJECTIVES: To conduct a document analysis of sports and leisure activity heat-related injury prevention resources in Australia and develop an understanding of the content within those resources. DESIGN & METHODS: Heat resources were included if they dealt specifically with, or could be extrapolated to, prevention of heat-related injuries. Collating strategies for the catalogue included: (1) a detailed search of the organisation’s website and (2) an online search for sport specific heat resources. A content analysis of each resource was first performed, and descriptive codes were assigned to the data using qualitative data analysis software. Every coded text was recorded as an individual data point (n). Common sub-categories were identified by thematic analysis and collated under three broader categories. RESULTS: A total of 468 data points were identified within the 64 heat resources found. Guidelines (n = 20) and policies (n = 18) were the most common type of resources followed by factsheets (n = 9), webpages (n = 8), laws and by-laws (n = 2). Three overarching categories emerged through the data analysis process: preventive strategies (n = 299, 63.9%), risk factors (n = 94, 20.1%), treatment (n = 75, 16.0%). Activity modification, which included information on rescheduling games and extra breaks, was the most common intervention. Cricket, soccer, swimming and triathlon had the most complete set of heat resources. CONCLUSIONS: The findings of this study provide an insight into the composition of heat-related sports injury prevention resources within Australia and identify areas for development. As the resources were incomplete for many sports, the development of more comprehensive heat safety resources is required to ensure the safety of participants.

The vulnerability of health infrastructure to the impacts of climate change and sea level rise in small island countries in the South Pacific

Anthropogenic climate change and related sea level rise will have a range of impacts on populations, particularly in the low lying Pacific island countries (PICs). One of these impacts will be on the health and well-being of people in these nations. In such cases, access to medical facilities is important. This research looks at the medical facilities currently located on 14 PICs and how climate change related impacts such as sea level rise may affect these facilities. The medical infrastructure in each country were located using information from a range of sources such as Ministry of Health (MoH) websites, World Health Organization, Doctors Assisting in South Pacific Islands (DAISI), Commonwealth Health Online, and Google Maps. A spatial analysis was undertaken to identify medical infrastructure located within 4 zones from the coastline of each country: 0 to 50 m, 50 to 100 m, 100 to 200 m, and 200 to 500 m. The findings indicate that 62% of all assessed medical facilities in the 14 PICs are located within 500 m of the coast. The low-lying coral atoll countries of Kiribati, Marshall Islands, Nauru, Palau, Tokelau, and Tuvalu will be highly affected as all medical facilities in these countries fall within 500 m of the coast. The results provide a baseline analysis of the threats posed by sea-level rise to existing critical medical infrastructure in the 14 PICs and could be useful for adaptive planning. These countries have limited financial and technical resources which will make adaptation challenging.

Trend analysis of hydrological and water quality variables to detect anthropogenic effects and climate variability on a river basin scale: A case study of Iran

In recent years, climate changeability, hydrologic regime conditions, and human interventions have become crucial issues to be assessed. In this research, two annually recorded datasets were collected to analyse the change in the trend. The first set is comprised of precipitation, streamflow, and water quality variables including Total Dissolved Solids (TDS), pH, cation, and anion and the second one contains the mean groundwater level and agricultural water demand of four main stations of Shahpour River basin in the south of Iran. To recognize the fluctuating patterns, the Mann-Kendall Trend Test (MKTT), KPSS Stationary Test, and Pettit Homogeneity Test (PHT) of statistical methods were utilized at a 5% significance level. The Standardized Precipitation Index (SPI) and Streamflow Drought Index (SDI) were subsequently employed to detect the hydrological drought patterns. According to the statistical analysis, the streamflow and water quality depicted intensive varying trends, while there were slight decreasing trends for the precipitation series. Afterward, the abrupt changing points were identified in the first and second datasets between the years 2004 to 2007. The results of this study clarified that human activity effects (as a major factor) and climate variability (as a minor factor) have been affecting the Shahpour River basin. These effects disrupt the water chemical balance (the relationship between cations and anions) and hydrological regimes (increasing drought drivers) and consequently menace the health of the watershed.

Spatiotemporal variation in urban overheating magnitude and its association with synoptic air-masses in a coastal city

Urban overheating (UO) may interact with synoptic-scale weather conditions. The association between meteorological parameters and UO has already been a subject of considerable research, however, the impact of synoptic-scale weather conditions on UO magnitude, particularly in a coastal city that is also near the desert landmass (Sydney) has never been investigated before. The present research examines the influence of synoptic-scale weather conditions on UO magnitude in Sydney by utilizing the newly developed gridded weather typing classification (GWTC). The diurnal, and seasonal variations in suburban-urban temperature contrast (ΔT) in association with synoptic-scale weather conditions, and ΔT response to synoptic air-masses during extreme heat events are investigated in three zones of Sydney. Generally, an exacerbation in UO magnitude was reported at daytime over the years, whereas the nocturnal UO magnitude was alleviated over time. The humid warm (HW), and warm (W) air-masses were found primarily responsible for exacerbated daytime UO during extreme heat events and in all other seasons, raising the mean daily maximum ΔT to 8-10.5 °C in Western Sydney, and 5-6.5 °C in inner Sydney. The dry warm (DW), and W conditions were mainly responsible for urban cooling (UC) at nighttime, bringing down the mean daily minimum ΔT to – 7.5 to – 10 °C in Western Sydney, and – 6 to – 7.5 °C in inner Sydney. The appropriate mitigation technologies can be planned based on this study to alleviate the higher daytime temperatures in the Sydney suburbs.

Acute effects of ambient nitrogen oxides and interactions with temperature on cardiovascular mortality in Shenzhen, China

BACKGROUND: Though inconsistent, acute effects of ambient nitrogen oxides on cardiovascular mortality have been reported. Whereas, interactive roles of temperature on their relationships and joint effects of different indicators of nitrogen oxides were less studied. This study aimed to extrapolate the independent roles of ambient nitrogen oxides and temperature interactions on cardiovascular mortality. METHODS: Data on mortality, air pollutants, and meteorological factors in Shenzhen from 2013 to 2019 were collected. Three indicators including nitric oxide (NO), nitrogen dioxide (NO(2)), and nitrogen oxides (NO(X)) were studied. Adjusted generalized additive models (GAMs) were applied to analyse their associations with cardiovascular mortality in different groups. RESULTS: The average daily concentrations of NO, NO(2), and NO(X) were 11.7 μg/m^3, 30.7 μg/m^3, and 53.2 μg/m3, respectively. Significant associations were shown with each indicator. Cumulative effects of nitrogen oxides were more obvious than distributed lag effects. Males, population under 65 years old, and population with stroke-related condition were more susceptible to nitrogen oxides. Adverse effects of nitrogen oxides were more significant at low temperature. Impacts of NO(2) on cardiovascular mortality, and NO on stroke mortality were the most robust in the multi-pollutant models, whereas variations were shown in the other relationships. CONCLUSIONS: Low levels of nitrogen oxides showed acute and adverse impacts and the interactive roles of temperature on cardiovascular mortality. Cumulative effects were most significant and joint effects of nitrogen oxides required more attention. Population under 65 years old and population with stroke-related health condition were susceptible, especially days at lower temperature.

Correlation between air temperature, air pollutants, and the incidence of coronary heart disease in Liaoning Province, China: A retrospective, observational analysis

BACKGROUND: The concentration of air pollutants is affected by changes in climatic conditions. Air temperature is a main factor affecting the concentration of air pollutants. This study sought to examine the relationship between air temperature, air pollutants, and their interactions in elderly patients with coronary heart disease (CHD) in Liaoning Province, China. METHODS: The population data primarily comprised data on daily hospitalizations due to CHD between January 1, 2015 and December 31, 2019 at the Shengjing Hospital of China Medical University. A total of 25,461 patients, who were permanent residents of Liaoning Province, were included in the study. The meteorological data included data on the average daily temperature and air pollutant data of the average daily concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) over the hospitalization period. A multiple linear regression model was constructed to analyze the relationship between meteorological factors and CHD. RESULTS: The interaction between air temperature and SO2, NO2, and O3 concentrations was related to the number of daily CHD-related hospitalizations in elderly patients aged ≥65 years (P=0.0023); however, this correlation was lower than that of the interaction between SO2 and NO2 concentrations (P=0.0026). Additionally, age exerted a greater effect than air temperature and air pollutants. CONCLUSIONS: The incidence of CHD in elderly patients aged ≥65 years was found to be related to the interaction of SO2 and NO2 concentrations, and the interaction of air temperature and the concentrations of SO2, NO2, and O3.

Limited influence of irrigation on pre-monsoon heat stress in the Indo-Gangetic Plain

Hot extremes are anticipated to be more frequent and more intense under climate change, making the Indo-Gangetic Plain of India, with a 400 million population, vulnerable to heat stress. Recent studies suggest that irrigation has significant cooling and moistening effects over this region. While large-scale irrigation is prevalent in the Indo-Gangetic Plain during the two major cropping seasons, Kharif (Jun-Sep) and Rabi (Nov-Feb), hot extremes are reported in the pre-monsoon months (Apr-May) when irrigation activities are minimal. Here, using observed irrigation data and regional climate model simulations, we show that irrigation effects on heat stress during pre-monsoon are 4.9 times overestimated with model-simulated irrigation as prescribed in previous studies. We find that irrigation increases relative humidity by only 2.5%, indicating that irrigation is a non-crucial factor enhancing the moist heat stress. On the other hand, we detect causal effects of aerosol abundance on the daytime land surface temperature. Our study highlights the need to consider actual irrigation data in testing model-driven hypotheses related to the land-atmosphere feedback driven by human water management.

Development and validation of assessment tool of knowledge, attitude, and practice of outdoor workers regarding heat stress

BACKGROUND: Improving the level of knowledge, attitude and practices of workers exposed to heat stress using a suitable tool can be a cheap and effective method. This requires the consideration of personal, environmental and social factors, which, the PRECEDE model is highly applicable for. Thus, the aim of the present study is the development of a tool assessment for measuring the knowledge, attitude and practices of workers in outdoor occupations regarding heat stress exposure using the PRECEDE model. METHODS: In the present study, a tool was designed and constructed using the PRECEDE model by analyzing the relevant literature and expert opinion. The face validity of the tool was determined based on the opinion of ten experts with experience in the field of occupational weather conditions. The content validity of the tool was determined using the Content Validity Ratio (CVR) and the Content Validity Index (CVI). Cronbach’s alpha reliability coefficient was used to determine the reliability of the tool’s internal consistency. SPSS version 23 was used for statistical analysis. RESULTS: A PRECEDE based questionnaire was designed with a total of 55 questions consisting of predisposing factors (28 questions for knowledge and 14 questions for attitude), enabling factors (5 questions), reinforcing factors (3 questions) and preventive behaviors (5 questions). The Content Validity Index (CVI) of all questions was above 0.79. The Content Validity Ratio (CVR) of all questions was above 0.62 (Lawshe method). The Cronbach’s alpha reliability coefficient of all PRECEDE domains were above the 0.7 acceptable value. Based on the results obtained, all 55 questions were approved and thus the content validity and reliability of this tool was deemed acceptable. CONCLUSION: Considering the reliability and validity of this tool, its application is recommended in all health and safety inspections within various industries for measuring the heat stress knowledge, attitude and practices of workers engaged in outdoor occupations and also for presenting suitable solutions or preventive measures.

Association between early stage-related factors and mortality in patients with exertional heat stroke: A retrospective study of 214 cases

OBJECTIVE: The purpose of this study is to evaluate the factors involved in the early stage of exertional heat stroke (EHS) that are associated with mortality. METHODS: In this retrospective, case-control study, patients from 11 tertiary medical centers in China were enrolled from January 1, 2012, to December 31, 2019. Demographic information, underlying diseases, ambient temperature, and relative humidity, clinical manifestations, initial body temperature, time from onset to diagnosis of EHS (including suspected), and the duration of body temperature > 38°C of all enrolled patients were recorded. The occurrence of organ dysfunction within 72 h was evaluated, and in-hospital deaths were recorded. The patients were subsequently divided into a survival group and a non-survival group. The “case” refers to patients in the non-survival group, while the “control” refers to patients without death. RESULTS: Of the 214 hospitalized patients with EHS, 183 survived and 31 died, and the overall mortality was 14.49% (31/214). A binary logistic regression showed that only the duration of body temperature > 38°C (OR 1.80, 95% CI 1.34-2.42) and the number of organs damaged within 72 h of onset (OR 6.54, 95% CI 2.31-18.56) were statistically significant in terms of risk of death in hospital (p < 0.05). A goodness of fit test produced a p-value of 0.76. According to receiver operating characteristic curve (ROC) analysis, the areas under the curve (AUC) were 0.989 (95% CI 0.978-1.000; p < 0.05) and 0.936 (95% CI 0.896-0.976; p < 0.05). CONCLUSION: Of the various factors involved in the early stage of the disease, the duration of high body temperature and the number of organs damaged within 72 h of onset were independent risk factors and predictors associated with death.

Changes in heat stress considering temperature, humidity, and wind over east Asia under RCP8.5 and SSP5-8.5 scenarios

The net effective temperature (NET), an index that includes the combined effects of temperature, humidity, and wind, was used along with temperature to assess the impacts of climate change on the heat stress perception in East Asia, one of the regions considered most vulnerable to heat stress. The need for dynamic downscaling has been emphasized because the regional effects of climate change do not follow the global levels linearly. In this study, daily maximums calculated from the 3-hourly data downscaled by five different regional climate models from four coupled general circulation models participating in Coordinated Regional Climate Downscaling Experiment-East Asia phase 2 were utilized. To account for the fact human beings acclimate to their environments, 95th percentile of the maximum temperature and maximum NET was used along with the average boreal summer maximum temperatures/NETs. The performance of the models was assessed first, which showed that the models reproduced the current climate well. Future projections revealed an increase in both average and 95th percentile of the maximum temperature and NET over the entire domain for both the RCP8.5 and SSP5-8.5 scenarios. The increase in heat stress (NET) was slightly larger than the temperature itself, with an increase of up to 7/10 degrees C for temperature and 8/11 degrees C for NET in RCP8.5/SSP5-8.5, respectively. The overall increases in temperature and NET were projected to be higher in the higher latitudes, while the increase in the frequency of the temperature and NET extremes was predicted to be higher in the already vulnerable regions in the southern part of the domain.

Climate change and its effects on farm workers

Background: One of the biggest global occupational threats, especially in the outdoor workplace, is climate change and global warming, as workers are exposed to the heat stress leading to reduced performance. The aim of this study was to investigate the effect of workplace climate on labor productivity index in the agricultural sector. Methods: In this study, data related to environmental variables of 215 synoptic meteorological stations in Khuzestan province were collected from three climatic regions (hot, mild, and cold). Using MATLAB R 2018b mathematical software based on ASHRAE/ISO7730 standard values by designing some scenarios, predicted mean vote (PMV) index, and then, labor productivity index (P) were estimated. The data were analyzed using SPSS version 25 software. Results: The results showed that in the hot regions, there is a significant inverse relationship between P index and the main environmental variables (ta, tr, pa). In the cold regions, increasing the amount of ta and tr in light and medium workload improved the P index, but for heavy workload, it reduced productivity, and the most effective factor was increasing air vapor pressure. In the mild regions, the most effective factor in productivity was air vapor pressure. In addition, the results of Spearman’s correlation coefficient showed that PMV index has a direct and significant relationship with P index. Conclusion: Regarding the increasing trend of climate change and its effect on the desired thermal comfort and productivity, well structure and planning is needed to manage farm workers health.

Computed and measured core temperature of patients with heatstroke transported from their homes via ambulance

The number of patients experiencing heat-related illnesses has gradually increased due to global warming. Owing to an aging society, 50% of patients with heat-related illnesses in Japan are elderly. Core temperature is one key parameter for health care; however, its monitoring is virtually impossible. Internet of Things (IoT) devices for healthcare have been proposed; however, the vital parameters to be monitored remain controversial. Here, we assessed the core temperature of elderly patients who were transported to hospitals by ambulance from their homes. The patients’ core temperatures were recorded by the Fire Department of Nagoya City in the summers of 2019 and 2020. The time course of the core temperature of each patient was then replicated using the integrated computational techniques through multiphysics analysis and thermoregulation under ambient condition data. According to the statistics, most elderly patients who were transported from their homes had a high core temperature. The measured core temperature in 31.4% of the patients was higher than the computed core temperature even assuming that there was no sweating. Assuming that the sweating function works well, the total amount of water loss was insufficient to have caused dehydration in a single day. These results suggest that successive heat stress during the preceding days should be considered to recreate the computed core temperature to match the measurement. These results were consistent with the previous finding that some elderly suffered from heatstroke successively over a few days. In the IoT-based monitoring system development, it would be informative for monitoring core temperature during the preceding days.

Effect of multiple-nutrient supplement on muscle damage, liver, and kidney function after exercising under heat: Based on a pilot study and a randomised controlled trial

Objective: This study explored the effect of multiple-nutrient supplementation on muscle damage and liver and kidney function after vigorous exercise under heat. Methods: After an initial pilot trial comprising 89 male participants, 85 participants were recruited and assigned into three groups: a multiple-nutrient (M) group, a glucose (G) group, and a water (W) group. Multiple-nutrient supplements contain glucose, fructose, maltose, sodium, potassium, vitamin B(1), vitamin B(2), vitamin C, vitamin K, and taurine. Participants were organised to take a 3-km running test (wet-bulb globe temperature 32??C) after a short-term (7 days) supplement. Blood samples were obtained to detect biochemical parameters [glucose (GLU), aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), uric acid (UA), creatinine (Cr), creatine kinase (CK), lactate dehydrogenase (LDH), and lactic acid], inflammation factors [interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α)], and oxidative stress biomarkers [superoxide dismutase (SOD) and 8-iso-prostaglandin F (2alpha) (8-iso-PGF2α)]. Results: In the pilot trial, BUN decreased significantly in the M and G groups immediately after the running test. AST, Cr, and UA were significantly reduced 24 h after the running test with single-shot multiple-nutrient supplementation. In the short-term trial, multiple nutrients further prevented the elevation of CK (p = 0.045) and LDH (p = 0.033) levels 24 h after strenuous exercise. Moreover, we found that multiple nutrients significantly reduced IL-6 (p = 0.001) and TNF-α (p = 0.015) elevation immediately after exercise. Simultaneously, SOD elevation was significantly higher in the M group immediately after exercising than in the other two groups (p = 0.033). 8-iso-PGF2α was reduced in the M group 24 h after exercise (p = 0.036). Conclusions: This study found that multiple-nutrient supplementation promoted the recovery of muscle damage and decreased liver and kidney function caused by strenuous exercise in a hot environment, probably through the inhibition of secondary damage induced by increased inflammatory reactions and oxidative stress. In this respect, the current study has important implications for the strategy of nutritional support to accelerate recovery and potentially prevent heat-related illness. This study was prospectively registered on clinicaltrials.gov on June 21, 2019 (ID: ChiCTR1900023988).

Feasibility of staying at home in a net-zero energy house during summer power outages

Energy efficiency in the housing sector is important for achieving carbon neutrality; to achieve this, more net-zero energy houses (ZEHs) are required. ZEHs are considered resilient to power outages. However, the type of living that can be achieved during a power outage is unclear. The purpose of this study was to examine the feasibility of staying in a ZEH with thermal comfort without a risk of heat stroke dur-ing summer power outages. We created daily schedules and conducted experiments using an actual ZEH assuming a power outage in summer. The experimental house was constructed in the suburbs of Shizuoka (about 110 km west of Tokyo), Japan, which has a humid subtropical climate. The house was equipped with a photovoltaic system of 4.62 kW and a storage battery capacity of 5.6 kWh, which can output up to 2.0 kVA. The results showed that ZEH can provide air conditioning (AC), ventilation, lighting, refrigerator, cell phone charging, televisions, and hot water supply for a 72-hour power outage. However, the use of high-load appliances and the use of bedroom AC during sleeping time caused disruption in the power supply. The use of AC on an independent circuit resulted in a predicted mean vote (PMV) of-0.5 ti 0.8, and a wet-bulb globe temperature of approximately 23 degrees C was achieved. Thus, thermal com-fort with a low risk of heat stroke was maintained. Solar shading and window openings were however not considered and further research is needed to evaluate more varied architectural design and behaviors, and to assess the potential for staying at home in a ZEH. Different weather conditions and different occu-pant assumptions (e.g., elderly) also need to be further studied.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Field study of hybrid photovoltaic thermal and heat pump system for public hospital in the tropics

In the past, thermal comfort in naturally ventilated hospital wards was not a major issue to discuss, but now this matter needs to be revisited following the effects of climate change. A Hybrid Photovoltaic Thermal (PVT) and Heat Pump System (HPVTHPS) was proposed in this field study to enhance the thermal comfort of naturally ventilated hospital wards. The heat pump was used for heating water and producing cold air to reduce the air temperature in the ward, besides being an active cooling agent to improve the performance of the PVT system. Thus, the main purpose of this article is to evaluate an on-site performance of a HPVTHPS in providing hot water and space cooling for naturally ventilated hospital wards in tropical climates. Overall, the proposed HPVTHPS installation has reduced the room temperature of the hospital ward compared to the baseline temperature with an average temperature drop ranging from 0.5 degrees C to 3.9 degrees C. The PVT system also shows high efficiency values between 51.0% and 69.0% which include thermal and electrical energy performance. The findings in this study are very useful for hospital management in improving thermal comfort in hospital wards using efficient and low energy systems.

Heat strain evaluation of power grid outdoor workers based on a human bioheat model

Power grid outdoor workers are usually exposed to hot environments and could suffer the threats to occupational health and safety like heat strain and injury. In order to predict and assess the thermophysiological responses of grid workers in the heat, the clothing thermal insulation of grid worker ensembles was measured by a thermal manikin and a multi-segment human bioheat model was employed to evaluate the thermophysiological response parameters of grid workers such as core temperature, skin temperature and sweat loss. The results show that working in a hot environment can cause a obvious increase in core temperature and skin temperature of grid workers, and the acceptable maximum working time of grid workers varies greatly in different hot environments. A reasonable work organization strategy can effectively decrease the core temperature and sweat loss, increasing the duration of acceptable maximum working time for grid workers. This study is helpful to assess heat-related risks of grid workers and support power grid companies to rationalize work organization strategies and personal protection guidelines.

Heat-health vulnerabilities in the climate change context-comparing risk profiles between indoor and outdoor workers in developing country settings

Occupational heat stress is a crucial risk factor for a range of Heat-Related Illnesses (HRI). Outdoor workers in unorganized work sectors exposed to high ambient temperatures are at increased risk in developing countries. We aim to compare HRI, Productivity Loss (PL), and reduced renal health risk between workers from outdoor unorganized (N = 1053) and indoor organized (N = 1051) work sectors. Using descriptive methods and a large epidemiological cross-sectional study using mixed methods, we compared risk patterns between the two groups. We analyzed the risk of self-reported HRI symptoms, Heat Strain Indicators (HSIs), PL, and reduced kidney function using Multivariate Logistic Regression (MLR) models. Although Wet Bulb Globe Temperature (WBGT) exposures were high in both the outdoor and indoor sectors, significantly more Outdoor Unorganized Workers (OUWs) reported heat stress symptoms (45.2% vs 39.1%) among 2104 workers. OUWs had a significantly higher share of the heavy workload (86.7%) and long years of heat exposures (41.9%), the key drivers of HRIs, than the workers in indoor sectors. MLR models comparing the indoor vs outdoor workers showed significantly increased risk of HRI symptoms (Adjusted Odds Ratio) (AOR(outdoor) = 2.1; 95% C.I:1.60-2.77), HSI (AOR(outdoor) = 1.7; 95% C.I:1.00-2.93), PL (AOR(outdoor) = 11.4; 95% C.I:7.39-17.6), and reduced kidney function (Crude Odds Ratio) (CORoutdoor = 1.4; 95% C.I:1.10-1.84) for the OUWs. Among the heat-exposed workers, OUW had a higher risk of HRI, HSI, and PL even after adjusting for potential confounders. The risk of reduced kidney function was significantly higher among OUWs, particularly for those with heat exposures and heavy workload (AOR(outdoor) = 1.5; 95% C.I: 0.96-2.44, p = 0.073) compared to the indoor workers. Further, in-depth studies, protective policies, feasible interventions, adaptive strategies, and proactive mitigation efforts are urgently needed to avert health and productivity risks for a few million vulnerable workers in developing nations as climate change proceeds.

Investigating age and regional effects on the relation between the incidence of heat-related ambulance transport and daily maximum temperature or WBGT

BACKGROUND: Although age and regional climate are considered to have effects on the incidence ratio of heat-related illness, quantitative estimation of age or region on the effect of occurring temperature for heat stroke is limited. METHODS: By utilizing data on the number of daily heat-related ambulance transport (HAT) in each of three age groups (7-17, 18-64, 65 years old, or older) and 47 prefectures in Japan, and daily maximum temperature (DMT) or Wet Bulb Globe Temperature (DMW) of each prefecture for the summer season, the effects of age and region on heat-related illness were studied. Two-way ANOVA was used to analyze the significance of the effect of age and 10 regions in Japan on HAT. The population-weighted average of DMT or DMW measured at weather stations in each prefecture was used as DMT or DMW for each prefecture. DMT or DMW when HAT is one in 100,000 people (T(1) and W(1), respectively) was calculated for each age category and prefecture as an indicator of heat acclimatization. The relation between T(1) or W(1) and average DMT or DMW of each age category and prefecture were also analyzed. RESULTS: HAT of each age category and prefecture was plotted nearly on the exponential function of corresponding DMT or DMW. Average R(2) of the regression function in 47 prefectures in terms of DMW was 0.86, 0.93, and 0.94 for juveniles, adults, and elderly, respectively. The largest regional difference of W(1) in 47 prefectures was 4.5 and 4.8 °C for juveniles and adults, respectively between Hokkaido and Tokyo, 3.9 °C for elderly between Hokkaido and Okinawa. Estimated W(1) and average DMT or DMW during the summer season for 47 prefectures was linearly related. Regarding age difference, the regression line showed that W(1) of the prefecture for DMW at 30 °C of WBGT was 31.1 °C, 32.4 °C, and 29.8 °C for juveniles, adults, and elderly, respectively. CONCLUSIONS: Age and regional differences affected the incidence of HAT. Thus, it is recommended that public prevention measures for heat-related disorders take into consideration age and regional variability.

Novel health risk alert system for occupational safety in hot environments

The last century has seen a gradual increase in global average temperatures-a phenomenon that has come to be known as global warming. The World Meteorological Organization (WMO) has reported that 2020 was one of the three warmest years on record and that the global average temperature was ~1.2°C above preindustrial (1850-1900) levels [1]. Adverse effects on health resulting from global warming are important issues to consider, as health risks associated with such extreme heat are anticipated [2]. In fact, this warming has been shown to severely limit human activity in tropical and mid-latitude regions [3], and in particular, outdoor and manual workers who are exposed to ambient heat during working hours are susceptible to increased health risks. Thus, workers should pay attention to their own physical conditions and proactively keep out of the heat to rest when uncomfortable. Additionally, supervisors must manage worker’s physical conditions and schedule regular breaks. Therefore, in this trial a new integrated system was developed to notify individuals at risk based on their thermal physiology. This method uses biological and environmental information obtained directly via wearable sensors and the estimated body core temperature collected on-ground cannot be measured wirelessly and noninvasively [4].

Quantification of heat threshold and tolerance to evaluate small fiber neuropathy- An indigenously developed thermal model of pain

Introduction: A wide variety of diseases alter the perceptions of different sensations, often evaluated in a subjective manner. Assessment of temperature perception and tolerance is a useful screening tool to evaluate the Degenerative and neuropathic changes of an individual. Therefore the current study was intended to design and develop an inexpensive device to quantify the heat threshold and tolerance in healthy participants. Materials and methods: The study was carried out in 30 apparent healthy participants for heat threshold, and tolerance was recorded on both hands’ thenar and dorsal sites on two occasions. The minimum temperature when the subject was perceived is threshold and maximum until the subject withstood tolerance. The data was collected using the electronically controlled device for these two extremes. The entire study was carried out at a controlled room temperature precisely.Results: The heat threshold was 39.84 ± 2.33 °C, and the tolerance was perceived at 46.84 ± 3.36 °C. There were no intraindividual differences (p > 0.05) in the heat threshold measured on two different periods as well as between the two hands (p > 0.05). As expected, there were significantly higher threshold values on the palm’s thenar aspect than dorsum (p < 0.05). The tolerance was significantly higher in the thenar aspect than the dorsum of both hands. (p < 0.01, p-0.03). There were no significant inter-hand differences of both surfaces of the hand. Conclusion: Our study showed that the results of threshold and tolerance using the indigenously built device were consistent and reproducible proves the robustness of the methodology. It is a cost-effective and user-friendly device that provides quantitative results of temperature extremes.

Thermal discomfort levels, building design concepts, and some heat mitigation strategies in low-income communities of a South Asian City

Heat stress provokes thermal discomfort to people living in semiarid and arid climates. This study evaluates thermal discomfort levels, building design concepts, and some heat mitigation strategies in low-income neighborhoods of Faisalabad, Pakistan. The outdoor and indoor weather data are collected from April to August 2016 using a weather station installed ad hoc in urban settings, and the 52 houses of the five low-income participating communities living in congested and less environment-friendly areas of Faisalabad. The discomfort index values, related to the building design concepts, including (i) house orientation to sunlight and (ii) house ventilation, are calculated from outdoor and indoor dry-bulb and wet-bulb temperatures. Our results show that although June was the hottest month of summer 2016, based on the monthly mean temperature of the Faisalabad region, the month of May produced the highest discomfort levels, which were higher in houses exposed to sunlight and without ventilation. The study also identifies some popular heat mitigation strategies adopted by the five participating low-income communities during various heat-related health complaints. The strategies are gender-biased and have medical, cultural/customary backgrounds. For example, about 52% of the males and 28% of the females drank more water during dehydration, diarrhea, and eye infection. Over 11% and 19% of the males and females, respectively, moved to cooler places during fever. About 43% of the males and 51% of the females took water showers and rested to combat flu (runny nose), headache, and nosebleed. The people did not know how to cure muscular fatigue, skin allergy (from a type of Milia), and mild temperature. Planting trees in an area and developing open parks with greenery and thick canopy trees can be beneficial for neighborhoods resembling those evaluated in this study.

Explainable heat-related mortality with random forest and shapley additive explanations (SHAP) models

The heat increase caused by climate change has worsened the urban heat environment and damaged human health, which has led to heat-related mortality. One of the most important ways to respond to heat-related damage is to develop effective forecasting tools. However, accurately predicting heatwave damage is difficult in regions in a city with different conditions. Damage due to extreme heat can be evaluated differently in each region, as climatic, demographic and socioeconomic sectors are diversely distributed across local areas. In this study, we develop a random forest-based model for estimating the occurrence of heat-related mortality in a detailed spatial unit within a city. Through hyperparameter optimization, the model yielded accuracy, F1-score and AUC values of 90.3%, 94.75%, and 86%, respectively. The estimation results of the model were interpreted from the global and local perspectives by introducing the latest SHAP method. As a result of interpretation, demographic, socioeconomic and climatic sectors were determined to contribute the most to the estimation process. This is the first study of partial scenarios through the development and interpretation of a spatial unit machine learning-based occurrence estimation model for heat-related mortality.

The association of compound hot extreme with mortality risk and vulnerability assessment at fine-spatial scale

The frequency and intensity of compound hot extremes will be likely to increase in the context of global warming. Epidemiological studies have demonstrated the adverse effect of simple hot extreme events on mortality, but little is known about the effects of compound hot extremes on mortality. Daily meteorological, demographic, and mortality data during 2011-2017 were collected from 160 streets in Guangzhou City, China. We used distributed lag non-linear model (DLNM) to analyze the associations of different hot extremes with mortality risk in each street. Street-specific associations were then combined using a meta-analysis approach. To assess the spatial distribution of vulnerability to compound hot extremes, vulnerable characteristics at street level were selected using random forest model, and then we calculated and mapped spatial vulnerability index (SVI) at each street in Guangzhou. At street level, compared with normal day, compound hot extreme significantly increased mortality risk (relative risk(RR)=1.43, 95%CI:1.28-1.59) with higher risk for female (RR=1.54 [1.35-1.76]) and the elderly(RR for aged 65-74=1.41 [1.14-1.74]; RR for ≥75years=1.63 [1.45-1.84]) than male (RR=1.32 [1.15-1.52]) and population <65 years (RR=1.01 [0.83-1.22]). Areas with high vulnerability were in the urban center and the edge of suburban. High proportion of population over 64 years old in urban center, and high proportions of outdoor workers and population with illiteracy in suburban areas were the determinants of spatial vulnerability. We found that compound hot extreme significantly increased mortality risk at street level, which is modified by socio-economic and demographic factors. Our findings help allocate resources targeting vulnerable areas at fine-spatial scale.°.

Associations between ambient air pollution and medical care visits for atopic dermatitis

BACKGROUND: Previous studies have reported numerous environmental factors for atopic dermatitis (AD), such as allergens and chemical stimulants. However, few studies have addressed the relationship between ambient air pollution and AD at a population level. OBJECTIVE: To evaluate the effect of air pollutants on medical care visits for AD and to identify susceptible populations. METHODS: In this time-series study conducted on 513,870 medical care visits for AD from 2012 to 2015 identified by reviewing national health insurance claim data in Incheon, Republic of Korea. Treating daily number of medical care visits for AD as a dependent variable, generalized additive models with Poisson distributions were constructed, which included air pollutant levels, ambient temperature, relative humidity, day of the week, national holiday, and season. Risks were expressed as relative risks (RR) with 95% confidence intervals (95% CIs) per interquartile range increase of each air pollutant. RESULTS: Higher levels of particulate matter of diameter ≤10 μm (PM(10)) (RR, 1.009; 95% CI, 1.007-1.012), ozone (1.028; 1.023-1.033), and sulfur dioxide (1.033; 1.030-1.037) were significantly associated with increased risk of medical care visits for AD on same days. In all age and sex groups, ozone was associated with a significantly higher risk of medical care visits, with the greatest risk among 13- to 18-year-old males (RR, 1.127; 95% CI, 1.095-1.159). CONCLUSION: This study suggests relationships of ambient PM(10), ozone, and sulfur dioxide levels with medical care visits for AD.

Characteristics of chemical profile, sources and PAH toxicity of PM2.5 in Beijing in autumn-winter transit season with regard to domestic heating, pollution control measures and meteorology

Several air pollution episodes occurred in Beijing before and after the 2014 Asia-Pacific Economic Cooperation (APEC) summit, during which air-pollution control measures were implemented. Within this autumn-winter transit season, domestic heating started. Such interesting period merits comprehensive chemical characterization, particularly the organic species, to look into the influence of additional heating sources and the control measures on air pollution. Therefore, this study performed daily and 6h time resolved PM2.5 sampling from the 24th October to 7th December, 2014, followed by comprehensive chemical analyses including water-soluble ions, elements and organic source-markers. Apparent alterations of chemical profiles were observed with the initiation of domestic heating. Through positive matrix factorization (PMF) source apportionment modeling, six PM2.5 sources including secondary inorganic aerosol (SIA), traffic emission, coal combustion, industry emission, biomass burning and dust were separated and identified. Coal combustion was successfully distinguished from traffic emission by hopane diagnostic ratio. The result of this study reveals a gradual shift of dominating sources for PM pollution episodes from SIA to primary sources after starting heating. BaPeq toxicity from coal combustion increased on average by several to dozens of times in the heating period, causing both long-term and short-term health risk. Air mass trajectory analysis highlights the regional influence of the industry emissions from the area south to Beijing. Control measures taken during APEC were found to be effective for reducing industry source, but less effective in reducing the overall PM2.5 level. These results provide implications for policy making regarding appropriate air pollution control measures. (c) 2021 Elsevier Ltd. All rights reserved.

Association of warmer weather and infectious complications following transrectal ultrasound-guided prostate biopsy

The seasonal and meteorological factors in predicting infections after urological interventions have not been systematically evaluated. This study aimed to determine the seasonality and the effects of the weather on the risk and severity of infectious complications (IC) after a transrectal ultrasound-guided prostate biopsy (TRUS-Bx). Using retrospectively collected data at the tertiary care hospital in Taiwan, we investigated the seasonal and meteorological differences in IC after TRUS-Bx. The IC included urinary tract infection (UTI), sepsis, and a positive culture finding (PCF). The severity was assessed on the basis of the Common Terminology Criteria for Adverse Events grading system. The prevalences of the infectious complications (UTI, sepsis, PCF and grade ≥ 3 IC) were significantly higher in the summer than in the winter. Monthly temperature and average humidity were significant factors for IC. After adjusting the demographic factors, multivariate regression revealed that UTI, sepsis, PCF, and grade ≥ 3 IC increased by 12.1%, 16.2%, 21.3%, and 18.6% for every 1 °C increase in the monthly average temperature, respectively (UTI: p = 0.010; sepsis: p = 0.046; PCF: p = 0.037; grade ≥ 3 IC: p = 0.021). In conclusion, the development and severity of IC after TRUS-Bx had significant seasonality. These were dose-dependently associated with warmer weather. Infectious signs after TRUS-Bx should be monitored more closely and actively during warm weather.

Heat stress mitigation in urban streets having hot humid climatic conditions: Strategies and performance results from a real scale retrofitting project

The urban heat island (UHI) phenomenon has become a major concern for city sustainability in the wake of global warming and rapid urbanization. This has resulted in increased heat stress and worsened outdoor thermal comfort in urban microclimates. The study demonstrated that outdoor thermal stress pedestrians can be reduced in single streets by adopting mitigation strategies, that is, cool materials, vegetation, and water bodies. In this article, computational fluid dynamics (CFD) simulations using URANS modeling for four different scenarios have been performed to investigate the effectiveness of different mitigation measures in hot, humid urban climates conditions. The reduction of ambient air temperature and surface temperature characterizing the mitigation (cooling) intensity is examined at pedestrian height and diverse vertical levels. The analysis shows that on its own, water provides the largest reduction in air temperature at pedestrian height (2 degrees C), and cool materials provide a larger reduction in surface temperature (6 degrees C). When applied individually, cool materials are the more effective in the vertical direction with a UHI mitigation intensity of 1.5 degrees C, followed by vegetation, with a mitigation intensity of 1.0 degrees C. Furthermore, the impact (temperature reduction) is more significant when all three measures are combined, with a large reduction of 2 degrees C in air temperature and 9 degrees C in surface temperature observed compared to the reference case.

Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts

This study aims to develop and validate prediction models for the number of all heatstroke cases, and heatstrokes of hospital admission and death cases per city per 12 h, using multiple weather information and a population-based database for heatstroke patients in 16 Japanese cities (corresponding to around a 10,000,000 population size). In the testing dataset, mean absolute percentage error of generalized linear models with wet bulb globe temperature as the only predictor and the optimal models, respectively, are 43.0% and 14.8% for spikes in the number of all heatstroke cases, and 37.7% and 10.6% for spikes in the number of heatstrokes of hospital admission and death cases. The optimal models predict the spikes in the number of heatstrokes well by machine learning methods including non-linear multivariable predictors and/or under-sampling and bagging. Here, we develop prediction models whose predictive performances are high enough to be implemented in public health settings.

Influence of tree canopy coverage and leaf area density on urban heat island mitigation

Urban heat islands (UHI) are a widely documented phenomenon that adversely increases urban overheating and, among other effects, contributes to heat-related mortalities and morbidities in urban areas. Consequently, comprehensive UHI-mitigating measures are essential for improving urban microclimate environments and contributing to salutogenic urban design practices. This study proposed urban cooling strategies involving different tree percentages and leaf area densities in a dense urban area during the summertime in Korea. The cooling effects of sixteen various combinations of proposed scenarios based on common urban tree types were studied via in-situ field measurements and numerical modeling, considering both vegetated and exposed areas. It was observed that by changing the characteristics of the leaf area density (LAD) per plant of our vegetated base area—for instance, from 4% trees to 60% trees, from a low LAD to a high LAD—the daily average and daily maximum temperatures were reduced by approximately 3 °C and 5.23 °C, respectively. The obtained results demonstrate the usefulness of urban trees to mitigate urban heating, and they are particularly useful to urban designers and policymakers in their efforts to minimize UHI effects.

Interrelationships between Land Use Land Cover (LULC) and Human Thermal Comfort (HTC): A comparative analysis of different spatial settings

A few studies on outdoor human thermal comfort (HTC) have been conducted in the tropical region in a hot and humid climate; however, there is a paucity of discussions on how exactly different spatial settings influence HTC. Thus, this paper aims to examine how land use land cover (LULC) affects HTC on the basis of the simulation of Predicted Mean Vote (PMV) and Physiologically Equivalent Temperature (PET) indices via ENVI-met and Rayman. The results reveal that people living in the urban area have a higher tendency to experience strong heat stress (25% of the areas with PMV ranging from 3.4 to 3.9 and 2% of the areas, where PMV reached 4.1), followed by the rural area (43% of the areas with PMV ranging from 2.1 to 2.4), and the suburban area (more than 50% of the areas with PMV values less than 2.4). Surprisingly, a concrete LULC in the suburb area exhibits a higher air temperature than an asphalt surface at 4 p.m., due to the large area of high albedo that increases the reflection of solar radiation, subsequently contributing to warming up the airmass. Similarly, sandy, and loamy LULC tend to emit more heat during nighttime, while the heat is absorbed slowly during daytime, and it is then slowly released during nighttime after 6 p.m. Spatial settings that promote heat stress in the urban area are mainly contributed by an LULC of asphalt, concrete, sandy, and loamy areas. Meanwhile, people in the suburban and rural areas are less likely to experience heat stress, due to agricultural plantations and lowland forest that provide shade, except for the barren lands-loamy areas. The result also indicates that tree-covered areas near the river in the suburban area afforded the best thermal experience with PMV of 2.1 and PET of 30.7. From the LULC comparison, it is pivotal to consider tree species (canopy density), surface material (albedo), sky-view factor, wind direction, and speed toward designing a more comfortable and sustainable environment.

Machine learning-based mortality prediction model for heat-related illness

In this study, we aimed to develop and validate a machine learning-based mortality prediction model for hospitalized heat-related illness patients. After 2393 hospitalized patients were extracted from a multicentered heat-related illness registry in Japan, subjects were divided into the training set for development (n = 1516, data from 2014, 2017-2019) and the test set (n = 877, data from 2020) for validation. Twenty-four variables including characteristics of patients, vital signs, and laboratory test data at hospital arrival were trained as predictor features for machine learning. The outcome was death during hospital stay. In validation, the developed machine learning models (logistic regression, support vector machine, random forest, XGBoost) demonstrated favorable performance for outcome prediction with significantly increased values of the area under the precision-recall curve (AUPR) of 0.415 [95% confidence interval (CI) 0.336-0.494], 0.395 [CI 0.318-0.472], 0.426 [CI 0.346-0.506], and 0.528 [CI 0.442-0.614], respectively, compared to that of the conventional acute physiology and chronic health evaluation (APACHE)-II score of 0.287 [CI 0.222-0.351] as a reference standard. The area under the receiver operating characteristic curve (AUROC) values were also high over 0.92 in all models, although there were no statistical differences compared to APACHE-II. This is the first demonstration of the potential of machine learning-based mortality prediction models for heat-related illnesses.

On the spatial patterns of urban thermal conditions using indoor and outdoor temperatures

The changing climate has introduced new and unique challenges and threats to humans and their environment. Urban dwellers in particular have suffered from increased levels of heat stress, and the situation is predicted to continue to worsen in the future. Attention toward urban climate change adaptation has increased more than ever before, but previous studies have focused on indoor and outdoor temperature patterns separately. The objective of this research is to assess the indoor and outdoor temperature patterns of different urban settlements. Remote sensing data, together with air temperature data collected with temperature data loggers, were used to analyze land surface temperature (outdoor temperature) and air temperature (indoor temperature). A hot and cold spot analysis was performed to identify the statistically significant clusters of high and low temperature data. The results showed a distinct temperature pattern across different residential units. Districts with dense urban settlements show a warmer outdoor temperature than do more sparsely developed districts. Dense urban settlements show cooler indoor temperatures during the day and night, while newly built districts show cooler outdoor temperatures during the warm season. Understanding indoor and outdoor temperature patterns simultaneously could help to better identify districts that are vulnerable to heat stress in each city. Recognizing vulnerable districts could minimize the impact of heat stress on inhabitants.

Project Coolbit: Can your watch predict heat stress and thermal comfort sensation?

Global climate is changing as a result of anthropogenic warming, leading to higher daily excursions of temperature in cities. Such elevated temperatures have great implications on human thermal comfort and heat stress, which should be closely monitored. Current methods for heat exposure assessments (surveys, microclimate measurements, and laboratory experiments), however, present several limitations: measurements are scattered in time and space and data gathered on outdoor thermal stress and comfort often does not include physiological and behavioral parameters. To address these shortcomings, Project Coolbit aims to introduce a human-centric approach to thermal comfort assessments. In this study, we propose and evaluate the use of wrist-mounted wearable devices to monitor environmental and physiological responses that span a wide range of spatial and temporal distributions. We introduce an integrated wearable weather station that records (a) microclimate parameters (such as air temperature and humidity), (b) physiological parameters (heart rate, skin temperature and humidity), and (c) subjective feedback. The feasibility of this methodology to assess thermal comfort and heat stress is then evaluated using two sets of experiments: controlled-environment physiological data collection, and outdoor environmental data collection. We find that using the data obtained through the wrist-mounted wearables, core temperature can be predicted non-invasively with 95 percent of target attainment within +/- 0.27 degrees C. Additionally, a direct connection between the air temperature at the wrist (T-a,T-w) and the perceived activity level (PAV) of individuals was drawn. We observe that with increased T-a,T-w, the desire for physical activity is significantly reduced, reaching ‘Transition only’ PAV level at 36 degrees C. These assessments reveal that the wearable methodology provides a comprehensive and accurate representation of human heat exposure, which can be extended in real-time to cover a large spatial distribution in a given city and quantify the impact of heat exposure on human life.

Spatial-scale dependent risk factors of heat-related mortality: A multiscale geographically weighted regression analysis

Extreme heat is a leading cause of weather-related human mortality throughout much of the world, posing a significantly heavy burden on the development of healthy and sustainable cities. To effectively reduce heat health risk, a better understanding of where and what risk factors should be targeted for intervention is necessary. However, little research has examined how different risk factors for heat-related mortality operate at varying spatial scales. Here, we present a novel application of the multiscale geographically weighted regression (GWR) approach to explore the scale of effect of each underlying risk factor using Hong Kong as a case study. We find that a hybrid of global and local processes via multiscale GWR yields a better fit of heat-related mortality risk than models using GWR and ordinary least squares (OLS) approaches. Predictor variables are categorized by the scale of effect into global variables (i.e., age and education attainment, socioeconomic status), intermediate variables (i.e., work place, birth place and language), and local variables (i.e., thermal environment, low in-come). These findings enrich our understanding of the spatial scale-dependent risk factors for heat-related mortality and shed light on the importance of hierarchical policy-making and site-specific planning processes in effective heat hazard mitigation and climate adaptation strategies.

In-play optimal cooling for outdoor match-play tennis in the heat

The purpose of this study was to compare the efficacy of four cooling interventions used for reducing physiological and perceptual strain and improving exercise performance during outdoor match-play tennis in the heat. Eight competitive tennis players played four counter-balanced simulated outdoor matches in the heat (WBGT: 28.4-32.5°C) at 24- or 48-h intervals. Each match comprised 3 sets for which the “no-ad” rule was applied to limit duration variability. Players underwent the following cooling interventions: ad libitum fluid ingestion (CON), ad libitum fluid ingestion and ice vest (VEST), total ingestion of approximately 1000 g ice slurry and ice vest (Combined: BINE), or total ingestion of approximately 400 g ice slurry and ice vest (Low-combined: L-BINE). Gastrointestinal temperature was lower in the BINE and the L-BINE trials than in the CON trial at the set-break of set 1, and these differences in gastrointestinal temperature persisted throughout the remainder of the match (p < 0.05). The ratio of moderate-high intensity activity (≥10 km/h) in set 3 was significantly higher in the L-BINE trial than that in the BINE trial (p < 0.05). In the CON and BINE trials, high intensity activity was significantly lower in set 3 compared with set 1 and 2, respectively. Cooling by optimal ice slurry ingestion and ice vest may be a more effective strategy in mitigating the development of heat strain during outdoor match-play tennis in the heat.

Proposed framework for forecasting heat-effects on motor-cognitive performance in the Summer Olympics

Heat strain impairs performance across a broad spectrum of sport disciplines. The impeding effects of hyperthermia and dehydration are often ascribed to compromised cardiovascular and muscular functioning, but expert performance also depends on appropriately tuned sensory, motor and cognitive processes. Considering that hyperthermia has implications for central nervous system (CNS) function and fatigue, it is highly relevant to analyze how heat stress forecasted for the upcoming Olympics may influence athletes. This paper proposes and demonstrates the use of a framework combining expected weather conditions with a heat strain and motor-cognitive model to analyze the impact of heat and associated factors on discipline- and scenario-specific performances during the Tokyo 2021 games. We pinpoint that hyperthermia-induced central fatigue may affect prolonged performances and analyze how hyperthermia may impair complex motor-cognitive performance, especially when accompanied by either moderate dehydration or exposure to severe solar radiation. Interestingly, several short explosive performances may benefit from faster cross-bridge contraction velocities at higher muscle temperatures in sport disciplines with little or no negative heat-effect on CNS fatigue or motor-cognitive performance. In the analyses of scenarios and Olympic sport disciplines, we consider thermal impacts on “motor-cognitive factors” such as decision-making, maximal and fine motor-activation as well as the influence on central fatigue and pacing. From this platform, we also provide perspectives on how athletes and coaches can identify risks for their event and potentially mitigate negative motor-cognitive effects for and optimize performance in the environmental settings projected.

From Paris to Makkah: Heat stress risks for Muslim pilgrims at 1.5 degrees C and 2 degrees C

The pilgrimages of Muslims to Makkah (Hajj and Umrah) is one of the largest religious gatherings in the world which draws millions of people from around 180 countries each year. Heat stress during summer has led to health impacts including morbidity and mortality in the past, which is likely to worsen due to global warming. Here we investigate the impacts of increasing heat stress during the peak summer months over Makkah at present levels of warming as well as under Paris Agreement’s targets of 1.5 degrees C and 2 degrees C global mean temperature increase above pre-industrial levels. This is achieved by using multi member ensemble projections from the half a degree additional warming, prognosis and projected impacts project. We find a substantial increase in the exceedance probabilities of dangerous thresholds (wet-bulb temperature >24.6 degrees C) in 1.5 degrees C and 2 degrees C warmer worlds over the summer months. For the 3 hottest months, August, September and October, even thresholds of extremely dangerous (wet-bulb temperature >29.1 degrees C) health risks may be surpassed. An increase in exceedance probability of dangerous threshold is projected by two and three times in 1.5 degrees C and 2 degrees C warmer worlds respectively for May as compared to the reference climate. September shows the highest increase in the exceedance probability of extremely dangerous threshold which is increased to 4 and 13 times in 1.5 degrees C and 2 degrees C warmer worlds respectively. Based on the indicators of hazard, exposure and vulnerability, we carried out probabilistic risk analysis of life-threatening heat stroke over Makkah. A ten time increase in the heat stroke risk at higher wet-bulb temperatures for each month is projected in 2 degrees C warmer world. If warming was limited to 1.5 degrees C world, the risk would only increase by about five times, or half the risk of 2 degrees C. Our results indicate that substantial heat related risks during Hajj and Umrah happening over peak summer months, as it is the case for Hajj during this decade, will require substantial adaptation measures and would negatively affect the performance of the rite. Stringent mitigation actions to keep the global temperature to 1.5 degrees C can reduce the risks of heat related illnesses and thereby reduce the non-economic loss and damage related to one of the central pillars of a world religion.

Revealing an integrative mechanism of cognition, emotion, and heat-protective action of older adults

This study aims to provide an in-depth understanding of what motivates older adults to take their adaptive behaviors during extreme heat events. Elaborating the mediating role of emotion in human behaviors, we empirically explore an interrelationship between individuals’ cognition, emotion, and heat-protective action in response to heat warning system alarms. Through face-to-face surveys and structural equation modeling, this study reveals that an increased level of cognition about climate change, heat waves, and local policy measures leads to emotional responses such as concern and worry, and consequently encourages people to comply with heat-related public guidelines. Furthermore, we also consider individuals’ pre-existing health conditions and their previous experiences of heat-related illnesses together with the emotional factors. The role of emotion in mediating between cognition and heat-protective action is much greater than in mediating between pre-existing health conditions and heat-protective action. We conclude that policy interventions to educate older adults can effectively increase the likelihood of individual compliance with the relevant preventive measures beyond their individual health and experiences.

How can urban parks be planned to maximize cooling effect in hot extremes? Linking maximum and accumulative perspectives

How to maximize the cooling effect of urban parks in hot extremes has been closely linked to well-beings of citizens. Few studies have quantified urban parks’ cooling effect in hot extremes from both maximum and accumulative perspectives. Here, we explored 65 urban parks’ cooling effect based on spatially continuous cooling curves using multiple satellite images of Greater Xi’an (34 degrees 06′ similar to 34 degrees 34′ N, 108 degrees 33′ similar to 109 degrees 15′ E), one of China’s metropolises with frequent hot extremes during July and August in 2019 summer. From maximum perspective, the urban parks cool down as far as 151.4 m, and covering 63.62 ha area, circa five times their own area in hot extremes; from accumulative perspective, the average cooling intensity is 0.78 degrees C along the whole continuous cooling distance spectrum, accumulated as 153.87 degrees C.m. And the urban parks show stronger accumulative cooling effect in hot extremes than the relative moderate temperatures. The cooling range could be maximized in large parks with dense trees, also in complex-shaped parks with strong interaction with surrounding environment. Small parks such as neighborhood parks located in the densely populated area are with maximum efficiency, cooling down about nine times their own area, which could serve as highly efficient cooling networks. Enhancing vegetation growth and coupling both blue and green infrastructures are always effective to increase accumulative cooling intensity in hot extremes. Our findings provide nature-based solutions (NBS) to counteracting heat stresses from the intense and frequent hot extremes in the future, also helpful for energy saving in the continuing climate change scenario.

Optimal cooling shelter assignment during heat waves using real-time mobile-based floating population data

As the frequency, duration, and intensity of heat waves have been increasing in recent decades, the effective and efficient allocation of cooling shelters has become a significant issue in many cities. This study presents an integer programming model for allocating cooling shelters with the two conflicting objectives of maximizing coverage for the heat-vulnerable population and minimizing total operating cost of the cooling shelters. The temperature-humidity index is included in the model to reflect the weather conditions that affect heat waves. We also introduce data analysis procedures using real-time floating population data so as to track the hourly number and locations of individuals in the heat-vulnerable population. The proposed model is then validated with an application to Ulsan Metropolitan City in the Republic of Korea in which heat-vulnerable people are assigned to existing and potential cooling shelters. Given the condition of restricted budgets, we categorize and prioritize heat-vulnerable people into several groups using a clustering method and heat vulnerability index, and we suggest effective policy recommendations, so the most vulnerable people are provided cooling services first. In addition, we perform a sensitivity analysis on weather conditions, travel distance, electricity cost, and percentage of heatvulnerable population served by cooling shelters, so policy makers can be prepared to respond quickly to the various factors that can change during a heat wave and ultimately reduce heatrelated morbidity and mortality.

Public health approach of Unani medicine to cope and stay safe in hot environmental conditions

The rising episodes of deadly heat waves have intensified the need for a heat protection strategy. The Unani system of medicine offers ways to stay healthy in different climatic conditions. Hence, this article aims to discuss the applicability of health protection measures suggested by Unani scholars for hot weather conditions in the light of current researches. The manual literature survey of classical Unani texts was conducted to collect information on health safety measures for hot weather. A substantial search of scientific databases such as “Google Scholar” and “Medline” for proposed measures in combination with “heat-stroke”, “heat exhaustion” and “heat rash” was also conducted to identify their possible activity in heat-related illnesses. The guidelines for summer seasons in the classical Unani literature are described under the title tadābīr-i-mavsam. Unani scholars have discussed in detail the pathophysiological effects of heat and the measures to stay healthy by regulating the body system through lifestyle, diet and herbs. Most of the measures proposed by them are backed up by evidences. However, some measures have not yet been evaluated for their therapeutic or prophylactic efficacy in heat-related illnesses. On the basis of findings, the authors advocate the adoption of evidence-based measures and propose further investigation of those measures that are not well supported by the evidence or have not yet been evaluated.

Exposure to abnormally hot temperature and the demand for commercial health insurance

Using the China Health and Retirement Longitudinal Study, this paper studies the impact of abnormal hot temperature on residents’ demand for commercial health insurance. The results show that for every 1°F rise in abnormal temperature, the probability of people buying commercial health insurance increased by 6%. Furthermore, the abnormal hot temperature has a more significant impact on the commercial health insurance demand of women, residents in the South and residents in the East. Channel analysis shows that abnormal hot temperature affects the demand for commercial health insurance through two channels: increasing residents’ concern about climate risk and affecting health. This paper provides evidence for actively promoting sustainable development and improving the construction of medical security system.

Heat stress during Arba’een foot-pilgrimage (world’s largest gathering) projected to reach “dangerous” levels due to climate change

Arba’een, a Muslim pilgrimage, is one of the largest annual mass gatherings in the world, with a date fixed according to the lunar calendar. Most pilgrims start their long walking journey from Basra/Najaf toward Karbala (about 70-500 km) and are significantly affected by outdoor weather conditions during this period. Here, based on simulations performed using carefully-selected climate models, we project that heat stress during the pilgrimage is likely to reach a “dangerous” level, defined according to the US National Weather Service criteria, by the end of this century. Moreover, a significant increase in consecutive occurrence of hot days and hot nights is expected within the coming decades, which may cause a high incidence of heat-related disorders as the human body may not recover from the daytime heat loads. Our study suggests that sound adaptation measures and stringent mitigation actions must be established to ensure a safe pilgrimage in the future.

Heat-related illness risk and associated personal and environmental factors of construction workers during work in summer

Heat-related illness (HRI) is a common occupational injury, especially in construction workers. To explore the factors related to HRI risk in construction workers under hot outdoor working conditions, we surveyed vital and environmental data of construction workers in the summer season. Sixty-one workers joined the study and the total number of days when their vital data during working hours and environmental data were recorded was 1165. Heart rate with high-risk HRI was determined using the following formula: 180 - 0.65 × age. As a result of the logistic regression analysis, age, working area, maximum skin temperature, and heart rate immediately after warming up were significantly positively related, and experience of construction was significantly negatively related to heart rate with high-risk HRI. Heart rate immediately after warming up may indicate morning fatigue due to reasons such as insufficient sleep, too much alcohol intake the night before, and sickness. Asking morning conditions may lead to the prevention of HRI. For occupational risk management, monitoring of environmental and personal conditions is required.

High-resolution spatiotemporal variability of heat wave impacts quantified by thermal indices

Heat waves are increasing in frequency and exhibit high spatial variability in their distribution over India. There are limited studies focused on thermal indices over India due to the nonavailability of high-resolution (HR) climate data. Here we develop dynamically downscaled HR (4 x 4 km) daily climate information for the months of April to June during 2001-2016 using a regional climate model called Weather Research and Forecasting (WRF) Model, which are validated with station observations. The thermal comfort, heat stress, and its spatiotemporal variability and change over India are quantified in terms of indices like excessive heat factor (EHF), the heat index (HI), humidex, apparent temperature (AT), and wet bulb globe temperature (WBGT). The results show that there is an increasing trend in annual heat waves coverage (22,240 km(2)/year), annual frequency (0.07 days/year), and average intensity (0.04 degrees C/year) during 2001-2016. The spatial distribution of indices exhibits high spatial and temporal variability. The days with the severe threshold of indices are significantly increasing over north India at the rate of EHF (15.9%), HI (14.9%), humidex (15.9%), AT (13.4%), and WBGT (13.8%). The heat waves’ most vulnerable hotspots are on the parts of Rajasthan, Uttar Pradesh, Madhya Pradesh, and the coastal regions of Andhra Pradesh and Odisha. During heat waves, prolonged exposure under the sun will lead to adverse health impacts, and it is mostly observed over severe heat wave zone. These findings stress the need for developing suitable mitigation strategies for a sustainable ecosystem with minimum impact.

Identifying sensitive population associated with summer extreme heat in Beijing

Severe high-temperature leads significant risks of human health under the highly population concentration and climate change. The thermal sensitivity to high temperature is needed to be quantified associated with different population characteristics. Thermal condition was quantified by universal thermal climate index (UTCI) and thermal sensitivity was identified by thermal sensation votes (TSV), thermal comfort votes, and thermal unacceptability votes based on 667 questionnaires in Beijing, China. This study designated four indicators, i.e., neutral temperature, neutral temperature range, tolerance temperature, and tolerance temperature range to analyze the effects of individual characteristics on thermal sensitivity. A one-way ANOVA was used to identify the effects of long-term adaptation and psychological factors. Results showed that: (1) Older residents had a higher neutral temperature, narrow tolerance temperature range, and lower tolerance temperature of 1.2 degrees C UTCI than younger residents. (2) People with chronic disease had a narrow tolerance temperature range and lower tolerance temperature of 1.3 degrees C UTCI than healthy ones; (3) The proportion of people who voted strong thermal sensation (TSV >= 2) rated the highest in building areas, while the proportion decreased 31.6% in spaces with dense trees; (4) Residential history and city attractiveness had significant impacts on mean thermal sensation votes and mean thermal comfort votes, excluding the effect of thermal stress level. This study provided useful implications of specific adaption for summer extreme heat according to different population characteristics.

Investigation of kidney function changes in sea salt workers during harvest season in Thailand

BACKGROUND: Occupational factors have previously been mentioned as contributing to decreased kidney function and the development of chronic kidney disease of unknown cause. Sea salt workers are one of the occupations facing high outdoor temperatures and a highly, intensive workload. OBJECTIVES: The purpose of the study was to examine whether the kidney function of sea salt workers at the beginning of the harvest season differs from kidney function at the end of the harvest season and to identify factors that can predict the change of kidney function. MATERIAL AND METHODS: Data were collected from salt workers (n=50) who were between 18–60 years of age without hypertension, diabetes, and kidney disease in Samut Sakhon province, Thailand. Urine specific gravity (USG) was used for hydration status and the estimated glomerular filter rate (eGFR) was used to measure kidney function. The mixed model was used to find differences over the harvest season and prediction of factors. RESULTS: On average, the eGFR was estimated to decrease by 15.2 ml/min/1.73 m2 over the harvest season. The decline in eGFR of sea salt workers with moderate and heavy workloads were significantly faster than their light workload counterparts after controlling for other covariates. Similarly, dehydration (USG ≥ 1.030) significantly accelerated the rate of kidney function loss. CONCLUSION: Our study confirmed exposure to heat over the harvest season leads to decreased eGFR in sea salt workers. The rate of change of eGFR could be predicted by workload and hydration status. Workers with dehydration who performed medium to heavy workloads in farms showed faster kidney function decline than those who performed light workload.

A brief discussion on the high-impact cold-season tornado outbreak during 10-11 December 2021 in the United States

An outbreak of powerful tornadoes tore through multiple states in the central and southern United States from 10 to 11 December 2021. It is claimed the deadliest tornado outbreak that has taken place on December days. The National Oceanic and Atmospheric Administration had confirmed 66 tornadoes as of 21 December, producing at least 90 fatalities. Most tornadoes occurred at night and thus they were difficult to be visually located, which directly increases the risk for local residents. Two violent nighttime tornadoes were rated category 4 on the enhanced Fujita scale (EF4). Although a high death toll was caused during this event, the operational service actually presented an excellent performance. This tornado outbreak has aroused extensive discussion from both the public and the research community in China. This paper presents a brief discussion on the formation environment and warning services of the tornado outbreak. Recall the deadliest violent tornado in the past 45 years in China, the radar-based tornadic vortex signatures at the locations with EF4 damages show a comparable strength with those in the current cases. Some views on the tornado warning issuance and receiving and damage surveys in China are also presented.

Assessing heat index changes in the context of climate change: A case study of Hanoi (Vietnam)

Air temperature and humidity have a great impact on public health, leads to heat stress. The US National Weather Service uses temperature and relative humidity to build a heat index (HI) as a metric to identify the thresholds for heat stress as felt by the public. Under climate change conditions and especially in hot humid weather during summer, the number of hot days in Hanoi has increased in recent times. Subsequently, the heat index is rising in both number of occurrences and level of intensity leading to increasing temperature stress on people’s health. The daily heat index for the future was simulated using maximum daily temperature and minimum daily relative humidity based on climate change scenarios. Maximum daily temperature was provided by the climate change model, while minimum daily relative humidity was estimated from the following: maximum daily temperature, mean daily temperature and daily rainfall. Results show that in the future, the heat index will increase by 0.0777 degrees C/year in the RCP 4.5 scenario and 0.08 degrees C/year in the RCP 8.5 scenario. Number of weeks with heat at danger tends to increase to 5.5 weeks/5 year for scenario RCP 4.5, and it is 6 weeks/5 years under RCP 8.5 scenario. In particular, the number of days of heatstroke over a 30-year period (from 1991 to 2020) amounted to only 4, that is an average of 0.13 days of the year, which represents a very rare weather phenomenon in the past. In contrast, under an RCP 4.5 scenario in the future over a 30-year period, the average number of days per year will be 2, 57 days; while the average number of days per year under an RCP 8.5 scenario would be 3, 87 days. This phenomenon will be mainly concentrated in the months of June, July, and August. Projections of this type are a key tool for communities working out how they will adapt to heat stress in the context of climate change.

An intervention study of the rural elderly for improving exposure, risk perception and behavioral responses under high temperature

The frequency and intensity of high-temperature events continue to increase, resulting in a surge of pathogenicity and mortality. People with low levels of risk perception and adaptability, such as the elderly, suffer more from high temperatures. Effective intervention measures may lead to reduced levels of high temperature-related risk. The purpose of this study was to compare changes in temperature exposure, risk perception and coping behaviors under different intervention methods. Herein we conducted three different interventions including education, subsidies for electricity and uses of spray-cooling appliances as well as collected data about temperature exposure, risk perception, and coping behaviors. Before and after the experiment, we evaluated the intervention effectiveness with a number of variables related to alerting human responses under high temperatures. We conducted nonparametric tests for paired samples and generalized linear mixed effect models. Compared with subsidy support and outdoor spray-cooling methods, education is more effective as it leads to lower levels of temperature exposure, higher levels of risk perception, and more behavioral responses. The subsidy support intervention is useful in increasing risk perception and promoting home cooling practices as well. In comparison, spray cooling barely contributes to the reduction of personal temperature exposure. The encouragement of risk-related education and continued government subsidy may prevent elderly individuals from experiencing high-temperature exposure.

Indoor heat measurement data from low-income households in rural and urban South Asia

Rising temperatures are causing distress across the world, and for those most vulnerable, it is a silent killer. Information about indoor air temperature in residential dwellings is of interest for a range of reasons, such as health, thermal comfort and coping practices. However, there have been only few studies that measure indoor heat exposure, and contrast these to outdoor temperatures in rural-urban areas, of which none are in South Asia. We aim to close this knowledge gap with our indoor and outdoor heat measurement dataset, covering five low-income sites in South Asia. Two sites are in rural areas (Maharashtra, India), while three sites focus on urban areas (Dhaka, Delhi and Faisalabad). Data are based on 206 indoor temperature data loggers and complemented by data from five outdoor automated weather stations. The data-set can be used to examine temperature and humidity variation in low-socioeconomic status households in rural and urban areas and to better understand factors aggravating heat stress. This is important to plan and implement actions for combating heat stress.

A unifying model to estimate the effect of heat stress in the human innate immunity during physical activities

Public health is threatened by climate change and extreme temperature events worldwide. Differences in health predispositions, access to cooling infrastructure and occupation raises an issue of heat-related health inequality in those vulnerable and disadvantaged demographic groups. To address these issues, a comprehensive understanding of the effect of elevated body temperatures on human biological systems and overall health is urgently needed. In this paper we look at the inner workings of the human innate immunity under exposure to heat stress induced through exposure to environment and physical exertion. We couple two experimentally validated computational models: the innate immune system and thermal regulation of the human body. We first study the dynamics of critical indicators of innate immunity as a function of human core temperature. Next, we identify environmental and physical activity regimes that lead to core temperature levels that can potentially compromise the performance of the human innate immunity. Finally, to take into account the response of innate immunity to various intensities of physical activities, we utilise the dynamic core temperatures generated by a thermal regulation model. We compare the dynamics of all key players of the innate immunity for a variety of stresses like running a marathon, doing construction work, and leisure walking at speed of 4 km/h, all in the setting of a hot and humid tropical climate such as present in Singapore. We find that exposure to moderate heat stress leading to core temperatures within the mild febrile range (37, 38][Formula: see text], nudges the innate immune system into activation and improves the efficiency of its response. Overheating corresponding to core temperatures beyond 38[Formula: see text], however, has detrimental effects on the performance of the innate immune system, as it further induces inflammation, which causes a series of reactions that may lead to the non-resolution of the ongoing inflammation. Among the three physical activities considered in our simulated scenarios (marathon, construction work, and walking), marathon induces the highest level of inflammation that challenges the innate immune response with its resolution. Our study advances the current state of research towards understanding the implications of heat exposure for such an essential physiological system as the innate immunity. Although we find that among considered physical activities, a marathon of 2 h and 46 min induces the highest level of inflammation, it must be noted that construction work done on a daily basis under the hot and humid tropical climate, can produce a continuous level of inflammation triggering moieties stretched at a longer timeline beating the negative effects of running a marathon. Our study demonstrates that the performance of the innate immune system can be severely compromised by the exposure to heat stress and physical exertion. This poses significant risks to health especially to those with limited access to cooling infrastructures. This is due in part to having low income, or having to work on outdoor settings, which is the case for construction workers. These risks to public health should be addressed through individual and population-level measures via behavioural adaptation and provision of the cooling infrastructure in outdoor environments.

Effects of increased activity level on physiological and subjective responses at different high temperatures

This study investigates the varies in human physiological response, subjective sensation and acute subclinical health symptoms with increasing activity levels at different high temperatures. Thirty-two healthy subjects were recruited to walk on a treadmill in a climate chamber at a speed of 4 km/h. They experienced four temperature conditions (26 degrees C, 30 degrees C, 33 degrees C and 37 degrees C), each exposure lasting 85 min. Eardrum temperature, heart rate, skin temperature, systolic blood pressure, respiratory flow, and respiration rate changed significantly with increasing temperatures. At temperature of 37 degrees C, the SpO2 decreased significantly compared with at 33 degrees C. Subjects perceived the environment unacceptable at 37 degrees C. The perceived air quality and air freshness correlated linearly with the enthalpy of air. The intensity of headache, dizziness, fatigue and sleepiness increased with increasing temperatures, while only aggravated significantly at 37 degrees C. Additionally, compared with the results at light activity level, heart rate and other key physiological parameters increased significantly with increasing activity levels. The subjects felt “very hot” at 37 degrees C, and the change trend in symptoms reported by subjects increased significantly at 37 degrees C with the increased exposure time, while no significant change was observed in 26-33 degrees C. It indicates that exposure to 37 degrees C impairs the health and safety of heat acclimatized subjects. Using linear fitting curve to predict human physiological tolerance time suggested by ISO 9986. The result shows that eardrum temperature exceeded 38.5 degrees C for 97min continuously walk at 37 degrees C. This provides valuable information involved physiological and psychological responses when human exposed to high temperatures in daily life or industrial production.

Evaluation of weather-productivity models of construction labour for tropics

Purpose Weather is one of the main factors affecting labour productivity. Existing weather-productivity models focussed on hot and cold climates paying less attention to the tropics. Many tropical countries are expected to be the most areas affected by accelerated climate change and global warming, which may have a severe impact on labour health and productivity. The purpose of this paper is to assess whether the existing models can be used to predict labour productivity based on weather conditions in the tropics. Design/methodology/approach Five models are identified from the literature for evaluation. Using real labour productivity data of a high-rise building project in Malaysia, the actual productivity rate was compared with predicted productivity rates generated using the five models. The predicted productivity rates were generated using weather variables collected from an adjusting weather station to the project. Findings Compared with other models evaluated in this paper, the United States Army Corps of Engineers (USACE) was found to be the best model to predict productivity based on the case study data. However, the result shows only a 57% accuracy level of the USACE model indicating the need to develop a new model for the tropics for more accurate prediction. Originality/value The result of this study is perhaps the first to apply meteorological variables to predict productivity rates and validate them using actual productivity data in the tropics. This study is the first step to developing a more accurate productivity model, which will be useful for project planning and more accurate productivity rate estimation.

The effects of temperature and outcomes of patients presenting to the emergency department with heat-related illness: A retrospective cross-sectional study

Introduction: In a tropical country like India, heat-related illnesses are a common occurrence in the unforgiving summer months. Our study aimed to study the profile and outcome of patients with heat-related illnesses presenting to the emergency department (ED).Materials and Methods: This retrospective, cross-sectional study included all patients with heat-related illnesses to the ED during the months of April, May, and June of 2016. Baseline demographic characteristics, computed tomography (CT) brain findings, and hospital outcome were noted.Results: During the 3-month study period, 72 patients presented with heat-related illnesses. Two-thirds (46/72: 63.8%) suffered from heat stroke, whereas one-third (26/72: 36.2%) had heat exhaustion. Classical and exertional types were seen in 46% and 54% of heat strokes, respectively. The mean age (standard deviation) of the patients was 59.7 (13.3) years with a male preponderance (56.9%). Homemakers (37.5%) and manual laborers (20.8%) were most commonly affected. Hypotension at ED arrival was noticed in 20.8% (15/72), whereas tachycardia and tachypnea were noted in 80.5% (58/72) each. The findings on CT of the brain included acute infarcts (5/26: 19.6%) and an intra-cranial bleed (1/26: 3.8%). The mortality rate was 19.5% (14/72).Conclusion: Heat-related illnesses cause significant mortality during the relentless hot summers of a tropical country like India. Homemakers and manual labors were the most affected group. Acute changes were seen in CT brain of a quarter of patients with heat stroke.The following core competencies are addressed in this article: Patient care, Systems-based practice, Medical knowledge, Practice-based learning and improvement.

Chronic heat stress in tropical urban informal settlements

The health and economic impacts of extreme heat on humans are especially pronounced in populations without the means to adapt. We deployed a sensor network across 12 informal settlements in Makassar, Indonesia to measure the thermal environment that people experience inside and outside their homes. We calculated two metrics to assess the magnitude and frequency of heat stress conditions, wet bulb temperature and wet bulb globe temperature, and compared our in situ data to that collected by weather stations. We found that informal settlement residents experience chronic heat stress conditions, which are underestimated by weather stations. Wet bulb temperatures approached the uppermost limits of human survivability, and wet bulb globe temperatures regularly exceeded recommended physical activity thresholds, both in houses and outdoors. Under a warming climate, a growing number of people living informally will face potentially severe impacts from heat stress that have likely been previously overlooked or underestimated.

Review of heat wave studies and related urban policies in South Asia

The Intergovernmental Panel on Climate Change (IPCC) projects that the frequency of heat waves (HWs) is likely to increase over most land areas in the twenty-first century. Recurrent HWs are an emerging environmental and health concern and already distress in rapidly growing and fast urbanizing South Asia. A review of original research publications of the past five decades from peer-reviewed journals and conference proceedings, covering South Asia, revealed that the region is constantly experiencing the warmest temperatures. The review attempts to comprehend HWs in different contexts, geographic locations, and on previous studies. The paper presents a compre-hensive review of existing plans/policies/guidelines in South Asia at the national/regional/city level to counter extreme heat risk. The study is extended to identify the issues and gaps in the current policies and frameworks in the larger setting of urban planning measures for adaptation and mitigation efforts. A specific set of long-term actions and vulnerability assessment concen-trated on cities must be developed and integrated into a defined heat action plan coupled with improvements in urban and regional planning. Policies and actions must address the issues of the built environment in land use/planning and address the existing institutional and implementation gaps.

Heat risk of residents in different types of communities from urban heat-exposed areas

Heat risk assessment is important due to serious health problems caused by heat waves. The complexity and diversity of socio-ecological characteristics in urban areas that lead to heat risk are more serious in heat-exposed areas, while risk assessments and determinant based on individuals in heat-exposed areas have been neglected in previous studies. This study pursues a new idea of combining questionnaire surveys and remote sensing analysis to identify urban heat-exposed areas and assess heat risk in heat-exposed areas of Beijing, China. Morphological spatial pattern analysis (MSPA) was used to identify large and continuous hotspot regions as urban heat-exposed areas based on summer surface temperature from 2011 to 2017. A total of 1484 valid questionnaires were completed by residents of heat-exposed areas. The majority of respondents (96.4%) indicated that they perceived heat risk. Moreover, the residents without a local “hukou” were a potentially vulnerable group (note: hukou refers to the population registration management system.). This study further analysed the diversity of community types within the heat-exposed areas. There were significant differences in heat risk among the different community types of multi-story residential districts, Hutong (a traditional architectural form) residential districts and city villages. In particular, the degree of heat risk perceived by residents living in these the community types was determined by whether they had pre-existing medical conditions; however, age only played a decisive role in city villages. This study not only enriches the current understanding of health risks affected by heat waves but also explores the determinants contributing to the severity of heat risk. The output provides important information for future development of heat mitigation and adaptation strategies.

Artificial neural network modeling for predicting and evaluating the mean radiant temperature around buildings on hot summer days

In recent years, the phenomenon of urban warming has become increasingly serious, and with the number of urban residents increasing, the risk of heatstroke in extreme weather has become higher than ever. In order to mitigate urban warming and adapt to it, many researchers have been paying increasing attention to outdoor thermal comfort. The mean radiant temperature (MRT) is one of the most important variables affecting human thermal comfort in outdoor urban spaces. The purpose of this paper is to predict the distribution of MRT around buildings based on a commonly used multilayer neural network (MLNN) that is optimized by genetic algorithms (GA) and backpropagation (BP) algorithms. Weather data from 2014 to 2018 together with the related indexes of the grid were selected as the input parameters for neural network training, and the distribution of the MRT around buildings in 2019 was predicted. This study obtained very high prediction accuracy, which can be combined with sensitivity analysis methods to analyze the important input parameters affecting the MRT on hot summer days (the days with the highest air temperature over 30 degrees C). This has significant implications for the optimization strategies for future building and urban designers to improve the thermal conditions around buildings.

Heat-induced health impacts and the drivers: Implications on accurate heat-health plans and guidelines

Urban heat challenges are increasingly severe, along with climate change and urbanisation. Despite significant environmental, economic, and social consequences, limited actions have been conducted to address urban heat challenges. To support the formulation of heat-health plans and guidelines at the city and community scale, this study presented results, through a questionnaire survey among 584 respondents in Shanghai, China, on heat-induced physiological and psychological impacts and analysed the variability of them with demographic characteristics. The results indicate that psychological impacts were more severe than physiological impacts in severity and susceptible people. Skin heat damage and digestive system diseases were ignored in previous studies, compared with fatal cardiovascular and respiratory diseases. Emotional irritability and difficulty in controlling temper were the two most prominent psychological symptoms. The elderly and health-vulnerable groups were more susceptible to heat-induced physiological and psychological impacts than other groups. Among different demographic groups, the most critical physiological and psychological symptoms could vary significantly. Afterwards, suggestions for heat-health plans or guidelines have been proposed. Overall, this study provides a reference for the understanding of heat-induced impacts and enhancing the capacity to cope with urban heat challenges.

Identification of heatwave hotspots in Seoul using high-resolution population mobility data

This study proposes the methodology to identify heatwave hotspots in Seoul, the metropolis of Korea, using high-resolution data. Resident credit data, population mobility data, and temperature observation data are analyzed to determine vulnerable regions to heatwaves. Potentially vulnerable regions are derived in two ways: static vulnerable regions (SVRs) and dynamic vulnerable regions (DVRs), depending on their characteristics. SVRs are determined by lowincome (lower 20% income quantile) residential areas fixed on time. In contrast, DVRs vary with the time and day of the week. DVRs are defined by the place less responsive to heatwaves, where are with low population variability and low correlation with temperature. The final vulnerable regions, so-called hotspots, are determined by the high temperature predicted area where the SVRs and DVRs intersect. We examine how to remove commuting-related displacement signals, which are represented as noise when analyzing population mobility. An example of the hotspots identification result is also shown using temperature hindcast data generated by the Korean Meteorological Administration short-range forecast system. Applying the vulnerability information can improve the quality of disaster planning and decision-making by highlighting the time and area of need for resources in the implementation of short-and long-term disaster response.

A method of predicting the dynamic thermal sensation under varying outdoor heat stress conditions in summer

Heat stress events in urban areas are increasing as a result of global warming and urban heat islands. In response to heat stress, outdoor activators naturally often move themselves to a less hot place. An understanding of human physiological responses in dynamic outdoor thermal environments is desired. This study aims to reveal the dynamic physiological adjustment and thermal perception response characteristics under varying outdoor heat stress conditions. A robust model for predicting dynamic thermal sensation outdoors has been developed. Experiments involving heat stress changes in a hot summer were conducted with 25 subjects. Three categories of data were collected including meteorological data, physiological parameters, and thermal perception. The results showed that lower-arm skin temperature (T-lowerarm) is more sensitive to changes in the outdoor thermal environment, and correlates closely with the thermal sensation vote (TSV). For a better practical application, based on the strong linear relationship between T-lowerarm and T-ty, the new dynamic outdoor thermal sensation model has been developed involving two parameters: T-lowerarm and delta T-lowerarm/delta t (the change rate of T-lowerarm). The validity of the model in transient outdoor conditions was verified. The algorithm can be integrated into a wearable armband to predict practical thermal sensation responses. This contribution will advance technologies based on the scientific findings to provide alert services to support human health and wellbeing, consequently increasing urban resilience and sustainability.

Educational building retrofit under climate change and urban heat island effect

Climate change (CC) and urban heat island (UHI) are important environmental forces that have serious consequences for the existing buildings, such as increased resource consumption and environmental footprint, adverse human health effects and reduced occupant comfort. In this context, educational buildings represent a critical category amongst other building typologies, due to their high energy use, high occupant density, atypical daily/annual occupancy patterns, and their occupants’ high vulnerability to heat. Poor indoor conditions can reduce the health and productivity of students and teachers, worsen learning performance and reduce attendance. Retrofitting educational buildings is an effective solution to tackle this challenge. This study investigates the impact of CC&UHI on educational building performance and demonstrates the effectiveness of passive retrofit scenarios targeting CC&UHI mitigation and adaptation. These investigations are based on a systematic approach that consists of (i) the generation and analyses of CC&UHI-modified weather datasets, and (ii) simulation-based comparative analyses of the as-is building and various retrofit scenarios. An existing secondary school building in Ankara, Turkey is selected as a case study for evaluations of the selected performance indicators including energy use, global warming potential (GWP) and thermal comfort. Obtained results indicate that total energy consumption can be reduced up to 50% with retrofit, whereas possible reductions in indoor discomfort are even more pronounced, underlining the significance of selecting the optimal combination of passive measures for maximum impact towards the adaptation of the existing educational buildings to the changes in climatic conditions.

How to design comfortable open spaces for the elderly? Implications of their thermal perceptions in an urban park

Elderly residents are prominent users of urban parks and comfortable open spaces in parks have been shown to improve their physical health and mental well-being. In this study, the thermal perceptions (thermal sensation, thermal comfort and thermal acceptability) of elderly visitors to an urban park in Xi’an, China was investigated using meteorological measurements, questionnaire surveys and activity records. Physiological equivalent temperature (PET) was used to determine thermal benchmarks. Spatial-temporal distributions of the elderly in open spaces were recorded and relationships among elderly residents’ thermal perceptions, their age and chronic disease were analyzed. Finally, optimal design strategies for open spaces suitable for the elderly were proposed based on meteorological characteristics, elderly residents’ attendance patterns and their thermal perceptions. Results showed that: 1) globe temperature (T(g)) and air temperature (T(a)) were the primary meteorological factors that influenced elderly residents’ thermal sensation while clothing insulation and activity intensity were negatively correlated with their thermal sensation. 2) Attendance was significantly affected by the outdoor microclimate, space functionality and facilities in spaces. The elderly mainly participated in dynamic activities and social interaction. 3) The neutral PET (NPET) was 13.2 °C, with NPET range (NPETR) of 3.1-23.2 °C. The 90% thermal acceptable PET ranged between 10.9 and 25.9 °C, and the preferred PET was 14.4 °C. Compared with the ISO7730 standard, the predicted percentage of dissatisfied (PPD) elderly park users was lower than users of indoor spaces when -1 ≤ MTSV ≤ + 1, indicating that the elderly preferred to conduct activities outside when the environment was comfortable. Additionally, NPET for the elderly with respiratory disease was higher than those with cardiovascular diseases and diabetes. 4) Optimal design strategies for open spaces were proposed for elderly residents based on their physical, physiological and psychological preferences.

Assessment of walkability and walkable routes of a 15-min city for heat adaptation: Development of a dynamic attenuation model of heat stress

Actively addressing urban heat challenges is an urgent task for numerous cities. Existing studies have primarily developed heat mitigation strategies and analyzed their cooling performance, while the adaptation strategies are far from comprehensive to protect citizens from heat-related illnesses and deaths. To address this research gap, this paper aims to enhance people’s adaptation capacity by investigating walkability within fifteen-minute cities (FMC). Taking cognizance of thermal comfort, health, and safety, this paper developed a dynamic attenuation model (DAM) of heat stress, along with heat stress aggravation, continuance, and alleviation. An indicator of remaining tolerant heat discomfort (R (t) ) was proposed with the integration of the Universal Thermal Climate Index (UTCI) to assess heat-related walkability. Following an empirical study among 128 residents in Mianyang, China, and assessing four levels of heat stress, the maximum tolerant heat discomfort was determined to be 60 min. Furthermore, the DAM was applied to an FMC with 12 neighborhoods in Fucheng, Mianyang, China. The results indicate that for each neighborhood, the street was generally walkable with an R (t) ranging between 15 and 30 min, after walking for 900 m. A population-based FMC walkability was further determined, finding that the core area of the FMC was favorable for walking with an R (t) of 45-46 min, and the perpetual areas were also walkable with an R (t) of 15-30 min. Based on these results, suggestions on the frequency of public services (frequently used, often used, and occasionally used) planning were presented. Overall, this paper provides a theoretical model for analyzing walkability and outlines meaningful implications for planning heat adaptation in resilient, safe, comfortable, and livable FMCs.

Determining the thresholds of environmental parameters for health protection of sanitation workers in summer based on mathematical programming

Due to direct exposure to high temperatures in summer, sanitation workers can easily experience heat-related illness and even mortality. This paper aims to determine the thresholds of the environmental parameters for sanitation workers in summer. Firstly, a field test of sanitation workers was conducted, the environmental parameters (solar radiation intensity, dry bulb temperature, wind speed and relative humidity) and mean skin temperature were measured, and the thermal comfort and work willingness were investigated via a questionnaire. Then, the mathematical programming method was adopted to obtain the safety limits and danger limits of the environmental parameters. Finally, the thresholds of the outdoor heat stress indexes, namely, the environmental stress index (ESI), discomfort index (DI), heat index (HI) and relative strain index (RSI) were obtained. The results indicate that a high solar radiation intensity, high dry bulb temperature, high wind speed and low humidity will cause more adverse effects on sanitation workers in summer. The safety limits of the solar radiation intensity, dry bulb temperature, wind speed and relative humidity are 182.42 W/m(2), 28.42 degrees C, 0.15 m/s and 71.35%, respectively, and the danger limit value are 876.86 W/m(2), 34.98 degrees C, 1.27 m/s and 36.59%, respectively. In addition, the safety limit values of the ESI, DI, HI and RSI are 27.08 degrees C, 26.23 degrees C, 31.71 degrees C and 0.13, respectively; and the danger limit values are 29.60 degrees C, 27.84 degrees C, 36.21 degrees C and 0.24, respectively. This paper can provide a study method and reference data for the work arrangement and health protection of sanitation workers in summer.

Social implementation and intervention with estimated morbidity of heat-related illnesses from weather data: A case study from Nagoya City, Japan

The estimation of heat-related illness cases is a key factor in proposing and implementing suitable intervention strategies and healthcare resource management. This paper proposes new frameworks to estimate the number of patients with heat-related illnesses by administrative wards in Nagoya City using 2014-2019 data. The proposed frameworks are based on the derivation of estimation formulae and machine learning. The daily residual estimation error in the 16 wards was less than one person with both the frameworks. The daily working time average ambient temperature may yield a better correlation than the daily average temperature or daily highest temperature with the number of patients transported by an ambulance from outdoor sites. The results also indicate that patients transported from indoor sites are influenced by earlier ambient conditions over approximately 50 days. In contrast, those transported from outdoor sites are influenced by a relatively short period (20 days), which may correspond to heat adaptation. The frameworks provide a better understanding of the different factors that would lead to an accurate prediction of the number of cases of heat-related patients from weather forecasts. These findings would lead to efficient ambulance allocation as well as public awareness on hot days to suppress heat-related morbidity.

A case study of a nursing home in Nagano, Japan: Field survey on thermal comfort and building energy simulation for future climate change

With an increase in the aging population in many countries worldwide, much attention is being paid to the study of thermal comfort for the elderly. Because the elderly spend most of their time indoors, the demand for air conditioning is expected to increase, and it is important to study the thermal comfort of the elderly and appropriate operation plans for air conditioning. In this study, we conducted a field survey of thermal comfort and building energy simulation for an air-conditioned nursing home in Nagano, Japan. The field survey was conducted between June 2020 and June 2021. Over 80% of the subjects were satisfied with the indoor thermal environment. The thermal neutral temperature of the elderly was 25.9 degrees C in summer and 23.8 degrees C in winter. Future weather data was used to predict the future heating and cooling loads of the nursing home. The results showed that the total heat load may not change significantly, as the decrease in heating load compensates for the increase in cooling load. This study will serve as a useful reference for a wide range of stakeholders, including managers and designers of nursing homes.

Baseline scenarios of heat-related ambulance transportations under climate change in Tokyo, Japan

BACKGROUND: Predictive scenarios of heatstroke over the long-term future have yet to be formulated. The purpose of the present study was to generate baseline scenarios of heat-related ambulance transportations using climate change scenario datasets in Tokyo, Japan. METHODS: Data on the number of heat-related ambulance transportations in Tokyo from 2015 to 2019 were examined, and the relationship between the risk of heat-related ambulance transportations and the daily maximum wet-bulb globe temperature (WBGT) was modeled using three simple dose-response models. To quantify the risk of heatstroke, future climatological variables were then retrieved to compute the WBGT up to the year 2100 from climate change scenarios (i.e., RCP2.6, RCP4.5, and RCP8.5) using two scenario models. The predicted risk of heat-related ambulance transportations was embedded onto the future age-specific projected population. RESULTS: The proportion of the number of days with a WBGT above 28°C is predicted to increase every five years by 0.16% for RCP2.6, 0.31% for RCP4.5, and 0.68% for RCP8.5. In 2100, compared with 2000, the number of heat-related ambulance transportations is predicted to be more than three times greater among people aged 0-64 years and six times greater among people aged 65 years or older. The variance of the heatstroke risk becomes greater as the WBGT increases. CONCLUSIONS: The increased risk of heatstroke for the long-term future was demonstrated using a simple statistical approach. Even with the RCP2.6 scenario, with the mildest impact of global warming, the risk of heatstroke is expected to increase. The future course of heatstroke predicted by our approach acts as a baseline for future studies.

Loss of disability-adjusted life years due to heat-related sleep disturbance in the Japanese

The purpose of this study was to quantify the sleep disturbances caused by climate change using disability-adjusted life years (DALY). The revised sleep quality index for daily sleep (SQIDS2), a self-administered questionnaire for daily sleep quality, was developed to assess daily sleep disturbances. This questionnaire referenced and simplified the Pittsburgh Sleep Quality Index (PSQI). This study was conducted in Nagoya City in August 2011 and 2012. Sleep quality was measured using SQIDS2 and PSQI. A total of 574 participants in 2011 and 710 in 2012 responded to the survey. The sleep disturbance prevalence calculated from the SQIDS2 score was correlated with the daily minimum temperature (p = 0.0067). This score increased when the daily minimum temperature was above 24.8 degrees C. When correcting for the PSQI score, DALY loss due to heat-related sleep disturbances in Nagoya City (population: 2,266,851) was estimated to be 81.8 years in 2012. This value was comparable to the DALY loss due to heatstroke. Sleep disturbance due to climate change was quantified using the DALY based on the PSQI. Legislators must recognize the critical impact of the damage caused by sleep disturbances due to high temperatures at night. Additionally, a daily minimum temperature of 25 degrees C should be the starting point when establishing a goal or guideline for nighttime temperature.

The effect of minimum and maximum air temperatures in the summer on heat stroke in Japan: A time-stratified case-crossover study

An increase in the global surface temperature and changes in urban morphologies are associated with increased heat stress especially in urban areas. This can be one of the contributing factors underlying an increase in heat strokes. We examined the impact of summer minimum air temperatures, which often represent nighttime temperatures, as well as a maximum temperature on a heat stroke. We collected data from the records of daily ambulance transports for heat strokes and meteorological data for July and August of 2017-2019 in the Tottori Prefecture, Japan. A time-stratified case-crossover design was used to determine the association of maximum/minimum air temperatures and the incidence of heat strokes. We used a logistic regression to identify factors associated with the severity of heat strokes. A total of 1108 cases were identified with 373 (33.7%) calls originating in the home (of these, 59.8% were the age of ≥ 75). A total of 65.8% of cases under the age of 18 were related to exercise. Days with a minimum temperature ≥ 25 °C had an odds ratio (95% confidence interval) of 3.77 (2.19, 6.51) for the incidence of an exercise-related heat stroke (reference: days with a minimum temperature < 23 °C). The odds ratio for a heat stroke occurring at home or for calls for an ambulance to the home was 6.75 (4.47, 10.20). The severity of the heat stroke was associated with older age but not with air temperature. Minimum and maximum air temperatures may be associated with the incidence of heat strokes and in particular the former with non-exertional heat strokes.

Association between heat exposure and hospitalization for diabetic ketoacidosis, hyperosmolar hyperglycemic state, and hypoglycemia in Japan

BACKGROUND: An increase in extreme heat events has been reported along with global warming. Heat exposure in ambient temperature is associated with all-cause diabetes mortality and all-cause hospitalization in diabetic patients. However, the association between heat exposure and hospitalization for hyperglycemic emergencies, such as diabetic ketoacidosis (DKA), hyperosmolar hyperglycemic state (HHS), and hypoglycemia is unclear. The objective of our study is to clarify the impact of heat exposure on the hospitalization for DKA, HHS, and hypoglycemia. METHODS: Data of daily hospitalizations for hyperglycemic emergencies (i.e., DKA or HHS) and hypoglycemia was extracted from a nationwide administrative database in Japan and linked with temperature in each prefecture in Japan during 2012-2019. We applied distributed lag non-linear model to evaluate the non-linear and lagged effects of heat exposure on hospitalization for hyperglycemic emergencies. RESULTS: The pooled relative risk for hyperglycemic emergencies of heat effect (the 90th percentile of temperature with reference to the 75th percentile of temperature) and extreme heat effect (the 99th percentile of temperature with reference to the 75th percentile of temperature) over 0-3 lag days was 1.27 (95 %CI: 1.16-1.39) and 1.64 (95 %CI: 1.38-1.93), respectively. The pooled relative risk for heat effect on hospitalization for hypoglycemia and extreme heat effect over 0-3 lag days was 1.33 (95 %CI: 1.17-1.52) and 1.65 (95 %CI: 1.29-2.10), respectively. These associations were consistent by type of hyperglycemic emergencies and type of diabetes and were generally consistent by regions. DISCUSSION: Heat exposure was associated with hospitalizations for DKA, HHS and hypoglycemia. These results may be useful to guide preventive actions for the risk of fatal hyperglycemic emergencies and hypoglycemia.

Estimation of mean radiant temperature in urban canyons using google street view: A case study on Seoul

Extreme heat exposure has severe negative impacts on humans, and the issue is exacerbated by climate change. Estimating spatial heat stress such as mean radiant temperature (MRT) is currently difficult to apply at city scale. This study constructed a method for estimating the MRT of street canyons using Google Street View (GSV) images and investigated its large-scale spatial patterns at street level. We used image segmentation using deep learning to calculate the view factor (VF) and project panorama into fisheye images. We calculated sun paths to estimate MRT using panorama images from Google Street View. This paper shows that regression analysis can be used to validate between estimated short-wave, long-wave radiation and the measurement data at seven field measurements in the clear-sky (0.97 and 0.77, respectively). Additionally, we compared the calculated MRT and land surface temperature (LST) from Landsat 8 on a city scale. As a result of investigating spatial patterns of MRT in Seoul, South Korea, we found that a high MRT of street canyons (>59.4 degrees C) is mainly distributed in open space areas and compact low-rise density buildings where the sky view factor is 0.6-1.0 and the building view factor (BVF) is 0.35-0.5, or west-east oriented street canyons with an SVF of 0.3-0.55. However, high-density buildings (BVF: 0.4-0.6) or high-density tree areas (Tree View Factor, TVF: 0.6-0.99) showed low MRT (<47.6). The mapped MRT results had a similar spatial distribution to the LST; however, the MRT was lower than the LST in low tree density or low-rise high-density building areas. The method proposed in this study is suitable for a complex urban environment consisting of buildings, trees, and streets. This will help decision makers understand spatial patterns of heat stress at the street level.

Effects of urbanization on vulnerability to heat-related mortality in urban and rural areas in South Korea: A nationwide district-level time-series study

BACKGROUND: Although urbanization is often an important topic in climate change studies, the complex effect of urbanization on heat vulnerability in urban and rural areas has rarely been studied. We investigated the disparate effects of urbanization on heat vulnerability in urban and rural areas, using nationwide data. METHODS: We collected daily weather data for all 229 administrative districts in South Korea (2011-17). Population density was applied as an urbanization indicator. We calculated the heat-mortality risk using a distributed lag nonlinear model and analysed the relationship with population density. We also examined district characteristics that can be related to the spatial heterogeneity in heat-mortality risk. RESULTS: We found a U-shaped association between population density and heat-mortality risk, with the highest risk for rural populations; in urban areas, risk increases with increasing population density. Higher heat-mortality risk was associated with a lower number of hospital beds per person and higher percentage of people requiring recuperation. The association between hospital beds and heat-mortality risk was prominent in high-density urban areas, whereas the association between the percentage of people requiring recuperation and heat-mortality risk was pronounced in rural areas. CONCLUSIONS: Our findings indicate that the association between population density and heat-mortality risk is different in urban and rural areas, and that district characteristics related to heat-mortality risk also differ by urbanicity. These results can contribute to understanding the complex role of urbanization on heat vulnerability and can provide evidence to policy makers for prioritizing resources.

Do persons with low socioeconomic status have less access to greenspace? Application of accessibility index to urban parks in Seoul, South Korea

Access to urban greenspace has many benefits such as improved health and social cohesion. If access differs by population, these benefits make access to greenspace an environmental justice issue, but little is known regarding accessibility of parks among different sub-groups in Seoul, South Korea. We explored potential socioeconomic inequities for access to parks in Seoul measuring two park provision metrics: total park area per capita (TPPC), and park accessibility index determined by size and proximity of parks. We assessed correlations between a deprivation index for the 25 Gus (administrative unit equivalent to the US borough) and each park provision metric. Regression analyses were applied for the associations between eight socioeconomic indicators of the 424 Dongs (equivalent to the US neighborhood) and each park provision metric. An interquartile range (IQR) increase in percent elderly (> 65 years) (3.2%) was significantly associated with larger TPPC (1.6 m(2)/person, 95% CI: 0.8, 2.4). Park accessibility index was associated with more socioeconomic variables than was TPPC. An IQR increase in percent elderly and divorce rates (1.2/1000 population) was associated with increased park accessibility by 3571 km (95% CI: 1103, 6040) and decreased park accessibility by 1387 (95% CI: -2706, -67), respectively. An IQR increase in percentage of the population receiving social low-income support aid (2.2%) was associated with increased park accessibility (reflecting park size and proximity of parks) of residential parks near residential areas by 1568 (95% CI: 15, 3120). Results suggest higher park access for socioeconomically disadvantaged regions. Findings indicate that measures of detailed park access considering spatial proximity and park size may more accurately measure park inequity compared to more basic metrics (e.g. TPPC), which may bias estimation of park inequity by capturing only one characteristic of parks. Detailed park measures should be considered in urban planning and health studies of greenspace.

Heatwave impacts on traffic accidents by time-of-day and age of casualties in five urban areas in South Korea

We analyzed the relationship between the temperature and traffic accidents in Seoul-Incheon, Busan, Daegu, Daejeon, and Gwangju by the time-of-day (06:00 to 22:00, divided into segments of 4 h) and age of casualties between 2012 and 2017 for the summer season (June to August). A generalized additive model and meta-analysis were employed to analyze this relationship. We found that the threshold temperatures was observed to be approximately 30 degrees C. Above this temperature, traffic accidents increased in four urban areas, except Busan, which is a popular tourist location. In total, traffic accidents increased by approximately 0.59% (95% confidence interval of 0.41-0.75) per 1 degrees C increase in the daily maximum temperature, with substantial differences between the different areas, ranging from 0.12% (CI = – 0.26-0.50) in Busan to 1.08% (CI = 0.45-1.71) in Gwangju. The morning and evening hours showed a greater increase in traffic accidents than other timeframes. The increase in traffic accidents for young casualties was statistically significant at all times, and that for elderly casualties was observed at 10:00-14:00 and 18:00-22:00. The results of this study could provide information for developing customized traffic accident reduction policies considering time-of-day, age of casualties, and type of city.

Analysis on effectiveness of impact based heatwave warning considering severity and likelihood of health impacts in Seoul, Korea

Many countries are operating a heatwave warning system (HWWS) to mitigate the impact of heatwaves on human health. The level of heatwave warning is normally determined by using the threshold temperature of heat-related morbidity or mortality. However, morbidity and mortality threshold temperatures have not been used together to account for the severity of health impacts. In this study, we developed a heatwave warning system with two different warning levels: Level-1 and Level-2, by analyzing the severity and likelihood of heat-related morbidity and mortality using the generalized additive model. The study particularly focuses on the cases in Seoul, South Korea, between 2011 and 2018. The study found that the threshold temperature for heat-related morbidity and mortality are 30 °C and 33 °C, respectively. Approximately 73.1% of heat-related patients visited hospitals when temperature was between 30 °C and 33 °C. We validated the developed HWWS by using both the threshold temperatures of morbidity and mortality. The area under curves (AUCs) of the proposed model were 0.74 and 0.86 at Level-1 and Level-2, respectively. On the other hand, the AUCs of the model using only the mortality threshold were 0.60 and 0.86 at Level-1 and Level-2, respectively. The AUCs of the model using only the morbidity threshold were 0.73 and 0.78 at Level-1 and Level-2, respectively. The results suggest that the updated HWWS can help to reduce the impact of heatwaves, particularly on vulnerable groups, by providing the customized information. This also indicates that the HWWS could effectively mitigate the risk of morbidity and mortality.

Association of summer temperatures and acute kidney injury in South Korea: A case-crossover study

BACKGROUND: Due to climate change, days with high temperatures are becoming more frequent. Although the effect of high temperature on the kidneys has been reported in research from Central and South America, Oceania, North America and Europe, evidence from Asia is still lacking. This study aimed to examine the association between short-term exposure to high temperatures and acute kidney injury (AKI) in a nationwide study in South Korea. METHODS: We used representative sampling data from the 2002-2015 National Health Insurance Service-National Sample Cohort in South Korea to link the daily mean temperatures and AKI cases that occurred in the summer. We used a bidirectional case-crossover study design with 0-7 lag days before the emergency room visit for AKI. In addition, we stratified the data into six income levels to identify the susceptible population. RESULTS: A total of 1706 participants were included in this study. The odds ratio (OR) per 1°C increase at 0 lag days was 1.051, and the ORs per 1°C increase at a lag of 2 days were both 1.076. The association between exposure to high temperatures and AKI was slightly greater in the low-income group (OR = 1.088; 95% CI: 1.049-1.128) than in the high-income group (OR = 1.065; 95% CI: 1.026-1.105). CONCLUSIONS: In our study, a relationship between exposure to high temperatures and AKI was observed. Precautions should be taken at elevated temperatures to minimize the risk of negative health effects.

Risk of heat-related mortality, disease, accident, and injury among Korean workers: A national representative study from 2002 to 2015

Many studies have shown that heat waves can cause both death and disease. Considering the adverse health effects of heat waves on vulnerable groups, this study highlights their impact on workers. The present study thus investigated the association between heat exposure and the likelihood of hospitalization and death, and further identified the risk of heat-related diseases or death according to types of heat and dose-response modeling with heat threshold. Workers were selected from the Korean National Health Insurance Service-National Sample Cohort 2002-2015, and regional data measured by the Korea Meteorological Administration were used for weather information. The relationship between hospitalization attributable to disease and weather variables was analyzed by applying a generalized additional model. Using the Akaike information criterion, we selected a model that presented the optimal threshold. Maximum daily temperature (MaxT) was associated with an increased risk of death and outdoor mortality. The association between death outdoors and MaxT had a threshold of 31.2 °C with a day zero lag effect. History of medical facility visits due to the health effects of heat waves was evident in certain infectious and parasitic diseases (A and B), cardio and cerebrovascular diseases (I20-25 and I60-69), injury, poisoning, and other consequences of external causes (S, T). The study demonstrated that heat exposure is a risk factor for death and infectious, cardio-cerebrovascular, and genitourinary diseases, as well as injuries or accidents among workers. The finding that heat exposure affects workers’ health has future implications for decision makers and researchers.

High temperature and its association with work-related injuries by employment status in South Korea, 2017-2018

OBJECTIVE: This study aimed to determine the association between maximum daily temperature and work-related injuries according to employment status in South Korea. METHODS: Data on workers’ compensation claims and daily maximum temperature between May 20 and September 10, 2017-2018, were collected and analyzed. The absolute temperature risk effect (ATR) was evaluated by comparing the risk effect at 2 temperatures (30°C vs 33°C) across all communities using 2-stage time-series analysis. RESULTS: The association between high temperatures and work-related injuries was statistically significant in the construction sector (ATR, 1.129; 95% confidence interval [CI], 1.010-1.261). In addition, the findings of this study also demonstrated a higher risk effect among nonpermanent workers (ATR, 1.109; 95% CI, 1.013-1.214) at 33°C versus 30°C when compared with permanent workers (ATR, 0.963; 95% CI, 0.891-1.041). CONCLUSIONS: This study found a significant association between high temperatures and work-related injuries among nonpermanent workers in South Korea.

Environmental variable importance for under-five mortality in Malaysia: A random forest approach

BACKGROUND: Environmental factors have been associated with adverse health effects in epidemiological studies. The main exposure variable is usually determined via prior knowledge or statistical methods. It may be challenging when evidence is scarce to support prior knowledge, or to address collinearity issues using statistical methods. This study aimed to investigate the importance level of environmental variables for the under-five mortality in Malaysia via random forest approach. METHOD: We applied a conditional permutation importance via a random forest (CPI-RF) approach to evaluate the relative importance of the weather- and air pollution-related environmental factors on daily under-five mortality in Malaysia. This study spanned from January 1, 2014 to December 31, 2016. In data preparation, deviation mortality counts were derived through a generalized additive model, adjusting for long-term trend and seasonality. Analyses were conducted considering mortality causes (all-cause, natural-cause, or external-cause) and data structures (continuous, categorical, or all types [i.e., include all variables of continuous type and all variables of categorical type]). The main analysis comprised of two stages. In Stage 1, Boruta selection was applied for preliminary screening to remove highly unimportant variables. In Stage 2, the retained variables from Boruta were used in the CPI-RF analysis. The final importance value was obtained as an average value from a 10-fold cross-validation. RESULT: Some heat-related variables (maximum temperature, heat wave), temperature variability, and haze-related variables (PM10, PM10-derived haze index, PM10- and fire-derived haze index, fire hotspot) were among the prominent variables associated with under-five mortality in Malaysia. The important variables were consistent for all- and natural-cause mortality and sensitivity analyses. However, different most important variables were observed between natural- and external-cause under-five mortality. CONCLUSION: Heat-related variables, temperature variability, and haze-related variables were consistently prominent for all- and natural-cause under-five mortalities, but not for external-cause.

Impacts of climate change and environmental degradation on children in Malaysia

The impacts of climate change and degradation are increasingly felt in Malaysia. While everyone is vulnerable to these impacts, the health and wellbeing of children are disproportionately affected. We carried out a study composed of two major components. The first component is an environmental epidemiology study comprised of three sub-studies: (i) a global climate model (GCM) simulating specific health-sector climate indices; (ii) a time-series study to estimate the risk of childhood respiratory disease attributable to ambient air pollution; and (iii) a case-crossover study to identify the association between haze and under-five mortality in Malaysia. The GCM found that Malaysia has been experiencing increasing rainfall intensity over the years, leading to increased incidences of other weather-related events. The time-series study revealed that air quality has worsened, while air pollution and haze have been linked to an increased risk of hospitalization for respiratory diseases among children. Although no clear association between haze and under-five mortality was found in the case-crossover study, the lag patterns suggested that health effects could be more acute if haze occurred over a longer duration and at a higher intensity. The second component consists of three community surveys on marginalized children conducted (i) among the island community of Pulau Gaya, Sabah; (ii) among the indigenous Temiar tribe in Pos Kuala Mu, Perak; and (iii) among an urban poor community (B40) in PPR Sg. Bonus, Kuala Lumpur. The community surveys are cross-sectional studies employing a socio-ecological approach using a standardized questionnaire. The community surveys revealed how children adapt to climate change and environmental degradation. An integrated model was established that consolidates our overall research processes and demonstrates the crucial interconnections between environmental challenges exacerbated by climate change. It is recommended that Malaysian schools adopt a climate-smart approach to education to instill awareness of the impending climate change and its cascading impact on children’s health from early school age.

A summertime thermal analysis of new zealand homestar certified apartments for older people

It is recognized that as humans age, their ability to withstand high or low temperatures reduces. Temperature extremes can also worsen chronic conditions, including cardiovascular, respiratory and other health issues. This study analyses 40 apartments in a single building in Auckland, New Zealand to determine whether the newly designed and constructed apartment, specifically for retirees, is delivering a suitable thermal interior environment during the warmest months of the year. Despite holding this green certification and meeting specific requirements to achieve cooling points that are meant to reduce the likelihood of overheating, the building exhibits significant signs of overheating in the two warmest months of the year (January and February) with two-thirds of apartments failing the CIBSE TM59 overheating criteria. The summertime performance of this green-rated building crucial insights for design professionals policymakers and developers of green building rating tools.

Interaction between heat wave and urban heat island: A case study in a tropical coastal city, Singapore

Heat waves are unusually high temperature events over consecutive days and may cause adverse impacts such as morbidity and mortality. The interaction between heat waves and urban heat island (UHI) effects has remained a subject of debate, as some studies prove heat wave-UHI synergy while others do not. Furthermore, heat waves affect tropical cities more severely than mid-latitude cities, but there is a disproportionate lack of heat wave studies focusing on tropical cities. We attempt to narrow this gap by studying the heat wave in Singapore in April 2016 using ground observations and the Weather Research and Forecasting (WRF) model. Compared to non-heat wave days, the ground observations show that daytime temperatures can be 3 degrees C higher during the heat wave. Despite the temperature spike, the UHI intensity is not amplified during the heat wave, maintaining its peak near 2.5 degrees C during both heat wave and non-heat wave periods. WRF simulation results also agree well with measurements and predict UHI peaks near 2.5 degrees C during both periods, showing no heat wave-UHI synergy. The spatially averaged UHI intensity also shows no such synergy. There is no significant change of wind speed, soil moisture availability or heat storage flux during the heat wave. Therefore, the lack of heat wave-UHI synergy in our study is consistent with current understanding of factors contributing to UHI. This study shows that the heat wave-UHI interaction in a tropical city can be different from that in cities in the temperate climate zone and more studies should be conducted in tropical cities, which are projected to suffer larger impacts of increasing heat stress.

Effect of heat exposure on dehydration and kidney function among sea salt workers in Thailand

BACKGROUND: Excessive heat exposure and dehydration among agricultural workers have been reported to reduce kidney function and lead to chronic kidney disease of unknown etiology (CKDu). OBJECTIVE: This cross-sectional study aimed to assess heat exposure, factors related to dehydration and the relationship between dehydration and biomarkers of kidney function among sea salt workers in Thailand. MATERIAL AND METHODS: Wet bulb globe temperature (WBGT) was used at the time workers started work outdoors on salt farms. Urine-specific gravity, urine osmolarity, and serum creatinine were collected from 50 workers after work. RESULTS: The results showed that more than 50% of the participants were dehydrated after work. The maximum hours spent working per day was 10. The average water intake was 1.51 L. Urine specific gravity was highly significant correlated with urine osmolality (rs = 0.400, p<0.01), and urine osmolality was significantly correlated with the estimated glomerular filtration rate (eGFR) (rs = 0.349, p<0.05). In bivariate analysis adjusted for age, sex, and current alcohol consumption, we found that a WBGTTWA ≥ 30°C (OR = 0.08, 95% CI = 0.01-0.44, p = 0.003) and hours spent working (OR=2.22, 95% CI = 1.42-3.47, p <0.001) were independently associated with dehydration. This suggests that workers should increase their time spent on breaks and increase water consumption. CONCLUSIONS: Educational program on heat exposure and heat-related illness prevention strategies should be provided.

Effect of the near-future climate change under RCP8.5 on the heat stress and associated work performance in Thailand

Increased heat stress affects well-being, comfort, and economic activities across the world. It also causes a significant decrease in work performance, as well as heat-related mortality. This study aims to investigate the impacts of the projected climate change scenario under RCP8.5 on heat stress and associated work performance in Thailand during the years 2020-2029. The model evaluation shows exceptional performance in the present-day simulation (1990-1999) of temperature and relative humidity, with R-2 values ranging from 0.79 to 0.87; however, the modeled temperature and relative humidity are all underestimated when compared to observation data by -0.9 degrees C and -27%, respectively. The model results show that the temperature change will tend to increase by 0.62 degrees C per decade in the future. This could lead to an increase in the heat index by 2.57 degrees C if the temperature increases by up to 1.5 degrees C in Thailand. The effect of climate change is predicted to increase heat stress by 0.1 degrees C to 4 degrees C and to reduce work performance in the range of 4% to >10% across Thailand during the years 2020 and 2029.

The association between outdoor ambient temperature and the risk of low birth weight: A population-based cohort study in rural Henan, China

No abstract available.

Cause-specific cardiovascular disease mortality attributable to ambient temperature: A time-stratified case-crossover study in Jiangsu Province, China

BACKGROUND: Exposure to non-optimum ambient temperature has been linked to increased risk of total cardiovascular disease (CVD) mortality; however, the adverse effects on mortality from specific types of CVD remain less understood. OBJECTIVES: To comprehensively investigate the association of ambient temperature with cause-specific CVD mortality, and to estimate and compare the corresponding mortality burden. METHODS: We conducted a time-stratified case-crossover study of 1000,014 CVD deaths in Jiangsu province, China during 2015-2019 using data from the China National Mortality Surveillance System. Residential daily 24-hour average temperature for each subject was extracted from a validated grid data at a spatial resolution of 0.0625° × 0.0625°. We fitted distributed lag non-linear models (DLNM) based on conditional logistic regression to quantitatively investigate the association of ambient temperature with total and cause-specific CVD mortality, which was used to further estimate mortality burden attributable to non-optimum ambient temperatures. RESULTS: With adjustment for relative humidity, we observed reverse J-shaped exposure-response associations of ambient temperature with total and cause-specific CVD mortality, with minimum mortality temperatures ranging from 19.5 °C to 23.0 °C. An estimated 20.3% of the total CVD deaths were attributable to non-optimum temperatures, while the attributable fraction (AF) of mortality from chronic rheumatic heart diseases, hypertensive diseases, ischemic heart diseases (IHD), pulmonary heart disease, stroke, and sequelae of stroke was 22.4%, 23.2%, 23.3%, 20.9%, 17.6% and 21.3%, respectively. For total and cause-specific CVDs, most deaths were attributable to moderate cold temperature. We observed significantly higher mortality burden from total and certain cause-specific CVDs in adults 80 years or older and those who were widowed. CONCLUSION: Exposure to ambient temperature was significantly associated with increased risk of cause-specific CVD mortality. The burden of CVD mortality attributable to non-optimum temperature was substantial especially in older and widowed adults, and significantly varied across specific types of CVD.

Changes in ambient temperature increase hospital outpatient visits for allergic rhinitis in Xinxiang, China

BACKGROUND: The effect of ambient temperature on allergic rhinitis (AR) remains unclear. Accordingly, this study aimed to explore the relationship between ambient temperature and the risk of AR outpatients in Xinxiang, China. METHOD: Daily data of outpatients for AR, meteorological conditions, and ambient air pollution in Xinxiang, China were collected from 2015 to 2018. The lag-exposure-response relationship between daily mean temperature and the number of hospital outpatient visits for AR was analyzed by distributed lag non-linear model (DLNM). Humidity, long-time trends, day of the week, public holidays, and air pollutants including sulfur dioxide (SO(2)), and nitrogen dioxide (NO(2)) were controlled as covariates simultaneously. RESULTS: A total of 14,965 AR outpatient records were collected. The relationship between ambient temperature and AR outpatients was generally M-shaped. There was a higher risk of AR outpatient when the temperature was 1.6-9.3 °C, at a lag of 0-7 days. Additionally, the positive association became significant when the temperature rose to 23.5-28.5 °C, at lag 0-3 days. The effects were strongest at the 25th (7 °C) percentile, at lag of 0-7 days (RR: 1.32, 95% confidence intervals (CI): 1.05-1.67), and at the 75th (25 °C) percentile at a lag of 0-3 days (RR: 1.15, 95% CI: 1.02-1.29), respectively. Furthermore, men were more sensitive to temperature changes than women, and the younger groups appeared to be more influenced. CONCLUSIONS: Both mild cold and mild hot temperatures may significantly increase the risk of AR outpatients in Xinxiang, China. These findings could have important public health implications for the occurrence and prevention of AR.

Effects of ambient temperature on hospital admissions for obstructive nephropathy in Wuhan, China: A time-series analysis

Under the background of global warming, it has been confirmed that heat exposure has a huge impact on human health. The current study aimed to evaluate the effects of daily mean ambient temperature on hospital admissions for obstructive nephropathy (ON) at the population level. A total of 19,494 hospitalization cases for ON in Wuhan, China from January 1, 2015 to December 31, 2018 were extracted from a nationwide inpatient database in tertiary hospitals according to the International Classification of Diseases (ICD)- 10 codes. Daily ambient meteorological and pollution data during the same period were also collected. A quasi-Poisson Generalized Linear Model (GLM) combined with a distributed lag non-linear model (DLNM) was applied to analyze the lag-exposure-response relationship between daily mean temperature and daily hospital admissions for ON. Results showed that there were significantly positive associations between the daily mean temperature and ON hospital admissions. Relative to the minimum-risk temperature (-3.4 ℃), the risk of hospital admissions for ON at moderate hot temperature (25 ℃, 75th percentile) occurred from lag day 4 and stayed to lag day 12 (cumulative relative risk [RR] was 1.846, 95 % confidence interval [CI]: 1.135-3.005, over lag 0-12 days). Moreover, the risk of extreme hot temperature (32 ℃, 99th percentile) appeared immediately and lasted for 8 days (RR = 2.019, 95 % CI: 1.308-3.118, over lag 0-8 days). Subgroup analyses indicated that the middle-aged and elderly (≥45 years) patients might be more susceptible to the negative effects of high temperature, especially at moderate hot conditions. Our findings suggest that temperature may have a significant impact on the acute progression and onset of ON. Higher temperature is associated with increased risks of hospital admissions for ON, which indicates that early interventions should be taken in geographical settings with relatively high temperatures, particularly for the middle-aged and elderly.

Effects of outdoor temperature on blood pressure in a prospective cohort of Northwest China

OBJECTIVE: The relationship between outdoor temperature and blood pressure (BP) has been inconclusive. We analyzed data from a prospective cohort study in northwestern China to investigate the effect of outdoor temperature on BP and effect modification by season. METHODS: A total of 32,710 individuals who participated in both the baseline survey and the first follow-up in 2011-2015 were included in the study. A linear mixed-effect model and generalized additive mixed model (GAMM) were applied to estimate the association between outdoor temperature and BP after adjusting for confounding variables. RESULTS: The mean differences in systolic blood pressure (SBP) and diastolic blood pressure (DBP) between summer and winter were 3.5 mmHg and 2.75 mmHg, respectively. After adjusting for individual characteristics, meteorological factors and air pollutants, a significant increase in SBP and DBP was observed for lag 06 day and lag 04 day, a 0.28 mmHg (95% CI: 0.27-0.30) per 1 °C decrease in average temperature for SBP and a 0.16 mmHg (95% CI: 0.15-0.17) per 1 °C decrease in average temperature for DBP, respectively. The effects of the average temperature on both SBP and DBP were stronger in summer than in other seasons. The effects of the average temperature on BP were also greater if individuals were older, male, overweight or obese, a smoker or drinker, or had cardiovascular diseases (CVDs), hypertension, and diabetes. CONCLUSIONS: This study demonstrated a significant negative association between outdoor temperature and BP in a high-altitude environment of northwest China. Moreover, BP showed a significant seasonal variation. The association between BP and temperature differed by season and individuals’ demographic characteristics (age, gender, BMI), unhealthy behaviors (smoking and alcohol consumption), and chronic disease status (CVDs, hypertension, and diabetes).

Evaluating the predictive ability of temperature-related indices on the stroke morbidity in Shenzhen, China: Under cross-validation methods framework

BACKGROUND: Composite temperature-related indices have been utilized to comprehensively reflect the impact of multiple meteorological factors on health. We aimed to evaluate the predictive ability of temperature-related indices, choose the best predictor of stroke morbidity, and explore the association between them. METHODS: We built distributed lag nonlinear models to estimate the associations between temperature-related indices and stroke morbidity and then applied two types of cross-validation (CV) methods to choose the best predictor. The effects of this index on overall stroke, intracerebral hemorrhage (ICH), and ischemic stroke (IS) morbidity were explored and we explained how this index worked using heatmaps. Stratified analyses were conducted to identify vulnerable populations. RESULTS: Among 12 temperature-related indices, the alternative temperature-humidity index (THIa) had the best overall performance in terms of root mean square error when combining the results from two CVs. With the median value of THIa (25.70 °C) as the reference, the relative risks (RRs) of low THIa (10th percentile) reached a maximum at lag 0-10, with RRs of 1.20 (95%CI:1.10-1.31), 1.49 (95%CI:1.29-1.73) and 1.12 (95%CI:1.03-1.23) for total stroke, ICH and IS, respectively. According to the THIa formula, we matched the effects of THIa on stroke under various combinations of temperature and relative humidity. We found that, although the low temperature (<20 °C) had the greatest adverse effect, the modification effect of humidity on it was not evident. In contrast, lower humidity could reverse the protective effect of temperature into a harmful effect at the moderate-high temperature (24 °C-27 °C). Stratification analyses showed that the female was more vulnerable to low THIa in IS. CONCLUSIONS: THIa is the best temperature-related predictor of stroke morbidity. In addition to the most dangerous cold weather, the government should pay more attention to days with moderate-high temperature and low humidity, which have been overlooked in the past.

Impact of temperature on morbidity: New evidence from China

This paper investigates the relationship between temperature and hospitalization in China. Using inpatient visit claims of two major public insurance schemes covering 47 cities in 28 provinces for three years, we see a 7.3% increase in hospital admissions on days on which the average temperature is above 27 degrees C, and a 2% increase in 31-day cumulative hospital admissions relative to a benchmark-temperature day in the subsequent weeks. Such an effect is much larger than evidence from developed economies. Using detailed information on medical bills, we calculate that an additional hot day nationwide is associated with approximately 2 billion yuan (roughly equivalent to 0.3 billion US dollars) increase in medical expenses that are related to inpatient services, 1.9 billion yuan (roughly equivalent to 0.29 billion US dollars) of which is borne by the public insurance system, and 0.2 billion yuan (roughly equivalent to 0.01 billion US dollars) of which is borne by the insured.

Importance of applying Mixed Generalized Additive Model (MGAM) as a method for assessing the environmental health impacts: Ambient temperature and Acute Myocardial Infarction (AMI), among elderly in Shanghai, China

Association between acute myocardial infarction (AMI) morbidity and ambient temperature has been examined with generalized linear model (GLM) or generalized additive model (GAM). However, the effect size by these two methods might be biased due to the autocorrelation of time series data and arbitrary selection of degree of freedom of natural cubic splines. The present study analyzed how the climatic factors affected AMI morbidity for older adults in Shanghai with Mixed generalized additive model (MGAM) that addressed these shortcomings mentioned. Autoregressive random effect was used to model the relationship between AMI and temperature, PM10, week days and time. The degree of freedom of time was chosen based on the seasonal pattern of temperature. The performance of MGAM was compared with GAM on autocorrelation function (ACF), partial autocorrelation function (PACF) and goodness of fit. One-year predictions of AMI counts in 2011 were conducted using MGAM with the moving average. Between 2007 and 2011, MGAM adjusted the autocorrelation of AMI time series and captured the seasonal pattern after choosing the degree of freedom of time at 5. Using MGAM, results were well fitted with data in terms of both internal (R2 = 0.86) and external validity (correlation coefficient = 0.85). The risk of AMI was relatively high in low temperature (Risk ratio = 0.988 (95% CI 0.984, 0.993) for under 12°C) and decreased as temperature increased and speeded up within the temperature zone from 12°C to 26°C (Risk ratio = 0.975 (95% CI 0.971, 0.979), but it become increasing again when it is 26°C although not significantly (Risk ratio = 0.999 (95% CI 0.986, 1.012). MGAM is more appropriate than GAM in the scenario of response variable with autocorrelation and predictors with seasonal variation. The risk of AMI was comparatively higher when temperature was lower than 12°C in Shanghai as a typical representative location of subtropical climate.

Influence of ambient temperature and diurnal temperature variation on the premature rupture of membranes in East China: A distributed lag nonlinear time series analysis

BACKGROUND: Extreme ambient temperature has an adverse effect on pregnancy outcomes, but the conclusions have been inconsistent. The influence of ambient temperature and diurnal temperature variation on the premature rupture of membranes (PROM) needs further study. METHODS AND FINDINGS: The daily data of PROMs, daily meteorological and air pollutant were obtained. After controlling for potential confounding factors, the quasi-Poisson generalized additive model (GAM) combined with the distributed lag nonlinear model (DLNM) was used to analyze the association between temperature or diurnal temperature variation and PROM, including preterm premature rupture of membranes (PPROM) and term premature rupture of membranes (term PROM). Compared with the median temperature(18.7 °C), the mean temperature of 5-7 days lagging beyond 31.5 °C and below -1.5 °C was positively correlated with PROM; the mean temperature had more sensitive effect on the term PROM. Exposure to extremely high temperatures (97.5th percentile, 32 °C) had a 6-day lagging relative risk (RR) (95% CI: 1.005-1.160) of 1.08 for PROM and a 6-day lagging RR of 1.079 (95% CI: 1.005-1.159) for term PROM; Exposure to a high diurnal temperature variation (diurnal temperature variation greater than 16 °C) was positively correlated with the term PROM. Compared with the 2.5th percentile diurnal temperature variation (2 °C), exposure to the 95th percentile diurnal temperature variation (17 °C) significantly increased the risk of term PROM (RR: 1.229, 95% CI: 1.029-1.467). CONCLUSIONS: Exposure to a high-temperature and a high diurnal temperature variation environment will increase the relative risks of PROM. For pregnant women in the 3rd trimester, it is important to reduce exposure to extremely high-temperatures and greater diurnal temperature changes.

Influences of temperature and humidity on cardiovascular disease among adults 65 years and older in China

BACKGROUND: The burden of cardiovascular disease (CVD) on the current aging society in China is substantial. Climate change, including extreme temperatures and humidity, has a detrimental influence on health. However, epidemiological studies have been unable to fully identify the association between climate change and CVD among older adults. Therefore, we investigated the associations between temperature and relative humidity and CVD among older adults in China. METHODS: We used cohort data from the China Longitudinal Health and Longevity Survey (CLHLS) conducted in 2002, 2005, 2008, 2011, 2014, and 2018. A total of 39,278 Chinese adults 65 years and older participated in the analyses. The average annual temperatures and relative humidity during 2001 and 2017 (before the survey year) at the city level in China were used as the exposure measures. We selected patients with hypertension, heart disease, and stroke to create a sample of CVD patients. The associations between temperature and relative humidity and CVD were analyzed using the generalized estimation equation (GEE) model. Covariates included sociodemographic factors, health status, lifestyle, and cognitive function. RESULTS: The average annual temperature was negatively correlated with the prevalence of CVD. Every 1°C increase in the average annual temperature reduced the rates of hypertension by 3% [odds ratio (OR): 0.97; 95% confidence interval (CI): 0.96-0.97], heart disease by 6% (OR: 0.94; 95% CI: 0.92-0.95), and stroke by 5% (OR: 0.95; 95% CI: 0.94-0.97). The results of the analyses stratified by sex, urban/rural residence, and educational level were robust. The average annual relative humidity was inversely associated with the likelihood of CVD among older adults. Every 1% increase in the average annual relative humidity reduced the rates of hypertension by 0.4% (OR: 0.996; 95% CI: 0.99-1.00), heart disease by 0.6% (OR: 0.994; 95% CI: 0.99-1.00), and stroke by 0.08% (OR: 0.992; 95% CI: 0.98-1.00). However, the effects were more obvious with higher humidity levels (>70). CONCLUSION: Our findings suggest that higher temperatures and relative humidity may reduce the risk of CVD among older adults.

Is higher ambient temperature associated with acute appendicitis hospitalizations? A case-crossover study in Tongling, China

Existing studies suggested that ambient temperature may affect the attack of acute appendicitis. However, the identification of the quantitative effect and vulnerable populations are still unknown. The purposes of this study were to quantify the impact of daily mean temperature on the hospitalization of acute appendicitis and clarify vulnerable groups, further guide targeted prevention of acute appendicitis in Tongling. Daily data of cases and meteorological factors were collected in Tongling, China, during 2015-2019. Time stratified case-crossover design and conditional logistic regression model were used to evaluate the odds ratio (OR) of ambient temperature on hospitalizations for acute appendicitis. Stratified analyses were performed by sex, age, and marital status. The odds ratio (OR) of hospitalizations for acute appendicitis increased by 1.6% for per 1 ℃ rise in mean temperature at lag3[OR = 1.016, 95% confidence interval (CI): 1.004-1.028]. In addition, our results suggest it is in the women that increased ambient temperature is more likely to contribute to acute appendicitis hospitalizations; we also found that the married are more susceptible to acute appendicitis hospitalizations due to increased ambient temperature than the unmarried; people in the 21-40 years old are more sensitive to ambient temperature than other age groups. The significant results of the differences between the subgroups indicate that the differences between the groups are all statistically significant. The elevated ambient temperatures increased the risk of hospitalizations for acute appendicitis. The females, married people, and patients aged 21-40 years old were more susceptible to ambient temperature. These findings suggest that more attention should be paid to the impact of high ambient temperature on acute appendicitis in the future.

Temperatures and health costs of emergency department visits: A multisite time series study in China

BACKGROUND: Evidence is limited regarding the association between temperatures and health costs. OBJECTIVES: We tried to investigate the association between temperatures and emergency department visits (EDVs) costs in China. METHODS: Daily data on EDVs costs, weather, air pollution were collected from 17 sites in China during 2014-2018. A quasi-Poisson generalized additive regression with distributed lag nonlinear model was applied to assess the temperature-EDVs cost association. Random-effect meta-analysis was used to pool the estimates from each site. Attributable fractions and national attributable EDVs costs due to heat and cold were calculated. RESULTS: Relative risk (RR) due to extreme heat over 0-7 lag days was 1.14 [95% confidence intervals (CI): 1.08-1.19] and 1.11 (95% CI: 1.07-1.16) for EDVs examination (including treatment) and medicine cost, respectively. People aged 18-44 and those with genitourinary diseases were at higher risk from heat. 0.72% of examination cost and 0.57% of medicine cost were attributed to extreme heat, costing 274 million Chinese Yuan annually. Moderate heat had lower RR but higher attributable fraction of EDVs costs. Exposure to extreme cold over 0-21 lag days increased the risk of medicine cost for people aged 18-44 [RR: 1.30 (95% CI: 1.10-1.55)] and those with respiratory diseases [RR: 1.56 (95% CI: 1.14-2.14)], but had non-statistically significant attributable fraction of the total EDVs cost. CONCLUSIONS: Exposure to heat and cold resulted in remarkable health costs. More resources and preparedness are needed to tackle such a challenge as our climate is rapidly changing.

The role of absolute humidity in respiratory mortality in Guangzhou, a hot and wet city of South China

BACKGROUND: For the reason that many studies have been inconclusive on the effect of humidity on respiratory disease, we examined the association between absolute humidity and respiratory disease mortality and quantified the mortality burden due to non-optimal absolute humidity in Guangzhou, China. METHODS: Daily respiratory disease mortality including total 42,440 deaths from 1 February 2013 to 31 December 2018 and meteorological data of the same period in Guangzhou City were collected. The distributed lag non-linear model was used to determine the optimal absolute humidity of death and discuss their non-linear lagged effects. Attributable fraction and population attributable mortality were calculated based on the optimal absolute humidity, defined as the minimum mortality absolute humidity. RESULTS: The association between absolute humidity and total respiratory disease mortality showed an M-shaped non-linear curve. In total, 21.57% (95% CI 14.20 ~ 27.75%) of respiratory disease mortality (9154 deaths) was attributable to non-optimum absolute humidity. The attributable fractions due to high absolute humidity were 13.49% (95% CI 9.56 ~ 16.98%), while mortality burden of low absolute humidity were 8.08% (95% CI 0.89 ~ 13.93%), respectively. Extreme dry and moist absolute humidity accounted for total respiratory disease mortality fraction of 0.87% (95% CI – 0.09 ~ 1.58%) and 0.91% (95% CI 0.25 ~ 1.39%), respectively. There was no significant gender and age difference in the burden of attributable risk due to absolute humidity. CONCLUSIONS: Our study showed that both high and low absolute humidity are responsible for considerable respiratory disease mortality burden, the component attributed to the high absolute humidity effect is greater. Our results may have important implications for the development of public health measures to reduce respiratory disease mortality.

A scoping review of climate-related disasters in China, Indonesia and Vietnam: Disasters, health impacts, vulnerable populations and adaptation measures

Climate-related disasters are increasing across the globe, but their adverse health impacts are unevenly distributed. The people most severely affected tend to be from socio-economically disadvantaged, vulnerable populations, who have high exposure to risk conditions and insufficient adaptive capacity. Despite the increasing health impacts of climate change and disaster risks felt in Asian countries such as China, Indonesia and Vietnam, there are few attempts to access and translate literature and evidence on climate-related disasters and adaptation activities from non-English speaking countries. Conducted by a multi-country project team, this review aims to better understand the current literature and to study gaps in these three countries through an extensive search of literature, in English, Chinese, Indonesian and Vietnamese. Through a systematic review process a total of 298 studies out of 10,139 were included in this study. Key findings confirm that all three countries have experienced increasing climate-related disasters with their associated health impacts, and that adaptation strategies are urgently needed to reduce the risk and vulnerability of the most affected populations. Future studies should consider conducting vulnerability assessments to inform translational research on developing effective adaptation strategies. Authors commented that a common challenge they found was the shortterm nature of disaster response mechanisms, and the lack of long-term investment and policy support for capacity building and multisectoral collaborative research that address the needs of populations vulnerable to climate-related disasters. Thus, to better prepare for future disasters, it is vital that governments and international agencies prioritize funding policies to fill this gap.

Accelerating urban heating under land-cover and climate change scenarios in Indonesia: Application of the universal thermal climate index

Climate change causing an increase of frequency and magnitude of heat waves has a huge impact on the urban population worldwide. In Indonesia, the Southeast Asian country in the tropical climate zone, the increasing heat wave duration due to climate change will be also magnified by projected rapid urbanization. Therefore, not only climate change mitigation measures but also adaptation solutions to more frequent extreme weather events are necessary. Adaptation is essential at local levels. The projected increase of the heat wave duration will trigger greater health-related risks. It will also drive higher energy demands, particularly in urban areas, for cooling. New smart solutions for growing urbanization for reducing urban heat island phenomenon are critical, but in order to identify them, analyzing the changing magnitude and spatial distribution of urban heat is essential. We projected the current and future spatial variability of heat stress index in three cities in Indonesia, namely, Medan, Surabaya, and Denpasar, under climate change and land-cover change scenarios, and quantified it with the Universal Thermal Climate Index (UTCI) for two periods, baseline (1981-2005) and future (2018-2042). Our results demonstrated that currently the higher level of the UTCI was identified in the urban centers of all three cities, indicating the contribution of urban heat island phenomenon to the higher UTCI. Under climate change scenarios, all three cities will experience increase of the heat, whereas applying the land-cover scenario demonstrated that in only Medan and Denpasar, the UTCI is likely to experience a higher increase by 3.1 degrees C; however, in Surabaya, the UTCI will experience 0.84 degrees C decrease in the period 2018-2042 due to urban greening. This study advanced the UTCI methodology by demonstrating its applicability for urban heat warning systems and for monitoring of the urban green cooling effect, as well as it provides a base for adaptation measures’ planning.

Spatiotemporal variation analysis of the fine-scale heat wave risk along the Jakarta-Bandung high-speed railway in Indonesia

As a highly important meteorological hazard, heat waves notably impact human health and socioeconomics, and accurate heat wave risk identification and assessment are effective ways to address this issue. The current spatial scale of heat wave risk assessment is relatively coarse, hardly meeting fine-scale heat wave risk assessment requirements. Therefore, based on multi-source fine-scale remote sensing data and socioeconomic data, this paper evaluates the heat wave risk along the Jakarta-Bandung high-speed railway, obtains the spatial distribution of heat wave risk in 2005, 2014 and 2019, and analyzes spatiotemporal risk variations over the past 15 years. The results show that most high-risk areas were affected by high-temperature hazards. Over time, the hazard, exposure, vulnerability and risk levels increased by 25.82%, 3.31%, 14.82% and 6.97%, respectively, from 2005-2019. Spatially, the higher risk in the northwest is mainly distributed in Jakarta. Additionally, a comparative analysis was conducted on the risk results, and the results showed that the 100-m scale showed more spatial differences than the kilometer scale. The research results in this paper can provide scientific advice on heat wave risk prevention considering the Jakarta-Bandung high-speed railway construction and regional economic and social development.

The effect of deforestation and climate change on all-cause mortality and unsafe work conditions due to heat exposure in Berau, Indonesia: A modelling study

BACKGROUND: Previous studies focusing on urban, industrialised regions have found that excess heat exposure can increase all-cause mortality, heat-related illnesses, and occupational injuries. However, little research has examined how deforestation and climate change can adversely affect work conditions and population health in low latitude, industrialising countries. METHODS: For this modelling study we used data at 1 km^(2) resolution to compare forest cover and temperature conditions in the Berau regency, Indonesia, between 2002 and 2018. We used spatially explicit satellite, climate model, and population data to estimate the effects of global warming, between 2002 and 2018 and after applying 1·0°C, 1·5°C, and 2·0°C of global warming to 2018 temperatures, on all-cause mortality and unsafe work conditions in the Berau regency, Indonesia. FINDINGS: Between 2002 and 2018, 4375 km(2) of forested land in Berau was cleared, corresponding to approximately 17% of the entire regency. Deforestation increased mean daily maximum temperatures by 0·95°C (95% CI 0·97–0·92; p<0·0001). Mean daily temperatures increased by a population-weighted 0·86°C, accounting for an estimated 7·3–8·5% of all-cause mortality (or 101-118 additional deaths per year) in 2018. Unsafe work time increased by 0·31 h per day (95% CI 0·30–0·32; p<0·0001) in deforested areas compared to 0·03 h per day (0·03–0·04; p<0·0001) in areas that maintained forest cover. With 2·0°C of additional future global warming, relative to 2018, deforested areas could experience an estimated 17-20% increase in all-cause mortality (corresponding to an additional 236-282 deaths per year) and up to 5 h of unsafe work per day. INTERPRETATION: Heat exposure from deforestation and climate change has already started affecting populations in low latitude, industrialising countries, and future global warming indicates substantial health impacts in these regions. Further research should examine how deforestation is currently affecting the health and wellbeing of local communities. FUNDING: University of Washington Population Health Initiative. TRANSLATION: For the Bahasa translation of the abstract see Supplementary Materials section.

Heat health risk assessment analysing heatstroke patients in Fukuoka City, Japan

BACKGROUND: Climate change, as a defining issue of the current time, is causing severe heat-related illness in the context of extremely hot weather conditions. In Japan, the remarkable temperature increase in summer caused by an urban heat island and climate change has become a threat to public health in recent years. METHODS: This study aimed to determine the potential risk factors for heatstroke by analysing data extracted from the records of emergency transport to the hospital due to heatstroke in Fukuoka City, Japan. In this regard, a negative binomial regression model was used to account for overdispersion in the data. Age-structure analyses of heatstroke patients were also embodied to identify the sub-population of Fukuoka City with the highest susceptibility. RESULTS: The daily maximum temperature and wet-bulb globe temperature (WBGT), along with differences in both the mean temperature and time-weighted temperature from those of the consecutive past days were detected as significant risk factors for heatstroke. Results indicated that there was a positive association between the resulting risk factors and the probability of heatstroke occurrence. The elderly of Fukuoka City aged 70 years or older were found to be the most vulnerable to heatstroke. Most of the aforementioned risk factors also encountered significant and positive associations with the risk of heatstroke occurrence for the group with highest susceptibility. CONCLUSION: These results can provide insights for health professionals and stakeholders in designing their strategies to reduce heatstroke patients and to secure the emergency transport systems in summer.

Heat-mortality risk and the population concentration of metropolitan areas in Japan: A nationwide time-series study

BACKGROUND: The complex role of urbanisation in heat-mortality risk has not been fully studied. Japan has experienced a rapid population increase and densification in metropolitan areas since the 2000s; we investigated the effects of population concentration in metropolitan areas on heat-mortality risk using nationwide data. METHODS: We collected time-series data for mortality and weather variables for all 47 prefectures in Japan (1980-2015). The prefectures were classified into three sub-areas based on population size: lowest (<1 500 000), intermediate (1 500 000 to 3 000 000), and highest (>3 000 000; i.e. metropolitan areas). Regional indicators associated with the population concentration of metropolitan areas were obtained. RESULTS: Since the 2000s, the population concentration intensified in the metropolitan areas, with the highest heat-mortality risk in prefectures with the highest population. Higher population density and apartment % as well as lower forest area and medical services were associated with higher heat-mortality risk; these associations have generally become stronger since the 2000s. CONCLUSIONS: Population concentration in metropolitan areas intensified interregional disparities in demography, living environments, and medical services in Japan; these disparities were associated with higher heat-mortality risk. Our results can contribute to policies to reduce vulnerability to high temperatures.

Heatstroke risk projection in Japan under current and near future climates

This study assesses heatstroke risk in the near future (2031-2050) under RCP8.5 scenario. The developed model is based on a generalized linear model with the number of ambulance transport due to heatstroke (hereafter the patients with heatstroke) as the explained variable and the daily maximum temperature or wet bulb globe temperature (WBGT) as the explanatory variable. With the model based on the daily maximum temperature, we performed the projection of the patients with heatstroke in case of considering only climate change (Case 1); climate change and population dynamics (Case 2); and climate change, population dynamics, and long-term heat acclimatization (Case 3). In Case 2, the number of patients with heatstroke in the near future will be 2.3 times higher than that in the baseline period (1981 – 2000) on average nationwide. The number of future patients with heatstroke in Case 2 is about 10 % larger than that in Case 1 on average nationwide despite population decline. This is due to the increase in the number of elderly people from the baseline period to the near future. However, in 20 prefectures, the number of patients in Case 2 is smaller compared to Case 1. Comparing the results from Cases 1 and 3 reveals that the number of patients with heatstroke could be reduced by about 60 % nationwide by acquiring heat tolerance and changing lifestyles. Notably, given the lifestyle changes represented by the widespread use of air conditioners, the number of patients with heatstroke in the near future will be lower than that of the baseline period in some areas. In other words, lifestyle changes can be an important adaptation to the risk of heatstroke emergency. All of the above results were also confirmed in the prediction model with WBGT as the explanatory variable.

Estimation of relative risk of mortality and economic burden attributable to high temperature in Wuhan, China

In the context of climate change, most of the global regions are facing the threat of high temperature. Influenced by tropical cyclones in the western North Pacific Ocean, high temperatures are more likely to occur in central China, and the economic losses caused by heat are in urgent need of quantification to form the basis for health decisions. In order to study the economic burden of high temperature on the health of Wuhan residents between 2013 and 2019, we employed meta-analysis and the value of statistical life (VSL) approach to calculate the relative risk of high temperature health endpoints, the number of premature deaths, and the corresponding economic losses in Wuhan City, China. The results suggested that the pooled estimates of relative risk of death from high temperature health endpoints was 1.26 [95% confidence interval (CI): 1.15, 1.39]. The average number of premature deaths caused by high temperature was estimated to be 77,369 (95% CI: 48,906-105,198) during 2013-2019, and the induced economic losses were 156.1 billion RMB (95% CI: 92.28-211.40 billion RMB), accounting for 1.81% (95% CI: 1.14-2.45%) of Wuhan’s annual GDP in the seven-year period. It can be seen that high temperature drives an increase in the premature deaths, and the influence of high temperature on human health results in an economic burden on the health system and population in Wuhan City. It is necessary for the decision-makers to take measures to reduce the risk of premature death and the proportion of economic loss of residents under the impacts of climate change.

Future injury mortality burden attributable to compound hot extremes will significantly increase in China

BACKGROUND: As climate change, compound hot extremes (CHEs), daytime and nighttime persistent hot extremes, are projected to become much more frequent and intense, which may pose a serious threat to human health. However, evidence on the impact of CHEs on injury is rare. METHODS: We collected injury death data and daily meteorological data from six Chinese provinces during 2013-2018. A time-stratified case-crossover design with two-stage analytic approach was applied to assess the associations of CHEs with injury mortality by intention, mechanism, age and gender. Using the projected daily temperatures of five General Circulation Models (GCMs), we projected the frequency of CHEs and CHEs-attributable mortality burden of injury under three Representative Concentration Pathway (RCP) scenarios. RESULTS: CHEs were significantly associated with increased injury mortality risk (RR = 1.14, 95%CI: 1.09-1.19), with strong effects on unintentional injuries (RR = 1.16, 95%CI:1.11,1.22) and intentional injuries (RR = 1.11, 95%CI:0.99,1.25). Female (RR = 1.21,95%CI: 1.13-1.29) and the elderly (RR = 1.30, 95%CI: 1.22-1.39) were more susceptible to CHEs. Both the frequency and injury mortality burden of CHEs showed a steep rising trend under RCP8.5 scenario, with a 7.37-fold and 8.22-fold increase respectively, by the end of the century, especially in southern, eastern, central and northwestern China. CONCLUSION: CHEs were associated with increased injury mortality risk, and the CHEs-attributable injury mortality burden was projected to aggravate substantially in the future as global warming. It is urgent to develop targeted adaptation policies to alleviate the health burden of CHEs.

Heatwave and urinary hospital admissions in China: Disease burden and associated economic loss, 2014 to 2019

BACKGROUND: Many studies have shown that heatwaves are associated with an increased prevalence of urinary diseases. However, few national studies have been undertaken in China, and none have considered the associated economic losses. Such information would be useful for health authorities and medical service providers to improve their policy-making and medical resource allocation decisions. OBJECTIVES: To explore the association between heatwaves and hospital admissions for urinary diseases and assess the related medical costs and indirect economic losses in China from 2014 to 2019. METHODS: Daily meteorological and hospital admission data from 2014 to 2019 were collected from 23 study sites with different climatic characteristics in China. We assessed the heatwave-hospitalization associations and evaluated the location-specific attributable fractions (AFs) of urinary-related hospital admissions due to heatwaves by using a time-stratified case-crossover method with a distributed lag nonlinear model. We then pooled the AFs in a meta-analysis and estimated the national excess disease burden and associated economic losses. We also performed stratified analyses by sex, age, climate zone, and urinary disease subtype. RESULTS: A significant association between heatwaves and urinary-related hospital admissions was found with a relative risk of 1.090 (95 % confidence interval (CI): 1.050, 1.132). The pooled AF was 8.27 % (95%CI: 4.77 %, 11.63 %), indicating that heatwaves during the warm season (May to September) caused 248,364 urinary-related hospital admissions per year, with 2.42 (95%CI: 1.35, 3.45) billion CNY in economic losses, including 2.23 (95%CI: 1.29, 3.14) billion in direct losses and 0.19 (95%CI, 0.06, 0.31) billion in indirect losses, males, people aged 15-64 years, residents of temperate continental climate zones, and patients with urolithiasis were at higher risk. CONCLUSION: Tailored community health campaigns should be developed and implemented to reduce the adverse health effects and economic losses of heatwave-related urinary diseases, especially in the context of climate change.

The exceptional heatwaves of 2017 and all-cause mortality: An assessment of nationwide health and economic impacts in China

Heatwaves with unprecedented conditions have devastating health impacts. The summer of 2017 saw unusual heat in China and other regions on earth. Although epidemiologic evidence is clear for elevated mortality risks of heatwaves, the economic impacts due to heatwave-associated mortality remain poorly characterized. Hence, this study systematically assessed the mortality and economic impacts of the 2017 exceptional heatwaves in China. We first used the generalized linear mixed-effect model with Poisson distribution to examine the mortality risks of the 2017 heatwaves in 91 Chinese counties. Further, we calculated the excess deaths attributable to heatwaves in 2852 counties. Finally, we evaluated the city- and province-level death-related economic burden of the 2017 heatwaves based on the value of statistical life (VSL). We found that the 2017 exceptional heatwaves had a statistically significant association (relative risk was 1.23, 95% confidence interval 1.14-1.32) with all-cause mortality across 91 Chinese counties. Nationwide, a total of 16,299 all-cause deaths that occurred in 2017 were attributable to the exceptional heatwaves, resulting in an overall death-related economic loss of 61,304 million RMB as valued by VSL. Given that extraordinary heatwaves are projected to be more frequent under global climate change, our findings could enhance the current understanding of heatwaves’ health and economic impacts and add valuable insights in projection studies of estimating the future health burden of heatwaves.

Analysis of climate and income-related factors for high regional child drowning mortality in China

Objectives: To assess the relationship between regional climatic factors and child drowning in China. Methods: Provincial age-specific drowning rate, climatic and income data were collected. We conducted a geographically weighted regression to evaluate the association between drowning and climatic factors. A generalized additive model was used to comprise a bivariate term with which to investigate the interaction of environmental risk factors and whether such interactions influence drowning mortality. Results: In southern China, an abundance of water systems and increased precipitation, as well as hotter and longer summers, lead to significantly higher drowning compared with that in northern China. Long summers and low economic performance in parts of Xinjiang were key factors for its high drowning mortality rate. Linear and nonlinear joint effects were observed between the risk factors of drowning. Conclusion: Different regions should use adaptive measures to reduce drowning risks, for example, communication campaigns during the summer period or when the weather changes.

Association between antibiotic resistance and increasing ambient temperature in China: An ecological study with nationwide panel data

BACKGROUND: Antibiotic resistance leads to longer hospital stays, higher medical costs, and increased mortality. However, research into the relationship between climate change and antibiotic resistance remains inconclusive. This study aims to address the gap in the literature by exploring the association of antibiotic resistance with regional ambient temperature and its changes over time. METHODS: Data were obtained from the China Antimicrobial Surveillance Network (CHINET), monitoring the prevalence of carbapenem-resistant Acinetobacter baumannii (CRAB), Klebsiella pneumoniae (CRKP) and Pseudomonas aeruginosa (CRPA) in 28 provinces/regions over the period from 2005 to 2019. Log-linear regression models were established to determine the association between ambient temperature and antibiotic resistance after adjustment for variations in socioeconomic, health service, and environmental factors. FINDINGS: A 1 °C increase in average ambient temperature was associated with 1.14-fold increase (95%-CI [1.07-1.23]) in CRKP prevalence and 1.06-fold increase (95%-CI [1.03-1.08]) in CRPA prevalence. There was an accumulative effect of year-by-year changes in ambient temperature, with the four-year sum showing the greatest effect on antibiotic resistance. Higher prevalence of antibiotic resistance was also associated with higher antibiotic consumption, lower density of health facilities, higher density of hospital beds and higher level of corruption. INTERPRETATION: Higher prevalence of antibiotic resistance is associated with increased regional ambient temperature. The development of antibiotic resistance under rising ambient temperature differs across various strains of bacteria. FUNDING: The National Key R&D Program of China (grant number: 2018YFA0606200), National Natural Science Foundation of China (grant number: 72074234), Fundamental Scientific Research Funds for Central Universities, P.R. China (grant number: 22qntd4201), China Medical Board (grant number: CMB-OC-19-337).

Association between daily temperature and hospital admissions for urolithiasis in Ganzhou, China: A time-series analysis

Urolithiasis was a global disease and it was more common in southern China. This study looked into the association between daily temperature and urolithiasis hospital admissions in Ganzhou, a large prefecture-level city in southern China. In Ganzhou City from 2016 to 2019, a total of 60,881 hospitalized cases for urolithiasis from 69 hospitals and meteorological data were gathered. The effect of high ambient temperature on urolithiasis hospital admissions was estimated using a distributed lag nonlinear model. Stratified analysis was done to examine sex differences. The study found that in Ganzhou of China, the exposure-response curves approximated a “J” shape which across genders were basically similar. The maximum lag effect occurred on the second day after high temperatures for males but on the third day for females. Compared to the 10 °C reference temperature and considering the cumulative lag effect of 10 days, the relative risks of the daily mean temperature at the 95th percentile on the total, male, and female hospital admissions for urolithiasis were 2.026 (95% CI: 1.628, 2.521), 2.041 (95% CI: 1.603, 2.598), and 2.030 (95% CI: 1.552, 2.655), respectively, but the relative risks between sex were not statistically significant (p = 0.977). Urolithiasis morbidity risk in China could be exacerbated by high temperatures. The effect of high temperature on urolithiasis was similar across genders.

Attributing hypertensive life expectancy loss to ambient heat exposure: A multicenter study in eastern China

Ambient high temperature is a worldwide trigger for hypertension events. However, the effects of heat exposure on hypertension and years of life lost (YLL) due to heat remain largely unknown. We conducted a multicenter study in 13 cities in Jiangsu Province, China, to investigate 9727 individuals who died from hypertension during the summer months (May to September) between 2016 and 2017. Meteorological observation data (temperature and rainfall) and air pollutants (fine particulate matter and ozone) were obtained for each decedent by geocoding the residential addresses. A time-stratified case-crossover design was used to quantify the association between heat and different types of hypertension and further explore the modification effect of individual and hospital characteristics. Meanwhile, the YLL associated with heat exposure was estimated. Our results show that summer heat exposure shortens the YLL of hypertensive patients by a total of 14,74 years per month. Of these, 77.9% of YLL was mainly due to hypertensive heart disease. YLL due to heat was pronounced for essential hypertension (5.1 years (95% empirical confidence intervals (eCI): 4.1-5.8)), hypertensive heart and renal disease with heart failure (4.4 years (95% eCI: 0.9-5.9)), and hypertensive heart and renal disease (unspecified, 3.5 years (95% eCI: 1.8-4.5)). Moderate heat was associated with a larger YLL than extreme heat. The distance between hospitals and patients and the number of local first-class hospitals can significantly mitigate the adverse effect of heat exposure on longevity. Besides, unmarried people and those under 65 years of age were potentially susceptible groups, with average reduced YLL of 3.5 and 3.9 years, respectively. Our study reveals that heat exposure increases the mortality risk from many types of hypertension and YLL. In the context of climate change, if effective measures are not taken, hot weather may bring a greater burden of disease to hypertension due to premature death.

Effect of ambient temperature on daily hospital admissions for acute pancreatitis in Nanchang, China: A time-series analysis

The aim of this study was to evaluate the short-term effect of temperature on the risk of acute pancreatitis (AP) in southern China. We performed a time-series study of 2822 patients admitted with a first episode of AP in Nanchang between May 2014 and June 2017. A generalized additive model combined with a distributed lag non-linear model was applied to assess the association of temperature and AP. In subgroup analysis, according to different etiologies of pancreatitis, significant associations were found between daily average temperature and non-biliary pancreatitis hospitalization at lags of 0-7 days, but not for biliary pancreatitis or total AP. Higher daily average temperature tended to increase the occurrence of non-biliary pancreatitis at lags of 0-7 days. These findings suggest that high temperature is associated with higher non-biliary pancreatitis risk in Nanchang, China. In the context of global warming, the morbidity of non-biliary pancreatitis may increase.

Heat and outpatient visits of skin diseases – a multisite analysis in China, 2014-2018

BACKGROUND: Many studies have shown that various kinds of diseases were associated with the variation of ambient temperature. However, there’s only a scrap of evidence paying attention to the link between temperature and skin diseases, and no relevant national research was performed in China. OBJECTIVE: This study aimed to quantify the effect of heat on skin diseases and identify the vulnerable populations and areas in China. METHODS: Daily meteorological data, air pollutant data and outpatient data were collected from in 18 sites of China during 2014-2018. A time-series study with distributed lag nonlinear model and multivariate meta-analysis was applied to analyze the site-specific and pooled associations between daily mean temperature and daily outpatient visits of skin diseases by using the data of warm season (from June to September). Stratified analysis by age, sex and climate zones and subtypes of skin diseases were also conducted. RESULTS: We found a positive linear relationship between the ambient temperature and risk of skin diseases, with a 1.25% (95%CI: 0.34%, 2.16%) increase of risk of outpatient visits for each 1 °C increase in daily mean temperature during the warm season. In general, groups aged 18-44 years, males and people living in temperate climate regions were more susceptible to high temperature. Immune dysfunction including dermatitis and eczema were heat-sensitive skin diseases. CONCLUSIONS: Our findings suggested that people should take notice of heat-related skin diseases and also provided some references about related health burden for strategy-makers. Targeted measures for vulnerable populations need to be taken to reduce disease burden, including monitoring and early warning systems, and sun-protection measures.

High-temperature exposure and risk of spontaneous abortion during early pregnancy: A case-control study in Nanjing, China

As one of the most common complications of early pregnancy, spontaneous abortion is associated with environmental factors, but reports estimating the effect of ambient temperature on spontaneous abortion are still inconclusive. Herein, a case-control study (1002 cases and 2004 controls) in Nanjing, China, from 2017 to 2021 was conducted to evaluate the association between temperature exposure and the risk of spontaneous abortion by using distributed lag nonlinear model (DLNM). As a result, daily mean temperature exposure and early spontaneous abortion showed a nonlinear relationship in 14-day lag periods. Moreover, taking the median temperature (17 °C) as a reference, gradually increased positive effects of high temperature on spontaneous abortion could be found during the 4 days prior to hospitalization, and the highest odds ratio (OR) of 2.07 (95% confidence interval (CI): 1.36, 3.16) at extremely hot temperature (33 °C) was observed at 1 lag day. The results suggested that high-temperature exposure in short times during early pregnancy might increase the risk of SAB. Thus, our findings highlight the potential risk of short-term high-temperature exposure during early pregnancy, and more evidence was given for the effects of climate change on maternal health.

Life-time summer heat exposure and lung function in young adults: A retrospective cohort study in Shandong China

BACKGROUND: The health impact of short-term heat exposure is well documented. However, limited studies explored the association between life-time summer heat exposure and lung function. OBJECTIVE: To examine the association between life-time summer heat exposure and lung function among young adults. METHODS: We conducted a retrospective cohort study among 1928 college students in Shandong, China from September 4, 2020 to November 15, 2020. Life-time summer heat exposure for participants were estimated based on the nearest station meteorological data after the participant’s birth date and divided by their learning phases. Lung function indicators included forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). A multiple linear regression model was conducted to examine the associations between summer heat exposure and lung function. Stratificationanalysis by cooling facilities and respiratory diseases history were also conducted. RESULTS: The study subjects had a slight majority of women (58.8%), age 19.2 ± 0.6 years. Each 1 °C increase in life-time summer mean temperature was associated with 1.07% [95% confidence interval (CI): -1.95-0.18%] decrease in FVC and 0.88% (95 %CI: -1.71, -0.05%) decrease in FEV1. Participants with respiratory diseases and non-cooling facility users were more susceptible to summer heat exposure. The usage of fan and air condition could effectively reduce the deleterious heat effects on lung function. CONCLUSION: Life-time summer heat exposure is significantly associated with the reduction of lung function in young adults. Cooling facilities are necessary for pre-school children to reduce heat effects. Fan and air-condition are effective cooling facilities, especially for people with respiratory diseases.

Increasing heat risk in China’s urban agglomerations

A heat danger day is defined as an extreme when the heat stress index (a combined temperature and humidity measure) exceeding 41 degrees C, warranting public heat alerts. This study assesses future heat risk (i.e. heat danger days times the population at risk) based on the latest Coupled Model Intercomparison Project phase 6 projections. In recent decades (1995-2014) China’s urban agglomerations (Beijing-Tianjin-Hebei, Yangtze River Delta, Middle Yangtze River, Chongqing-Chengdu, and Pearl River Delta (PRD)) experienced no more than three heat danger days per year, but this number is projected to increase to 3-13 days during the population explosion period (2041-2060) under the high-emission shared socioeconomic pathways (SSP3-7.0 and SSP5-8.5). This increase will result in approximately 260 million people in these agglomerations facing more than three heat danger days annually, accounting for 19% of the total population of China, and will double the current level of overall heat risk. During the period 2081-2100, there will be 8-67 heat danger days per year, 60%-90% of the urban agglomerations will exceed the current baseline number, and nearly 310 million people (39% of the total China population) will be exposed to the danger, with the overall heat risk exceeding 18 times the present level. The greatest risk is projected in the PRD region with 67 heat danger days to occur annually under SSP5-8.5. With 65 million people (68% of the total population) experiencing increased heat danger days, the overall heat risk in the region will swell by a factor of 50. Conversely, under the low-emission pathways (SSP1-2.6 and SSP2-4.5), the annual heat danger days will remain similar to the present level or increase slightly. The result indicates the need to develop strategic plans to avoid the increased heat risk of urban agglomerations under high emission-population pathways.

Dominant modes of summer wet bulb temperature in China

As a combination of temperature and humidity, wet-bulb temperature (WBT) is useful for assessing heat stress and its societal and economic impacts. However, spatial and temporal behaviors of summer WBT in China remain poorly understood. In this study, we investigate the dominant spatiotemporal modes of summer (June-July-August) WBT in the mainland of China during 1960-2017 by using empirical orthogonal function (EOF) analysis and reveal their corresponding underlying mechanisms. The leading mode (EOF1) of summer WBT in China shows a nationwide increasing WBT with a stronger magnitude in northern and western than southeastern China. The second mode (EOF2) displays a zonal pattern with anomalously increased WBT in the west and decreased WBT in the east. The third mode (EOF3) shows a meridional feature with the largest WBT trends appearing in the Yangtze River valley. Further examinations suggest that EOF1 exhibits remarkable interdecadal/long-term variations and is likely connected with global warming and the Atlantic Multidecadal Oscillation (AMO), which induce an anomalous anticyclone centering over northern China and covering nearly the whole country. This anticyclone not only plays a key role in the nationwide WBT increases, but also dominates the spatial pattern of EOF1 by modulating relative humidity. EOF2 and EOF3 reflect interannual variations and show significant correlations with the El Nino-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO), respectively. A zonal wavelike pattern with troughs over Balkhash and northeastern China, and Mongolia high substantially modulates the water vapor transport in China, thus playing a key role in EOF2. In the case of EOF3, an anomalous anticyclone in the middle-upper troposphere and a shallow intensified cyclone in the lower troposphere collectively format the spatial pattern of EOF3 by inducing significant increases in temperature in central-eastern China and transporting a large amount of water vapor to northeastern China, respectively. These findings are critical to improve our understanding of summer WBT in China and to mitigate the negative effects of heat stress.

Correlation analysis of thermal comfort and landscape characteristics: A case study of the coastal greenway in Qingdao, China

With the acceleration of urbanization throughout the world, climate problems related to climate change including urban heat islands and global warming have become challenges to urban human settlements. Numerous studies have shown that greenways are beneficial to urban climate improvement and can provide leisure places for people. Taking the coastal greenway in Qingdao as the research object, mobile measurements of the microclimate of the greenway were conducted in order to put forward an evaluation method for the research of outdoor thermal comfort. The results showed that different vegetation coverage affected the PET (physiologically equivalent temperature), UTCI (Universal Thermal Climate Index) as well as thermal comfort voting. We found no significant correlation between activities, age, gender, and thermal comfort voting. Air temperature sensation and solar radiation sensation were the primary factors affecting the thermal comfort voting of all sections. Otherwise, within some sections, wind sensation and humidity sensation were correlated with thermal sensation voting and thermal comfort voting, respectively. Both PET and UTCI were found to have a negative correlation with the vegetation coverage on both sides of the greenway. However, the vegetation coverage had positive correlation (R = 0.072) for thermal sensation and significant positive correlation (R = 0.077*) for thermal comfort. The paved area cover was found to have a positive correlation with PET and UTCI, while having a negative correlation with thermal sensation (R = -0.049) and thermal comfort (R = -0.041). This study can provide scientific recommendations for the planning and design of greenway landscapes to improve thermal comfort.

Enlightenment from mitigation of human-perceived heat stress risk in southwest China during the period 1961-2019

With the effects of climate change, people are increasingly facing human-perceived heat stress (HPHS), which describes the combined effects of high temperature, high humidity, and low surface wind speed. HPHS has a significant impact on industrial and agricultural production, people’s lifestyles, and public health. However, the characteristics of HPHS with respect to changes and influencing factors have not been fully investigated using dynamic classification of urban, suburban, and rural stations based on absolute and relative thresholds of seven HPHS indices in Southwest China. The results of this study revealed that, first, during the period 1961-2019, the normal annual and seasonal HPHS values and extreme HPHS days increased significantly, while the extreme HPHS values for the seven HPHS indices decreased. Second, based on the absolute and relative thresholds, the frequency and intensity of the impact of urbanization differed in four regions, and in Yunnan and Guizhou in particular. Different HPHS indices and different dynamic station classification methods result in different esti -mations of the effects of urbanization on annual and seasonal changes in the regional climate. Therefore, choosing an appropriate dynamic station classification method and considering the applicability of different indices in different seasons in different regions is very important. Third, the Granger causality test shows that the percentage of stations with Granger causality between landscape composition indices and seven extreme HPHS is the highest among all influencing factors. At the same time, boosted regression tree detection also showed that the landscape composition indices had the highest contribution percentage to the seven extreme HPHS. There-fore, rational planning of land-use patterns, especially in relation to urban forest land, grassland, wetland, and water bodies (including vertical landscape composition, configuration planning, and building density and layout) has implications for the realization of the United Nations Sustainable Development Goals (SDGs), in particular SDG 11, Sustainable Cities and Communities.

Association between ambient temperature and cardiovascular disease hospitalisations among farmers in suburban northwest China

Cardiovascular disease (CVD) has become a severe public health and social issue in China. However, in northwest China, evidence on the association between ambient temperature and CVD hospitalisations in suburban farmers is somewhat limited. We collected CVD hospitalisations and meteorological data (2012-2015) in Zhangye suburbs and assessed the temperature-related risk and burden of admission by fitting a distributed lag nonlinear model to probe the relationship between ambient temperature and CVD hospitalisations among farmers in suburban northwest China. The results show that 23,921 cases of CVD admissions were recorded from 2012 to 2015. There was a “U-shaped” association between temperature and hospitalisations. Compared with the minimum admissions temperature (MAT) at 15.3 °C, the cumulative relative risk (RR) over lag 0-21 days was 1.369 (95% CI 0.980-1.911) for extreme cold temperature (1st percentile, -15 °C), 1.353 (95% CI 1.063-1.720) for moderate cold (5th percentile, -11 °C), 1.415 (95% CI 1.117-1.792) for extreme heat (99th percentile, 26 °C), and 1.241 (95% CI 1.053-1.464) for moderate heat (95th percentile, 24 °C). Female farmers were more susceptible to low and high temperatures than male farmers. Farmers aged ≥ 65 years old were more sensitive to low temperatures, while farmers aged < 65 years old were more sensitive to high temperatures. A total of 13.4% (3,208 cases) of the hospitalisation burden for CVD were attributed to temperature exposure, with the moderate range of temperatures accounting for the most significant proportion (12.2%). Ambient temperature, primarily moderate temperatures, might be an essential factor for cardiovascular-related hospitalisations among farmers in suburban northwest China.

Association between ambient temperature and years of life lost from stroke – 30 PLADs, China, 2013-2016

What is already known about this topic? Previous studies have mainly focused on the relationship between temperature and mortality from stroke, but analysis on the effects on years of life lost (YLL) is limited. What is added by this report? YLLs were used as the health outcome, and cold and hot weather were found to be significantly associated with an increase in YLLs from stroke and for different groups, with a stronger effect found to be associated with low temperature. What are the implications for public health practice? These findings could help identify vulnerable regions and populations that have a more serious temperature-related burden and to guide the practical and effective measures for stroke control from a YLL perspective.

Asthma mortality attributable to ambient temperatures: A case-crossover study in China

BACKGROUND: Whether ambient temperature exposure contributes to death from asthma remains unknown to date. We therefore conducted a case-crossover study in China to quantitatively evaluate the association and burden of ambient temperature exposure on asthma mortality. METHODS: Using data from the National Mortality Surveillance System in China, we conducted a time-stratified case-crossover study of 15 888 individuals who lived in Hubei and Jiangsu province, China and died from asthma as the underlying cause in 2015-2019. Individual-level exposures to air temperature and apparent temperature on the date of death and 21 days prior were assessed based on each subject’s residential address. Distributed lag nonlinear models based on conditional logistic regression were used to quantify exposure-response associations and calculate fraction and number of deaths attributable to non-optimum ambient temperatures. RESULTS: We observed a reverse J-shaped association between air temperature and risk of asthma mortality, with a minimum mortality temperature of 21.3 °C. Non-optimum ambient temperature is responsible for substantial excess mortality from asthma. In total, 26.3% of asthma mortality were attributable to non-optimum temperatures, with moderate cold, moderate hot, extreme cold and extreme hot responsible for 21.7%, 2.4%, 2.1% and 0.9% of asthma mortality, respectively. The total attributable fraction and number was significantly higher among adults aged less than 80 years in hot temperature. CONCLUSIONS: Exposure to non-optimum ambient temperature, especially moderate cold temperature, was responsible for substantial excess mortality from asthma. These findings have important implications for planning of public-health interventions to minimize the adverse respiratory damage from non-optimum ambient temperature.

Burden of outpatient visits attributable to ambient temperature in Qingdao, China

Climate change has been referred to as one of the greatest threats to human health, with reports citing likely increases in extreme meteorological events. In this study, we estimated the relationships between temperature and outpatients at a major hospital in Qingdao, China, during 2015-2017, and assessed the morbidity burden. The results showed that both low and high temperatures were associated with an increased risk of outpatient visits. High temperatures were responsible for more morbidity than low temperatures, with an attributed fraction (AF) of 16.86%. Most temperature-related burdens were attributed to moderate cold and hot temperatures, with AFs of 5.99% and 14.44%, respectively, with the young (0-17) and male showing greater susceptibility. The results suggest that governments should implement intervention measures to reduce the adverse effects of non-optimal temperatures on public health-especially in vulnerable groups.

Thermal responses of workers during summer: An outdoor investigation of construction sites in South China

Previous studies demonstrate a significant correlation between the vertical elevation of urban morphology and UHI, however, topological parameters are barely considered.

Comparative analysis of variations and patterns between surface urban heat island intensity and frequency across 305 Chinese cities

Urban heat island (UHI), referring to higher temperatures in urban extents than its surrounding rural regions, is widely reported in terms of negative effects to both the ecological environment and human health. To propose effective mitigation measurements, spatiotemporal variations and control machines of surface UHI (SUHI) have been widely investigated, in particular based on the indicator of SUHI intensity (SUHII). However, studies on SUHI frequency (SUHIF), an important temporal indicator, are challenged by a large number of missing data in daily land surface temperature (LST). Whether there is any city with strong SUHII and low SUHIF remains unclear. Thanks to the publication of daily seamless all-weather LST, this paper is proposed to investigate spatiotemporal variations of SUHIF, to compare SUHII and SUHIF, to conduct a pattern classification, and to further explore their driving factors across 305 Chinese cities. Four main findings are summarized below: (1) SUHIF is found to be higher in the south during the day, while it is higher in the north at night. Cities within the latitude from 20 degrees N and 40 degrees N indicate strong intensity and high frequency at day. Climate zone-based variations of SUHII and SUHIF are different, in particular at nighttime. (2) SUHIF are observed in great diurnal and seasonal variations. Summer daytime with 3.01 K of SUHII and 80 of SUHIF, possibly coupling with heat waves, increases the risk of heat-related diseases. (3) K-means clustering is employed to conduct pattern classification of the selected cities. SUHIF is found possibly to be consistent to its SUHII in the same city, while they provide quantitative and temporal characters respectively. (4) Controls for SUHIF and SUHII are found in significant variations among temporal scales and different patterns. This paper first conducts a comparison between SUHII and SUHIF, and provides pattern classification for further research and practice on mitigation measurements.

Responses of heat stress to temperature and humidity changes due to anthropogenic heating and urban expansion in South and North China

Due to global warming and human activities, heat stress (HS) has become a frequent extreme weather event around the world, especially in megacities. This study aims to quantify the responses of urban HS (UHS) to anthropogenic heat (AH) emission and its antrophogenic sensible heat (ASH)/anthropogenic latent heat (ALH) components and increase in the size of cities in the south and north China for the 2019 summer based on observations and numerical simulations. AH release could aggravate UHS drastically, producing maximal increment in moist entropy (an effective HS metric) above 1 and 2 K over the south and north high-density urban regions mainly through ALH. In contrast, future urban expansion leads to an increase in HS coverage, and it has a larger impact on UHS intensity change (6 and 2 K in south and north China) relative to AH. The city radius of 60 km is a possible threshold to plan to city sprawl. Above that city size, the HS intensity change due to urban expansion tends to slow down in the north and inhibit in the south, and about one-third of the urban regions might be hit by extreme heat stress (EHS), reaching maximal hit ratio. Furthermore, changes in warmest EHS events are more associated with high humidity change responses, irrespective of cities being in the north or south of China, which support the idea that humidity change is the primary driving factor of EHS occurrence. The results of this study serve for effective urban planning and future decision making.

Seasonal variations of daytime land surface temperature and their underlying drivers over Wuhan, China

Rapid urbanization greatly alters land surface vegetation cover and heat distribution, leading to the development of the urban heat island (UHI) effect and seriously affecting the healthy development of cities and the comfort of living. As an indicator of urban health and livability, monitoring the distribution of land surface temperature (LST) and discovering its main impacting factors are receiving increasing attention in the effort to develop cities more sustainably. In this study, we analyzed the spatial distribution patterns of LST of the city of Wuhan, China, from 2013 to 2019. We detected hot and cold poles in four seasons through clustering and outlier analysis (based on Anselin local Moran’s I) of LST. Furthermore, we introduced the geographical detector model to quantify the impact of six physical and socio-economic factors, including the digital elevation model (DEM), index-based built-up index (IBI), modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), population, and Gross Domestic Product (GDP) on the LST distribution of Wuhan. Finally, to identify the influence of land cover on temperature, the LST of croplands, woodlands, grasslands, and built-up areas was analyzed. The results showed that low temperatures are mainly distributed over water and woodland areas, followed by grasslands; high temperatures are mainly concentrated over built-up areas. The maximum temperature difference between land covers occurs in spring and summer, while this difference can be ignored in winter. MNDWI, IBI, and NDVI are the key driving factors of the thermal values change in Wuhan, especially of their interaction. We found that the temperature of water area and urban green space (woodlands and grasslands) tends to be 5.4 degrees C and 2.6 degrees C lower than that of built-up areas. Our research results can contribute to the urban planning and urban greening of Wuhan and promote the healthy and sustainable development of the city.

Effects of short-term physiological and psychological adaptation on summer thermal comfort of outdoor exercising people in China

Internal migration from rural to urban areas is prevalent in China. Past studies demonstrated that thermal adaptation differed among people from various climate regions. However, the outdoor thermal comfort of exercising people with a diverse climatic background remains largely unexplored. This study examines the relationship between short-term physiological and psychological thermal adaptation and outdoor thermal comfort of exercising people from different climate zones in China. We recruited first-year students (n = 145) who engaged in outdoor training between 3 and September 14, 2018 in Guangzhou, China. Physiological parameters include heart rate (HR) from fitness trackers and skin temperature (Tskin) from iButtons. These students were surveyed regarding their thermal comfort and psychological state over the study period (n = 968). Physiological Equivalent Temperature (PET) was calculated from weather station data at the training sites. T-tests reveal differences in HR and thermal perception between local and non-local students, but not Tskin. Under similar PET conditions, non-local students reported a higher thermal sensation and greater thermal discomfort than local students during the first week of training. Logistic regression indicates that HR and metabolic rate predict the thermal sensation of non-local students, but not local students. Wind sensation, pleasantness level, fatigue, and perceived suitability for outdoor activities are significant predictors of local and non-local students’ thermal comfort. Our research highlights both physiological and psychological factors (including emotion and fatigue) are necessary to understand acclimatized and non-acclimatized people’s thermal perception. Addressing thermal discomfort at an early stage can prevent more severe heat-related illnesses.

Effectiveness evaluation of a primary school-based intervention against heatwaves in China

BACKGROUND: Evidence of the effectiveness of intervention against extreme heat remains unclear, especially among children, one of the vulnerable populations. This study aimed to evaluate the effectiveness of a primary school-based intervention program against heatwave and climate change in China to provide evidence for development of policies for adaptation to climate change. METHODS: Two primary schools in Dongtai City, Jiangsu Province, China, were randomly selected as intervention and control schools (CTR registration number: ChiCTR2200056005). Health education was conducted at the intervention school to raise students’ awareness and capability to respond to extreme heat during May to September in 2017. Knowledge, attitude, and practice (KAP) of students and their parents at both schools were investigated by questionnaire surveys before and after intervention. The changes in KAP scores after intervention were evaluated using multivariable difference-in-difference (DID) analysis, controlling for age, sex, etc. Results: The scores of knowledge, attitude, and practice of students and their parents increased by 19.9% (95%CI: 16.3%, 23.6%) and 22.5% (95%CI: 17.8%, 27.1%); 9.60% (95%CI: 5.35%, 13.9%) and 7.22% (95%CI: 0.96%, 13.5%); and 9.94% (95%CI: 8.26%, 18.3%) and 5.22% (95%CI: 0.73%, 9.71%), respectively, after intervention. The KAP score changes of boys were slightly higher than those of girls. Older students had higher score changes than younger students. For parents, the higher the education level, the greater the score change, and change in scores was greater in females than in males. All the health education activities in the program were significantly correlated with the changes in KAP scores of primary school students after intervention, especially those curricula with interesting activities and experiential learning approaches. CONCLUSIONS: Heat and health education program in primary school was an effective approach to improve cognition and behavior for both students and their parents to better adapt to heatwaves and climate change. The successful experience can be generalized to respond to the increasing extreme weather/climate events in the context of climate change, such as heatwaves, and other emergent occasions or public health education, such as the control and prevention of COVID-19.

Comparison of relative and absolute heatwaves in eastern China: Observations, simulations and future projections

Heatwaves can produce catastrophic effects on public health and natural systems, especially under global warming. There are two methods to measure heatwaves, computed by relative and absolute thresholds, namely relative and absolute heatwaves (RHWs and AHWs). Generally, AHWs mostly occur in hot areas because of fixed thresholds, while RHWs represent anomalous events for the local climate, making them possible everywhere in the warm season. Based on observations and CMIP6 outputs, this study compared AHWs and RHWs in Eastern China (EC) with five sub-regions [Northeast China (NEC), North China (NC), Lower Yangtze River (LYR), Middle Yangtze River (MYR) and South China (SC)]. Similarities among RHWs and AHWs were found in present-day trends (1995-2014) and spatial distributions. The heatwave intensity/days for RHWs and AHWs both displayed highest future increases in northern/southern EC, and the increases for 2081-2100 would be 1.5 times as high as 2041-2060. All these similarities illustrate that applying either relative or absolute thresholds in EC, historical temporal variations, changing future spatial patterns, and increasing ratio from 2081-2100 to 2041-2060, would show reliable results. As far as differences are concerned, RHWs were observed across the entire EC, while AHWs did not show up in parts of NC and NEC. Considering model performance, RHWs would perform better than AHWs in most areas of EC. The annual heatwave intensity/days were higher for RHWs than for AHWs during present-day and future periods, which might overestimate heat-related risks. Overall, this study recommended RHWs for heatwave analyses, particularly for future projections, but for risk assessment, the choice of thresholds is crucial. The results reinforced the necessity to further improve model performance to address various needs.

Emergency preparedness for heat illness in China: A cross-sectional observational study

Background: The morbidity and mortality rates from heat illness have increased due to a higher number of heatwaves. Effective urgent care of heat illness is crucial for optimizing patient outcomes. However, few studies have examined the emergency preparedness measures required for treating such patients. Methods: From December 23, 2019, to January 23, 2020, a content-validated instrument containing the Perceived Emergency Preparedness Scale for heat illness (heatPEPS) was administered to emergency nurses in China through WeChat. Some of these nurses were retested two weeks later. SPSS 26, IRTPRO 4.2, and NVivo 12 Plus were used for data analysis. Results: In total, 46.4% (200/431) of the participants returned valid responses. With dichotomous scoring, a high score for heatPEPS (mean 7.29; SD 1.667) was elicited. The reduced 9-item heatPEPS had a perfect fit with the 2PL model (M-2 = 27.24, p > 0.05; RMSEA = 0.01) and acceptable internal (alpha = 0.68) and test-rest reliability (intraclass correlation = 0.56). Many participants (74%) were dissatisfied with their heat illness-related knowledge and skills, suggesting an area that could be improved for better emergency preparedness. Conclusion: Emergency departments appear to be well-prepared; however, this is subject to social desirability bias. The 9-item heatPEPS is a reliable and valid tool to measure emergency preparedness for heat illness.

Impact of extreme heatwaves on population exposure in China due to additional warming

Extreme heatwaves are among the most important climate-related disasters affecting public health. Assessing heatwave-related population exposures under different warming scenarios is critical for climate change adaptation. Here, the Coupled Model Intercomparison Project phase 6 (CMIP6) multi-model ensemble output results are applied over several warming periods in the Intergovernmental Panel on Climate Change AR6 report, to estimate China’s future heatwave population exposure under 1.5 degrees C and 2.0 degrees C warming scenarios. Our results show a significant increase in projected future annual heatwave days (HD) under both scenarios. With an additional temperature increase of 0.5 degrees C to 2.0 degrees C of warming, by mid-century an additional 20.15 percent increase in annual HD would occur, over 1.5 degrees C warming. If the climate warmed from 1.5 degrees C to 2.0 degrees C by mid-century, population exposure would increase by an additional 40.6 percent. Among the three influencing elements that cause the changes in population exposure related to heatwaves in China-climate, population, and interaction (e.g., as urbanization affects population redistribution)-climate plays the dominant role in different warming scenarios (relative contribution exceeds 70 percent). Therefore, considering the future heat risks, humanity benefits from a 0.5 degrees C reduction in warming, particularly in eastern China. This conclusion may provide helpful insights for developing mitigation strategies for climate change.

Increased moist heat stress risk across China under warming climate

Heatwaves have afflicted human health, ecosystem, and socioeconomy and are expected to intensify under warming climate. However, few efforts have been directed to moist heat stress (MHS) considering relative humidity and wind speed, and moist heat stress risk (MHSR) considering exposure and vulnerability. Here we showed MHS and MHSR variations across China during 1998-2100 using China Meteorological Administration Land Data Assimilation System datasets, the 6th Coupled Model Intercomparison Project (CMIP6) merged datasets, Gross Domestic Product, population and leaf area index. We detected increased MHS across China under different Shared Socioeconomic Pathways (SSPs). Specifically, the historical MHS occurred mostly during mid-July to mid-August. We found increasing trends of 0.08%/year, 0.249%/year, and 0.669%/year in the MHS-affected areas under SSP126, SSP245, and SSP585, respectively. Furthermore, we observed the highest increasing rate of MHSR in Northwest and Southwest China, while the MHSR across Northeast and North China under SSP126 shifted from increasing to decreasing trends. Noteworthy is that the increasing trend of MHSR under SSP585 is 1.5-2.6 times larger than that under SSP245, especially in North and South China. This study highlights spatiotemporal evolutions of MHS and MHSR and mitigation to moisture heat stress in a warming climate.

A new method to estimate heat exposure days and its impacts in China

Understanding the spatiotemporal trends of temperature in the context of global warming is significant for public health. Although many studies have examined changes in temperature and the impacts on human health over the past few decades in many regions, they have often been carried out in data-rich regions and have rarely considered acclimatization explicitly. The most frequent temperature (MFT) indicator provides us with the ability to solve this problem. MFT is defined as the longest period of temperature throughout the year to which a human is exposed and therefore acclimates. In this study, we propose a new method to estimate the number of heat exposure days from the perspective of temperature distribution and MFT, based on the daily mean temperature readings of 2142 weather stations in eight major climate zones in China over the past 20 years. This method can be used to calculate the number of heat exposure days in terms of heat-related mortality risk without the need for mortality data. We estimated the distribution and changes of annual mean temperature (AMT), minimum mortality temperature (MMT), and the number of heat exposure days in different climate zones in China. The AMT, MMT, and number of heat exposure days vary considerably across China. They all tend to decrease gradually from low to high latitudes. Heat exposure days are closely related to the risk of heat-related mortality. In addition, we utilized multiple linear regression (MLR) to analyze the association between the risk of heat-related mortality and the city and its climatic characteristics. Results showed that the number of heat exposure days, GDP per capita, urban population ratio, proportion of elderly population, and climate zone were found to modify the estimate on heat effect, with an R-2 of 0.71. These findings will be helpful for the creation of public policies protecting against high-temperature-induced mortalities.

Assessment of the regional and sectoral economic impacts of heat-related changes in labor productivity under climate change in China

Climate change leads to heat-related changes in labor productivity, which have additional economic impacts. Based on a framework that considers the impacts evolving from climate change to labor productivity to economic impact, we estimate the changes in labor productivity for indoor and outdoor activities and different work intensities at the grid level in China under a wide range of climatic and socioeconomic conditions and then evaluate the economic impacts in seven regions and eight sectors. The results show that (a) the negative impacts of labor productivity are concentrated in outdoor sectors, and the labor productivity of indoor sectors will decrease slightly or even increase due to high air-conditioning device penetration rates under relatively optimistic scenarios. (b) The national results show that total economic impacts increase by 0.28%-0.61% of the GDP for each 1 degrees C rise in the temperature, and the total economic impacts of labor productivity reductions in the most pessimistic scenario reach 1.15%-2.67% of the GDP in 2100. (c) The regional results indicate that the regions with lower labor productivity impacts (Northwest and Northeast China) still suffer large economic impacts, highlighting the importance of economic impact assessments across the regions. (b) The sectors in the seven regions of China that are most sensitive to climate change are agriculture and construction. The economic impacts in the manufacturing and service sectors, which contribute 22%-35% and 11%-15% of regional GDP losses, respectively, cannot be ignored, and should receive more attention in climate mitigation policies. Plain Language Summary Climate change will increase the heat stress in working environment, which limits the labor productivity of workers. Reductions in labor productivity will also lead to economic impacts. The consequences of this impact chain within China have been evaluated for the first time. Outdoor workers will be seriously affected by heat stress, while indoor workers’ productivity may benefit from the popularity of air-conditioning devices. However, all regions of China will face the negative economic impacts of increased heat stress under climate change. Even if the heat-related labor productivity of a region is not severely affected, the economic impacts cannot be ignored due to the economic links between regions and sectors. The agriculture and construction suffer from the most serious economic impact. Although labor productivity in the indoor sectors will benefit from the popularity of air-conditioning devices, the economic impact of the manufacturing and service sectors cannot be underestimated.

Large future increase in exposure risks of extreme heat within Southern China under warming scenario

With the continued global warming, quantifying the risks of human and social-economic exposure to extremely high temperatures is very essential. The simulated extreme high-temperature days (EHTDs) with a maximum temperature higher than 35 degrees C (38 degrees C, 40 degrees C) in Southern China during 1980-1999 and 2080-2099 are analyzed using the NEX-GDDP dataset. By comparing the climatology of the two scenario periods, the multi-model ensemble mean patterns show that EHTDs will greatly increase at the end of the 21st century, and its center at 35 degrees C is projected to shift to Guangxi from Jiangxi. Model diversities are fairly small, and the spread increases with T-level rises. EOF analysis shows that the 100-years warming will impact the southern part greater than the northern part. Trend patterns exhibit comparable results to models, but with a relatively large spread. The population and economy exposure to extremely high temperatures are calculated, showing that they both will experience a large increase in future projected decades. In historical decades, the growth of population and Gross Domestic Product have dominated the increasing exposure risks, but these effects weaken with the T-level increases. In future decades, climate change plays a leading role in affecting the exposure, and its effect strengthens with the T-level increases. For historical to future changes, the dominant contributor to population exposure changes is the climate factor (74%), while substantially 90% contribution to economy exposure changes is dominated by the combined effects of climate and economy growth.

Modelling residential outdoor thermal sensation in hot summer cities: A case study in Chongqing, China

Exposure to extreme heat is a significant public health problem and the primary cause of weather-related mortality, which can be anticipated by accurately predicting outdoor thermal sensation. Empirical models have shown better accuracy in predicting thermal sensation than the most frequently used theoretical thermal indices, which have ignored adaptability to local climate and resulted in underestimating or overestimating the neutral levels of residents. This study proposes a scheme to build an empirical model by considering the multiple linear regression of thermal sensation and microclimatic parameters during summer in Chongqing, China. Thermal environment parameters (air temperature, relative humidity, wind speed, and surface temperature) were recorded and analyzed, together with 375 questionnaire survey responses referring to different underlying surfaces. The results found that the proposed model predicted neutral sensations as warm and 19.4% of warm sensations as hot, indicating that local residents adapted to warm or even hot sensations. In addition, the empirical model could provide references for local pedestrians’ daytime path choices. Residents might feel more comfortable staying beside a pond from 8:00 to 11:00 or sheltering under trees from 08:00 to 14:00 and 17:00 to 19:00. Masonry offered a comfortable microclimate between 10:15 and 11:00, and residents on the lawns were comfortable from 17:30 to 19:00. However, asphalt should be equipped with cooling infrastructures in order to cool thermal sensation.

Effect of apparent temperature on hospitalization from a spectrum of cardiovascular diseases in rural residents in Fujian, China

Cardiovascular disease (CVD) is a leading threat to global public health. Although associations between temperature and CVD hospitalization have been suggested for developed countries, limited evidence is available for developing countries or rural residents. Moreover, the effect of apparent temperature (AT) on the spectrum of cause-specific CVDs remains unknown. Based on 2,024,147 CVD hospitalizations for rural residents from eight regions in Fujian Province, China, during 2010-2016, a quasi-Poisson regression with distributed lag non-linear model was fitted to estimate the AT effect on daily CVD hospitalization for each region, and then pooled in a meta-regression that included regional indicators related to rural residents. Stratified analyses were performed according to the cause of hospitalization, sex and age groups. Finally, we calculated the fraction of CVD hospitalizations attributable to AT, as a reflection of the burden associated with AT. The heat effect appeared at lag 0-1 days, with 19% (95% CI, 11-26%) increased risk of CVD hospitalization, which was worse for ischemic heart disease, heart failure, arrhythmias and ischemic stroke. The decreased AT was associated with increase of hemorrhagic stroke at lag 0-28 days. People aged 65 and above suffered more from the heat effect on cardiovascular and cerebrovascular diseases. Regions with a lower gross value of agricultural production, rural residents’ per capita net income, number of air conditioners and water heaters were more susceptible. A large number of hospitalizations were attributable to heat for most subcategories. High AT level increased CVD hospitalization, and the subcategories had different susceptibilities. The effects were modified by individual and regional characteristics. These findings have important implications for the development of targeted interventions and for hospital service planning.

The relationship between population heat vulnerability and urbanization levels: A county-level modeling study across China

The purpose of this work was to assess population vulnerability to heat-related health risks and its relationship with urbanization levels to provide essential information for the future development and policy-making for climate change adaptation. We constructed a heat vulnerability index (HVI), quantified the population heat vulnerability in each county across China by a principal component analysis (PCA) of multiple factors, and assessed urbanization levels in each county using multisource data. Then, the HVI was validated using the heat-attributable fraction (heat-AF) of nonaccidental mortality based on death monitoring data and meteorological data from 95 counties across China. The results showed that our HVI was significantly positively associated with the heat AF of nonaccidental mortality. A negative correlation was observed between the urbanization level and the HVI. The HVI was generally higher in less urbanized western China and lower in the more urbanized eastern regions. The baseline mortality occupies the top position in the importance ranking of the heat-vulnerability indicators at all three urbanization levels, but the other indicators, including the aging rate, agricultural population rate, education, ethnic structure, economic status, air conditioner ownership rate, and number of hospitals, ranked differently among different urbanization levels. This finding indicates that to reduce population heat vulnerability, the most important approach is to improve the health status of the whole population and reduce baseline mortality; additionally, regional-specific measures and emphasis should be adjusted reasonably along with the process of urbanization according to the characteristics and key factors of local heat vulnerability.

Analyzing the environment characteristics of heat exposure spaces from the humanistic perspective and spatial improvement approaches in Central Beijing, China

Global warming, high temperatures, and heatwave weather are some of the factors affecting human settlement environment health. In high-temperature weather, human production and life are seriously threatened, as long-term exposure to high temperatures causes a variety of diseases, and children and elderly, who have poor tolerance, require strengthened protection. From a human perspective, this study calculated the thermal duration distribution of high temperatures based on maximum temperature data in a central urban area of Beijing combined with the results of the sixth population census of Beijing, investigated the population distribution of individuals under 15 years old and over 65 years old, and analyzed the spatial distribution of a thermal exposure space in a central urban area of Beijing with the help of the ArcGIS platform. Based on 130 district districts, streets with high-risk heat exposure spaces in the central urban area of Beijing were reddened to determine the distribution of high-risk grades. Using the semantic segmentation method and a street view map, the high-risk thermal exposure space environment from the humanistic perspective was restored, and the typical characteristics were summarized and analyzed. Finally, the environmental characteristics of the high-risk thermal exposure space were analyzed from the humanistic perspective, and an improvement strategy for thermal exposure spaces was proposed based on the perspective of emotional relief.

Seasonal SUHI analysis using local climate zone classification: A case study of Wuhan, China

The surface urban heat island (SUHI) effect poses a significant threat to the urban environment and public health. This paper utilized the Local Climate Zone (LCZ) classification and land surface temperature (LST) data to analyze the seasonal dynamics of SUHI in Wuhan based on the Google Earth Engine platform. In addition, the SUHI intensity derived from the traditional urban-rural dichotomy was also calculated for comparison. Seasonal SUHI analysis showed that (1) both LCZ classification and the urban-rural dichotomy confirmed that Wuhan’s SHUI effect was the strongest in summer, followed by spring, autumn and winter; (2) the maximum SUHI intensity derived from LCZ classification reached 6.53 °C, which indicated that the SUHI effect was very significant in Wuhan; (3) LCZ 8 (i.e., large low-rise) had the maximum LST value and LCZ G (i.e., water) had the minimum LST value in all seasons; (4) the LST values of compact high-rise/midrise/low-rise (i.e., LCZ 1-3) were higher than those of open high-rise/midrise/low-rise (i.e., LCZ 4-6) in all seasons, which indicated that building density had a positive correlation with LST; (5) the LST values of dense trees (i.e., LCZ A) were less than those of scattered trees (i.e., LCZ B) in all seasons, which indicated that vegetation density had a negative correlation with LST. This paper provides some useful information for urban planning and contributes to the healthy and sustainable development of Wuhan.

Ambient heat stress and urolithiasis attacks in China: Implication for climate change

BACKGROUND: Although the existing studies have suggested a significant association between high temperatures and urolithiasis, no nationwide studies have quantified the burden attributable to environmental heat stress and explored how the urolithiasis burden would vary in a warming climate. METHODS: We collected data on urolithiasis attacks from 137 hospitals in 59 main cities from 20 provincial regions of China from 2000 to 2020. An individual-level case-crossover analysis was conducted to estimate the effect of daily wet-bulb globe temperature (WBGT), a heat stress index combining temperature and humidity, on urolithiasis attacks. Stratified analyses were performed by region, age, and sex. We further quantified the future WBGT-related burden of urolithiasis from the Coupled Model Intercomparison Project Phase 6 under three Shared Socioeconomic Pathway (SSP) scenarios. RESULTS: In total, 118,180 urolithiasis patients were evaluated. The exposure-response curve for the association between WBGT and urolithiasis attacks was J-shaped, with a significantly increased risk for WBGT higher than 14.8 °C. The middle-aged and elderly group (≥45 years old) had a higher risk of WBGT-related urolithiasis attacks than in the younger group, while no significant sex difference was observed. The attributable fraction (AF) due to high WBGT would increase from 10.1% in the 2010s to 16.1% in the 2090s under the SSP585 scenario. Warm regions were projected to experience disproportionately higher AFs and larger increments in the future. CONCLUSIONS: This nationwide investigation provides novel evidence on the acute effect of high WBGT on urolithiasis attacks and demonstrates the increasing disease burden in a warming climate.

A possible remote tropical forcing for the interannual variability of peak summer muggy hot days in Northeast China

The peak summer (July-August; JA) muggy hot weather over Northeast China (NEC) negatively impacts local socioeconomic development and human health. This study investigates the physical connection between sea surface temperature (SST) and year-to-year variations in the number of peak summer muggy hot days (MHDs) in NEC (PSMHDNEC) for the period 1979-2018. We found that on the interannual timescale, SST anomalies (SSTAs) over the tropical North Australia (TNA) sector have a stable and significant negative correlation with PSMHDNEC since the early summer of June; however, the strongest negative correlation occurs in the JA. Our further analyses indicate that the SST cooling over the TNA sector could form a large-scale atmospheric teleconnection emanating northwest of the TNA through the profound in situ diabatic cooling anomalies tied to the SST cooling, which propagates poleward from the northeastern Pacific Ocean. This teleconnection might remotely strengthen the local-scale anticyclonic anomaly centered near NEC, a critical system responsible for a higher PSMHDNEC. Under such circumstances, the NEC region is dominated by high-pressure anomalies, facilitating the establishment of localized MHD-favorable environmental conditions (e.g., increased surface air temperature and enhanced downward solar radiation flux with suppressed convection activities). During years of negative SSTAs over TNA, local SSTAs can persist from early summer until JA via the wind-evaporation-SST feedback. Therefore, it appears that SSTAs over the TNA sector may be a significant remote tropical forcing factor for the interannual variability of PSMHDNEC, and the corresponding June SST cooling may act as a potential predictability source physically contributing to a higher PSMHDNEC.

Dual challenges of heat wave and protective facemask-induced thermal stress in Hong Kong

During the COVID-19 pandemic, wearing protective facemasks (PFMs) can effectively reduce infection risk, but the use of PFMs can amplify heat-related health risks. We studied the amplified PFM-induced human thermal stress via both field measurements and model simulations over a typical subtropical mountainous city, Hong Kong. First, a hot and humid PFM microenvironment has been observed with high temperature (34-35 °C) and high humidity (80-95%), resulting in an aggravated facial thermal stress with a maximal PFM-covered facial heat flux of 500 W/m(2) under high-intensity activities. Second, to predict the overall PFM-inclusive human thermal stress, we developed a new facial thermal load model, S (PFM) and a new human-environment adaptive thermal stress (HEATS) model by coupling S (PFM) with an enhanced thermal comfort model to resolve modified human-environment interactions with the intervention of PFM under realistic climatic and topographical conditions. The model was then applied to predict spatiotemporal variations of PFM-inclusive physiological subjective temperature (PST) and corresponding heat stress levels during a typical heat wave event. It was found wearing PFM can significantly aggravate human thermal stress over Hong Kong with a spatially averaged PST increment of 5.0 °C and an additional spatial area of 158.4% exposed to the severest heat risks. Besides, PFM-inclusive PST was found to increase nonlinearly with terrain slopes at a rate of 1.3-3.9 °C/10°(slope), owing to elevated metabolic heat production. Furthermore, urban residents were found to have higher PFM-aggravated heat risks than rural residents, especially at night due to synergistic urban heat and moisture island effects.

Identifying factors contributing to social vulnerability through a deliberative Q-Sort process: An application to heat vulnerability in Taiwan

Extreme heat events are gaining ever more policy and societal attention under a warming climate. Although a breadth of expertises are required to understand drivers of vulnerability to hazards such as extreme heat, it is also acknowledged that expert assessments in group settings may be subject to biases and uneven power relations. In this Technical Note, we outline a structured deliberative process for supporting experts to work collaboratively to assess social vulnerability to a climate-related hazard, in this case extreme heat in Taiwanese cities. We argue that adapting elicitation approaches such as Q-Methodology for use in collaborative settings can help to organise expert discussion and enable dialogue and mutual learning, in a way that supports consensus-building on vulnerability assessment. Outcomes from our collaborative assessments suggest elderly people living alone, elderly people over 75, pre-existing circulatory diseases and level of participation in community decision-making may all be notable drivers of heat vulnerability in the Taiwanese context. Methodologically, we argue that collaborative sorting exercises offer a way to embed local and experiential knowledges into assessments of available evidence, but that strong facilitation and additional checks are necessary to ensure an inclusive process that reflects the diversity of perspectives involved. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11069-022-05280-4.

Effect modifications of green space and blue space on heat-mortality association in Hong Kong, 2008-2017

BACKGROUND: Despite emerging recognition of the benefits of green and blue spaces on human health, evidence for their effect modifications on heat-mortality associations is limited. We aimed to investigate the effect modifications of green and blue spaces on heat-mortality associations among different age and sex groups and at different heat levels. METHODS: Daily mortality and meteorological data from 2008 to 2017 in Hong Kong, China were collected. The Normalized Difference Vegetation Index and distance to coast were used as proxies for green and blue space exposure, respectively. Time-series analyses was performed using fitting generalized linear mixed models with an interaction term between heat and levels of exposure to either green or blue space. Age-, sex-, and heat level-stratified analyses were also conducted. RESULTS: With a 1 °C increase in temperature above the 90th percentile (29.61 °C), mortality increased by 5.7% (95% confidence interval [CI]: 1.6, 10.1%), 5.4% (1.4, 9.5%), and 4.6% (0.8, 8.9%) for low, medium and high levels of green space exposure, respectively, and by 7.5% (3.9, 11.2%) and 3.5% (0.3, 6.8%) for low and high levels of blue space exposure, respectively. Significant effect modifications of green and blue spaces were not observed for the whole population or any specific age and sex group, either at a moderate heat level or a heat level (Ps > 0.05). CONCLUSIONS: No significant effect modifications of green and blue spaces on heat-related mortality risk were observed in Hong Kong. These findings challenge the existing evidence on the prominent protective role of green and blue spaces in mitigating heat-related mortality risks.

Effective interventions on health effects of Chinese rural elderly under heat exposure

Due to climate change, the heatwave has become a more serious public health threat with aging as an aggravating factor in recent years. There is a pressing need to detect the most effective prevention and response measures. However, the specific health effects of interventions have not been characterized on an individual scale. In this study, an intervention experiment was designed to explore the health effects of heat exposure at the individual level and assess the effects of different interventions based on a comprehensive health sensitivity index (CHSI) in Xinyi, China. Forty-one subjects were recruited randomly, and divided into one control group and three intervention groups. Interventions included education (Educate by lecturing, offering relative materials, and communication), subsidy support (offer subsidy to offset the cost of running air conditioning), and cooling-spray (install a piece of cooling-spray equipment in the yard). Results showed that systolic blood pressure (SBP) and deep sleep duration (DSD) were significantly affected by short-term heat exposure, and the effects could be alleviated by three types of interventions. The estimated CHSI indicated that the effective days of the education group were longer than other groups, while the lower CHSI of the subsidy group showed lower sensitivity than the control group. These findings provide feasible implementation strategies to optimize Heat-health action plans and evaluate the intervention performance. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at 10.1007/s11783-022-1545-4 and is accessible for authorized users.

Individual socioeconomic status as a modifier of the association between high ambient temperature and hospital admissions: A time series study in Hong Kong, 2010-2019

Few studies have examined individual socioeconomic status (SES) as a potential modifier of ambient temperature-health associations, especially for temperature-related hospitalizations. We fit penalized distributed lag non-linear models within generalized additive models to study the short-term associations (0-3 days) between temperature and hospital admissions stratified by common causes, age, and individual SES, as determined by whether patients received public assistance (PA) to cover their medical fee at the time of hospitalizations, during the hot season (May 15 to October 15) in Hong Kong for the years 2010-2019. We calculated the ratio of relative risk (RRR) and corresponding 95% confidence interval (CI) to statistically test the difference of the associations between PA groups. For 75 + patients, the PA group had significantly increased risks of hospitalizations at higher temperature for most causes, with relative risks (RR, 99th %ile vs. 25%ile) and 95% CIs of 1.138 (1.099, 1.179), 1.057 (1.008, 1.109), and 1.163 (1.094, 1.236) estimated for all non-cancer non-external, circulatory, and respiratory admissions, respectively. There were slight decreases of RRs with higher temperature for 75 + patients without PA. The strengths of temperature-hospitalization associations were strongly and significantly different between PA groups for all examined causes for 75 + patients, with the most considerable discrepancy found for ischemic heart disease (RRR = 1.266; 95% CI, 1.137, 1.410). Hospitalizations for patients aged 15-74 were less affected by heat, and the difference of the associations between groups was small. Individual SES is a significant modifier of high temperature-hospitalization associations in Hong Kong among the elderly. Public health interventions are needed to better protect this subpopulation from adverse health impacts of high temperature.

High-resolution mesoscale simulation of the microclimatic effects of urban development in the past, present, and future Hong Kong

Anthropogenic modification of the natural environment has caused significant impacts on the local atmosphere and far-reaching changes to the global climate. Taking Hong Kong as a case study, high-resolution (250 m) mesoscale simulations are conducted using Meso-NH coupled with the multi-layer Town Energy Balance to investigate the effects of past (early 1960s), present (2018), and future (late 2040s) urban developments on the city’s surface energy balance, heat island, boundary layer structure, and heat stress during a prolonged heatwave event. Overall, horizontal and vertical urban expansion has caused the urban areas to become warmer, drier, less ventilated, and more susceptible to hot nights. The dense built-up urban core in the Kowloon peninsula is also found to deepen the urban boundary layer and enhance the coastal urban heat island circulation. Reclaimed land exhibits the largest differences in 2-m air temperature relative to a no urban scenario due to the drastic change in surface thermal properties. Areas downwind of the planned artificial islands in East Lantau are expected to experience warmer and calmer conditions due to the altered wind field. Study findings raise awareness regarding the increasingly long durations of strong heat stress in urban areas and the need for heat stress mitigation.

Identifying analogs of future thermal comfort under multiple projection scenarios in 352 Chinese cities

Thermal comfort analogs can be used to quantify the similarity of thermal comfort between current and future climates and are critical for raising awareness of future climate change. However, the similarity of thermal comfort analogs in consecutive future periods and under different emission scenarios remains unclear. This knowledge gap has significantly limited our understanding of future climate change and its effects on the living environment, especially from a human perception perspective. In this study, we identified the universal thermal climate index (UTCI) analogs of 352 cities in China under four specific emission scenarios for future periods (2021-2080). The results show that the UTCI analogs show significant spatial differentiation between cities. The analogs of northern cities primarily shift to cities with a neighboring latitude (-5 degrees to 5 degrees), whereas most central and southern cities mainly shift their analogs to lower-latitude cities. The shift to lower-latitude cities with latitude differences exceeding 5 degrees is enhanced with time and increased anthropogenic emissions. In addition, compared with the temperature analogs, the shift of UTCI analogs is more intense and the shift direction is more complex. The results of this study provide insights into future climate change and heat-related health risks.

Outdoor heat stress and cognition: Effects on those over 40 years old in China

With the increases in hot weather frequency and intensity induced by observed and predicted climate change, heat exposure is an evolving challenge. We estimated a fixed effect econometric model to data on 5,404 individuals drawn from the China Health and Retirement Longitudinal Study database. These observations were used to examine the effect of heat stress on cognitive performance for those above 40 years of age who are often household decision-makers. We found today’s heat stress decreases performance on verbal and math test scores, and that cumulative heat exposure over the last 3 days adversely affects verbal test scores. We also found that middle-aged women and people in rural areas exhibit substantial heat stress-induced reductions on cognitive test scores. This finding implies that continuing climate change may well diminish decision-making capacity and effectiveness.

Detailed thermal indicators analysis based on outdoor thermal comfort indices in construction sites in South China

Extreme thermal environment harms the health of outdoor workers and poses a potential threat to workplace safety. A field survey, including thermal parameter measurements, was conducted at construction sites in South China during the summer of 2019. The relationship between health risk and thermal parameters was obtained. The thermal sensation and satisfaction rate of the workers at different outdoor environmental conditions were analyzed, and recommendations were made based on the comparison of thermal indices. The thermal stress categories of the thermal indices were also investigated. The results suggest that the intensity of working conditions should be reduced when the air temperature is higher than 34 degrees C; the satisfaction rate of workers was found to be relatively high when the outdoor temperature is lower than 34 degrees C and the wind speed is greater than 1.3 m/s. Thermal indicators used to evaluate the comfort level of outdoor workers need to be modified according to the local climate and working environment to avoid excessive exposure to high-temperature work environments.

Heat vulnerability caused by physical and social conditions in a mountainous megacity of Chongqing, China

Long-lasting heatwaves have seriously threatened human health. Exploring the distribution of heat vulnerability is important for urban risk management. A model of heat vulnerability coupled with physical and social conditions based on exposure, sensitivity, and adaptation was established in Chongqing, a mountainous megacity in China, and 11 indicators were adopted to assess heat vulnerability. Heat perception evaluated by social media data is used to validate heat vulnerability. Four primary outcomes emerged. First, integration of high physical and low social heat vulnerabilities was found in central areas, while low physical and high social heat vulnerabilities were concentrated in suburban areas. Second, the spatial distribution of heat vulnerability is consistent with that of heat perception. Third, high social exposure, high physical and social sensitivity, and low physical adaptation led to high heat vulnerability in central areas, while high heat vulnerability in suburban areas was primarily caused by high physical exposure and low social adaptation. Finally, due to the barriers of mountains and rivers, both physical and social heat vulnerabilities form unique decentralized patterns following urbanization. According to the finding of heat vulnerability, mitigative and adaptive strategies (e.g. hierarchical layouts, green measures, and vulnerable health databases) are proposed to improve climate resilience.

A framework for addressing urban heat challenges and associated adaptive behavior by the public and the issue of willingness to pay for heat resilient infrastructure in Chongqing, China

This study investigates public participation in heat impact reduction by analysing adaptive behaviours, familiarity with urban heat island (UHI) and cooling strategies, the perceived urgency of heat impact actions and citizen’s willingness to pay through a questionnaire survey in Chongqing, China. The results indicate that airconditioning systems are the dominant cooling facility in both work and living environments. Respondents had a moderately familiar understanding of several cooling strategies such as urban vegetation, shading devices, water-based artificial facilities, urban design for shading and ventilation and water bodies. Familiarity with innovative materials and techniques for pavements, roofs and facades was less than moderate. Urban planning and design for heat resilient cities was thought to be the most urgent intervention, followed by the establishment of temporary cooling facilities. Most respondents indicated that cost-sharing mechanisms for urban heat prevention and control systems should at least include the government, whilst 50% of the respondents preferred collaborative payment among government, developers, and owners. Only 41.6% of the interviewees expressed their willingness to pay, with a share varying between 20 and 80 RMB. A conservative estimate indicated that there could be an average payment of 45.95 RMB and 19.10 RMB among the 234 respondents who were willing to pay and all 562 respondents regardless of willingness, respectively. Respondents’ heat-related responses and actions towards urban heat challenges were dependent on a wide range of factors like gender, age, education, economic status, health, exposure, habit formation and behavior change, social acceptance, etc. Moreover, such factors could interact with each other affecting public behavior with different weights. Overall, this study increases our understanding of people’s perceptions and proactiveness in reducing urban heat and provides guidance for decision-makers towards a novel user-aware approach to the implementation of urban heat prevention, adaptation, and mitigation strategies.

Effects of urban greenspace and socioeconomic factors on air conditioner use: A multilevel analysis in Beijing, China

High temperatures pose great threats to the health of urban populations. The use of air conditioners (AC) is an important adaptive means to reduce the morbidity and mortality of heat-related diseases. However, it remains unclear how exposure and sensitivity factors affect residents’ AC use. This study aimed to answer this question through a case study in 78 residential areas in Beijing, China. We conducted over 7,000 structured interviews during June 20-August 5, 2017 to learn respondents’ AC use, health conditions and socioeconomic status. We also used remote sensing data to obtain land surface temperature (LST) and proportion of greenspace in residential areas. We applied a multilevel logistic regression to assess the influences of these factors on probability of frequent AC use. The results showed mixed impacts from sensitivity factors on AC use. While respondents with chronic diseases were 14.7% more likely to use AC every day, probability of AC use decreased by 29.2% with the increase of age groups. Instead of economic cost, the main reason preventing respondents from using AC was “feeling uncomfortable” or consider it as “unhealthy”. At the scale of residential area, results did not find significant impact of LST on AC use, while proportion of greenspace posed a negative impact on probability of using AC every day even when LST was considered.

Increasing human-perceived heat stress risks exacerbated by urbanization in China: A comparative study based on multiple metrics

More than half of the total population in China are living in cities. Especially, the people in highly developed and spatially integrated city clusters, i.e., urban agglomerations (UAs), are facing increasing human-perceived heat stress that describes the combined effects of hot temperature, high humidity, and lowered surface wind speed. By analyzing multiple indicators over 20 major UAs across China, we demonstrate that summer heat stress has been significantly intensifying in nearly all UAs during 1971–2014. This intensification is more profound in northern than southern regions and is especially stronger in more urbanized and densely populated areas (e.g., Beijing-Tianjin-Hebei and the Yangtze River Delta). Based on a dynamic classification of weather stations using time-varying land use/land cover maps, we find that urban core areas exhibit distinctly stronger increasing heat stress trends than their surrounding rural areas. On average, urbanization contributes to approximately one-quarter of the total increase in mean heat stress over urban core areas of UAs and nearly half of the total increase in extreme heat stress events. The urbanization effect is also dependent on the geographical region within China. Urbanization tends to have stronger intensifying effects on heat stress in UAs with higher population density in low-altitude areas, while it has a relatively weaker intensifying and even weakening effect in some arid and high-altitude regions. Moreover, as various heat stress metrics may yield different estimations of long-term trend and urbanization contribution, the particular choice of heat stress indicator is of critical importance for investigations on this subject matter.

Mitigating extreme summer heat waves with the optimal water-cooling island effect based on remote sensing data from Shanghai, China

Due to the progress in global warming, the frequency, duration and intensity of climate extremes are increasing. As one of these extremes, heat waves influence the well-being of human beings and increase societies’ energy consumption. The Water-Cooling Island (WCI) effect of urban water bodies (UWBs) is important in urban heat wave mitigation. In this paper, the impact of WCI, especially the landscape pattern of the surrounding area, was explored. The results indicate that water bodies with a larger total area and simpler shape have a longer cooling effect. In the areas surrounding UWBs, a lower percentage or discrete distribution of impervious surfaces or green land provide a longer cooling effect. The amplitude of WCI is mainly decided by the impervious surface in the surrounding areas. A lower percentage or discrete distribution of impervious surfaces or green land leads to a smaller-amplitude WCI. The gradient is impacted by the shape of the UWB and surrounding green land. A complex shape and discrete distribution of green land lead to a higher gradient of WCI. The linear regress model was significant in terms of WCI range and gradient, while the model of WCI amplitude was not significant. This indicates that WCI is directly decided by impact factors through gradient and range. The conclusions provide a methodology for WCI prediction and optimization, which is important when mitigating summer heat waves.

Spatial analysis of urban residential sensitivity to heatwave events: Case studies in five megacities in China

Urban heatwaves increase residential health risks. Identifying urban residential sensitivity to heatwave risks is an important prerequisite for mitigating the risks through urban planning practices. This research proposes a new paradigm for urban residential sensitivity to heatwave risks based on social media Big Data, and describes empirical research in five megacities in China, namely, Beijing, Nanjing, Wuhan, Xi’an and Guangzhou, which explores the application of this paradigm to real-world environments. Specifically, a method to identify urban residential sensitive to heatwave risks was developed by using natural language processing (NLP) technology. Then, based on remote sensing images and Weibo data, from the perspective of the relationship between people (group perception) and the ground (meteorological temperature), the relationship between high temperature and crowd sensitivity in geographic space was studied. Spatial patterns of the residential sensitivity to heatwaves over the study area were characterized at fine scales, using the information extracted from remote sensing information, spatial analysis, and time series analysis. The results showed that the observed residential sensitivity to urban heatwave events (HWEs), extracted from Weibo data (Chinese Twitter), best matched the temporal trends of HWEs in geographic space. At the same time, the spatial distribution of observed residential sensitivity to HWEs in the cities had similar characteristics, with low sensitivity in the urban center but higher sensitivity in the countryside. This research illustrates the benefits of applying multi-source Big Data and intelligent analysis technologies to the understand of impacts of heatwave events on residential life, and provide decision-making data for urban planning and management.

Spatiotemporal assessment of extreme heat risk for high-density cities: A case study of Hong Kong from 2006 to 2016

High-density cities are faced with growing extreme hot weather driven by climate change and local urbanization, but localized heat risk detection is still at an early stage for most cities (Watts et al., 2019). This study developed a spatiotemporal hazard-exposure-vulnerability assessment of the extreme heat risk in Hong Kong for 2006, 2011, and 2016 integrating cumulative very hot day hours and hot night hours in summer, population density and a principal component analysis (PCA) of demo-socioeconomic characteristics. The risk was found spatially variant, and high-risk spots were identified at the community scale for both daytime and nighttime with underlying determinants behind. In both the daytime and the nighttime, high risk mainly occurred in the core urban areas. Nearly 10 more hot-spots were found in the nighttime than those in the daytime. Several old communities in Kowloon stayed at high risk from 2006 to 2016. Some new towns in the New Territories turned to be at higher risk in 2016 compared to 2006 and 2011, and this result showed signs to be emerging hot-spots in the near future. This study would be a useful reference for community-scale heat risk assessment and mitigation for the development of healthy and sustainable high-density cities.

Synergistic influence of local climate zones and wind speeds on the urban heat island and heat waves in the megacity of Beijing, China

Large-scale modifications to urban underlying surfaces owing to rapid urbanization have led to stronger urban heat island (UHI) effects and more frequent urban heat wave (HW) events. Based on observations of automatic weather stations in Beijing during the summers of 2014–2020, we studied the interaction between HW events and the UHI effect. Results showed that the UHI intensity (UHII) was significantly aggravated (by 0.55°C) during HW periods compared to non-heat wave (NHW) periods. Considering the strong impact of unfavorable weather conditions and altered land use on the urban thermal environment, we evaluated the modulation of HW events and the UHI effect by wind speed and local climatic zones (LCZs). Wind speeds in urban areas were weakened due to the obstruction of dense high-rise buildings, which favored the occurrence of HW events. In detail, 35 HW events occurred over the LCZ1 of a dense high-rise building area under low wind speed conditions, which was much higher than that in other LCZ types and under high wind speed conditions (< 30 HW events). The latent heat flux in rural areas has increased more due to the presence of sufficient water availability and more vegetation, while the increase in heat flux in urban areas is mainly in the form of sensible heat flux, resulting in stronger UHI effect during HW periods. Compared to NHW periods, lower boundary layer and wind speed in the HW events weakened the convective mixing of air, further expanding the temperature gap between urban and rural areas. Note that LCZP type with its high-density vegetation and water bodies in the urban park area generally exhibited, was found to have a mitigating effect on the UHI, whilst at the same time increasing the frequency and duration of HW events during HW periods. Synergies between HWs and the UHI amplify both the spatial and temporal coverage of high-temperature events, which in turn exposes urban residents to additional heat stress and seriously threatens their health. The findings have important implications for HWs and UHII forecasts, as well as for scientific guidance on decision-making to improve the thermal environment and to adjust the energy structure.

Urbanization magnified nighttime heat waves in China

Nighttime heat waves have greater impacts on human society than daytime because nighttime heat waves deprive humans to recover from daytime heat and increase energy consumption for cooling. In this study, we found increased occurrence and severity of nighttime heat waves across China during 1980-2017 based on measurements from more than 2,000 meteorological stations. The nighttime heat waves have been longer lasting and occurred more often in spring and fall. Compared to rural areas, urban areas have shown enhanced frequency, intensity, and duration of nighttime heat waves. Urbanization accounted for nearly 50% of the extended duration and nearly 40% of the enhanced intensity and frequency of nighttime heat waves in urban areas relative to rural areas. Urban expansion, causing reduced evapotranspiration and weakened wind speed that normally cools the lower atmosphere by turbulent heat loss and cooled air advection, led to nighttime urban heat island, thus magnifying nighttime heat extremes. Plain Language Summary Extreme temperature events will likely increase and cause severe damage to human society and natural ecosystem under climate change and urbanization. Compared to daytime, nighttime heat waves reduce people’s ability to cool off and prevent the human body recovering from daytime heat exposure, and therefore increase the risks of heat illnesses and deaths. Here, we show that nighttime heat waves have been more frequent, longer lasting, and severer, and occurred increasingly in spring and fall in China. These changes have been more intensive in urban areas than their surrounding rural areas. Urbanization accounted for nearly 50% of the extended duration, and nearly 40% of the enhanced intensity and frequency of nighttime heat waves in urban areas relative to rural areas. Nighttime urban heat island due to rapid urban expansion magnified nighttime heat extremes.

Comprehensive risk assessment of typical high-temperature cities in various provinces in China

Global climate change results in an increased risk of high urban temperatures, making it crucial to conduct a comprehensive assessment of the high-temperature risk of urban areas. Based on the data of 194 meteorological stations in China from 1986 to 2015 and statistical yearbooks and statistical bulletins from 2015, we used GIS technology and mathematical statistics to evaluate high-temperature spatial and temporal characteristics, high-temperature risk, and high-temperature vulnerability of 31 cities across China. Over the past 30 years, most Chinese cities experienced 5-8 significant oscillation cycles of high-temperature days. A 15-year interval analysis of high-temperature characteristics found that 87% of the cities had an average of 5.44 more high-temperature days in the 15-year period from 2001 to 2015 compared to the period from 1986 to 2000. We developed five high-temperature risk levels and six vulnerability levels. Against the background of a warming climate, we discuss risk mitigation strategies and the importance of early warning systems.

Comparing cooling efficiency of shading strategies for pedestrian thermal comfort in street canyons of traditional shophouse neighbourhoods in Guangzhou, China

In the context of climate change, the outdoor thermal environment is essential for urban health, particularly in hot and humid climate zones. In most cities in southern China, traditional shophouse neighbourhoods are regarded as a reference for climate-responsive urban morphology because multiple shading strategies are integrated, including deep canyons, semi-open arcades, and vegetation. In total, four shading strategies, namely, the height-to-width ratio of canyons and arcades, tree coverage area, and orientation, are employed in this study to compare their cooling efficiency in street canyons during summer daytime. The ENVI-met is employed for the microclimatic simulations and validated by site measurement data. The impact of varying sky view factor on the physiologically equivalent temperature was quantified to assess the cooling efficiency of each shading strategy. Our results demonstrate that the cooling efficiency of orientations varies significantly with sky view factor and is negatively associated with pedestrian thermal comfort in alleys, but positive in street canyons with arcades and trees. Varying the height-to-width ratio of canyons in arcade streets presents the best cooling efficiency, except in the east-west orientation. Shading by arcades shows a slightly higher cooling efficiency than tree coverage.

Sports related heat injury in Victoria, Australia: An analysis of 11 years of hospital admission and emergency department data

OBJECTIVES: Heat injuries have become a considerable health risk for sport and exercise participants in Australia. This study seeks to update the Australian sports case numbers by considering data from hospital admission and emergency department (ED) presentations (collectively referred to as total hospitalisations). Specifically, this study aimed to report epidemiological features (incidence and case characteristics) for sport related heat injury (SRHI) cases treated in hospital, over an 11-year period in Victoria, Australia. DESIGN: Analysis of administrative health data. METHODS: Data were extracted from the Victorian Injury Surveillance Unit for hospital admissions and ED presentations separately using diagnosis and activity codes (focused on subgroups of T67 – effects of heat and light and U5000-U7100). Descriptive data were reported by age, sex, financial year and activity, and population trends reported for SRHI incidence rate. RESULTS: A total of 323 SRHI cases (ED=142, 44%; admissions=181, 56%) were identified, representing 10.2% of all heat injury cases (non-sport cases=2834). The highest number of SRHI cases were in golf (n=43, 13.3%) and lawn bowls (n=38, 11.8%). The age groups >65 and 15-34years reported a total of 114 cases (35.3%) and 106 cases (32.8%), respectively. CONCLUSIONS: Findings were consistent with previous Australian studies with SRHI comprising 10% of all heat injury cases. Strategies for SRHI awareness can be aimed at the age and sport groups with greater representation in the cases identified. We had expected several-times more ED presentations than admissions, suggesting fewer of the mild-moderate cases of SRHI attend for emergency care and that alternative data are needed to capture these.

Cooling power of sea breezes and its inland penetration in dry-summer Adelaide, Australia

Extreme high-temperature events pose a threat to human beings on Earth. In coastal cities, the sea breeze is widely known as a prevailing wind that can cool the near-surface air. However, the cumulative cooling effect and its attenuation process during the sea breeze penetration have not been well investigated. In this study, we analyze sea breeze cooling capacity (SBCC) and propose a new method in estimating the penetration distance of sea breeze cooling in metropolitan Adelaide during summer using data from the Adelaide urban heat island monitoring network. The results show that during a sea breeze day, wind direction rapidly changes from southeast to southwest in the morning, and it gradually returns to southeast in the afternoon. It takes 67 min on average for the sea breeze cooling fronts to penetrate inside metropolitan Adelaide. The SBCC value is 21.3 degrees C h per event averaged spatially in Adelaide summer. During the penetration process, the SBCC values decrease at a rate of 0.7 and 0.9 degrees C h per kilometer from coast to inland on an average sea breeze day and a hot sea breeze day, respectively. Correspondingly, the mean cooling penetration distances are 42 and 29 km along the prevailing wind path. A multiple linear regression analysis indicates that the distance from the coast and elevation at the onshore point together explain 88% of the spatial variability of the temporally average SBCC in the study area. The spatial pattern and penetration distance of the cumulative sea breeze cooling effect contribute to a better understanding of this common cooling source for heat mitigation in coastal cities where a large number of people reside.

Nexus of heat-vulnerable chronic diseases and heatwave mediated through tri-environmental interactions: A nationwide fine-grained study in Australia

The warming trend over recent decades has already contributed to the increased prevalence of heat-vulnerable chronic diseases in many regions of the world. However, understanding the relationship between heat-vulnerable chronic diseases and heatwaves remains incomplete due to the complexity of such a relationship mingling with human society, urban and natural environments. Our study extends the Social Ecological Theory by constructing a tri-environmental conceptual framework (i.e., across social, built, and natural environments) and contributes to the first nationwide study of the relationship between heat-vulnerable chronic diseases and heatwaves in Australia. We utilize the random forest regression model to explore the importance of heatwaves and 48 tri-environmental variables that contribute to the prevalence of six types of heat-vulnerable diseases. We further apply the local interpretable model-agnostic explanations and the accumulated local effects analysis to interpret how the heat-disease nexus is mediated through tri-environments and varied across urban and rural space. The overall effect of heatwaves on diseases varies across disease types and geographical contexts (latitudes; inland versus coast). The local heat-disease nexus follows a J-shape function-becoming sharply positive after a certain threshold of heatwaves-reflecting that people with the onset of different diseases have various sensitivity and tolerance to heatwaves. However, such effects are relatively marginal compared to tri-environmental variables. We propose a number of policy implications on reducing urban-rural disparity in Healthcare and service distribution, delineating areas, and identifying the variations of sensitivity to heatwaves across urban/rural space and disease types. Our conceptual framework can be further applied to examine the relationship between other environmental problems and health outcomes.

Maternal factors and risk of spontaneous preterm birth due to high ambient temperatures in New South Wales, Australia

BACKGROUND: Exposure to high ambient temperatures has been shown to increase the risk of spontaneous preterm birth. Determining which maternal factors increase or decrease this risk will inform climate adaptation strategies. OBJECTIVES: This study aims to assess the risk of spontaneous preterm birth associated with exposure to ambient temperature and differences in this relationship between mothers with different health and demographic characteristics. METHODS: We used quasi-Poisson distributed lag non-linear models to estimate the effect of high temperature-measured as the 95th percentile of daily minimum, mean and maximum compared with the median-on risk of spontaneous preterm birth (23-36 weeks of gestation) in pregnant women in New South Wales, Australia. We estimated the cumulative lagged effects of daily temperature and analyses on population subgroups to assess increased or decreased vulnerability to this effect. RESULTS: Pregnant women (n = 916,678) exposed at the 95th percentile of daily mean temperatures (25°C) had an increased risk of preterm birth (relative risk 1.14, 95% confidence interval 1.07, 1.21) compared with the median daily mean temperature (17°C). Similar effect sizes were seen for the 95th percentile of minimum and maximum daily temperatures compared with the median. This risk was slightly higher among women with diabetes, hypertension, chronic illness and women who smoked during pregnancy. CONCLUSIONS: Higher temperatures increase the risk of preterm birth and women with pre-existing health conditions and who smoke during pregnancy are potentially more vulnerable to these effects.

Attributable risks of hospitalizations for urologic diseases due to heat exposure in Queensland, Australia, 1995-2016

BACKGROUND: Heat exposure is a risk factor for urologic diseases. However, there are limited existing studies that have examined the relationship between high temperatures and urologic disease. The aim of this study was to examine the associations between heat exposure and hospitalizations for urologic diseases in Queensland, Australia, during the hot seasons of 1995-2016 and to quantify the attributable risks. METHODS: We obtained 238 427 hospitalized cases with urologic diseases from Queensland Health between 1 December 1995 and 31 December 2016. Meteorological data were collected from the Scientific Information for Land Owners-a publicly accessible database of Australian climate data that provides daily data sets for a range of climate variables. A time-stratified, case-crossover design fitted with the conditional quasi-Poisson regression model was used to estimate the associations between temperature and hospitalizations for urologic diseases at the postcode level during each hot season (December-March). Attributable rates of hospitalizations for urologic disease due to heat exposure were calculated. Stratified analyses were performed by age, sex, climate zone, socio-economic factors and cause-specific urologic diseases. RESULTS: We found that a 1°C increase in temperature was associated with a 3.3% [95% confidence interval (CI): 2.9%, 3.7%] increase in hospitalization for the selected urologic diseases during the hot season. Hospitalizations for renal failure showed the strongest increase 5.88% (95% CI: 5.25%, 6.51%) among the specific causes of hospital admissions considered. Males and the elderly (≥60 years old) showed stronger associations with heat exposure than females and younger groups. The sex- and age-specific associations with heat exposure were similar across specific causes of urologic diseases. Overall, nearly one-fifth of hospitalizations for urologic diseases were attributable to heat exposure in Queensland. CONCLUSIONS: Heat exposure is associated with increased hospitalizations for urologic disease in Queensland during the hot season. This finding reinforces the pressing need for dedicated public health-promotion campaigns that target susceptible populations, especially for those more predisposed to renal failure. Given that short-term climate projections identify an increase in the frequency, duration and intensity of heatwaves, this public health advisory will be of increasing urgency in coming years.

Mortality burden of heatwaves in Sydney, Australia is exacerbated by the urban heat island and climate change: Can tree cover help mitigate the health impacts?

Heatwaves are associated with increased mortality and are exacerbated by the urban heat island (UHI) effect. Thus, to inform climate change mitigation and adaptation, we quantified the mortality burden of historical heatwave days in Sydney, Australia, assessed the contribution of the UHI effect and used climate change projection data to estimate future health impacts. We also assessed the potential for tree cover to mitigate against the UHI effect. Mortality (2006-2018) records were linked with census population data, weather observations (1997-2016) and climate change projections to 2100. Heatwave-attributable excess deaths were calculated based on risk estimates from a published heatwave study of Sydney. High resolution satellite observations of UHI air temperature excesses and green cover were used to determine associated effects on heat-related mortality. These data show that >90% of heatwave days would not breach heatwave thresholds in Sydney if there were no UHI effect and that numbers of heatwave days could increase fourfold under the most extreme climate change scenario. We found that tree canopy reduces urban heat, and that widespread tree planting could offset the increases in heat-attributable deaths as climate warming progresses.

Intensifying Australian heatwave trends and their sensitivity to observational data

Heatwaves are an accustomed extreme event of the Australian climate, which can cause catastrophic impacts on human health, agriculture, and urban and natural systems. We have analyzed the trends in Australia-wide heatwave metrics (frequency, duration, intensity, number, cumulative magnitude, timing, and season duration) across 69 extended summer seasons (i.e., from November-1951 to March-2020). Our findings not only emphasize that heatwaves are becoming hotter, longer, and more frequent, but also signify that they are occurring with excess heat, commencing much earlier, and expanding their season over many parts of Australia in recent decades. The Australian heatwave trends have strengthened since last observed Australian study was conducted. We also investigated the heatwave and severe heatwave trends at a local city-scale using three different observational products (AWAP and SILO gridded datasets and ACORN_SATV2 station data) over selected time periods (1911-2019, 1911-1964, and 1965-2019). Results suggest that heatwave trends are noticeably different amongst the three datasets. However, the results highlight that the severe heatwave cumulative magnitude and their season duration have been increasing significantly in recent decades over Australia’s southern coastal cities (like Melbourne and Adelaide). The climatological mean of the most heatwave and severe heatwave metrics is substantially higher in recent decades compared to earlier periods across all the cities considered. The findings of our study have significant implications for the development of advanced heatwave planning and adaptation strategies.

Projected changes in the frequency of climate extremes over southeast Australia

Most studies evaluating future changes in climate extremes over Australia have examined events that occur once or more each year. However, it is extremes that occur less frequently than this that generally have the largest impacts on sectors such as infrastructure, health and finance. Here we use an ensemble of high resolution (similar to 10 km) climate projections from the NSW and ACT Regional Climate Modelling (NARCliM) project to provide insight into how such rare events may change over southeast Australia in the future. We examine changes in the frequency of extremes of heat, rainfall, bushfire weather, meteorological drought and thunderstorm energy by the late 21st century, focusing on events that currently occur once every 20 years (those with a 5% Annual Exceedance Probability). Overall the ensemble suggests increases in the frequency of all five extremes. Heat extremes exhibit the largest change in frequency and the greatest ensemble agreement, with current 1-in-20 year events projected to occur every year in central Australia and at least every 5 years across most of southeast Australia, by the late 21st century. The five capital cities included in our model domain are projected to experience multiple climate extremes more than twice as frequently in the late 21st century, with some cities projected to experience 1-in-20 year events more than six times as frequently. Although individual simulations show decreases in some extremes in some locations, there is no strong ensemble agreement for a decrease in any of the climate extremes over any part of southeast Australia. These results can support adaptation planning and should motivate further research into how extremely rare events will change over Australia in the future.

Ambulance dispatches and heatwaves in Tasmania, Australia: A case-crossover analysis

BACKGROUND: Climate change is causing an increase in the frequency and severity of heatwave events, with a corresponding negative impact on human health. Health service utilisation during a heatwave is increased, with a greater risk of poor health outcomes identified for specific population groups. In this study, we examined the impact of heatwave events on ambulance dispatches in Tasmania, Australia from 2008 to 2019 to explore health service utilisation and identify the most vulnerable populations at a local level. METHODS: We used a time-stratified case-crossover analysis with conditional logistic regression to examine the association between ambulance dispatches and three levels of heatwave events (extreme, severe, and low-intensity). We examined the relationship for the whole study population, and by age, gender, socio-economic advantage and clinical diagnostic group. RESULTS: We found that ambulance dispatches increase by 34% (OR 1.34, 95% CI 1.18-1.52) during extreme heatwaves, by 10% (OR 1.10, 95% CI 1.05-1.15) during severe heatwaves and by 4% (OR 1.04, 95% CI 1.02-1.06) during low-intensity heatwaves. We found significant associations for the elderly (over 65), the young (5 and under) and for regions with the greatest socio-economic disadvantage. CONCLUSION: Heatwaves were associated with increased demands on ambulance services in Tasmania. In subgroups of people aged over 65 or under 5 years of age, and those from areas of higher disadvantage, we generally observed greater effect sizes than for the population as a whole.

Heatwave fatalities in Australia, 2001-2018: An analysis of coronial records

Historically, heatwaves are Australia’s most destructive natural hazard in terms of loss of life. This study analyses statistics of fatalities associated with heatwaves in Australia from 2001 to 2018 as noted by a Coroner. At least 473 heat-related deaths were reported to a Coroner during the period of research, of which 354 occurred during heatwave conditions and, of these, 244 within buildings. Most indoor heatwave fatalities occurred in older housing stock. There was no overall trend in the number or rate of fatalities but, rather, a record of generally low numbers with periodic excursions into very high numbers. Almost two-thirds (63%) of heatwave fatalities occurred during two severe heatwave years: 2009 and 2014. The record was dominated by male fatalities. The risk of dying in a heatwave increased with age, socio-economic disadvantage, social isolation, geographical remoteness, the presence of disabilities (physical or mental) and some prescribed medications and the absence or non-use of air conditioning or other building heat protection. Other risk factors and behaviours were examined and recommendations to decrease future heatwave deaths suggested.

Increased ratio of summer to winter deaths due to climate warming in Australia, 1968-2018

OBJECTIVE: To determine if global warming has changed the balance of summer and winter deaths in Australia. METHODS: Counts of summer and winter cause-specific deaths of subjects aged 55 and over for the years 1968-2018 were entered into a Poisson time-series regression. Analysis was stratified by states and territories of Australia, by sex, age and cause of death (respiratory, cardiovascular, and renal diseases). The warmest and coldest subsets of seasons were compared. RESULTS: Warming over 51 years was associated with a long-term increase in the ratio of summer to winter mortality from 0.73 in the summer of 1969 to 0.83 in the summer of 2018. The increase occurred faster in years that were warmer than average. CONCLUSIONS: Mortality in the warmest and coldest times of the year is converging as annual average temperatures rise. Implications for public health: If climate change continues, deaths in the hottest months will come to dominate the burden of mortality in Australia.

High-heat days and presentations to emergency departments in regional Victoria, Australia

Heat kills more Australians than any other natural disaster. Previous Australian research has identified increases in Emergency Department presentations in capital cities; however, little research has examined the effects of heat in rural/regional locations. This retrospective cohort study aimed to determine if Emergency Department (ED) presentations across the south-west region of Victoria, Australia, increased on high-heat days (1 February 2017 to 31 January 2020) using the Rural Acute Hospital Data Register (RAHDaR). The study also explored differences in presentations between farming towns and non-farming towns. High-heat days were defined as days over the 95th temperature percentile. International Statistical Classification of Diseases and Related Health Problems, Tenth Revision, Australian Modification (ICD-10-AM) codes associated with heat-related illness were identified from previous studies. As the region has a large agricultural sector, a framework was developed to identify towns estimated to have 70% or more of the population involved in farming. Overall, there were 61,631 presentations from individuals residing in the nine Local Government Areas. Of these presentations, 3064 (5.0%) were on days of high-heat, and 58,567 (95.0%) were of days of non-high-heat. Unlike previous metropolitan studies, ED presentations in rural south-west Victoria decrease on high-heat days. This decrease was more prominent in the farming cohort; a potential explanation for this may be behavioural adaption.

Evaluating cost benefits from a heat health warning system in Adelaide, South Australia

OBJECTIVE: To examine the cost benefits of a heat health warning system (HHWS) in South Australia. METHODS: Information from key agencies was used to estimate the costs associated with the South Australian HHWS, including for three targeted public health interventions. Health cost savings were estimated based on previously reported HHWS-attributable reductions in hospital and emergency department (ED) admissions and ambulance callouts. RESULTS: The estimated cost for a one-week activation of the HHWS was AU$593,000. Activation costs compare favourably with the potential costs averted through HHWS-attributable reductions in hospital admissions and ambulance callouts with an estimated benefit-cost ratio of 2.0-3.3. CONCLUSIONS: On the basis of estimated cost benefit, the South Australian HHWS is a no-regret public health response to heatwaves. IMPLICATIONS FOR PUBLIC HEALTH: As global temperatures rise there are likely to be significant health impacts from more frequent and intense heatwaves. This study indicates that HHWSs incorporating targeted supports for vulnerable groups are likely to be cost-effective public health interventions.

Emergency department visits and associated healthcare costs attributable to increasing temperature in the context of climate change in Perth, Western Australia, 2012-2019

Increasing temperature and its impact on population health is an emerging significant public health issue in the context of climate change in Australia. While previous studies have primarily focused on risk assessment, very few studies have evaluated heat-attributable emergency department (ED) visits and associated healthcare costs, or projected future health and economic burdens. This study used a distributed lag non-linear model to estimate heat attributable ED visits and associated healthcare costs from 13 hospitals in Perth, Western Australia, and to project the future healthcare costs in 2030s and 2050s under three climate change scenarios-Representative Concentration Pathways (RCPs)2.6, RCP4.5 and RCP8.5. There were 3697 ED visits attributable to heat (temperatures above 20.5 degrees C) over the study period 2012-2019, accounting for 4.6% of the total ED visits. This resulted in AU$ 2.9 million in heat-attributable healthcare costs. The number of ED visits projected to occur in the 2030s and 2050s ranges from 5707 to 9421 under different climate change scenarios, which would equate to AU$ 4.6-7.6 million in heat associated healthcare costs. The heat attributable fraction for ED visits and associated healthcare costs would increase from 4.6% and 4.1% in 2010s to 5.0%-6.3% and 4.4%-5.6% in 2030s and 2050s, respectively. Future heat attributable ED visits and associated costs will increase in Perth due to climate change. Excess heat will generate a substantial population health challenge and economic burdens on the healthcare system if there is insufficient heat adaptation. It is vital to reduce greenhouse gas emissions, develop heat-related health interventions and optimize healthcare resources to mitigate the negative impact on the healthcare system and population health in the face of climate change.

Extreme heat and adverse cardiovascular outcomes in Australia and New Zealand: What do we know?

Extreme heat events are a leading natural hazard risk to human health. Under all future climate change models, extreme heat events will continue to increase in frequency, duration, and intensity. Evidence from previous extreme heat events across the globe demonstrates that adverse cardiovascular events are the leading cause of morbidity and mortality, particularly amongst the elderly and those with pre-existing cardiovascular disease. However, less is understood about the adverse effects of extreme heat amongst specific cardiovascular diseases (i.e., heart failure, dysrhythmias) and demographics (sex, ethnicity, age) within Australia and New Zealand. Furthermore, although Australia has implemented regional and state heat warning systems, most personal heat-health protective advice available in public health policy documents is either insufficient, not grounded in scientific evidence, and/or does not consider clinical factors such as age or co-morbidities. Dissemination of evidence-based recommendations and enhancing community resilience to extreme heat disasters within Australia and New Zealand should be an area of critical focus to reduce the burden and negative health effects associated with extreme heat. This narrative review will focus on five key areas in relation to extreme heat events within Australia and New Zealand: 1) the potential physiological mechanisms that cause adverse cardiovascular outcomes during extreme heat events; 2) how big is the problem within Australia and New Zealand?; 3) what the heat-health response plans are; 4) research knowledge and translation; and, 5) knowledge gaps and areas for future research.

Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale

Information on the spatiotemporal characteristics of Beijing’s urban-rural near-surface air temperature difference, known as the canopy layer urban heat island (UHI), is important for future urban climate management strategies. This paper investigates the variation of near-surface air temperatures within Beijing at a neighbourhood-scale resolution (similar to 100 m) during winter 2016 and summer 2017. We perform simulations using the urban climate component of the ADMS-Urban model with land surface parameters derived from both local climate zone classifications and OpenStreetMap land use information. Through sensitivity simulations, the relative impacts of surface properties and anthropogenic heat emissions on the temporal variation of Beijing’s UHI are quantified. Measured UHI intensities between central Beijing (Institute of Atmospheric Physics) and a rural site (Pinggu) during the Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-China) campaigns, peak during the evening at similar to 4.5 degrees C in both seasons. In winter, the nocturnal UHI is dominated by anthropogenic heat emissions but is underestimated by the model. Higher-resolution anthropogenic heat emissions may capture the effects of local sources (e.g. residential buildings and adjacent major roads). In summer, evening UHI intensities are underestimated, especially during heatwaves. The inability to fully replicate the prolonged release of heat stored in the urban fabric may explain this. Observed negative daytime UHI intensities in summer are more successfully captured when surface moisture levels in central Beijing are increased. However, the spatial correlation between simulated air temperatures and satellite-derived land surface temperatures is stronger with a lower urban moisture scenario. This result suggests that near-surface air temperatures at the urban meteorological site are likely influenced by fine-scale green spaces that are unresolved by the available land cover data and demonstrates the expected differences between surface and air temperatures related to canopy layer advection. This study lays the foundations for future studies of heat-related health risks and UHI mitigation strategies across Beijing and other megacities.

Accessing the heat exposure risk in Beijing-Tianjin-Hebei region based on heat island footprint analysis

The urbanization process leads to the enhancement of the urban heat island (UHI) effect, and the high temperature brought by it exacerbates the risk of heat exposure and seriously endangers human health. Analyzing the spatiotemporal characteristics and levels of heat exposure risk is important for formulating heat risk prevention and control measures. Therefore, this study analyzes the spatiotemporal characteristics of heat exposure risk based on the UHI footprint (FP) and explores the relationship between it and urbanization factors in the Beijing-Tianjin-Hebei (BTH) region from 2000 to 2020, and obtains the following conclusions: (1) The BTH region suffers from severe UHI problems, with FP ranging from 6.05 km (Chengde) to 32.51 km (Beijing), and the majority of cities show significant trends of FP increase. (2) With the increase in FP, massive populations are exposed within the heat risk areas, with the average annual population at risk across cities ranging from 269,826 (Chengde) to 166,020,390 (Beijing), with a predominance of people exposed to high risk (more than 65% of the total) and generally showing increasing trends. (3) The population at risk of heat exposure is significantly correlated with urbanization factors, indicating that urbanization is an important reason for the increase in the risk population and the enhancement of the risk level. These results suggest that with the continuous urbanization process, the heat exposure risk problem faced by cities in the BTH region will persist and gradually worsen, which must be paid attention to and effective mitigation measures must be taken.

Heat stress in Beijing and its relationship with boundary layer structure and air pollution

Both extreme heat and heavy air pollution can cause adverse health impacts on urban inhabitants. To understand heat stress and its relationship with boundary layer structure and air pollution in Beijing, this study analyzed surface meteorological observations, radiosonde measurements, and ground-level PM2.5 and O3 concentrations in summer from 2015 to 2019, in conjunction with simulated air quality and MERRA-2 data. We measured the heat stress using a heat index that combines temperature and humidity to quantify the sensible temperature as perceived by humans, and found that high heat risk in Beijing was often associated with a low boundary layer height and poor air quality. To reveal the underlying physical mechanism involved, we objectively classified the synoptic conditions in North China. The typical synoptic pattern associated with the coupling of heat and pollution in Beijing was found to feature a southeast-to-north pressure gradient at the 700-hPa level, leading to westward warm advection above planetary boundary layer (PBL) and southward movement of warm, humid, and polluted air masses within the PBL towards Beijing. The elevated warm advection can enhance the capping of thermal inversion over the PBL and suppress the PBL’s development and the vertical dispersion of pollutants. With mountains to the north and west, pollutants and heat can be trapped in a limited volume in Beijing, increasing the health risk from heat and pollution. These findings on the meteorological mechanisms of the coupling between heat and pollution in Beijing may have important implications for limiting the current health risk and preparing for any projected changes in it in the future.

Influential factors of age-friendly neighborhood open space under high-density high-rise housing context in hot weather: A case study of public housing in Hong Kong

The growing elderly population living in high density cities undergoing mass urbanization raises concerns over age-friendliness of neighborhood open space, an essential component for healthy aging-in-place as elderly tend to spend most of their time at home and immediate home environment. This study discusses factors that influence age-friendly open space design pertaining to outdoor thermal environment and physical design element for highdensity high-rise housing in hot weather, using the case of public housing developments in Hong Kong. Field measurements, observations and linear regression data analyses are used to understand dynamic thermal condition, adaptive elderly user behavior and response to planned open space. It is demonstrated that four influential factors are important to correlate with elderly residents’ use of open space: 1) mean radiant temperature (MRT); 2) air temperature; 3) greenery; and 4) outdoor seating. Moreover, it is found that MRT, specifically longwave MRT, is the most influential and impacts the effectiveness of greenery and outdoor seating. In addition, the study proposes guide points to reflect the effect of each factor and shed more insight into improving age-friendly neighborhood open space design against climate-change induced heat-related health issues.

Heat health risk and adaptability assessments at the subdistrict scale in metropolitan Beijing

Against the background of global climate change, the increasing heat health risk from the combined effect of changes in high temperature, exposure, vulnerability, and other factors has become a growing concern. Yet the low number of temperature observation stations is insufficient to represent the complex changes in urban heatwaves, and subdistrict-scale (town, township, neighborhood committee, and equivalent) heat health risk and adaptability assessments are still limited. In this study, we built daytime and nighttime high-temperature interpolation models supported by data from 225 meteorological stations in Beijing. The models performed well at interpolating the cumulative hours of high temperature and the interpolation quality at night was better than that during the day. We further established a methodological framework for heat health risk and adaptability assessments based on heat hazard, population exposure, social vulnerability, and adaptability at the subdistrict scale in Beijing. Our results show that the heat health risk hotspots were mainly located in the central urban area, with 81 hotspots during the day and 76 at night. The average value of the heat health risk index of urban areas was 5.60 times higher than that of suburban areas in the daytime, and 6.70 times higher than that of suburban areas in the night. Greater population density and higher intensity of heat hazards were the main reasons for the high risk in most heat health risk hotspots. Combined with a heat-adaptive-capacity evaluation for hotspot areas, this study suggests that 11 high-risk and low-adaptation subdistricts are priority areas for government action to reduce heat health risk in policy formulation and urban development.

Risk factors associated with heat-related illness among sugarcane farmers in Thailand

Heatstroke is defined as severe symptoms of heat-related illness, which could lead to death. Sugarcane farmers are at high risk of heatstroke under extremely hot outdoor working conditions. We explored the prevalence of heat-related illness symptoms and risk factors related to heat-related illness among sugarcane farmers working in the summer. We conducted a cross-sectional study using questionnaire interviews among 200 sugarcane farmers in Kamphaeng Phet Province, Thailand. The questionnaire addressed demographics, heat-related symptoms experienced during summer at work, and occupational factors. Bioelectrical impedance analysis was used to assess body mass index and body fat percentage. Watson formula equations were used to estimate total body water. The prevalence of heat-related illness symptoms was 48%; symptoms included heavy sweating, weakness/fatigue, dizziness, muscle cramps, headache, and vertigo. Factors associated with heat-related illness included women and clothing. Sugarcane farmers wearing two-layer shirts had a higher risk of heat-related illness. Farmers with fluid intake 3.1-5.0 liters per day had a 79% lower risk of heat-related illness. Our findings demonstrated that sugarcane farmers are at risk of heat-related illness. We confirmed that working conditions, including wearing proper clothing and water-drinking habits, can reduce this risk.C

On the mitigation potential and climatic impact of modified urban albedo on a subtropical desert city

Extreme urban heat alongside higher ambient temperatures in urban areas causes serious energy, comfort, health and environmental problems. The implementation of urban heat mitigation techniques can significantly reduce urban temperatures and counterbalance the impact of extreme urban heat. This study assesses the potential cooling ability of modified urban albedo strategies through the implementation of reflective and super reflective materials, as well as the global climatic impacts on a subtropical desert urban environment in Dubai, UAE. Three scenarios using low, average and high albedo modifications are designed and evaluated in parallel to a reference scenario. A physically-based mesoscale urban modeling system is used to assess the thermal and meteorological impacts of the albedo modifications during both the summer and winter seasons at a city scale. The reduction of ambient temperature during the peak of a summer day (14:00 LT) is shown to be 0.6 degrees C, 1.4 degrees C and 2.6 degrees C when urban albedo is increased by 0.20, 0.45 and 0.60 respectively. The winter cooling penalty ranges between 0.6 degrees C and 1.1 degrees C for the different albedo scenarios. The increase of the urban albedo also significantly reduces the planetary boundary layer (PBL) depth due to the loss of sensible heat and decreases the intensity of the convective mixing and advection flows from the desert to the city, improving the mitigation potential of the reflective materials; however this increases the risk of a higher pollutants concentration. A much higher mitigation potential is observed for the high-density parts of the city when compared to that of the low-density parts of the city. Irrespective of linear function in the drop of ambient temperature and changing fraction of global albedo, our results reported that the cooling potential of reflective materials is highly influenced by the climate, landscape, and urban characteristics of the cities.

Differing spatial patterns of the urban heat exposure of elderly populations in two megacities identifies alternate adaptation strategies

Mapping the elderly population exposure to heat hazard in urban areas is important to inform adaptation strategies for increasingly-deadly urban heat under climate change. However, fine-scale mapping is lacking, because global climate change projections have not previously been integrated with urban heat island effects especially with urban three-dimensional characteristics for within-city heat risk analyses. This study compared the spatial patterns of deadly heat exposure for elderly populations in two East Asian megacities, Seoul and Tokyo, using current climate (2006-2015) and two future periods (2040s and 2090s). We integrated global warming projections (the Shared Socioeconomic Pathway 5 based on Representative Concentration Pathway 8.5) with local urban characteristics and demographics. We found that, for the historical period, the overall hotspots of elderly population exposure to urban heat was larger in Tokyo because of relatively higher maximum air temperatures and lack of green spaces, whereas in the future periods, Seoul will have larger hotspots because the elderly population density will have increased. About 20% of the area in Seoul and 0.3-1% of Tokyo will be hotpots in the 2040s, and the size of these hotspots increases to 25-26% and 2-3%, respectively, in the 2090s. The spatial patterns of hotspots identify different types of priority areas and suggest that alternative adaptation strategies for two cities are appropriate. The approach introduced here will be useful for identifying sustainable thermal environments in other cities with high density elderly population and severe heat hazard. (c) 2021 Elsevier B.V. All rights reserved.

More urban greenspace, lower temperature? Moving beyond net change in greenspace

Urban heat islands (UHI) exacerbates the heat-related risk associated with global warming, increasing morbidity and mortality of urban residents. While the impacts of the spatial pattern of urban greenspace (UG) and its change on urban heat have been widely examined, there is less understanding of the aggregate effect of the change of UG-considering the loss and gain of UG simultaneously -on urban temperature. This study aims to fill this gap by using Beijing, China as a case study. Using a newly developed index -dynamic index of UG (UGDI) that simultaneously measures the loss and gain of UG in a certain unit of analysis, we investigated how changes in UG affect the daytime and nighttime land surface temperature (LST). We found: (1) A substantial proportion (49.90%) of grids with increased UG cover had increased LST during the daytime, with a magnitude ranging from 0.02 to 1.82 ?, indicating that the increase in UG does not always result in reduction of LST. (2) UGDI had a significantly positive correlation with LST change, suggesting that increase in UG does not necessarily result in decrease of LST, which can be affected by the degree of dynamics of UG. (3) The evapotranspiration (ET) rate of vegetation for lost greenspace was higher than that of new greenspace, indicating that adding the same amount of UG might not able to provide the same amount of cooling effects provided by lost ones. Results can enhance our understanding on how (landscape) process affects ecological effect. Future research and practical manage-ment strategies shall move beyond net increase of UG and focus more on its change process. This finding provides new evidence for explaining the effect of the change of UG on LST, and offers new insights for planning and managing urban natural resource to enhance resilience of cities to climate warming.

Quantitative evaluation of the mitigation effect of low-impact development pavement materials on urban heat island and tropical night phenomena

Rapid urbanization has led to altered thermal circulations in major cities that are responsible for the increasing occurrence of urban heat islands (UHIs) and events such as tropical nights and heat waves. To effectively mitigate such events, low-impact development (LID) and green infrastructure strategies have been developed. In Korea, LID techniques focus mainly on road pavement materials; however, issues regarding the reliability of measurements due to differences in the measurement equipment and studied specimens persist. This study presents the design of a green infrastructure surface temperature measurement (GSTM) instrument and a reliable methodology developed to evaluate the performance of pavement materials under controlled climate conditions. The developed GSTM instrument and methodology were tested by monitoring the surface temperature of materials based on LID practices and dense-graded asphalt and evaluating their ability to mitigate UHI and tropical night phenomena. The experiments were conducted under controlled climate conditions, using summer climate conditions of Seoul’s typical meteorological year data. The UHI and tropical night phenomena mitigation performance of the pavement materials was evaluated by analyzing the correlation between the pavement materials’ albedo and surface temperature using porous block specimens of different colors and LID-based pavement materials. The greening block recorded the most significant reduction in surface temperature, showing a difference of 22.6 °C, 185 min to the dense-graded asphalt. The white and yellow porous blocks showed surface temperature differences of 10.2 °C and 8.2 °C respectively compared to the dense-graded asphalt. The results revealed that pavement materials with higher albedo, more evaporation, and lower heat capacity have superior performance in mitigating UHI and tropical night events.

Persistent increases in nighttime heat stress from urban expansion despite heat island mitigation

Urban areas generally have higher near-surface air temperature and lower air humidity than rural areas. Little is known about how heat stress, the combined effect of high air temperature and high humidity on human physiology, will be affected by future urban land expansion. Here we use a mesoscale numerical weather prediction model to examine the effects of urban land expansion from 2000 to 2050 on heat stress (measured as wet-bulb globe temperature, WBGT) in the urban areas of China, India, and Nigeria, which are projected to account for one-third of global urban population growth through 2050. Our results show that urban expansion slightly reduces heat stress during the day (similar to 0.2 degrees C) but substantially intensifies it at night, by similar to 1 degrees C on average and by up to 2-3 degrees C in five mega-urban regions (MURs). These effects exist with or without climate change induced by rising concentrations of greenhouse gases (GHGs). Installing cool roofs-an urban heat island mitigation measures-can reduce the daytime WBGT by 0.5-1 degrees C, partially offsetting the heat stress conditions caused by GHG-induced climate change. However, even with cool roofs, the nighttime WBGTs are higher by 0.3-0.9 degrees C over the whole countries studied, and by 1-2 degrees C in the MURs under the urban expansion scenario, compared to the situation in which urban areas remain unchanged. These results show that future urban expansion and heat island mitigation can result in potential daytime benefits but also persistent nighttime risks.

Adapting to changing labor productivity as a result of intensified heat stress in a changing climate

The intensification of heat stress reduces the labor capacity and hence poses a threat to socio-economic development. The reliable projection of the changing climate and the development of sound adaptation strategies are thus desired for adapting to the decreasing labor productivity under climate change. In this study, an optimization modeling approach coupled with dynamical downscaling is proposed to design the optimal adaptation strategies for improving labor productivity under heat stress in China. The future changes in heat stress represented by the wet-bulb globe temperature (WBGT) are projected with a spatial resolution of 25 × 25 km by a regional climate model (RCM) through the dynamical downscaling of its driving global climate model (GCM). Uncertain information such as system costs, environmental costs, and subsidies are also incorporated into the optimization process to provide reliable decision alternatives for improving labor productivity. Results indicate that the intensification of WBGT is overestimated by the GCM compared to the RCM. Such an overestimation can lead to more losses in working hours derived from the GCM than those from the RCM regardless of climate scenarios. Nevertheless, the overestimated heat stress does not alter the regional measures taken to adapt to decreasing labor productivity. Compared to inland regions, the monsoon-affected regions tend to improve labor productivity by applying air conditioning rather than working overtime due to the cost differences. Consequently, decision-makers need to optimally make a balance between working overtime and air conditioning measures to meet sustainable development goals.

Upholding labor productivity with intensified heat stress: Robust planning for adaptation to climate change under uncertainty

The intensification of heat stress in a changing climate poses great threats to both human health and labor productivity. It is of great practical importance to assess the impacts of climate-induced heat stress on labor productivity and to develop effective adaptation strategies. In this paper, an integrated optimization-based productivity restoration modeling framework is proposed for the first time to develop the optimal policies for adaptation to climate change. To address underlying uncertainties associated with climate and labor management systems, we take into account ensemble projections from five global climate models (GCMs) under two Representative Concentration Pathways (RCP2.6 and RCP8.5) and inexact system costs. The system costs, including direct and indirect costs such as management costs, energy costs, and labor costs, are presented as interval numbers due to inherent uncertainty caused by population growth, technology development, and other social-economic factors. Uncertain information can be effectively communicated into the optimization processes in this study to generate optimal and reliable decision alternatives. We find that the increased Wet-Bulb Globe Temperature (WBGT) will lead to a large reduction in labor capacities over China except for the Tibetan Plateau under both RCPs by the end of the 21st century. The less developed regions tend to achieve the minimum system cost by having labor productivity recovered through working overtime due to the relatively low cost of overtime. This could result in more heat-related work injuries in the less developed regions. Since the less developed regions are not heat-prone areas in China, the changing climate would be a more dangerous threat and cause more damages to these regions where the residents are less acclimatized to heat stress. Moreover, we obtain a range of minimum system costs from 1.86 to 8.97 billion dollars under RCP2.6 and from 9.42 to 32.31 billion dollars under RCP8.5 (about 0.2% of China’s GDP in 2019, 0.01% of China’s GDP projected in 2100 under a sustainable socio-economic development scenario) for the restoration of labor productivity in a warming climate. We argue that urgent actions are needed to mitigate global warming impacts on labor productivity.

Influencing factors of the thermal environment of urban green space

Several heat records have been broken in recent years and decades. Extreme high temperature not only damages human health, but also increases the risk of wildfires. As a common urban infrastructure, urban green space has been proved to have a cooling effect. In this study, the physical indicators and temperature data of 36 green spaces in Xi’an were collected, and the influence of different physical indicators of green spaces on their thermal environment was explored through correlation analysis. The results suggest that the area of green space should be between 0.6-0.7 square kilometers or the perimeter should range from 4000 to 4500 m in order to obtain the lowest internal temperature. When the area of water body in the green space is between 0.3-0.4 square kilometers or the perimeter is about 5000 m, its internal temperature is the lowest. Indicators of green space in the conclusion can be directly understood and referred by urban planners and policy makers. Results of this study thus have implications for improving urban thermal comfort by controlling the physical indicators of green space.

The significance of occupants’ interaction with their environment on reducing cooling loads and dermatological distresses in East Mediterranean climates

Global endeavors to respond to the problems caused by climate change and are leading to higher temperatures inside homes, which can cause skin conditions (such as eczema), lethargy, and poor concentration; disturbed sleep and fatigue are also rising. The energy performance of buildings is influenced by interactions and associations of numerous different variables, such as the envelope specifications as well as the design, technologies, apparatuses, and occupant behaviours. This paper introduces simple and sustainable strategies that are not dependent on expensive or sophisticated technologies, as they rely only on the actions practiced by the building’s occupants (movable window shading, and nighttime natural ventilation) instead of completely relying on high-cost mechanical cooling systems in buildings located in the main Eastern Mediterranean climates represented in the country of Jordan. These low-energy solutions could be applied to low-income houses in hot areas to avoid health problems, such as dermatological diseases, and save a significant amount of energy. The final results indicate that window shading has significant potential in reducing the cooling load in different climate zones. Natural ventilation exhibits high energy-saving abilities in climates that have cool nights, whereas its abilities in hot climates where nights are moderate is limited.

Run air-conditioning all day: Adaptation pathways to increasing heat in the Northern Territory of Australia

Average global temperatures and frequencies of heat waves are increasing with detrimental effects on health and wellbeing. This study presents a case study from two cities in the Northern Territory with the aim of exploring if and how people make deliberate adaptations to cope with increasing heat. Results show that 37% of all respondents made adjustments, with the most common being increased use of air-conditioning (65% of those responding to heat), followed by staying inside more often (22%) and passive cooling through modifications of house and garden (17%). Young people increasingly refrain from outside activities as temperatures increase. We also found that adaptive capacity was a function of education, long-term residency, home ownership and people’s self-rated wellbeing. Homeowners were more likely to adjust their living environment to the heat and renters less so. Being a property owner was commonly associated with the installation of solar panels to pay for high energy bills needed to run air-conditioning. Those who had solar panels at home were about ten times more likely to use air-conditioning more frequently in response to increasing heat. Our results confirm a growing dependence on artificially controlled environments to cope with heat in cities.

Association between daily ambient temperature and drug overdose in Tokyo: A time-series study

BACKGROUND: Previous studies have reported that high ambient temperature is associated with increased risk of suicide; however, the association has not been extensively investigated with drug overdose which is the most common method of unsuccessful suicidal behavior in Japan. Therefore, this study aims to examine the short-term association between daily mean temperature and the incidence of self-harm attempts by drug overdose in Tokyo, Japan. METHODS: We collected the emergency ambulance dispatch data and daily meteorological data in Tokyo from 2010 to 2014. A quasi-Poisson regression model incorporating a distributed lag non-linear function was applied to estimate the non-linear and delayed association between temperature and drug overdose, adjusting for relative humidity, seasonal and long-term trends, and days of the week. Sex, age and location-specific associations of ambient temperature with drug overdose was also estimated. RESULTS: 12,937 drug overdose cases were recorded during the study period, 73.9% of which were female. We observed a non-linear association between temperature and drug overdose, with the highest risk observed at 21 °C. The highest relative risk (RR) was 1.30 (95% Confidence Interval (CI): 1.10-1.67) compared with the risk at the first percentile of daily mean temperature (2.9 °C) over 0-4 days lag period. In subgroup analyses, the RR of a drug overdose at 21 °C was 1.36 (95% CI: 1.02-1.81) for females and 1.07 (95% CI: 0.66-1.75) for males. Also, we observed that the risk was highest among those aged ≥65 years (RR = 2.54; 95% CI: 0.94-6.90), followed by those aged 15-34 years (RR = 1.25; 95% CI: 0.89-1.77) and those aged 35-64 years (RR = 1.15; 95% CI: 0.78-1.68). There was no evidence for the difference in RRs between urban (23 special wards) and sub-urban areas in Tokyo. CONCLUSIONS: An increase in daily mean temperature was associated with increased drug overdose risk. This study indicated the positive non-linear association between temperature and incomplete attempts by drug overdose. The findings of this study may add further evidence of the association of temperature on suicidal behavior and suggests increasing more research and investigation of other modifying factors.

Association between ambient temperature and intentional injuries: A case-crossover analysis using ambulance transport records in Japan

BACKGROUND: Epidemiological studies based on mortality and crime data have indicated that short-term exposure to higher temperature increases the risk of suicide and violent crimes. However, there are few studies on non-fatal intentional injury, especially on non-fatal self-harm which is much more common than suicide. OBJECTIVES: We aimed to clarify how short-term exposure to temperature is associated with emergency ambulance transport caused by intentional injuries including acts of self-harm and assault. METHOD: We applied a time-stratified case-crossover design using a conditional quasi-Poisson regression model for each of the 46 prefectures. All temperatures were converted to percentile value for each prefecture, to account for the varied climate across Japan. A Distributed Lag Non-Linear Model was used to explore the temperature percentile and lag pattern. The prefecture-specific results were combined using a meta-analysis with the random effects model. RESULT: Between 2012 and 2015, the number of acts of self-harm and assault across all 46 prefectures totaled 151,801 and 95,861, respectively. We found that as the temperature increased, the relative risk (RRs) for both self-harm and assault behaviors increased in a nearly linear manner. The pooled relative risk at the 99th percentile temperature for self-harm behavior was 1.11 (95% CI: 1.07, 1.15) compared with the risk at the 1st percentile temperature, and that for assault was 1.12 (95% CI: 1.08, 1.16) at lag 0. The RRs were highest at lag0 and less than 1 at lag7-20. CONCLUSION: The present study found that short-term exposure to higher temperature promotes the risk of emergency ambulance transport due to acts of self-harm and assault. The lag pattern indicates a possible “displacement” effect. These results suggest that exposure to high temperatures may potentially function as a trigger for intentional injuries.

Main and added effects of heatwaves on hospitalizations for mental and behavioral disorders in a tropical megacity of Vietnam

Vietnam is highly vulnerable to climate change-related extreme weather events such as heatwaves. This study assesses the association between heatwaves and hospitalizations due to mental and behavioral disorders (MBDs) in Ho Chi Minh City (HCMC). We collected daily MBD hospital admissions data at the HCMC Mental Health Hospital from 2017 to 2019. Heatwaves effects were characterized into the main effect (i.e., the intensity of temperature during heatwaves) and the added effect (i.e., the duration of heatwaves). Time series Poisson regression coupled with a distributed lag linear model (DLM) was used to quantify the 14-day lags effect of heatwaves. Confounders including long-term trend, seasonality, days of the week, holidays, and relative humidity were included in the model. Heatwaves increased all-cause MBD hospitalization by 62% (95%Cl, 36-93%) for the main effect and by 8% (95% Cl, - 3% to 19%) for the added effect. Noticeably, the group aged 18-60 years old was affected by the main effect of the heatwave, while the group aged 61 years and older was affected by the added effect of the heatwave. The effects of heatwaves differed among groups of MBD hospitalizations. The mental and behavioral disorder group due to psychoactive substance use was significantly affected by the main effect of heatwaves (RR:2.21; 95%Cl:1.55-3.15). The group of schizophrenia, schizotypal and delusional disorders were highly vulnerable towards both the main and the added effect of heatwaves with RR = 1.50 (95%CI, 1.20-1.86) and RR = 1.14 (95%CI, 1.01-1.30), respectively.

The effect of thermal discomfort on human well-being, psychological response and performance

The effect of thermal discomfort on human well-being and performance was studied in the field office, and an attempt was made to elucidate its psychological mechanism. Thirty participants were recruited to perform subjective evaluations and performance tests under 5 different conditions (25 degrees C, 27 degrees C, 29 degrees C, 31 degrees C, 33 degrees C). During the experiment, the air temperature was considered as an independent variable and other parameters were kept at the same level. The results show that thermal discomfort can lead to poor comfort and reduced performance, and people report that many sick building syndrome symptoms are intensified, showing more negative emotions and reducing their motivation. When people’s thermal sensation vote is -0.13, the best performance can be obtained. But the changes in human performance are not only caused by objective environmental factors, but also by psychological factors such as emotion and motivation. When people’s negative emotions decrease or their motivations increase, performance will also increase.

Analysis of the impact of urban summer high temperatures and outdoor activity duration on residents’ emotional health: Taking hostility as an example

The combined effect of global warming and the heat island effect keeps the temperature of cities rising in the summer, seriously threatening the physical and mental health of urban residents. Taking the area within the Sixth Ring Road of Beijing as an example, based on Landsat remote sensing images, meteorological stations, and questionnaires, this study established a relational model between temperature and hostility and then analyzed the changes in the emotional health risk (hostility) in the study area and the mechanism of how outdoor activity duration influences hostility. Results show that: (1) the area within the Sixth Ring Road of Beijing had a higher and higher temperature from 1991 to 2020. Low-temperature areas gradually shrank, and medium- and high-temperature areas extended outwards from the center. (2) The threat of high temperature to residents’ hostility gradually intensified-the sphere of influence expanded, low-risk areas quickly turned into medium-high-risk areas, and the level of hostility risk increased. Level 1 risk areas of hostility had the most obvious reduction-a 74.33% reduction in area proportion; meanwhile, Level 3 risk areas had the most significant growth-a 50.41% increase in area proportion. (3) In the first 120 min of outdoor activities under high temperature, residents’ hostility was negatively correlated with outdoor activity duration; after more than 120 min, hostility became positively correlated with duration. Therefore, figuring out how temperature changes influence human emotions is of great significance to improving the living environment and health level of residents. This study attempts to (1) explore the impact of temperature changes and outdoor activity duration on hostility, (2) evaluate residents’ emotional health risk levels affected by high temperature, and (3) provide a theoretical basis for the early warning mechanism of emotional health risk and the planning of healthy cities.

Health risk assessment and influencing factors analysis of high temperatures on negative emotions

The emotional health of urban residents has been seriously threatened by frequent and normalized heat waves. This study constructed the VI-level assessment standard for emotional health risk using data from satellite images, meteorological sites, questionnaire surveys, and statistical yearbooks to assess the effect of high temperatures on negative emotions in Hangzhou. The results showed that the morphological changes of urban high-temperature areas were aggregated from a cross-shape to a large patch shape, then dispersed into cracked patch shapes. Additionally, the health risk of daytime negative emotions peaked at the VI-level from 1984 to 2020, and the influence level of the typical period risk increased by 1-2 levels compared with the daytime. Additionally, driven by urban spatial structure policies, the risk pattern of emotional health expanded outward from a single center into multiple centers. The emotional health risk level rose and then descended in urban centers, and the innovation industries drove the variation tendency of hot spots. Furthermore, high educational background, employment, and couples living together were critical variables that could alleviate the emotional health risk to the middle-aged and elderly population. This study aimed to optimize the urban spatial structure and alleviate residents’ emotional health hazards for healthy urban planning.

Association between sequential extreme precipitation-heatwaves events and hospitalizations for schizophrenia: The damage amplification effects of sequential extremes

OBJECTIVES: In the context of frequent global extreme weather events, there are few studies on the effects of sequential extreme precipitation (EP) and heatwaves (HW) events on schizophrenia. We aimed to quantify the effects of the events on hospitalizations for schizophrenia and compare them with EP and HW alone to explore the amplification effect of successive extremes on health loss. METHODS: A time-series Poisson regression model combined with a distributed lag non-linear model was applied to estimate the association between sequential EP and HW events (EP-HW) and schizophrenia hospitalizations. The effects of EP-HW with different intervals and intensities on the admission of schizophrenia were compared. In addition, we calculated the mean attributable fraction (AF) and attributable numbers (AN) per exposure of extreme events to reflect the amplification effect of sequential extreme events on health hazards compared with individual extreme events. RESULTS: EP-HW increased the risk of hospitalization for schizophrenia, with significant effects lasting from lag0 (RR and 95% CI: 1.150 (1.041-1.271)) to lag11 (1.046 (1.000-1.094)). Significant associations were found in the subgroups of male, female, married people, and those aged≥ 40 years old. Shorter-interval (0-3days) or higher-intensity EP-HW (both precipitation ≥ P97.5 and mean temperature ≥ P97.5) had a longer lag effect compared to EP-HW with longer intervals or lower intensity. We found that the mean AF and AN caused by each exposure to EP-HW (AF: 0.074% (0.015%-0.123%); AN: 4.284 (0.862-7.118)) were higher than those induced by each exposure to HW occurring alone (AF:0.032% (0.004%-0.058%); AN:1.845 (0.220-3.329)). CONCLUSIONS: Sequential extreme precipitation-heatwaves events significantly increase the risk of hospitalizations for schizophrenia, with greater impact and disease burden than independently occurring extremes. The impact of consecutive extremes is supposed to be considered in local sector early warning systems for comprehensive public health decision-making.

Heat-attributable hospitalisation costs in Sydney: Current estimations and future projections in the context of climate change

The association between heat and diseases has been extensively reported. However, its associated healthcare costs and attributable fraction due to heat were scarcely explored. The aim of this study was to estimate hospitalisation costs attributable to heat in Sydney, and to project future costs under climate change scenarios. Using a distributed lag nonlinear model, this study estimated heat-attributable hospitalisation costs in Sydney; and using 2010-2016 data as baseline, future costs for 2030s and 2050s were estimated under three climate change scenarios depending on greenhouse gas emissions – Representative Concentration Pathway (RCP)2.6, RCP4.5, and RCP8.5. Higher temperatures were found to be associated with increased hospitalisation costs. About 8-9% of the total hospitalisation costs were attributable to heat. The total costs attributable to heat over the baseline period 2010-2016 were estimated to be AU$252 million, with mental health hospitalisation making the largest contribution. Hospitalisation costs are estimated to increase substantially to AU$387-399 million in the 2030s, and AU$506-570 million by midcentury under different climate change scenarios. Urgent action is required to reduce heatattributable illness in our communities, particularly for mental health conditions. Relevant preparations including healthcare workforce capacity building and resource allocation are needed to deal with these challenges in the context of climate change.

Exertional heat fatalities in Australian sport and recreation

OBJECTIVES: To describe the number and case characteristics of sport and recreation-related exertional heat deaths in Australia and summarise recommendations derived from case narratives. DESIGN: Descriptive, population-based, retrospective cohort study. METHODS: Cases were identified using the National Coronial Information System (NCIS) through multiple search strategies comprising queries, keywords and cause of death codes. Cases were included where there was evidence that the deceased was actively engaged in sport or recreation and exertional heat illness was causal or contributory to the death. Data extraction were performed independently, in duplicate, to ensure accuracy. Descriptive statistics are used to report deceased’s socio-demographic characteristics, incident characteristics, type of sport/recreational activity and time sequence of events. Content analysis is used to summarise recommendations. RESULTS: Thirty-eight deaths (males n = 29, 74%; median age = 40 years, range 8-77) were identified during the study period (2001 to 2018), with 22 recommendations for five cases. Two cases occurred during organised sport and 36 during active recreation, of which 27 were in hiking. Eleven (29%) individuals were international visitors. There were 22 recommendations across 5 cases presented, with a focus on education and training. CONCLUSIONS: Exertional heat deaths in outdoor recreation in Australia were far more prevalent than cases in organised sport. The largest proportion of deaths occurred in hiking with two populations featuring: males aged 15-45 years and international visitors. Considering the incident characteristics and time sequence of events, measures such as early recognition of symptoms, provision of first aid and timely access to emergency medical care are important to prevent fatalities.

Effects of extreme temperatures on childhood allergic respiratory diseases with and without sensitization to house dust mites in Shanghai, China

Background: The negative impacts of environmental factors on allergic respiratory diseases (ARD) in children have gotten a lot of attention recently. However, the influence of climatic conditions, especially extreme temperatures, on childhood ARD induced by house dust mites (HDM-ARD) is uncertain. Objective: We aimed to quantify the associations between outpatient visits for HDM-ARD and extreme temperatures in Shanghai, China. Methods: A distributed lag nonlinear model combined with Quasi-Poisson generalized linear model was used to analyze data. Results: Daily mean temperature was significantly associated with outpatient visits for childhood ARD and HDM-ARD. Exposure to extreme temperatures increased the cumulative relative risks of outpatient visits for ARD and HDM-ARD in children (RRlag0-28 for the 5th percentile of Tmean: 2.97, 95% confidence interval (CI): 1.25, 7.06; RRlag0-28 for the 95th percentile of Tmean: 2.85, 95% CI: 1.03, 7.86). Boys were vulnerable to extreme lower temperature, while girls were more sensitive to extreme higher temperature in both ARD and HDM-ARD. The effect seemed to be most pronounced among 6-11 years of age school children. Conclusion: Our study presents quantitative evidence that extreme temperatures prompted outpatient visits for children with ARD, especially HDM-ARD, in Shanghai, China. These findings might have significant consequences for developing appropriate preventive measures for vulnerable populations.

Extreme temperature exposure and urolithiasis: A time series analysis in Ganzhou, China

BACKGROUND: Ambient temperature change is a risk factor for urolithiasis that cannot be ignored. The association between temperature and urolithiasis varies from region to region. Our study aimed to analyze the impact of extremely high and low temperatures on the number of inpatients for urolithiasis and their lag effect in Ganzhou City, China. METHODS: We collected the daily number of inpatients with urolithiasis in Ganzhou from 2018 to 2019 and the meteorological data for the same period. The exposure-response relationship between the daily mean temperature and the number of inpatients with urolithiasis was studied by the distributed lag non-linear model (DLNM). The effect of extreme temperatures was also analyzed. A stratification analysis was performed for different gender and age groups. RESULTS: There were 38,184 hospitalizations for urolithiasis from 2018 to 2019 in Ganzhou. The exposure-response curve between the daily mean temperature and the number of inpatients with urolithiasis in Ganzhou was non-linear and had an observed lag effect. The warm effects (30.4°C) were presented at lag 2 and lag 5-lag 9 days, and the cold effects (2.9°C) were presented at lag 8 and lag 3-lag 4 days. The maximum cumulative warm effects were at lag 0-10 days (cumulative relative risk, CRR = 2.379, 95% CI: 1.771, 3.196), and the maximum cumulative cold effects were at lag 0-5 (CRR = 1.182, 95% CI: 1.054, 1.326). Men and people between the ages of 21 and 40 were more susceptible to the extreme temperatures that cause urolithiasis. CONCLUSION: Extreme temperature was correlated with a high risk of urolithiasis hospitalizations, and the warm effects had a longer duration than the cold effects. Preventing urolithiasis and protecting vulnerable people is critical in extreme temperature environments.

Extreme temperatures and circulatory mortality in a temperate continental monsoon climate city in northeast China

Epidemiological studies have proven that extreme temperatures have a significant threat to public health. This study aimed to investigate the association between extreme temperatures and circulatory mortality from January 1, 2014, to December 31, 2016, in Harbin, a city with a cold climate in Northeast China. We set a maximum lag of 27 days to evaluate the hysteresis effects of different temperatures on circulatory mortality using a distributed lag nonlinear model (DLNM). Results indicated that daily mean temperature and circulatory mortality presented approximately an L-shaped, and the cumulative relative risks (RRs) decreased continuously as the temperature increased in both low and high temperatures. Extremely low temperature showed a hysteresis and durability on circulatory mortality, with the largest RR of 1.023 (95%CI: 1.001-1.046) at lag 26, and RR of the cumulative cold effect of 0-27 days was 1.302 (95%CI: 1.160-1.462). The effect of extremely high temperatures presented more acute and intense, with the largest RR of 1.033 (95%CI: 1.004-1.063) at lag 0. RR of the cumulative hot effect of 0-3 days was 1.056 (1.008-1.106). In addition, females were more susceptible to extremely low temperatures, while males were more vulnerable to extremely high temperatures. This study demonstrated that extremely low temperatures have a stronger effect on circulatory mortality than extremely high temperatures in Harbin.

Extreme temperatures and respiratory mortality in the capital cities at high latitudes in northeast China

With the rapid increase in global warming, the impact of extreme temperatures on morbidity and mortality related to respiratory diseases has attracted considerable attention. In the current study, we quantified the relative risks (RRs) of mortality for respiratory diseases in three capital cities in Northeast China. We used a distributed lag nonlinear model (DLNM) based on a generalized additive model (GAM) to estimate the impact of extreme temperatures on respiratory mortality in Shenyang, Changchun, and Harbin from 2014 to 2016. The results revealed that the maximum cumulative RRs and 95% confidence intervals (CIs) were 1.52 (1.28-1.80), 1.42 (1.07-1.89), and 1.38 (1.21-1.58) in Shenyang, Changchun, and Harbin respectively when the median temperature was used as reference. The effect of extremely high temperature (99th percentile relative to 90th percentile) on respiratory mortality was found to be strongest in Shenyang (at the lowest latitude), while the effect of extreme low temperature (1st percentile relative to 10th percentile) on respiratory mortality was strongest in Harbin (at the highest latitude). In Shenyang and Changchun, the effects of high temperatures were much more intense and pronounced in females. Furthermore, the effect of high temperatures was more acute, whereas the effect of low temperatures was longer lasting.

Impacts of air temperature and its extremes on human mortality in Shanghai, China

Global climate change increased air temperature variability and enhanced the frequency and intensity of extreme weather events, such as heat waves and cold spells with adverse impacts on public health. In this study, we examined the relationships of the daily air temperature with mortality in Shanghai in 2003, a record hot year. We found V-shaped associations between causespecific mortality and daily air temperature. The temperature-mortality relationship well manifests in three temperature measures, but with varied temperature thresholds for different age groups and mortality categories. Two heat waves and one cold spell were identified in 2003 and brought out excess mortality. The first heat wave lasting for 19 days had a significant impact on total non-accidental, cardiovascular and respiratory deaths compared to the corresponding reference period. The second heat wave lasting for 14 days have resulted in excess mortality in three categories of mortality but without statistical significance. The cold spell lasting for 7 days only had a significant impact on total non-accidental and cardiovascular mortality. We also found the elderly are more sensitive to temperature variation. Our results suggest that air temperature is a significant factor influencing human mortality, particularly for the elderly.

Excess out-of-hospital cardiac arrests due to ambient temperatures in South Korea from 2008 to 2018

Out-of-hospital cardiac arrest (OHCA) is a notable public health issue with negative outcomes, such as high mortality and aftereffects. Additionally, the adverse effects of extreme temperatures on health have become more important under climate change; however, few studies have investigated the relationship between temperature and OHCA. In this study, we examined the association between temperature and OHCA and its underlying risk factors. We conducted a two-stage time-series analysis using a Poisson regression model with a distributed lag non-linear model (DLNM) and meta-analysis, based on a nationwide dataset from South Korea (2008-2018). We found that 17.4% of excess OHCA was attributed to cold, while 0.9% was attributed to heat. Based on central estimates, excess OHCA attributed to cold were more prominent in the population with hypertension comorbidity (31.0%) than the populations with diabetes (24.3%) and heart disease (17.4%). Excess OHCA attributed to heat were larger in the populations with diabetes (2.7%) and heart disease comorbidity (2.7%) than the population with hypertension (1.2%) based on central estimates. Furthermore, the time-varying excess OHCA attributed to cold have decreased over time, and although those of heat did not show a certain pattern during the study period, there was a weak increasing tendency since 2011. In conclusion, we found that OHCAs were associated with temperature, and cold temperatures showed a greater impact than that of hot temperatures. The effects of cold and hot temperatures on OHCA were more evident in the populations with hypertension, diabetes, and heart diseases, compared to the general population. In addition, the impacts of heat on OHCA increased in recent years, while those of cold temperatures decreased. Our results provide scientific evidence for policymakers to mitigate the OHCA burden attributed to temperature.

Assessment of temperature extremes and climate change impacts in Singapore, 1982-2018

Understanding extreme temperature variations is important for countries to manage risks associated with climate change. Yet, the characteristics of temperature extremes and possible climate change impacts have not been adequately investigated in Singapore. In this study, we attempted to do so by defining 14 extreme temperature indices (ETIs) for the period of 1982-2018 in Singapore, and investigating the trends of those ETIs using a pre-whitening Man-Kendall test coupled with the Sen’s slope estimator method. The linear and nonlinear relationships between ETIs and El Nino Southern Oscillation (ENSO) were also examined using correlation, composite and wavelet analysis. Our results indicate that trends of temperature extremes varied according to station locations, ETIs and time scales. In all stations, ETIs such as the monthly mean value of the diurnal range between maximum and minimum temperatures (DTR), cool nights (TN10p) and cool days (TX10p) presented decreasing trends, while the rest of them exhibited increasing trends. The composite values varied for different ETIs-meaning that while eight no-threshold ETIs reflected smaller values, other ETIs reflected relatively larger composite values, indicating that ENSO may have affected those ETIs more. The ETIs were mainly statistically and significantly coherent with ENSO at a 2-8 year cycle. We hope that our findings would be beneficial for climate action planning and temperature-related disaster prevention in Singapore.

Effects of cold and hot temperature on metabolic indicators in adults from a prospective cohort study

BACKGROUND: Previous studies have found that exposed to low and high outdoor temperature was associated with cardiovascular diseases morbidity and mortality. The risk factors for cardiovascular disease include high blood lipid, high uric acid (UA) and high fasting plasma glucose (FPG). However, few studies have explored the effects of low and high temperature on these metabolic indicators. OBJECTIVE: To explore the effect of low and high temperature on metabolic indicators in adults from northwest of China. METHODS: Based on a prospective cohort study, a total of 30,759 individuals who participated in both baseline and first follow-up from 2011 to 2015 were selected in this study. The meteorological observation data and environmental monitoring data were collected in the same period. Associations between cold and hot temperature and blood lipid (total cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C), and high density lipoprotein-cholesterol (HDL-C)), UA and FPG were conducted with mixed effect models after adjusting for confounding factors. RESULTS: A nonlinear relationship between outdoor temperature and metabolic indicators was found. For the cold effects, each 5 °C decrease of mean temperature was associated with an increase of 5.07% (95% CI: 3.52%, 6.63%) in TG and 2.85% (95% CI: 2.18%, 3.53%) in UA, While a decrease of 3.38% (95% CI: 2.67%, 4.09%) in HDL-C and 1.26% (95% CI: 0.48%, 2.04%) in LDL-C. For the heat effects, each 5 °C increase in mean temperature was associated with 1.82% (95% CI: 0.89%, 2.76%), 0.56% (95% CI: 0.11%, 1.00%), 5.82% (95% CI: 4.58%, 7.06%), 9.02% (95% CI: 7.17%, 10.87%), 0.20% (95% CI: 0.01%, 0.40%), and 1.22% (95% CI: 0.19%, 2.24%) decrease in TC, TG, HDL-C, LDL-C, UA and FPG. Age, smoking, drinking, high-oil diet and hyperlipidemia might modify the association between mean temperature and metabolic indicators. CONCLUSION: There was a significant effect of cold and hot temperature on metabolic indicators in a high altitude area of northwestern China. These results provide a basis for understanding the underlying mechanism of the influence of temperature on metabolic diseases.

Ambient air pollution, temperature and hospital admissions due to respiratory diseases in a cold, industrial city

BACKGROUND: The influences of air pollution exposure and temperature on respiratory diseases have become major global health concerns. This study investigated the relationship between ambient air pollutant concentrations and temperature in cold industrial cities that have the risk of hospitalization for respiratory diseases. METHODS: A time-series study was conducted in Changchun, China, from 2015 to 2019 to analyse the number of daily admissions for respiratory diseases, air pollutant concentrations, and meteorological factors. Time-series decomposition was applied to analyse the trend and characteristics of the number of admissions. Generalized additive models and distributed lag nonlinear models were constructed to explore the effects of air pollutant concentrations and temperature on the number of admissions. RESULTS: The number of daily admissions showed an increasing trend, and the seasonal fluctuation was obvious, with more daily admissions in winter and spring than in summer and autumn. There were positive and gradually decreasing lag effects of PM10, PM2.5, NO(2), and CO concentrations on the number of admissions, whereas O(3) showed a J-shaped trend. The results showed that within the 7-day lag period, 0.5°C was the temperature associated with the lowest relative risk of admission due to respiratory disease, and extremely low and high temperatures (<-18°C, >27°C, respectively) increased the risk of hospitalization for respiratory diseases by 8.3% and 12.1%, respectively. CONCLUSIONS: From 2015 to 2019, respiratory diseases in Changchun showed an increasing trend with obvious seasonality. The increased concentrations of SO(2), NO(2), CO, PM2.5, O(3) and PM10 lead to an increased risk of hospitalization for respiratory diseases, with a significant lag effect. Both extreme heat and cold could lead to increases in the risk of admission due to respiratory disease.

Extreme environmental temperatures and motorcycle crashes: A time-series analysis

Extreme temperature could affect traffic crashes by influencing road safety, vehicle performance, and drivers’ behavior and abilities. Studies evaluating the impacts of extreme temperatures on the risk of traffic crashes have mainly overlooked the potential role of vehicle air conditioners. The aim of this study, therefore, was to evaluate the effect of exposure to extreme cold and hot temperatures on seeking medical attention due to motorcycle crashes. The study was conducted in Iran by using medical attendance for motorcycle crashes from March 2011 to June 2017. Data on daily minimum, mean and maximum temperature (°C), relative humidity (%), wind velocity (km/h), and precipitation (mm/day) were collected. We developed semi-parametric generalized additive models following a quasi-Poisson distribution with the distributed nonlinear lag model to estimate the immediate and lagged associations (reported as relative risk [RR], and 95% confidence interval [CI]). Between March 2011 and June 2017, 36,079 medical attendances due to motorcycle road traffic crashes were recorded (15.8 ± 5.92 victims per day). In this time period, the recorded temperature ranged from -11.2 to 45.4 °C (average: 25.5 ± 11.0 °C). We found an increased risk of medical attendance for motorcycle crashes (based on maximum daily temperature) at both extremely cold (1st percentile) and hot (99th percentile) temperatures and also hot (75th percentile) temperatures, mainly during lags 0 to 3 days (e.g., RR: 1.12 [95% CI: 1.05: 1.20]; RR: 1.08 [95% CI: 1.01: 1.16]; RR: 1.20 [95% CI: 1.09: 1.32] at lag0 for extremely cold, hot, and extremely hot conditions, respectively). The risk estimates for extremely hot temperatures were larger than hot and extremely cold temperatures. We estimated that 11.01% (95% CI: 7.77:14.06) of the medical attendance for motorcycle crashes is estimated to be attributable to non-optimal temperature (using mean temperature as exposure variable). Our findings have important public health messaging, given the considerable burden associated with road traffic injury, particularly in low- and middle-income countries.

Extreme temperature and out-of-hospital-cardiac-arrest. Nationwide study in a hot climate country

BACKGROUND: Out-of-hospital-cardiac arrest (OHCA) is frequently linked to environmental exposures. Climate change and global warming phenomenon have been found related to cardiovascular morbidity, however there is no agreement on their impact on OHCA occurrence. In this nationwide analysis, we aimed to assess the incidence of the OHCA events attended by emergency medical services (EMS), in relation to meteorological conditions: temperature, humidity, heat index and solar radiation. METHODS: We analyzed all adult cases of OHCA in Israel attended by EMS during 2016-2017. In the case-crossover design, we compared ambient exposure within 72 h prior to the OHCA event with exposure prior to the four control times using conditional logistic regression in a lag-distributed non-linear model. RESULTS: There were 12,401 OHCA cases (68.3% were pronounced dead-on-scene). The patients were on average 75.5 ± 16.2 years old and 55.8% of them were males. Exposure to 90th and 10th percentile of temperature adjusted to humidity were positively associated with the OHCA with borderline significance (Odds Ratio (OR) =1.20, 95%CI 0.97; 1.49 and OR 1.16, 95%CI 0.95; 1.41, respectively). Relative humidity below the 10th percentile was a risk factor for OHCA, independent of temperature, with borderline significance (OR = 1.16, 95%CI 0.96; 1.38). Analysis stratified by seasons revealed an adverse effect of exposure to 90th percentile of temperature when estimated in summer (OR = 3.34, 95%CI 1.90; 3.5.86) and exposure to temperatures below 10th percentile in winter (OR = 1.75, 95%CI 1.23; 2.49). Low temperatures during a warm season and high temperatures during a cold season had a protective effect on OHCA. The heat index followed a similar pattern, where an adverse effect was demonstrated for extreme levels of exposure. CONCLUSIONS: Evolving climate conditions characterized by excessive heat and low humidity represent risk factors for OHCA. As these conditions are easily avoided, by air conditioning and behavioral restrictions, necessary prevention measures are warranted.

Extreme temperature increases the risk of stillbirth in the third trimester of pregnancy

Epidemiological studies have reported the association between extreme temperatures and adverse reproductive effects. However, the susceptible period of exposure during pregnancy remains unclear. This study aimed to assess the impact of extreme temperature on the stillbirth rate. We performed a time-series analysis to explore the associations between temperature and stillbirth with a distributed lag nonlinear model. A total of 22,769 stillbirths in Taiwan between 2009 and 2018 were enrolled. The mean stillbirth rate was 11.3 ± 1.4 per 1000 births. The relative risk of stillbirth due to exposure to extreme heat temperature (> 29 °C) was 1.18 (95% CI 1.11, 1.25). Pregnant women in the third trimester were most susceptible to the effects of extreme cold and heat temperatures. At lag of 0-3 months, the cumulative relative risk (CRR) of stillbirth for exposure to extreme heat temperature (29.8 °C, 97.5th percentile of temperature) relative to the optimal temperature (21 °C) was 2.49 (95% CI: 1.24, 5.03), and the CRR of stillbirth for exposure to extreme low temperature (16.5 °C, 1st percentile) was 1.29 (95% CI: 0.93, 1.80). The stillbirth rate in Taiwan is on the rise. Our findings inform public health interventions to manage the health impacts of climate change.

The effects of heatwaves and cold spells on patients admitted with acute ischemic stroke

BACKGROUND: This study aimed to explore the effects of heatwaves and cold spells on blood pressure, thrombus formation, and systemic inflammation at admission in patients with ischemic stroke. METHODS: Data of patients with ischemic stroke who were admitted to the Second Hospital of Tianjin Medical University between May 2014 and March 2019 were reviewed, along with meteorological data from the same time period. A total of 806 clinically confirmed patients with ischemic stroke (34-97 years old) were included in the final analysis. Heatwaves and cold spells were defined as ≥2 consecutive days with average temperature >95(th) percentile (May-August) and <5(th) percentile (November-March), respectively. Coagulation parameters, inflammation indices, blood pressure, and neurological impairment were evaluated within 24 hours of admission. General linear and logistic regression models were created to investigate the relationships of heatwaves and cold spells with the examination results of patients with ischemic stroke at admission. RESULTS: After adjustment for potential environmental confounders, heatwaves were positively associated with high systolic blood pressure (SBP) (β=8.693, P=0.019), diastolic blood pressure (DBP) (β=3.665, P=0.040), reduced thrombin time (TT) (β=-0.642, P=0.027), and activated partial thromboplastin time (APTT) (β=-1.572, P=0.027) in ischemic stroke patients at admission. Cold spells were positively associated with high SBP (β=5.277, P=0.028), DBP (β=4.672, P=0.012), fibrinogen (β=0.315, P=0.011), globulin (β=1.523, P=0.011), and reduced TT (β=-0.784, P<0.001) and APTT (β=-1.062, P=0.024). Cold spells were also associated with a higher risk of respiratory infection [odds ratio (OR) =2.677, P=0.001]. CONCLUSIONS: Exposure to heatwaves or cold spells was associated with blood pressure and coagulation at admission in patients with ischemic stroke. Cold spells also resulted in higher levels of inflammation. These findings suggest that changes in coagulation, blood pressure, and inflammation may be the potential biological mechanisms underlying the cerebrovascular effects of exposure to extreme temperatures.

Extreme temperature exposure and acute myocardial infarction: Elevated risk within hours?

Day-to-day change in ambient temperature is associated with acute myocardial infarction (AMI) attacks, but evidence is scarce about the effects of extreme temperatures on the risk of AMI within hours of exposure. This study investigated the hour-level associations between extreme temperatures and AMI occurrence. State-wide data on AMI patients and temperature during winter and summer of 2013-2015 were obtained for Queensland state of Australia. We employed a fixed time-stratified case-crossover analysis to quantify the risk of AMI associated with temperature within 24 h after exposure. Subgroups analyses by age, gender and disease history were also conducted. We observed a very acute effect of cold on men (occurred 9-10 h after exposure), women (19-22 h after exposure), and the elderly (4-20 h after exposure). Cold was associated with elevated AMI risk for men within 9 h (OR = 2.1, 95 % CI: 1.2-3.6), women within 19 h (OR = 2.5, 95 % CI: 1.0-6.0), and the elderly within 4 h (OR: 2.0, 95 % CI: 1.0-4.0). However, elevated risk of AMI associated with heat occurred 15 h later for men (OR: 3.9; 95 % CI: 1.1-13.9) and 23 h later for adults (OR: 4.1, 95 % CI: 1.1-15.4). People never suffered AMI and the elderly with diabetes or hyperlipidaemia were particularly vulnerable to cold. Those that were particularly vulnerable to heat were men never experienced AMI or having hypertension or having hyperlipidaemia as well as women ever suffered AMI. Effects of temperature on AMI risk at sub-daily timescales should be considered to prevent cardiac events.

Increasing impacts of temperature on hospital admissions, length of stay, and related healthcare costs in the context of climate change in Adelaide, South Australia

BACKGROUND: A growing number of studies have investigated the effect of increasing temperatures on morbidity and health service use. However, there is a lack of studies investigating the temperature-attributable cost burden. OBJECTIVES: This study examines the relationship of daily mean temperature with hospital admissions, length of hospital stay (LoS), and costs; and estimates the baseline temperature-attributable hospital admissions, and costs and in relation to warmer climate scenarios in Adelaide, South Australia. METHOD: A daily time series analysis using distributed lag non-linear models (DLNM) was used to explore exposure-response relationships and to estimate the aggregated burden of hospital admissions for conditions associated with temperatures (i.e. renal diseases, mental health, diabetes, ischaemic heart diseases and heat-related illnesses) as well as the associated LoS and costs, for the baseline period (2010-2015) and different future climate scenarios in Adelaide, South Australia. RESULTS: During the six-year baseline period, the overall temperature-attributable hospital admissions, LoS, and associated costs were estimated to be 3915 cases (95% empirical confidence interval (eCI): 235, 7295), 99,766 days (95% eCI: 14,484, 168,457), and AU$159 million (95% eCI: 18.8, 269.0), respectively. A climate scenario consistent with RCP8.5 emissions, and including projected demographic change, is estimated to lead to increases in heat-attributable hospital admissions, LoS, and costs of 2.2% (95% eCI: 0.5, 3.9), 8.4% (95% eCI: 1.1, 14.3), and 7.7% (95% eCI: 0.3, 13.3), respectively by mid-century. CONCLUSIONS: There is already a substantial temperature-attributable impact on hospital admissions, LoS, and costs which are estimated to increase due to climate change and an increasing aged population. Unless effective climate and public health interventions are put into action, the costs of treating temperature-related admissions will be high.

Nature-based solutions for urban heat mitigation in historical and cultural block: The case of Beijing old city

Urban heat island can exacerbate the harmful influence on human health and urban environment in historical and cultural block within Beijing Old City, China. To improve urban resilience and human well-being, protect historical and cultural heritage, nature-based solutions for urban heat mitigation are being the hotspot of research. However, only few studies focused on the comprehensive thermal environment of historical and cultural block from the social, ecological and technical aspects. Thus, we set-up scenarios combining with the three domains, to explore the cooling effect and thermal comfort improvement of Dashilar Block through ENVI-met. The results showed that 1) The areas with highest air temperature (Ta) and physiological equivalent temperature (PET) were mainly distributed in Peizhi Hutong and Zongshu Toutiao. 2) Five mitigation scenarios adapting to historical protection requirements and public preferences were vertical greening, traditional greening, quality improvement greening, high-albedo paving, and comprehensive. 3) The comprehensive and vertical greening scenarios could reduce the mean Ta of whole block by 1.01 degrees C or 0.38 degrees C, decrease the percentage of Ta hotter zone by 13.87% or 19.63%, and reduce the local Ta inside the block by 0.65 degrees C-1.80 degrees C or 0.33 degrees C-1.05 degrees C, respectively, which turned out the cooling effect and thermal comfort improvement of abovementioned two scenarios could significantly alleviate the heat stress. The comprehensive and vertical greening can act as the preferred nature-based solution for heat mitigation in Dashilar Block. We believed that this study would provide novel insights into the balance between urban heat mitigation and heritage protection during the renewal of Beijing Old City.

Heat adaptive capacity: What causes the differences between residents of Xiamen Island and other areas?

Extreme heat events caused by climate change have serious adverse effects on residents’ health in many coastal metropolises in southeast China. Adaptive capacity (AC) is crucial to reduce heat vulnerability in the human-environment system. However, it is unclear whether changes in individual characteristics and socioeconomic conditions likely amplify or attenuate the impacts of residents’ heat adaptive capacity (HAC) changes. Moreover, which public policies can be implemented by the authorities to improve the HAC of vulnerable groups remains unknown. We conducted a questionnaire survey of 630 residents of Xiamen, a typical coastal metropolis, in 2018. The effects of individual and household characteristics, and government actions on the residents’ HAC were examined by using ordinal logistic regression analysis. Results show that the majority (48.10%) of Xiamen residents had a “medium” HAC level, followed by a “high” level (37.14%). On Xiamen Island, residents who settled locally for one-three years and spent less than one hour outdoors might report weaker HAC, and their HAC would not improve with increased air conditioning units in household. In other areas of Xiamen, residents with more rooms in their households, no educational experience, and building areas <50 m(2) might report better HAC. Further, vulnerable groups, such as local residents and outdoor workers on Xiamen Island, people lacking educational experience and renters in other areas of Xiamen, showed better AC to hot weather than those in previous studies. Low-income groups should be given more attention by local governments and community groups as monthly household income played a positive role in improving Xiamen residents' HAC. Rational green spaces planning and cooling services, such as street sprinkling operations, provided by municipal departments can effectively bring benefits to Xiamen residents. Identification of basic conditions of AC has significant implications for practical promoting targeted measures or policies to reduce health damages and livelihood losses of urban residents during extreme heat events.

Perceptions of workplace heat exposure and adaption behaviors among Chinese construction workers in the context of climate change

BACKGROUND: Workplace heat exposure can cause a series of heat-related illnesses and injuries. Protecting workers especially those undertake work outdoors from the risk of heat strain is a great challenge for many workplaces in China under the context of climate change. The aim of this study is to investigate the perceptions and adaptation behaviors of heat exposure among construction workers and to provide evidence for the development of targeted heat adaptation strategies nationally and internationally. METHODS: In 2020, we conducted a cross-sectional online questionnaire survey via WeChat Survey Star in China, using a purposive snowball sampling approach. A total of 326 construction workers submitted completed questionnaires. The perceptions of workplace heat exposure were measured using seven indicators: concerns over high temperature, perception of high temperature injury, attitudes towards both heat-related training and regulations, adjustment of working habits during heat, heat prevention measures in the workplace, and reduction of work efficiency. Bivariate and multivariate regression analyses were used to identify the factors significantly associated with workers’ heat perceptions and behavioral responses. RESULTS: 33.3% of the respondents were moderately or very concerned about heat exposure in the workplace. Less than half of the workers (43.8%) were worried about heat-related injuries. Workers who have either experienced work-related injuries (OR=1.30, 95% CI 1.03-1.62) or witnessed injuries to others during high temperatures (OR=1.12, 95% CI 1.02-1.27) were more concerned about heat exposure compared to other workers. Most respondents (63.5%) stated that their work efficiency declined during extremely hot weather. The factors significantly associated with a reduction of work efficiency included undertaking physically demanding jobs (OR=1.28, 95% CI 1.07-1.54) and witnessing other workers’ injuries during high temperatures (OR=1.26, 95% CI 1.11-1.43). More than half of the workers were willing to adjust their work habits to adapt to the impact of high temperatures (81.6%). The internet was the most common method to obtain heat prevention information (44.7%), and the most frequently used heat prevention measure was the provision of cool drinking water (64.8%). CONCLUSIONS: Chinese construction workers lack heat risk awareness and are not well prepared for the likely increasing heat exposure in the workplace due to global warming. Therefore, there is a need to improve their awareness of heat-related injuries, strengthen high temperature related education and training, and update the current heat prevention policies to ensure compliance and implementation.

Risk perception of Chinese elderly: An urban study on adaptation to climate change

Older people are more vulnerable to climate change and with its increasing elderly population, inadequate research on the health impacts of climate change has focused on this particular population in China. This study evaluates climate change and health-related knowledge, attitudes and practices (KAP) of elderly residents in three cities Suzhou, Hefei and Xiamen. This cross-sectional study included 3466 participants. Data analysis was undertaken using descriptive methods (Chi-square test). Results showed that the elderly were most concerned about heatwaves, flooding and drought and the main perceived health risks included heatstroke and respiratory diseases. Finally, over half of the participants from Suzhou city reported that they did not receive enough government assistance in extreme events (56%). Findings from this work provide important insights for new adaptation strategies targeting the elderly population. It is recommended that the government should focus on creating awareness of the necessary adaptations the elderly will need to take to alleviate the impact of climate change on their physical health.

Modification effect of urban landscape characteristics on the association between heat and stroke morbidity: A small-scale intra-urban study in Shenzhen, China

Background: Short-term heat exposure might induce stroke morbidity and mortality, and there were several studies explored the possible vulnerable populations. At present, the research on the modification effect of intra-urban landscape characteristics on the association between heat and stroke morbidity is limited, especially in China. Methods: We collected data on 22,424 first-ever strokes between 2010 and 2016 in Shenzhen, from June to August of each year. We adopted the case-only study combined with logistic regression models to examine the modification effects of 5 urban landscape characteristics. We studied the characteristics of relevant vulnerable populations through stratification analyses. Results: High values (refer to the median values) of nighttime land surface temperature (LST) and the proportion of impervious surface may aggravate the harmful effects of heat on stroke morbidity, with the OR values (95% CI) of 1.205 (1.053, 1.357) and 1.115 (1.010, 1.220); while, high values of NDVI and the proportion of water bodies may alleviate the harmful effects of heat, with the OR values (95% CI) of 0.772 (0.699, 0.845) and 0.821 (0.741, 0.901). The OR value of daytime LST was 1.004 (0.861, 1.147). Statistically significant modification effects were located in the population without Shenzhen’s household registration; as for nighttime LST, statistically significant modification effects were located in females and the elderly. Conclusions: High values of nighttime LST and the proportion of impervious surface might aggravate the harmful effects of heat on stroke morbidity, while high green space and water cover might alleviate its effects. Immigrants were the related vulnerable populations. The government should take measures to cope with climate warming and pay attention to the health effects of heat on immigrants. (c) 2021 Published by Elsevier B.V.

Are there differences in thermal comfort perception of children in comparison to their caregivers’ judgments? A study on the playgrounds of parks in China’s hot summer and cold winter region

Playgrounds in urban parks are important for children’s physical and mental health, but global warming has led to a worsening outdoor environment and children’s outdoor activities have been affected. Improving the outdoor thermal comfort (OTC) of playgrounds can encourage children to engage in more and safer outdoor activities. However, there are a limited number of studies focusing on preschoolers’ outdoor thermal comfort (OTC) and most of them have substituted children’s thermal comfort with caregivers’ evaluations. To investigate the differences between children’s and caregivers’ evaluations of thermal sensation, thermal benchmarks and thermal adaptive behavior for children, we conducted meteorological measurements on representative playgrounds in three parks in Wuhan, China, and administered thermal perception questionnaires to preschool children and their caregivers. In addition, the Physiological Equivalent Temperature (PET) was used to establish evaluation criteria for children’s OTC and to make recommendations for the improvement of the playground environment. We draw five conclusions by analyzing 719 valid questionnaires: (1) Children were less sensitive to changes in meteorological factors than caregivers and had better tolerance of cold environments. (2) The NPET for preschoolers was evaluated by children and by caregivers, respectively, as 22.9 degrees C and 22.3 degrees C in summer and 10.6 degrees C and 11.2 degrees C in winter. (3) Playgrounds in Wuhan’s parks are uncomfortable for a long time in summer and a short time in winter. (4) Both children and caregivers want to improve summer comfort by lowering the temperature and winter comfort by increasing solar radiation. At the same time, children and caregivers show different preferences in adaptive behavior choices. (5) Adding deciduous trees and water play facilities can improve the site thermal environment. Furthermore, the OTC of humans can be improved by adding more service facilities on playgrounds.

Outdoor thermal comfort during winter in China’s cold regions: A comparative study

Due to limits to standard methods for surveying outdoor thermal comfort (OTC), it is difficult to compare thermal benchmarks and thermal index calibrations among studies and climatic regions. Using uniform standard meteorological measurements and questionnaire surveys, our study conducted an OTC study in urban parks in Beijing, Xi’an and Hami; representative of cities in China’s cold regions. The Universal Thermal Climate Index (UTCI) was used as the thermal comfort index, and differences in residents’ thermal perceptions and outdoor thermal benchmarks among these cities were compared. Results showed that: 1) air temperature (T(a)) and globe temperature (T(g)) were two primary factors affecting residents’ thermal sensations in the three cities during winter. Residents’ thermal sensation in Beijing and Hami was negatively correlated with wind speed (V(a)). Residents in Xi’an and Hami preferred a higher relative humidity (RH). Residents in Beijing and Hami preferred a lower V(a) to improve OTC related to local climatic characteristics. 2) Xi’an residents had the highest neutral UTCI (NUTCI) (17.3 °C), followed by Beijing (17.0 °C) and Hami (6.4 °C). Xi’an residents had slightly wider neutral UTCI range (NUTCIR) (7.9-26.7 °C) compared to Beijing (8.7-25.4 °C), while Hami residents had the narrowest NUTCIR (1.5-11.3 °C). The “no thermal stress” range in the three cities was 6.1-26.0 °C in Beijing, 6.7-25.5 °C in Xi’an, and -2.2-12.2 °C in Hami. 3) Calibrated thermal indices, based on the ASHRAE 7-point scale, were gained to judge the thermal qualities of an environment for all three cities.

Associations of heat and cold with hospitalizations and post-discharge deaths due to acute myocardial infarction: What is the role of pre-existing diabetes?

BACKGROUND: The existing evidence suggests that pre-existing diabetes may modify the association between heat and hospitalizations for acute myocardial infarction (AMI). METHODS: This study included patients who were hospitalized for AMI from 1 January 2005 to 31 December 2013 in Brisbane, Australia, and also included those who died within 2 months after discharge. A time-stratified case-crossover design with conditional logistic regression was used to quantify the associations of heat and cold with hospitalizations and post-discharge deaths due to AMI in patients with and without pre-existing diabetes. Stratified analyses were conducted to explore whether age, sex and suburb-level green space and suburb-level socio-economic status modified the temperature-AMI relationship. Heat and cold were defined as the temperature above/below which the odds of hospitalizations/deaths due to AMI started to increase significantly. RESULTS: There were 14 991 hospitalizations for AMI and 1811 died from AMI within 2 months after discharge during the study period. Significant association between heat and hospitalizations for AMI was observed only in those with pre-existing diabetes (odds ratio: 1.19, 95% confidence interval: 1.00-1.41) [heat (26.3°C) vs minimum morbidity temperature (22.2°C)]. Cold was associated with increased odds of hospitalizations for AMI in both diabetes and non-diabetes groups. Significant association between cold and post-discharge deaths from AMI was observed in both diabetes and non-diabetes groups. CONCLUSIONS: Individuals with diabetes are more susceptible to hospitalizations due to AMI caused by heat and cold.

Impact of temperature on physical and mental health: Evidence from China

Climate may significantly affect human society. Few studies have focused on the temperature impact on residents’ health, especially mental health status. This paper uses 98 423 observations in China to study the relationship between temperature and health, based on the China Family Panel Studies survey during 2010-16. We analyze the health effects of extreme hot and cold weather and compare the effects under different social demographic factors including gender, age, and income. We find that temperature and health status exhibit a nonlinear relationship. Women and low-income households are more likely to be impacted by extreme cold, whereas men, the elderly, and high-income households are more sensitive to extreme heat. Our results highlight the potential effects of extreme temperatures on physical and mental health and provide implications for future policy decisions to protect human health under a changing climate.

Temporal trends of the association between extreme temperatures and hospitalisations for schizophrenia in Hefei, China from 2005 to 2014

OBJECTIVE: We aimed to examine the temporal trends of the association between extreme temperature and schizophrenia (SCZ) hospitalisations in Hefei, China. METHODS: We collected time-series data on SCZ hospitalisations for 10 years (2005-2014), with a total of 36 607 cases registered. We used quasi-Poisson regression and distributed lag non-linear model (DLNM) to assess the association between extreme temperature (cold and heat) and SCZ hospitalisations. A time-varying DLNM was then used to explore the temporal trends of the association between extreme temperature and SCZ hospitalisations in different periods. Subgroup analyses were conducted by age (0-39 and 40+ years) and gender, respectively. RESULTS: We found that extreme cold and heat significantly increased the risk of SCZ hospitalisations (cold: 1st percentile of temperature 1.19 (95% CI 1.04 to 1.37) and 2.5th percentile of temperature 1.16 (95% CI 1.03 to 1.31); heat: 97.5th percentile of temperature 1.37 (95% CI 1.13 to 1.66) and 99th percentile of temperature 1.38 (95% CI 1.13 to 1.69)). We found a slightly decreasing trend in heat-related SCZ hospitalisations and a sharp increasing trend in cold effects from 2005 to 2014. However, the risk of heat-related hospitalisation has been rising since 2008. Stratified analyses showed that age and gender had different modification effects on temporal trends. CONCLUSIONS: The findings highlight that as temperatures rise the body’s adaptability to high temperatures may be accompanied by more threats from extreme cold. The burden of cold-related SCZ hospitalisations may increase in the future.

Ambient temperature and hospitalizations for acute kidney injury in Queensland, Australia, 1995-2016

To examine the associations between ambient temperature and hospitalizations for acute kidney injury (AKI) in Queensland, Australia, 1995-2016. Data were collected on a total of 34 379 hospitalizations for AKI from Queensland between 1 January 1995 and 31 December 2016. Meteorological data were downloaded from the Queensland Government’s Department of Environment and Science. We assessed the temperature-AKI relationship using a time-stratified case-crossover design fitted with conditional quasi-Poisson regression model and time-varying distributed lag non-linear model. Stratified analyses were performed by age, sex, climate zone and socioeconomic group. Both cold and hot temperatures were associated with hospitalizations for AKI. There were stronger temperature-AKI associations among women than men. Cold effects were only positive in the > 70 years age group. Hot effects were stronger in the <= 59 years age group than in the >60 years age group. In different climate zone areas, cold effects decreased with increasing local mean temperatures, while hot effects increased. In different socio-economic status groups, hot effects were stronger in the poor areas than the affluent areas. From 1995 to 2016, the magnitude of associations between cold temperature and hospitalizations for AKI decreased, while the hot effect increased. The associations between hot temperature and hospitalizations for AKI become stronger, while the magnitude of cold effect decreased from 1995 to 2016. This trend may accelerate over the coming decades, which warrants further research. More attention is needed toward susceptible population including women, people > 70 years, and the people living in hot climate zones and in low socioeconomic status areas.

Hospitalization costs of respiratory diseases attributable to temperature in Australia and projections for future costs in the 2030s and 2050s under climate change

This study aimed to estimate respiratory disease hospitalization costs attributable to ambient temperatures and to estimate the future hospitalization costs in Australia. The associations between daily hospitalization costs for respiratory diseases and temperatures in Sydney and Perth over the study period of 2010-2016 were analyzed using distributed non-linear lag models. Future hospitalization costs were estimated based on three predicted climate change scenarios-RCP2.6, RCP4.5 and RCP8.5. The estimated respiratory disease hospitalization costs attributable to ambient temperatures increased from 493.2 million Australian dollars (AUD) in the 2010s to more than AUD 700 million in 2050s in Sydney and from AUD 98.0 million to about AUD 150 million in Perth. The current cold attributable fraction in Sydney (23.7%) and Perth (11.2%) is estimated to decline by the middle of this century to (18.1-20.1%) and (5.1-6.6%), respectively, while the heat-attributable fraction for respiratory disease is expected to gradually increase from 2.6% up to 5.5% in Perth. Limitations of this study should be noted, such as lacking information on individual-level exposures, local air pollution levels, and other behavioral risks, which is common in such ecological studies. Nonetheless, this study found both cold and hot temperatures increased the overall hospitalization costs for respiratory diseases, although the attributable fractions varied. The largest contributor was cold temperatures. While respiratory disease hospitalization costs will increase in the future, climate change may result in a decrease in the cold attributable fraction and an increase in the heat attributable fraction, depending on the location.

Effects of extreme temperature on the risk of preterm birth in China: A population-based multi-center cohort study

BACKGROUND: Extreme temperatures are associated with the risk of preterm birth (PTB), but evidence on the effects of different clinical subtypes and across different regions is limited. We aimed to evaluate the effects of maternal exposure to extreme temperature on PTB and its clinical subtypes in China, and to identify effect modification of regional factors in dimensions of population, economy, medical resources and environmental factors. METHODS: This was a prospective population-based cohort of 210,798 singleton live births from 16 counties in eight provinces across China during 2014-2018. We used an extended Cox regression with time-varying variables to evaluate the effects of extreme heat and cold on PTB and its subtypes in the entire pregnancy, each trimester, the last gestational month and week. Meta-analysis and meta-regression were conducted to estimate the pooled effects of each city and effect modification by regional characteristics. FINDINGS: Exposure to heat and cold during the entire pregnancy significantly increased the risk of PTB. The effects varied with subtypes, for medically indicated and spontaneous PTB, hazard ratios were 1·84 (95% CI: 1·29, 2·61) and 1·50 (95% CI: 1·11, 2·02) for heat, 2·18 (95% CI: 1·83, 2·60) and 2·15 (95% CI: 1·92, 2·41) for cold. The associations were stronger for PTB less than 35 weeks than those during weeks 35-36. The effects varied across locations, and GDP per capita (β=-0·16) and hospital beds per 1000 persons (β=-0·25) were protective factors for the effects. INTERPRETATION: Extreme temperature can increase the risk of medically indicated and spontaneous PTB, and higher regional socio-economic status may moderate such effects. In the context of climate change, such findings may have important implications for protecting the health of vulnerable groups, especially newborns. FUNDING: National Key R&D Program of China (2018YFA0606200), National Natural Science Foundation of China (42175183), Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20030302), National Natural Science Foundation of China (42071377).

Impacts of 2 and 4 degrees C global warmings on extreme temperatures in Taiwan

Extreme temperatures were considered natural hazards because they could increase morbidity and mortality. Understanding the extreme temperature changes at different warming levels is crucial to climate change mitigation and adoption for human health. This study projected climate change effects on the intensity, occurrence, and duration of extreme temperatures in Taiwan with 2 and 4 degrees C global warming scenarios using the Weather Research and Forecasting model. The future climate simulations were conducted with the pseudo-global warming approach, and the future climate changes were obtained from the ensemble mean of simulations in the Coupled Model Intercomparison Project 5. The simulated daily mean temperature increased by 1.40 and 3.09 degrees C under 2 and 4 degrees C global warmings. In a warming world, the daily maximum temperature was projected to increase by 1.35-3.00 degrees C, whereas the daily minimum temperature was even higher, leading to weaker diurnal temperature variation in most regions. The simulation results show that intensified heatwaves with frequent and prolonged durations become par for the course, whereas extremely cold days disappear gradually. The occurrence of heatwaves in the future is projected to be five times that in the current climate. Comparing the global warming impacts over different land-use types, the heatwave occurrence over urban areas rose more quickly than over other land-use types; forests are less vulnerable to global warming. On the contrary, the changes in extremely cold days over urban areas were weaker than over other land-use types. Overall, the effects of global warming on temperature revealed that extreme events were more severe with increased temperature than with the mean state of air temperature. Nonlinear behaviours indicated that global warming should be limited to 2 degrees C, and the additional 2 degrees C warming (from 2 to 4 degrees C) should be addressed carefully.

Ambient temperature and years of life lost: A national study in China

Although numerous studies have investigated premature deaths attributable to temperature, effects of temperature on years of life lost (YLL) remain unclear. We estimated the relationship between temperatures and YLL, and quantified the YLL per death caused by temperature in China. We collected daily meteorological and mortality data, and calculated the daily YLL values for 364 locations (2013-2017 in Yunnan, Guangdong, Hunan, Zhejiang, and Jilin provinces, and 2006-2011 in other locations) in China. A time-series design with a distributed lag nonlinear model was first employed to estimate the location-specific associations between temperature and YLL rates (YLL/100,000 population), and a multivariate meta-analysis model was used to pool location-specific associations. Then, YLL per death caused by temperatures was calculated. The temperature and YLL rates consistently showed U-shaped associations. A mean of 1.02 (95% confidence interval: 0.67, 1.37) YLL per death was attributable to temperature. Cold temperature caused 0.98 YLL per death with most from moderate cold (0.84). The mean YLL per death was higher in those with cardiovascular diseases (1.14), males (1.15), younger age categories (1.31 in people aged 65-74 years), and in central China (1.34) than in those with respiratory diseases (0.47), females (0.87), older people (0.85 in people ≥75 years old), and northern China (0.64) or southern China (1.19). The mortality burden was modified by annual temperature and temperature variability, relative humidity, latitude, longitude, altitude, education attainment, and central heating use. Temperatures caused substantial YLL per death in China, which was modified by demographic and regional characteristics.

Urbanization contribution to human perceived temperature changes in major urban agglomerations of China

People in urban agglomerations (UAs) are increasingly exposed to elevated extreme temperature events under global warming and local human activities such as urbanization. While the urbanization effects on local temperature changes have been well studied, possibly different effects on human perceived temperature (HPT), which measures the compound influences of multiple indicators (e.g., temperature, humidity, and wind), remain much less understood. Here, we examine the long-term changes in mean and extreme HPT in 20 major UAs across the mainland of China since the 1970s, and evaluate the effect of urbanization based on a dynamic classification of urban and rural stations using time-varying land use/land cover maps. The results show that mean HPT and actual near-surface air temperature (T) in both summer and winter seasons display significant trends in most portions of China, while the frequency of extreme HPT and T events in summer (winter) exhibits increasing (decreasing) tendency. These trends are particularly stronger in more populated and urbanized UAs. It is estimated that urbanization averagely accounts for around 1/6 of the total increasing trend in mean HPT and T in the urban core areas of 20 UAs. In both seasons, the effects of urbanization on mean HPT are more profound than T. Moreover, urbanization significantly increases the occurrence frequency of summertime hot extremes and decreases the occurrence of wintertime cold events. Regionally, northern UAs in general exhibit more remarkable trends than the south. The urbanization process exerts more prominent effects in HPT than T in nearly three-quarters of all UAs, except several regions with a complex topography and lower urbanization level. These findings reported here can provide suggestions and support for urban planning of decision-maker and human perceived thermal comfort choices of humans living in UAs.

Mortality burden attributable to high and low ambient temperatures in China and its provinces: Results from the global burden of disease study 2019

BACKGROUND: Non-optimal temperatures are associated with mortality risk, yet the heterogeneity of temperature-attributable mortality burden across subnational regions in a country was rarely investigated. We estimated the mortality burden related to non-optimal temperatures across all provinces in China in 2019. METHODS: The global daily temperature data were obtained from the ERA5 reanalysis dataset. The daily mortality data and exposure-response curves between daily temperature and mortality for 176 individual causes of death were obtained from the Global Burden of Disease Study 2019 (GBD 2019). We estimated the population attributable fraction (PAF) based on the exposure-response curves, daily gridded temperature, and population. We calculated the cause- and province-specific mortality burden based on PAF and disease burden data from the GBD 2019. FINDINGS: We estimated that 593·9 (95% UI:498·8, 704·6) thousand deaths were attributable to non-optimal temperatures in China in 2019 (PAF=5·58% [4·93%, 6·28%]), with 580·8 (485·7, 690·1) thousand cold-related deaths and 13·9 (7·7, 23·2) thousand heat-related deaths. The majority of temperature-related deaths were from cardiovascular diseases (399·7 [322·8, 490·4] thousand) and chronic respiratory diseases (177·4 [141·4, 222·3] thousand). The mortality burdens were observed significantly spatial heterogeneity for both high and low temperatures. For instance, the age-standardized death rates (per 100 000) attributable to low temperature were higher in Western China, with the highest in Tibet (113·7 [82·0, 155·5]), while for high temperature, they were greater in Xinjiang (1·8 [0·7, 3·3]) and Central-Southern China such as Hainan (2·5 [0·9, 5·4]). We also observed considerable geographical variation in the temperature-related mortality burden by causes of death at provincial level. INTERPRETATION: A substantial mortality burden was attributable to non-optimal temperatures across China, and cold effects dominated the total mortality burden in all provinces. Both cold- and heat-related mortality burden showed significantly spatial variations across China. FUNDING: National Key Research and Development Program.

Association between ambient temperature and cause-specific respiratory outpatient visits: A case-crossover design with a distributed lag nonlinear model in Lanzhou, China

Little is known about the association between air temperature and causes-specific respiratory diseases (RD), especially in northwest China. A time-stratified case crossover design with a distributed lag nonlinear model (DLNM) was conducted to assess the nonlinear and delayed ef-fects of temperature on total and cause-specific outpatient visits, with analyses stratified by gender and age. The cumulative effects of temperature were irregular M-shaped curves for total and upper respiratory tract infection (URTI), with inverted U-shaped curve for pneumonia, bronchitis and chronic obstructive pulmonary disease (COPD). Positive cold and heat effects were observed for URTI, pneumonia, bronchitis and COPD, bronchitis was most vulnerable to cold but pneumonia was more affected to heat. Heat effects were immediate whereas cold effects were delayed and lasted longer. The magnitude of temperature effects varies greatly by age, gender, and disease. Notably, the cold effect was greater for children aged 0-14 than that of other age groups. This study suggested that both cold and hot temperatures exposure could increase all-cause and cause-specific respiratory outpatient visits in Lanzhou, China. The harmful effect and duration of cold were greater than that of heat, and children aged 0-14 were more sensitive to cold. Protection against extreme temperatures should be strengthened.

Associations of ambient temperature with mortality for ischemic and hemorrhagic stroke and the modification effects of greenness in Shandong Province, China

BACKGROUND: Evidence is scant on the relative and attributable contributions of ambient temperature on stroke subtypes mortality. Few studies have examined modification effects of multiple greenness indicators on such contributions, especially in China. We quantified the associations between ambient temperature and overall, ischemic, and hemorrhagic stroke mortality; further examined whether the associations were modified by greenness. METHODS: We conducted a multicenter time-series analysis from January 1, 2013 to December 31, 2019. we adopted a distributed lag non-linear model to evaluate county-specific temperature-stroke mortality associations. We then applied a random-effects meta-analysis to pool county-specific effects. Attributable mortality was calculated for cold and heat, defined as temperatures below and above the minimum mortality temperature (MMT). Finally, We conducted a multivariate meta-regression to determine associations between greenness and stroke mortality risks for cold and heat, using normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and enhanced vegetation index (EVI) as quantitative indicators of greenness exposure. RESULTS: In the study period, 138,749 deaths from total stroke were reported: 86,873 ischemic and 51,876 hemorrhagic stroke. We observed significant W-shaped relationships between temperature and stroke mortality, with substantial differences among counties and regions. With MMT as the temperature threshold, 17.16 % (95 % empirical CI, 13.38 %-19.75 %) of overall, 20.05 % (95 % eCI, 16.46 %-22.70 %) of ischemic, and 12.55 % (95 % eCI, 5.59 %-16.24 %) of hemorrhagic stroke mortality were attributable to non-optimum temperature (combining cold and heat), more mortality was caused by cold (14.94 %; 95 % eCI, 11.57 %-17.34 %) than by heat (2.22 %; 95 % eCI, 1.54 %-2.72 %). Higher levels of NDVI, SAVI and EVI were related to mitigated effects of non-optimum temperatures-especially heat. CONCLUSIONS: Exposure to non-optimum temperatures aggravated stroke mortality risks; increasing greenness could alleviate that risks. This evidence has important implications for local communities in developing adaptive strategies to minimize the health consequences of adverse temperatures.

Associations of apparent temperature with acute cardiac events and subtypes of acute coronary syndromes in Beijing, China

Limited evidence is available on apparent temperature (AT) and hospital admissions for acute cardiac events. We examined the associations of AT with admissions for acute cardiac events and acute coronary syndrome (ACS), and explored the effect difference between ST-elevation myocardial infarction (STEMI) and non-ST-elevation myocardial infarction ACS (NSTE-ACS). Poisson regression with distributed lag non-linear model was applied to examine the temperature-lag-admission associations. Stratified analyses were performed by gender and age-groups for acute cardiac events. A total of 11,657 acute cardiac events admissions were collected from hospital-based chest pain centers in Beijing, during 2017-2019. The single day effect of low AT (-11 degrees C, 2.5th percentile) appeared on the 2nd day and persisted until the 11th day, with estimated relative risk (RR) ranging from 1.44 (95% CI: 1.159, 1.790) to 1.084 (95% CI: 1.022, 1.150) for acute cardiac events and from 1.034 (95% CI: 1.010, 1.059) to 1.006 (95% CI: 1.000, 1.011) for ACS. The single day effect of high AT (34 degrees C, 97.5th percentile) was only observed on the current day. The cold effect on acute cardiac events was more pronounced among female and older patients. The cumulative effect of high AT on STEMI admissions and low AT on NSTE-ACS reached a peak RR peak of 2.545 (95% CI: 1.016, 6.375) and 3.71 (95% CI: 1.315, 10.469) on lag 0-6 days, respectively. Both high and low ATs were associated with increased risk of acute cardiac events and ACS admissions. STEMI admissions may be more sensitive to high AT while NSTE-ACS to low AT.

Effect of ambient temperature and other environmental factors on stroke emergency department visits in Beijing: A distributed lag non-linear model

BACKGROUND: Most studies have focused on the relationship between ambient temperature and stroke mortality, but studies on the relationship between ambient temperature and stroke occurrence are still limited and inconsistent. OBJECTIVE: This study aimed to analyze the effect of ambient temperature and other environmental factors on emergency stroke visits in Beijing. METHODS: Our study utilized stroke visit data from the Beijing Red Cross Emergency Medical Center during 2017-2018, and applied a generalized additive model (GAM) as well as a distributed lag non-linear model (DLNM), respectively, regarding the direct, lagged, and cumulative effects of ambient temperature alone and with correction for other environmental factors on stroke occurrence. RESULTS: With a total of 26,984 emergency stroke patients in 2017-2018, both cold and hot effects were observed and weakened after correction for other environmental factors. Compared to the reference temperature, in the multi-factor model, extreme cold (-10°C) reached a maximum relative risk (RR) of 1.20 [95% Confidence Interval (CI): 1.09, 1.32] at lag 14 days, and extreme hot (30°C) had a maximum RR of 1.07 (95% CI: 1.04, 1.11) at lag 6 days. The cumulative effect of extreme cold reached a maximum of 2.02 (95% CI: 1.11, 3.67) at lag 0-14 days, whereas the cumulative effect of extreme hot temperature is greatest at lag 0-10 days, but no statistically significant effect was found. In addition, ischemic stroke patients, the elderly, and males were more susceptible to the effects of cold temperature. CONCLUSIONS: There is a non-linear relationship between ambient temperature and stroke occurrence, with cold temperature having a greater and longer-lasting impact than hot temperature.

Effect on the health of newborns caused by extreme temperature in Guangzhou

By using 64,270 daily observations from a large hospital in Guangzhou between 2017 and 2019, we analyzed the impact of extreme temperature on the health of newborns via OLS regression with time fixed effect. Given that the short-term temperature change can be regarded as exogenous and random, solving the potential endogenous problem is critical. We find that extreme temperature negatively affects the health of newborns. The Apgar score, an index for evaluating neonatal health, decreases by 0.008 (0.029%) when the duration of extreme temperature events increases by a day. A series of robustness checks verify the reliability of this negative effect. Extreme temperature also has a particularly serious effect on the health of newborns whose mothers have poor education. By gradually extending the observation period, we find that the effect of extreme temperature on neonatal health is mainly concentrated 1-6 weeks before delivery, whereas the effect of extreme temperature on hospitalization cost is mainly concentrated 4-8 weeks before delivery. This paper provides a valuable reference for evaluating the health and social costs of extreme weather, and our findings are conducive to the construction of climate resilient health systems, especially in Guangzhou.

Mosquito abundance in relation to extremely high temperatures in urban and rural areas of Incheon Metropolitan City, South Korea from 2015 to 2020: An observational study

BACKGROUND: Despite concerns regarding increasingly frequent and intense heat waves due to global warming, there is still a lack of information on the effects of extremely high temperatures on the adult abundance of mosquito species that are known to transmit vector-borne diseases. This study aimed to evaluate the effects of extremely high temperatures on the abundance of mosquitoes by analyzing time series data for temperature and mosquito abundance in Incheon Metropolitan City (IMC), Republic of Korea, for the period from 2015 to 2020. METHODS: A generalized linear model with Poisson distribution and overdispersion was used to model the nonlinear association between temperature and mosquito count for the whole study area and for its constituent urban and rural regions. The association parameters were pooled using multivariate meta-regression. The temperature-mosquito abundance curve was estimated from the pooled estimates, and the ambient temperature at which mosquito populations reached maximum abundance (TMA) was estimated using a Monte Carlo simulation method. To quantify the effect of extremely high temperatures on mosquito abundance, we estimated the mosquito abundance ratio (AR) at the 99th temperature percentile (AR(99th)) against the TMA. RESULTS: Culex pipiens was the most common mosquito species (51.7%) in the urban region of the IMC, while mosquitoes of the genus Aedes (Ochlerotatus) were the most common in the rural region (47.8%). Mosquito abundance reached a maximum at 23.5 °C for Cx. pipiens and 26.4 °C for Aedes vexans. Exposure to extremely high temperatures reduced the abundance of Cx. pipiens mosquitoes {AR(99th) 0.34 [95% confidence interval (CI) 0.21-0.54]} to a greater extent than that of Anopheles spp. [AR(99th) 0.64 (95% CI 0.40-1.03)]. When stratified by region, Ae. vexans and Ochlerotatus koreicus mosquitoes showed higher TMA and a smaller reduction in abundance at extreme heat in urban Incheon than in Ganghwa, suggesting that urban mosquitoes can thrive at extremely high temperatures as they adapt to urban thermal environments. CONCLUSIONS: We confirmed that the temperature-related abundance of the adult mosquitoes was species and location specific. Tailoring measures for mosquito prevention and control according to mosquito species and anticipated extreme temperature conditions would help to improve the effectiveness of mosquito-borne disease control programs.

Impact of extreme weather on dengue fever infection in four Asian countries: A modelling analysis

The rapid spread of dengue fever (DF) infection has posed severe threats to global health. Environmental factors, such as weather conditions, are believed to regulate DF spread. While previous research reported inconsistent change of DF risk with varying weather conditions, few of them evaluated the impact of extreme weather conditions on DF infection risk. This study aims to examine the short-term associations between extreme temperatures, extreme rainfall, and DF infection risk in South and Southeast Asia. A total of 35 locations in Singapore, Malaysia, Sri Lanka, and Thailand were included, and weekly DF data, as well as the daily meteorological data from 2012 to 2020 were collected. A two-stage meta-analysis was used to estimate the overall effect of extreme weather conditions on the DF infection risk. Location-specific associations were obtained by the distributed lag nonlinear models. The DF infection risk appeared to increase within 1-3 weeks after extremely high temperature (e.g. lag week 2: RR = 1.074, 95 % CI: 1.022-1.129, p = 0.005). Compared with no rainfall, extreme rainfall was associated with a declined DF risk (RR = 0.748, 95 % CI: 0.620-0.903, p = 0.003), and most of the impact was across 0-3 weeks lag. In addition, the DF risk was found to be associated with more intensive extreme weathers (e.g. seven extreme rainfall days per week: RR = 0.338, 95 % CI: 0.120-0.947, p = 0.039). This study provides more evidence in support of the impact of extreme weather conditions on DF infection and suggests better preparation of DF control measures according to climate change.

The effects of maximum ambient temperature and heatwaves on dengue infections in the tropical city-state of Singapore – A time series analysis

BACKGROUND: Global incidence of dengue has surged rapidly over the past decade. Each year, an estimated 390 million infections occur worldwide, with Asia-Pacific countries bearing about three-quarters of the global dengue disease burden. Global warming may influence the pattern of dengue transmission. While previous studies have shown that extremely high temperatures can impede the development of the Aedes mosquito, the effect of such extreme heat over a sustained period, also known as heatwaves, has not been investigated in a tropical climate setting. AIM: We examined the short-term relationships between maximum ambient temperature and heatwaves and reported dengue infections in Singapore, via ecological time series analysis, using data from 2009 to 2018. METHODS: We studied the effect of two measures of extreme heat – (i) heatwaves and (ii) maximum ambient temperature. We used a negative binomial regression, coupled with a distributed lag nonlinear model, to examine the immediate and lagged associations of extreme temperature on dengue infections, on a weekly timescale. We adjusted for long-term trend, seasonality, rainfall and absolute humidity, public holidays and autocorrelation. RESULTS: We observed an overall inhibitive effect of heatwaves on the risk of dengue infections, and a parabolic relationship between maximum temperature and dengue infections. A 1 °C increase in maximum temperature from 31 °C was associated with a 13.1% (Relative Risk (RR): 0.868, 95% CI: 0.798, 0.946) reduction in the cumulative risk of dengue infections over six weeks. Weeks with 3 heatwave days were associated with a 28.3% (RR: 0.717, 95% CI: 0.608, 0.845) overall reduction compared to weeks with no heatwave days. Adopting different heatwaves specifications did not substantially alter our estimates. CONCLUSION: Extreme heat was associated with decreased dengue incidence. Findings from this study highlight the importance of understanding the temperature dependency of vector-borne diseases in resource planning for an anticipated climate change scenario.

Modeling present and future climate risk of dengue outbreak, a case study in new Caledonia

BACKGROUND: Dengue dynamics result from the complex interactions between the virus, the host and the vector, all being under the influence of the environment. Several studies explored the link between weather and dengue dynamics and some investigated the impact of climate change on these dynamics. Most attempted to predict incidence rate at a country scale or assess the environmental suitability at a global or regional scale. Here, we propose a new approach which consists in modeling the risk of dengue outbreak at a local scale according to climate conditions and study the evolution of this risk taking climate change into account. We apply this approach in New Caledonia, where high quality data are available. METHODS: We used a statistical estimation of the effective reproduction number (R(t)) based on case counts to create a categorical target variable : epidemic week/non-epidemic week. A machine learning classifier has been trained using relevant climate indicators in order to estimate the probability for a week to be epidemic under current climate data and this probability was then estimated under climate change scenarios. RESULTS: Weekly probability of dengue outbreak was best predicted with the number of days when maximal temperature exceeded 30.8°C and the mean of daily precipitation over 80 and 60 days prior to the predicted week respectively. According to scenario RCP8.5, climate will allow dengue outbreak every year in New Caledonia if the epidemiological and entomological contexts remain the same. CONCLUSION: We identified locally relevant climatic factor driving dengue outbreaks in New Caledonia and assessed the inter-annual and seasonal risk of dengue outbreak under different climate change scenarios up to the year 2100. We introduced a new modeling approach to estimate the risk of dengue outbreak depending on climate conditions. This approach is easily reproducible in other countries provided that reliable epidemiological and climate data are available.

Impact of temperature on infection with Japanese encephalitis virus of three potential urban vectors in Taiwan; Aedes albopictus, Armigeres subalbatus, and Culex quinquefasciatus

Japanese encephalitis (JE) is an important mosquito-borne infectious disease in rural areas of Asia that is caused by Japanese encephalitis virus (JEV). Culex tritaeniorhynchus is the major vector of JEV, nevertheless there are other mosquitoes that may be able to transmit JEV. This study confirms that the midgut, head tissue, salivary glands, and reproductive tissue of Aedes albopictus, Armigeres subalbatus, and Culex quinquefasciatus are all able to be infected with JEV after a virus-containing blood meal was ingested by female mosquitoes. Even though the susceptibility to JEV of the different tissues varies, the virus-positive rate increased with the number of days after JEV infection. Moreover, once JEV escapes the midgut barrier, the oral transmission rates of JEV were 16%, 2%, and 21% for Ae. albopictus, Ar. subalbatus, and Cx. quinquefasciatus at 14 days after infection at 30 °C, respectively. There is no supporting evidence to suggest vertical transmission of JEV by the tested mosquitoes. Collectively, raising the temperature enhances JEV replication in the salivary gland of the three mosquito species, suggesting that global warming will enhance mosquito vector competence and that this is likely to lead to an increase in the probability of JEV transmission.

Emergence of non-choleragenic vibrio infections in Australia

Vibrio infection was rarely reported in Tasmania prior to 2016, when a multistate outbreak of Vibrio parahaemolyticus associated with Tasmanian oysters was identified and 11 people reported ill. Since then, sporadic foodborne cases have been identified following consumption of commercially- and recreationally-harvested oysters. The increases in both foodborne and non-foodborne Vibrio infections in Tasmania are likely associated with increased sea water temperatures. As oyster production increases and climate change raises the sea surface temperature of our coastline, Tasmania expects to see more vibriosis cases. Vibriosis due to oyster consumption has been reported in other Australian states, but the variability in notification requirements between jurisdictions makes case and outbreak detection difficult and potentially hampers any public health response to prevent further illness.

Effect and attributable burden of hot extremes on bacillary dysentery in 31 Chinese Provincial capital cities

BACKGROUND: High atmospheric temperature has been associated with the occurrence of bacillary dysentery (BD). Recent studies have suggested that hot extremes may influence health outcomes, however, none have examined the association between hot extremes and BD risk, especially at the national level. OBJECTIVES: To assess the effect and attributable burden of hot extremes on BD cases and to identify populations at high risk of BD. METHODS: Daily incident BD data of 31 provincial capital cities from 2010 to 2018 were collected from the Chinese Center for Disease Control and Prevention, weather data was obtained from the fifth generation of the European Re-Analysis Dataset. Three types of hot extremes, including hot day, hot night, and hot day and night, were defined according to single or sequential occurrence of daytime hot and nighttime hot within 24 h. A two-stage analytical strategy combined with distributed lag non-linear models (DLNM) was used to evaluate city-specific associations and national pooled estimates. RESULTS: Hot extremes were significantly associated with the risk of BD on lagged 1-6 days. The overall cumulative relative risk (RR) was 1.136 [95% confidence interval (CI): 1.022, 1.263] for hot day, 1.181 (95% CI: 1.019, 1.369) for hot night, and 1.154 (95% CI: 1.038, 1.283) for hot day and night. Northern residents, females, and children younger than or equal to 14 years old were vulnerable under hot night, southern residents were vulnerable under hot day, and males were vulnerable under hot day and night. 1.854% (95% CI: 1.294%, 2.205%) of BD cases can be attributable to hot extremes, among which, hot night accounted for a large proportion. CONCLUSIONS: Hot extremes may significantly increase the incidence risk and disease burden of BD. Type-specific protective measures should be taken to reduce the risk of BD, especially in those we found to be particularly vulnerable.

How do weather and climate change impact the COVID-19 pandemic? Evidence from the Chinese mainland

The COVID-19 pandemic continues to expand, while the relationship between weather conditions and the spread of the virus remains largely debatable. In this paper, we attempt to examine this question by employing a flexible econometric model coupled with fine-scaled hourly temperature variations and a rich set of covariates for 291 cities in the Chinese mainland. More importantly, we combine the baseline estimates with climate-change projections from 21 global climate models to understand the pandemic in different scenarios. We found a significant negative relationship between temperatures and caseload. A one-hour increase in temperatures from 25 degrees C to 28 degrees C tends to reduce daily cases by 15.1%, relative to such an increase from -2 degrees C to 1 degrees C. Our results also suggest an inverted U-shaped nonlinear relationship between relative humidity and confirmed cases. Despite the negative effects of heat, we found that rising temperatures induced by climate change are unlikely to contain a hypothesized pandemic in the future. In contrast, cases would tend to increase by 10.9% from 2040 to 2059 with a representative concentration pathway (RCP) of 4.5 and by 7.5% at an RCP of 8.5, relative to 2020, though reductions of 1.8% and 18.9% were projected for 2080-2099 for the same RCPs, respectively. These findings raise concerns that the pandemic could worsen under the climate-change framework.

The association between extreme temperature and pulmonary tuberculosis in Shandong Province, China, 2005-2016: A mixed method evaluation

BACKGROUND: The effects of extreme temperature on infectious diseases are complex and far-reaching. There are few studies to access the relationship of pulmonary tuberculosis (PTB) with extreme temperature. The study aimed to identify whether there was association between extreme temperature and the reported morbidity of PTB in Shandong Province, China, from 2005 to 2016. METHODS: A generalized additive model (GAM) was firstly conducted to evaluate the relationship between daily reported incidence rate of PTB and extreme temperature events in the prefecture-level cities. Then, the effect estimates were pooled using meta-analysis at the provincial level. The fixed-effect model or random-effect model was selected based on the result of heterogeneity test. RESULTS: Among the 446,016 PTB reported cases, the majority of reported cases occurred in spring. The higher reported incidence rate areas were located in Liaocheng, Taian, Linyi and Heze. Extreme low temperature had an impact on the reported incidence of PTB in only one prefecture-level city, i.e., Binzhou (RR = 0.903, 95% CI: 0.817-0.999). While, extreme high temperature was found to have a positive effect on reported morbidity of PTB in Binzhou (RR = 0.924, 95% CI: 0.856-0.997) and Weihai (RR = 0.910, 95% CI: 0.843-0.982). Meta-analysis showed that extreme high temperature was associated with a decreased risk of PTB (RR = 0.982, 95% CI: 0.966-0.998). However, extreme low temperature was no relationship with the reported incidence of PTB. CONCLUSION: Our findings are suggested that extreme high temperature has significantly decreased the risk of PTB at the provincial levels. The findings have implications for developing strategies to response to climate change.

Analysis of the effect of temperature on tuberculosis incidence by distributed lag non-linear model in Kashgar City, China

The aim of this study was to explore the effect of temperature on tuberculosis (TB) incidence using the distributed lag non-linear model (DLNM) from 2017 to 2021 in Kashgar city, the region with higher TB incidence than national levels, and assist public health prevention and control measures. From January 2017 to December 2021, a total of 8730 cases of TB were reported, with the higher incidence of male than that of female. When temperature was below 1 °C, it was significantly correlated with TB incidence compared to the median observed temperature (15 °C) at lag 7, 14, and 21, and lower temperatures showed larger RR (relative risk) values. High temperature produced a protective effect on TB transmission, and higher temperature from 16 to 31 °C has lower RR. In discussion stratified by gender, the maximum RRs were achieved for both male group and female group at - 15 °C with lag 21, reporting 4.28 and 2.02, respectively. At high temperature (higher than 20 °C), the RR value of developing TB for female group was significantly larger than 1. In discussion stratified by age, the maximum RRs were achieved for all age groups (≤ 35, 36-64, ≥ 65) at - 15 °C with lag 21, reporting 3.20, 2.07, and 3.45, respectively. When the temperature was higher than 20 °C, the RR of the 36-64-year-old group and the ≥ 65-year-old group was significantly larger than 1 at lag 21, while significantly smaller than 1 for cumulative RR at lag 21, reporting 0.11, 95% confidence interval (CI) (0.01, 0.83) and 0.06, 95% CI (0.01, 0.44), respectively. In conclusion, low temperature, especially in extreme level, acts as a high-risk factor inducing TB transmission in Kashgar city. Males exhibit a significantly higher RR of developing TB at low temperature than female, as well as the elderly group in contrast to the young or middle-aged groups. High temperature has a protective effect on TB transmission in the total population, but female and middle-aged and elderly groups are also required to be alert to the delayed RR induced by it.

Assessing the impact of ambient temperature on the risk of hand, foot, and mouth disease in Guangdong, China: New insight from the disease severity and burden

BACKGROUND: The association between the incidence of hand, foot, and mouth disease (HFMD) and ambient temperature has been well documented. Although the severity of symptoms is an important indicator of disease burden and varies significantly across cases, it usually was ignored in previous studies, potentially leading to biased estimates of the health impact of temperature. METHODS: We estimated the disability-adjusted life year (DALY) by considering the severity of symptoms for each HFMD case reported during 2010-2012 in Guangdong and used distributed lag-nonlinear models to estimate the association between the daily average temperature and daily DALY of HFMD cases at the city-level. We investigated the potential effect modifiers on the pathway between temperature and DALY and pooled city-specific estimates to a provincial association using a meta-regression. The overall impact of temperature was further evaluated by estimates of DALYs that could be attributed to HFMD. RESULTS: The overall cumulative effect of daily mean temperature on the DALY of HFMD showed an inverse-U shape, with the maximum effect estimated to be β = 0.0331 (95%CI: 0.0199-0.0463) DALY at 23.8°C. Overall, a total of 6.432 (95%CI: 3.942-8.885) DALYs (attributable fraction = 2.721%, 95%CI: 1.660-3.759%) could be attributed to temperature exposure. All the demographic subgroups had a similar trend as the main analysis, while the magnitude of the peak of the temperature impact tended to be higher among the males, those aged ≥3yrs or from the Pear-River Delta region. Additionally, the impact of temperature on DALY elevated significantly with the increasing population density, per capita GDP, and per capita green space in parks. CONCLUSIONS: Temperature exposure was associated with increased burden of HFMD nonlinearly, with certain groups such as boys and those from areas with greater population density being more vulnerable.

Estimating the influence of high temperature on hand, foot, and mouth disease incidence in China

The burden of disease caused by ambient high temperature has become a public health concern, but the associations between high temperature and hand, foot, and mouth disease (HFMD) remain indistinct. We used distributed lag non-linear model (DLNM) to estimate the burden of disease attribute to high temperature, adjusting for long-term trend and weather confounders. Total 18,167,455 cases were reported in 31 Chinese provinces, the incidence of HFMD showed a gradually increasing trend from 2008 to 2017 in China. Minimum morbidity temperature (MMT) was mainly concentrated at 17 to 23 °C in ≤ 5 years old group, 18 to 25 °C in 6 ~ 10 years old group and 19 to 27 °C in > 10 years old group. The greatest relative risk (RR) in age group ≤ 5 years old was 2.06 (95% CI: 1.85 ~ 2.30) in Heilongjiang, and the lowest RR was 1.02 (95% CI: 1.00 ~ 1.05) in Guangdong; the greatest RR in age group 6 ~ 10 years old was 2.24 (95% CI: 1.72 ~ 2.91) in Guizhou, and the lowest RR was 1.01 (95% CI: 0.97 ~ 1.12) in Tianjin; the greatest RR in the age group > 10 years old was 2.53 (95% CI: 1.66 ~ 3.87) in Heilongjiang, and the lowest RR was 1.02 (95% CI: 0.71 ~ 1.46) in Henan. We found the positive association between high temperature and HFMD in China.

Spatiotemporal characteristics and meteorological determinants of hand, foot and mouth disease in Shaanxi Province, China: A county-level analysis

BACKGROUND: Hand, foot and mouth disease (HFMD) is one of the common intestinal infectious diseases worldwide and has caused huge economic and disease burdens in many countries. The average annual incidence rate of HFMD was 11.66% in Shaanxi during the time span from 2009 to 2018. There are distinct differences within Shaanxi, as it is a special region that crosses three temperature zones. Hence, in this study, a spatiotemporal analysis of Shaanxi was performed to reveal the characteristics of the distribution of HFMD and to explore the meteorological determinants of HFMD. METHODS: The county-level and municipal data from Shaanxi Province from 2009 to 2018 were applied to research the spatiotemporal characteristics of HFMD and its meteorological determinants. Time series and spatial autocorrelation analyses were applied to assess the spatiotemporal characteristics of HFMD. This study used spatial econometric panel models to explore the relationship between HFMD and meteorological factors based on the data of 107 counties and 10 municipalities. RESULTS: The incidence rate of HFMD displayed no variable trend throughout the whole research period. A high incidence rate of HFMD was observed from June to September, corresponding to a time when the climate is characterized by heavy rain, high temperature, and high humidity. The high-incidence areas were mainly located in the central region in Shaanxi, whereas the low-incidence spots were mainly found in Northern Shaanxi. Regarding the meteorological factors analysed in this study, in general, the incidence rate of HFMD in specific regions was positively associated with the rainfall, temperature and humidity. CONCLUSION: These results could be applied by the government and the general public to take effective measures to prevent disease. Region-targeted policies could be enacted and implemented in the future according to specific situations in different areas and the relevant meteorological determinants. Additionally, meteorological conditions normally extend to a wide-ranging region; thus, cooperation among surrounding regions is necessary.

The modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo, China

BACKGROUND: Although exposure to air pollution has been linked to many health issues, few studies have quantified the modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo, China. METHODS: The data of daily incidence of influenza and the relevant meteorological data and air pollution data in Ningbo from 2014 to 2017 were retrieved. Low, medium and high temperature layers were stratified by the daily mean temperature with 25th and 75th percentiles. The potential modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo was investigated through analyzing the effects of air pollutants stratified by temperature stratum using distributed lag non-linear model (DLNM). Stratified analysis by sex and age were also conducted. RESULTS: Overall, a 10 μg/m(3) increment of O(3), PM(2.5), PM(10) and NO(2) could increase the incidence risk of influenza with the cumulative relative risk of 1.028 (95% CI 1.007, 1.050), 1.061 (95% CI 1.004, 1.122), 1.043 (95% CI 1.003, 1.085), and 1.118 (95% CI 1.028, 1.216), respectively. Male and aged 7-17 years were more sensitive to air pollutants. Through the temperature stratification analysis, we found that temperature could modify the impacts of air pollution on daily incidence of influenza with high temperature exacerbating the impact of air pollutants. At high temperature layer, male and the groups aged 0-6 years and 18-64 years were more sensitive to air pollution. CONCLUSION: Temperature modified the relationship between air pollution and daily incidence of influenza and high temperature would exacerbate the effects of air pollutants in Ningbo.

Managing extreme heat and smoke: A focus group study of vulnerable people in Darwin, Australia

Extreme heat and poor air quality arising from landscape fires are an increasing global concern driven by anthropogenic climate change. Previous studies have shown these environmental conditions are associated with negative health outcomes for vulnerable people. Managing and adapting to these conditions in a warming climate can present substantial difficulties, especially in climates already challenging for human habitation. This study was set in the tropical city of Darwin, Australia. We recruited individuals from population groups vulnerable to outdoor hazards: outdoor workers, teachers and carers, and sportspeople, to participate in focus group discussions. We aimed to gain an understanding of the impacts of extreme heat and poor air quality and how individuals perceived and managed these environmental conditions. We identified a number of key themes relating to impacts on health, work and activity, and adaptive behaviors, while identifying gaps in policy and infrastructure that could improve the lives and protect the health of vulnerable people living, working, and playing in this region. In addition, these outcomes potentially provide direction for other regions with similar environmental challenges. Extreme heat and poor air quality place an additional burden on the lives of people in high-risk settings, such as outdoor workers, teachers and carers, and sportspeople.

Association of ambient ozone exposure with anxiety and depression among middle-aged and older adults in China: Exploring modification by high temperature

Anxiety and depression are severe public health problems worldwide. The effects of ozone exposure on anxious and depressive symptoms remain largely unknown, especially in China. We evaluated the associations between ozone exposure and depression and anxiety among middle-aged and older adults across China. A multi-center community-based repeated measurement study among middle-aged and older adults was conducted from 2017 to 2018 in 11 provinces in China. The status of depression and anxiety was measured using Patient Health Questionnaire-9 (PHQ-9) and the generalized anxiety disorder seven-item (GAD-7) scale at the cut-off point of five, respectively. Concentrations of multiple ozone metrics were collected from real-time monitoring stations. The multilevel logistic regression model with random intercept was used to evaluate the effects of ambient ozone on anxiety and depression over different exposure windows. After adjusting for potential confounders, a 10 mu g /m(3) increase in the three months moving average of ozone was associated with the risk of anxiety [odds ratio (OR) = 1.25; 95% confidence interval (CI): 1.15; 1.37] and depression (OR = 1.17; 95% CI: 1.08; 1.27). A significantly positive modification effect of temperature on associations between ozone and anxiety was also found, while there is no interaction for depression. Exposure-response curves showed that there may be a threshold for the effect of ozone exposure on anxiety and depression over the three months moving average concentrations, with similar patterns observed at different temperature levels. People over 65 years old were at significantly higher risks of ozone-associated depression, while anxiety was more strongly associated with ozone in hypertensive patients. Our study supports the theory that anxiety and depression is associated with mid-term ozone exposure in China, and temperatures significantly enhanced their associations. These findings may have significant implications for promoting prevention activities regarding mental disorders and approaches in reducing the disease burden by simultaneously controlling air pollution and mitigating climate change.

Temperature-modified acute effects of ozone on human mortality – Beijing Municipality, Tianjin Municipality, Hebei Province, and surrounding areas, China, 2013-2018

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC? Ozone (O(3)) is a weather-driven photochemical ambient pollutant, and its harm to human health may be affected by meteorological factors such as temperature. However, there is conflicting evidence regarding whether temperature can modify the effects of ozone on health. WHAT IS ADDED BY THIS REPORT? Short-term exposure to O(3) in the Beijing Municipality, Tianjin Municipality, Hebei Province, and surrounding areas was associated with an increased risk of human mortality and that association was positive modified by relatively higher (>75th 24 h-average temperature) or extreme cold temperature (<10th 24 h-average temperature). Under extreme temperatures (>90th 24 h-average temperature) modification, the associations were further increased. Cardiopulmonary diseases, as vulnerable diseases of air pollution, their mortality risks associated with O(3) were markedly strengthened by uncomfortable temperatures. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE? This study suggests that policymakers should pay attention to the synergistic effect between ozone and heat or extreme cold on human health, as well as provide evidence for establishing an integrated early-warning system to protect the public against both uncomfortable temperature and air pollution.

Joint occurrence of heatwaves and ozone pollution and increased health risks in Beijing, China: Role of synoptic weather pattern and urbanization

Heatwaves (HWs) paired with higher ozone (O-3) concentration at the surface level pose a serious threat to human health. Their combined modulation of synoptic patterns and urbanization remains unclear. Using 5 years of summertime temperature and O-3 concentration observation in Beijing, this study explored potential drivers of compound HWs and O-3 pollution events and their public health effects. Three favorable synoptic weather patterns were identified to dominate the compound HWs and O-3 pollution events. These weather patterns contributing to enhance those conditions are characterized by sinking air motion, low boundary layer height, and high temperatures. Under the synergy of HWs and O-3 pollution, the mortality risk from all non-accidental causes increased by approximately 12.31 % (95 % confidence interval: 4.66 %, 20.81 %). Urbanization caused a higher risk of HWs and O-3 in urban areas than at rural stations. Particularly, due to O(3 )depletion caused by NO titration at traffic and urban stations, the health risks related to O(3 )pollution in different regions are characterized as follows: suburban stations > urban stations > rural stations > traffic stations. In general, favorable synoptic patterns and urbanization enhanced the health risk of these compound events in Beijing by 33.09 % and 18.95 %, respectively. Our findings provide robust evidence and implications for forecasting compound HWs and O-3 pollution events and their health risks in Beijing or in other urban areas all over the world that have high concentrations of O-3 and high-density populations.

Health benefits of emission reduction under 1.5°C pathways far outweigh climate-related variations in China

The 1.5 °C pathways initially promoted by the challenges presented by climate change could bring substantial air quality-related benefits. However, since there is a lack of comprehensive assessment on emissions of air pollutants, meteorology, air quality, and heatwave occurrences under different climate goals, how significant the clean air cobenefits compared with the direct climate-related impact is uncertain. In this study, we assess the cobenefits of 1.5 °C pathways for air quality in China by linking multiple shared socioeconomic pathways, ensembling simulations of regional climate-air quality dynamic downscaling and an air pollution and climate-related health assessment model, and compare different kinds of benefits: the health benefits from direct slowing climate (reduced heatwaves) versus the health cobenefits from air quality improvement (the improved air quality from reduced air pollutants versus meteorological changes). The benefit of reduced air pollution emissions associated with sustainable development under 1.5 °C pathways dominated the overall impact, which could avoid 1 589 000 PM(2.5)-related and 526 000 O(3)-related deaths in 2050. Correspondingly, the impact of changed meteorology on air quality would avoid additional 8000 PM(2.5)-related deaths in 2050 under 1.5 °C pathways yet would lead to 22 000 O(3)-related deaths. Also, the heatwave-related deaths could be avoided by 7000. The substantial anthropogenic emission reduction cobenefits of 1.5 °C pathways in improving air quality significantly exceed the direct climate (heatwave-related) benefits and completely offset the impact of meteorological changes’ impact on air pollution under climate change.

Modification effects of ambient temperature on ozone-mortality relationships in Chengdu, China

A multitude of epidemiological studies have demonstrated that both ambient temperatures and air pollution are closely related to health outcomes. However, whether temperature has modification effects on the association between ozone and health outcomes is still debated. In this study, three parallel time-series Poisson generalized additive models (GAMs) were used to examine the effects of modifying ambient temperatures on the association between ozone and mortality (including non-accidental, respiratory, and cardiovascular mortality) in Chengdu, China, from 2014 to 2016. The results confirmed that the ambient high temperatures strongly amplified the adverse effects of ozone on human mortality; specifically, the ozone effects were most pronounced at > 28 °C. Without temperature stratification conditions, a 10-μg/m(3) increase in the maximum 8-h average ozone (O(3-8hmax)) level at lag01 was associated with increases of 0.40% (95% confidence interval [CI] 0.15%, 0.65%), 0.61% (95% CI 0.27%, 0.95%), and 0.69% (95% CI 0.34%, 1.04%) in non-accidental, respiratory, and cardiovascular mortality, respectively. On days during which the temperature exceeded 28 °C, a 10-μg/m(3) increase in O(3-8hmax) led to increases of 2.22% (95% CI 1.21%, 3.23%), 2.67% (95% CI 0.57%, 4.76%), and 4.13% (95% CI 2.34%, 5.92%) in non-accidental, respiratory, and cardiovascular mortality, respectively. Our findings validated that high temperature could further aggravate the health risks of O(3-8hmax); thus, mitigating ozone exposure will be brought into the limelight especially under the context of changing climate.

Effect modification by temperature on the association between O(3) and emergency ambulance dispatches in Japan: A multi-city study

Numerous epidemiological studies have reported that ozone (O(3)) and temperature are independently associated with health outcomes, but modification of the effects of O(3) on health outcomes by temperature, and vice versa, has not been fully described. This study aimed to investigate effect modification by temperature on the association between O(3) and emergency ambulance dispatches (EADs) in Japan. Data on daily air pollutants, ambient temperature, and EADs were obtained from eight Japanese cities from 2007 to 2015. A distributed lag non-linear model combined with Poisson regression was performed with temperature as a confounding factor and effect modifier to estimate the effects of O(3) on EADs at low (<25th percentile), moderate (25th-75th percentile), and high (>75th percentile) temperature for each city. The estimates obtained from each city were pooled by random-effects meta-analysis. When temperature was entered as a confounder, the estimated effects of O(3) on EADs for all acute, cardiovascular, and respiratory illnesses were largest at lag 0 (current-day lag). Therefore, this lag was used to further estimate the effects of O(3) on EADs in each temperature category. The estimated effects of O(3) on EADs for all acute, cardiovascular, and respiratory illnesses in all eight Japanese cities increased with increasing temperature. Specifically, a 10 ppb increase in O(3) was associated with 0.80 % (95 % CI: 0.25 to 1.35), 0.19 % (95 % CI: -0.85 to 1.25), and 1.14 % (95 % CI: -0.01 to 2.31) increases in the risk of EADs for all acute, cardiovascular, and respiratory illnesses, respectively, when city-specific daily temperature exceeded the 75th percentile. Our findings suggest that the association between O(3) and EADs for all acute, cardiovascular, and respiratory illnesses is the highest during high temperature. Finding of this study can be used to develop potential mitigation measures against O(3) exposure in high temperature environment to reduce its associated adverse health effects.

Association between ambient temperature, particulate air pollution and emergency room visits for conjunctivitis

BACKGROUND: Numerous studies have confirmed the association of ambient temperature and air pollution with a higher risk of morbidities, yet few have addressed their effect on the ocular system. The purpose of this study was to assess the association between temperature, air pollution, and emergency room visits for conjunctivitis. METHODS: In this case-crossover study, the records of all emergency room visits to Soroka University Medical Center (SUMC) from 2009 to 2014 were reviewed for patients with conjunctivitis. Daily exposure to fine and coarse particulate matter and temperature were determined by a hybrid model involving satellite sensors. Mean relative humidity was obtained from the Ministry of Environmental Protection meteorological monitoring station located in Beer-Sheva. RESULTS: Six hundred one patients were diagnosed with conjunctivitis in the SUMC emergency room. We discovered a positive association between temperature increments and incidence of conjunctivitis. The strongest effect was found during summer and autumn, with an immediate (lag0) incidence increase of 8.1% for each 1 °C increase in temperature (OR = 1.088, 95%CI: 1.046-1.132) between 24 and 28 °C in the summer and 7.2% for each 1 °C increase in temperature (OR = 1.072, 95%CI: 1.036-1.108) between 13 and 23 °C in the autumn. There was no statistically significant association between fine and coarse particulate matter and conjunctivitis incidence. CONCLUSION: Temperature increases during summer and autumn are significantly associated with an increased risk of conjunctivitis. Conjunctivitis is not associated with non-anthropogenic air pollution. These findings may help community clinics and hospital emergency rooms better predict conjunctivitis cases and will hopefully lead to improved prevention efforts that will lower the financial burden on both the individual and the public.

Bushfire season’ in Australia: Determinants of increases in risk of acute coronary syndromes and Takotsubo syndrome

BACKGROUND: Climate change has resulted in an increase in ambient temperatures during the summer months as well as an increase in risk of associated air pollution and of potentially disastrous bushfires throughout much of the world. The increasingly frequent combination of elevated summer temperatures and bushfires may be associated with acute increases in risks of cardiovascular events, but this relationship remains unstudied. We evaluated the individual and cumulative impacts of daily fluctuations in temperature, fine particulate matter of less than 2.5 µm (PM(2.5)) pollution and presence of bushfires on incidence of acute coronary syndromes and Takotsubo syndrome. METHODS: From November 1, 2019, to February 28, 2020, all admissions with acute coronary syndromes or Takotsubo syndrome to South Australian tertiary public hospitals were evaluated. Univariate and combined associations were sought among each of 1) maximal daily temperature, 2) PM(2.5) concentrations, and 3) presence of active bushfires within 200 km of the hospitals concerned. RESULTS: A total of 504 patients with acute coronary syndromes and 35 with Takotsubo syndrome were studied. In isolation, increasing temperature was associated (r(s) = 0.26, P = .005) with increased incidence of acute coronary syndromes, while there were similar, but nonsignificant correlations for PM(2.5) and presence of bushfires. Combinations of all these risk factors were also associated with a doubling of risk of acute coronary syndromes. No significant associations were found for Takotsubo syndrome. CONCLUSION: The combination of high temperatures, presence of bushfires and associated elevation of atmospheric PM(2.5) concentrations represents a substantially increased risk for precipitation of acute coronary syndromes; this risk should be factored into health care planning including public education and acute hospital preparedness.

Importance of allergen-environment interactions in epidemic thunderstorm asthma

Australia is home to one of the highest rates of allergic rhinitis worldwide. Commonly known as ‘hay fever’, this chronic condition affects up to 30% of the population and is characterised by sensitisation to pollen and fungal spores. Exposure to these aeroallergens has been strongly associated with causing allergic reactions and worsening asthma symptoms. Over the last few decades, incidences of respiratory admissions have risen due to the increased atmospheric concentration of airborne allergens. The fragmentation and dispersion of these allergens is aided by environmental factors like rainfall, temperature and interactions with atmospheric aerosols. Extreme weather parameters, which continue to become more frequent due to the impacts of climate change, have greatly fluctuated allergen concentrations and led to epidemic thunderstorm asthma (ETSA) events that have left hundreds, if not thousands, struggling to breathe. While a link exists between airborne allergens, weather and respiratory admissions, the underlying factors that influence these epidemics remain unknown. It is important we understand the potential threat these events pose on our susceptible populations and ensure our health infrastructure is prepared for the next epidemic.

Compositions, sources, and potential health risks of volatile organic compounds in the heavily polluted rural North China Plain during the heating season

Severe volatile organic compound (VOC) pollution has become an urgent problem during the heating season in the North China Plain (NCP), as exposure to hazardous VOCs can lead to chronic or acute diseases. A campaign with online VOC measurements was conducted at a rural site in Wangdu, NCP during the 2018 heating season to characterize the compositions and associated sources of VOCs and to assess their potential health risks. The total concentration of VOCs with 94 identified species was 77.21 +/- 54.39 ppb. Seven source factors were identified by non-negative matrix factorization, including coal combustion (36.1%), LPG usage (21.1%), solvent usage (13.9%), biomass burning and secondary formation (142%), background (7.0%), industrial emissions (4.5%), and vehicle emissions (3.3%). The point estimate approach and Monte Carlo simulation were used to estimate the carcinogenic and non-carcinogenic risks of harzadous VOCs. The results showed that the cumulative health risk of VOCs was above the safety level. Acrolein, 1.2-dichlorprothane, 12-dichloropropane, chloroform, 1,3-butadiene, and benzene were identified as the key hazardous VOCs in Wangdu. Benzene had the highest average carcinogenic risk. Solvent usage and secondary formation were the dominant sources of adverse health effects. During the Spring Festival, most sources were sharply reduced; and VOC concentration declined by 49%. However, coal and biomass consumptions remained relatively large, probably due to heating demand. This study provides important references for the control strategies of VOCs during the heating season in heavily polluted rural areas in the NCP. (C) 2021 Elsevier B.V. All rights reserved.

Climate change and mental health impacts among Dalit communities in southwestern Bangladesh

The Impacts of Climate Change on Mental Health of Tribal Communities in Jharkhand

hackAIR

The climate-changed child: A Children’s Climate Risk Index supplement

Repository of systematic reviews on interventions in environment, climate change and health

The Local Climate Adaptation Tool (LCAT)

VCH Chief Medical Health Officer Report 2023: Protecting Population Health in a Climate Emergency

Global Cooling Watch 2023

Plan de acción de salud y cambio climático de la provincia de Neuquén

Quantifying the Impact of Climate Change on Human Health

Modelling risks due to urban transformation and climate change scenarios

Pakistan Lancet Countdown on Health and Climate Change Data Sheet 2023

Bangladesh Lancet Countdown on Health and Climate Change Data Sheet 2023

Vietnam Lancet Countdown on Health and Climate Change Data Sheet 2023

US Lancet Countdown on Health and Climate Change Data Sheet 2023

UK Lancet Countdown on Health and Climate Change Data Sheet 2023

United Arab Emirates Lancet Countdown on Health and Climate Change Data Sheet 2023

South Africa Lancet Countdown on Health and Climate Change Data Sheet 2023

Sierra Leone Lancet Countdown on Health and Climate Change Data Sheet 2023

Nigeria Lancet Countdown on Health and Climate Change Data Sheet 2023

Netherlands Lancet Countdown on Health and Climate Change Data Sheet 2023

Kenya Lancet Countdown on Health and Climate Change Data Sheet 2023

Japan Lancet Countdown on Health and Climate Change Data Sheet 2023

India Lancet Countdown on Health and Climate Change Data Sheet 2023

Germany Lancet Countdown On Health And Climate Change Data Sheet 2023

Fiji Lancet Countdown on Health and Climate Change Data Sheet 2023

Egypt Lancet Countdown on Health and Climate Change Data Sheet 2023

Maldives Lancet Countdown on Health and Climate Change Data Sheet 2023

The Lancet Countdown on Health and Climate Change – Policy brief for the United States of America

Enabling environment for integrated risk monitoring and climate-informed early warning systems in Fiji

Temperature effects on mortality in a changing climate – Health Effects of Climate Change in the UK

“Fan-First” Cooling – a low-carbon way to improve heat resilience in a changing climate

Protecting maternal, newborn and child health from the impacts of climate change: call for action

Climate and Health Outlook Portal

2023 State of Climate Services – Health

Climate change and public health indicators: scoping review

Review of Current Comprehensive Heat Vulnerability and Adaptation Indices: USA Regional Differences and Gaps in Knowledge

Guidance Notes on Prevention of Heat Stroke at Work

Reporting on Heatwaves and the Health Impacts of Heat

Technical Brief: Health and the El Niño Southern Oscillation (ENSO)

Protecting Children from Heat Stress: A technical note

Earth Observation, Public Health and One Health: Activities, Challenges and Opportunities

How Is India Adapting to Heatwaves?: An Assessment of Heat Action Plans With Insights for Transformative Climate Action

Climate Reporting Resource Hub

Ahmedabad’s Heat Action Plan: Development and lessons learned

Final Report from the G7 Health Communiqué to Action: Health and Climate – Heat Preparedness through Early Warning Systems

Extreme heat: Preparing for the heat waves of the future

Considerations Regarding the Naming of Heatwaves – Technical Brief

Map viewer: Availability of urban green spaces to vulnerable groups

Map viewer: Exposure of vulnerable groups and social infrastructure to climate-related risks

Addressing Rising Demand for Cooling in India with Cool Roofs

Climate Resilience for Frontline Clinics Toolkit

Risk Information Exchange (RiX)

Background report from the G7 Health Communiqué to Action: Health and Climate – Heat Preparedness through Early Warning Systems

Provisional State of the Global Climate in 2022

Climate change as a threat to health and well-being in Europe: focus on heat and infectious diseases

Climate Change Impacts on the Health of Canadians

Climate Change Impact Map

Human Climate Horizons (HCH)

The State of the Global Climate 2021

The coldest year of the rest of their lives: Protecting children from the escalating impacts of heatwaves

The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels

Changes in population susceptibility to heat and cold over time: assessing adaptation to climate change

Feeling the Heat: How California’s Workplace Heat Standards Can Inform Stronger Protections Nationwide

Climate assessments – Croatia

Sistema de Alerta Temprana por Temperaturas Extremas Calor (SAT-TE Calor): la evolución del SAT-OCS – Argentina

Heatwave: Checklists to Assess Vulnerabilities in Health Care Facilities in the Context of Climate Change

Developing Climate Information Systems for Heat Health Early Warning: Workshop report, action plan and requirements

Impact-based Forecast for Cold and Heat Events – South Korea

Avisos: Temperaturas extremas – España

El Plan Nacional de Predicción y Vigilancia de Fenómenos Meteorológicos Adversos (Meteoalerta) pretende facilitar la mejor y más actualizada información posible sobre los fenómenos atmosféricos adversos que se prevean, con un adelanto de hasta 72 horas. En ese sentido, uno de los avisos se corresponde con temperaturas mínimas y máximas extremas, con cuatro niveles básicos (de menor a mayor riesgo en modo semafórico) a partir del posible alcance de determinados umbrales: verde, amarillo, naranja y rojo. Estos umbrales se han establecido con criterios climatológicos cercanos al concepto de “poco o muy poco frecuente” y de adversidad, en función de la amenaza que puedan suponer para la población.

Extreme Heat and Cold Warning – Finland

The purpose of the warnings on extreme temperatures is to prevent health problems resulting from cold and hot weather. The warnings are mainly intended for risk groups and people who work outdoors.

A heat wave warning is issued if stifling hot weather has been forecasted for some area in Finland. Criteria for cold weather warnings are based on wind chill index, which describes the combined effect of cold and wind. Warnings for hot and cold weather are for the next 5 days.

Heat / Cold / Fire / Storms Warning – Slovenia

Trends of temperature variability: Which variability and what health implications?

A large majority of climate change studies carried out to date are on changes in mean climate, which have comparatively downplayed variability. In terms of trend analysis or forecast, the scientific output and common knowledge for global warming are much more robust than for changes in temperature variability. Quantification of temperature variability adds another dimension of temporal scale, requiring immense labor and presenting great uncertainty. Regardless, this endeavor is necessary since changes in ambient temperature variabilities could also contribute to current and future human health burden besides changes in mean quantities. Here, we review the current literature on trends of surface air temperature variability defined at a range of timescales, aiming to tease out the welter of evidence and thus improving the scientific recognition of changes in air temperature variability in the context of climate change. The findings of reviewed studies from numerous regions differ substantially over various temporal scales. In general, the ambient temperature variability on short time scales (e.g., diurnal or inter-day) shows a downward trend, while it is increasing on longer time scales (e.g., inter-annual). We then move beyond the review and deliver an extended discussion of potential implications for future research related to ambient temperature variability. We highlight the need to consider the methodological choices, especially timescales of interest, in the trend analysis as well as health impact studies. Continued research focusing on temperature variability at multiple timescales, with concerted efforts from scientists of all relevant stripes, is meaningful in synthesizing knowledge and reducing uncertainties surrounding air temperature variability.

The impact of climate change on pollen season and allergic sensitization to pollens

Pollens are a major cause of seasonal allergic diseases. Weather may alter the production of pollens. Increased atmospheric temperatures lead to earlier pollination of many plants and longer duration of pollination, resulting in extended pollen seasons, with early spring or late winter. Longer pollen seasons increase duration of exposure, resulting in more sensitization, and higher pollen concentrations may lead to more severe symptoms. Climate changes in contact to pollens may affect both allergic sensitization and symptom prevalence with severity. The future consequences of climate change, however, are speculative, because the influence on humans, is complex.

The influence of climate change on skin cancer incidence – A review of the evidence

BACKGROUND: Climate change is broadly affecting human health, with grave concern that continued warming of the earth’s atmosphere will result is serious harm. Since the mid-20th century, skin cancer incidence rates have risen at an alarming rate worldwide. OBJECTIVE: This review examines the relationship between climate change and cutaneous carcinogenesis. METHODS: A literature review used the National Institutes of Health databases (PubMed and Medline), the Surveillance, Epidemiology, and End Results and International Agency for Research on Cancer registries, and published reports by federal and international agencies and consortia, including the Australian Institute of Health and Welfare, Climate and Clean Air Coalition, U.S. Environmental Protection Agency, Intergovernmental Panel on Climate Change, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, United Nations Environment Programme, World Health Organization, and World Meteorological Organization. RESULTS: Skin cancer risk is determined by multiple factors, with exposure to ultraviolet radiation being the most important. Strong circumstantial evidence supports the hypothesis that factors related to climate change, including stratospheric ozone depletion, global warming, and ambient air pollution, have likely contributed to the increasing incidence of cutaneous malignancy globally and will continue to impose a negative on influence skin cancer incidence for many decades to come. CONCLUSION: Because much of the data are based on animal studies and computer simulations, establishing a direct and definitive link remains challenging. More epidemiologic studies are needed to prove causality in skin cancer, but the evidence for overall harm to human health as a direct result of climate change is clear. Global action to mitigate these negative impacts to humans and the environment is imperative.

The interaction between diabetes and climate change – A review on the dual global phenomena

INTRODUCTION: Type 2 diabetes and climate change are forefront global challenges of the 21st century. Both are on a progressive incline with intergenerational effects on the wellbeing, health and security of the population. The aim of this review was to explore the interconnection relationship between type 2 diabetes and climate change. METHODS: A literature review search of MEDLINE publications from 2010 to March 2020 was performed. English-language articles using terms “diabetes” AND “climate change” OR “temperature change” OR “temperature rise” OR “hot temperature” OR “extreme heat” were reviewed. RESULTS: Climate change and diabetes are interconnected through a direct and indirect pathway. Temperature changes can trigger a person’s susceptibility to develop diabetes as well as impose adverse effects on those diagnosed with diabetes (such as increased incidence of hospitalization, dehydration and mortality). Both temperature extremes have been reported to lead to negative effects on diabetes. Concurrently, both phenomena have shared predisposing vectors (such as sedentary lifestyle, urbanisation, unhealthy diets) that lead to their progressive development. CONCLUSION: A bidirectional relationship exists between type 2 diabetes and climate change. This relationship originates through a multifactorial pathway involving biological, social, environmental, geophysical and economic factors. An integrated action plan targeting the common predisposing vectors should be set up. This should support a low environmental impact while promoting equity and wellbeing.

The 2020 China report of the Lancet Countdown on health and climate change

The 2020 report of The Lancet Countdown on health and climate change: Responding to converging crises

For the Chinese, French, German, and Spanish translations of the abstract see Supplementary Materials section.

Social and environmental risks as contributors to the clinical course of heart failure

Heart failure is a major contributor to healthcare expenditures. Many clinical risk factors for the development and exacerbation of heart failure had been reported, including diabetes, renal dysfunction, and respiratory disease. In addition to these clinical parameters, the effects of social factors, such as occupation or lifestyle, and environmental factors may have a great impact on disease development and progression of heart failure. However, the current understanding of social and environmental factors as contributors to the clinical course of heart failure is insufficient. To present the knowledge of these factors to date, this comprehensive review of the literature sought to identify the major contributors to heart failure within this context. Social factors for the risk of heart failure included occupation and lifestyle, specifically in terms of the effects of specific occupations, occupational exposure to toxicities, work style, and sleep deprivation. Socioeconomic factors focused on income and education level, social status, the neighborhood environment, and marital status. Environmental factors included traffic and noise, air pollution, and other climate factors. In addition, psychological stress and behavior traits were investigated. The development of heart failure may be closely related to these factors; therefore, these data should be summarized for the context to improve their effects on patients with heart failure. The present study reviews the literature to summarize these influences.

Sorghum mitigates climate variability and change on crop yield and quality

Global food insecurity concerns due to climate change, emphasizes the need to focus on the sensitivity of sorghum to climate change and potential crop improvement strategies available, which is discussed in the current review to promote climate-smart agriculture. Climate change effects immensely disturb the global agricultural systems by reducing crop production. Changes in extreme weather and climate events such as high-temperature episodes and extreme rainfalls events, droughts, flooding adversely affect the production of staple food crops, posing threat to ecosystem resilience. The resulting crop losses lead to food insecurity and poverty and question the sustainable livelihoods of small farmer communities, particularly in developing countries. In view of this, it is essential to focus and adapt climate-resilient food crops which need lower inputs and produce sustainable yields through various biotic and abiotic stress-tolerant traits. Sorghum, “the camel of cereals”, is one such climate-resilient food crop that is less sensitive to climate change vulnerabilities and also an important staple food in many parts of Asia and Africa. It is a rainfed crop and provides many essential nutrients. Understanding sorghum’s sensitivity to climate change provides scope for improvement of the crop both in terms of quantity and quality and alleviates food and feed security in future climate change scenarios. Thus, the current review focused on understanding the sensitivity of sorghum crop to various stress events due to climate change and throws light on different crop improvement strategies available to pave the way for climate-smart agriculture.

Systematic review and meta-analysis on the association between seasonal variation and gestational diabetes mellitus

Recently, there is growing evidence that ambient temperature and seasonal changes are related to the incidence of gestational diabetes mellitus (GDM). Thereby, this study was conducted to evaluate the association between seasonal changes and ambient temperature and GDM. We conducted a systematic search in PubMed, ISI Web of Science, Scopus, Google Scholar, and Cochrane Collaboration for human studies available until the end of 2020. We used the following keywords to identify relevant articles: “Diabetes, Gestational” (MeSH), “Glucose Tolerance Test” (MeSH), “Glucose intolerance” (MeSH), “Pregnancy outcome” (MeSH), “Birth outcome”, “Seasons” (MeSH), “Weather” (MeSH), “Ambient Temperature,” “Climate Change” (MeSH). Meta-analyses by using STATA software were conducted for analyzing data. Due to the high heterogeneity between included studies, a random-effects model was used. Subgroup analysis, meta-regression, and sensitivity analysis were used to define a source of heterogeneity. We found 13 studies related to the association between ambient temperature and season changes and GDM, which 11 of them were included in meta-analyses. Despite inconsistencies in outcome assessment across studies, we found a significant positive association between seasons of GDM screening and risk of GDM (pooled OR=1.12; 95% CI (1.03, 1.21)). The funnel plot and Egger’s test showed that there was no significant publication bias among these studies (p=0.51). In general, season changes showed a significant positive relationship with prevalence of GDM. However, due to the unknown exact mechanism on this association, further studies should be conducted.

Technological opportunities for sensing of the health effects of weather and climate change: A state-of-the-art-review

Sensing and measuring meteorological and physiological parameters of humans, animals, and plants are necessary to understand the complex interactions that occur between atmospheric processes and the health of the living organisms. Advanced sensing technologies have provided both meteorological and biological data across increasingly vast spatial, spectral, temporal, and thematic scales. Information and communication technologies have reduced barriers to data dissemination, enabling the circulation of information across different jurisdictions and disciplines. Due to the advancement and rapid dissemination of these technologies, a review of the opportunities for sensing the health effects of weather and climate change is necessary. This paper provides such an overview by focusing on existing and emerging technologies and their opportunities and challenges for studying the health effects of weather and climate change on humans, animals, and plants.

Temperature and risk of infectious diarrhea: A systematic review and meta-analysis

Infectious diarrhea (ID) is an intestinal infectious disease including cholera, typhoid and paratyphoid fever, bacterial and amebic dysentery, and other infectious diarrhea. There are many studies that have explored the relationship between ambient temperature and the spread of infectious diarrhea, but the results are inconsistent. It is necessary to systematically evaluate the impact of temperature on the incidence of ID. This study was based on the PRISMA statement to report this systematic review. We conducted literature searches from CNKI, VIP databases, CBM, PubMed, Web of Science, Cochrane Library, and other databases. The number registered in PROSPERO is CRD42021225472. After searching a total of 4915 articles in the database and references, 27 studies were included. The number of people involved exceeded 7.07 million. The overall result demonstrated when the temperature rises, the risk of infectious diarrhea increases significantly (RR(cumulative)=1.42, 95%CI: 1.07-1.88, RR(single-day)=1.08, 95%CI: 1.03-1.14). Subgroup analysis found the effect of temperature on the bacillary dysentery group (RR(cumulative)=1.85, 95%CI: 1.48-2.30) and unclassified diarrhea groups (RR(cumulative)=1.18, 95%CI: 0.59-2.34). The result of the single-day effect subgroup analysis was similar to the result of the cumulative effect. And the sensitivity analysis proved that the results were robust. This systematic review and meta-analysis support that temperature will increase the risk of ID, which is helpful for ID prediction and early warning in the future.

Temperature dependent viral tropism: Understanding viral seasonality and pathogenicity as applied to the avoidance and treatment of endemic viral respiratory illnesses

This review seeks to explain three features of viral respiratory illnesses that have perplexed generations of virologists: (1) the seasonal timing of respiratory illness and the rapid response of outbreaks to weather, specifically temperature; (2) the common viruses causing respiratory illness worldwide, including year-round disease in the Tropics; (3) the rapid arrival and termination of epidemics caused by influenza and other viruses. The inadequacy of the popular explanations of seasonality is discussed, and a simple hypothesis is proposed, called temperature dependent viral tropism (TDVT), that is compatible with the above features of respiratory illness. TDVT notes that viruses can spread more effectively if they moderate their pathogenicity (thereby maintaining host mobility) and suggests that endemic respiratory viruses accomplish this by developing thermal sensitivity within a range that supports organ-specific viral tropism within the human body, whereby they replicate most rapidly at temperatures below body temperature. This can confine them to the upper respiratory tract and allow them to avoid infecting the lungs, heart, gut etc. Biochemical and tissue-culture studies show that ‘wild’ respiratory viruses show such natural thermal sensitivity. The typical early autumn surge of colds and the occurrence of respiratory illness in the Tropics year-round at intermediate levels are explained by the tendency for strains to adapt their thermal sensitivity to their local climate and season. TDVT has important practical implications for preventing and treating respiratory illness including Covid-19. It is testable with many options for experiments to increase our understanding of viral seasonality and pathogenicity.

The Rhode Island climate change and health program: Building knowledge and community resilience

Climate change acts as a risk multiplier, meaning vulnerable populations bear a disproportionate burden of its effects. Improving climate resiliency is a key strategy to help the Rhode Island Department of Health meet its overarching goals of addressing the socio-economic and environmental determinants of health for all Rhode Islanders. The Climate Change and Health Program focuses on both the immediate health impacts of climate change and building resiliency. Part of the US Centers for Disease Control and Prevention’s Climate Ready States and Cities Initiative, the Program has partnered with community groups and other state and local agencies to bring technical assistance, educational resources, and funding to support community resilience to the challenges presented by the already changing climate. Specific projects discussed include the extreme heat communications plan and outdoor worker campaign; community-driven resiliency projects in response to flooding and natural hazards, and improving resilience in senior citizen housing.

Neurological disorders vis-à-vis climate change

Climate change is one of the biggest challenges humanity is facing in the 21st century. Two recognized sequelae of climate change are global warming and air pollution. The gradual increase in ambient temperature, coupled with elevated pollution levels have a devastating effect on our health, potentially contributing to the increased rate and severity of numerous neurological disorders. The main aim of this review paper is to shed some light on the association between the phenomena of global warming and air pollution, and two of the most common and debilitating neurological conditions: stroke and neurodegenerative disorders. Extreme ambient temperatures induce neurological impairment and increase stroke incidence and mortality. Global warming does not participate in the etiology of neurodegenerative disorders, but it exacerbates symptoms of dementia, Alzheimer’s disease (AD) and Parkinson’s Disease (PD). A very close link exists between accumulated levels of air pollutants (principally particulate matter), and the incidence of ischemic rather than hemorrhagic strokes. People exposed to air pollutants have a higher risk of developing dementia and AD, but not PD. Oxidative stress, changes in cardiovascular and cerebrovascular haemodynamics, excitotoxicity, microglial activation, and cellular apoptosis, all play a central role in the overlap of the effect of climate change on neurological disorders. The complex interactions between global warming and air pollution, and their intricate effect on the nervous system, imply that future policies aimed to mitigate climate change must address these two challenges in unison.

Overexposing mosquitoes to insecticides under global warming: A public health concern?

The combined effect of global warming and insecticide exposure on the spread of mosquito-borne diseases is poorly studied. In our opinion, more resources should be diverted to this topic to further research efforts and deal with this increasing threat. It is particularly important to determine how Aedes, Anopheles, and Culex vector species cope with insecticide exposure under warming temperatures, as well as how both stressors may impact the activity of mosquito biocontrol agents. Herein, we promote a discussion on the topic, fostering a research agenda with insights for the longer-term implementation of mosquito control strategies under the Integrated Vector Management framework.

Progress in understanding climate change’s effects on children and youth

PURPOSE OF REVIEW: Climate change remains a major threat to the health and well-being of children globally. This article reviews the myriad health effects of climate change on children throughout their lives and discusses ways in which the general pediatrician can be an advocate for climate solutions. RECENT FINDINGS: Rising atmospheric temperatures, increased air pollution, and destabilized weather patterns all lead to adverse health outcomes for children and adverse obstetric outcomes. However, the impact of climate change is not evenly distributed. Children living in poverty are more likely to be adversely impacted by the changing climate. SUMMARY: Ongoing and emerging research suggests that children are particularly vulnerable to the effects of climate change. The primary care pediatrician is encouraged to see this irrefutable evidence as a call to action for advocacy on behalf of our patients and the planet.

Intersecting vulnerabilities in human biology: Synergistic interactions between climate change and increasing obesity rates

OBJECTIVES: Increasing obesity rates and accelerating climate change represent two global health challenges shaped by lifestyle change and human environmental modifications. Yet, few studies have considered how these issues may interact to exacerbate disease risk. METHODS: In this theory article, we explore evidence that obesity-related disease and climatic changes share socio-ecological drivers and may interact to increase human morbidity and mortality risks. Additionally, we consider how obesity-climate change interactions may disproportionately affect vulnerable populations and how anthropological research can be applied to address this concern. RESULTS: Interactions between heat stress and cardiometabolic disease represent an important pathway through which climate change and obesity-related morbidities may jointly impair health. For example, individuals with higher body fatness and obesity-related metabolic conditions (eg, type 2 diabetes) exhibit a reduced ability to dissipate heat. The risk of poor health resulting from these interactions is expected to be heterogeneous, with low- and middle-income countries, individuals of lower socioeconomic status, and minority populations facing a greater disease burden due to relative lack of resource access (eg, air conditioning). Moreover, older adults are at higher risk due to aging-associated changes in body composition and loss of thermoregulation capabilities. CONCLUSIONS: Few policy makers appear to be considering how interventions can be designed to simultaneously address the medical burden posed by increasing obesity rates and climate change. Anthropological research is well situated to address this need in a nuanced and culturally-sensitive way; producing research that can be used to support community resilience, promote holistic well-being, and improve health outcomes.

Global climate change and pollen aeroallergens: A southern hemisphere perspective

Climatic change will have an impact on production and release of pollen, with consequences for the duration and magnitude of aeroallergen seasonal exposure and allergic diseases. Evaluations of pollen aerobiology in the southern hemisphere have been limited by resourcing and the density of monitoring sites. This review emphasizes inconsistencies in pollen monitoring methods and metrics used globally. Research should consider unique southern hemisphere biodiversity, climate, plant distributions, standardization of pollen aerobiology, automation, and environmental integration. For both hemispheres, there is a clear need for better understanding of likely influences of climate change and comprehending their impact on pollen-related health outcomes.

Global warming, heat-related illnesses, and the dermatologist

Global warming, provoked by the greenhouse effect of high levels of atmospheric gases (most notably carbon dioxide and methane), directly threatens human health and survival. Individuals vary in their capacity to tolerate episodes of extreme heat. Because skin is the organ tasked with heat dissipation, it is important for dermatologists to be versed in the physiology of cutaneous heat dissipation and cognizant of clinical settings in which the skin’s thermoregulatory responses may be impaired. When the external temperature is lower than that of the skin, the skin releases internal heat through direct thermal exchange with the environment, a process that is aided by an expansion of cutaneous blood flow and eccrine sweating. Cooling through the evaporation of sweat is effective even when the external temperature exceeds that of skin. Many factors, including environmental and physiological (e.g., age and sex), and pathological (e.g., preexisting illnesses, disorders of eccrine function, and medications) considerations, affect the skin’s capacity to thermoregulate. Identification of individuals at increased risk for heat-related morbidity and mortality will become increasingly important in the care of patients.

Health system resilience to extreme weather events in Asia-Pacific: A scoping review

Increasingly severe extreme weather events (EWEs) threaten population health in Asia-Pacific. Resilient health systems can minimize health risks by improving EWE preparedness, response, and recovery. However, how health systems demonstrate resilience is less understood in the emerging resilience literature. The objective of this scoping review was to describe how peer-reviewed and grey literature has operationalized health system resilience to EWEs in Asia-Pacific. Included sources were available in English, published from 2000 to 2019, and focused on health system activity in Asia-Pacific for EWE risk management. The World Health Organization’s climate-resilient health system framework and building block model guided analysis of 49 sources. Health system activity was categorized by system building blocks. Assets and/or gaps to resilience were identified based on whether building blocks facilitated or impeded EWE risk management. Sources mostly focused on the Philippines (29%), India (16%) and Thailand (14%), with lower income economies and Pacific Island countries underrepresented. Floods (47%), typhoons (27%), and cyclones (16%) were frequently discussed while no sources mentioned droughts. Financing was the least mentioned building block (27%) and often described as a gap to resilience (24%). Overall, this review highlights opportunities for future research to develop EWE resilient health systems in Asia-Pacific and beyond.

Heat exposure and workers’ health: A systematic review

OBJECTIVES: Several studies on the health effects of heat exposure on workers have been reported; however, only few studies have summarized the overall and systematic health effects of heat exposure on workers. This study aims to review the scientific reports on the health status of workers exposed to high temperatures in the workplace. METHODS: We reviewed literature from databases such as PubMed and Google Scholar, using Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines to identify studies that address health effects of heat exposure among workers. RESULTS: In total, 459 articles were identified, and finally, 47 articles were selected. Various health effects of heat exposure on workers have been reported, such as heat-related diseases, deaths, accidents or injuries, effects on the urinary system, reproductive system, and on the psychological system. CONCLUSIONS: Our review suggests that many workers are vulnerable to heat exposure, and this has a health effect on workers.

Heat waves: A hot topic in climate change research

Research on heat waves (periods of excessively hot weather, which may be accompanied by high humidity) is a newly emerging research topic within the field of climate change research with high relevance for the whole of society. In this study, we analyzed the rapidly growing scientific literature dealing with heat waves. No summarizing overview has been published on this literature hitherto. We developed a suitable search query to retrieve the relevant literature covered by the Web of Science (WoS) as complete as possible and to exclude irrelevant literature (n?=?8,011 papers). The time evolution of the publications shows that research dealing with heat waves is a highly dynamic research topic, doubling within about 5 years. An analysis of the thematic content reveals the most severe heat wave events within the recent decades (1995 and 2003), the cities and countries/regions affected (USA, Europe, and Australia), and the ecological and medical impacts (drought, urban heat islands, excess hospital admissions, and mortality). An alarming finding is that the limit for survivability may be reached at the end of the twenty-first century in many regions of the world due to the fatal combination of rising temperatures and humidity levels measured as “wet-bulb temperature” (WBT). Risk estimation and future strategies for adaptation to hot weather are major political issues. We identified 104 citation classics, which include fundamental early works of research on heat waves and more recent works (which are characterized by a relatively strong connection to climate change).

Hot weather as a risk factor for kidney disease outcomes: A systematic review and meta-analysis of epidemiological evidence

BACKGROUND: The occurrence or exacerbation of kidney disease has been documented as a growing problem associated with hot weather. The implementation of effective prevention measures requires a better understanding of the risk factors that increase susceptibility. To fill gaps in knowledge, this study reviews the current literature on the effects of heat on kidney-disease outcomes (ICD-10 N00-N39), including morbidity and mortality. METHODS: Databases were systematically searched for relevant literature published between 1990 and 2020 and the quality of evidence evaluated. We performed random effects meta-analysis to calculate the pooled relative risks (RRs) of the association between high temperatures (and heatwaves) and kidney disease outcomes. We further evaluated vulnerability concerning contextual population characteristics. RESULTS: Of 2739 studies identified, 91 were reviewed and 82 of these studies met the criteria for inclusion in a meta-analysis. Findings showed that with a 1 °C increase in temperature, the risk of kidney-related morbidity increased by 1% (RR 1.010; 95% CI: 1.009-1.011), with the greatest risk for urolithiasis. Heatwaves were also associated with increased morbidity with a trend observed with heatwave intensity. During low-intensity heatwaves, there was an increase of 5.9% in morbidity, while during high-intensity heatwaves there was a 7.7% increase. There were greater RRs for males, people aged ?64 years, and those living in temperate climate zones. Similarly, for every 1 °C temperature increase, there was a 3% (RR 1.031; 95% CI: 1.018-1.045) increase in the risk of kidney-related mortality, which also increased during heatwaves. CONCLUSIONS: High temperatures (and heatwaves) are associated with an elevated risk of kidney disease outcomes, particularly urolithiasis. Preventive measures that may minimize risks in vulnerable individuals during hot spells are discussed.

Impact of short-term exposure to extreme temperatures on diabetes mellitus morbidity and mortality? A systematic review and meta-analysis

The relationship between diabetes mellitus and short-term exposure to extreme temperatures remains controversial. A systematic review and meta-analysis were performed to assess the association between extreme temperatures and diabetes mellitus morbidity and mortality. PubMed, Embase, the Cochrane Library, Web of Science, and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) were searched since inception to January 1, 2019, and updated on November 17, 2020. The results were combined using random effects model and reported as relative risk (RR) with 95% confidence interval (CI). In total, 32 studies met the inclusion criteria. (1) Both heat and cold exposures have impact on diabetes. (2) For heat exposure, the subgroup analysis revealed that the effect on diabetes mortality (RR=1.139, 95% CI: 1.089-1.192) was higher than morbidity (RR=1.012, 95% CI: 1.004-1.019). (3) With the increase of definition threshold, the impact of heat exposure on diabetes rose. (4) A stronger association between heat exposure and diabetes was observed in the elderly (? 60 years old) (RR=1.040, 95% CI: 1.017-1.064). In conclusion, short-term exposure to both heat and cold temperatures has impact on diabetes. The elderly is the vulnerable population of diabetes exposure to heat temperature. Developing definitions of heatwaves at the regional level are suggested.

Increasing risks for emerging infectious diseases within a rapidly changing High Asia

The cold and arid mountains and plateaus of High Asia, inhabited by a relatively sparse human population, a high density of livestock, and wildlife such as the iconic snow leopard Panthera uncia, are usually considered low risk for disease outbreaks. However, based on current knowledge about drivers of disease emergence, we show that High Asia is rapidly developing conditions that favor increased emergence of infectious diseases and zoonoses. This is because of the existing prevalence of potentially serious pathogens in the system; intensifying environmental degradation; rapid changes in local ecological, socio-ecological, and socio-economic factors; and global risk intensifiers such as climate change and globalization. To better understand and manage the risks posed by diseases to humans, livestock, and wildlife, there is an urgent need for establishing a disease surveillance system and improving human and animal health care. Public health must be integrated with conservation programs, more ecologically sustainable development efforts and long-term disease surveillance.

Influence of weather and climate on cryptosporidiosis – A review

Studies have shown that climatic factors can significantly influence transmission of many waterborne diseases. However, knowledge of the impact of climate variability on cryptosporidiosis is much less certain. Associations between the incidence of cryptosporidiosis and climatic variables have been reported in several countries. Given that the identified relationships were not consistently reported across studies, it is not known whether these were country-specific observations or can be considered more globally. Variation in the disease risk in both low- and middle-income countries and high-income countries presents new challenges and opportunities to enact responsive changes in research and public health policies. Available epidemiological evidence of the influence of weather and climate on cryptosporidiosis is reviewed. Fourteen studies met the inclusion criteria, and most studies showed that the incidence of cryptosporidiosis is highly sensitive to climatic conditions, especially temperature, rainfall and relative humidity. The identified associations varied across studies, with different conditions of importance and lag times across different locations. Therefore, there is a need for countries at risk to assess Cryptosporidium transmission routes based on the spatiotemporal patterns of the disease and what role climate and other socio-ecological changes play in the transmission. Information gathering will then allow us to provide information for evidence-based control strategies and mitigation of transmission. This review offers new perspectives on the role of climate variability on Cryptosporidium transmission. It highlights different epidemiological approaches adopted and provides the potential for future research and surveillance to reduce the disease burden. By evaluating the epidemiological transmission of this organism in high-income countries, all mitigation strategies, for example filtration and water catchment management, can be used as exemplars of preventing infection in low- to middle-income countries.

Effective community-based interventions for the prevention and management of heat-related illnesses: A scoping review

BACKGROUND: Extreme temperatures have negative consequences on the environment, ecosystem, and human health. With recent increases in global temperatures, there has been a rise in the burden of heat-related illnesses, with a disproportionate impact on low- and middle-income countries. Effective population-level interventions are critical to a successful public health response. OBJECTIVE: This scoping review aims to summarize the evidence on the effectiveness of population-level heat-related interventions and serve as a potential guide to the implementation of these interventions. METHODS: Studies that evaluated the effectiveness of community-based interventions to mitigate or reduce the impact of extreme heat on heat-related mortality and morbidity were sought by searching four electronic databases. Studies published in the English language and those that had quantifiable, measurable mortality, morbidity or knowledge score outcomes were included. RESULTS: The initial electronic search yielded 2324 articles, and 17 studies were included. Fourteen studies were based in high-income countries (HICs) (Europe, US, Canada) and discussed multiple versions of (1) heat action plans, which included but were not limited to establishing a heat monitoring system, informative campaigns, the mobilization of health care professionals, volunteers, social workers and trained caregivers in the surveillance and management of individuals with known vulnerabilities, or stand-alone (2) education and awareness campaigns. Multi-pronged heat action plans were highly effective in reducing heat-related mortality and morbidity, especially among vulnerable populations such as the elderly and those with chronic conditions. CONCLUSIONS: The heat action plans covered in these studies have shown promising results in reducing heat-related mortality and morbidity and have included instituting early warning systems, building local capacity to identify, prevent or treat and manage heat-related illnesses, and disseminating information. Nevertheless, they need to be cost-effective, easy to maintain, ideally should not rely on a mass effort from people and should be specifically structured to meet the local needs and resources of the community.

Epidemiology of West Nile Virus infections in humans, Italy, 2012-2020: A summary of available evidences

In Italy, human cases of West Nile virus (WNV) infection have been recorded since 2008, and seasonal outbreaks have occurred almost annually. In this study, we summarize available evidences on the epidemiology of WNV and West Nile neuro-invasive disease (WNND) in humans reported between 2012 and 2020. In total, 1145 WNV infection cases were diagnosed; of them 487 (42.5%) had WNND. A significant circulation of the pathogen was suggested by studies on blood donors, with annual incidence rates ranging from 1.353 (95% confidence intervals (95% CI) 0.279-3.953) to 19.069 cases per 100,000 specimens (95% CI 13.494-26.174). The annual incidence rates of WNND increased during the study period from 0.047 cases per 100,000 (95% CI 0.031-0.068) in 2012, to 0.074 cases per 100,000 (95% CI 0.054-0.099) in 2020, peaking to 0.377 cases per 100,000 (95% CI 0.330-0.429) in 2018. There were 60 deaths. Cases of WNND were clustered in Northern Italy, particularly in the Po River Valley, during the months of August (56.7%) and September (27.5%). Higher risk for WNND was reported in subjects of male sex (risk ratio (RR) 1.545, 95% CI 1.392-1.673 compared to females), and in older age groups (RR 24.46, 95% CI 15.61-38.32 for 65-74 y.o.; RR 43.7, 95% CI 28.33-67.41 for subjects older than 75 years), while main effectors were identified in average air temperatures (incidence rate ratio (IRR) 1.3219, 95% CI 1.0053-1.7383), population density (IRR 1.0004, 95% CI 1.0001-1.0008), and occurrence of cases in the nearby provinces (IRR 1.0442, 95% CI 1.0340-1.0545). In summary, an enhanced surveillance is vital for the early detection of human cases and the prompt implementation of response measures.

Environmental risk factors and health: An umbrella review of meta-analyses

Background: Environmental health is a growing area of knowledge, continually increasing and updating the body of evidence linking the environment to human health. Aim: This study summarizes the epidemiological evidence on environmental risk factors from meta-analyses through an umbrella review. Methods: An umbrella review was conducted on meta-analyses of cohort, case-control, case-crossover, and time-series studies that evaluated the associations between environmental risk factors and health outcomes defined as incidence, prevalence, and mortality. The specific search strategy was designed in PubMed using free text and Medical Subject Headings (MeSH) terms related to risk factors, environment, health outcomes, observational studies, and meta-analysis. The search was limited to English, Spanish, and French published articles and studies on humans. The search was conducted on September 20, 2020. Risk factors were defined as any attribute, characteristic, or exposure of an individual that increases the likelihood of developing a disease or death. The environment was defined as the external elements and conditions that surround, influence, and affect a human organism or population’s life and development. The environment definition included the physical environment such as nature, built environment, or pollution, but not the social environment. We excluded occupational exposures, microorganisms, water, sanitation and hygiene (WASH), behavioral risk factors, and no-natural disasters. Results: This umbrella review found 197 associations among 69 environmental exposures and 83 diseases and death causes reported in 103 publications. The environmental factors found in this review were air pollution, environmental tobacco smoke, heavy metals, chemicals, ambient temperature, noise, radiation, and urban residential surroundings. Among these, we identified 65 environmental exposures defined as risk factors and 4 environmental protective factors. In terms of study design, 57 included cohort and/or case-control studies, and 46 included time-series and/or case-crossover studies. In terms of the study population, 21 included children, and the rest included adult population and both sexes. In this review, the largest body of evidence was found in air pollution (91 associations among 14 air pollution definitions and 34 diseases and mortality diagnoses), followed by environmental tobacco smoke with 24 associations. Chemicals (including pesticides) were the third larger group of environmental exposures found among the meta-analyses included, with 19 associations. Conclusion: Environmental exposures are an important health determinant. This review provides an overview of an evolving research area and should be used as a complementary tool to understand the connections between the environment and human health. The evidence presented by this review should help to design public health interventions and the implementation of health in all policies approach aiming to improve populational health.

Extreme weather and climate change: Population health and health system implications

Extreme weather and climate events, such as heat waves, cyclones, and floods, are an expression of climate variability. These events and events influenced by climate change, such as wildfires, continue to cause significant human morbidity and mortality and adversely affect mental health and well-being. Although adverse health impacts from extreme events declined over the past few decades, climate change and more people moving into harm’s way could alter this trend. Long-term changes to Earth’s energy balance are increasing the frequency and intensity of many extreme events and the probability of compound events, with trends projected to accelerate under certain greenhouse gas emissions scenarios. While most of these events cannot be completely avoided, many of the health risks could be prevented through building climate-resilient health systems with improved risk reduction, preparation, response, and recovery. Conducting vulnerability and adaptation assessments and developing health system adaptation plans can identify priority actions to effectively reduce risks, such as disaster risk management and more resilient infrastructure. The risks are urgent, so action is needed now.

Extreme weather events in Europe and their health consequences – A systematic review

BACKGROUND: Due to climate change, the frequency, intensity and severity of extreme weather events, such as heat waves, cold waves, storms, heavy precipitation causing wildfires, floods, and droughts are increasing, which could adversely affect human health. The purpose of this systematic review is therefore to assess the current literature about the association between these extreme weather events and their impact on the health of the European population. METHODS: Observational studies published from January 1, 2007 to May 17, 2020 on health effects of extreme weather events in Europe were searched systematically in Medline, Embase and Cochrane Central Register of Controlled Trials. The exposures of interest included extreme temperature, heat waves, cold waves, droughts, floods, storms and wildfires. The health impacts included total mortality, cardiovascular mortality and morbidity, respiratory mortality and morbidity, and mental health. We conducted the systematic review following PRISMA (Preferred Reporting Items for Systematic Review and Meta-analysis). The quality of the included studies was assessed using the NICE quality appraisal checklist (National Institute for Health and Care Excellence). RESULTS: The search yielded 1472 articles, of which 35 met the inclusion criteria and were included in our review. Studies regarding five extreme weather events (extreme heat events, extreme cold events, wildfires, floods, droughts) were found. A positive association between extreme heat/cold events and overall, cardiovascular and respiratory mortality was reported from most studies. Wildfires are likely to increase the overall and cardiovascular mortality. Floods might be associated with the deterioration of mental health instead of mortality. Depending on their length, droughts could have an influence on both respiratory and cardiovascular mortality. Contradictory evidence was found in heat-associated morbidity and wildfire-associated respiratory mortality. The associations are inconclusive due to the heterogeneous study designs, study quality, exposure and outcome assessment. CONCLUSIONS: Evidence from most of the included studies showed that extreme heat and cold events, droughts, wildfires and floods in Europe have negative impacts on human health including mental health, although some of the associations are not conclusive. Additional high-quality studies are needed to confirm our results and further studies regarding the effects of other extreme weather events in Europe are to be expected.

Gestational diabetes, environmental temperature and climate factors – From epidemiological evidence to physiological mechanisms

Gestational diabetes (GDM) is a common metabolic complication of pregnancy that is generally asymptomatic in its clinical course, although it is potentially associated with a wide range of both maternal and foetal complications. The population prevalence of GDM varies widely, depending on the clinical diagnostic criteria, ethnicity, demographics and background prevalence of type 2 diabetes. Climate variability and environmental temperature have recently come to the forefront as potential direct or indirect determinants of human health. The association between GDM and environmental temperature is complex, and studies have often reported conflicting findings. Epidemiologic studies have shown a direct relation between rising environmental temperature and the risk of both GDM and impaired beta cell function. Seasonal trends in the prevalence of GDM have been reported in several populations, with a higher prevalence in summer months. Multiple mechanisms have been proposed to explain the GDM-temperature correlation. A growing body of evidence supports a link between temperature, energy expenditure and adipose tissue metabolism. Brown adipose tissue thermogenesis, induced by cold temperatures, improves insulin sensitivity. Further biological explanations for the GDM-temperature correlation lie in potential association with low vitamin D levels, which varies according to sunshine exposure. Observational studies are also complicated by lifestyle factors, such as diet and physical activity, that could exhibit seasonal variation. In this review article, we provide a systematic overview of available epidemiological evidence linking environmental temperature and gestational diabetes. Furthermore, the physiological mechanisms that give biological plausibility to association between GDM and temperature are explored. As future climate patterns could drive global changes in GDM prevalence, this knowledge has important implications for both clinicians and researchers.

Geospatial indicators of exposure, sensitivity, and adaptive capacity to assess neighbourhood variation in vulnerability to climate change-related health hazards

BACKGROUND: Although the frequency and magnitude of climate change-related health hazards (CCRHHs) are likely to increase, the population vulnerabilities and corresponding health impacts are dependent on a community’s exposures, pre-existing sensitivities, and adaptive capacities in response to a hazard’s impact. To evaluate spatial variability in relative vulnerability, we: 1) identified climate change-related risk factors at the dissemination area level; 2) created actionable health vulnerability index scores to map community risks to extreme heat, flooding, wildfire smoke, and ground-level ozone; and 3) spatially evaluated vulnerability patterns and priority areas of action to address inequity. METHODS: A systematic literature review was conducted to identify the determinants of health hazards among populations impacted by CCRHHs. Identified determinants were then grouped into categories of exposure, sensitivity, and adaptive capacity and aligned with available data. Data were aggregated to 4188 Census dissemination areas within two health authorities in British Columbia, Canada. A two-step principal component analysis (PCA) was then used to select and weight variables for each relative vulnerability score. In addition to an overall vulnerability score, exposure, adaptive capacity, and sensitivity sub-scores were computed for each hazard. Scores were then categorised into quintiles and mapped. RESULTS: Two hundred eighty-one epidemiological papers met the study criteria and were used to identify 36 determinant indicators that were operationalized across all hazards. For each hazard, 3 to 5 principal components explaining 72 to 94% of the total variance were retained. Sensitivity was weighted much higher for extreme heat, wildfire smoke and ground-level ozone, and adaptive capacity was highly weighted for flooding vulnerability. There was overall varied contribution of adaptive capacity (16-49%) across all hazards. Distinct spatial patterns were observed – for example, although patterns varied by hazard, vulnerability was generally higher in more deprived and more outlying neighbourhoods of the study region. CONCLUSIONS: The creation of hazard and category-specific vulnerability indices (exposure, adaptive capacity and sensitivity sub-scores) supports evidence-based approaches to prioritize public health responses to climate-related hazards and to reduce inequity by assessing relative differences in vulnerability along with absolute impacts. Future studies can build upon this methodology to further understand the spatial variation in vulnerability and to identify and prioritise actionable areas for adaptation.

Climate change and the amplification of agricultural worker health risks

Climate change and mental health: A scoping review

Climate change is negatively impacting the mental health of populations. This scoping review aims to assess the available literature related to climate change and mental health across the World Health Organisation’s (WHO) five global research priorities for protecting human health from climate change. We conducted a scoping review to identify original research studies related to mental health and climate change using online academic databases. We assessed the quality of studies where appropriate assessment tools were available. We identified 120 original studies published between 2001 and 2020. Most studies were quantitative (n = 67), cross-sectional (n = 42), conducted in high-income countries (n = 87), and concerned with the first of the WHO global research priorities-assessing the mental health risks associated with climate change (n = 101). Several climate-related exposures, including heat, humidity, rainfall, drought, wildfires, and floods were associated with psychological distress, worsened mental health, and higher mortality among people with pre-existing mental health conditions, increased psychiatric hospitalisations, and heightened suicide rates. Few studies (n = 19) addressed the other four global research priorities of protecting health from climate change (effective interventions (n = 8); mitigation and adaptation (n = 7); improving decision-support (n = 3); and cost estimations (n = 1)). While climate change and mental health represents a rapidly growing area of research, it needs to accelerate and broaden in scope to respond with evidence-based mitigation and adaptation strategies.

Climate change, women’s health, and the role of obstetricians and gynecologists in leadership

Climate change is one of the major global health threats to the world’s population. It is brought on by global warming due in large part to increasing levels of greenhouse gases resulting from human activity, including burning fossil fuels (carbon dioxide), animal husbandry (methane from manure), industry emissions (ozone, nitrogen oxides, sulfur dioxide), vehicle/factory exhaust, and chlorofluorocarbon aerosols that trap extra heat in the earth’s atmosphere. Resulting extremes of weather give rise to wildfires, air pollution, changes in ecology, and floods. These in turn result in displacement of populations, family disruption, violence, and major impacts on water quality and availability, food security, public health and economic infrastructures, and limited abilities for civil society to maintain citizen safety. Climate change also has direct impacts on human health and well-being. Particularly vulnerable populations are affected, including women, pregnant women, children, the disabled, and the elderly, who comprise the majority of the poor globally. Additionally, the effects of climate change disproportionally affect disadvantaged communities, including low income and communities of color, and lower-income countries that are at highest risk of adverse impacts when disasters occur due to inequitable distribution of resources and their socioeconomic status. The climate crisis is tilting the risk balance unfavorably for women’s sexual and reproductive health and rights as well as newborn and child health. Obstetrician/gynecologists have the unique opportunity to raise awareness, educate, and advocate for mitigation strategies to reverse climate change affecting our patients and their families. This article puts climate change in the context of women’s reproductive health as a public health issue, a social justice issue, a human rights issue, an economic issue, a political issue, and a gender issue that needs our attention now for the health and well-being of this and future generations. FIGO joins a broad coalition of international researchers and the medical community in stating that the current climate crisis presents an imminent health risk to pregnant people, developing fetuses, and reproductive health, and recognizing that we need society-wide solutions, government policies, and global cooperation to address and reduce contributors, including fossil fuel production, to climate change.

Cooling strategies for thermal comfort in cities: A review of key methods in landscape design

Under the climate change scenario, the negative impacts of urban heat island (UHI) will exacerbate due to unsustainable urban planning and human activities. Thermal comfort has close relationships with UHI in urban areas. This paper is based on the studies of urban heat island, thermal comfort, microclimate, and urban planning in cities in the recent decade, combined with a method of research into design. The key topics include vegetation and water conditions, the albedo of materials, and urban morphology. By the comparative case studies in landscape projects, the results further reveal that the density of tree canopies, the natural structure and density of ground cover, the form of water features, the color and texture of materials, and the scale of shading structures have different cooling effect and performance in outdoor thermal comfort improvement with specific features in the landscape design. It is also found that there are some external conditions that can influence design determinations in real practices. The purpose of this study is to provide theoretical research methods and evaluation of thermal comfort landscape design elements and to provide guidance for future sustainable city research and landscape design.

Carceral and climate crises and health inequities: A call for greater transparency, accountability, and human rights protections

The United States has approximately 5 percent of the world’s population but incarcerates nearly 25 percent of the world’s incarcerated population and produces nearly 25 percent of global carbon dioxide emissions to date. Climate change and hyperincarceration are causes and consequences of structural racism and economic deprivation, which disproportionately affect structurally disenfranchised citizens, including lower-income communities, communities of color, and people with disabilities. Empirical evidence exists regarding the adverse health effects of climate change and mass incarceration, which occur in cascading and overlapping categories and include preventable death, illness, and injury. Researchers underscore the medical vulnerability of incarcerated populations, who are increasingly susceptible to climate-driven exposure pathways and mental and physical health outcomes involving extreme temperatures, natural disasters, infectious diseases, and displacement. Intersectional structural drivers, such as anthropogenic climate change and hyperincarceration, undermine social and political determinants of health equity. Policymakers and health professionals can advance understanding and mitigate present and anticipated public health threats by increasing transparency, accountability, and human rights protections with an emphasis on decarceration and decarbonization.

Cardiovascular control during heat stress in older adults: Time for an update

It is generally accepted that older adults display an impaired cardiovascular response to heat stress, and it has been suggested that this impaired response contributes to their increased risk of mortality during extreme heat events. Seminal studies have shown that cutaneous vasodilation, the redistribution of blood flow from visceral organs, and the increase in cardiac output are blunted in older adults during passive heating. The blunted rise of cardiac output was initially attributed to an inability to maintain stroke volume, suggesting that cardiac systolic and/or diastolic function does not adequately respond to the constraints of heat stress in older adults. Recent studies evaluated potential mechanisms underlying these seminal findings and their results challenge some of these initial observations. Notably, stroke volume is maintained during heat exposure in older adults and studies have provided evidence for preserved cardiac systolic and diastolic functions in this population. Nonetheless, a blunted increase in cardiac output during heat exposure remains a consistent observation in older adults, although it is now attributed to a blunted increase in heart rate. Recent studies have also evaluated the possibility that the attenuated capacity of aged skin to vasodilate contributes to a blunted increase in cardiac output during heat stress. The objective of this Mini-Review is to highlight these recent advances and challenge the long-standing view that the control of stroke volume during heat exposure is compromised in older adults. By doing so, our intent is to stimulate future studies to evaluate several unanswered questions in this area of research.

Climate change and extreme weather: A review focusing on the continental United States

Anthropogenic emissions of greenhouse gases are warming the Earth. It is likely that the greatest impacts of climate change on human and natural systems will come from increasingly frequent and severe extreme weather and climate events. Some increases in such extremes are already being detected, and this trend is projected to continue as Earth warms. Here we review the overarching climate drivers of increases in extreme weather and address the context in which extremes occur and the challenges of projecting future changes. The observational evidence for climate-driven increases in extremes and the implications of model projections are reviewed for heat and drought and several types of storms: tropical cyclones, midlatitude storms, and severe local weather, focusing on those changes most relevant to the continental United States. We emphasize the overall observed and modeled trends in extreme weather in which we have the greatest confidence, because they are consistent with our fundamental understanding of weather and climate. Despite remaining uncertainty about many details, especially in model-based projections, the signal of increasing extremes is sufficiently clear that it demands a robust human response, in limiting future emissions of greenhouse gases and in making our human systems more resilient to further changes that are inevitable as Earth continues to warm.Implications: By placing observed and projected changes in extreme weather in the context of our fundamental understanding of physics and statistics, this review makes it clear that these are significant and impactful changes that demand a robust human response.

Climate change and infectious disease in Europe: Impact, projection and adaptation

Europeans are not only exposed to direct effects from climate change, but also vulnerable to indirect effects from infectious disease, many of which are climate sensitive, which is of concern because of their epidemic potential. Climatic conditions have facilitated vector-borne disease outbreaks like chikungunya, dengue, and West Nile fever and have contributed to a geographic range expansion of tick vectors that transmit Lyme disease and tick-borne encephalitis. Extreme precipitation events have caused waterborne outbreaks and longer summer seasons have contributed to increases in foodborne diseases. Under the Green Deal, The European Union aims to support climate change health policy, in order to be better prepared for the next health security threat, particularly in the aftermath of the traumatic COVID-19 experience. To bolster this policy process we discuss climate change-related hazards, exposures and vulnerabilities to infectious disease and describe observed impacts, projected risks, with policy entry points for adaptation to reduce these risks or avoid them altogether.

Climate change and its association with the expansion of vectors and vector-borne diseases in the Hindu Kush Himalayan region: A systematic synthesis of the literature

Observed weather and projected climate change suggest an increase in the transmission of vector-borne diseases (VBDs) in the Hindu Kush Himalayan (HKH) region. In this study, we systematically explore the literature for empiric associations between the climate variables and specific VBDs and their vectors in the HKH region. We conducted a systematic synthesis of the published literature on climate variables, VBDs and vectors in the HKH region until the 8th of December 2020. The majority of studies show significant positive associations of VBDs with climatic factors, such as temperature, precipitation, relative humidity, etc. This systematic review allowed us to identify the most significant variables to be considered for evidence-based trend estimates of the effects of climate change on VBDs and their vectors in the HKH region. This evidence-based trend was set into the context of climate change as well as the observed expansion of VBDs and disease vectors in the HKH region. The geographic range of VBDs expanded into previously considered non-endemic areas of highlands (mountains) in the HKH region. Based on scarce, but clear evidence of a positive relationship of most climate variables and VBDs and the observed climatic changes, we strongly recommend an expansion of vector control and surveillance programmes in areas of the HKH region that were previously considered to be non-endemic.

A systematic review of the development and validation of the heat vulnerability index: Major factors, methods, and spatial units

Purpose of review This review aims to identify the key factors, methods, and spatial units used in the development and validation of the heat vulnerability index (HVI) and discuss the underlying limitations of the data and methods by evaluating the performance of the HVI. Recent findings Thirteen studies characterizing the factors of the HVI development and relating the index with validation data were identified. Five types of factors (i.e., hazard exposure, demographic characteristics, socioeconomic conditions, built environment, and underlying health) of the HVI development were identified, and the top five were social cohesion, race, and/or ethnicity, landscape, age, and economic status. The principal component analysis/factor analysis (PCA/FA) was often used in index development, and four types of spatial units (i.e., census tracts, administrative area, postal code, grid) were used for establishing the relationship between factors and the HVI. Moreover, although most studies showed that a higher HVI was often associated with the increase in health risk, the strength of the relationship was weak. This review provides a retrospect of the major factors, methods, and spatial units used in development and validation of the HVI and helps to define the framework for future studies. In the future, more information on the hazard exposure, underlying health, governance, and protection awareness should be considered in the HVI development, and the duration and location of validation data should be strengthened to verify the reliability of HVI.

A systematic review of the effects of temperature and precipitation on pollen concentrations and season timing, and implications for human health

Climate and weather directly impact plant phenology, affecting airborne pollen. The objective of this systematic review is to examine the impacts of meteorological variables on airborne pollen concentrations and pollen season timing. Using PRISMA methodology, we reviewed literature that assessed whether there was a relationship between local temperature and precipitation and measured airborne pollen. The search strategy included terms related to pollen, trends or measurements, and season timing. For inclusion, studies must have conducted a correlation analysis of at least 5 years of airborne pollen data to local meteorological data and report quantitative results. Data from peer-reviewed articles were extracted on the correlations between seven pollen indicators (main pollen season start date, end date, peak date, and length, annual pollen integral, average daily pollen concentration, and peak pollen concentration), and two meteorological variables (temperature and precipitation). Ninety-three articles were included in the analysis out of 9,679 articles screened. Overall, warmer temperatures correlated with earlier and longer pollen seasons and higher pollen concentrations. Precipitation had varying effects on pollen concentration and pollen season timing indicators. Increased precipitation may have a short-term effect causing low pollen concentrations potentially due to “wash out” effect. Long-term effects of precipitation varied for trees and weeds and had a positive correlation with grass pollen levels. With increases in temperature due to climate change, pollen seasons for some taxa in some regions may start earlier, last longer, and be more intense, which may be associated with adverse health impacts, as pollen exposure has well-known health effects in sensitized individuals.

A systematic review on the association between total and cardiopulmonary mortality/morbidity or cardiovascular risk factors with long-term exposure to increased or decreased ambient temperature

The health effects of acute exposure to temperature extremes are established; those of long-term exposure only recently received attention. We performed a systematic review to assess the associations of long-term (>3 months) exposure to higher or lower temperature on total and cardiopulmonary mortality and morbidity, screening 3455 studies and selecting 34. The studies were classified in those observing associations within a population over years with changing annual temperature indices and those comparing areas with a different climate. We also assessed the risk of bias, adapting appropriately an instrument developed by the World Health Organization for air pollution. Studies reported that annual temperature indices for extremes and variability were associated with annual increases in mortality, indicating that effects of temperature extremes cannot be attributed only to short-term mortality displacement. Studies on cardiovascular mortality indicated stronger associations with cold rather than hot temperature, whilst those on respiratory outcomes reported effects of both heat and cold but were few and used diverse health outcomes. Interactions with air pollution were not generally assessed. The few studies investigating effect modification showed stronger effects among the elderly and those socially deprived. Comparisons of health outcome prevalence between areas reported lower blood pressure and a tendency for higher obesity in populations living in warmer climates. Our review indicated interesting associations between long-term exposure to unusual temperature levels in specific areas and differences in health outcomes and cardiovascular risk factors between geographical locations with different climate, but the number of studies by design and health outcome was small. Risk of bias was identified because of the use of crude exposure assessment and inadequate adjustment for confounding. More and better designed studies, including the investigation of effect modifiers, are needed.

Approaches for identifying heat-vulnerable populations and locations: A systematic review

Heat related morbidity and mortality, especially during extreme heat events, are increasing due to climate change. More Americans die from heat than from all other natural disasters combined. Identifying the populations and locations that are under high risk of heat vulnerability is important for urban planning and design policy making as well as health interventions. An increasing number of heat vulnerability/risk models and indices (HV/R) have been developed based on indicators related to population heat susceptibility such as sociodemographic and environmental factors. The objectives of this study are to summarize and analyze current HV/R’s construction, calculation, and validation, evaluate the limitation of these methods, and provide directions for future HV/R and related studies. This systematic review used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework and used 5 datasets for the literature search. Journal articles that developed indices or models to assess population level heat-related vulnerability or risks in the past 50?years were included. A total of 52 papers were included for analysis on model construction, data sources, weighting schemes and model validation. By synthesizing the findings, we suggested: (1) include relevant and accurately measured indicators; (2) select rational weighting methods and; (3) conduct model validation. We also concluded that it is important for future heat vulnerability models and indices studies to: (1) be conducted in more tropical areas; (2) include a comprehensive understanding of energy exchanges between landscape elements and humans; and (3) be applied in urban planning and policy making practice.

Assessment of the economic impact of heat-related labor productivity loss: A systematic review

Heat stress caused by climate change and heat-related labor productivity losses have become global concerns. Estimating the economic impacts of heat stress is of great significance for employers, as well as sectoral and national policy makers who are searching for solutions to reduce productivity losses. As the value of economic impacts are sensitive to the research methodologies, we conducted a systematic review of published literature on the methodologies and results of economic impacts of heat on labor productivity. Four methods were summarized: the human capital (HC) method, the econometric method (EM), the input–output (IO) method, and the computable general equilibrium (CGE) model. Considering adaptation measures, global economic losses due to heat-related labor productivity losses are projected to range from 0.31% (0.14–0.5%, RCP2.6) to 2.6% (1.4–4%, RCP8.5) of global GDP in 2100. The published studies found that large economic losses occurred mainly in South and Southeast Asia, Sub-Saharan Africa, and Central America. Owing to different methodologies and considerations of adaptation measures, the disparities of results within the same area at a given time can be as high as 7.4-fold. We summarized the knowledge gaps in existing studies and proposed new directions to provide more targeted and reliable results for policy makers.

Association between ambient temperature and heat waves with mortality in South Asia: Systematic review and meta-analysis

BACKGROUND: South Asia is highly vulnerable to climate change and is projected to experience some of the highest increases in average annual temperatures throughout the century. Although the adverse impacts of ambient temperature on human health have been extensively documented in the literature, only a limited number of studies have focused on populations in this region. OBJECTIVES: Our aim was to systematically review the current state and quality of available evidence on the direct relationship between ambient temperature and heat waves and all-cause mortality in South Asia. METHODS: The databases Pubmed, Web of Science, Scopus and Embase were searched from 1990 to 2020 for relevant observational quantitative studies. We applied the Navigation Guide methodology to assess the strength of the evidence and performed a meta-analysis based on a novel approach that allows for combining nonlinear exposure-response associations without access to data from individual studies. RESULTS: From the 6,759 screened papers, 27 were included in the qualitative synthesis and five in a meta-analysis. Studies reported an association of all-cause mortality with heat wave episodes and both high and low daily temperatures. The meta-analysis showed a U-shaped pattern, with increasing mortality for both high and low temperatures, but a statistically significant association was found only at higher temperatures – above 31° C for lag 0-1 days and above 34° C for lag 0-13 days. Effects were found to vary with cause of death, age, sex, location (urban vs. rural), level of education and socio-economic status, but the profile of vulnerabilities was somewhat inconsistent and based on a limited number of studies. Overall, the strength of the evidence for ambient temperature as a risk factor for all-cause mortality was judged as limited and for heat wave episodes as inadequate. CONCLUSIONS: The evidence base on temperature impacts on mortality in South Asia is limited due to the small number of studies, their skewed geographical distribution and methodological weaknesses. Understanding the main determinants of the temperature-mortality association as well as how these may evolve in the future in a dynamic region such as South Asia will be an important area for future research. Studies on viable adaptation options to high temperatures for a region that is a hotspot for climate vulnerability, urbanisation and population growth are also needed.

Zika virus syndrome, lack of environmental policies and risks of worsening by cyanobacteria proliferation in a climate change scenario

Almost half of the Brazilian population has no access to sewage collection and treatment. Untreated effluents discharged in waters of reservoirs for human supply favor the flowering of cyanobacteria – and these microorganisms produce toxins, such as saxitoxin, which is a very potent neurotoxin present in reservoirs in the Northeast region. A recent study confirmed that chronic ingestion of neurotoxin-infected water associated with Zika virus infection could lead to a microcephaly-like outcome in pregnant mice. Cyanobacteria benefit from hot weather and organic matter in water, a condition that has been intensified by climate change, according to our previous studies. Considering the new findings, we emphasize that zika arbovirus is widespread and worsened when associated with climate change, especially in middle- or low-income countries with low levels of sanitation coverage.

d4PDF: Large-ensemble and high-resolution climate simulations for global warming risk assessment

A large-ensemble climate simulation database, which is known as the database for policy decision-making for future climate changes (d4PDF), was designed for climate change risk assessments. Since the completion of the first set of climate simulations in 2015, the database has been growing continuously. It contains the results of ensemble simulations conducted over a total of thousands years respectively for past and future climates using high-resolution global (60 km horizontal mesh) and regional (20 km mesh) atmospheric models. Several sets of future climate simulations are available, in which global mean surface air temperatures are forced to be higher by 4 K, 2 K, and 1.5 K relative to preindustrial levels. Nonwarming past climate simulations are incorporated in d4PDF along with the past climate simulations. The total data volume is approximately 2 petabytes. The atmospheric models satisfactorily simulate the past climate in terms of climatology, natural variations, and extreme events such as heavy precipitation and tropical cyclones. In addition, data users can obtain statistically significant changes in mean states or weather and climate extremes of interest between the past and future climates via a simple arithmetic computation without any statistical assumptions. The database is helpful in understanding future changes in climate states and in attributing past climate events to global warming. Impact assessment studies for climate changes have concurrently been performed in various research areas such as natural hazard, hydrology, civil engineering, agriculture, health, and insurance. The database has now become essential for promoting climate and risk assessment studies and for devising climate adaptation policies. Moreover, it has helped in establishing an interdisciplinary research community on global warming across Japan.

A review of dengue’s historical and future health risk from a changing climate

PURPOSE OF REVIEW: The purpose of this review is to summarize researchs that provide risk estimates for the historical and future impact that climate change has had upon dengue published from 2007 through 2019. RECENT FINDINGS: Findings from 30 studies on historical health estimates, with the majority of the studies conducted in Asia, emphasized the importance of temperature, precipitation, and relative humidity, as well as lag effects, when trying to understand how climate change can impact the risk of contracting dengue. Furthermore, 35 studies presented findings on future health risk based upon climate projection scenarios, with a third of them showcasing global level estimates and findings across the articles emphasizing the need to understand risk at a localized level as the impacts from climate change will be experienced inequitably across different geographies in the future. Dengue is one of the most rapidly spreading viral diseases in the world, with ~390 million people infected worldwide annually. Several factors have contributed towards its proliferation, including climate change. Multiple studies have previously been conducted examining the relationship between dengue and climate change, both from a historical and a future risk perspective. We searched the U.S. National Institute of Environmental Health (NIEHS) Climate Change and Health Portal for literature (spanning January 2007 to September 2019) providing historical and future health risk estimates of contracting dengue infection in relation to climate variables worldwide. With an overview of the evidence of the historical and future health risk posed by dengue from climate change across different regions of the world, this review article enables the research and policy community to understand where the knowledge gaps are and what areas need to be addressed in order to implement localized adaptation measures to mitigate the health risks posed by future dengue infection.

Thermal environment of urban schoolyards: Current and future design with respect to children’s thermal comfort

Urban outdoor thermal conditions, and its impacts on the health and well-being for the city inhabitants have reached increased attention among biometeorological studies during the last two decades. Children are considered more sensitive and vulnerable to hot ambient conditions compared to adults, and are affected strongly by their thermal environment. One of the urban outdoor environments that children spend almost one third of their school time is the schoolyard. The aims of the present manuscript were to review studies conducted worldwide, in order to present the biophysical characteristics of the typical design of the urban schoolyard. This was done to assess, in terms of bioclimatology, the interactions between the thermal environment and the children’s body, to discuss the adverse effects of thermal environment on children, especially the case of heat stress, and to propose measures that could be applied to improve the thermal environment of schoolyards, focusing on vegetation. Human thermal comfort monitoring tools are mainly developed for adults, thus, further research is needed to adapt them to children. The schemes that are usually followed to design urban schoolyards create conditions that favour the exposure of children to excessive heat, inducing high health risks to them. The literature survey showed that typical urban schoolyard design (i.e., dense surface materials, absence of trees) triggered high surface temperatures (that may exceed 58 degrees C) and increased absorption of radiative heat load (that may exceed 64 degrees C in terms of Mean Radiant Temperature) during a clear day with intense solar radiation. Furthermore, vegetation cover has a positive impact on schoolyard’s microclimate, by improving thermal comfort and reducing heat stress perception of children. Design options for urban schoolyards and strategies that can mitigate the adverse effects of heat stress are proposed with focus on vegetation cover that affect positively their thermal environment and improve their aesthetic and functionality.

Understanding how temperature shifts could impact infectious disease

Climate change is expected to have complex effects on infectious diseases, causing some to increase, others to decrease, and many to shift their distributions. There have been several important advances in understanding the role of climate and climate change on wildlife and human infectious disease dynamics over the past several years. This essay examines 3 major areas of advancement, which include improvements to mechanistic disease models, investigations into the importance of climate variability to disease dynamics, and understanding the consequences of thermal mismatches between host and parasites. Applying the new information derived from these advances to climate-disease models and addressing the pressing knowledge gaps that we identify should improve the capacity to predict how climate change will affect disease risk for both wildlife and humans.

Understanding the relationships between environmental factors and exacerbations of COPD

INTRODUCTION: Exacerbations of chronic obstructive pulmonary disease (COPD) are associated with a significant health burden both for patients and healthcare systems. Exposure to various environmental factors increases the risk of exacerbations. AREAS COVERED: We searched PubMed and assessed literature published within the last 10 years to include epidemiological evidence on the relationships between air pollution, temperature and COPD exacerbation risk as well as the implications of extreme weather events on exacerbations. EXPERT OPINION: Ongoing climate change is expected to increase air pollution levels, global temperature and the frequency and severity of extreme weather events, all of which are associated with COPD exacerbations. Further research is needed using patient-focused methodological approaches to better understand and quantify these relationships, so that effective mitigation strategies that decrease the risk of exacerbations can be developed.

Urban design parameters for heat mitigation in tropics

According to United Nations, cities situated in the tropical belt occupy only 36% of the Earth’s surface yet account for 1/3 of the entire global population. The increasing number of compact dense cities and the rapid population growth in the tropics have also been accompanied by increased urban air temperature. Increased air temperature is often associated with heat waves, and increased energy consumption. Therefore, the urban heat island (UHI) phenomenon and thermal stress have received much research attention and, as a result, the establishment of heat mitigation technologies has become critical. Although studies on urban climate in the tropics have shown progress, the situation in these areas remains complex and warrants further investigation. Accordingly, this paper examines the available heat mitigation techniques and their effectiveness in tropical areas from five perspectives, namely, shading (modifications in urban geometry), urban ventilation (street orientation, sun, and wind), urban greening (green roofs, trees, parks, and walls), albedo, and water bodies. This review paper showed that adopting a combination of mitigation approaches is the most effective method in reducing temperature in tropical cities. The use of shading and/or urban ventilation has also been proven to be more promising than the extensive use of vegetation, water bodies, or albedo modifications in reducing air temperature in tropical cities, where there is already a high level of humidity exists. Some key planning actions to combat UHI and thermal discomfort in tropical areas are eventually provided that can help urban planners integrate urban climatic knowledge into their practices.

Urban overheating and cooling potential in Australia: An evidence-based review

Cities in Australia are experiencing unprecedented levels of urban overheating, which has caused a significant impact on the country’s socioeconomic environment. This article provides a comprehensive review on urban overheating, its impact on health, energy, economy, and the heat mitigation potential of a series of strategies in Australia. Existing studies show that the average urban heat island (UHI) intensity ranges from 1.0 degrees C to 13.0 degrees C. The magnitude of urban overheating phenomenon in Australia is determined by a combination of UHI effects and dualistic atmospheric circulation systems (cool sea breeze and hot desert winds). The strong relation between multiple characteristics contribute to dramatic fluctuations and high spatiotemporal variabilities in urban overheating. In addition, urban overheating contributes to serious impacts on human health, energy costs, thermal comfort, labour productivity, and social behaviour. Evidence suggest that cool materials, green roofs, vertical gardens, urban greenery, and water-based technologies can significantly alleviate the UHI effect, cool the ambient air, and create thermally balanced cities. Urban greenery, especially trees, has a high potential for mitigation. Trees and hedges can reduce the average maximum UHI by 1.0 degrees C. The average maximum mitigation performance values of green roofs and green walls are 0.2 degrees C and 0.1 degrees C, respectively. Reflective roofs and pavements can reduce the average maximum UHI by 0.3 degrees C. In dry areas, water has a high cooling potential. The average maximum cooling potential using only one technology is 0.4 degrees C. When two or more technologies are used at the same time, the average maximum UHI drop is 1.5 degrees C. The mitigation strategies identified in this article can help the governments and other stakeholders manage urban heating in the natural and built environment, and save health, energy, and economic costs.

The effect of air-pollution and weather exposure on mortality and hospital admission and implications for further research: A systematic scoping review

Background Air-pollution and weather exposure beyond certain thresholds have serious effects on public health. Yet, there is lack of information on wider aspects including the role of some effect modifiers and the interaction between air-pollution and weather. This article aims at a comprehensive review and narrative summary of literature on the association of air-pollution and weather with mortality and hospital admissions; and to highlight literature gaps that require further research. Methods We conducted a scoping literature review. The search on two databases (PubMed and Web-of-Science) from 2012 to 2020 using three conceptual categories of “environmental factors”, “health outcomes”, and “Geographical region” revealed a total of 951 records. The narrative synthesis included all original studies with time-series, cohort, or case cross-over design; with ambient air-pollution and/or weather exposure; and mortality and/or hospital admission outcomes. Results The final review included 112 articles from which 70 involved mortality, 30 hospital admission, and 12 studies included both outcomes. Air-pollution was shown to act consistently as risk factor for all-causes, cardiovascular, respiratory, cerebrovascular and cancer mortality and hospital admissions. Hot and cold temperature was a risk factor for wide range of cardiovascular, respiratory, and psychiatric illness; yet, in few studies, the increase in temperature reduced the risk of hospital admissions for pulmonary embolism, angina pectoris, chest, and ischemic heart diseases. The role of effect modification in the included studies was investigated in terms of gender, age, and season but not in terms of ethnicity. Conclusion Air-pollution and weather exposure beyond certain thresholds affect human health negatively. Effect modification of important socio-demographics such as ethnicity and the interaction between air-pollution and weather is often missed in the literature. Our findings highlight the need of further research in the area of health behaviour and mortality in relation to air-pollution and weather, to guide effective environmental health precautionary measures planning.

The effect of climate change and the Snail-Schistosome Cycle in transmission and bio-control of Schistosomiasis in Sub-Saharan Africa

In the next century, global warming, due to changes in climatic factors, is expected to have an enormous influence on the interactions between pathogens and their hosts. Over the years, the rate at which vector-borne diseases and their transmission dynamics modify and develop has been shown to be highly dependent to a certain extent on changes in temperature and geographical distribution. Schistosomiasis has been recognized as a tropical and neglected vector-borne disease whose rate of infection has been predicted to be elevated worldwide, especially in sub-Saharan Africa; the region currently with the highest proportion of people at risk, due to changes in climate. This review not only suggests the need to develop an efficient and effective model that will predict Schistosoma spp. population dynamics but seeks to evaluate the effectiveness of several current control strategies. The design of a framework model to predict and accommodate the future incidence of schistosomiasis in human population dynamics in sub-Saharan Africa is proposed. The impact of climate change on schistosomiasis transmission as well as the distribution of several freshwater snails responsible for the transmission of Schistosoma parasites in the region is also reviewed. Lastly, this article advocates for modelling several control mechanisms for schistosomiasis in sub-Saharan Africa so as to tackle the re-infection of the disease, even after treating infected people with praziquantel, the first-line treatment drug for schistosomiasis.

The effect of global warming on mortality

There is a significant relationship between ambient temperature and mortality. In healthy individuals with no underlying co-morbid conditions, there is an efficient heat regulation system which enables the body to effectively handle thermal stress. However, in vulnerable groups, especially in elderly over the age of 65 years, infants and individuals with co-morbid cardiovascular and/or respiratory conditions, there is a deficiency in thermoregulation. When temperatures exceed a certain limit, being cold winter spells or heat waves, there is an increase in the number of deaths. In particular, it has been shown that at temperatures above 27 °C, the daily mortality rate increases more rapidly per degree rise compared to when it drops below 27 °C. This is especially of relevance with the current emergency of global warming. Besides the direct effect of temperature rises on human health, global warming will have a negative impact on primary producers and livestock, leading to malnutrition, which will in turn lead to a myriad of health related issues. This is further exacerbated by environmental pollution. Public health measures that countries should follow should include not only health-related information strategies aiming to reduce the exposure to heat for vulnerable individuals and the community, but improved urban planning and reduction in energy consumption, among many others. This will reduce the carbon footprint and help avert global warming, thus reducing mortality.

The effects of climate change on human health in Africa, a dermatologic perspective: A report from the International Society of Dermatology Climate Change Committee

Throughout much of the African continent, healthcare systems are already strained in their efforts to meet the needs of a growing population using limited resources. Climate change threatens to undermine many of the public health gains that have been made in this region in the last several decades via multiple mechanisms, including malnutrition secondary to drought-induced food insecurity, mass human displacement from newly uninhabitable areas, exacerbation of environmentally sensitive chronic diseases, and enhanced viability of pathogenic microbes and their vectors. We reviewed the literature describing the various direct and indirect effects of climate change on diseases with cutaneous manifestations in Africa. We included non-communicable diseases such as malignancies (non-melanoma skin cancers), inflammatory dermatoses (i.e. photosensitive dermatoses, atopic dermatitis), and trauma (skin injury), as well as communicable diseases and neglected tropical diseases. Physicians should be aware of the ways in which climate change threatens human health in low- and middle-income countries in general, and particularly in countries throughout Africa, the world’s lowest-income and second most populous continent.

The effects of climatic and environmental factors on heat-related illnesses: A systematic review from 2000 to 2020

Introduction: This study aimed to identify climatic and environmental factors influencing the occurrence of heatstroke. Methods: A systematic review was conducted in February 2020 and 428 potentially relevant records were searched among PubMed, Scopus, Science Direct, and Web of Science and Google scholar databases in English language. After quality assessment and cross-checking by two independent researchers, finally, 14 articles included in this systematic review. Results: Solar radiant heat, ambient temperature, humidity, maximum and minimum daily temperature and humidity, water vapor pressure, wet bulb globe temperature (WBGT) index, Heat index (HI), sub-tropical climate, heatwaves, Urban Heat Island (UHI) effect, urbanization, daytime population density, surface temperature, high activity level in indoor/outdoor settings and local ambient temperatures were positive correlated factors of exertional heat illnesses (EHI) and exertional heat stroke (EHS) incidence and mortality. Seasonal acclimation, vegetative cover, cool roofs, tree canopy cover, cloud cover, wind speed and shading were inversely related factors of EHI and EHS. Conclusion: According to the results of the study, in order to prevent the increase of heat-related illnesses, it is necessary to consider and strengthen the factors affecting the reduction of the incidence of EHI and EHS, which were identified as negative correlated factors in this study.

The heat-health nexus in the urban context: A systematic literature review exploring the socio-economic vulnerabilities and built environment characteristics

Of all-natural disasters, extreme high temperatures events are the main cause of weather-related mortality. The compact urban settings of cities, the dependency on infrastructural systems as well as the larger concentration of people and economic activities make urban areas particularly vulnerable to health risks due to heat. To investigate vulnerabilities to heat, the study illustrates how vulnerability factors together with the hazard and the urban parameters determine the nexus between the heat and the health outcome, here called heat-health nexus. Peer-reviewed articles with no language limitations were searched from the first available record subjected to the imposed selection criteria. First, the information related to the study area were analysed, taking into consideration the level of resolution to investigate the scale of analysis. Then, the specific hazard parameters, divided in simple or combined weather indices, were evaluated. For sensitivity and adaptive capacity aspects, the study considered four distinct categories of determinants: mental and physical health, demographics, social and economic status. Finally, when looking at enhanced exposure, groups of determinants of vulnerability, divided between those describing indoor and outdoor environment conditions were analysed. Results demonstrated a heterogeneous spatial distribution of the identified case studies about heat and health in the urban context and highlighted different characteristics related to climate hazard, exposure, vulnerability and enhanced exposure factors in relation to the health of the population. This literature review demonstrate that a detailed identification of sensitivity, adaptive capacity and enhanced exposure elements is crucial in the implementation of effective adaptation measures in the health context.

The impact of climate change on mental health: A systematic descriptive review

BACKGROUND: Climate change is one of the great challenges of our time. The consequences of climate change on exposed biological subjects, as well as on vulnerable societies, are a concern for the entire scientific community. Rising temperatures, heat waves, floods, tornadoes, hurricanes, droughts, fires, loss of forest, and glaciers, along with disappearance of rivers and desertification, can directly and indirectly cause human pathologies that are physical and mental. However, there is a clear lack in psychiatric studies on mental disorders linked to climate change. METHODS: Literature available on PubMed, EMBASE, and Cochrane library until end of June 2019 were reviewed. The total number of articles and association reports was 445. From these, 163 were selected. We looked for the association between classical psychiatric disorders such as anxiety schizophrenia, mood disorder and depression, suicide, aggressive behaviors, despair for the loss of usual landscape, and phenomena related to climate change and extreme weather. Review of literature was then divided into specific areas: the course of change in mental health, temperature, water, air pollution, drought, as well as the exposure of certain groups and critical psychological adaptations. RESULTS: Climate change has an impact on a large part of the population, in different geographical areas and with different types of threats to public health. However, the delay in studies on climate change and mental health consequences is an important aspect. Lack of literature is perhaps due to the complexity and novelty of this issue. It has been shown that climate change acts on mental health with different timing. The phenomenology of the effects of climate change differs greatly-some mental disorders are common and others more specific in relation to atypical climatic conditions. Moreover, climate change also affects different population groups who are directly exposed and more vulnerable in their geographical conditions, as well as a lack of access to resources, information, and protection. Perhaps it is also worth underlining that in some papers the connection between climatic events and mental disorders was described through the introduction of new terms, coined only recently: ecoanxiety, ecoguilt, ecopsychology, ecological grief, solastalgia, biospheric concern, etc. CONCLUSIONS: The effects of climate change can be direct or indirect, short-term or long-term. Acute events can act through mechanisms similar to that of traumatic stress, leading to well-understood psychopathological patterns. In addition, the consequences of exposure to extreme or prolonged weather-related events can also be delayed, encompassing disorders such as posttraumatic stress, or even transmitted to later generations.

The impact of climate change on mosquito-borne diseases in Africa

Despite being one of the continents with the least greenhouse gas emissions, no continent is being struck as severely by climate change (CC) as Africa. Mosquito-borne diseases (MBD) cause major human diseases in this continent. Current knowledge suggests that MBD range could expand dramatically in response to CC. This study aimed at assessing the relationship between CC and MBD in Africa. Methods For this purpose, a systematic peer review was carried out, considering all articles indexed in PubMed, Scopus, Embase and CENTRAL. Search terms referring to MBD, CC and environmental factors were screened in title, abstract and keywords.Results A total of twenty-nine studies were included, most of them on malaria (61%), being Anopheles spp. (61%) the most commonly analyzed vector, mainly in Eastern Africa (48%). Seventy-nine percent of these studies were based on predictive models. Seventy-two percent of the reviewed studies considered that CC impacts on MBD epidemiology. MBD prevalence will increase according to 69% of the studies while 17% predicted a decrease. MBD expansion throughout the continent was also predicted. Most studies showed a positive relationship between observed or predicted results and CC. However, there was a great heterogeneity in methodologies and a tendency to reductionism, not integrating other variables that interact with both the environment and MBD. In addition, most results have not yet been tested. A global health approach is desirable in this kind of research. Nevertheless, we cannot wait for science to approve something that needs to be addressed now to avoid greater effects in the future.

The impact of climate change on vaccine-preventable diseases: Insights from current research and new directions

PURPOSE OF REVIEW: Vaccine-preventable diseases remain a major public health concern globally. Climate is a key driver of the dynamics of many infectious diseases, including those that are vaccine preventable. Understanding the impact of climate change on vaccine-preventable diseases is, thus, an important public health research priority. Here, we summarize the recent literature and highlight promising directions for future research. RECENT FINDINGS: Vaccine-preventable enteric diseases, such as cholera, exhibit sensitivity to precipitation and flooding events. The predicted increase in extreme weather events as a result of climate change could exacerbate outbreaks of these pathogens. For airborne pathogens, temperature and specific humidity have been shown to be the most important environmental drivers, although the impact of climate change on disease burden and dynamics remains unclear. Finally, the transmission dynamics of vector-borne diseases are dependent on both temperature and precipitation, and climate change is expected to alter the burden and geographic range of these diseases. However, understanding the interacting effects of multiple factors, including socioeconomic and ecological factors, on the vector-borne disease ecosystem will be a crucial step towards forecasting disease burden under climate change. Recent work has demonstrated associations between climate and transmission of vaccine-preventable diseases. Translating these findings into forecasts under various climate change scenarios will require mechanistic frameworks that account for both intrinsic and extrinsic drivers of transmission, and the non-linear effects on disease burden. Future research should also pay greater attention to uncertainty in both the climate modeling processes as well as disease outcomes in the context of vaccine-preventable diseases.

The influence of climate change on human cardiovascular function

Climate change is considered to have great impact on human health. The heat waves have been associated with excess morbidity and mortality of cardiovascular diseases (CVD) across various populations and geographic locations. Important role in the heat-induced cardiovascular damage has endothelial dysfunction. It has been noticed that hot weather can impair tone and structure of the blood vessels via interfering with variety of biological factors such as nitric oxide synthesize, cytokine production and systemic inflammation. Also, due to dehydration and increased blood viscosity, by promoting thrombogenesis, heat has important impact on patients with atherosclerosis. During chronic exposure to the cold or hot weather cardiovascular function can be decreased, leading to a higher risk of developing heart attack, malignant cardiac arrhythmias, thromboembolic diseases and heat-induced sepsis like shock. It has been shown that changes in the ambient temperature through increasing blood pressure, blood viscosity, and heart rate, contribute to the cardiovascular mortality. The majority of deaths due to heat waves especially affect individuals with preexisting chronic CVD. This population can experience a decline in the health status, since extreme ambient temperature affects pharmacokinetic parameters of many cardiovascular drugs. Increased mortality from ischemic or hemorrhagic stroke can also be related to extreme temperature variations. On a cellular level, higher ambient temperature can limit storage of ATP and O(2) increase amount of free radicals and toxic substances and induce neuronal apoptotic signal transduction, which all can lead to a stroke. Preserving cardiovascular function in context of extreme climate changing tends to be particularly challenging.

Rising temperature and its impact on receptivity to malaria transmission in Europe: A systematic review

BACKGROUND: Malaria is one of the most life-threatening vector-borne diseases globally. Recent autochthonous cases registered in several European countries have raised awareness regarding the threat of malaria reintroduction to Europe. An increasing number of imported malaria cases today occur due to international travel and migrant flows from malaria-endemic countries. The cumulative factors of the presence of competent vectors, favourable climatic conditions and evidence of increasing temperatures might lead to the re-emergence of malaria in countries where the infection was previously eliminated. METHODS: We performed a systematic literature review following PRISMA guidelines. We searched for original articles focusing on rising temperature and the receptivity to malaria transmission in Europe. We evaluated the quality of the selected studies using a standardised tool. RESULTS: The search resulted in 1’999 articles of possible relevance and after screening we included 10 original research papers in the quantitative analysis for the systematic review. With further increasing temperatures studies predicted a northward spread of the occurrence of Anopheles mosquitoes and an extension of seasonality, enabling malaria transmission for annual periods up to 6 months in the years 2051-2080. Highest vector stability and receptivity were predicted in Southern and South-Eastern European areas. Anopheles atroparvus, the main potential malaria vector in Europe, might play an important role under changing conditions favouring malaria transmission. CONCLUSION: The receptivity of Europe for malaria transmission will increase as a result of rising temperature unless socioeconomic factors remain favourable and appropriate public health measures are implemented. Our systematic review serves as an evidence base for future preventive measures.

Seasonal variation of blood pressure in children

Seasonal blood pressure (BP) variation is mostly found between the summer and winter months. Guidelines for diagnosis and treatment of hypertension in children have not considered this variation until recently. This review aims to present an overview of seasonal BP variation in childhood along with potential underlying pathophysiological mechanisms and long-term implications as well as conclusions for future studies. In pediatric cohorts, seven studies investigated seasonal changes in BP. These changes amount to 3.4-5.9 mmHg (or 0.5-1.5 mmHg per -?1 °C difference in environmental temperature) in systolic BP with a peak in fall or winter. Potential mechanisms and mediators of seasonal BP variation include sympathetic activation of the nervous system with an increase of urinary and plasma norepinephrine levels in the winter season. Additionally, the physical activity among children and adolescents was inversely correlated with BP levels. Temperature sensitivity of BP and pediatric BP levels predict future systolic BP and target-organ damage. Therefore, cardiovascular events may even be long-term complications of seasonal BP variation in pediatric hypertensive patients. Overall, these data strongly suggest an important effect of ambient temperature on BP in children. Additional studies in pediatric cohorts are needed to define how best to incorporate such variation into clinical practice.

Synergistic health effects of air pollution, temperature, and pollen exposure: A systematic review of epidemiological evidence

BACKGROUND: Exposure to heat, air pollution, and pollen are associated with health outcomes, including cardiovascular and respiratory disease. Studies assessing the health impacts of climate change have considered increased exposure to these risk factors separately, though they may be increasing simultaneously for some populations and may act synergistically on health. Our objective is to systematically review epidemiological evidence for interactive effects of multiple exposures to heat, air pollution, and pollen on human health. METHODS: We systematically searched electronic literature databases (last search, April 29, 2019) for studies reporting quantitative measurements of associations between at least two of the exposures and mortality from any cause and cardiovascular and respiratory morbidity and mortality specifically. Following the Navigation Guide systematic review methodology, we evaluated the risk of bias of individual studies and the overall quality and strength of evidence. RESULTS: We found 56 studies that met the inclusion criteria. Of these, six measured air pollution, heat, and pollen; 39 measured air pollution and heat; 10 measured air pollution and pollen; and one measured heat and pollen. Nearly all studies were at risk of bias from exposure assessment error. However, consistent exposure-response across studies led us to conclude that there is overall moderate quality and sufficient evidence for synergistic effects of heat and air pollution. We concluded that there is overall low quality and limited evidence for synergistic effects from simultaneous exposure to (1) air pollution, pollen, and heat; and (2) air pollution and pollen. With only one study, we were unable to assess the evidence for synergistic effects of heat and pollen. CONCLUSIONS: If synergistic effects between heat and air pollution are confirmed with additional research, the health impacts from climate change-driven increases in air pollution and heat exposure may be larger than previously estimated in studies that consider these risk factors individually.

Temperature regulation during exercise in the heat: Insights for the aging athlete

OBJECTIVE: The purpose of this review is to evaluate the currently-available literature regarding the impact of both primary aging and age-related fitness on thermoregulatory function during exercise in the heat. In so doing, we aim to (1) characterize the influence of fitness in mitigating age-related declines in thermoregulation, (2) address the limitations of prior experimental approaches for investigating age-related thermoregulatory impairments, (3) examine to what extent aerobic fitness can be maintained in the aging athlete, and (4) begin to address the specific environmental conditions in which age-related impairments in thermoregulatory function may place highly active older adults at increased risk for heat-related illness and injury and/or limited performance. DESIGN: Mini-review. METHODS: Review and synthesis of available information. RESULTS: The earth’s climate is warming, accompanied by a consequently greater frequency and severity of extreme heat events. At the same time, lifespan is increasing and people of all ages are staying increasingly active. Age-related impairments in thermoregulatory function are well-documented, leading to increased heat-related health risks and reduced exercise/athletic performance for older adults in hot environmental conditions. High aerobic fitness improves body temperature regulation during exercise via augmented sweating and improved cardiovascular function, including cardiac output and skin blood flow, in humans of all ages. CONCLUSIONS: The masters athlete is better suited for exercise/heat-stress compared to his or her less fit peers. However, while age and thermoregulation in general has been studied extensively, research on the most fit older adults, including highly competitive athletes, is generally lacking.

Physiological factors characterizing heat-vulnerable older adults: A narrative review

More frequent and intense periods of extreme heat (heatwaves) represent the most direct challenge to human health posed by climate change. Older adults are particularly vulnerable, especially those with common age-associated chronic health conditions (e.g., cardiovascular disease, hypertension, obesity, type 2 diabetes, chronic kidney disease). In parallel, the global population is aging and age-associated disease rates are on the rise. Impairments in the physiological responses tasked with maintaining homeostasis during heat exposure have long been thought to contribute to increased risk of health disorders in older adults during heatwaves. As such, a comprehensive overview of the provisional links between age-related physiological dysfunction and elevated risk of heat-related injury in older adults would be of great value to healthcare officials and policy makers concerned with protecting heat-vulnerable sectors of the population from the adverse health impacts of heatwaves. In this narrative review, we therefore summarize our current understanding of the physiological mechanisms by which aging impairs the regulation of body temperature, hemodynamic stability and hydration status. We then examine how these impairments may contribute to acute pathophysiological events common during heatwaves (e.g., heatstroke, major adverse cardiovascular events, acute kidney injury) and discuss how age-associated chronic health conditions may exacerbate those impairments. Finally, we briefly consider the importance of physiological research in the development of climate-health programs aimed at protecting heat-vulnerable individuals.

Possible effects of climate change on ixodid ticks and the pathogens they transmit: Predictions and observations

The global climate has been changing over the last century due to greenhouse gas emissions and will continue to change over this century, accelerating without effective global efforts to reduce emissions. Ticks and tick-borne diseases (TTBDs) are inherently climate-sensitive due to the sensitivity of tick lifecycles to climate. Key direct climate and weather sensitivities include survival of individual ticks, and the duration of development and host-seeking activity of ticks. These sensitivities mean that in some regions a warming climate may increase tick survival, shorten life-cycles and lengthen the duration of tick activity seasons. Indirect effects of climate change on host communities may, with changes in tick abundance, facilitate enhanced transmission of tick-borne pathogens. High temperatures, and extreme weather events (heat, cold, and flooding) are anticipated with climate change, and these may reduce tick survival and pathogen transmission in some locations. Studies of the possible effects of climate change on TTBDs to date generally project poleward range expansion of geographical ranges (with possible contraction of ranges away from the increasingly hot tropics), upslope elevational range spread in mountainous regions, and increased abundance of ticks in many current endemic regions. However, relatively few studies, using long-term (multi-decade) observations, provide evidence of recent range changes of tick populations that could be attributed to recent climate change. Further integrated ‘One Health’ observational and modeling studies are needed to detect changes in TTBD occurrence, attribute them to climate change, and to develop predictive models of public- and animal-health needs to plan for TTBD emergence.

Projections of ambient temperature- and air pollution-related mortality burden under combined climate change and population aging scenarios: A review

PURPOSE OF REVIEW: Climate change will affect mortality associated with both ambient temperature and air pollution. Because older adults have elevated vulnerability to both non-optimal ambient temperature (heat and cold) and air pollution, population aging can amplify future population vulnerability to these stressors through increasing the number of vulnerable older adults. We aimed to review recent evidence on projections of temperature- or air pollution-related mortality burden (i.e., number of deaths) under combined climate change and population aging scenarios, with a focus on evaluating the role of population aging in assessing these health impacts of climate change. We included studies published between 2014 and 2019 with age-specific population projections. RECENT FINDINGS: We reviewed 16 temperature projection studies and 15 air pollution projection studies. Nine of the temperature studies and four of the air pollution studies took population aging into account by performing age-stratified analyses that utilized age-specific relationships between temperature or air pollution exposures and mortality (i.e., age-specific exposure-response functions (ERFs)). Population aging amplifies the projected mortality burden of temperature and air pollution under a warming climate. Compared with a constant population scenario, population aging scenarios lead to less reduction or even increases in cold-related mortality burden, resulting in substantial net increases in future overall (heat and cold) temperature-related mortality burden. There is strong evidence suggesting that to accurately assess the future temperature- and air pollution-related mortality burden of climate change, investigators need to account for the amplifying effect of population aging. Thus, all future studies should incorporate age-specific population size projections and age-specific ERFs into their analyses. These studies would benefit from refinement of age-specific ERF estimates.

Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change

Urban overheating is documented for more than 400 major cities in the world. Numerous experimental data show that the magnitude of the average temperature increase may exceed 4-5 C, while at the peak may exceed 10 C. Increased ambient temperatures cause a serious impact on the cooling energy consumption, peak electricity demand, heat related mortality and morbidity, urban environmental quality, local vulnerability and comfort. Synergies between urban heat island and heat waves increase further the amplitude of urban overheating The present paper reviews and reports the recent progress and knowledge on the specific impact of current and projected urban overheating in energy, peak electricity demand, air quality, mortality and morbidity and urban vulnerability. In parallel, it discusses new findings related to the characteristics and the magnitude of urban overheating, and reports and analyse the recent knowledge on the synergies between urban heat island and heat waves. (C) 2019 Elsevier B.V. All rights reserved.

Report of the intergovernmental panel on climate change: Implications for the mental health policy of children and adolescents in Europe-a scoping review

Climate change is a worldwide challenge. Its consequences do encompass severe threats not only for the existence and somatic health, but also for the mental health of children and adolescents. Mental health can be impaired by three types of consequences. Direct consequences of climate change, such as natural disasters and indirect consequences, such as loss of land, flight and migration, exposure to violence, change of social, ecological, economic or cultural environment. Moreover, the increasing awareness of the existential dimension of climate change in children and adolescents can influence their well-being or challenge their mental health. Consequences of climate change for somatic health may interact with mental health or have psychological sequelae in children and adolescents. Based on the estimates by the United Nations Intergovernmental Panel on Climate Change, we have summarized current data on these differential pathways as to how climate change affects the mental health of children worldwide through selective literature research on Pubmed. Mental health sequelae of direct and indirect consequences of climate change, increased awareness and physical health problems caused by climate change are presented. We give insights into special vulnerabilities of children and adolescents and identify high-risk groups. As the “Fridays for Future” movement has been initiated in northern Europe, we will discuss these results with a focus on children and adolescents in Europe. The results indicate that climate change is a serious threat to children and adolescent mental health. Children´s rights, mental health and climate change should not continue to be seen as separate points; instead, they need to be brought together to address this major challenge determining the future of our children and their descendants.

Research trends in agenda-setting for climate change adaptation policy in the public health sector in Korea

Many studies have been conducted to assess the health effects of climate change in Korea. However, there has been a lack of consideration regarding how the results of these studies can be applied to relevant policies. The current study aims to examine research trends at the agenda-setting stage and to review future ways in which health-related adaptation to climate change can be addressed within national public health policy. A systematic review of previous studies of the health effects of climate change in Korea was conducted. Many studies have evaluated the effect of ambient temperature on health. A large number of studies have examined the effects on deaths and cardio-cerebrovascular diseases, but a limitation of these studies is that it is difficult to apply their findings to climate change adaptation policy in the health sector. Many infectious disease studies were also identified, but these mainly focused on malaria. Regarding climate change-related factors other than ambient temperature, studies of the health effects of these factors (with the exception of air pollution) are limited. In Korea, it can be concluded that studies conducted as part of the agenda-setting stage are insufficient, both because studies on the health effects of climate change have not ventured beyond defining the problem and because health adaptation to climate change has not been set as an important agenda item. In the future, the sharing and development of relevant databases is necessary. In addition, the priority of agenda items should be determined as part of a government initiative.

Review of biometeorology of heatwaves and warm extremes in Europe

Numerous extreme heatwaves producing large impacts on human health, agriculture, water resources, energy demand, regional economies, and forest ecosystems occurred during the first twenty years of the 21st century. The present study strives to provide a systematic review of recent studies of warm biometeorological extremes in Europe. The main aim of this paper is to provide a methodical summary of the observed changes in warm extremes, duration, and variability in different parts of Europe. During the last decade, much attention has been paid to the negative impacts of heat and humidity on human health. Therefore, the human biometeorology is required to appraise the human thermal environment in a way that human thermoregulation is taken into account. In many European countries and regions, future heat exposure will indeed exceed critical levels, and a steep increase in biometeorological heatwaves and warm extremes are expected. The indices that take into account human energy balance along with weather conditions should be used to examine the impacts of extreme heatwaves on human health and should be used as a basis for the determination of acclimatization to high-heat-stress conditions. A detailed description of recent studies that have used biometeorological indices such as Physiological Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) for the estimation of warm extremes and their influence on human health is provided. Additionally, a short overview of the existence of the heat-health warning systems (HHWS), their conceptualization, and implementation across the European continent is considered, as well as the possibilities for further investigations and implementation of effective measures and programs that could reduce the adverse health impacts.

Message sent, now what? A critical analysis of the heat action plan in Ahmedabad, India

To protect public health, heat-related policies are increasingly being adopted by city authorities to address the unequal impact of heatwaves. Ahmedabad’s Heat Action Plan (HAP) is an acclaimed and successful policy response in India and beyond. While the pilot evaluation of the initiative suggests that almost a thousand deaths were avoided annually after its implementation, it is not yet clear whose lives were saved, and to what extent this statistic was due to the HAP, rather than other factors. By reviewing the published and grey literature centering on the HAP target groups, outreach strategies, and impacts on urban services, this paper points out major knowledge gaps concerning the potentials and impacts of the HAP, which may lead to the systematical exclusion of vulnerable and disadvantaged groups from the intended benefits. In this paper, it is argued that the effectiveness and inclusiveness of the HAP predominantly depend on its integration into urban development projects, which is a challenging task given the existing horizontal and vertical fragmentation in the planning of city projects. Moreover, urban plans and policies, including the HAP, are shown to be overly focused on technology, and as a consequence, they do not realize their limited scope in addressing the associated issues, which are fundamentally social, deep, and structural, such as spatial inequality in Indian cities.

Moist heat stress on a hotter Earth

As the world overheats-potentially to conditions warmer than during the three million years over which modern humans evolved-suffering from heat stress will become widespread. Fundamental questions about humans’ thermal tolerance limits are pressing. Understanding heat stress as a process requires linking a network of disciplines, from human health and evolutionary theory to planetary atmospheres and economic modeling. The practical implications of heat stress are equally transdisciplinary, requiring technological, engineering, social, and political decisions to be made in the coming century. Yet relative to the importance of the issue, many of heat stress’s crucial aspects, including the relationship between its underlying atmospheric drivers-temperature, moisture, and radiation-remain poorly understood. This review focuses on moist heat stress, describing a theoretical and modeling framework that enables robust prediction of the averaged properties of moist heat stress extremes and their spatial distribution in the future, and draws some implications for human and natural systems from this framework. Moist heat stress affects society; we summarize drivers of moist heat stress and assess future impacts on societal and global scales. Moist heat stress pattern scaling of climate models allows research on future heat waves, infrastructure planning, and economic productivity.

Narrative review on health-EDRM primary prevention measures for vector-borne diseases

Climate change is expanding the global at-risk population for vector-borne diseases (VBDs). The World Health Organization (WHO) health emergency and disaster risk management (health-EDRM) framework emphasises the importance of primary prevention of biological hazards and its value in protecting against VBDs. The framework encourages stakeholder coordination and information sharing, though there is still a need to reinforce prevention and recovery within disaster management. This keyword-search based narrative literature review searched databases PubMed, Google Scholar, Embase and Medline between January 2000 and May 2020, and identified 134 publications. In total, 10 health-EDRM primary prevention measures are summarised at three levels (personal, environmental and household). Enabling factor, limiting factors, co-benefits and strength of evidence were identified. Current studies on primary prevention measures for VBDs focus on health risk-reduction, with minimal evaluation of actual disease reduction. Although prevention against mosquito-borne diseases, notably malaria, has been well-studied, research on other vectors and VBDs remains limited. Other gaps included the limited evidence pertaining to prevention in resource-poor settings and the efficacy of alternatives, discrepancies amongst agencies’ recommendations, and limited studies on the impact of technological advancements and habitat change on VBD prevalence. Health-EDRM primary prevention measures for VBDs require high-priority research to facilitate multifaceted, multi-sectoral, coordinated responses that will enable effective risk mitigation.

Natural environment and childhood obesity: A systematic review

The associations between built and food environments and childhood obesity have been studied extensively. However, the association between the natural environment and childhood obesity has received too little scholarly attention. This study reviewed the literature published before 1 January 2019, which described associations between a full range of natural environmental factors (e.g., rainfall, temperature, sunlight, natural disasters, flood and drought) and weight-related behaviours and childhood obesity. Five cross-sectional studies and one longitudinal study were identified. Measures of natural environmental factors varied across six included studies, falling into five broad categories: weather conditions, altitude, natural disaster risk, air quality and day length. It was found that temperature was a significant weather indicator in most included studies and was associated with a reduction of daily physical activity. Children living in high-altitude areas were more likely to be shorter and heavier than their counterparts in low-altitude areas. Findings of this study will contribute to helping multiple stakeholders, including policy makers and urban planners, and formulate health policies and interventions to mitigate the detrimental impact of the natural environment on childhood obesity. More longitudinal studies should be designed to confirm these effects and explore the potential health effects of more natural environmental factors.

Neglected tropical diseases in the context of climate change in East Africa: A systematic scoping review

East Africa is highly affected by neglected tropical diseases (NTDs), which are projected to be exacerbated by climate change. Consequently, understanding what research has been conducted and what knowledge gaps remain regarding NTDs and climate change is crucial to informing public health interventions and climate change adaptation. We conducted a systematic scoping review to describe the extent, range, and nature of publications examining relationships between NTDs and climatic factors in East Africa. We collated all relevant English and French publications indexed in PubMed(®), Web of Science™ Core Collection, and CAB Direct(©) databases published prior to 2019. Ninety-six publications were included for review. Kenya, Tanzania, and Ethiopia had high rates of publication, whereas countries in the Western Indian Ocean region were underrepresented. Most publications focused on schistosomiasis (n = 28, 29.2%), soil-transmitted helminthiases (n = 16, 16.7%), or human African trypanosomiasis (n = 14, 14.6%). Precipitation (n = 91, 94.8%) and temperature (n = 54, 56.3%) were frequently investigated climatic factors, whereas consideration of droughts (n = 10, 10.4%) and floods (n = 4, 4.2%) was not prominent. Publications reporting on associations between NTDs and changing climate were increasing over time. There was a decrease in the reporting of Indigenous identity and age factors over time. Overall, there were substantial knowledge gaps for several countries and for many NTDs. To better understand NTDs in the context of a changing climate, it would be helpful to increase research on underrepresented diseases and regions, consider demographic and social factors in research, and characterize how these factors modify the effects of climatic variables on NTDs in East Africa.

Interdisciplinary regional collaboration for public health adaptation to climate change in the eastern Mediterranean

Integrating statistical and mechanistic approaches with biotic and environmental variables improves model predictions of the impact of climate and land-use changes on future mosquito-vector abundance, diversity and distributions in Australia

Changes to Australia’s climate and land-use patterns could result in expanded spatial and temporal distributions of endemic mosquito vectors including Aedes and Culex species that transmit medically important arboviruses. Climate and land-use changes greatly influence the suitability of habitats for mosquitoes and their behaviors such as mating, feeding and oviposition. Changes in these behaviors in turn determine future species-specific mosquito diversity, distribution and abundance. In this review, we discuss climate and land-use change factors that influence shifts in mosquito distribution ranges. We also discuss the predictive and epidemiological merits of incorporating these factors into a novel integrated statistical (SSDM) and mechanistic species distribution modelling (MSDM) framework. One potentially significant merit of integrated modelling is an improvement in the future surveillance and control of medically relevant endemic mosquito vectors such as Aedes vigilax and Culex annulirostris, implicated in the transmission of many arboviruses such as Ross River virus and Barmah Forest virus, and exotic mosquito vectors such as Aedes aegypti and Aedes albopictus. We conducted a focused literature search to explore the merits of integrating SSDMs and MSDMs with biotic and environmental variables to better predict the future range of endemic mosquito vectors. We show that an integrated framework utilising both SSDMs and MSDMs can improve future mosquito-vector species distribution projections in Australia. We recommend consideration of climate and environmental change projections in the process of developing land-use plans as this directly impacts mosquito-vector distribution and larvae abundance. We also urge laboratory, field-based researchers and modellers to combine these modelling approaches. Having many different variations of integrated (SDM) modelling frameworks could help to enhance the management of endemic mosquitoes in Australia. Enhanced mosquito management measures could in turn lead to lower arbovirus spread and disease notification rates.

Interlinkages between urbanization and climate change: Identifying and understanding the challenges and the prospects

India is urbanizing at an alarming rate and the impact of climate change is becoming more visible each passing day. The rapid urbanization and climate change have severe direct and indirect consequences, such as increasing poverty, inequality, massive displacement, public health concerns, and challenges of urban governance, among others. This paper identifies some of the most pressing issues faced by urban India in the context of climate change. It also details the interventions undertaken at the local, national, and international levels to counter the effect of the climate change. In addition, it critically evaluates the role of government organizations, especially in terms of undertaking regulatory and planning functions. The paper argues that the implementation of institutional reforms would enable the government to reach out to the private sector to improve urban service delivery. It also provides examples of best practices from India and the world in combating climate change through adaptation and mitigation approaches.

Mapping thermal physiology of vector-borne diseases in a changing climate: Shifts in geographic and demographic risk of suitability

PURPOSE OF REVIEW: To describe a collection of recent work published on thermal suitability for vector-borne diseases, in which mapping approaches illustrated the geographic shifts, and spatial approaches describe the demographic impact anticipated with a changing climate. RECENT FINDINGS: While climate change predictions of warming indicate an expansion in VBD suitability risk in some parts of the globe, while in others, optimal temperatures for transmission may be exceeded, as seen for malaria in Western Africa, resulting in declining risk. The thermal suitability of specific vector-pathogen pairs can have large impacts on geographic range of risk, and changes in human demography itself will intersect with this risk to create different vulnerability profiles over the coming century. Using a physiological approach to describe the thermal suitability of transmission for vector-borne diseases allows us to illustrate the future risk as mapped information. This in turn can be coupled with demographic projections to anticipate changing risk, and even changing vulnerability within that population change.

Impact of climate change on aeroallergenic pollen metrics: A hemispheric perspective

The recognition and documentation of climatic change effects on human health remains one of the most important challenges of the 21st century. While myriad in scope, one of the most recognised impacts is related to pollen, specifically its production, release and duration, and the consequences for allergic diseases, including asthma and allergic rhinitis. At present, the bulk of efforts to understand and document these links have been conducted by scientists in the Northern Hemisphere. However, the link between climate change and aeroallergenic pollen is global and international in scope. For this reason, more recent efforts to provide similar evaluations have been initiated by scientists in the Southern Hemisphere. The current review acknowledges northern enquiries, but also emphasises research gaps and inconsistencies which should be avoided by southern investigators. To remedy these deficiencies, some suggestions are offered, including a greater emphasis on plant demographics, the standardisation of pollen metrics, automation and environmental integration. It is hoped that this perspective will be able to provide support to efforts of scientists in the Southern Hemisphere to evaluate better climate shifts and aeroallergen consequences. Overall, there is a clear and pressing need to understand these likely changes while simultaneously comprehending their impact on pollen-related health outcomes – for both hemispheres.

Impairments to thermoregulation in the elderly during heat exposure events

Heat waves represent a public health risk to elderly people, and typically result in an increased rate of hospital admissions and deaths. Studies of thermoregulation in this cohort have generally focused on single elements such as sweating capacity. Sweating capacity and skin blood flow reduce with age, reducing ability to dissipate heat. Perception of effort during heat exposure is emerging as an area that needs further investigation as the elderly appear to lack the ability to adequately perceive increased physiological strain during heat exposure. The role of the gut and endotoxemia in heat stress has received attention in young adults, while the elderly population has been neglected. This shortcoming offers another potential avenue for identifying effective integrated health interventions to reduce heat illnesses. Increasing numbers of elderly individuals in populations worldwide are likely to increase the incidence of heat wave-induced deaths if adequate interventions are not developed, evaluated, and implemented. In this narrative-style review we identify and discuss health-related interventions for reducing the impact of heat illnesses in the elderly.

Improving city vitality through urban heat reduction with green infrastructure and design solutions: A systematic literature review

Cities are prone to excess heat, manifesting as urban heat islands (UHIs). UHIs impose a heat penalty upon urban inhabitants that jeopardizes human health and amplifies the escalating effects of background temperature rises and heatwaves, presenting barriers to participation in city life that diminish interaction and activity. This review paper investigates how green infrastructure, passive design and urban planning strategies-herein termed as green infrastructure and design solutions (GIDS)-can be used to cool the urban environment and improve city vitality. A systematic literature review has been undertaken connecting UHIs, city vitality and GIDS to find evidence of how qualities and conditions fundamental to the vitality of the city are diminished by heat, and ways in which these qualities and conditions may be improved through GIDS. This review reveals that comfortable thermal conditions underpin public health and foster activity-a prerequisite for a vital city-and that reducing environmental barriers to participation in urban life enhances physical and mental health as well as activity. This review finds that GIDS manage urban energy flows to reduce the development of excess urban heat and thus improve the environmental quality of urban spaces. Furthermore, it finds that the most equitable approach to urban cooling is one that reduces the intensity of the meso-scale UHI that affects all urban inhabitants. Subsequently, a cooler urban fabric based on GIDS is proposed. A cohesive approach to the widespread adoption of GIDS shows potential to produce a cooler urban fabric that is human-centered in its function and aesthetic to enhance participation in public life and stimulate life on the streets. Four spatial scales are presented in which a combination of GIDS may be collectively implemented to reduce the meso-scale UHI, including the urban, intra-urban, building and body scales. This approach considers the interacting nature of GIDS applied within contrasting urban landscapes, and aims to produce cooler urban conditions, better walking environments, and ecosystem co-benefits to stimulate participation in physical activity and public life to underpin public health, productivity and livelihoods, thereby inducing city vitality.

In hot water: Effects of climate change on Vibrio-human interactions

Sea level rise and the anthropogenic warming of the world’s oceans is not only an environmental tragedy, but these changes also result in a significant threat to public health. Along with coastal flooding and the encroachment of saltwater farther inland comes an increased risk of human interaction with pathogenic Vibrio species, such as Vibrio cholerae, V. vulnificus and V. parahaemolyticus. This minireview examines the current literature for updates on the climatic changes and practices that impact the location and duration of the presence of Vibrio spp., as well as the infection routes, trends and virulence factors of these highly successful pathogens. Finally, an overview of current treatments and methods for the mitigation of both oral and cutaneous exposures are presented.

Increasing green infrastructure in cities: Impact on ambient temperature, air quality and heat-related mortality and morbidity

Urban vegetation provides undeniable benefits to urban climate, health, thermal comfort and environmental quality of cities and represents one of the most considered urban heat mitigation measures. Despite the plethora of available scientific information, very little is known about the holistic and global impact of a potential increase of urban green infrastructure (GI) on urban climate, environmental quality and health, and their synergies and trade-offs. There is a need to evaluate globally the extent to which additional GI provides benefits and quantify the problems arising from the deployment of additional greenery in cities which are usually overlooked or neglected. The present paper has reviewed and analysed 55 fully evaluated scenarios and case studies investigating the impact of additional GI on urban temperature, air pollution and health for 39 cities. Statistically significant correlations between the percentage increase of the urban GI and the peak daily and night ambient temperatures are obtained. The average maximum peak daily and night-time temperature drop may not exceed 1.8 and 2.3 degrees C respectively, even for a maximum GI fraction. In parallel, a statistically significant correlation between the peak daily temperature decrease caused by higher GI fractions and heat-related mortality is found. When the peak daily temperature drops by 0.1 degrees C, then the percentage of heat-related mortality decreases on average by 3.0% The impact of additional urban GI on the concentration of urban pollutants is analysed, and the main parameters contributing to decrease or increase of the pollutants’ concentration are presented.

Fundamental concepts of human thermoregulation and adaptation to heat: A review in the context of global warming

The international community has recognized global warming as an impending catastrophe that poses significant threat to life on earth. In response, the signatories of the Paris Agreement (2015) have committed to limit the increase in global mean temperature to < 1.5 °C from pre-industry period, which is defined as 1950-1890. Considering that the protection of human life is a central focus in the Paris Agreement, the naturally endowed properties of the human body to protect itself from environmental extremes should form the core of an integrated and multifaceted solution against global warming. Scholars believe that heat and thermoregulation played important roles in the evolution of life and continue to be a central mechanism that allows humans to explore, labor and live in extreme conditions. However, the international effort against global warming has focused primarily on protecting the environment and on the reduction of greenhouse gases by changing human behavior, industrial practices and government policies, with limited consideration given to the nature and design of the human thermoregulatory system. Global warming is projected to challenge the limits of human thermoregulation, which can be enhanced by complementing innate human thermo-plasticity with the appropriate behavioral changes and technological innovations. Therefore, the primary aim of this review is to discuss the fundamental concepts and physiology of human thermoregulation as the underlying bases for human adaptation to global warming. Potential strategies to extend human tolerance against environmental heat through behavioral adaptations and technological innovations will also be discussed. An important behavioral adaptation postulated by this review is that sleep/wake cycles would gravitate towards a sub-nocturnal pattern, especially for outdoor activities, to avoid the heat in the day. Technologically, the current concept of air conditioning the space in the room would likely steer towards the concept of targeted body surface cooling. The current review was conducted using materials that were derived from PubMed search engine and the personal library of the author. The PubMed search was conducted using combinations of keywords that are related to the theme and topics in the respective sections of the review. The final set of articles selected were considered “state of the art,” based on their contributions to the strength of scientific evidence and novelty in the domain knowledge on human thermoregulation and global warming.

Guidance to reduce the cardiovascular burden of ambient air pollutants: A policy statement from the American Heart Association

In 2010, the American Heart Association published a statement concluding that the existing scientific evidence was consistent with a causal relationship between exposure to fine particulate matter and cardiovascular morbidity and mortality, and that fine particulate matter exposure is a modifiable cardiovascular risk factor. Since the publication of that statement, evidence linking air pollution exposure to cardiovascular health has continued to accumulate and the biological processes underlying these effects have become better understood. This increasingly persuasive evidence necessitates policies to reduce harmful exposures and the need to act even as the scientific evidence base continues to evolve. Policy options to mitigate the adverse health impacts of air pollutants must include the reduction of emissions through action on air quality, vehicle emissions, and renewable portfolio standards, taking into account racial, ethnic, and economic inequality in air pollutant exposure. Policy interventions to improve air quality can also be in alignment with policies that benefit community and transportation infrastructure, sustainable food systems, reduction in climate forcing agents, and reduction in wildfires. The health care sector has a leadership role in adopting policies to contribute to improved environmental air quality as well. There is also potentially significant private sector leadership and industry innovation occurring in the absence of and in addition to public policy action, demonstrating the important role of public-private partnerships. In addition to supporting education and research in this area, the American Heart Association has an important leadership role to encourage and support public policies, private sector innovation, and public-private partnerships to reduce the adverse impact of air pollution on current and future cardiovascular health in the United States.

Health effects of heating, ventilation and air conditioning on hospital patients: A scoping review

BACKGROUND: In the face of climate change, the protection of vulnerable patients from extreme climatic conditions is of growing interest to the healthcare sector and governments. Inpatients are especially susceptible to heat due to acute illness and/or chronic diseases. Their condition can be aggravated by adverse environmental factors. Installing air conditioning can be seen as an element of public health adaptation because it was shown to improve mortality rates of hospital patients experiencing hot temperatures. Still, the mediating factors and resulting health effects are largely unknown. METHOD: The PRISMA-ScR guideline was followed for this scoping review. Available evidence on the health effects of Heating, Ventilation, Air Conditioning (HVAC) and fans was searched in Medline, Embase and the Cochrane Library. The focus of the search strategy was on inpatients of the hospital. Grey literature was screened on 14 relevant websites. English and German publications were eligible without restrictions on publication date. Results were charted according to the categories population, intervention, control and outcome together with a qualitative description. RESULTS: The review process yielded eleven publications of which seven were issued after 2003. Seven were clinical trials, three cross-sectional studies and one was a case report. The publications described the installation of HVAC on general wards and in intensive care units. Main topics were heat stress protection and support of thermoregulation, but also the rewarming of hypothermic patients. HVAC use resulted in a recovery effect shown by improved vital signs, reduced cardiac stress, accelerated recuperation and greater physical activity. This protective effect was demonstrated by a shorter hospital stay for patients with respiratory disease and a reduction of mortality for heat illness patients. CONCLUSION: This scoping review summarises the fragmented evidence on health effects of HVAC and fan utilisation for inpatients. Installing HVAC has the potential to improve patients’ outcomes and to make hospital treatment more efficient during heat waves. The application of HVAC could be a promising adaptation measure to mitigate the adverse effects of climate change on health and healthcare systems.

Heat warning and public and workers’ health at the time of COVID-19 pandemic

The humanity is currently facing the COVID-19 pandemic challenge, the largest global health emergency after the Second World War. During summer months, many countries in the northern hemisphere will also have to counteract an imminent seasonal phenomenon, the management of extreme heat events. The novelty this year concerns that the world population will have to deal with a new situation that foresees the application of specific measures, including adjunctive personal protective equipment (i.e. facemasks and gloves), in order to reduce the potential transmission of the SARS-CoV-2 virus. These measures should help to decrease the risk of the infection transmission but will also represent an aggravating factor to counteract the heat effects on the population health both at occupational and environmental level. The use of a specific heat health warning system with personalized information based on individual, behavioural and environmental characteristics represents a necessary strategy to help a fast adaptation of the population at a time where the priority is to live avoiding SARS-CoV-2 infection.

Heat-health vulnerability in temperate climates: Lessons and response options from Ireland

BACKGROUND: In Ireland, rising temperatures remains the climate projection that national climate scientists associate with the highest degree of confidence. However, the health challenge of heat has been largely absent from Ireland’s public health sector. This is epitomised by the lack of a comprehensive public health-focused heat-health action plan or country-specific codes of practice for heat-health when working outdoors. Our objective is to highlight the anticipated heat-health challenges in Ireland, and other temperate regions, through analysing vulnerable groups and systems, reinforcing the need to respond. METHODS: A scoping literature review was conducted to determine how heat affects health of the vulnerable in temperate climatic regions, with a focus on Ireland. Additionally, national Google Trends data was coarsely analysed to determine whether heat is a growing societal concern. RESULTS AND DISCUSSION: The heat-vulnerable include: older people; chronically ill; infants, pregnant women, children; outdoor workers; socio-economically disadvantaged; urban dwellers; food systems and the health sector. Google Trends data suggest an increase in heat-related health searches over time, demonstrating rising levels of concern to temperature increases, reinforcing a gap in national policy associated with communication of, and response to, the heat-health challenge. Specific, actionable recommendations for adaptation and mitigation strategies are proposed. CONCLUSION: Heat poses a public and occupational health challenge, receiving limited attention in Ireland. Lack of a co-ordinated effort, places vulnerable populations at risk. Our recommendations, with reference to vulnerable groups and acknowledging the multi-sectoral nature of heat-health and climate change, advocate for the adoption of a “health and climate change in all policies” approach and the development of a public health-focused heat-health action plan.

Climate extremes and compound hazards in a warming world

Climate extremes threaten human health, economic stability, and the wellbeing of natural and built environments (e.g., 2003 European heat wave). As the world continues to warm, climate hazards are expected to increase in frequency and intensity. The impacts of extreme events will also be more severe due to the increased exposure (growing population and development) and vulnerability (aging infrastructure) of human settlements. Climate models attribute part of the projected increases in the intensity and frequency of natural disasters to anthropogenic emissions and changes in land use and land cover. Here, we review the impacts, historical and projected changes, and theoretical research gaps of key extreme events (heat waves, droughts, wildfires, precipitation, and flooding). We also highlight the need to improve our understanding of the dependence between individual and interrelated climate extremes because anthropogenic-induced warming increases the risk of not only individual climate extremes but also compound (co-occurring) and cascading hazards. Climate hazards are expected to increase in frequency and intensity in a warming world. Anthropogenic-induced warming increases the risk of compound and cascading hazards. We need to improve our understanding of causes and drivers of compound and cascading hazards.

Climate factors and gestational diabetes mellitus risk – A systematic review

BACKGROUND: Current and projected increases in global temperatures and extreme climate events have led to heightened interest in the impact of climate factors (i.e. ambient temperature, season/seasonality, and humidity) on human health. There is growing evidence that climate factors may impact metabolic function, including insulin sensitivity. Gestational diabetes mellitus (GDM) is a common pregnancy complication, with an estimated global prevalence of up to 14%. While lifestyle and genetic risk factors for GDM are well established, environmental factors may also contribute to GDM risk. Previous reviews have summarized the growing evidence of environmental risk factors for GDM including endocrine disrupting chemicals and ambient air pollution. However, studies of the effects of climate factors on GDM risk have not been systematically evaluated. Therefore, we conducted a systematic review to summarize and evaluate the current literature on the associations of climate factors with GDM risk. METHODS: We conducted systematic searches in PubMed and EMBASE databases for original researchs on associations of climate factors (i.e. ambient temperature, season/seasonality, and humidity) with GDM and/or related glycemic outcomes for all publication dates through September 20th, 2020. RESULTS: Our search identified 16 articles on the associations of ambient temperature and/or season with GDM and maternal glycemic outcomes during pregnancy, which were included in this review. Despite inconsistencies in exposure and outcome assessment, we found consistent evidence of a seasonal effect on GDM risk, with higher prevalence of GDM and higher pregnancy glucose levels in summer months. We found suggestive evidence of an association between higher ambient temperature and elevated glucose levels from GDM screening tests. CONCLUSION: Climate factors may be associated with GDM risk. However, further research is needed to evaluate these associations and to elucidate the specific mechanisms involved.

Diabetes mellitus in the era of climate change

Worldwide, diabetes mellitus (DM) represents a major public-health problem due to its increasing prevalence in tandem with the rising trend of obesity. However, climate change, with its associated negative health effects, also constitutes a worrisome problem. Patients with DM are experiencing more visits to emergency departments, hospitalizations, morbidity and mortality during heat waves at ever-increasing numbers. Such patients are particularly vulnerable to heat waves due to impaired thermoregulatory mechanisms in conjunction with impaired autonomous nervous system responses at high temperatures, electrolyte imbalances and rapid deterioration of kidney function, particularly among those aged > 80 years and with preexisting chronic kidney disease (CKD). Moreover, exposure to cold temperatures is associated with increased rates of acute myocardial infarction as well as poor glycaemic control, although results are conflicting regarding cold-related mortality among patients with DM. In addition to extremes of temperature, air pollution as a consequence of the climate crisis may also be implicated in the increased prevalence and incidence of DM, particularly gestational DM (GDM), and lead to deleterious effects in patients with DM. Thus, more large-scale studies are now required to elucidate the association between specific air pollutants and risk of DM. This review presents the currently available evidence for the detrimental effects of climate change, particularly those related to weather variables, on patients with DM (both type 1 and type 2) and GDM. Specifically, the effects of heat waves and extreme cold, and pharmaceutical and therapeutic issues and their implications, as well as the impact of air pollution on the risk for DM are synthesized and discussed here.

Effects of pollution and climate change in Timisoara municipality and its periurban area

The preliminary determination of the article is to investigate the effects of pollution and climate change. In this regard, the authors want to highlight that this real and critical issue must take seriously because each of us contributes to pollution and climate change, which is very real, and which will be aggravated by not taking action. Global warming currently involves two major problems for humanity: on the one hand, the need to dramatically diminish greenhouse gas emissions to stabilize the concentration of these gases in the atmosphere to prevent anthropogenic influence on the climate system and enable ecosystems, contrastingly the need to accommodate to the consequence of climate change, given that these effects are already visible and inevitable due to the activity of the climate system, regardless of the outcome of emission reduction actions. The main problem with pollution is air quality, which has fallen considerably, especially in urban areas. The” World Health Organization” approximates, more than seven million people die each year from air pollution. The authors also conducted a case study on the local effects of climate change – Timisoara and its peri-urban area. Therefore, we concluded that if Timisoara is successful in reducing greenhouse gas emissions, this will create a test market for Romania’s ecological technologies and help the environmental industries to locate in Timisoara.

Environment changes, aflatoxins, and health issues, a review

Crops contaminated by aflatoxins (AFs), the toxic and carcinogenic mycotoxins produced namely by Aspergillus flavus and Aspergillus parasiticus, have severe impacts on human health. Changes in temperature and water availability related to actual climate changes (increased temperature, heavy rainfalls, and droughts) are modulating factors of mould growth and production of mycotoxins. To protect human and animal health from the harmful effects caused by AFs, the development of a safe and effective multifaceted approach in combating food and feed contamination with AFs is necessary. This review aims to collect and analyze the available information regarding AF presence in food and feed to reinforce AF management and to prevent health issues related to the AF exposure in the light of actual climate changes.

Environmental abiotic and biotic factors affecting the distribution and abundance of Naegleria fowleri

Naegleria fowleri is a free-living protozoan that resides in soil and freshwater. Human intranasal amoebae exposure through water or potentially dust particles can culminate in primary amoebic meningoencephalitis, which generally causes death. While many questions remain regarding pathogenesis, the microbial ecology of N. fowleri is even less understood. This review outlines current knowledge of the environmental abiotic and biotic factors that affect the distribution and abundance of N. fowleri. Although the impacts of some abiotic factors remain poorly investigated or inconclusive, N. fowleri appears to have a wide pH range, low salinity tolerance and thermophilic preference. From what is known about biotic factors, the amoebae preferentially feed upon bacteria and are preyed upon by other free-living amoebae. Additional laboratory and environmental studies are needed to fill in knowledge gaps, which are crucial for surveillance and management of N. fowleri in freshwaters. As surface water temperatures increase with climate change, it is likely that this amoeba will pose a greater threat to human health, suggesting that identifying its abiotic and biotic preferences is critical to mitigating this risk.

Association of air pollution and heat exposure with preterm birth, low birth weight, and stillbirth in the US: A systematic review

Yellow fever virus outbreak in Brazil under current and future climate

INTRODUCTION: Yellow fever (YF) is primarily transmitted by Haemagogus species of mosquitoes. Under climate change, mosquitoes and the pathogens that they carry are expected to develop faster, potentially impacting the case count and duration of YF outbreaks. The aim of this study was to determine how YF virus outbreaks in Brazil may change under future climate, using ensemble simulations from regional climate models under RCP4.5 and RCP8.5 scenarios for three time periods: 2011-2040 (short-term), 2041-2070 (mid-term), and 2071-2100 (long-term). METHODS: A compartmental model was developed to fit the 2017/18 YF outbreak data in Brazil using least squares optimization. To explore the impact of climate change, temperature-sensitive mosquito parameters were set to change over projected time periods using polynomial equations fitted to their relationship with temperature according to the average temperature for years 2011-2040, 2041-2070, and 2071-2100 for climate change scenarios using RCP4.5 and RCP8.5, where RCP4.5/RCP8.5 corresponds to intermediate/high radiative forcing values and to moderate/higher warming trends. A sensitivity analysis was conducted to determine how the temperature-sensitive parameters impacted model results, and to determine how vaccination could play a role in reducing YF in Brazil. RESULTS: Yellow fever case projections for Brazil from the models varied when climate change scenarios were applied, including the peak clinical case incidence, cumulative clinical case incidence, time to peak incidence, and the outbreak duration. Overall, a decrease in YF cases and outbreak duration was observed. Comparing the observed incidence in 2017/18 to the projected incidence in 2070-2100, for RCP4.5, the cumulative case incidence decreased from 184 to 161, and the outbreak duration decreased from 21 to 20 weeks. For RCP8.5, the peak case incidence decreased from 184 to 147, and the outbreak duration decreased from 21 to 17 weeks. The observed decrease was primarily due to temperature increasing beyond that suitable for Haemagogus mosquito survival. CONCLUSIONS: Climate change is anticipated to have an impact on mosquito-borne diseases. We found outbreaks of YF may reduce in intensity as temperatures increase in Brazil; however, temperature is not the only factor involved with disease transmission. Other factors must be explored to determine the attributable impact of climate change on mosquito-borne diseases.

Variation in estimates of heat-related mortality reduction due to tree cover in U.S. cities

Heat-related mortality is one of the leading causes of weather-related deaths in the United States. With changing climates and an aging population, effective adaptive strategies to address public health and environmental justice issues associated with extreme heat will be increasingly important. One effective adaptive strategy for reducing heat-related mortality is increasing tree cover. Designing such a strategy requires decision-support tools that provide spatial and temporal information about impacts. We apply such a tool to estimate spatially and temporally explicit reductions in temperature and mortality associated with a 10% increase in tree cover in 10 U.S. cities with varying climatic, demographic, and land cover conditions. Two heat metrics were applied to represent tree impacts on moderately and extremely hot days (relative to historical conditions). Increasing tree cover by 10% reduced estimated heat-related mortality in cities significantly, with total impacts generally greatest in the most populated cities. Mortality reductions vary widely across cities, ranging from approximately 50 fewer deaths in Salt Lake City to about 3800 fewer deaths in New York City. This variation is due to differences in demographics, land cover, and local climatic conditions. In terms of per capita estimated impacts, hotter and drier cities experience higher percentage reductions in mortality due to increased tree cover across the season. Phoenix potentially benefits the most from increased tree cover, with an estimated 22% reduction in mortality from baseline levels. In cooler cities such as Minneapolis, trees can reduce mortality significantly on days that are extremely hot relative to historical conditions and therefore help mitigate impacts during heat wave conditions. Recent studies project highest increases in heat-related mortality in the cooler cities, so our findings have important implications for adaptation planning. Our estimated spatial and temporal distributions of mortality reductions for each city provide crucial information needed for promoting environmental justice and equity. More broadly, the methods and model can be applied by both urban planners and the public health community for designing targeted, effective policies to reduce heat-related mortality. Additionally, land use managers can use this information to optimize tree plantings. Public stakeholders can also use these impact estimates for advocacy.

A systematic review and meta-analysis assessing the impact of droughts, flooding, and climate variability on malnutrition

BACKGROUND: Both the World Health Organization and the Intergovernmental Panel on Climate Change project that malnutrition will be the greatest contributor to climate change-associated morbidity and mortality. Although there have been several studies that have examined the potential effects of climate change on human health broadly, the effects on malnutrition are still not well understood. We conducted a systematic review investigating the role of three climate change proxies (droughts, floods, and climate variability) on malnutrition in children and adults. METHODS AND FINDINGS: We identified 22 studies examining the effects of droughts, floods, and climate variability on at least one malnutrition metric. We found that 17 out of 22 studies reported a significant relationship between climate change proxies and at least one malnutrition metric. In meta-analysis, drought conditions were significantly associated with both wasting (Odds Ratio [OR] 1.46, 95% Confidence Interval [CI] 1.05-2.04) and underweight prevalence (OR 1.46, 95% CI 1.01-2.11). CONCLUSIONS: Given the long-term consequences of malnutrition on individuals and society, adoption of climate change adaptation strategies such as sustainable agriculture and water irrigation practices, as well as improving nutritional interventions aimed at children aged 1-2 years and older adults, should be prioritised on global policy agendas in the coming years.

Adaptations, life-history traits and ecological mechanisms of parasites to survive extremes and environmental unpredictability in the face of climate change

Climate change is increasing weather unpredictability, causing more intense, frequent and longer extreme events including droughts, precipitation, and both heat and cold waves. The performance of parasites, and host-parasite interactions, under these unpredictable conditions, are directly influenced by the ability of parasites to cope with extremes and their capacity to adapt to the new conditions. Here, we review some of the structural, behavioural, life history and ecological characteristics of parasitic nematodes that allow them to persist and adapt to extreme and changing environmental conditions. We focus primarily, but not exclusively, on parasitic nematodes in the Arctic, where temperature extremes are pronounced, climate change is happening most rapidly, and changes in host-parasite interactions are already documented. We discuss how life-history traits, phenotypic plasticity, local adaptation and evolutionary history can influence the short and long term response of parasites to new conditions. A detailed understanding of the complex ecological processes involved in the survival of parasites in extreme and changing conditions is a fundamental step to anticipate the impact of climate change in parasite dynamics.

Associations between high temperatures in pregnancy and risk of preterm birth, low birth weight, and stillbirths: Systematic review and meta-analysis

OBJECTIVE: To assess whether exposure to high temperatures in pregnancy is associated with increased risk for preterm birth, low birth weight, and stillbirth. DESIGN: Systematic review and random effects meta-analysis. DATA SOURCES: Medline and Web of Science searched up to September 2018, updated in August 2019. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Clinical studies on associations between high environmental temperatures, and preterm birth, birth weight, and stillbirths. RESULTS: 14?880 records and 175 full text articles were screened. 70 studies were included, set in 27 countries, seven of which were countries with low or middle income. In 40 of 47 studies, preterm births were more common at higher than lower temperatures. Exposures were classified as heatwaves, 1°C increments, and temperature threshold cutoff points. In random effects meta-analysis, odds of a preterm birth rose 1.05-fold (95% confidence interval 1.03 to 1.07) per 1°C increase in temperature and 1.16-fold (1.10 to 1.23) during heatwaves. Higher temperature was associated with reduced birth weight in 18 of 28 studies, with considerable statistical heterogeneity. Eight studies on stillbirths all showed associations between temperature and stillbirth, with stillbirths increasing 1.05-fold (1.01 to 1.08) per 1°C rise in temperature. Associations between temperature and outcomes were largest among women in lower socioeconomic groups and at age extremes. The multiple temperature metrics and lag analyses limited comparison between studies and settings. CONCLUSIONS: Although summary effect sizes are relatively small, heat exposures are common and the outcomes are important determinants of population health. Linkages between socioeconomic status and study outcomes suggest that risks might be largest in low and middle income countries. Temperature rises with global warming could have major implications for child health. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD 42019140136 and CRD 42018118113.

Weather-related subjective well-being in patients with coronary artery disease

One of the particularly vulnerable groups for adverse weather conditions is people with heart disease. Most of the studies analyzed the association between certain weather conditions and increased mortality, morbidity, hospital admissions, calls, or visits to the emergency department and used as statistical data. This study evaluated associations between daily weather conditions and daily weather-related well-being in patients with coronary artery disease (CAD). From June 2008 to October 2012, a total of 865 consecutive patients with CAD (mean age 60 years; 30% of women) were recruited from the cardiac rehabilitation program at the Hospital Palanga Clinic, Lithuania. To evaluate the well-being, all patients filled in Palanga self-assessment diary for weather sensitivity every day from 8 to 21 days (average 15 ± 3 days) about their well-being (psychological, cardiac, and physical symptoms) on the last day. The weather data was recorded in the database eight times every day with a 3-hour interval using the weather station “Vantage Pro2 Plus” which was located in the same Clinic. The daily averages of the eight time records for weather parameters were calculated and were linked to the same-day diary data. We found that the well-being of patients with CAD was associated with weather parameters; specifically, general well-being was better within the temperature range 9-15 °C and worse on both sides of this range. Worsened general well-being was also associated with higher relative humidity and lower atmospheric pressure. Weather parameters can explain from 3 to 8% of the variance of well-being in patients with CAD.

Understanding temperature related health risk in context of urban land use changes

A city’s climate is affected both by global warming and the local factors such as built form and the landscape. The temperature related impacts of climate change make urban areas more vulnerable particularly due to higher population concentration as well as heat island effect. Cities in India are already experiencing enhanced temperature and precipitation related impacts of climate change and extreme events, e.g., >2 degrees C warming in some places. This study describes a case of Ahmedabad a city of around 5 million people (Census, 2011) and currently almost 7.8 million, located in the hot and humid western part of India to understand the current temperature-related mortality impacts and the role of land use. Satellite images (MODIS from NASA), temperature data from India Meteorological Department (IMD) and daily all-cause mortality from Ahmedabad Municipal Corporation between 2001 and 2015 have been used to create a distributed lag non-linear model. Using land surface temperature for mortality risk assessment gives significantly different results as compared to using air temperature for mortality risk assessment. This indicates impacts of localized temperature variations on mortality risks. Thus, the microclimate in a city as represented by land surface temperatures is a better indicator for estimating relative risk of temperature related mortality as compared to air temperature. The study also infers that with increase in built-up spaces by 1% in the land use mix, the relative risk of heat related mortality increases by 0.59 points at 40 degrees C and by 0.78 points at 45 degrees C.

Understanding the effect of climate change in the distribution and intensity of malaria transmission over India using a dynamical malaria model

Efforts have been made to quantify the spatio-temporal malaria transmission intensity over India using the dynamical malaria model, namely, Vector-borne Disease Community Model of International Centre for Theoretical Physics Trieste (VECTRI). The likely effect of climate change in the variability of malaria transmission intensity over different parts of India is also investigated. The Historical data and future projection scenarios of the rainfall and temperature derived from the Coupled Model Intercomparison Project Phase 5 (CMIP5) model output are used for this purpose. The Entomological Inoculation Rate (EIR) and Vector are taken as quantifiers of malaria transmission intensity. It is shown that the maximum number of malaria cases over India occur during the Sept-Oct months, whereas the minimum during the Feb-Apr months. The malaria transmission intensity as well as length of transmission season over India is likely to increase in the future climate as a result of global warming.

Understanding the role of temporal variation of environmental variables in predicting Aedes aegypti oviposition activity in a temperate region of Argentina

Environmental variables related to vegetation and weather are some of the most influential factors that impacting Aedes (Stegomya) aegypti, a mosquito vector of dengue, chikungunya and Zika viruses. In this paper, we aim to develop temporal predictive models for Ae. aegypti oviposition activity utilizing vegetation and meteorological variables as predictors in Córdoba city (Argentina). Eggs were collected using ovitraps placed throughout the city from 2009 to 2012 that were replaced weekly. Temporal generalized linear mixed models were developed with negative binomial distributions of errors that model average number of eggs collected weekly as a function of vegetation and meteorological variables with time lags. The best model included a vegetation index, vapor pressure of water, precipitation and photoperiod. With each unit of increment in vegetation index per week the average number of eggs increased by 1.71 in the third week. Furthermore, each millimeter increase of accumulated rain during 4 weeks was associated with a decrease of 0.668 in the average number of eggs found in the following week. This negative effect of precipitation could occur during abundant rainfalls that fill containers completely, thereby depriving females of oviposition sites and leading them to search for other suitable breeding sites. Furthermore, the average number of eggs increased with the photoperiod at low values of mean vapor pressure; however the average number of eggs decreased at high values of mean vapor pressure, and the positive relationship between the response variable and mean vapor pressure was stronger at low values of photoperiod. Additionally, minimum temperature was associated positively with oviposition activity and that low minimum temperatures could be a limiting factor in Ae. aegypti oviposition activity. Our results emphasize the important role that climatic variables such as temperature, precipitation, and vapor pressure play in Ae. aegypti oviposition activity and how these variables along with vegetation indices can be used to inform predictive temporal models of Ae. aegypti population dynamics that can be used for informing mosquito population control and arbovirus mitigation strategies.

Urban-climate interactions during summer over eastern North America

The urban heat island is a representative urban climate characteristic, which can affect heat-stress conditions and extreme precipitation that are closely connected with human life. Better understanding of urban-climate interactions, therefore, is crucial to ultimately support better planning and adaptation in various application fields. This study assesses urban-climate interactions during summer for eastern North America using regional climate model simulations at 0.22° resolution. Two regional climate model experiments, with and without realistic representation of urban regions, are performed for the 1981–2010 period. Comparison of the two experiments shows higher mean temperatures and reduced mean precipitation in the simulation with realistic urban representation, which can be attributed primarily to reduced albedo and soil moisture for the urban regions in this simulation. Furthermore, the mean temperature and precipitation in the simulation with improved urban representation is also closer to that observed. Analysis of short-duration precipitation extremes for climatologically different sub-regions, however, suggests that, for higher temperatures, the magnitudes of precipitation extremes are generally higher in the simulation with realistic urban representation, particularly for coastal urban regions, and are collocated with higher values of convective available potential energy and cloud fraction. Enhanced sea and lake breezes associated with lower sea level pressure found around these regions, contribute additional water vapor and further enhance dynamic convective development, leading to higher precipitation intensities. Analysis of temperature extremes clearly demonstrates that urban regions experience aggravated heat-stress conditions due to relatively higher temperatures despite reduced relative humidity. Double the number of extreme heat spells lasting six or more days are noted for the coastal urban regions in the study domain. This study, in addition to demonstrating the differences in urban-climate interactions for climatologically different regions, also demonstrates the need for better representation of urban regions in climate models to generate realistic climate information.

Use of Google Trends to evaluate for environmental variations in search terms for benign paroxysmal positional vertigo

OBJECTIVES: Climate variables are implied in the pathogenesis of certain otologic diseases, including benign paroxysmal positional vertigo (BPPV). Using internet search data obtained through Google Trends (GT), we explored the relationship between climate patterns and symptom search frequencies for BPPV. We hypothesized that increased latitude, as a proxy for decreased sunlight exposure, would lead to increase in BPPV symptom searches. METHODS: GT searches for symptoms related to BPPV were obtained for five U.S. cities of different latitudes via the Google Trends online interface. Comparisons were made using SPSS via ANOVA analysis. Figures were made using Microsoft Excel. RESULTS: Searches for BPPV-related symptoms increased with increasing latitude. BPPV-related symptoms did show seasonal variations, but not in predictable manners. CONCLUSIONS: GT may be a viable research tool when comparing geographical differences in searches, but may be less sensitive in detecting time dependent changes. We offer suggestions as to how big data tools may be altered for research purposes. LEVEL OF EVIDENCE: NA.

Using ecological variables to predict Ross River virus disease incidence in South Australia

BACKGROUND: Ross River virus (RRV) disease is Australia’s most widespread vector-borne disease causing significant public health concern. The aim of this study was to identify the ecological covariates of RRV risk and to develop epidemic forecasting models in a disease hotspot region of South Australia. METHODS: Seasonal autoregressive integrated moving average models were used to predict the incidence of RRV disease in the Riverland region of South Australia, an area known to have a high incidence of the disease. The model was developed using data from January 2000 to December 2012 then validated using disease notification data on reported cases for the following year. RESULTS: Monthly numbers of the mosquito Culex annulirostris (?=0.033, p<0.001) and total rainfall (?=0.263, p=0.002) were significant predictors of RRV transmission in the study region. The forecasted RRV incidence in the predictive model was generally consistent with the actual number of cases in the study area. CONCLUSIONS: A predictive model has been shown to be useful in forecasting the occurrence of RRV disease, with increased vector populations and rainfall being important factors associated with transmission. This approach may be useful in a public health context by providing early warning of vector-borne diseases in other settings.

Warmer weather and the risk of urinary tract infections in women

PURPOSE: The incidence of urinary tract infections is seasonal, peaking in summer months. One possible mechanism for the observed seasonality of urinary tract infections is warmer weather. MATERIALS AND METHODS: We identified all urinary tract infection cases located in approximately 400 metropolitan statistical areas in the contiguous United States between 2001 and 2015 using the Truven Health MarketScan® databases. A total of 167,078,882 person-years were included in this data set and a total of 15,876,030 urinary tract infection events were identified by ICD-9 code 599.0. Weather data for each metropolitan statistical area and date were obtained from the National Centers for Environmental Information. We computed the mean temperature during the period 0 to 7 days prior to the urinary tract infection diagnosis. We used a quasi-Poisson generalized linear model. The primary outcome was the number of urinary tract infections each day in a metropolitan statistical area in each age group. Covariates considered included age group, day of week, year and the temperature during the previous 7 days. RESULTS: Warmer weather increases the risk of urinary tract infections among women treated in outpatient settings in a dose-response fashion. On days when the prior week’s average temperature was between 25 and 30C, the incidence of urinary tract infections was increased by 20% to 30% relative to when the prior week’s temperature was 5 to 7.5C. CONCLUSIONS: The incidence of urinary tract infections increases with the prior week’s temperature. Our results indicate that warmer weather is a risk factor for urinary tract infections. Furthermore, as temperatures rise, the morbidity attributable to urinary tract infections may increase.

The mortality burden of nervous system diseases attributed to ambient temperature: A multi-city study in China

BACKGROUNDS: Studies on the association between ambient temperature and human mortality have been widely reported, focusing on common diseases such as cardiopulmonary diseases. However, multi-city studies on the association between both high and low temperatures and mortality of nervous system diseases were scarce, especially on the evidence of vulnerable populations. METHODS: Weekly meteorological data, air pollution data and mortality data of nervous system were collected in 5 cities in China. A quasi-Poisson regression with distributed lag non-linear model (DLNM) was applied to quantify the association between extreme temperatures and mortality of nervous system diseases. Multivariate meta-analysis was applied to estimate the pooled effects at the overall levels. The attributable fractions (AFs) were calculated to assess the mortality burden attributable to both high and low temperatures. Stratified analyses were also performed by gender and age-groups through the above steps. RESULTS: A total of 12,132 deaths of nervous system diseases were collected in our study. The overall minimum mortality temperature was 23.9 °C (61.9th), the cumulative relative risks of extreme heat and cold for nervous system diseases were 1.33(95%CI: 1.10, 1.61) and 1.47(95%CI: 1.27, 1.71). The mortality burden attributed to non-optimal temperatures accounted for 29.54% (95%eCI: 13.45%, 40.52%), of which the mortality burden caused by low temperature and high temperature accounted for 25.89% (95%eCI: 13.03%, 34.36%) and 3.65% (95%eCI: 0.42%, 6.17%), respectively. The mortality burden attributable to ambient temperature was higher in both males and the elderly (>74 years old), with the AF of 31.85% (95%eCI: 20.68%, 39.88%) and 31.14% (95%eCI: -6.83%, 49.51%), respectively. CONCLUSIONS: The non-optimal temperature can increase the mortality of nervous system diseases and the males and the elderly over 74 years have the highest attributable burden. The findings add the evidence of vulnerable populations of nervous system diseases against ambient temperatures.

The mortality effect of apparent temperature: A multi-city study in Asia

(1) Background: The health effect of temperature has become a rising public health topic. The objective of this study is to assess the association between apparent temperature and non-accidental deaths, and the mortality burden attributed to cold and heat temperature; (2) Methods: The daily data on temperature and deaths were collected from 10 cities in Thailand, Korea and China. We fitted a time-series regression with a distributed lag nonlinear model (DLNM) to derive the health risk of temperature for each city and then pooled them to get the overall cumulative risk by multivariate meta-analysis. Additionally, we calculated the attributable fraction of deaths for heat and cold, which was defined as temperatures above and below minimum-mortality temperature (MMT); (3) Results: There are regional heterogeneities in the minimum mortality percentiles (MMP) and attributable fractions for different countries. The MMP varied from about the 5-10th percentile in Thailand to 63-93rd percentile in China and Korea. The attributable fractions of the total deaths due to short-term exposure to temperature in Asia is 7.62%, of which the cold effect (6.44%) is much higher than the heat effect (1.18%); (4) Conclusions: Our study suggested that apparent temperature was associated with an increase in non-accidental mortality. Most of the temperature-related mortality burden was attributable to cold, except for Thailand.

The role of extreme temperature in cause-specific acute cardiovascular mortality in Switzerland: A case-crossover study

Since the 2003 heatwave in Europe, evidence has been rapidly increasing on the association between extreme temperature and all-cause mortality. Little is known, however, about cause-specific cardiovascular mortality, effect modification by air pollution and aircraft noise, and which population groups are the most vulnerable to extreme temperature. We conducted a time-stratified case-crossover study in Zurich, Switzerland, including all adult cardiovascular deaths between 2000 and 2015 with precise individual exposure estimates at home location. We estimated the risk of 24,884 cardiovascular deaths associated with heat and cold using distributed non-linear lag models. We investigated potential effect modification of temperature-related mortality by fine particles, nitrogen dioxide, and night-time aircraft noise and performed stratified analyses across individual and social characteristics. We found increased risk of mortality for heat (odds ratio OR = 1.28 [95% confidence interval: 1.11-1.49] for 99th percentile of daily Tmean (24 °C) versus optimum temperature at 20 °C) and cold (OR = 1.15 [0.95-1.39], 5th percentile of daily Tmean (-3 °C) versus optimum temperature at 20 °C). Heat-related mortality was particularly strong for myocardial infarctions and hypertension related deaths, and among older women (>75 years). Analysis of effect modification also indicated that older women with lower socio-economic position and education are at higher risk for heat-related mortality. PM(2.5) increased the risk of heat-related mortality for heart failure, but not all-cause cardiovascular mortality. This study provides useful information for preventing cause-specific cardiovascular temperature-related mortality in moderate climate zones comparable to Switzerland.

The short-term effects of temperature on infectious diarrhea among children under 5 years old in Jiangsu, China: A time-series study (2015-2019)

The association between meteorological factors and infectious diarrhea has been widely studied in many countries. However, investigation among children under 5 years old in Jiangsu, China remains quite limited. Data including infectious diarrhea cases among children under five years old and daily meteorological indexes in Jiangsu, China from 2015 to 2019 were collected. The lag-effects up to 21 days of daily maximum temperature (Tmax) on infectious diarrhea were explored using a quasi-Poisson regression with a distributed lag non-linear model (DLNM) approach. The cases number of infectious diarrhea was significantly associated with seasonal variation of meteorological factors, and the burden of disease mainly occurred among children aged 0-2 years old. Moreover, when the reference value was set at 16.7°C, Tmax had a significant lag-effect on cases of infectious diarrhea among children under 5 years old in Jiangsu Province, which was increased remarkably in cold weather with the highest risk at 8°C. The results of DLNM analysis implicated that the lag-effect of Tmax varied among the 13 cities in Jiangsu and had significant differences in 8 cities. The highest risk of Tmax was presented at 5 lag days in Huaian with a maximum RR of 1.18 (95% CI: 1.09, 1.29). Suzhou which had the highest number of diarrhea cases (15830 cases), had a maximum RR of 1.04 (95% CI:1.03, 1.05) on lag 15 days. Tmax is a considerable indicator to predict the epidemic of infectious diarrhea among 13 cities in Jiangsu, which reminds us that in cold seasons, more preventive strategies and measures should be done to prevent infectious diarrhea.

Thermoregulation during pregnancy: A controlled trial investigating the risk of maternal hyperthermia during exercise in the heat

OBJECTIVES: Despite the well-established benefits of exercise, pregnant women are discouraged from physical activity in hot/humid conditions to avoid hyperthermia (core temperature (T(core))???39.0 °C). Recent epidemiological evidence also demonstrates greater risk of negative birth outcomes following heat exposure during pregnancy, possibly due to thermoregulatory impairments. We aimed to determine (1) the risk of pregnant women exceeding a T(core) of 39.0 °C during moderate-intensity exercise in the heat; and (2) if any thermoregulatory impairments are evident in pregnant (P) versus non-pregnant (NP) women. METHODS: Thirty participants (15 pregnant in their second trimester or third trimester) completed two separate exercise-heat exposures in a climate chamber (32 °C, 45%RH). On separate occasions, each participant cycled on a semi-recumbent cycle ergometer for 45 min at a workload representative of a moderate-intensity (1) non-weight-bearing (NON-WB), or (2) weight-bearing (WB) activity. Thermoregulatory responses were monitored throughout. RESULTS: The highest rectal temperature observed in a pregnant individual was 37.93 °C. Mean end-exercise rectal temperature did not differ between groups (P:37.53?±?0.22 °C, NP:37.52?±?0.34 °C, P?=?0.954) in the WB trial, but was lower in the P group (P:37.48?±?0.25 °C, vs NP:37.73?±?0.38 °C, P?=?0.041) in the NON-WB trial. Whole-body sweat loss was unaltered by pregnancy during WB (P:266?±?62 g, NP:264?±?77 g; P?=?0.953) and NON-WB P:265?±?51 g, NP:300?±?75 g; P?=?0.145) exercise. Pregnant participants reported higher ratings of thermal sensation (felt hotter) than their non-pregnant counterparts in the WB trial (P?=?0.002) but not in the NON-WB trial, (P?=?0.079). CONCLUSION: Pregnant women can perform 45 min of moderate-intensity exercise at 32 °C, 45%RH with very low apparent risk of excessive maternal hyperthermia. No thermoregulatory impairments with pregnancy were observed.

Time-series analysis of daily ambient temperature and emergency department visits in five US cities with a comparison of exposure metrics derived from 1-km meteorology products

BACKGROUND: Ambient temperature observations from single monitoring stations (usually located at the major international airport serving a city) are routinely used to estimate heat exposures in epidemiologic studies. This method of exposure assessment does not account for potential spatial variability in ambient temperature. In environmental health research, there is increasing interest in utilizing spatially-resolved exposure estimates to minimize exposure measurement error. METHODS: We conducted time-series analyses to investigate short-term associations between daily temperature metrics and emergency department (ED) visits for well-established heat-related morbidities in five US cities that represent different climatic regions: Atlanta, Los Angeles, Phoenix, Salt Lake City, and San Francisco. In addition to airport monitoring stations, we derived several exposure estimates for each city using a national meteorology data product (Daymet) available at 1?km spatial resolution. RESULTS: Across cities, we found positive associations between same-day temperature (maximum or minimum) and ED visits for heat-sensitive outcomes, including acute renal injury and fluid and electrolyte imbalance. We also found that exposure assessment methods accounting for spatial variability in temperature and at-risk population size often resulted in stronger relative risk estimates compared to the use of observations at airports. This pattern was most apparent when examining daily minimum temperature and in cities where the major airport is located further away from the urban center. CONCLUSION: Epidemiologic studies based on single monitoring stations may underestimate the effect of temperature on morbidity when the station is less representative of the exposure of the at-risk population.

Understanding heat vulnerability in the subtropics: Insights from expert judgements

Risk to health from extreme heat is gaining attention in scholarship and policy. Demographic and socio-economic factors affect the extent to which a person is at risk from extreme heat, whilst empirical research of social vulnerability to heat outside a ‘Western’ context is relatively limited. Many countries still rely on expert judgements to draw locally specific context for heat vulnerability assessment. Yet, their view might not be evidence-informed and the result is influenced by who are involved. This paper reflects this point by eliciting expert views of social heat vulnerability in Taiwan through an expert questionnaire survey using the Analytic Hierarchy Process method, and the result was compared to existing empirical research. Our study finds that experts consider factors related to adaptive capacity, especially societal support, as the most important; but rate gender and ethnicity as the least important. Although experts point to the importance of adaptive capacity, there are relatively few empirical studies to date in societal support, and the low priority given to gender and ethnicity also contradicts prior empirical research. For heat risk assessment, our findings show that whilst systematic elicitation of expert judgement may help to fill gaps in empirical evidence specific to the local context, caution should be paid to the significant divergence with existing empirical data and expert opinions depending on who are selected to involve.

Understanding occupational heat exposure in the United States and proposing a quantifying stress index

PURPOSE: Millions of workers exposed to the outdoor environment are extremely susceptible to extreme heat. Although several articles analyzed heat-related illnesses, injuries, fatalities at the country level, few investigated regional and state statistics especially for OSHA Region 4 and the state of Alabama, U.S, which we explored in this study. METHODS: We studied the number of heat-days over 90 °F (32.2 °C) heat-index within our study area, analyzed heat-related injury and illnesses to calculate their incidence rate during 2015 to 2019, observed the nature of such incidents, their monthly occurrence, and incidence trend over average air temperature. We conducted a comparative analysis of heat-related fatalities between construction and all industries. The existing heat regulations by OSHA and some state agencies have also been summarized. RESULTS: We observed the highest mean, maximum heat-days and injury-illness rate in the south and southeast part of Region 4; increase in incidence rate from 0.03 in 2017 to 0.28 per 10,000 employees in 2018 for the contiguous U.S; highest injury-illness rate (HIR) in OSHA Region 1, 4 and 6; highest HIR in Lee, Montgomery, Mobile and Madison counties of Alabama; 34.7% (construction) and 31.3% (all industries) of all cases experiencing nonclassifiable heat-light effects; high fatalities in construction industry with a trend of 1 death/5 years; increased mortality in all occupations with 1 death/2.4 years. We also proposed a Heat-Stress Index (HSI) as a routine heat-stress measure on jobsite. CONCLUSION: The findings from this research and the proposed index can help in understanding heat-related risk at a regional level and implementing workplace interventions.

The effect of meteorological variables on salmonellosis incidence in Kermanshah, West of Iran: A generalized linear model with negative binomial approach

PURPOSE: Salmonella is one of the main causes of gastroenteritis, and its incidence may be affected by meteorological variables. This is the first study about the effect of climatic factors on salmonella incidence in Kermanshah, Iran. METHODS: Data about salmonellosis cases in Kermanshah were inquired from Center for Communicable Disease Control, at the Ministry of Health and Medical Education of Iran, for the 2008 to 2018 time-frame. Meteorological variables including maximum, minimum and mean of temperature and humidity, sunshine hours and rainfall were inquired for the same time frame. Negative binomial generalized linear models (GLM) were used to assess the effect of meteorological variables on the weekly incidence of salmonellosis. RESULTS: During the years under study, 569 confirmed cases were registered in Kermanshah province. Study results showed a 3?% increase in salmonellosis incidence, after 1?% increase in minimum humidity in the week before (incidence rate ratio (IRR): 1.03; 95?% confidence interval (CI):1.02-1.05) and also a 4?% increase in incidence for 1 °C increase in mean temperature in the same week (IRR: 1.04; 95?% CI:1.02-1.06). CONCLUSIONS: Increase in minimum humidity and mean temperature may have a role in increasing the incidence of salmonellosis in Iran.

The effect of meteorological variables on spontaneous pneumothorax in two regions with different altitudes

Spontaneous pneumothorax (SP) is defined as the presence of free air inside the pleural space. Many studies have reported that meteorological variables may trigger SP, but the mechanism is unknown. The aim of this study was to compare the effects of meteorological variables on the development of SP in two regions with different altitudes. The study was conducted in the Çanakkale (2 m above sea level) and the Erzurum region (1758 m). A total of 494 patients with SP who presented to the hospitals of the two regions between January 2011 and December 2016 were included in the study. The meteorological variables used included ambient temperature, atmospheric pressure, relative humidity, precipitation amount, wind speed, and wind direction (as north and south). The total 2192 days were divided into two as days with and without an SP case presentation. A 4-day period prior to the day a case presented was compared with the other days without any cases to investigate the presence of any lagged effect. Statistical significance was accepted at p?<?0.05. Comparison of these two regions showed a significant difference between them. The meteorological variables of the regions that affect SP development were found to be low mean minimum temperature, high daily temperature change, low precipitation, low wind speed and north winds for Erzurum, and only rainy days for Çanakkale. The results have demonstrated that cold weather, sudden temperature changes, north winds, and low wind speed are risk factors for the development of SP at high altitudes.

The effect of various urban design parameter in alleviating urban heat island and improving thermal health – A case study in a built pedestrianized block of China

Increasing urban heat island and global warming have aroused serious thermal environmental problems and even harm people’s thermal health. Because of the importance in people’s daily life, a commercial pedestrianized block represents a symbol of a city or metropolis; therefore, focusing the attention on the thermal environment in such regions is very necessary. Most of the researches on the urban thermal environment are calculated by remote sensing data; limited by the low spatial resolution of remote sensing image, it may not obviously reflect the true thermal environment of the research site, especially in some microscale regions. Based on this, the new software ENVI-met is developed to research the thermal environment and forecast people’s thermal sensation in a microscale region. Therefore, the objective of this study aims at conducting field measurement and numerical simulation to assess the thermal environment of a typical commercial pedestrianized space in southern China and assess the different urban design parameters in ameliorating the urban heat island effect. Our final results demonstrate a quantitative evidence for establishing a comprehensive standard for improving the thermal environment in a microscale region, and this study also can be a supplementary in the research field about improving thermal health.

The effect of weather, air pollution and seasonality on the number of patient visits for epileptic seizures: A population-based time-series study

OBJECTIVE: The objective of the study was to explore the influences of seasonality, meteorological conditions, and air pollution exposure on the number of patients who visit the hospital due to seizures. METHODS: Outpatient and inpatient data from the National Health Insurance Database of Taiwan from 2009 to 2013, meteorological data from the Meteorological Bureau, and air pollution exposure data from the Taiwan Air Quality Monitoring Stations were collected and integrated into daily time series data. The following data processing and analysis results are based on the mean of the 7?days’ lag data of the 18 meteorological condition/air pollution exploratory factors to identify the critical meteorological conditions and air pollution exposure factors by executing univariate analysis. The average hospital visits for seizure per day by month were used as an index of observation. The effect of seasonality has also been examined. RESULTS: The average visits per day by month had a significant association with 10 variables. Overall, the number of visits due to these factors has been estimated to be 71.529 (13.7%). The most obvious factors affecting the estimated number of visits include ambient temperature, CH(4), and NO. Six air pollutants, namely CH(4), NO, CO, NO(2), PM2.5, and NMHC had a significantly positive correlation with hospital visits due to seizures. Moreover, the average daily number of hospital visits was significantly high in January and February (winter season in Taiwan) than in other months (R(2)?=?0.422). CONCLUSION: The prediction model obtained in this study indicates the necessity of rigorous monitoring and early warning of these air pollutants and climate changes by governments. Additionally, the study provided a firm basis for establishing prediction models to be used by other countries or for other diseases.

The effects of desert dust storms, air pollution, and temperature on morbidity due to spontaneous abortions and toxemia of pregnancy: 5-year analysis

Epidemiological studies have suggested an association between particulate air pollution, increased temperatures, and morbidity related to pregnancy outcomes. However, the roles of desert dust storms and climatological factors have not been fully addressed. The objectives of the present study were to investigate the association between desert dust storms, particulate matter with a diameter ?10 ?m (PM(10)), daily temperatures, and toxemia of pregnancy and spontaneous abortion in Gaziantep, South East Turkey. The study was conducted retrospectively at emergency department of two hospitals in Gaziantep city. Data from January 1, 2009, to March 31, 2014, were collected. Patients, who were diagnosed with toxemia of pregnancy and spontaneous abortion by radiological imaging modalities, were included in the study. Daily temperature ranges, mean temperature values, humidity, pressure, wind speed, daily PM10 levels, and records of dust storms were collected. A generalized additive regression model was designed to assess variable effects on toxemia of pregnancy and spontaneous abortion, while adjusting for possible confounding factors. Our findings demonstrated that presence of dust storms was positively associated with the toxemia of pregnancy both in outpatient admissions (OR=1.543 95% CI=1.186-2.009) and inpatient hospitalizations (OR=1.534; 95% CI=1.162-2.027). However, neither PM(10) nor maximum temperature showed a marked association with spontaneous abortion or toxemia of pregnancy in our study population. Our findings suggest that desert dust storms may have an impact on the risk for adverse pregnancy outcomes such as toxemia of pregnancy. Health authorities should take necessary measures to protect pregnant women against detrimental effects of these storms.

The effects of extreme temperatures on emergency room visits – A population-based analysis by age, sex, and comorbidity

This study evaluated the effect of extreme temperatures on events requiring emergency room visits (ERVs) for hypertensive disease, ischemic heart disease (IHD), cerebrovascular disease, and chronic kidney disease (CKD) for population stratified by sex and age living in Taiwan’s metropolitan city from 2000 to 2014. The distributed lag non-linear model was adopted to examine the association between ambient temperature and area-age-sex-disease-specific ERVs for a population aged 40 years and above. The reference temperature was defined by a percentile value to describe the temperature in each city. Area-age-sex-disease-specific relative risk (RR) and 95% confidence intervals (CI) were estimated in association with extreme high (99th percentile) and low (5th percentile) temperatures. Temperature-related ERV risks varied by area, age, sex, and disease. Patients with CKD tend to have comorbidities with hypertensive disease. All study populations with hypertensive disease have significant risk associations with extreme low temperatures with the highest RR of 2.64 (95% CI: 2.08, 3.36) appearing in New Taipei City. The risk of IHD was significantly associated with extreme high temperature for male subpopulation aged 40-64 years. A less significant association was observed between the risks of cerebrovascular disease with extreme temperature. The risk of CKD was most significantly associated with extreme high temperature especially for a subpopulation aged 40-64 years. All study subpopulations with hypertensive disease have significant risk associations with extreme low temperature. Male subpopulations were more vulnerable to extreme temperatures, especially for those aged 40-64 years.

The effects of extreme temperatures on emergency room visits-a population-based analysis by age, sex, and comorbidity

This study evaluated the effect of extreme temperatures on events requiring emergency room visits (ERVs) for hypertensive disease, ischemic heart disease (IHD), cerebrovascular disease, and chronic kidney disease (CKD) for population stratified by sex and age living in Taiwan’s metropolitan city from 2000 to 2014. The distributed lag non-linear model was adopted to examine the association between ambient temperature and area-age-sex-disease-specific ERVs for a population aged 40 years and above. The reference temperature was defined by a percentile value to describe the temperature in each city. Area-age-sex-disease-specific relative risk (RR) and 95% confidence intervals (CI) were estimated in association with extreme high (99th percentile) and low (5th percentile) temperatures. Temperature-related ERV risks varied by area, age, sex, and disease. Patients with CKD tend to have comorbidities with hypertensive disease. All study populations with hypertensive disease have significant risk associations with extreme low temperatures with the highest RR of 2.64 (95% CI: 2.08, 3.36) appearing in New Taipei City. The risk of IHD was significantly associated with extreme high temperature for male subpopulation aged 40-64 years. A less significant association was observed between the risks of cerebrovascular disease with extreme temperature. The risk of CKD was most significantly associated with extreme high temperature especially for a subpopulation aged 40-64 years. All study subpopulations with hypertensive disease have significant risk associations with extreme low temperature. Male subpopulations were more vulnerable to extreme temperatures, especially for those aged 40-64 years.

The effects of heat exposure during intermittent exercise on physical and cognitive performance among team sport athletes

This study investigated the effects of heat exposure on physical and cognitive performance during an intermittent exercise protocol so as to reflect the incremental fatigue experienced during team sports. Twelve well-trained male team sport players completed an 80-minute cycling intermittent sprint protocol (CISP), alongside computerized vigilance and congruent (i.e., simple) and incongruent (i.e., complex) Stroop tasks of cognitive functioning, in two counterbalanced temperature conditions; hot (32°C[50%rh]) and control (18°C[50%rh]). Incongruent Stroop accuracy declined over time (p?=?.002), specifically in the second (M(diff)?=?-3.75, SD?=?0.90%, p?=?.009) and third (M(diff)?=?-4.58, SD?=?1.22%, p?=?.019) quarters compared to the first quarter of the CISP; but there were no differences between temperature conditions. Congruent Stroop reaction time (RT) was quicker in the second quarter of exercise in the hot condition (M?=?561.99, SD?=?112.93?ms) compared to the control condition (M=617.80, SD?=?139.71?ms; p?=?.022), but no differences were found for congruent Stroop accuracy nor vigilance measures. Additionally, peak power output was lower during the third quarter of the CISP in the hot condition (M?=?861.31, SD?=?105.20?W) compared to the control condition (M?=?900.68, SD?=?114.84?W; p?<?.001). Plasma normetanephrine and metanephrine concentrations increased from pre- to post-CISP (M(diff)?=?+616.90, SD?=?306.99, p?<?.001; and M(diff)?= +151.23, SD?=?130.32, p?=?.002, respectively), with a marginal interaction suggesting a higher normetanephrine increase from pre- to post-CISP in the hot versus the control condition (p?=?.070). Our findings suggest that accuracy for more complex decisions suffered during prolonged high-intensity intermittent exercise, perhaps due to exercise-induced catecholamine increases. Athletes may have also reduced physical effort under increased heat exposure, indicating how cognitive performance may be sustained in physically demanding environments.

The half-degree matters for heat-related health impacts under the 1.5 degrees C and 2 degrees C warming scenarios: Evidence from ambulance data in Shenzhen, China

The Paris Agreement has prompted much interest in the societal and health impacts of limiting global warming to 1.5 degrees C and 2 degrees C. Previous assessments of differential impacts of two targets indicate that 1.5 degrees C warming target would substantially reduce the impact on human health compared to 2 degrees C, but they mainly focused on the magnitude of temperature changes under future climate change scenarios without any consideration of greater frequency of cumulative heat exposures within a day. Here we quantified the health risks of compound daytime and night-time hot extremes using morbidity data in a megacity of China, and also identified the time-period of heat exposure with higher risks. Then we projected future morbidity burden attributable to compound hot extremes due to the half-degree warming. We estimated that the 2 degrees C warming scenario by 2100 as opposed to 1.5 degrees C would increase annual heat-related ambulance dispatches by 31% in Shenzhen city. Substantial additional impacts were associated with occurrence of consecutive hot days and nights, with ambulance dispatches increased by 82%. Our results suggested that compound hot extremes should be considered in assessment of heat-related health impacts, particularly in the context of climate change. Minimizing the warming of climate in a more ambitious target can significantly reduce the health damage.

The impact of climate change on urban thermal environment dynamics

The human population is increasing. The ongoing urbanization process, in conjunction with climate change, is causing larger environmental footprints. Consequently, quality of life in urban systems worldwide is under immense pressure. Here, the seasonal characteristics of Maribor’s urban thermal environment were studied from the perspectives of surface urban heat island (SUHI) and urban heat island (UHI) A remote sensing thermal imagery time series and in-situ measurements (stationary and mobile) were combined with select geospatial predictor variables to model this atmospheric phenomenon in its most intensive season (summer). Finally, CMIP6 climate change scenarios and models were considered, to predict future UHI intensity. Results indicate that Maribor’s UHI intensity maximum shifted from winter to spring and summer. The implemented generalized additive model (GAM) underestimates UHI intensity in some built-up parts of the study area and overestimates UHI intensity in green vegetated areas. However, by the end of the century, UHI magnitude could increase by more than 60% in the southern industrial part of the city. Such studies are of particular concern, in regards to the increasing frequency of heat waves due to climate change, which further increases the (already present) heat stress in cities across the globe.

The impact of cold spells on mortality from a wide spectrum of diseases in Guangzhou, China

Cold spells have been associated with mortality from a few broad categories of diseases or specific diseases. However, there is a lack of data about the health effects of cold spells on mortality from a wide spectrum of plausible diseases which can reveal a more comprehensive contour of the mortality burden of cold spells. We collected daily mortality data in Guangzhou during 2010-2018 from the Guangzhou Center for Disease Control and Prevention. The quasi-Poisson generalized linear regression model mixed with the distributed lag non-linear model (DLNM) was conducted to examine the health impacts of cold spells for 11 broad causes of death groupings and from 35 subcategories in Guangzhou. Then, we examined the effect modification by age group (0-64 and 65+ years) and sex. Effects of cold spells on mortality generally delayed for 3-5 d and persisted up to 27 d. Cold spells were significantly responsible for increased mortality risk for most categories of deaths, with cumulative relative risk (RR) over 0-27 lagged days of 1.57 [95% confidence interval (CI): 1.48-1.67], 1.95 (1.49-2.55), 1.58 (1.39-1.79), 1.54 (1.26-1.88), 1.92 (1.15-3.22), 1.75, (1.14-2.68), 2.02 (0.78-5.22), 1.92 (1.49-2.48), 1.48 (1.18-1.85), and 1.18 (1.06-1.30) for non-accidental causes, cardiovascular diseases, respiratory diseases, digestive diseases, nervous system diseases, genitourinary diseases, mental diseases, endocrine diseases, external cause and neoplasms, respectively. The magnitudes of the effects of cold spells on mortality varied remarkably among the 35 subcategories, with the largest cumulative RR of 2.87 (1.72-4.79) estimated for pulmonary heart diseases. The elderly and females were at a higher risk of mortality for most diseases after being exposed to cold spells. Increased mortality from a wide range of diseases was significantly linked with cold spells. Our findings may have important implications for formulating effective preventive strategies and early warning response plans that mitigate the health burden of cold spells.

The impact of extreme temperatures on human mortality in the most populated cities of Romania

The impact of extreme weather conditions on humans is one of the most important topics in biometeorology studies. The main objective of this study is to analyze the relationship between temperature-related weather conditions and natural mortality in the five most populated cities of Romania, namely, Bucharest, Cluj-Napoca, Constan?a, Ia?i, and Timi?oara. The results of this study aim to bridge a gap in national research. In the present paper, we used daily natural mortality data and daily minimum and maximum air temperatures. The distributed lag nonlinear model (DLNM) allowed us to identify weather conditions associated with natural mortality. The most important results are as follows: (i) a higher daily mortality is related to a high frequency of heat stress conditions; (ii) a higher maximum temperature increases the relative risk (RR) of natural mortality; (iii) the maximum number of fatalities is recorded on the first day of high-temperature events; and (iv) individuals much more easily adapt to cold stress conditions. The main conclusion in this study is that the inhabitants of the most populated cities in Romania are more sensitive to high-temperature stress than to low-temperature stress.

The impacts of ambient temperature and ultraviolet radiation on the incidence of herpes zoster: An ecological study in Taiwan

The aim of the study was to examine the relationship between ambient temperature, ultraviolet radiation, and the development of herpes zoster in Taiwan. An ecological study was conducted to analyse the database of the Taiwan National Health Insurance Programme. Participants aged ?20 years with newly diagnosed herpes zoster between 2003 and 2012 were selected for analysis. The monthly incidence rate of herpes zoster was measured between 2003 and 2012. Monthly average ambient temperature in Celsius (°C) between 2003 and 2012 was measured according to the official database of the Central Weather Bureau in Taiwan. Monthly accumulated ultraviolet radiation (MJ m(-2) ) between 2003 and 2012 was measured according to the official database of the Environmental Protection Administration in Taiwan. The overall incidence rates of herpes zoster ranged from 2.54 to 5.67 per 10 000 persons per month from 2003 to 2012.The monthly average ambient temperature was higher and the monthly accumulated ultraviolet radiation was stronger from May to October. The incidence rates of herpes zoster seemed to be high during the period of high ambient temperature and strong ultraviolet radiation (from May to October).Whenever ambient temperature increased 1°C per month, the incidence rate of herpes zoster increased by 0.072 per 10,000 persons per month. Whenever ultraviolet radiation increased 1 MJ m(-2) per month, the incidence rate of herpes zoster increased by 0.313 per 10 000 persons per month. There is a significant association between ambient temperature, ultraviolet radiation, and the development of herpes zoster in Taiwan. The incidence rate of herpes zoster is high during the period of high ambient temperature and strong ultraviolet radiation. Low ambient temperature and weak ultraviolet radiation might be beneficial for the prevention of herpes zoster.

The impacts of existing and hypothetical green infrastructure scenarios on urban heat island formation

Urban Heat Island (UHI) is posing a significant challenge due to growing urbanisations across the world. Green infrastructure (GI) is popularly used for mitigating the impact of UHI, but knowledge on their optimal use is yet evolving. The UHI effect for large cities have received substantial attention previously. However, the corresponding effect is mostly unknown for towns, where appreciable parts of the population live, in Europe and elsewhere. Therefore, we analysed the possible impact of three vegetation types on UHI under numerous scenarios: baseline/current GI cover (BGI); hypothetical scenario without GI cover (HGI-No); three alternative hypothetical scenarios considering maximum green roofs (HGR-Max), grasslands (HG-Max) and trees (HT-Max) using a dispersion model ADMS-Temperature and Humidity model (ADMS-TH), taking a UK town (Guildford) as a case study area. Differences in an ambient temperature between three different landforms (central urban area, an urban park, and suburban residential area) were also explored. Under all scenarios, the night-time (0200 h; local time) showed a higher temperature increase, up to 1.315 °C due to the lowest atmospheric temperature. The highest average temperature perturbation (change in ambient temperature) was 0.563 °C under HGI-No scenario, followed by HG-Max (0.400 °C), BGI (0.343 °C), HGR-Max (0.326 °C) and HT-Max (0.277 °C). Furthermore, the central urban area experienced a 0.371 °C and 0.401 °C higher ambient temperature compared with its nearby suburban residential area and urban park, respectively. The results allow to conclude that temperature perturbations in urban environments are highly dependent on the type of GI, anthropogenic heat sources (buildings and vehicles) and the percentage of land covered by GI. Among all other forms of GI, trees were the best-suited GI which can play a viable role in reducing the UHI. Green roofs can act as an additional mitigation measure for the reduction of UHI at city scale if large areas are covered.

The assessment of current mortality burden and future mortality risk attributable to compound hot extremes in China

The effect of climate change on depression in urban areas of western Iran

Temporal and spatial analysis of thermal stress and its trend in Iran

The study was conducted to determine thermal stress and its trend in Iran. The atmospheric variables of 304 synoptic stations, including mean temperature, relative humidity, wind speed and cloudiness, for the period 1961-2010, were used to identify the thermal stress conditions in Iran. These data were prepared on a daily basis from the Iran Meteorological Organization. Physiologically equivalent temperature (PET) and standard effective temperature (SET*) were used to identify thermal stress. Also, thermal stress was studied with a simple linear regression method and at a 95% confidence level. The results of the study revealed that in Iran each location can experience different types of environmental conditions throughout the year. At a specified time, thermal stresses of different intensities can be seen. The other results showed that the mountainous regions, especially the highlands of the northwest, along with the Zagros and Alborz mountains, had the highest co-efficient of variability (> 50%). Also, the southern regions of Iran have both monthly and annual scales with the least co-efficient of variability (< 20%) in bioclimatic conditions. In general, a diversity of bioclimatic conditions is evident in Iran both temporally and spatially. The other part of the study determined that heat and cold stress and heat comfort had a positive trend (fewer than 60 stations) in parts of Iran, a negative trend in some other parts (more than 50 stations), and no specific trend in the remaining parts (more than 250 stations). Most of the northern stations, especially on the Caspian coast, have been shown to have a positive trend in the event of cold stress. Indeed, extreme bioclimatic conditions (very cold and hot conditions) have been rising in both the southern and northern latitudes of the country. Even in southern parts, a positive trend of cold and very cold conditions can be observed at some stations.

Temporal trends of the association between ambient temperature and cardiovascular mortality: A 17-year case-crossover study

Aim. To examine the temporal variations of the association between ambient temperature and mortality for cardiovascular diseases in Queensland, Australia between 1997 and 2013. Methods. We obtained 147 238 cardiovascular deaths data from Queensland Health between 1 January 1997 and 31 December 2013. Time-stratified case-crossover design was fitted via the conditional quasi-Poisson regression with time-varying distributed lag non-linear model to estimate the associations between temperature and cardiovascular mortality. Stratified analyses were performed by age, sex, climate zone, and socioeconomic status. Results. We found a substantial decrease in the cold effect, while there was no significant change in the heat effect. Results of subgroup analyses showed an increasing trend for heat effects in men, people 84 years old, those living in low and middle socioeconomic areas and those living in hot climate areas. There was a decreasing trend for the magnitude of associations between temperature (both cold and hot temperatures) and cardiovascular mortality in people 85 years old and in areas of high socioeconomic status. Conclusions. The associations between cold temperature and cardiovascular mortality decreased in Queensland, Australia between 1997 and 2013, but no declines were observed for hot temperatures. Men, people 84 years old, people living in low and middle socioeconomic score areas and people living in hot climate areas demonstrated increased susceptibility to hot temperatures. Our findings suggest a need for heat awareness health promotion campaigns to enhance adaptation to a warming climate among vulnerable population.

Temporal trends of the association between temperature variation and hospitalizations for schizophrenia in Hefei, China from 2005 to 2019: A time-varying distribution lag nonlinear model

Along with climate change, unstable weather patterns are becoming more frequent. However, the temporal trend associated with the effect of temperature variation on schizophrenia (SCZ) is not clear. Daily time-series data on SCZ and meteorological factors for 15-year between January 1, 2005 and December 31, 2019 were collected. And we used the Poisson regression model combined with the time-varying distribution lag nonlinear model (DLNM) to explore the temporal trend of the association between three temperature variation indicators (diurnal temperature range, DTR; temperature variability, TV; temperature change between neighboring days, TCN) and SCZ hospitalizations, respectively. Meanwhile, we also explore the temporal trend of the interaction between temperature and temperature variation. Stratified analyses were performed in different gender, age, and season. Across the whole population, we found a decreasing trend in the risk of SCZ hospitalizations associated with high DTR (from 1.721 to 1.029), TCN (from 1.642 to 1.066), and TV (TV0-1, from 1.034 to 0.994; TV0-2, from 1.041 to 0.994, TV0-3, from 1.044 to 0.992, TV0-4, from 1.049 to 0.992, TV0-5, from 1.055 to 0.993, TV0-6, from 1.059 to 0.991, TV0-7, from 1.059 to 0.990), but an increasing trend in low DTR (from 0.589 to 0.752). Subgroup analysis results further revealed different susceptible groups. Besides, the interactive effect suggests that temperature variation may cause greater harm under low-temperature conditions. There was a synergy between TCN and temperature on the addition and multiplication scales, which were 1.068 (1.007, 1.133) and 0.067 (0.009, 0.122), respectively. Our findings highlight public health interventions to mitigate temperature variation effects needed to focus not only on high temperature variations but also moderately low temperature variations. Future hospitalizations for SCZ associated with temperature variation may be more severely affected by temperature variability from low temperature environments. The temporal trend is associated with the effect of temperature variation on schizophrenia (SCZ).

The Diamond League athletic series: Does the air quality sparkle?

Urban air pollution can have negative short- and long-term impacts on health, including cardiovascular, neurological, immune system and developmental damage. The irritant qualities of pollutants such as ozone (O(3)), nitrogen dioxide (NO(2)) and particulate matter (PM) can cause respiratory and cardiovascular distress, which can be heightened during physical activity and particularly so for those with respiratory conditions such as asthma. Previously, research has only examined marathon run outcomes or running under laboratory settings. This study focuses on elite 5-km athletes performing in international events at nine locations. Local meteorological and air quality data are used in conjunction with race performance metrics from the Diamond League Athletics series to determine the extent to which elite competitors are influenced during maximal sustained efforts in real-world conditions. The findings from this study suggest that local meteorological variables (temperature, wind speed and relative humidity) and air quality (ozone and particulate matter) have an impact on athletic performance. Variation between finishing times at different race locations can also be explained by the local meteorology and air quality conditions seen during races.

The abundance of Culex mosquito vectors for West Nile virus and other flaviviruses: A time-series analysis of rainfall and temperature dependence in Singapore

Culex mosquitoes are important vectors of West Nile Virus (WNV), St. Louis Encephalitis Virus (SLEV) and Japanese Encephalitis Virus (JEV). Climate change is expected to alter their ability to spread diseases in human populations. Studies examining the influence of climate variability on Culex mosquitoes in South East Asia are scarce. We examined the influence of climate variability on reported Culex mosquito larval habitats from 2009 to 2018 in Singapore. We analysed the non-linear immediate and lagged weather dependence of Culex habitats over 5 weeks in negative binomial regression models using nationally representative data. We adjusted for the effects of long-term trend, seasonality, public holidays and autocorrelation. There were 41,170 reported Culex larval habitats over the study period. Non-residential premises were associated with more reports of habitats compared to residential premises [Rate Ratio (RR): 113.9, 95% CI: 110.9, 116.9]. Larvae in more than 90% of these habitats were entomologically identified as Culex quinquefasciatus. In residences, every 10 mm increase in rainfall above a 90 mm threshold was associated with a 10.1% [Incidence Rate Ratio (IRR): 0.899, 95% CI: 0.836, 0.968] cumulative decline in larval habitats. Public holidays were not significantly included in the model analysing larval habitats in residences. In non-residences, a 1 °C increase in the ambient air temperature with respect to the mean was associated with a 36.0% (IRR: 1.360, 95% CI: 1.057, 1.749) cumulative increase in Culex larval habitats. Public holidays were associated with a decline in Culex larval habitats in the same week. Our study provides evidence of how ambient air temperature and rainfall variability influences the abundance of Culex mosquito larval habitats. Our findings support the utility of using weather data in predictive models to inform the timing of vector control measures aimed at reducing the risk of WNV and other Culex-borne flavivirus transmission in urban areas.

The association between diurnal temperature range and clinic visits for upper respiratory tract infection among college students in Wuhan, China

The effects of daily mean temperature on health outcomes have been discussed in many previous studies, but few have considered the adverse impacts on upper respiratory tract infection (URTI) due to variance of temperature in one day. Diurnal temperature range (DTR) was a novel indicator calculated as maximum temperature minus minimum temperature on the same day. In this study, generalized additive model (GAM) with quasi-Poisson distribution was used to investigate the association between DTR and the number of daily outpatient visits for URTI among college students. Data about meteorological factors and air pollutants were provided by Hubei Meteorological Bureau and Wuhan Environmental Protection Bureau, respectively. Outpatient visits data were collected from the Hospital of Wuhan University from January 1, 2016, to December 31, 2018. Short-term exposure to DTR was associated with the increased risk of outpatient for URTI among all college students. Per 1 °C increased in DTR was associated with 0.73% (95%CI: 0.24, 1.21) increased in outpatient visits of all college students for URTI at lag 0 day. The greatest effect values were observed in males [1.35% (95%CI: 0.33,2.39)] at lag 0-6 days, and in females [0.86% (95%CI: 0.24, 1.49)] at lag 0-1 days. DTR had more adverse health impact in autumn and winter. Public health departments should consider the negative effect of DTR to formulate more effective prevention and control measures for protecting vulnerable people.

The association between temperature and cause-specific mortality in the Klang Valley, Malaysia

This study aims to examine the relationship between daily temperature and mortality in the Klang Valley, Malaysia, over the period 2006-2015. A quasi-Poisson generalized linear model combined with a distributed lag non-linear model (DLNM) was used to estimate the association between the mean temperature and mortality categories (natural n=69,542, cardiovascular n= 15,581, and respiratory disease n=10,119). Particulate matter with an aerodynamic diameter below 10 ?m (PM(10)) and surface ozone (O(3)) was adjusted as a potential confounding factor. The relative risk (RR) of natural mortality associated with extreme cold temperature (1st percentile of temperature, 25.2 °C) over lags 0-28 days was 1.26 (95% confidence interval (CI): 1.00, 1.60), compared with the minimum mortality temperature (28.2 °C). The relative risk associated with extremely hot temperature (99th percentile of temperature, 30.2 °C) over lags 0-3 days was 1.09 (95% CI: 1.02, 1.17). Heat effects were immediate whereas cold effects were delayed and lasted longer. People with respiratory diseases, the elderly, and women were the most vulnerable groups when it came to the effects of extremely high temperatures. Extreme temperatures did not dramatically change the temperature-mortality risk estimates made before and after adjustments for air pollutant (PM(10) and O(3)) levels.

The association of ambient temperature with extremely preterm births

INTRODUCTION: Extremely preterm births (EPT), require complex decision making and significant medical interventions. While environmental factors such as ambient temperature extremes have been associated with preterm births, little is known of the environmental associations with EPT births. The objective of this study is to explore whether ambient temperature is associated with increased risk of EPT birth. METHODS: Birth records for 315,226 infants born in Queensland Australia (2007-2015) were matched to average maximum and minimum temperature for the last month of pregnancy. Odds ratios and 95% confidence intervals were calculated using a generalised linear model. Population attributable risk was calculated for a 5% reduction in maximum temperature. RESULTS: Each one degree increase in maximum [aOR 1.03 (95% CI 1.01, 1.05)] and minimum temperature [aOR 1.02 (95% CI 1.01, 1.04)] was associated with an increase in odds for EPT birth. Increased odds for EPT births was found for maternal smoking [aOR 1.46 (95% CI 1.23, 1.72)], increasing plurality [OR 6.38 (95% CI 5.48, 7.42)] and stillbirth [aOR 342.99 (95% CI 295.53, 398.06)]. When stratified by birth status, the association was only found for live births. DISCUSSION: Higher temperatures are associated with small increases in the odds of delivering an infant in the EPT period. The risk may be enhanced for women who smoke during pregnancy. Women at an increased risk of preterm births should be counselled around methods to reduce their exposure to excessive heat.

The ecology of unsheltered homelessness: Environmental and social-network predictors of well-being among an unsheltered homeless population

People experiencing homelessness (PEH) face extreme weather exposure and limited social support. However, few studies have empirically assessed biophysical and social drivers of health outcomes among unsheltered PEH. Social network, health, and outdoor exposure data were collected from a convenience sample of unsheltered PEH (n = 246) in Nashville, TN, from August 2018-June 2019. Using multivariate fixed-effects linear regression models, we examined associations between biophysical and social environments and self-reported general health and emotional well-being. We found that study participants reported the lowest general health scores during winter months-Nashville’s coldest season. We also found a positive association between the number of nights participants spent indoors during the previous week and general health. Participants who spent even one night indoors during the past week had 1.8-point higher general health scores than participants who spent zero nights indoors (p < 0.01). Additionally, participants who experienced a conflict with a social contact in the past 30 days had lower emotional well-being scores than participants who experienced no conflict. Finally, women had worse general health and emotional well-being than men. Ecologically framed research about health and well-being among PEH is critically needed, especially as climate change threatens to increase the danger of many homeless environments.

The effect and prediction of diurnal temperature range in high altitude area on outpatient and emergency room admissions for cardiovascular diseases

PURPOSE: Diurnal temperature range (DTR) is a meteorological indicator closely associated with global climate change. Thus, we aim to explore the effects of DTR on the outpatient and emergency room (O&ER) admissions for cardiovascular diseases (CVDs), and related predictive research. METHODS: The O&ER admissions data for CVDs from three general hospitals in Jinchang of Gansu Province were collected from 2013 to 2016. A generalized additive model (GAM) with Poisson regression was employed to analyze the effect of DTR on the O&ER admissions for all cardiovascular diseases, hypertension, ischemic heart disease (IHD) and stoke. GAM was also used to preform predictive research of the effect of DTR on the O&ER admissions for CVDs. RESULTS: There were similar positive linear relationships between DTR and the O&ER visits with the four cardiovascular diseases. And the cumulative lag effects were higher than the single lag effects. A 1 °C increase in DTR corresponded to a 1.30% (0.99-1.62%) increase in O&ER admissions for all cardiovascular diseases. Males and elderly were more sensitivity to DTR. The estimates in non-heating season were higher than in heating season. The trial prediction accuracy rate of CVDs based on DTR was between 59.32 and 74.40%. CONCLUSIONS: DTR has significantly positive association with O&ER admissions for CVDs, which can be used as a prediction index of the admissions of O&ER with CVDs.

The effect of climate variables on the incidence of cutaneous leishmaniasis in Isfahan, Central Iran

In recent years, there have been considerable changes in the distribution of diseases that are potentially tied to ongoing climate variability. The aim of this study was to investigate the association between the incidence of cutaneous leishmaniasis (CL) and climatic factors in an Iranian city (Isfahan), which had the highest incidence of CL in the country. CL incidence and meteorological data were acquired from April 2010 to March 2017 (108 months) for Isfahan City. Univariate and multivariate seasonal autoregressive integrated moving average (SARIMA), generalized additive models (GAM), and generalized additive mixed models (GAMM) were used to identify the association between CL cases and meteorological variables, and forecast CL incidence. AIC, BIC, and residual tests were used to test the goodness of fit of SARIMA models; and R(2) was used for GAM/GAMM. 6798 CL cases were recorded during this time. The incidence had a seasonal pattern and the highest number of cases was recorded from August to October. In univariate SARIMA, (1,0,1) (0,1,1)(12) was the best fit for predicting CL incidence (AIC=8.09, BIC=8.32). Time series regression (1,0,1) (0,1,1)(12) showed that monthly mean humidity after 4-month lag was inversely related to CL incidence (AIC=8.53, BIC=8.66). GAMM results showed that average temperature with 2-month lag, average relative humidity with 3-month lag, monthly cumulative rainfall with 1-month lag, and monthly sunshine hours with 1-month lag were related to CL incidence (R(2)=0.94). The impact of meteorological variables on the incidence of CL is not linear and GAM models that include non-linear structures are a better fit for prediction. In Isfahan, Iran, meteorological variables can greatly predict the incidence of CL, and these variables can be used for predicting outbreaks.

Street design scenarios using vegetation for sustainable thermal comfort in Erzurum, Turkey

Urbanization models that do not comply with the planning criteria are affecting human lives. In urban areas, street trees have positive contributions to the ecosystem and human thermal comfort. In this study, the thermal comfort of the main streets that connect people to each other and provide access and transportation has been thermally explored. Cumhuriyet Street, which is one of the vibrant streets in Erzurum, was selected as a case study scenario in the winter and summer periods in 2018 by using the ENVI-met V. 4.4.2 winter model. A different green scenario is proposed, and the best thermal comfort scenario in both seasons is determined. The results show that, in the summer period, the air temperature of the greener street scenario is about 1.0 °C cooler than the existing condition and about 2.0 °C warmer in the winter period. Physiological equivalent temperature (PET) value was better in narrow canyon streets in winter months, but in wide canyon streets in summer months. The green scenarios of wide canyon streets positively affect the outdoor thermal comfort in both seasons. These results clearly imply that green streets are an appropriate strategy for city streets that suffer from discomfort levels in cold winter and hot summer periods. It has been concluded that it is possible to increase thermal comfort through improvement in the open space in street and more suitable plant preferences for livable urbanization. Planning streets in a new city characterized by summer and winter seasons should take into consideration an accurate decision for providing a thermal comfort level and healthy urbanization.

Summer UTCI variability in Poland in the twenty-first century

The paper analyses the temporal and spatial variability of the Universal Thermal Climate Index (UTCI) in Poland in summer. Summer is the season with the highest intensity of tourism traffic that is why it is important to determine biometeorological conditions, especially in popular tourist destinations such as coastal, mountain and urban areas, in the times of climate changes. The analysis was based on data from 18 stations of IMGW-PIB (Institute of Meteorology and Water Management-National Research Institute), distributed evenly in the territory of the country, and representing all eight bioclimatic regions. The data include air temperature, relative humidity, wind velocity and cloudiness at 12 UTC from summer months: June, July and August from the years 2001-2018. Thermoneutral zone was the most frequently occurring UTCI class in Poland. It was recorded during 56-75% of summer days (with the exception of mountain stations, where it occurred on 30-35% of days). Moderate heat stress is the second most frequently occurring category with a frequency from 18 to 29% with the exception of mountain and coastal areas. Extreme and very strong cold stress occurred particularly in high mountain stations, and was sporadically observed at the coast of the Baltic Sea; however, the occurrence of such conditions decreases, which if favourable for beach tourism. No cases of extreme heat stress were recorded in any of the stations. The most unfavourable bioclimatic conditions were characteristic of the Upland Region (IV), represented by Kraków and Sandomierz, where very strong heat stress occurred with a 10% frequency. This is a limitation for urban tourism in those regions. The highest UTCI values were recorded in Kraków on 17 July 2007 and 29 July 2005. The highest number of cases with strong and very strong heat stress was recorded in 2015 as a consequence of the heat wave observed in Poland in the first half of August. In the majority of the analysed stations, in the second half of the analysed period (2010-2018), an increase in the number of days with strong and very strong heat stress was observed in comparison with the first half of period (2001-2009). The highest frequency of such days was observed in July. Based on the data, there are 4 potential periods of occurrence of such days, with two most intense being 26. July-13 August and 14-22 July.

Temperature changes between neighboring days and childhood asthma: A seasonal analysis in Shanghai, China

Few evidences are available about the impact of temperature variation on childhood asthma in different seasons. This study aimed to assess the influence of temperature changes between neighboring days (TCN) on the exacerbation of asthma among children. Daily outpatient visits for childhood asthma (DOVCA) were collected from 17 main hospitals in Shanghai, China, from 2016 to 2018. A quasi-Poisson regression combined with distributed lagged nonlinear models was employed to estimate the association between TCN and asthma visits in cool or warm seasons, after controlling for short- and long-term trends, day of week, holidays, daily mean temperature, daily mean relative humidity, and air pollutants. The TCN varied from -?9.6 to 6.7 °C. The relationship between TCN and DOVCA greatly varied by season. In warm seasons, positive TCN (temperature rise) was associated with higher risks of asthma outpatient visits and negative TCN (temperature drop) was associated with lower risks; the associations were present on lag 1 day and lasted for 2 weeks; the cumulative relative risk of childhood asthma over 0 to 14 days was 1.98 (95% confidence interval: 1.42, 2.76) and 0.31 (95% confidence intervals: 0.21, 0.44) comparing a TCN of 2.5 °C (5th percentile) and -?3.2 °C (95th percentile) with 0 °C, respectively. In cool seasons, neither negative nor positive TCN showed significant risks. In conclusion, temperature rise might increase the risk of childhood asthma exacerbation and temperature drop might decrease the risks in warm seasons. There were no statistically significant influences in cool seasons.

Spring temperature shapes West Nile virus transmission in Europe

West Nile Virus (WNV) is now endemic in many European countries, causing hundreds of human cases every year, with a high spatial and temporal heterogeneity. Previous studies have suggested that spring temperature might play a key role at shaping WNV transmission. Specifically, warmer temperatures in April-May might amplify WNV circulation, thus increasing the risk for human transmission later in the year. To test this hypothesis, we collated publicly available data on the number of human infections recorded in Europe between 2011 and 2019. We then applied generalized linear models to quantify the relationship between human cases and spring temperature, considering both average conditions (over years 2003-2010) and deviations from the average for subsequent years (2011-2019). We found a significant positive association both spatial (average conditions) and temporal (deviations). The former indicates that WNV circulation is higher in usually warmer regions while the latter implies a predictive value of spring conditions over the coming season. We also found a positive association with WNV detection during the previous year, which can be interpreted as an indication of the reliability of the surveillance system but also of WNV overwintering capacity. Weather anomalies at the beginning of the mosquito breeding season might act as an early warning signal for public health authorities, enabling them to strengthen in advance ongoing surveillance and prevention strategies.

Street temperature and building characteristics as determinants of indoor heat exposure

Higher temperatures are associated with morbidity and mortality. Most epidemiological studies use outdoor temperature data, however, people spend most of their time indoors. Indoor temperatures and determinants of indoor temperatures have rarely been studied on a large scale. We measured living room and bedroom temperature in 113 homes of elderly subjects, as well as outdoor temperatures, in two cities in the Netherlands. Linear regression was used to determine the influence of building characteristics on indoor living room and bedroom temperatures in the warm episode. During the warm episode, indoor temperatures were higher during the night and lower during the day than outdoor temperatures. Indoor temperatures on average exceeded outdoor temperatures. The weekly average indoor temperature in living rooms varied between 23.1 and 30.2 °C. Dwellings that warmed up easily, also cooled down more easily. Outdoor and indoor temperatures were moderately correlated (R(2) = 0.36 and 0.34 for living rooms and bedrooms, respectively). Building year before 1930 and rooms being located on the top floor were associated with higher indoor temperatures. Green in the vicinity was associated with lower temperatures in bedrooms. This study shows that indoor temperatures vary widely between dwellings, and are determined by outdoor temperatures and building characteristics. As most people, especially the elderly, spend most of the time indoor, indoor temperature is a more exact predictor of heat exposure than outdoor temperature. The importance of mitigating high indoor temperatures will be more important in the future because of higher temperatures due to climate change.

Structural stability of SARS-CoV-2 virus like particles degrades with temperature

SARS-CoV-2 is a novel coronavirus which has caused the COVID-19 pandemic. Other known coronaviruses show a strong pattern of seasonality, with the infection cases in humans being more prominent in winter. Although several plausible origins of such seasonal variability have been proposed, its mechanism is unclear. SARS-CoV-2 is transmitted via airborne droplets ejected from the upper respiratory tract of the infected individuals. It has been reported that SARS-CoV-2 can remain infectious for hours on surfaces. As such, the stability of viral particles both in liquid droplets as well as dried on surfaces is essential for infectivity. Here we have used atomic force microscopy to examine the structural stability of individual SARS-CoV-2 virus like particles at different temperatures. We demonstrate that even a mild temperature increase, commensurate with what is common for summer warming, leads to dramatic disruption of viral structural stability, especially when the heat is applied in the dry state. This is consistent with other existing non-mechanistic studies of viral infectivity, provides a single particle perspective on viral seasonality, and strengthens the case for a resurgence of COVID-19 in winter.

Techno-economic analysis and energy performance of a geothermal earth-to-air heat exchanger (EAHE) system in residential buildings: A case study

Natural air ventilation in the hot-dry regions plays a key role to decrease indoor air temperature in hot season, also to improve thermal comfort during the cold season. One of the most common ways to take advantage of natural ventilation is using wind catcher with an underground tunnel. In this method, the tower catches the airflow and directs it to the underground tunnel to decrease the air temperature by transferring heat to the ground, which is cooler in the summer and warmer in the winter. Earth-to-air heat exchanger (EAHE) is a modern form of wind catcher with underground tunnel. In this method, air after passing through buried pipes exchanges heat with the ground, and its temperature increases in the winter and decreases during the summer. This study analyzes the energy performance and cost-effectiveness of earth-to-air heat exchanger to be utilized in a residential building in climate condition of the province of Kermanin Iran. In this regard, 9 different configurations of the EAHE are investigated to find the optimized EAHE. The system performance and cost-effectiveness are studied in 3 different depths including 1, 2, and 3 m with 3 different pipe lengths including 25, 50, and 75 m. The results show that the EAHE is capable of reducing the inlet air temperature by 0.5-9.9celcius in the summer and increasing it by 0.9-11.2celcius in the winter. Furthermore, by integrating the EAHEs in a building design, one can reduce the total annual cooling load by 1.25%-3.97% and for heating by 1.34%-3.96%. The payback period of the system with a pipe length of 25 m is 16 years, but for the systems with pipe lengths of 50 and 75 m, this period reduces to almost 3 years.

Temperature and photoperiod effects on dormancy status and life cycle parameters in Aedes albopictus and Aedes aegypti from subtropical Argentina

Aedes albopictus (Diptera: Culicidae) distribution is bounded to a subtropical area in Argentina, while Aedes aegypti (Diptera: Culicidae) covers both temperate and subtropical regions. We assessed thermal and photoperiod conditions on dormancy status, development time and mortality for these species from subtropical Argentina. Short days (8 light : 16 dark) significantly increased larval development time for both species, an effect previously linked to diapause incidence. Aedes albopictus showed higher mortality than Ae. aegypti at 16?°C under long day treatments (16 light : 8 dark), which could indicate a lower tolerance to a sudden temperature decrease during the summer season. Aedes albopictus showed a slightly higher percentage of dormant eggs from females exposed to a short day, relative to previous research in Brazilian populations. Since we employed more hours of darkness, this could suggest a relationship between day-length and dormancy intensity. Interestingly, local Ae. aegypti presented dormancy similar to Ae. albopictus, in accordance with temperate populations. The minimum dormancy in Ae. albopictus would not be sufficient to extend its bounded distribution. We believe that these findings represent a novel contribution to current knowledge about the ecophysiology of Ae. albopictus and Ae. aegypti, two species with great epidemiological relevance in this subtropical region.

Temperature might increase the hospital admission risk for rheumatoid arthritis patients in Anqing, China: A time-series study

Temperature has been studied in relation to many health outcomes. However, few studies have explored its effect on the risk of hospital admission for rheumatoid arthritis (RA). A distributed lag non-linear model (DLNM) was used to analyze associations between mean temperature, diurnal temperature range (DTR), temperature change between neighboring days (TCN), and daily admissions for RA from 2015 to 2019 in Anqing, China. Subgroup analyses based on age, gender, rheumatoid factors, and admission route were performed. In total, 1456 patients with RA were hospitalized. Regarding the cumulative-lag effects of extreme cold temperature (5th percentile?=?3?), the risks of admissions for RA were increased and highest at lag 0-11 (RR?=?2.68, 95% CI: 1.23-5.86). Exposing to low (5th percentile?=?1.9?) and high (95th percentile?=?14.2?) DTRs both had increased risks of RA admission, with highest RRs of 1.40 (95% CI: 1.03-1.91) and 1.24 (95% CI: 1.0-1.53) at lag 0 day, respectively. As for TCN, the marginal risk of admission in RA patients was found when exposed to high TCN (95th percentile?=?2.9?) with the largest single-day effect at lag 10 (RR?=?1.11, 95% CI: 1.01-1.23). In subgroup analyses, females were more susceptible to extreme cold temperature, low and high DTRs, and high TCN. In regard to extreme cold temperature, significant risk of hospital admission in females only appeared at lag 2 (RR?=?1.48, 95% CI: 1.02-2.15) and lag 0-2 (RR?=?2.35, 95% CI: 1.11-4.95). It is clear that RA patients exposed to changing temperature may increase risks of admission.

Temperature, climate change, and birth weight: Evidence from Hungary

We analyze the impact of in utero temperature exposure on the birth weight and an indicator for low birth weight using administrative data on singleton live births conceived between 2000 and 2016 in Hungary. We find that exposure to high temperatures during pregnancy decreases birth weight, but its impact on the probability of low birth weight is weaker. Exposure to one additional hot day (mean temperature > 25 degrees C) during the gestation period reduces birth weight by 0.46 g, relative to a 15-20 degrees C day. The second and third trimesters appear to be slightly more sensitive to temperature exposure than the first trimester. We project that climate change will decrease birth weight and increase the prevalence of low birth weight by the mid-twenty-first century. The projected impacts are the strongest for newborns conceived during the winter and spring months.

Temperature, climate change, and human conception rates: Evidence from Hungary

In this paper, we examine the relationship between temperature and human conception rates and project the impacts of climate change by the mid-twenty-first century. Using complete administrative data on 6.8 million pregnancies between 1980 and 2015 in Hungary, we show that exposure to hot temperatures reduces the conception rate in the first few weeks following exposure, but a partial rebound is observed after that. We project that with absent adaptation, climate change will increase seasonal differences in conception rates and annual conception rates will decline. A change in the number of induced abortions and spontaneous fetal losses drives the decline in conception rates. The number of live births is unaffected. However, some newborns will experience a shift in the timing of conception that leads to changes in in utero temperature exposure and therefore might have further consequences.

Temperature-sensitive morbidity indicator: Consequence from the increased ambulance dispatches associated with heat and cold exposure

Current development of temperature-related health early warning systems mainly arises from knowledge of temperature-related mortality or hospital-based morbidity. However, due to the delay in data reporting and limits in hospital capacity, these indicators cannot be used in health risk assessments timely. In this study, we examine temperature impacts on emergency ambulance and discuss the benefits of using this near real-time indicator for risk assessment and early warning. We collected ambulance dispatch data recording individual characteristics and preliminary diagnoses between 2015 and 2016 in Shenzhen, China. Distributed lag nonlinear model was used to examine the effects of high and low temperatures on ambulance dispatches during warm and cold seasons. Lag effects were also assessed to evaluate the sensitivity of ambulance dispatches in reflecting immediate health reactions. Stratified analyses by gender, age, and a wide range of diagnoses were performed to identify vulnerable subgroups. Disease-specific numbers of ambulance dispatches attributable to non-optimal temperature were calculated to determine the related medical burdens. Effects of temperature on ambulance dispatches appeared to be acute on the current day. Males, people aged 18-44 years, were more susceptible to non-optimal temperatures. Highest RR during heat exposure by far was for urinary disease, alcohol intoxication, and traumatic injury, while alcohol intoxication and cardiovascular disease were especially sensitive to cold exposure, causing the main part of health burden. The development of local health surveillance systems by utilizing ambulance dispatch data are important for temperature impact assessments and medical resource reallocation.

Short-term effects of ambient temperature on preterm birth: A time-series analysis in Xuzhou, China

To date, research evidence suggests that extreme ambient temperatures may lead to preterm birth. Since the results of studies in subtropical humid monsoon climate are inconclusive, we investigated the association between extreme ambient temperatures and the risk of preterm birth in Xuzhou, China. We analyzed the association between the birth data of 103,876 singleton deliveries (from July 1, 2016 to June 30, 2019) and ambient temperature. We used a quasi-Poisson model with distributed lag nonlinear models (DLNM) to investigate the delay and nonlinear effects of temperature, taking into account the effects of air pollutants and relative humidity. During the study period, the number of hospitalizations for preterm birth was 4623. Taking the median temperature (16.8 °C) as a reference, the highest risk estimate at extreme cold temperature (- 2.8 °C, 1st percentile) was found at lag 0-1 days. Exposure to extreme cold (- 2.8 °C, 1st percentile), or moderate cold (6.8 °C, 25th percentile) were associated with 1.659 (95% confidence interval [CI] 1.177-2.338) and 1.456 (95% CI 1.183-1.790) increased risks of preterm birth, respectively. In the further stratified analysis of the age of pregnant women, we found that there were significant associations between cold temperatures and preterm birth in both groups (older group ? 35; younger group < 35). In a subtropical humid monsoon climate, low ambient temperatures may lead to preterm birth, suggesting that women should stay away from low temperatures during pregnancy.

Sericin alleviates thermal stress induced anxiety-like behavior and cognitive impairment through regulation of oxidative stress, apoptosis, and heat-shock protein-70 in the hippocampus

Exposure to heat stress (HS) has adverse effects on brain function, leading to anxiety-like behavior and memory impairment. Sericin is a silk derived protein with various neurobiological activities. The present study has investigated the effects of sericin on anxiety and cognitive impairments, in HS-received mice. The adult male mice were exposed to HS (43 ºC, 15 min once a day for 14 days) and simultaneously treated with 100, 150, and 200 mg/kg/day of sericin through oral gavage. Elevated plus-maze and Lashley III Maze tests were used to evaluate anxiety and learning and memory, respectively. The hippocampal BAX, BCL-2, caspase3, caspase9 and heat-shock protein-70 (HSP-70) were evaluated by western blotting and oxidative stress markers including malondialdehyde (MDA), total antioxidant capacity (TAC), super oxide dismutase (SOD) as well as glutathione peroxidase (GPx) were evaluated by spectroscopy method. The serum was collected for the analysis of the corticosterone levels. Treatment with sericin in higher doses reversed anxiety-like behavior and cognitive deficit induced by HS. Moreover, heat exposure increased serum corticosterone, hippocampal MDA, apoptotic proteins and HSP-70 levels. Sericin administration decreased serum corticosterone and enhanced hippocampal antioxidant defense and attenuated apoptosis and HSP-70 levels. The results show that the protective effects of sericin against HS-mediated cognitive dysfunction and anxiety-like behavior is possibly through suppressing HSP-70, oxidative stress and apoptosis.

Sex differences in temperature-related all-cause mortality in the Netherlands

PURPOSE: Over the last few decades, a global increase in both cold and heat extremes has been observed with significant impacts on human mortality. Although it is well-identified that older individuals (>?65 years) are most prone to temperature-related mortality, there is no consensus on the effect of sex. The current study investigated if sex differences in temperature-related mortality exist in the Netherlands. METHODS: Twenty-three-year ambient temperature data of the Netherlands were combined with daily mortality data which were subdivided into sex and three age classes (

Short-term effect of temperature change on non-accidental mortality in Shenzhen, China

Temperature change is an important meteorological indicator reflecting weather stability. This study aimed to examine the effects of ambient temperature change on non-accidental mortality using diurnal temperature change (DTR) and temperature change between neighboring days (TCN) from two perspectives, intra-day and inter-day temperature change, and further, to explore seasonal variations of mortality, identify the susceptible population and investigate the interaction between temperature change and apparent temperature (AT). We collected daily data on cause-specific mortality, air pollutants and meteorological indicators in Shenzhen, China, from 1 January 2013 to 29 December 2017. A Quasi-Poisson generalized linear regression combined with distributed lag non-linear models (DLNMs) were conducted to estimate the effects of season on temperature change-related mortality. In addition, a non-parametric bivariate response surface model was used to explore the interaction between temperature change and AT. The cumulative effect of DTR was a U-shaped curve for non-accidental mortality, whereas the curve for TCN was nearly monotonic. The overall relative risks (RRs) of non-accidental, cardiovascular and respiratory mortality were 1.407 (95% CI: 1.233-1.606), 1.470 (95% CI: 1.220-1.771) and 1.741 (95% CI: 1.157-2.620) from exposure to extreme large DTR (99th) in cold seasons. However, no statistically significant effects were observed in warm seasons. As for TCN, the effects were higher in cold seasons than warm seasons, with the largest RR of 1.611 (95% CI: 1.384-1.876). The elderly and females were more sensitive, and low apparent temperature had a higher effect on temperature change-related non-accidental mortality. Temperature change was positively correlated with an increased risk of non-accidental mortality in Shenzhen. Both female and elderly people are more vulnerable to the potential adverse effects, especially in cold seasons. Low AT may enhance the effects of temperature change.

Short-term effects of air pollutants on hospitalization rate in patients with cardiovascular disease: A case-crossover study

Considering the increasing rate of hospitalization due to the symptoms intensification, and the increasing trend of air pollution, this study aimed to determine the relationship between the amount of air pollutants and the incidence of cardiovascular disease leading to hospitalization. This case-crossover study was carried out on the data of admitted patients with cardiovascular disease such as hypertension, ischemic heart disease, and cerebrovascular disease in Urmia during 2011-2016. Weather data about air pollutants (NO2, PM10, SO2, and CO) were obtained from the meteorological department of Urmia. The data were coded for each patient and matched with the meteorological data for statistical modeling. The data were analyzed through STATA version 14. Conditional logistic regression was used to estimate the effects of air pollutants on cardiovascular disease adjusted to air temperature, relative humidity, and air pollutants. The final analysis was performed on 43,424 patients with cardiovascular disease using code I10-I99 including ischemic heart disease, hypertension, and cerebrovascular disease adjusted to air temperature and relative humidity. Of all pollutants, CO with each increase 10 ?g/m(3) had a meaningful relationship with the incidence of cardiovascular hospitalization. By selecting the window of exposure, 1, 2, and 6 days before admission, lag 6 (6 days) was the best estimation for exposure time in the patients with cardiovascular patients (OR 1.0056, CI 1.0041-1.007), and in the patients with ischemic heart disease (OR 1.000055, CI 1.000036-1.000075) and in the patients with hypertension (OR 1.000076, CI 1.00002-1.000132). Regarding cerebrovascular disease, no statistically significant association was observed. The results showed that only CO was associated with an increased risk of admission in patients with cardiovascular disease, ischemic heart disease, and hypertension, and there was no clear evidence for pollution effects on cerebrovascular diseases.

Short-term exposure to air pollution and epiglottitis: A nested case-control study

OBJECTIVES/HYPOTHESIS: This study investigated the impacts of air pollution and meteorological factors on the occurrence of epiglottitis. STUDY DESIGN: A nested case-control study. METHODS: Participants ?40?years old in the Korean National Health Insurance Service-Health Screening Cohort were analyzed. A total of 2,615 epiglottitis patients and 10,460 matched control participants were analyzed. The odds ratios (ORs) for epiglottitis associated with meteorological and air pollution factors, including sulfur dioxide (SO(2) , ppb), nitrogen dioxide (NO(2) , ppb), ozone (O(3) , ppb), and carbon monoxide (CO, ppm), after 3, 7, 15, and 30?days of exposure were analyzed using conditional logistic regression adjusted for total cholesterol, blood pressure, fasting blood glucose, obesity, smoking, alcohol consumption, prior upper respiratory infection, tonsillectomy, immunocompromise, autoimmune disease, and the Charlson comorbidity index. RESULTS: The daily temperature range and NO(2) exposure after 3?days were associated with increased rates of epiglottitis (OR = 1.03, 95% confidence interval [CI] = 1.02-1.05 for temperature range and OR = 1.78, 95% CI = 1.14-2.77 for NO(2) , respectively). These results were generally consistent at 7, 15, and 30?days. CONCLUSIONS: The temperature range and NO(2) exposure for 3, 7, 15, and 30?days were positively related to the occurrence of adult epiglottitis. LEVEL OF EVIDENCE: 3 Laryngoscope, 131:2483-2489, 2021.

Short-term exposure to extreme temperature and risk of hospital admission due to cardiovascular diseases

Objective: Numerous epidemiological studies have reported relevance of morbidity and mortality from cardiovascular diseases with short-term exposure to environmental temperature. In this study, we examined the hypothesis between temperature indices and hospital admission because of cardiovascular diseases. Methods: The daily number of CVDs was obtained from all hospitals of the Sabzevar city. A semi-parametric generalized additive model (GAM) following a quasi-Poisson distribution with distributed lag non-linear model (dlnm) was selected as a modeling framework for time-series analysis. Results: The overall CVD risk comparing the 1st percentile and the 99th percentile relative to the mean temperature (at lag 0) was 1.33 (95% CI, 1.11: 1.61), and 1.34 (95% CI, 1.10: 1.64), respectively. For all indicators, the extremely cold effects persisted for the initial 7 days. Conclusions: Our results suggest that extremely cold and extremely hot temperatures increase the relative risk of cardiovascular diseases.

Socio-spatial inequality and its relationship to thermal (dis)comfort in two major Local Climate Zones in a tropical coastal city

Brazil is the country with the highest social inequality in South America. This socioeconomic disparity reflects not only on the families’ income but also on their spatial localization in the city, as well as on the urban design. These urban environments can alter the urban microclimate, and consequently, interfere in dwellers’ thermal comfort. This research investigated the relationship between socio-spatial inequalities and thermal comfort in two different Local Climate Zones (LCZ) using a combination of measurement and modeling. Air temperature (Tair) was obtained by on-site measurements in compact high-rise (LCZ1) and compact low-rise buildings (LCZ3) and Mean radiant temperature (Tmrt) was simulated using SOlar and LongWave Environmental Irradiance Geometry (SOLWEIG). The results indicated that in LCZ1 seafront-localized buildings, in which residents have a higher income, the temperature remains in a range classified as comfortable, mainly due to shading and sea breeze. On the other hand, LCZ3, located in the periphery of the city, in which the low-income population is concentrated and is marked by a precariousness urban environment, presented a higher air temperature and Tmrt values, exposing the dwellers to heat stress throughout the year, especially during the summer season. These observations suggested that public and private actions tend to promote better urban designs in areas with a higher concentration of income. Public reforms aimed at improving the urban environment and promoting thermal comfort should be a priority for the warmest LCZ, where the poorest residents live. Public agents should rethink the distribution of environmental resources to promote equitable urban spaces.

Socioeconomic disparities in climate vulnerability: Neonatal mortality in northern Sweden, 1880-1950

The aim of this study was to analyse the association between season of birth, temperature and neonatal mortality according to socioeconomic status in northern Sweden from 1880 to 1950. The source material for this study comprised digitised parish records combined with local weather data. The association between temperature, seasonality, socioeconomic status and neonatal mortality was modelled using survival analysis. We can summarise our findings according to three time periods. During the first period (1880–1899), temperature and seasonality had the greatest association with high neonatal mortality, and the socioeconomic differences in vulnerability were small. The second period (1900–1929) was associated with a decline in seasonal and temperature-related vulnerabilities among all socioeconomic groups. For the last period (1930–1950), a new regime evolved with rapidly declining neonatal mortality rates involving class-specific temperature vulnerabilities, and there was a particular effect of high temperature among workers. We conclude that the effect of season of birth on neonatal mortality was declining for all socioeconomic groups (1880–1950), whereas weather vulnerability was pronounced either when the socioeconomic disparities in neonatal mortality were large (1880–1899) or during transformations from high to low neonatal rates in the course of industrialisation and urbanisation.

Spatial correlation length of summer extreme heat stress over eastern China

This study attempts to measure the spatial correlation length (SCL) of summer extreme heat stress in any location by using a characterized scale identification method. Daily datasets of multiple meteorological variables from 2,134 observation stations over eastern China during 1961-2010 were used. Three types of heat indexes (a total of seven indexes) were applied to characterize the heat stress. The first type used a single variable, that is, daily maximum temperature (T-max) or daily minimum temperature (T-min), while the second used mean temperature (T) and relative humidity, and the third used T, vapour pressure, and 10-m wind speed. A 90th percentile of the climatology of local heat stress was applied to identify hot days. The SCLs of heat stress were analysed in three regions: North China (NC), the Yangtze River Valley (YRV), and South China (SC). Results showed that the trend changes in heat stress had obvious temporal and geographical characteristics, especially in NC and YRV. Generally, the SCLs of heat stress in NC were the largest, reaching more than 440 km for T-max, with YRV second, about 350 km, and SC the smallest, only about 185 km. This phenomenon could be found for almost all indexes. Moreover, the SCLs of the first two types of heat indexes (except T-min) for the three regions were greater than that of the third one, particularly in NC and YRV, which was related to inconsistent changes in the variables used and the primary role of which one characterized the heat stress. The spatial distributions of high SCLs for all indexes were in line with that of the major urban agglomeration in eastern China. The SCL of heat stress for a location was related not only to the changes themselves, but also to the surroundings, involving the number and spatial distribution of hot days.

Spatial heterogeneity of bacillary dysentery and the impact of temperature in the Beijing-Tianjin-Hebei region of China

Previous studies indicate that the incidence of bacillary dysentery is closely related to meteorological factors. However, the impact of temperature and the spatial heterogeneity of the disease in regions of unbalanced socioeconomic development remains unclear. Therefore, this research collected data for 29,639 daily bacillary dysentery cases in children under 5 years of age, as well as the meteorological variables from China’s Beijing-Tianjin-Hebei region, to analyze the spatial pattern of bacillary dysentery and reveal its nonlinear association with temperature. The SatScan method was employed first, to detect the spatial heterogeneity of the disease risk, and then the distributed lag nonlinear model (DLNM) was used to analyze the relationships between the daily minimum, mean, and maximum temperatures and bacillary dysentery in the stratified heterogeneous regions. The results indicated that bacillary dysentery incidence presented statistically significant spatial heterogeneity. The area of highest risk was found to be Beijing and its neighboring regions, which have high population densities. There was also a positive association between bacillary dysentery and temperature. Hotter temperatures were accompanied by higher relative risks. In the most likely spatial cluster region, the excess risk (ER) values for a 1°C rise in minimum, mean, and maximum temperatures above the median were 4.65%, 11.30%, and 19.21%, respectively. The effect of temperature on bacillary dysentery peaked at a lag of 3 to 4 days. The findings of this study will aid risk assessments and early warning systems for bacillary dysentery.

Spatiotemporal dynamics of urban climate during the wet-dry season transition in a tropical African city

The Urban Heat Island effect has been the focus of several studies concerned with the effects of urbanisation on human and ecosystem health. Humidity, however, remains much less studied, although it is useful for characterising human thermal comfort, the Urban Dryness Island effect and vegetation development. Furthermore, variability in microscale climate due to differences in land cover is increasingly crucial for understanding urbanisation effects on the health and wellbeing of living organisms. We used regression analysis to investigate the spatial and temporal dynamics of temperature, humidity and heat index in the tropical African city of Kampala, Uganda. We gathered data during the wet to dry season transition from 22 locations that represent the wide range of urban morphological differences in Kampala. Our analysis showed that the advancement of the dry season increased variability of climate in Kampala and that the most built-up locations experienced the most profound seasonal changes in climate. This work stresses the need to account for water availability and humidity to improve our understanding of human and ecosystem health in cities.

Relationship between ambient black carbon and daily mortality in Tehran, Iran: A distributed lag nonlinear time series analysis

PURPOSE: The aim of the present study was to investigate the effect of short-term exposure to ambient black carbon (BC) on daily cause-specific mortality, including mortality due to respiratory, cardiovascular, ischemic heart and cerebrovascular diseases in Tehran, Iran. MATERIALS AND METHODS: Daily non-accidental death counts, meteorological data and hourly concentrations of air pollutants from 2014 to 2017 were collected in Tehran. A distributed lag non-linear model was used to assess the association between exposure to BC and daily mortality. RESULTS: The mean daily BC concentration during the study period was 3.96?±?1.19 µg/m(3). The results indicated that BC was significantly associated with cardiovascular, ischemic heart disease, and cerebrovascular mortality, but not with respiratory mortality. In first model, each 10 µg/m(3) increase in at lag 3, lag 4 and lag 5 were associated with cardiovascular mortality in 16-65 year age group with the relative risks (RRs) of 1.17 (95?% CI: 1.02-1.33), 1.17 (95?% CI: 1.04-1.31) and 1.12 (95?% CI: 1.02-1.24), respectively. The highest mortality rate per 10 µg/m(3) increase in exposure was found for ischemic heart diseases with RR of 3.98 (95?% CI: 1.04-1.81, lag 01) for 16-65 age group. Cerebrovascular mortality was associated with 10 µg/m(3) increases in non-cumulative exposure with RR of 1.17 (95?% 1.009-1.35, lag 5) in the age group ? 65 years. In the second model for a 10 µg/m(3) increase in BC, cardiovascular mortality at specific lag days (5 and 6 days) in the age group ? 16 years were associated with RR of 1.34 (95?% CI 1.08-1.66) and 1.35(95?% CI 1.02-1.77), respectively. CONCLUSIONS: This study in Tehran found significant effects of BC exposure on daily mortality for cardiovascular, ischemic heart disease, cerebrovascular disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40201-021-00659-0.

Relationship between built environments and risks of ischemic stroke based on meteorological factors: A case study of Wuhan’s main urban area

Ischemic stroke is one of the most common causes of death worldwide, and uncomfortable meteorological and built environments may increase its risk. Residents in different built environments are exposed to different risks of ischemic stroke in cold and hot weather. By using the data from 3547 patients hospitalized, a distributed lag non-linear model was established to compare the differences in the risk of ischemic stroke in urban areas with respect to different Building Height, Building Density, Normalized Differential Vegetation Index, and Distance to Water under the meteorological condition. The results showed that lower Building Height is related to the negative cold effects in winter, and higher Building Height is related to increased risks at high temperatures. Built environments with Building Heights of 10-15 m in hot weather and above 15 m in cold weather have low risks. Higher Building Density was found to be associated with reduced negative cold effects; however, the negative hot effects increased in summer. Built environments with a Building Density of more than 0.3 showed low risks, regardless of the weather conditions. Increasing NDVI seemed to mitigate negative effects in uncomfortable weather, and built environments with higher NDVI were found to be associated with lower risks of ischemic stroke. Built environments with shorter Distance to Water seemed to pose higher risks in summer, and longer Distance to Water was correlated with higher risks in winter. Built environments with Distance to Water in the range of 0.65-2.30 km showed low risks. The research results could have some implications for urban planners to form reasonable built environments under certain meteorological factors which can be beneficial for the mitigation of incidence of ischemic stroke. (C) 2020 Elsevier B.V. All rights reserved.

Risk factors affecting ICU admission in COVID-19 patients; Could air temperature be an effective factor?

AIM: As the COVID-19 pandemic has been spreading rapidly all over the world, there are plenty of ongoing works to shed on light to unknown factors related to disease. One of the factors questioned is also to be the factors affecting the disease course. In this study, our aim is to determine the factors that affect the course of the disease in the hospitalised patients because of COVID-19 infection and to reveal whether the seasonal change has an effect on the disease course. METHODS: Our study was conducted on 1950 PCR test positive patients who were hospitalised for COVID-19 disease between March 16 and July 15. RESULTS: As the seasonal temperature increases, decrease in WBC, PLT and albumin levels and increase in LDH and AST levels were observed. Risk of need for ICU has been found statistically significant (P < .05) with the increase in the age, LDH levels and CRP levels and with the decrease in the Ca and Albumin levels. CONCLUSIONS: It is predicted with these results that, seasonal change might have affects on the clinical course of the disease, although it has no affect on the spread of the disease. And it might beneficial to check biochemical parameters such as LDH, CRP, Ca and Albumin to predict the course of the disease.

Role of emission controls in reducing the 2050 climate change penalty for PM(2.5) in China

Previous studies demonstrated that global warming can lead to deteriorated air quality even when anthropogenic emissions were kept constant, which has been called a climate change penalty on air quality. It is expected that anthropogenic emissions will decrease significantly in the future considering the aggressive emission control actions in China. However, the dependence of climate change penalty on the choice of emission scenario is still uncertain. To fill this gap, we conducted multiple independent model simulations to investigate the response of PM(2.5) to future (2050) climate warming (RCP8.5) in China but with different emission scenarios, including the constant 2015 emissions, the 2050 CLE emissions (based on Current Legislation), and the 2050 MTFR emissions (based on Maximum Technically Feasible Reduction). For each set of emissions, we estimate climate change penalty as the difference in PM(2.5) between a pair of simulations with either 2015 or 2050 meteorology. Under 2015 emissions, we find a PM(2.5) climate change penalty of 1.43 ?g m(-3) in Eastern China, leading to an additional 35,000 PM(2.5)-related premature deaths [95% confidence interval (CI), 21,000-40,000] by 2050. However, the PM(2.5) climate change penalty weakens to 0.24 ?g m(-3) with strict anthropogenic emission controls under the 2050 MTFR emissions, which decreases the associated PM(2.5)-related deaths to 17,000. The smaller MTFR climate change penalty contributes 14% of the total PM(2.5) decrease when both emissions and meteorology are changed from 2015 to 2050, and 24% of total health benefits associated with this PM(2.5) decrease in Eastern China. This finding suggests that controlling anthropogenic emissions can effectively reduce the climate change penalty on PM(2.5) and its associated premature deaths, even though a climate change penalty still occurs even under MTFR. Strengthened controls on anthropogenic emissions are key to attaining air quality targets and protecting human health in the context of future global climate change.

Seasonal dynamics of phlebotomine sand flies and autochthonous transmission of Leishmania infantum in high-altitude ecosystems in southern Spain

Leishmaniasis is a vector-borne disease transmitted by sand flies. A dozen species have been involved in the transmission of Leishmania infantum in the Mediterranean region. Climate change may alter sand fly distribution at particular altitudes and latitudes. The objective of this study was to interrogate the existence of stable populations of sand flies in high-altitude ecosystems and evaluate if these populations are enough to support autochthonous transmission of leishmaniasis. These altitudinal conditions can be found in Sierra Nevada (southern Spain). Therefore, we have determined the sand fly population dynamics in different biotopes located at elevations above 1,300 m a.s.l. and searched for evidence of leishmaniasis transmission. Five collecting sites above 1,300 m a.s.l. containing large livestock concentrations were selected. Sand flies were caught using CDC light traps from May to November, annually from 2008 to 2013, and these were morphologically identified. Association between sand fly density or presence and temperature/humidity was estimated by linear and logistic regression, respectively. Leishmania infantum detection in female sand flies was performed by PCR. Diagnosis of canine leishmaniasis (CanL) was carried out by indirect immunofluorescence and PCR. A total of 2,973 specimens of 5 sand fly species were collected from June to October. Phlebotomus perniciosus was the most frequent (100%), abundant (80.1%) and densest species (9.8 sand flies/trap). The minimum temperature on the day of capture was the most important variable factor for sand fly presence and P. perniciosus density. An increase in altitude showed a negative effect over the sand fly diversity and activity period, driving changes in seasonal dynamics similar to those reported by latitudinal changes. CanL prevalence was 23%, a similar rate to previous surveys carried out on randomly selected dogs from towns in southern Spain. A successful host-vector-pathogen network was found at this altitude characterised by 9.9% L. infantum infection rate in non-blood fed P. perniciosus and Phlebotomus ariasi females and high CanL prevalence that entails an increase in the leishmaniasis risk area driven by sand fly colonization.

Seasonal prediction of European summer heatwaves

Under the influence of global warming, heatwaves are becoming a major threat in many parts of the world, affecting human health and mortality, food security, forest fires, biodiversity, energy consumption, as well as the production and transportation networks. Seasonal forecasting is a promising tool to help mitigate these impacts on society. Previous studies have highlighted some predictive capacity of seasonal forecast systems for specific strong heatwaves such as those of 2003 and 2010. To our knowledge, this study is thus the first of its kind to systematically assess the prediction skill of heatwaves over Europe in a state-of-the-art seasonal forecast system. One major prerequisite to do so is to appropriately define heatwaves. Existing heatwave indices, built to measure heatwave duration and severity, are often designed for specific impacts and thus have limited robustness for an analysis of heatwave variability. In this study, we investigate the seasonal prediction skill of European summer heatwaves in the ECMWF System 5 operational forecast system by means of several dedicated metrics, as well as its added-value compared to a simple statistical model based on the linear trend. We are able to show, for the first time, that seasonal forecasts initialized in early May can provide potentially useful information of summer heatwave propensity, which is the tendency of a season to be predisposed to the occurrence of heatwaves.

Seasonal variation in submacular hemorrhages in retinal macroaneurysms and its disappearance in age-related macular degeneration

PURPOSE: To investigate whether previously reported seasonal variation and winter-dominant prevalence of acute massive submacular hemorrhages (SMHs) caused by age-related macular degeneration (AMD) disappeared, and those caused by retinal microaneurysms (RMAs) emerged. METHOD: The medical charts of 95 patients (95 eyes) with SMH caused by AMD and 76 patients (76 eyes) with SMH caused by RMAs in 2012-2019 were retrospectively reviewed. For each subject, the month of onset, the mean ambient temperature of that month were recorded. RESULTS: The monthly numbers of cases of SMHs caused by AMD from January to December were 6, 8, 4, 9, 7, 10, 9, 11, 7, 11, 3, and 10. No significant seasonal variation in the monthly incidence was identified (Roger’s R?=?1.89, p?=?0.39). The monthly numbers of SMHs caused by RMAs from January to December were 3, 11, 11, 8, 7, 8, 5, 5, 2, 4, 7, and 5. There was significant seasonal variation in the monthly incidence (Roger’s R?=?7.67, p?=?0.02). There was no significant correlation between the monthly incidence of SMHs caused by RMAs and mean ambient temperature. CONCLUSION: Our previous study conducted for cases obtained in 1998-2005 showed seasonal cyclic trend in the number of SMHs caused by AMD, with the peak in winter. However, that significant seasonal variation disappeared in 2012-2019 in the present study. Common usage of OCT devices and anti-VEGF drugs might be the reason for the lack of seasonal variation in the cases of SMH caused by AMD.

Seasonality of acute kidney injury in a tertiary hospital academic center: An observational cohort study

BACKGROUND: The aim of our study was to describe seasonal trends of acute kidney injury (AKI) and its relationship with weather conditions in a hospitalized population. METHODS: We retrospectively collected demographic (age, sex), clinical (ICD-9-CM codes of diagnosis discharge) and laboratory data (creatinine values) from the inpatient population admitted to Fondazione Policlinico Universitario A. Gemelli IRCCS between January 2010 and December 2014 with inclusion of all patients ?18?years with at least two values available for creatinine. The outcome of interest was AKI development, defined according to creatinine kinetics criteria. The exposures of interest were the months and seasons of the year; air temperature and humidity level were also evaluated. Log-binomial regression models adjusted for age, sex, eGFR, comorbidities, Charlson/Deyo index score, year of hospitalization were used to estimate risk ratios (RR) and 95% confidential intervals (CI). RESULTS: A total of 64,610 patients met the inclusion criteria. AKI occurred in 2864 (4.4%) hospital admissions. After full adjustment, winter period was associated with increased risk of AKI (RR 1.16, 95% CI 1.05, 1.29, p=0.003). Lower air temperature and higher humidity level were associated with risk of AKI, however in multivariable-adjusted models only higher humidity level showed a significant and independent association. CONCLUSIONS: AKI is one of the most common complications of hospitalized populations with a defined seasonal pattern and a significant increase in incidence during wintertime; weather conditions, particularly higher humidity level, are independent predictors of AKI and could partially justify the observed seasonal variations.

Seasonality of mortality under a changing climate: A time-series analysis of mortality in Japan between 1972 and 2015

BACKGROUND: Ambient temperature may contribute to seasonality of mortality; in particular, a warming climate is likely to influence the seasonality of mortality. However, few studies have investigated seasonality of mortality under a warming climate. METHODS: Daily mean temperature, daily counts for all-cause, circulatory, and respiratory mortality, and annual data on prefecture-specific characteristics were collected for 47 prefectures in Japan between 1972 and 2015. A quasi-Poisson regression model was used to assess the seasonal variation of mortality with a focus on its amplitude, which was quantified as the ratio of mortality estimates between the peak and trough days (peak-to-trough ratio (PTR)). We quantified the contribution of temperature to seasonality by comparing PTR before and after temperature adjustment. Associations between annual mean temperature and annual estimates of the temperature-unadjusted PTR were examined using multilevel multivariate meta-regression models controlling for prefecture-specific characteristics. RESULTS: The temperature-unadjusted PTRs for all-cause, circulatory, and respiratory mortality were 1.28 (95% confidence interval (CI): 1.27-1.30), 1.53 (95% CI: 1.50-1.55), and 1.46 (95% CI: 1.44-1.48), respectively; adjusting for temperature reduced these PTRs to 1.08 (95% CI: 1.08-1.10), 1.10 (95% CI: 1.08-1.11), and 1.35 (95% CI: 1.32-1.39), respectively. During the period of rising temperature (1.3?°C on average), decreases in the temperature-unadjusted PTRs were observed for all mortality causes except circulatory mortality. For each 1?°C increase in annual mean temperature, the temperature-unadjusted PTR for all-cause, circulatory, and respiratory mortality decreased by 0.98% (95% CI: 0.54-1.42), 1.39% (95% CI: 0.82-1.97), and 0.13% (95% CI: – 1.24 to 1.48), respectively. CONCLUSION: Seasonality of mortality is driven partly by temperature, and its amplitude may be decreasing under a warming climate.

Self-reported weather sensitivity is associated with clinical symptoms and structural abnormalities in patients with knee osteoarthritis: A cross-sectional study

INTRODUCTION: Patients with knee osteoarthritis (KOA) often complain about clinical symptoms affected by weather-related factors. The purpose of the present study was to use cross-sectional analysis to determine whether weather sensitivity was associated with clinical symptoms, as well as structure abnormalities, in KOA patients. METHODS: Data from 80 participants were obtained from the Feng Hans Shi Effects on OA (FHS) study, an OA cohort study initiated in China in 2015. The weather sensitivity of each participant was determined by a self-reported questionnaire. The following measurements were used to assess clinical outcomes: Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) for symptoms, and semi-quantitative Whole-Organ Magnetic Resonance Imaging Score (WORMS) for cartilage defects and marrow abnormalities of magnetic resonance imaging (MRI). Chi-square with Cochran-Armitage test for trend and regression analysis were used to evaluate the associations between weather sensitivity and WOMAC and WORMS of KOA patients. RESULTS: Most of the KOA participants (57.5%) perceived the weather as affecting their knee-joint clinical symptoms. After adjusting for age, gender, and body mass index (BMI), weather sensitivity was not only associated with knee pain [OR?=?3.3 (95% CI 1.1, 9.9), P?=?0.032], dysfunction [OR?=?5.5 (95% CI 1.8, 16.8), P?=?0.003], and overall clinical symptoms [OR?=?3.3 (95% CI 1.1, 10.2), P?=?0.034], but also associated with cartilage defect [OR?=?3.1 (95% CI 1.1, 8.5), P?=?0.027] and marrow abnormality [OR?=?3.0 (95% CI 1.1, 8.1), P?=?0.029]. CONCLUSIONS: In KOA patients, weather sensitivity was associated with clinical symptoms and structural abnormalities. Future longitudinal study is warranted for the causal relationship. INFOGRAPHIC.

Projected changes in the season of hot days in the Middle East and North Africa

The present study analyses changes in the timing and duration of the hot days season over the Middle East and North Africa region from 1970 to 2099 using model simulations of 11 regional models from the Coordinated Regional Climate Downscaling Experiment under the RCP8.5 scenario. In general, a non-symmetrical lengthening of the hot days season is projected, with a tendency to extend more into spring than into autumn. By the end of the century and the RCP8.5 scenario, Western Africa and the Persian Gulf display a hot days season starting 60 days earlier than in the historical period (1970-1999) (May vs. July, respectively). Southernmost latitudes are the most affected by a later retreat of the hot days season, of up to 60 days with respect to the historical period (October vs. August). The length of the extreme season is projected to increase between 100 and 120 days for the southernmost latitudes and the Persian Gulf resulting in nearly four more months with hot days conditions.

Projecting heat-related excess mortality under climate change scenarios in China

Recent studies have reported a variety of health consequences of climate change. However, the vulnerability of individuals and cities to climate change remains to be evaluated. We project the excess cause-, age-, region-, and education-specific mortality attributable to future high temperatures in 161 Chinese districts/counties using 28 global climate models (GCMs) under two representative concentration pathways (RCPs). To assess the influence of population ageing on the projection of future heat-related mortality, we further project the age-specific effect estimates under five shared socioeconomic pathways (SSPs). Heat-related excess mortality is projected to increase from 1.9% (95% eCI: 0.2-3.3%) in the 2010s to 2.4% (0.4-4.1%) in the 2030?s and 5.5% (0.5-9.9%) in the 2090?s under RCP8.5, with corresponding relative changes of 0.5% (0.0-1.2%) and 3.6% (-0.5-7.5%). The projected slopes are steeper in southern, eastern, central and northern China. People with cardiorespiratory diseases, females, the elderly and those with low educational attainment could be more affected. Population ageing amplifies future heat-related excess deaths 2.3- to 5.8-fold under different SSPs, particularly for the northeast region. Our findings can help guide public health responses to ameliorate the risk of climate change.

Projection of future temperature extremes, related mortality, and adaptation due to climate and population changes in Taiwan

Background: Extreme temperature events have been observed to appear more frequently and with greater intensity in Taiwan in recent decades due to climate change, following the global trend. Projections of temperature extremes across different climate zones and their impacts on related mortality and adaptation have not been well studied. Methods: We projected site-specific future temperature extremes by statistical downscaling of 8 global climate models followed by Bayesian model averaging from 2021 to 2060 across Taiwan under the representative concentration pathway (RCP) scenarios RCP2.6, RCP4.5, and RCP8.5. We then calculated the attributable mortality (AM) in 6 municipalities and in the eastern area by multiplying the city/county- and degree-specific relative risk of mortality according to the future population projections. We estimated the degree of adaptation to heat by slope reduction of the projected AM to be comparable with that in 2018. Results: The annual number of hot dayswithmean temperatures over 30 degrees C was predicted to have a substantial 2-to 5-fold increase throughout the residential areas of Taiwan by the end of 2060 under RCP8.5, whereas the decrease in cold days was less substantial. The decrease in cold-related mortality below 15 degrees C was projected to outweigh heat-related mortality for the next two decades, and then heat-related mortality was predicted to drastically increase and cross over cold-related mortality, surpassing it from 2045 to 2055. Adjusting for future population size, the percentage increase in heat-related deaths per 100,000 people could increase by more than 10-fold under the worst scenario (RCP8.5), especially for those over 65 years old. The heat-related impacts will be most severe in southern Taiwan, which has a tropical climate. There is a very high demand for heat-adaptation prior to 2050 under all RCP scenarios. Conclusions: Spatiotemporal variations in AM in cities in different climate zones are projected in Taiwan and are expected to have a net negative effect in the near future before shifting to a net positive effect from 2045 to 2055. However, there is an overall positive and increasing trend of net effect for elderly individuals under all the emission scenarios. Active adaptation plans need to bewell developed to face future challenges due to climate change, especially for the elderly population in central and southern Taiwan. (C) 2020 Elsevier B.V. All rights reserved.

Prolonged melatonin treatment promote testicular recovery by enhancing RAC1-mediated apoptotic cell clearance and cell junction-dependent spermatogensis after heat stress

INTRODUCTION: A decline in semen quality caused by global warming and torrid working conditions is a major cause of human male infertility, and heat stress-induced decreases in male reproductive ability results in economic losses in livestock husbandry. Increasing evidence suggests that melatonin exerts protective effects on stress-induced DNA damage and apoptosis in germ cells. However, few studies have assessed the effects of melatonin on testicular recovery during post-heat stress and the underlying mechanisms. METHODS AND RESULTS: In vivo studies using 8-week-old male CD-1 mice revealed that melatonin pretreatment (50 mg/kg for 5 days) did not alleviate heat stress-induced germ cell loss and disrupted testicular histomorphology, however, long-term melatonin administration after heat stress accelerated germ cell apoptosis, spermatogenic cell regeneration, and testicular weight recovery. In vitro studies demonstrated that melatonin enhanced RAC1 activity, resulting in increased phagocytosis of apoptotic germ cells by Sertoli cells. In addition, melatonin restored gap junctions and tight junctions after heat stress, thereby promoting hollow seminiferous tubule filling. DISCUSSION: Long-term melatonin administration accelerated testicular recovery after heat stress by enhancing the phagocytotic activity of Sertoli cells and the regeneration of spermatogenic cells. This finding suggests that melatonin is a potential therapeutic for heat stress-induced male infertility.

Prospective correlational time-series analysis of the influence of weather and air pollution on joint pain in chronic rheumatic diseases

OBJECTIVES: The primary objective was to evaluate the association between weather variables and joint pain in patients with chronic rheumatic diseases (CRD: rheumatoid arthritis (RA), osteoarthritis (OA), and spondyloarthritis (SpA)). A secondary objective was to study the impact of air pollution indicators on CRD pain. METHOD: The study is prospective, correlational, with time-series analysis. Patients with CRD, living in a predefined catchment area, filled their level of pain daily using a 0-10 numerical scale (NS), for 1 year. Weather (temperature, relative humidity (H), atmospheric pressure (P)) and air pollution indicators (particulate matters (PM(10), PM(2.5)), nitrogen dioxide (NO(2)), and ozone (O(3))) were recorded daily using monitoring systems positioned in the same area. Association between pain and weather and air pollution indicators was studied using Pearson’s correlation. Time-series analysis methodology was applied to determine the temporal relationship between pain and indicators. RESULTS: The study included 94 patients, 82% reported they were weather-sensitive. Pain variation was similar across diseases over a year. Pain was associated negatively with temperature, H, and O(3,) and positively with P and NO(2). However, the strength of correlation was moderate; temperature explained 22% of pain variance. A drop of 10°C in temperature corresponded to an increase of 0.5 points in pain NS. Also, there was a significant interaction among environmental factors. In time-series analysis, temperature and NO(2) remained independently associated with pain. CONCLUSIONS: The perception of joint pain in patients with CRD was correlated with weather and air pollution. The strength of association was moderate and independent of underlying disease. Key Points •Weather variation was moderately correlated with joint pain in chronic rheumatic diseases, with an inverse association with temperature, humidity, and O(3). • Air pollution indicators, mainly nitrogen dioxide and ozone, were correlated with joint pain; particulate matters were also correlated but to a lesser extent. • The influence of these environmental factors was independent of the type of rheumatic disease, thus raising the hypothesis of their impact on pain perception mechanisms.

Public support for urban climate adaptation policy through nature-based solutions in Prague

Climate change is an urgent challenge in urban planning. Weather extremes and resulting impacts such as heat waves and flash floods are already influencing the quality of life in cities and impact on infrastructure, human health and city life. In this study, we investigated perception of and economic preferences for adaptation to climate change in one of Europe’s capital cities to inform its planning policy. Through a choice experiment, we elicit the preferences of a sample (n = 550) from Prague, Czech Republic, for a citywide policy which would increase the use of six commonly used nature-based solutions (NBS) in public spaces and on public buildings across the city. Three attributes were used to describe this policy: (i) the locations where NBS would predominantly be implemented, (ii) the species diversity of these measures, and (iii) their implied costs for households. Our results showed that the NBS policy is widely supported by the public over the status quo and that this preference is mirrored in citizens’ concerns about climate change and the risks posed by heatwaves particularly. Species diversity matters in the portrayed scenarios, suggesting that (bio)diverse NBS generate additional public value over single species measures and that policy which targets biodiversity may gain support. Implementation of NBS in public spaces (e.g., street trees, rain gardens) is preferred over measures implemented on public buildings (green roofs and facades). Furthermore, adverse experiences with heatwaves has increased support for the policy. The presented results provide evidence that adaptation planning through NBS is likely to generate significant public value which is expected to increase with the intensifying effects of climate change.

Public transit infrastructure and heat perceptions in hot and dry climates

Many cities aim to progress toward their sustainability and public health goals by increasing use of their public transit systems. However, without adequate protective infrastructure that provides thermally comfortable conditions for public transit riders, it can be challenging to reach these goals in hot climates. We took micrometeorological measurements and surveyed riders about their perceptions of heat and heat-coping behaviors at bus stops with a variety of design attributes in Phoenix, AZ, USA, during the summer of 2018. We identified the design attributes and coping behaviors that made riders feel cooler. We observed that current infrastructure standards and material choices for bus stops in Phoenix are insufficient to provide thermal comfort, and can even expose riders to health risks. Almost half of the study participants felt hot or very hot at the time they were surveyed, and more than half reported feeling thermally uncomfortable. On average, shade reduced the physiological equivalent temperature (PET) by 19 °C. Moreover, we found significant diurnal differences in PET reductions from the shade provided by various design attributes. For instance, all design attributes were effective in reducing PET in the morning; however, a vegetated awning did not provide statistically significant shade reductions in the afternoon. Temperatures of sun-exposed surfaces of man-made materials exceeded skin burn thresholds in the afternoon, but shade was effective in bringing the same surfaces to safe levels. Aesthetically pleasing stops were rated as cooler than stops rated as less beautiful. We conclude that cities striving to increase public transit use should prioritize thermal comfort when designing public transit stops in hot climates.

Quantification of heat mitigation by urban green spaces using InVEST model-a scenario analysis of Nagpur City, India

Urban green spaces (UGS) are known for providing a cooling effect by evapotranspiration, shade, and by altering the albedo. Heat mitigation by UGS reduces the space cooling demand, provides comfort, and enhances productivity. Rapid urbanization in developing countries has resulted in dwindling green spaces and their protective role is often neglected. We have quantified the heat mitigation by UGS using the InVEST model (Integrated Valuation of Ecosystem Services and Trade-offs) for present and future scenarios of Nagpur City which is situated in a heatwave-affected zone. Four future plausible scenarios were generated with a combination of drivers-economic development and commitment to promoting UGS, using the two-axis scenario analysis method. The simulated UGS in each future scenario (by allowing 10% variation in the land use) is utilized for quantification of heat mitigation and energy conserved. In comparison with the present situation, 21-29% less space cooling energy is conserved in scenarios driven by economic development (least commitment to UGS), whereas 17% more energy is conserved when UGS are promoted. In similar lines, the average temperature is increased by 0.5-0.7 degrees C when UGS are neglected, while the temperature dropped by 0.5 degrees C when UGS are promoted in Nagpur City. The methodology presents an integration of scenario analysis with heat mitigation modeling which can enable urban planners and researchers to improve their understanding of the ecological structure of urban centers and can aid in appreciating the potential of UGS in heat mitigation for human wellbeing.

Quantifying the impact of heat on human physical work capacity; part III: The impact of solar radiation varies with air temperature, humidity, and clothing coverage

Heat stress decreases human physical work capacity (PWC), but the extent to which solar radiation (SOLAR) compounds this response is not well understood. This study empirically quantified how SOLAR impacts PWC in the heat, considering wide, but controlled, variations in air temperature, humidity, and clothing coverage. We also provide correction equations so PWC can be quantified outdoors using heat stress indices that do not ordinarily account for SOLAR (including the Heat Stress Index, Humidex, and Wet-Bulb Temperature). Fourteen young adult males (7 donning a work coverall, 7 with shorts and trainers) walked for 1 h at a fixed heart rate of 130 beats?min(-)1, in seven combinations of air temperature (25 to 45°C) and relative humidity (20 or 80%), with and without SOLAR (800 W/m(2) from solar lamps). Cumulative energy expenditure in the heat, relative to the work achieved in a cool reference condition, was used to determine PWC%. Skin temperature was the primary determinant of PWC in the heat. In dry climates with exposed skin (0.3 Clo), SOLAR caused PWC to decrease exponentially with rising air temperature, whereas work coveralls (0.9 Clo) negated this effect. In humid conditions, the SOLAR-induced reduction in PWC was consistent and linear across all levels of air temperature and clothing conditions. Wet-Bulb Globe Temperature and the Universal Thermal Climate Index represented SOLAR correctly and did not require a correction factor. For the Heat Stress Index, Humidex, and Wet-Bulb Temperature, correction factors are provided enabling forecasting of heat effects on work productivity.

Real-time forecasting and early warning of bacillary dysentery activity in four meteorological and geographic divisions in China

BACKGROUND: Accurate and timely forecasts of bacillary dysentery (BD) incidence can be used to inform public health decision-making and response preparedness. However, our ability to detect BD dynamics and outbreaks remains limited in China. OBJECTIVES: This study aims to explore the impacts of meteorological factors on BD transmission in four representative regions in China and to forecast weekly number of BD cases and outbreaks. METHODS: Weekly BD and meteorological data from 2014 to 2016 were collected for Beijing (Northern China), Shenyang (Northeast China), Chongqing (Southwest China) and Shenzhen (Southern China). A boosted regression tree (BRT) model was conducted to assess the impacts of meteorological factors on BD transmission. Then a real-time forecast and early warning model based on BRT was developed to track the dynamics of BD and detect the outbreaks. The forecasting methodology was compared with generalized additive model (GAM) and seasonal autoregressive integrated moving average model (SARIMA) that have been used to model the BD case data previously. RESULTS: Ambient temperature was the most important meteorological factor contributing to the transmission of BD (80.81%-92.60%). A positive effect of temperature was observed when weekly mean temperature exceeded 4 °C, -3 °C, 9 °C and 16 °C in Beijing (Northern China), Shenyang (Northeast China), Chongqing (Southwest China) and Shenzhen (Southern China), respectively. BD incidence (Beijing and Shenyang) in temperate cities was more sensitive to high temperature than that in subtropical cities (Chongqing and Shenzhen). The dynamics and outbreaks of BD can be accurately forecasted and detected by the BRT model. Compared to GAM and SARIMA, BRT model showed more accurate forecasting for 1-, 2-, 3-weeks ahead forecasts in Beijing, Shenyang and Shenzhen. CONCLUSIONS: Temperature plays the most important role in weather-attributable BD transmission. The BRT model achieved a better performance in comparison with GAM and SARIMA in most study cities, which could be used as a more accurate tool for forecasting and outbreak alert of BD in China.

Regional-level risk factors for severe hand-foot-and-mouth disease: An ecological study from mainland China

BACKGROUND: Severe hand-foot-and-mouth disease (HFMD) is a life-threatening contagious disease among young children and infants. Although enterovirus A71 has been well acknowledged to be the dominant cause of severe HFMD, there still remain other unidentified risk factors for severe HFMD. Previous studies mainly focused on identifying the individual-level risk factors from a clinical perspective, while rare studies aimed to clarify the association between regional-level risk factors and severe HFMD, which may be more important from a public health perspective. METHODS: We retrieved the clinical HFMD counts between 2008 and 2014 from the Chinese Center for Disease Control and Prevention, which were used to calculated the case-severity rate in 143 prefectural-level cities in mainland China. For each of those 143 cities, we further obtained city-specific characteristics from the China City Statistical Yearbook (social and economic variables) and the national meteorological monitoring system (meteorological variables). A Poisson regression model was then used to estimate the associations between city-specific characteristics (reduced by the principal component analysis to avoid multicollinearity) and the case-severity rate of HFMD. The above analysis was further stratified by age and gender to examine potential modifying effects and vulnerable sub-populations. RESULTS: We found that the case-severity rate of HFMD varied dramatically between cities, ranging from 0 to 8.09%. Cities with high case-severity rates were mainly clustered in Central China. By relating the case-severity rate to city-specific characteristics, we found that both the principal component characterized by a high level of social and economic development (RR = 0.823, 95%CI 0.739, 0.916) and another that characterized by warm and humid climate (RR = 0.771, 95%CI 0.619, 0.960) were negatively associated with the case-severity rate of HFMD. These estimations were consistent across age and gender sub-populations. CONCLUSION: Except for the type of infected pathogen, the case-severity rate of HFMD was closely related to city development and meteorological factor. These findings suggest that social and environmental factors may also play an important role in the progress of severe HFMD.

Potential overall heat exposure reduction associated with implementation of heat mitigation strategies in Los Angeles

We analyzed two historical extreme heat events in Los Angeles to explore the potential of increasing vegetative cover and surface solar reflectance (albedo) to reduce total exposure (indoor and outdoor) to dangerously hot conditions. We focus on three population subgroups, the elderly, office workers, and outdoor workers, and explore the extreme case where each subgroup does not have functioning air conditioning in their residences. For each heat event, we conducted atmospheric model simulations for a control case and four mitigation cases with varying levels of increased albedo and vegetation cover. Simultaneously, we conducted building simulations of representative residential buildings that lacked mechanical air conditioning. These simulations factored in both the indirect cooling effects associated with neighborhood implementation of mitigation strategies and the direct effects of high albedo roofing on the individual buildings. From both the atmospheric and building models, we exported hourly values of air temperature and dew point temperature, and used this information in combination with various scenarios of occupant behavior to create profiles of individual heat exposure. We also gathered heat-mortality data for the two heat events and developed a synoptic climatology-based relationship between exposure and excess mortality. This relationship was then applied to the scenarios in which albedo and canopy cover were increased. The results suggest that improvements in indoor thermal conditions are responsible for a sizable portion of the health benefit of large-scale implementation of heat mitigation strategies.

Perceptions and vulnerability to climate change among the urban poor in Kampala City, Uganda

Climate risks and vulnerability continue to disproportionately affect the urban poor given their constrained adaptive capacity. This paper examines the urban poor’s perceptions and vulnerability to climate change in Kampala. Data was collected from a proportionate sample of 534 respondents drawn from households that were randomly selected from the city’s informal settlements and interviewed using a structured questionnaire. Six focus group discussions and 15 key informant interviews were conducted whose participants were purposively selected because of their knowledge and experiences. Quantitative data was analyzed using chi-square tests while content analysis was used to analyze qualitative data from key informant interviews and focus group discussions. A total of 96.6% of the households were aware of climate change, mainly perceived as rising temperatures and reduction in rainfall. Floods (53.4%) and droughts (27%) were the most commonly experienced climate risks, with the former considered more frequent and severe. Perceptions and vulnerability to climate risk varied with incomes, education level, marital status, main occupation, housing conditions and length of stay. Individuals with less wealth and education, employed in informal business and having insecure housing tenure were most vulnerable to flooding than they are to drought. The sensitivity of the urban poor communities is heightened by ecosystem degradation, poor access to urban infrastructure, utilities and services. With socio-economic attributes highly associated to climate change vulnerabilities, incorporating social dimensions and exchange of information between the vulnerable communities, planners and decision makers is necessary to inform the city’s adaptation policy and building long-term urban resilience. Partnerships are necessary between the urban authorities, communities, civil society and donors/financiers to improve housing and livelihoods in slums settlements. At the same time, strengthening co-production of climate information services, building climate change awareness, restoration of critical ecosystems and a broader inclusive adaptation planning are avenues for building resilient urban poor communities.

Perceptions of heat-health impacts and the effects of knowledge and preventive actions by outdoor workers in Hanoi, Vietnam

Extreme heat is an increasing climate threat, most pronounced in urban areas where poor populations are at particular risk. We analyzed heat impacts and vulnerabilities of 1027 outdoor workers who participated in a KAP survey in Hanoi, Vietnam in 2018, and the influence of their mitigation actions, their knowledge of heat-risks, and access to early warnings. We grouped respondents by their main income (vendors, builders, shippers, others, multiple jobs, and non-working) and analyzed their reported heat-health impacts, taking into consideration socioeconomics, knowledge of heat impacts and preventive measures, actions taken, access to air-conditioning, drinking amounts and use of weather forecasts. We applied linear and logistic regression analyses using R. Construction workers were younger and had less knowledge of heat-health impacts, but also reported fewer symptoms. Older females were more likely to report symptoms and visit a doctor. Access to air-conditioning in the bedroom depended on age and house ownership, but did not influence heat impacts as cooling was too expensive. Respondents who knew more heat exhaustion symptoms were more likely to report impacts (p < 0.01) or consult a doctor (p < 0.05). Similarly, those who checked weather updates were more likely to report heat impacts (p < 0.01) and experienced about 0.6 more symptoms (p < 0.01). Even though occupation type did not explain heat illness, builders knew considerably less (40%; p < 0.05) about heat than other groups but were twice as likely to consult a doctor than street vendors (p < 0.01). Knowledge of preventive actions and taking these actions both correlated positively with reporting of heat-health symptoms, while drinking water did not reduce these symptoms (p < 0.01). Child carers and homeowners experienced income losses in heatwaves (p < 0.01). The differences support directed actions, such as dissemination of educational materials and weather forecasts for construction workers. The Red Cross assisted all groups with cooling tents, provision of drinks and health advice.

Physiological equivalent temperature (PET) and non-accidental, cardiovascular and respiratory disease mortality in Ahvaz, Iran

Climate change may be associated with human morbidity and mortality through direct and indirect effects. Ahvaz is one of the hottest cities in the world. The aim of this study was to investigate the relation between physiological Equivalent Temperature (PET) and non-accidental, cardiovascular and respiratory disease mortality in Ahvaz, Iran. Distributed Lag Non-linear Models (DLNM) combined with quasi-Poisson regression were used to investigate the effect of PET on death. The effect of time trend, air pollutants (NO(2), SO(2) and PM(10)), and weekdays were adjusted.The results showed that in cold stress [1st percentile of PET (2.7 °C) relative to 25th percentile (11.9 °C)] the risk of total respiratory mortality, respiratory mortality in men, and mortality in people under 65 year olds, significantly decreased in the cumulative lags of 0-2, 0-6 and 0-13; but the risk of respiratory mortality increased in the elderly and in the final lags. In contrast, heat stress [99th percentile of PET (44.9 °C) relative to 75th percentile (43.4 °C)] significantly increased the risk of total cardiovascular mortality (CVD), cardiovascular mortality in men, ischemic heart disease and cerebrovascular disease mortality in lags 0 and 0-2. It seems that high PET values increase the risk of cardiovascular mortality, while low PET values increase respiratory mortality only among the elderly in Ahvaz.

Physiological equivalent temperature (PET) index and respiratory hospital admissions in Ahvaz, southwest of Iran

Although Ahvaz is considered as one of the warmest cities around the world, few epidemiological studies have been conducted on the adverse effects of temperature on human health using thermal indices in this city. This study investigates the relation between physiologically equivalent temperature (PET) and respiratory hospital admissions in Ahvaz. Distributed lag non-linear models (DLNMs) combined with quasi-Poisson regression models were used to investigate the relation between PET and respiratory disease hospital admissions, adjusted for the effect of time trend, air pollutants (NO(2), SO(2), and PM(10)), and weekdays. The analysis was performed by utilizing R software. Low PET values significantly decreased the risk of hospital admissions for total respiratory diseases, respiratory diseases in men and women, chronic obstructive pulmonary diseases (COPD), and bronchiectasis. However, low PET (16.9°C) in all lags except lag 0-30 significantly increased the risk of hospital admissions for asthma. The results indicate that in Ahvaz, which has a warm climate, cold weather decreased overall respiratory hospital admissions, except for asthma.

Population exposure to compound dry and hot events in China under 1.5 and 2 degrees C global warming

Both droughts and hot extremes may exert critical impacts on human society, and their concurrence is no exception. Global warming is expected to increase the frequency and intensity of compound dry and hot events widely, the impacts of which will be particularly severe for sensitive and vulnerable sectors. However, projected risk and impact of compound dry and hot events in China are less assessed, especially in the context of the goals specified by the Paris Agreement in 2015. Here, we show an overall increased risk of compound dry and hot events on human health in China, particularly in eastern regions, for the two warming levels (1.5 and 2 degrees C) based on Coupled Model Intercomparison Project Phase 5 climate models. The population exposure to extreme compound dry and hot events is projected to increase by about 165.46% for the 1.5 degrees C warming and about 200.49% for the 2 degrees C warming compared with the exposure in the present period 1986-2005. These potential variations are driven by climate change and population change with climate effect being the dominantly positive contributor. These findings highlight the urgent need for more efforts to limit warming within 1.5 degrees C to reduce the risk of compound dry and hot events and associated impacts on human society.

Preconception ambient temperature and preterm birth: A time-series study in rural Henan, China

Changes in the preconception ambient temperature (PAT) can affect the gametogenesis, disturbing the development of the embryo, but the health risks of PAT on the developing fetus are still unclear. Here, based on the National Free Preconception Health Examination Project in the rural areas of Henan Province, we evaluate the effects of PAT on preterm birth (PTB). Data of 1,231,715 records from self-reported interviews, preconception physical examination, early gestation follow-up, and postpartum follow-up were collected from 1 January 2013 to 31 December 2016. Generalized additive models were used to assess the cumulative and lag effects of PAT upon PTB. The significant cumulative effects of mean temperature within 2 weeks and 3 weeks on the risk of PTB, especially upon late PTB (34-36 weeks) (P < 0.05), were observed. Exposure to extreme heat (> 90th percentile) within 2 weeks (RR = 1.470) and 3 weeks (RR = 1.375) before conception could increase the risk of PTB. After stratifying PTB, exposure to extreme heat within 2 weeks before conception can increase the risks of early (< 34 weeks) and late PTB (P < 0.05). Besides, exposure to extreme cold (< 10th percentile) within 3 weeks or longer before conception can elevate the risk of PTB, especially late PTB. The significant lag effects of temperature changes on the risk of early PTB (lag-8 days or earlier) were observed. In conclusion, the risk of PTB was susceptible to PAT changes within 2 weeks or longer before conception. Our findings provide (i) guidance for rural couples to make pregnancy plans and (ii) scientific evidence for the government to formulate policies to prevent PTB.

Predicting the Olea pollen concentration with a machine learning algorithm ensemble

Air pollution in large cities produces numerous diseases and even millions of deaths annually according to the World Health Organization. Pollen exposure is related to allergic diseases, which makes its prediction a valuable tool to assess the risk level to aeroallergens. However, airborne pollen concentrations are difficult to predict due to the inherent complexity of the relationships among both biotic and environmental variables. In this work, a stochastic approach based on supervised machine learning algorithms was performed to forecast the daily Olea pollen concentrations in the Community of Madrid, central Spain, from 1993 to 2018. Firstly, individual Light Gradient Boosting Machine (LightGBM) and artificial neural network (ANN) models were applied to predict the day of the year (DOY) when the peak of the pollen season occurs, resulting the estimated average peak date 149.1?±?9.3 and 150.1?±?10.8 DOY for LightGBM and ANN, respectively, close to the observed value (148.8?±?9.8). Secondly, the daily pollen concentrations during the entire pollen season have been calculated using an ensemble of two-step GAM followed by LightGBM and ANN. The results of the prediction of daily pollen concentrations showed a coefficient of determination (r(2)) above 0.75 (goodness of the model following cross-validation). The predictors included in the ensemble models were meteorological variables, phenological metrics, specific site-characteristics, and preceding pollen concentrations. The models are state-of-the-art in machine learning and their potential has been shown to be used and deployed to understand and to predict the pollen risk levels during the main olive pollen season.

No impact of weather conditions on the outcome of intensive care unit patients

Global warming leads to increased exposure of humankind to meteorological variation, including short-term weather changes. Weather conditions involve changes in temperature, heat and cold, in air pressure and in air humidity. Every single condition influences the incidence and mortality of different diseases such as myocardial infarction and stroke. This study investigated the impact of weather conditions on short- and long-term mortality of 4321 critically ill patients (66?±?14 years, 2638 men) admitted to an intensive care unit (ICU) over a period of 5 years. Meteorological information (air temperature, air pressure and humidity) for the same period was retrieved. The influence of absolute weather parameters, different seasons, sudden weather changes including “warm” and “cold” spells on ICU and long-term mortality was analyzed. After correction for Simplified Acute Physiology Score (SAPS-2), no impact of meteorological conditions on mortality was found. Different seasons, sudden weather changes, “warm spells” or “cold spells” did not affect the outcome of critically ill patients.

Non-linear relationships and interactions of meteorological factors on mumps in Jinan, China

Although vaccination is available, mumps remains a public health concern in many countries including China. Previous studies have indicated the impact of meteorological factors and mumps, but findings vary across different regions with limited evidence to inform local public health responses. We aim to examine the impacts of meteorological variables on mumps in Jinan, a temperate city of China, and explore the interactions of temperature with humidity or wind speed. Weekly meteorological data and notified cases of mumps in Jinan were collected for 2014-2018. Regression analyses using the generalized additive model were performed with considerations of multicollinearity, lag effects, school holidays, long-term trend, and seasonality. A stratification model was applied to investigate the interaction. We found a non-linear relationship between weekly mean temperature and the number of cases. Between 1.2 and 24.5 °C, the excess risk (ER) of mumps for a 1 °C increase in weekly mean temperature was 3.08% (95% CI 1.32 to 4.87%) at 0-week lag. The lagged effects could last for 3 weeks. There were interactions between mean temperature and relative humidity or wind speed. The effect of mean temperature was enhanced in days with low relative humidity or high wind speed. This study suggests that temperature is positively associated with mumps cases with thresholds in the temperate city of China, and the effect can be modified by relative humidity and wind speed and is independent of vaccine coverage. Findings could be integrated into current early warning systems of mumps in order to protect people’s health from the risk of changing climate.

Non-optimum temperature-related mortality burden in China: Addressing the dual influences of climate change and urban heat islands

Under the dual effects of climate change and urban heat islands (UHI), non-optimum temperature-related mortality burdens are complex and uncertain, and are rarely discussed in China. In this study, by applying city-specific exposure-response functions to multiple temperature and population projections under different climate and urbanization scenarios, we comprehensively assessed the non-optimum temperature-related mortality burdens in China from 2000 to 2050. Our results showed that temperature-related deaths will decrease from 1.19 million in 2010 to 1.08-1.17 million in 2050, with the exception of the most populous scenario. Excess deaths attributable to non-optimal temperatures under representative concentration pathway 8.5 (RCP8.5) were 2.35% greater than those under RCP4.5. This indicates that the surge in heat-related deaths caused by climate change will be offset by the reduction in cold-related deaths. As the climate changes, high-risk areas will be confronted with more severe health challenges, which requires health protection resource relocation strategies. Simultaneously, the net effects of UHIs are beneficial in the historical periods, preventing 3493 (95% CI: 22-6964) deaths in 2000. But UHIs will cause an additional 6951 (95% CI: -17,637-31,539, SSP4-RCP4.5) to 17,041 (95% CI: -10,516-44,598, SSP5-RCP8.5) deaths in 2050. The heavier health burden in RCP8.5 than RCP4.5 indicates that a warmer climate aggravates the negative effects of UHIs. Considering the synergistic behavior of climate change and UHIs, UHI mitigation strategies should not be developed without considering climate change. Moreover, the mortality burden exhibited strong spatial variations, with heavy burdens concentrated in the hotspots including Beijing-Tianjin Metropolitan Region, Yangtze River Delta, Chengdu-Chongqing City Group, Guangzhou, Wuhan, Xi’an, Shandong, and Henan. These hotspots should be priority areas for the allocation of the national medical resources to provide effective public health interventions.

Novel metrics for relating personal heat exposure to social risk factors and outdoor ambient temperature

A more precise understanding of individual-level heat exposure may be helpful to advance knowledge about heat-health impacts and effective intervention strategies, especially in light of projected increases in the severity and frequency of extreme heat events. We developed and interrogated different metrics for quantifying personal heat exposure and explored their association with social risk factors. To do so, we collected simultaneous personal heat exposure data from 64 residents of metropolitan Phoenix, Arizona. From these data, we derived five exposure metrics: Mean Individually Experienced Temperature (IET), Maximum IET, Longest Exposure Period (LEP), Percentage Minutes Above Threshold (PMAT), and Degree Minutes Above Threshold (DMAT), and calculated each for Day Hours, Night Hours, and All Hours of the study period. We then calculated effect sizes for the associations between those metrics and four social risk factors: neighborhood vulnerability, income, home cooling type, and time spent outside. We also investigated exposure misclassification by constructing linear regression models of observations from a regional weather station and hourly IET for each participant. Our analysis revealed that metric choice and timeframe added depth and nuance to our understanding of differences in exposure within and between populations. We found that time spent outside and income were the two risk factors most strongly associated with personal heat exposure. We also found evidence that Mean IET is a good, but perhaps not optimal, measure for assessing group differences in exposure. Most participants’ IETs were poorly correlated with regional weather station observations and the slope and correlation coefficient for linear regression models between regional weather station data and IETs varied widely among participants. We recommend continued efforts to investigate personal heat exposure, especially in combination with physiological indicators, to improve our understanding of links between ambient temperatures, social risk factors, and health outcomes.

Occupational heat exposure and breast cancer risk in the MCC-Spain study

BACKGROUND: Mechanisms linking occupational heat exposure with chronic diseases have been proposed. However, evidence on occupational heat exposure and cancer risk is limited. METHODS: We evaluated occupational heat exposure and female breast cancer risk in a large Spanish case-control study. We enrolled 1,738 breast cancer cases and 1,910 frequency-matched population controls. A Spanish job-exposure matrix, MatEmEsp, was used to assign estimates of the proportion of workers exposed (P ? 25% for at least 1 year) and work time with heat stress (wet bulb globe temperature ISO 7243) for each occupation. We used three exposure indices: ever versus never exposed, lifetime cumulative exposure, and duration of exposure (years). We estimated ORs and 95% confidence intervals (CI), applying a lag period of 5 years and adjusting for potential confounders. RESULTS: Ever occupational heat exposure was associated with a moderate but statistically significant higher risk of breast cancer (OR 1.22; 95% CI, 1.01-1.46), with significant trends across categories of lifetime cumulative exposure and duration (P (trend) = 0.01 and 0.03, respectively). Stronger associations were found for hormone receptor-positive disease (OR ever exposure = 1.38; 95% CI, 1.12-1.67). We found no confounding effects from multiple other common occupational exposures; however, results attenuated with adjustment for occupational detergent exposure. CONCLUSIONS: This study provides some evidence of an association between occupational heat exposure and female breast cancer risk. IMPACT: Our results contribute substantially to the scientific literature. Further investigations are needed considering multiple occupational exposures.

On the association between high outdoor thermo-hygrometric comfort index and severe ground-level ozone: A first investigation

According to the European Environment Agency, the year 2015 was the warmest on record to that point, with a series of heat waves from May to September resulted in high levels of tropospheric ozone. The implications of such a year on the human well-being and health are therefore of multiple nature and can be quantified referring to the exceedances of the corresponding thresholds. This work focused on the analysis of the May-September period of 2015 in the city of Milan (Italy) in terms of Mediterranean Outdoor Comfort Index (MOCI) and ozone concentrations, recorded by monitoring stations and modeled through the Weather Research and Forecasting model. Main findings show that thermo-hygrometric stress events (periods of at least six consecutive days characterized by daily maximum values of the MOCI higher than 0.5) are characterized by daily ozone higher than the guideline level of the World Health Organization (equal to 100 ?gm(-3)). This means that thermo-hygrometric stress conditions are added up to poor air quality conditions, with severe risks for human health. Moreover, a daily MOCI-daily ozone correlation coefficient equal to 0.6 was found for the whole period. The degree of correspondence between ozone events (defined according to the European Air Quality Directive) and MOCI events was also investigated pointing out that 86% and 95% of days during ozone events are correctly predicted by events of recorded and modeled MOCI respectively, with a corresponding false alarm rate of 3% and 9%.

Particulate matter 10 (PM(10)) is associated with epistaxis in children and adults

Schizophrenia (SCZ) hospital re-admissions constitute a serious disease burden worldwide. Some studies have reported an association between air pollutants and hospital admissions for SCZ. However, evidence is scarce regarding the effects of ambient particulate matter (PM) on SCZ hospital re-admissions, especially in coastal cities in China. The purpose of this study was to examine whether PM affects the risk of SCZ hospital re-admission in the coastal Chinese city of Qingdao. Daily SCZ hospital re-admissions, daily air pollutants, and meteorological factors from 2015 to 2019 were collected. A quasi-Poisson generalized linear regression model combined with distributed lag non-linear model (DLNM) was applied to model the exposure-lag-response relationship between PM and SCZ hospital re-admissions. The relative risks (RRs) were estimated for an inter-quartile range (IQR) increase in PM concentrations. Subgroup analyses by age and gender were conducted to identify the vulnerable subgroups. There were 6220 SCZ hospital re-admissions during 2015-2019. The results revealed that PM, including PM(10) (particles with an aerodynamic diameter ?10 ?m), PM(c) (particles >2.5 ?m but <10 ?m), and PM(2.5) (particles ?2.5 ?m), was positively correlated with SCZ hospital re-admissions. The strongest single-day effects all occurred on lag3 day, and the corresponding RRs were 1.07 (95% CI: 1.02-1.11) for PM(10), 1.03 (95% CI: 1.00-1.07) for PM(c), and 1.05 (95% CI: 1.01-1.09) for PM(2.5) per IQR increase. Stronger associations were observed in males and younger individuals (<45 years). Our findings suggest that PM exposure is associated with increased risk of SCZ hospital re-admission. Active intervention measures against PM exposure should be taken to reduce the risk of SCZ hospital re-admission, especially for males and younger individuals.

Patterns of extreme temperature-related catastrophic events in Europe including the Russian Federation: A cross-sectional analysis of the Emergency Events Database

OBJECTIVE: To investigate reported extreme temperature-related catastrophic events and associated mortality on the European continent including the Russian Federation. DESIGN: Cross-sectional respecting Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) criteria. SETTINGS: Data source: Emergency Events Database (EM-DAT). PARTICIPANTS: Search criteria: location-European continent including Russian Federation, time-years 1988 until 2019 (close of database 12 July 2019), catastrophic events-extreme temperatures. PRIMARY OUTCOME MEASURES: Numbers of heat waves, cold waves, severe winter conditions and associated number of deaths, overall, and per country and year, respecting STROBE criteria. RESULTS: The most frequent type of the 243 events recorded in EM-DAT were cold waves (54.7%). However, cold waves and severe winter conditions only accounted for 6460 deaths (4.5%), while heat waves were associated with 137?533 deaths (95.5%). The five most severe heat waves in 2003, 2006, 2010, 2013 and 2015 were associated with a total of 135?089 deaths. The most severe heat waves were geographically distributed over the Russian Federation (2010), as well as France, Italy, Spain and Germany, each in 2003. CONCLUSION: Although cold waves are more frequently reported in EM-DAT, heat waves are the major cause for temperature-related deaths. In order to better protect the public, it is important to address resiliency and vulnerability of populations at risk and age groups.

Mortality and thermal environment (UTCI) in Poland-long-term, multi-city study

The aim of the study was to establish to what extent extreme thermal conditions have changed and how they affected mortality, and what conditions favor lower mortality rates or conversely, higher mortality rates. Heat/cold exposure was measured with the Universal Thermal Climate Index (UTCI). Daily mortality and meteorological data for 8 large Polish cities (Bia?ystok, Gda?sk, Kraków, Lublin, ?ód?, Pozna?, Warszawa, and Wroc?aw) in the period 1975-2014 were analyzed. Generalized additive models were used to investigate the relationship between UTCI and mortality, and TBATS models were used for the evaluation of time series UTCI data. Most of the cities experienced a clear and statistically significant at p???0.05 decrease in cold stress days of 0.8-3.3 days/year and an increase in the frequency of thermal heat stress days of 0.3-0.6 days/year until 1992-1994. There was a clear difference as regards the dependence of mortality on UTCI between cities located in the “cooler” eastern part of Poland and the “warmer” central and western parts. “Cool” cities were characterized by a clear thermal optimum, approx. in the range of 5-30 °C UTCI, changing slightly depending on cause of death, age, or sex. For UTCI over 32 °C, in most of the cities except Gda?sk and Lublin, the relative risk of death (RR) rose by 10 to 20%; for UTCI over 38 °C, RR rose to 25-30% in central Poland. An increase in mortality on cold stress days was noted mainly in the “cool” cities: RR of total mortality increased even by 9-19% under extreme cold stress.

Modeling the impact of weather conditions on pedestrian injury counts using LASSO-based Poisson model

Statistical models for measuring the impact of adverse weather conditions on pedestrian injuries are of great importance for enhancing road safety measures. The development of these models in the presence of high collinearity among the weather conditions poses a real challenge in practice. The collinearity among these conditions may result in underestimation of the regression coefficients of the regression model, and hence inconsistency regarding the impact of the weather conditions on the pedestrian injuries counts. This paper presents a methodology through which the penalization-based regression is applied to model the impact of weather conditions on pedestrian injury in the presence of a high level of collinearity among these conditions. More specifically, the methodology integrates both the least absolute shrinkage squared operator (Lasso) with the cross-validation approach. The statistical performance of the proposed methodology is assessed through an analytical comparison involving the standard Poisson regression, Poisson generalized linear model (Poisson-GzLM), and Ridge penalized regression model. The mean squared error (MSE) was used as a criterion of comparison. In terms of the MSE, the Lasso-based Poisson generalized linear model (Lasso-GzLM) revealed an advantage over the other regression models. Moreover, the study revealed that weather conditions involved in this study are of insignificant impact on pedestrian injury counts.

Modelling of temperature-attributable mortality among the elderly in Lisbon metropolitan area, Portugal: A contribution to local strategy for effective prevention plans

Epidemiological studies on the impact of determining environmental factors on human health have proved that temperature extremes and variability constitute mortality risk factors. However, few studies focus specifically on susceptible individuals living in Portuguese urban areas. This study aimed to estimate and assess the health burden of temperature-attributable mortality among age groups (0-64 years; 65-74 years; 75-84 years; and 85+ years) in Lisbon Metropolitan Area, from 1986-2015. Non-linear and delayed exposure-lag-response relationships between temperature and mortality were fitted with a distributed lag non-linear model (DLNM). In general, the adverse effects of cold and hot temperatures on mortality were greater in the older age groups, presenting a higher risk during the winter season. We found that, for all ages, 10.7% (95% CI: 9.3-12.1%) deaths were attributed to cold temperatures in the winter, and mostly due to moderately cold temperatures, 7.0% (95% CI: 6.2-7.8%), against extremely cold temperatures, 1.4% (95% CI: 0.9-1.8%). When stratified by age, people aged 85+ years were more burdened by cold temperatures (13.8%, 95% CI: 11.5-16.0%). However, for all ages, 5.6% of deaths (95% CI: 2.7-8.4%) can be attributed to hot temperatures. It was observed that the proportion of deaths attributed to exposure to extreme heat is higher than moderate heat. As with cold temperatures, people aged 85+ years are the most vulnerable age group to heat, 8.4% (95% CI: 3.9%, 2.7%), and mostly due to extreme heat, 1.3% (95% CI: 0.8-1.8%). These results provide new evidence on the health burdens associated with alert thresholds, and they can be used in early warning systems and adaptation plans.

Modelling temperature extremes in the Limpopo province: Bivariate time-varying threshold excess approach

A common problem that arises in extreme value theory when dealing with several variables (such as weather or meteorological) is to find an appropriate method to assess their joint or conditional multivariate extremal dependence behaviour. The method for choosing an appropriate threshold in peaks-over threshold approach is also another problem of endless debate. In this era of climate change and global warming, extreme temperatures accompanied by heat waves and cold waves pose serious economic and health challenges particularly in small economies or developing countries like South Africa. The present study attempts to address these problems, in particular, to deal with and capture dependencies in extreme values of two variables, by applying bivariate conditional extremes modelling with a time-varying threshold to Limpopo province’s monthly maximum temperature series. Limpopo and North West provinces are the two hottest provinces in South Africa characterised by heat waves and the present study is carried out in the Limpopo province at Mara, Messina, Polokwane and Thabazimbi meteorological stations for the period 1994-2009. With the aim to model extremal dependence of maximum temperature at these four meteorological stations, two modelling approaches are applied: bivariate conditional extremes model and time-varying threshold. The latter approach was used to capture the climate change effects in the data. The main contribution of this paper is in combining these two approaches in bivariate extremal dependence modelling of maximum temperature extremes in the Limpopo province of South Africa. The findings of the study revealed both significant positive and negative extremal dependence in some pairs of meteorological stations. Among the major findings were the significant strong positive extremal dependence of Thabazimbi on high-temperature values at Mara and the strong negative extremal dependence of Polokwane on high-temperature values at Messina. The findings of this study play an important role in revealing information useful to meteorologists, climatologists, agriculturalists, and planners in the energy sector among others.

Modelling the influence of short-term climate variability on drinking water quality in tropical developing countries: A case study in Tanzania

Climate change is expected to increase the prevalence of water-borne diseases especially in developing countries. Climate-resilient drinking water supplies are critical to protect communities from faecal contamination and thus against increasing disease risks. However, no quantitative assessment exists for the impacts of short-term climate variability on faecal contamination at different drinking water sources in developing countries, while existing understanding remains largely conceptual. This critical gap limits the ability to predict drinking water quality under climate change or to recommend climate-resilient water sources for vulnerable communities. This study aims to provide such quantitative understanding by investigating the relationships between faecal contamination and short-term climate variability across different types of water sources. We collected a novel dataset with over 20 months’ monitoring of weather, Escherichia coli (E. coli) and total coliforms, at 233 different water sources in three climatically different regions in Tanzania. We then took a rigorous statistical analysis with Bayesian hierarchical models, to relate both contamination occurrence and amount to climate variability. The model results explained the temporal variability in drinking water faecal contamination using climate predictors, and also revealed the climate sensitivity of faecal contamination for individual water sources. We found that: a) short-term climate variability and baseline contamination levels can explain about half the observed variability in faecal contamination (R(2) ? 0.44); b) increased contamination was most consistently related to recent heavy rainfall and high temperature across different water sources; c) unimproved water sources such as the unprotected dug wells have substantially higher climate sensitivity. Based on these results, we can expect substantial increases in drinking water contamination risks across tropical Sub-Saharan Africa and South-East Asian developing countries under a warmer climate, which highlight the urgent need of protecting vulnerable communities from the severe climate impacts.

Modelling the interplay of future changes and wastewater management measures on the microbiological river water quality considering safe drinking water production

Rivers are important for drinking water supply worldwide. However, they are often impacted by pathogen discharges via wastewater treatment plants (WWTP) and combined sewer overflows (CSO). To date, accurate predictions of the effects of future changes and pollution control measures on the microbiological water quality of rivers considering safe drinking water production are hindered due to the uncertainty of the pathogen source and transport variables. The aim of this study was to test an integrative approach for an improved understanding of these effects, i.e. climate change and population growth as well as enhanced treatment at WWTPs and/or prevention of CSOs. We applied a significantly extended version of QMRAcatch (v1.0 Python), a probabilistic-deterministic model that combines fate and transport modelling with quantitative microbial infection risk assessment. The impact of climatic changes until the period 2035-2049 was investigated by a conceptual semi-distributed hydrological model, based on regional climate model outputs. QMRAcatch was calibrated and validated using site- and source-specific data (human-associated genetic microbial source tracking marker and enterovirus). The study showed that the degree to which future changes affect drinking water safety strongly depends on the type and magnitude of faecal pollution sources and are thus highly site- and scenario-specific. For example, if the load of pathogens from WWTPs is reduced through enhanced treatment, climate-change driven increases in CSOs had a considerable impact. Preventing CSOs and installing enhanced treatment at the WWTPs together had the most significant positive effect. The simultaneous consideration of source apportionment and concentrations of reference pathogens, focusing on human-specific viruses (enterovirus, norovirus) and cross-comparison with bacterial and protozoan pathogens (Campylobacter, Cryptosporidium), was found crucial to quantify these effects. While demonstrated here for a large, wastewater-impacted river, the approach is applicable at other catchments and pollution sources. It allows assessing future changes and selecting suitable pollution control measures for long-term water safety planning.

Modelling the present and future distribution of Biomphalaria species along the watershed of the Middle Paranapanema region, São Paulo, Brazil

The Middle Paranapanema region in the state of São Paulo, Brazil, is an area with high diversity for Biomphalaria species, with municipalities historically marked by cases of schistosomiasis transmission. The objectives of the study were to evaluate the current distribuition and predict the future distribution of habitats of Biomphalaria species at a high spatial resolution along 114 freshwater sites in the Middle Paranapanema watershed. The modelling encompassed 55 municipalities of the Middle Paranapanema region, which were analyzed through the maximum entropy algorithm. All geographic coordinates of the Biomphalaria species collected from 2015-2018 and environmental data were obtained through WorldClim, HydroSHEDS, TOPODATA and Secretaria do Meio Ambiente for the 1970-2017 period. For the 2041-2060 period we used the HadGEM2-ES climate model. Due to climate change, MaxEnt showed that there was a high probability for the maintenance of B. glabrata habitats near Ourinhos and Assis, an expansion of scattered spots, and a 50% probability that the species will spread throughout new suitable areas. The results showed that the geographical range of B. straminea will most likely expand in the future along the Middle Paranapanema hydrographic basin, especially in the municipalities near Ourinhos. For B. glabrata and B. straminea, the geographic expansion was related to the predicted increase in the annual temperature range. The habitats suitable for B. tenagophila and B. peregrina seemed to slightly expand around the west border of the Middle Paranapanema region. Biomphalaria occidentalis may have a small reduction in its distribution due to climate change. The variables that contributed the most to the future modelling for these three species were precipitation and temperature. Identifying the sites with intermediate hosts for schistosomiasis may guide public health measures to avoid or reduce future transmissions in this region.

Mortality and excess mortality: Improving FluMOMO

FluMOMO is a universal formula to forecast mortality in 27 European countries and was developed on EuroMOMO context, http://www.euromomo.eu. The model has a trigonometric baseline and considers any upwards deviation from that to come from flu or extreme temperatures. To measure it, the model considers two variables: influenza activity and extreme temperatures. With the former, the model gives the number of deaths because of flu and with the latter the number of deaths because of extreme temperatures. In this article, we show that FluMOMO lacks important variables to be an accurate measure of all-cause mortality and flu mortality. Indeed, we found, as expected, that population ageing and exposure to the risk of death cannot be excluded from the linear predictor. We model weekly deaths as an autoregressive process (lag of one together with a lead of one week). This step allowed us to avoid FluMOMO trigonometric baseline and have a fit to weekly deaths through demographic variables. Our model uses data from Portugal between 2009 and 2020, on ISO-week basis. We use negative binomial-generalized linear models to estimate the weekly number of deaths as an alternative to traditional overdispersion Poisson. As explanatory variables were found to be statistically significant, we registered the number of deaths from the previous week, the influenza activity index, the population average age, the heat waves, the flu season, the number of deaths with COVID-19, and the population exposed to the risk of dying. Considering as excess mortality the number of deaths above the best estimate of deaths from our model, we conclude that excess mortality in 2020 (net of COVID-19 deaths, heat wave of July, and ageing) is low or inexistent. The model also allows us to have the number of deaths arising from flu and we conclude that FluMOMO is overestimating deaths from flu by 78%. Averages from the probability of dying are obtained as well as the probability of dying from flu. The latter is shown to be decreasing over time, probably due to the increase of flu vaccination. Higher mortality detected with the start of COVID-19, in March-April 2020, was probably due to COVID-19 deaths not recognized as COVID-19 deaths.

Mortality attributable to heat and cold among the elderly in Sofia, Bulgaria

Although a number of epidemiological studies have examined the effects of non-optimal temperatures on mortality in Europe, evidence about the mortality risks associated with exposures to hot and cold temperatures in Bulgaria is scarce. This study provides evidence about mortality attributable to non-optimal temperatures in adults aged 65 and over in Sofia, Bulgaria, between 2000 and 2017. We quantified the relationship between the daily mean temperature and mortality in the total elderly adult population aged 65 and over, among males and females aged 65 and over, as well as individuals aged 65-84 and 85 years or older. We used a distributed lag non-linear model with a 25-day lag to fully capture the effects of both cold and hot temperatures and calculated the fractions of mortality attributable to mild and extreme hot and cold temperatures. Cold temperatures had a greater impact on mortality than hot temperatures during the studied period. Most of the temperature-attributable mortality was due to moderate cold, followed by moderate heat, extreme cold, and extreme heat. The total mortality attributable to non-optimal temperatures was greater among females compared to males and among individuals aged 85 and over compared to those aged 65 to 84. The findings of this study can serve as a foundation for future research and policy development aimed at characterizing and reducing the risks from temperature exposures among vulnerable populations in the country, climate adaptation planning and improved public health preparedness, and response to non-optimal temperatures.

Mortality burden caused by diurnal temperature range: A nationwide time-series study in 364 Chinese locations

Several studies have investigated the associations between diurnal temperature rage (DTR) and mortality, but little evidence has been available regarding the association of DTR with years of life lost (YLL). The aim of this study was to examine the association of DTR with YLL rate, and quantify life loss per death caused by DTR in China. Daily meteorological and death data were collected from 364 locations in China during 2006-2017. First, we calculated daily YLL rate. Then, the distributed lag nonlinear model was applied to estimate the associations of DTR with YLL rate in each location, and multivariable meta-analysis was conducted to pool the location-specific estimates. Finally, we calculated the attributable fractions of DTR on YLL rate and average life loss per death to estimate the mortality burden caused by DTR. Subgroups analyses were conducted by region, age, sex and cause of death. A J-shaped association of DTR with YLL rate was identified in China. The minimum YLL-rate DTR (MYDTR) was 3.7 degrees C nationwide. The overall AF of DTR in China was 6.40% [95% confidence interval (CI) 3.95-8.86%], and AFs caused by DTR were higher in females, the elderly and south China. An average of 0.96 years (95%CI 0.57-1.35) life loss per death was attributable to DTR nationwide, and life losses per death attributed to DTR were higher in female, young population, and south China. AF and life loss per death caused by DTR were much higher in cold season than that in warm season. Both high DTR and low DTR increased YLL rate in China. Mortality burdens of DTR were much higher in cold season than warm season. The effects of DTR were modified by region, demography and cause of death. Our findings suggest that vulnerable population should be protected when daily temperature change rapidly, especially in cold season.

Mortality risk from respiratory diseases due to non-optimal temperature among Brazilian elderlies

Over the past decade, Brazil has experienced and continues to be impacted by extreme climate events. This study aims to evaluate the association between daily average temperature and mortality from respiratory disease among Brazilian elderlies. A daily time-series study between 2000 and 2017 in 27 Brazilian cities was conducted. Data outcomes were daily counts of deaths due to respiratory diseases in the elderly aged 60 or more. The exposure variable was the daily mean temperature from Copernicus ERA5-Land reanalysis. The association was estimated from a two-stage time series analysis method. We also calculated deaths attributable to heat and cold. The pooled exposure-response curve presented a J-shaped format. The exposure to extreme heat increased the risk of mortality by 27% (95% CI: 15-39%), while the exposure to extreme cold increased the risk of mortality by 16% (95% CI: 8-24%). The heterogeneity between cities was explained by city-specific mean temperature and temperature range. The fractions of deaths attributable to cold and heat were 4.7% (95% CI: 2.94-6.17%) and 2.8% (95% CI: 1.45-3.95%), respectively. Our results show a significant impact of non-optimal temperature on the respiratory health of elderlies living in Brazil. It may support proactive action implementation in cities that have critical temperature variations.

Multi-hazard climate risk projections for the United States

Climate risk is a consequence of climate hazards, exposure, and the vulnerability (IPCC 2014). Here, we assess future (2040-2049) climate risk for the entire contiguous US at the county level with a novel climate risk index integrating multiple hazards, exposures and vulnerabilities. Future, weather and climate hazards are characterized as frequency of heat wave, cold spells, dryer, and heavy precipitation events along with anomalies of temperature and precipitation using high resolution (4 km) downscaled climate projections. Exposure is characterized by projections of population, infrastructure, and built surfaces prone to multiple hazards including sea level rise and storm surges. Vulnerability is characterized by projections of demographic groups most sensitive to climate hazards. We found Florida, California, the central Gulf Coast, and North Atlantic at high climate risk in the future. However, the contributions to this risk vary regionally. Florida is projected to be equally hard hit by the three components of climate risk. The coastal counties in the Gulf states of Louisiana, Texas, Mississippi and Alabama are at high climate risk due to high exposure and hazard. High exposure and vulnerability drive high climate risk in California counties. This approach can guide planners in targeting counties at most risk and where adaptation strategies to reduce exposure or protect vulnerable populations might be best applied.

Nature-based cooling potential: A multi-type green infrastructure evaluation in Toronto, Ontario, Canada

The application of green infrastructure presents an opportunity to mitigate rising temperatures using a multi-faceted ecosystems-based approach. A controlled field study in Toronto, Ontario, Canada, evaluates the impact of nature-based solutions on near surface air temperature regulation focusing on different applications of green infrastructure. A field campaign was undertaken over the course of two summers to measure the impact of green roofs, green walls, urban vegetation and forestry systems, and urban agriculture systems on near surface air temperature. This study demonstrates that multiple types of green infrastructure applications are beneficial in regulating near surface air temperature and are not limited to specific treatments. Widespread usage of green infrastructure could be a viable strategy to cool cities and improve urban climate.

Near-term regional climate change over Bangladesh

Bangladesh stands out as a climate change hot spot due to its unique geography, climate, high population density, and limited adaptation capacity. Mounting evidence suggests that the country is already suffering from the effects of climate change which may get worse without aggressive action. Here, we use an ensemble of high-resolution (10 km) regional climate model simulations to project near-term change in climate extremes, mainly heat waves and intense rainfall, for the period (2021–2050). Near-term climate projections represent a valuable input for designing sound adaptation policies. Our climate projections suggest that heatwaves will become more frequent and severe in Bangladesh under the business-as-usual scenario (RCP8.5). In particular, extremes of wet-bulb temperature (a temperature and humidity metric important in evaluating humid heat stress) in the western part of Bangladesh including Bogra, Ishurdi, and Jessore are likely to exceed the extreme danger threshold (according to U.S. National Weather Service criterion), which has rarely been observed in the current climate. The return periods of extreme heat waves are also significantly shortened across the country. In addition, country-averaged rainfall is projected to increase by about 6% during the summer months, with the largest increases (above 10%) in the eastern mountainous areas, such as Sylhet and Chittagong. Meanwhile, insignificant changes in extreme rainfall are simulated. Our results suggest that Bangladesh is particularly susceptible to climate extremes in the near future, in the form of extreme heat waves over the western part of the country.

Low ambient temperature increases hospital re-admissions for systemic lupus erythematosus in humid subtropical region: A time series study

Currently, the correlation between ambient temperature and systemic lupus erythematosus (SLE) hospital admissions remains not determined. The aim of this study was to explore the correlation between ambient temperature and SLE hospital admissions in Hefei City, China. An ecological study design was adopted. Daily data on SLE hospital admissions in Hefei City, from January 1, 2007, to December 31, 2017, were obtained from the two largest tertiary hospitals in Hefei, and the daily meteorological data at the same period were retrieved from China Meteorological Data Network. The generalized additive model (GAM) combined with distributed lag nonlinear model (DLNM) with Poisson link was applied to evaluate the influence of ambient temperature on SLE hospital admissions after controlling for potential confounding factors, including seasonality, relative humidity, day of week, and long-term trend. There were 1658 SLE hospital admissions from 2007 to 2017, including 370 first admissions and 1192 re-admissions (there were 96 admissions with admission status not stated). No correlation was observed between ambient temperature and SLE first admissions, but a correlation was found between low ambient temperature and SLE re-admissions (RR: 2.53, 95% CI: 1.11, 5.77) (3.5 °C vs 21 °C). The effect of ambient temperature on SLE re-admissions remained for 2 weeks but disappeared in 3 weeks. Exposure to low ambient temperature may increase hospital re-admissions for SLE, and thus it is important for SLE patients to maintain a warm living environment and avoid exposure to lower ambient temperature.

Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management

Heat waves (HWs) and urban heat islands (UHIs) can potentially interact. The mechanisms behind their synergy are not fully disclosed. Starting from the localized UHI phenomenon, this study aims i) to reveal their associated impacts on human thermal comfort through three different definitions of HW events, based on air temperature (airT), wet-bulb globe temperature (WBGT) and human-perceived temperature (AppT) respectively, and ii) to understand the role of air moisture and wind. The analysis was conducted in four districts (NH, JD, MH and XJH) with different urban development patterns and geographic conditions, in the megacity of Shanghai with a subtropical humid climate. Results evidenced the localized interplay between HWs and UHIs. The results indicate that less urbanized districts were generally more sensitive to the synergies. JD district recorded the highest urban heat island intensity (UHII) amplification, regardless of the specific HW definition. Notably, during AppT-HWs, the increment was observed in terms of maximum (1.3 °C), daily average (0.8 °C), diurnal (0.4 °C) and nocturnal UHII (1.0 °C). Nevertheless, localized synergies between HWs and UHIs at different stations also exhibited some commonalities. Under airT-HW, the UHII was amplified throughout the day at all stations. Under WBGT-HW, diurnal UHII (especially at 11:00-17:00 LST) was consistently amplified at all stations. Under AppT-HW conditions, the nocturnal UHII was slightly amplified at all stations. Air moisture and wind alleviated the synergistic heat exacerbation to the benefit of thermal comfort. The extent depended on geographic condition, diurnal and nocturnal scenarios, temperature type and HW/normal conditions. Stronger HW-UHI synergies indicate the necessity to develop specific urban heat emergency response plans, able to capture and intervene on the underlying mechanisms. This study paves to way to their identification.

Long-term changes in hazardous heat and cold stress in humans: Multi-city study in Poland

Significant changes in climate variables in the last decades resulted in changes of perceived climate conditions. However, there are only few studies discussing long-lasting changes in bioclimatic conditions. Thus, the purpose of this paper is to present the temporal and spatial distribution of hazardous heat and cold stress conditions in different regions of Poland. Its focus is on long-lasting changes in such conditions in the period 1951-2018. To assess changes in hazardous thermal stress conditions, the Universal Thermal Climate Index (UTCI) was used. UTCI values at 12 UTC hour (respectively 1 pm winter time, 2 pm summer time) were calculated daily based on air temperature, relative humidity, total cloud cover and wind speed at 24 stations representing the whole area of Poland. We found that the greatest changes were observed in minimum (1.33 °C/10 years) and average (0.52 °C/10 years) UTCI values as well as in cold stress frequency (- 4.00 days per 10 years). The changes vary seasonally and regionally. The greatest increase in UTCImin and decrease in cold stress days were noted from November to March and had the highest values in north-east and east Poland, and also in the foothills of the Carpathian Mountains. The trends in maximum UTCI are much smaller and not always positive. The spatially averaged trend in UTCImax for Poland as a whole was 0.35 °C/10 years and the increase in heat stress days was 0.80 days/10 years. The highest increases in UTCImax and heat stress days were noted in eastern and south-eastern Poland.

Long-term exposure to ambient temperature and mortality risk in China: A nationwide study using the difference-in-differences design

The short-term effects of ambient temperature on mortality have been widely investigated. However, the epidemiological evidence on the long-term effects of temperature on mortality is rare. In present study, we conducted a nationwide quasi-experimental design, which based on a variant of difference-in-differences (DID) approach, to examine the association between long-term exposure to ambient temperature and mortality risk in China, and to analyze the effect modification of population characteristics and socioeconomic status. Data on mortality were collected from 364 communities across China during 2006-2017, and environmental data were obtained for the same period. We estimated a 2.93 % (95 % CI: 2.68 %, 3.18 %) increase in mortality risk per 1 °C decreases in annual temperature, the greater effects were observed on respiratory diseases (5.16 %, 95 % CI: 4.53 %, 5.79 %) than cardiovascular diseases (3.43 %, 95 % CI: 3.06 %, 3.80 %), and on younger people (4.21 %, 95 % CI: 3.73 %, 4.68 %) than the elderly (2.36 %, 95 % CI: 2.06 %, 2.65 %). In seasonal analysis, per 1 °C decreases in average temperature was associated with 1.55 % (95 % CI: 1.23 %, 1.87 %), -0.53 % (95 % CI: -0.89 %, -0.16 %), 2.88 % (95 % CI: 2.45 %, 3.31 %) and 4.21 % (95 % CI: 3.98 %, 4.43 %) mortality change in spring, summer, autumn and winter, respectively. The effects of long-term temperature on total mortality were more pronounced among the communities with low urbanization, low education attainment, and low GDP per capita. In total, the decrease of average temperature in summer decreased mortality risk, while increased mortality risk in other seasons, and the associations were modified by demographic characteristics and socioeconomic status. Our findings suggest that populations with disadvantaged characteristics and socioeconomic status are vulnerable to long-term exposure of temperature, and targeted policies should be formulated to strengthen the response to the health threats of temperature exposure.

Long-term temperature variability and the incidence of cardiovascular diseases: A large, representative cohort study in China

In the context of global climate change, far less is known about the impact of long-term temperature variability (TV), especially in developing countries. The current study aimed to estimate the effect of long-term TV on the incidence of cardiovascular disease (CVD) in China. A total of 23,721 individuals with a mean age of 56.15 years were enrolled at baseline from 2012 to 2016 and followed up during 2017-2019. TV was defined as the standard deviation of daily temperatures during survey years and was categorized into tertiles (lowest? 8.78 °C, middle = 8.78-10.07 °C, highest ? 10.07 °C). The Cox proportional hazards regression was used to estimate the multivariable-adjusted hazard ratio (HR) between TV and CVD. During the median follow-up of 4.65 years, we ascertained 836 cases of incident CVD. For per 1 °C increase in TV, there was a 6% increase of CVD (HR = 1.06 [95% confidence interval (CI): 1.01-1.11]). A significant positive trend was observed between CVD risk and increasing levels of TV compared to the lowest tertile [HR = 1.34 (95% CI: 1.13-1.59) for the medium tertile, HR = 1.72 (95% CI: 1.35-2.19) for the highest tertile, P(trend) < 0.001]. Exposure to high TV would lose 2.11 disease-free years for the population aged 35-65 years and 66 CVD cases (or 7.95% cases) could been attributable to TV higher than 8.11 °C in the current study. The current findings suggested that long-term TV was associated with a higher risk of CVD incidence, it is needed to reduce the TV-related adverse health effect.

Mapping supply of and demand for ecosystem services to assess environmental justice in New York City

Livability, resilience, and justice in cities are challenged by climate change and the historical legacies that together create disproportionate impacts on human communities. Urban green infrastructure has emerged as an important tool for climate change adaptation and resilience given their capacity to provide ecosystem services such as local temperature regulation, stormwater mitigation, and air purification. However, realizing the benefits of ecosystem services for climate adaptation depend on where they are locally supplied. Few studies have examined the potential spatial mismatches in supply and demand of urban ecosystem services, and even fewer have examined supply-demand mismatches as a potential environmental justice issue, such as when supply-demand mismatches disproportionately overlap with certain socio-demographic groups. We spatially analyzed demand for ecosystem services relevant for climate change adaptation and combined results with recent analysis of the supply of ecosystem services in New York City (NYC). By quantifying the relative mismatch between supply and demand of ecosystem services across the city we were able to identify spatial hot- and coldspots of supply-demand mismatch. Hotspots are spatial clusters of census blocks with a higher mismatch and coldspots are clusters with lower mismatch values than their surrounding blocks. The distribution of mismatch hot- and coldspots was then compared to the spatial distribution of socio-demographic groups. Results reveal distributional environmental injustice of access to the climate-regulating benefits of ecosystem services provided by urban green infrastructure in NYC. Analyses show that areas with lower supply-demand mismatch tend to be populated by a larger proportion of white residents with higher median incomes, and areas with high mismatch values have lower incomes and a higher proportion of people of color. We suggest that urban policy and planning should ensure that investments in “nature-based” solutions such as through urban green infrastructure for climate change adaptation do not reinforce or exacerbate potentially existing environmental injustices.

Mapping the exposure and sensitivity to heat wave events in China’s megacities

The rising temperature makes the weather becoming more extreme. Understanding how extreme hot temperature-heat wave events (HWEs)-are likely to alter individual heat exposure and sensitivity is crucial for developing climate change mitigation and adaptation strategies. Despite the importance, little is known about the real-time impacts of HWEs on individual daily life in developing nations, like China. To fill this gap, we adopt over 1544 thousand Weibo (Chinese Twitter) social media data, coupled with meteorological conditions people face when posting, to assess the heat exposure and people’s sensitivity to HWEs across 31 mega-cities in China. The results show the hotspot of Weibo heat is coincident with the extremely hot temperature, with a correlation of 0.7 (p < 0.05). The intensities, frequencies, and durations of HWEs in both geographical and social media space have high spatial heterogeneity. Its spatial variation can be explained by the type of climate zone and the unique geographical environment. The cities with extreme hot weather are more likely to adapt to the heatwave and less sensitivity to HWEs. The proposed framework, which integrates the real-time social media semantic analysis, statistical method, and spatial techniques, provides a new paradigm to assess the HWEs exposure and sensitivity analysis in China.

Meteorological factors and childhood diarrhea in Peru, 2005-2015: A time series analysis of historic associations, with implications for climate change

BACKGROUND: Global temperatures are projected to rise by ?2?°C by the end of the century, with expected impacts on infectious disease incidence. Establishing the historic relationship between temperature and childhood diarrhea is important to inform future vulnerability under projected climate change scenarios. METHODS: We compiled a national dataset from Peruvian government data sources, including weekly diarrhea surveillance records, annual administered doses of rotavirus vaccination, annual piped water access estimates, and daily temperature estimates. We used generalized estimating equations to quantify the association between ambient temperature and childhood (

Meteorological patterns and the evolution of West Nile virus in an environmentally stressed Mediterranean area

The present work investigates the increase of confirmed cases of West Nile virus and the relationship between weather-related patterns and the geographical expansion of West Nile virus in Greece, with a special focus on West Attica, Central Greece, a semi-arid, ecologically fragile Mediterranean area. Using data from the European Environment Agency, European Drought Observatory of Joint Research Centre, the pairwise relationship between surface air temperature anomalies, precipitation anomalies, soil moisture index anomalies, and the fraction of absorbed photosynthetically active radiation anomalies (fAPAR) was evaluated during summer time of 2018, a particularly intense virus outbreak. The empirical results of this study indicate that total precipitation during 2018 was extremely high, nearly 500% above the average. These conditions contributed to the increase of soil moisture index anomaly and fAPAR, creating an ideal microenvironment (wet soils and green pastures) for mosquito breeding. This phenomenon was directly associated with a drastic outbreak of West Nile virus cases in the area, compared with earlier years. Our results indicate how unusually high values of summer precipitation may have contributed (both through direct and indirect ecological channels) to the rapid spread of the West Nile virus in West Attica, causing a significant number of confirmed cases and fatalities. Climate change may bring forth other issues aside from natural disasters, including-but not limited to-virus expansion.

Microbes increase thermal sensitivity in the mosquito Aedes aegypti, with the potential to change disease distributions

The mosquito Aedes aegypti is the primary vector of many disease-causing viruses, including dengue (DENV), Zika, chikungunya, and yellow fever. As consequences of climate change, we expect an increase in both global mean temperatures and extreme climatic events. When temperatures fluctuate, mosquito vectors will be increasingly exposed to temperatures beyond their upper thermal limits. Here, we examine how DENV infection alters Ae. aegypti thermotolerance by using a high-throughput physiological ‘knockdown’ assay modeled on studies in Drosophila. Such laboratory measures of thermal tolerance have previously been shown to accurately predict an insect’s distribution in the field. We show that DENV infection increases thermal sensitivity, an effect that may ultimately limit the geographic range of the virus. We also show that the endosymbiotic bacterium Wolbachia pipientis, which is currently being released globally as a biological control agent, has a similar impact on thermal sensitivity in Ae. aegypti. Surprisingly, in the coinfected state, Wolbachia did not provide protection against DENV-associated effects on thermal tolerance, nor were the effects of the two infections additive. The latter suggests that the microbes may act by similar means, potentially through activation of shared immune pathways or energetic tradeoffs. Models predicting future ranges of both virus transmission and Wolbachia’s efficacy following field release may wish to consider the effects these microbes have on host survival.

Modeling and projecting health-relevant combined ozone and temperature events in present and future Central European climate

Statistical models to evaluate the relationships between large-scale meteorological conditions, prevailing air pollution levels and combined ozone and temperature events, were developed during the 1993-2012 period with Central Europe as regional focus. Combined ozone and temperature events were defined based on the high frequency of coinciding, health-relevant elevated levels of daily maximum tropospheric ozone concentrations (based on running 8-h means) and daily maximum temperature values in the peak ozone and temperature season from April to September. By applying two different modeling approaches based on lasso, logistic regression, and multiple linear regression mean air temperatures at 850 hPa, ozone persistence, surface thermal radiation, geopotential heights at 850 hPa, meridional winds at 500 hPa, and relative humidity at 500 hPa were identified as main drivers of combined ozone and temperature events. Statistical downscaling projections until the end of the twenty-first century were assessed by using the output of seven models of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Potential frequency shifts were evaluated by comparing the mid- (2031-2050) and late-century (2081-2100) time windows to the base period (1993-2012). A sharp increase of ozone-temperature events was projected under RCP4.5 and RCP8.5 scenario assumptions with respective multi-model mean changes of 8.94% and 16.84% as well as 13.33% and 37.52% for mid- and late-century European climate.

Inpatient burden and mortality of heatstroke in the United States

Background This study aimed to assess inpatient prevalence, characteristics, outcomes, and resource utilisation of hospitalisation for heatstroke in the United States. Additionally, this study aimed to explore factors associated with in-hospital mortalities of heatstroke. Methods The 2003-2014 National Inpatient Sample database was used to identify hospitalised patients with a principal diagnosis of heatstroke. The inpatient prevalence, clinical characteristics, in-hospital treatments, outcomes, length of hospital stay, and hospitalisation cost were studied. Multivariable logistic regression was performed to identify independent factors associated with in-hospital mortality. Results A total of 3372 patients were primarily admitted for heatstroke, accounting for an overall inpatient prevalence of heatstroke amongst hospitalised patients of 36.3 cases per 1 000 000 admissions in the United States with an increasing trend during the study period (P < .001). Age 40-59 was the most prevalent age group. During the hospital stay, 20% required mechanical ventilation, and 2% received renal replacement therapy. Rhabdomyolysis was the most common complication. Renal failure was the most common end-organ failure, followed by neurological, respiratory, metabolic, hematologic, circulatory, and liver systems. The in-hospital mortality rate of heatstroke hospitalisation was 5% with a decreasing trend during the study period (P < .001). The presence of end-organ failure was associated with increased in-hospital mortality, whereas more recent years of hospitalisation was associated with decreased in-hospital mortality. The median length of hospital stay was 2 days. The median hospitalisation cost was $17 372. Conclusion The inpatient prevalence of heatstroke in the United States increased, while the in-hospital mortality of heatstroke decreased.

Insights and decision support for home health care services in times of disasters

Home health care (HHC) services are of vital importance for the health care system of many countries. Further increases in their demand must be expected and with it grows the need to sustain these services in times of disasters. Existing risk assessment tools and guides support HHC service providers to secure their services. However, they do not provide insights on interdependencies of complex systems like HHC. Causal-Loop-Diagrams (CLDs) are generated to visualize the impacts of epidemics, blackouts, heatwaves, and floods on the HHC system. CLDs help to understand the system design as well as cascading effects. Additionally, they simplify the process of identifying points of action in order to mitigate the impacts of disasters. In a case study, the course of the COVID-19 pandemic and its effects on HHC in Austria in spring 2020 are shown. A decision support system (DSS) to support the daily scheduling of HHC nurses is presented and applied to numerically analyze the impacts of the COVID-19 pandemic, using real-world data from a HHC service provider in Vienna. The DSS is based on a Tabu Search metaheuristic that specifically aims to deal with the peculiarities of urban regions. Various transport modes are considered, including time-dependent public transport.

Interrelationship between climatic factors and incidence of FBD caused by Clostridioides difficile toxin B, Clostridium perfringens, Campylobacter spp., and Escherichia coli O157:H7

Foodborne diseases (FBDs) remain a global public health concern. Climatic factors such as wind-chill temperature, rainfall, and relative humidity affect the incidence of several FBDs. This study was performed to analyze how the various factors of the climate influence the incidence and severity of FBDs. This study retrospectively analyzed the results of multiplex polymerase chain reaction (mPCR) tests for diarrhea-causing bacteria performed on 2300 fecal samples obtained from patients at Dankook University Hospital, Cheonan, from June 2010 to December 2019. The Clostridioides difficile toxin B infection rate positively correlated with the intensity of sunshine, and the content of particulate matter. The Campylobacter spp. infection rate positively correlated with wind-chill temperature and the content of particulate matter. The Escherichia coli O157:H7 infection rate positively correlated with relative humidity. These findings may explain the dynamics and risks of Clostridioides difficile toxin B, Clostridium perfringens, Campylobacter spp., and Escherichia coli O157:H7 infection. They may help predict interrelationships among climatic factors and standardize national environmental health policies. However, in-depth research with large-scale data, molecular biology, and epidemiology would be required going forward. Future research would also require objective indicators of the changes in the prevalence of FBD-causing microbial pathogens for the effective prevention and management of these bacterial infections.

Investigating the spatial distribution of resident’s outdoor heat exposure across neighborhoods of Philadelphia, Pennsylvania using urban microclimate modeling

Cities are experiencing more and more frequent extreme heat events in hot summers in the context of rising global temperatures. A precise understanding of the spatial distribution of the human outdoor heat exposure across neighborhoods in cities is of great importance for urban heat management. Different from remote sensing based the land surface temperature, this study calculated the mean radiant temperature, which is more objective to indicate human heat stress, to study the spatial distribution of human outdoor heat exposure in Philadelphia, Pennsylvania. The SOLWEIG (SOlar and LongWave Environmental Irradiance Geometry) model was applied to estimate the mean radiant temperature based on the high-resolution urban 3D model and meteorological data. This study further examined the spatial distributions of heat exposure levels across neighborhoods of different groups in Philadelphia. Results show that there is no significant disparity in terms of outdoor heat exposure levels for different racial/ethnic groups in Philadelphia. Generally, the elderly, who usually are more vulnerable to extreme heat, tend to live in neighborhoods with less outdoor heat exposure in summer (p<0.001). The higherincome people tend to live in thermally more comfortable neighborhoods (p<0.001). The study provides a precise understanding of the heat distribution across neighborhoods, which would further help to develop strategies to allocate resources to the most needed neighborhoods to maximumly mitigate the negative impact of urban heat.

Investigating the urban heat and cool island effects during extreme heat events in high-density cities: A case study of Hong Kong from 2000 to 2018

Urban heat island (UHI) and cool island (UCI) effects are well-known and prevalent in cities worldwide. An increasing trend of extreme heat events has been observed over the last few decades and is expected to continue in the foreseeable future. In this study, warm periods (May to September) of 2000-2018 were examined to acquire a comprehensive understanding of the UHI and UCI characteristics for the case study of Hong Kong, China. Twenty-two weather stations in Hong Kong were classified into four categories, namely urban, urban oasis, suburban, and rural, with reference to the local climate zone (LCZ) scheme, to analyze UHI and UCI phenomena during extreme heat and non-extreme heat situations. One representative type of extreme heat events was considered in this study: three consecutive hot nights with two very hot days in between (2D3N). Results show that both the UHI and UCI effects are exacerbated during extreme heat events. Using the concept of the UHI degree hours (UHIdh) and UCI degree hours (UCIdh), their spatial patterns in Hong Kong during extreme heat and non-extreme heat situations were mapped based on multiple linear regression models. It is found that the predictor variable – windward/leeward index is a significant influential factor of both UHIdh and UCIdh during extreme heat events. The resulting UHIdh and UCIdh maps not only enhance our understanding on the spatial pattern and characteristics of the UHI and UCI during extreme heat events, but could also serve as a useful reference in climate change adaptation, heat-health risk detection, cooling-energy estimation and policy making.

Large-scale flood risk assessment under different development strategies: The Luanhe River Basin in China

Increasing resilience to natural hazards and climate change is critical for achieving many Sustainable Development Goals (SDGs). In recent decades, China has experienced rapid economic development and became the second-largest economy in the world. This rapid economic expansion has led to large-scale changes in terrestrial (e.g., land use and land cover changes), aquatic (e.g., construction of reservoirs and artificial wetlands) and marine (e.g., land reclamation) environments across the country. Together with climate change, these changes may significantly influence flood risk and, in turn, compromise SDG achievements. The Luanhe River Basin (LRB) is one of the most afforested basins in North China and has undergone significant urbanisation and land use change since the 1950s. However, basin-wide flood risk assessment under different development scenarios has not been considered, although this is critically important to inform policy-making to manage the synergies and trade-offs between the SDGs and support long-term sustainable development. Using mainly open data, this paper introduces a new framework for systematically assessing flood risk under different social and economic development scenarios. A series of model simulations are performed to investigate the flood risk under different land use change scenarios projected to 2030 to reflect different development strategies. The results are systematically analysed and compared with the baseline simulation based on the current land use and climate conditions. Further investigations are also provided to consider the impact of climate change and the construction of dams and reservoirs. The results potentially provide important guidance to inform future development strategies to maximise the synergies and minimise the trade-offs between various SDGs in LRB.

Life loss per death of respiratory disease attributable to non-optimal temperature: Results from a national study in 364 Chinese locations

Many studies have linked temperature with respiratory deaths, but epidemiological evidence of temperature-attributable years of life lost (YLL) from respiratory diseases is limited. Daily respiratory YLL rates were calculated using mortality data from 364 locations of China during 2006-2017, and meteorological data were collected for the same period. First, the distributed lag non-linear model (DLNM) was applied to estimate specific temperature-respiratory YLL rate associations in each location. Then multivariable meta-analysis was conducted to pool the location-specific estimates. Finally, we calculated the average life loss per death (LLD) to quantify the respiratory mortality burden of non-optimal temperature. Subgroup analyses were conducted by gender, age, region and cause of death. Inversely J-shaped association was observed between non-optimal temperature and respiratory YLL rate in China. The minimum YLL-rate temperature was 26.9 degrees C nationwide. An average of 1.37 years (95% CI: 1.06-1.65) LLD was attributable to non-optimal temperatures with 2.06 years (95% CI: 1.57-2.60) for pneumonia, 2.03 years (95% CI: 1.76-2.31) for chronic lower respiratory infections (LRTI), 0.88 years (95% CI: 0.65-1.09) for chronic obstructive pulmonary disease (COPD), most of which was attributed to moderate cold (0.73 years, 95% CI: 0.65-0.80). LLD caused by non-optimal temperature was higher in males, the young, and north China. Exposure to non-optimal temperature increases respiratory YLL rate in China, most of which were attributed to moderate cold. People with respiratory diseases including pneumonia, chronic LRTI and COPD are vulnerable to non-optimal temperature exposure. The result of this study provides useful information to reduce temperature-related respiratory disease burden.

Impacts of urbanization and long-term meteorological variations on global PM(2.5) and its associated health burden

PM(2.5) pollution has adverse health effects on humans. Urbanization and long-term meteorological variations play important roles in influencing the PM(2.5) concentration and its associated health effects. Our results indicate that the urbanization process can enhance the PM(2.5) concentration globally. The PM(2.5)-caused mortality density (deaths/100 km(2)) is also positively correlated with the urbanization degree in both developed and developing countries. The results from machine learning technique revealed that the meteorology-driven variation in PM(2.5)-caused health burden has increased with the increase in the urbanization degree from 1980 to 2018, suggesting that residents living in urban areas are more vulnerable to experiencing unfavorable meteorological conditions (e.g. low wind speed and planetary boundary layer height). The maximum difference in PM(2.5)-caused mortality due to the variation in annual meteorological conditions (between 2013 and 1986) was 270 600 (196 800-317 900). Our findings indicate an urgent need to understand the driving force behind the appearance of unfavorable meteorological situations and propose suitable climate mitigation measures.

Impaired autophagy following ex vivo heating at physiologically relevant temperatures in peripheral blood mononuclear cells from elderly adults

With the increasing threat of climate change and the accompanying rise in the frequency and severity of extreme heat events, there are growing health concerns for heat-vulnerable elderly adults. Elderly adults are at increased risk of developing heat-related injuries, in part due to age-related declines in thermoregulatory and cellular function. Regarding the latter, the process of autophagy is activated as a cellular protective mechanism to counter heat-induced stress, but the extent that heat stress activates autophagy in elderly adults is not known. Further, the interplay between autophagy, the heat shock response (HSR), the acute inflammatory response, and apoptosis remains poorly understood in elderly adults. Therefore, the purpose of this study was to examine changes in autophagy, the HSR, inflammation, and apoptosis following increasing levels of ex vivo heat stress representative of physiologically relevant increases in body core temperatures (37-41 °C). Whole blood from 20 elderly adults (72 ± 4 years; 14 men, 6 women) was heated (via water immersion) to temperatures representative of normal resting conditions (normothermia; 37 °C), in addition to moderate and severe heat stress conditions (39, and 41 °C, respectively) for 90 min. Peripheral blood mononuclear cells (PBMC) were isolated and protein markers of autophagy, the HSR, acute inflammation, and apoptosis were examined. No significant increases in markers of autophagy or the HSR were observed following any temperature condition. However, an increase in acute inflammation was observed above baseline following moderate heat stress (39 °C), with further increases in inflammation and apoptosis observed during severe heat stress (41 °C). Our findings indicate that PBMCs from elderly adults do not exhibit increases in autophagy or the HSR following severe heat stress, potentially contributing to the elevated risk of cellular dysfunction seen in elderly adults during heat stress.

Increased susceptibility to temperature variation for non-accidental emergency ambulance dispatches in Shenzhen, China

Most studies focused on the temporal trend of mortality risk associated with temperature exposure. The relative role of heat, cold, and temperature variation (TV) on morbidity and its temporal trends are explored insufficiently. This study aims to investigate the temporal trends of emergency ambulance dispatch (EAD) risk and the attributable burden of heat, cold, and hourly temperature variation (HTV). We collected time-series data of daily EAD and ambient temperature in Shenzhen from 2010 to 2017. HTV was calculated as the standard deviation of the hourly temperatures between 2 consecutive days. Quasi-Poisson generalized additive models (GAM) with a time-varying distributed lag nonlinear model (DLNM) were applied to examine temporal trends of the HTV-, heat-, and cold-EAD association. The temporal variation of the attributable fraction (AF%) and attributable number (AN) for different temperature exposures was also calculated. The largest RR was observed in extreme cold [1.30 (95% CI: 1.18, 1.43)] and moderate cold [1.25 (95% CI: 1.17, 1.34)]. Significant increasing trends in HTV-related effects and burden were observed, especially for the extreme HTV effects (P for interaction < 0.05). Decreasing trends were observed in the heat-related effect and burden, though it showed no significance (P for interaction = 0.46). There was no clear change pattern of cold-related effects and burdens. Overall, the three temperature exposure caused 13.7% of EAD, of which 4.1%, 4.3%, and 5.3% were attributed to HTV, heat, and cold, respectively. All the temperature indexes in this study, especially the cold effect, are responsible for the increased risk of EAD. People have become more susceptible to HTV over the recent decade. However, there is no clear evidence to support the temporal change of the population's susceptibility to heat and cold. Thus, in addition to heat and cold, the emergency ambulance service department should pay more attention to HTV under climate change.

Indoor heat exposure in Baltimore: Does outdoor temperature matter?

Heat exposure of a population is often estimated by applying temperatures from outdoor monitoring stations. However, this can lead to exposure misclassification if residents do not live close to the monitoring station and temperature varies over small spatial scales due to land use/built environment variability, or if residents generally spend more time indoors than outdoors. Here, we compare summertime temperatures measured inside 145 homes in low-income households in Baltimore city with temperatures from the National Weather Service weather station in Baltimore. There is a large variation in indoor temperatures, with daily-mean indoor temperatures varying from 10 °C lower to 10 °C higher than outdoor temperatures. Furthermore, there is only a weak association between the indoor and outdoor temperatures across all houses, indicating that the outdoor temperature is not a good predictor of the indoor temperature for the residences sampled. It is shown that much of the variation is due to differences in the availability of air conditioning (AC). Houses with central AC are generally cooler than outdoors (median difference of -?3.4 °C) while those with no AC are generally warmer (median difference of 1.4 °C). For the collection of houses with central or room AC, there is essentially no relationship between indoor and outdoor temperatures, but for the subset of houses with no AC, there is a weak relationship (correlation coefficient of 0.36). The results presented here suggest future epidemiological studies of indoor exposure to heat would benefit from information on the availability of AC within the population.

Indoor temperature variability in the Sahel: A pilot study in Ouagadougou, Burkina Faso

Very little research has documented the exposure of populations in Africa to extreme heat. We measured indoor air temperature and humidity hourly for 13 months in seven houses of contrasted architecture and construction materials all in the northern neighbourhoods of Ouagadougou, Burkina Faso. These measurements are compared to air temperatures recorded at the synoptic weather station of Ouagadougou airport and to land surface temperature estimates from Landsat satellite images at seven dates with clear-sky conditions. The results reveal huge temperature differences (exceeding 10 degrees C) between houses, especially in the afternoon hours of the warmest season. Indoor temperature is also much more variable than land surface (outdoor) temperature in the same locations, as estimated by satellite imagery. Houses with greater thermal inertia smooth the afternoon temperature peak, reducing heat exposure. Heat stress bioindicators reveal that danger thresholds, while rarely reached in some houses, are frequently exceeded in others year round except for the core of the cold winter season (December and January). In spring, the hottest season, the danger threshold is almost permanently exceeded in these dwellings, exposing their inhabitants to significant heat stress. This pilot study shows the primary role of housing in modulating indoor temperature, raising questions of public health and habitability of Sahelian regions in a warming world. This issue will be of increasing importance with ongoing climate change, hence the need for further, more detailed instrumented campaigns in African settlements.

Influence of geographical factors on thermal stress in northern Carpathians

While general features of mountain climate are well recognised, there is not many research regarded their bioclimatic differentiation. The aim of the present study is to answer the question how different geographical factors: elevation above sea level, physiographical type of area, climate continentality and location of area in relation to the main mountain ridge influence thermal stress in northern Carpathians. To analyse thermal stress in the region, daily meteorological data from 21 stations of national weather networks of Poland, Ukraine and Slovakia for the period 1986-2015 were used. Daily data of air temperature, relative humidity, total cloud cover and wind speed at 10 m above ground for 12 UTC were used because they represent midday hours which are mostly used for any human activity. The Universal Thermal Climate Index (UTCI) was applied as a measure of thermal stress. The results show that (1) cold stress significantly increases and heat stress decreases due to rise of altitude, (2) due to climate continentality and physiographical differences between western and eastern parts of northern Carpathians in their eastern edge, the cold stress is more evident than in western one, (3) at southward slopes of Carpathian, heat stress is significantly more frequent then at northward areas.

Hyperthermia reduces electromechanical delay via accelerated electrochemical processes

The present study aimed to determine the effect of hyperthermia on both electrochemical and mechanical components of the electromechanical delay (EMD), using very-high-frame-rate ultrasound. Electrically evoked peak twitch force, EMD, electrochemical (D(m); i.e., delay between stimulation and muscle fascicle motion), and mechanical (T(m); i.e., delay between fascicle motion and force production onset) components of EMD were assessed in 16 participants. Assessments were conducted in a control ambient environment (CON; 26°C, 34% relative humidity) and in a hot ambient environment (HOT; 46-50°C, 18% relative humidity, after ?127?min of heat exposure). Following heat exposure, gastrocnemius medialis temperature was 37.0?±?0.6°C in HOT vs. 34.0?±?0.8°C in CON (P < 0.001). EMD was shorter (9.4?±?0.8?ms) in HOT than in CON (10.8?±?0.6?ms, P < 0.001). Electrochemical processes were shorter in HOT than in CON (4.0?±?0.8?ms vs. 5.5?±?0.9?ms, respectively, P < 0.001), whereas mechanical processes were unchanged (P = 0.622). These results demonstrate that hyperthermia reduces electromechanical delay via accelerated electrochemical processes, whereas force transmission along the active and passive parts of the series elastic component is not affected following heat exposure. The present study demonstrates that heat exposure accelerates muscle contraction thanks to faster electrochemical processes. Further investigations during voluntary contractions would contribute to better understand how these findings translate into motor performance.NEW & NOTEWORTHY Hyperthermia (targeted core temperature: 38.5°C) reduces the time between gastrocnemius medialis stimulation and the onset of plantar flexor force production in vivo. This reduction in electromechanical delay is concomitant to an earlier motion of muscle fascicle compared with thermoneutral environment. However, hyperthermia has no impact on the duration of force transmission along aponeurosis and tendon, thereby reflecting different effects of heat exposure on contractile and elastic properties of the muscle-tendon unit.

Identification of thermal hotspots through heat index determination and urban heat island mitigation using ENVImet numerical micro climate model

Achieving environmental sustainability by improving the urban microclimate is a key principle in mitigating the urban heat island (UHI) effect. This study aimed to (a) investigate the outdoor thermal comfort by establishing Heat Index (HI) values to identify thermal hot spots and (b) model green infrastructure possibilities to alleviate UHI in Colombo urban metropolitan in Sri Lanka using ENVImet climate model. Daytime temperature and humidity values of 14 urban locations were collected to determine HI to recognize thermal urban hotspots in Colombo area. A pretested comprehensive random-stratified questionnaire survey has been conducted to appraise the thermal discernment of the general public. ENVImet microclimate model was accompanied to test the temperature reduction levels in different bioclimatic green infrastructure scenarios [Two belts (R-1), three belts (R-2), four belts (R-3), five belts (R-4)] in the selected study site. Five sites (Borella, Colombo Fort, Maradana, Wellawaththa, Liberty junction) were identified as thermal hotspots in Colombo metropolitan. HI values were fluctuated within 33.82-40.35 degrees C range and the highest average day time HI value was observed at Maradana (40.35 degrees C) and the lowest HI was observed at Thummulla (33.82 degrees C). Survey results revealed that 89.3% people are affected with thermal uncomfortability and 5% were affected with heat-related skin diseases. Inserting trees into curbsides (R-4) reduced temperature remarkably by 2.07 degrees C in the urban metropolitan. Therefore, the proposed green infrastructure scenario has proved to be the most suitable way to improve the thermal comfort conditions of urban environment, as it can reduce the UHI effects.

Impact of ambient temperature exposure on newborns with low Apgar scores in northwest China

In the context of global climate change, research efforts were focused on the association of ambient temperatures on maternal and neonatal health condition, but few have examined associations with low Apgar scores. From January 1, 2017, to December 31, 2018, all singleton deliveries of Ningxia Hui Autonomous Region were extracted from the Hospital Information System (N = 182,322). Daily temperature data were obtained from the official website of China Meteorological Administration. Low Apgar scores were defined as Apgar score ? 3 at 5 min in the present study. Logistic regression models were used to estimate the adjusted association between prenatal temperature exposure and low Apgar scores. Restricted cubic spline models were used to explore the dose-response relationship between temperature and low Apgar scores. The study population included 182,322 live singleton births, with 1575 (0.86%) cases of low Apgar scores. The elevated ambient temperature in different exposure timing windows in late pregnancy was associated with increased risk of low Apgar scores. As compared to moderate (10th-90th) temperature exposure, prenatal exposure to extreme hot (>90th) was associated with 13.9-47.0% increased risk of low Apgar scores, while non-significant relationship was found between extreme cold (<10th) exposure and low Apgar scores. The restricted cubic spline models showed a U-shaped relationship between prenatal temperature exposure and low Apgar scores (P for non-linearity < 0.05). Exposure to high ambient temperature during late pregnancy is associated with an increased risk of low Apgar scores in northwest China.

Impact of ambient temperature on cardiovascular disease hospital admissions in farmers in China’s western suburbs

Cardiovascular disease (CVD) has been a major threat to global public health. The association between temperature and CVD has been widely studied and reported in cities in developed countries. However, information from developing countries, especially from suburbs and countryside, is quite limited. In this study, the daily time series data on CVD hospital admissions in farmers in the suburbs of Tianshui, China, and the meteorological data from 2012 to 2015, were collected; besides, a quasi-Poisson regression with a distributed-lag non-linear model (DLNM) was used to explore the impact of local daily mean temperature on CVD hospital admissions in suburban farmers. This study found that, first, from 2011 to 2015, a total of 30,611 person-times of CVD hospital admissions in farmers were recorded; second, there was a “J-shaped” relation between temperature and CVD hospital admissions, and both low and high temperature increased the risk of hospital admission, but the impact of high temperature was greater; third, compared with the minimum hospitalization temperature (MHT) at 0.3 °C, during 0 to 21 lag days, the cumulative relative risk (RR) for extreme cold and heat (1st and 99th percentile of temperature, respectively) was 1.117 (95% CI 0.941-1.325) and 1.740 (95% CI 1.302-2.327), respectively, and that of moderate cold and heat (5st and 95th percentile of temperature, respectively) was 1.029 (95% CI 0.958-1.106) and 1.572 (95% CI 1.210-2.042), respectively; fourth, compared with male and ? 65 years groups, the risk for low temperature was greater for female and < 65 years groups, the risk for high temperature was just the opposite; last, about 21.04% of CVD hospital admissions burden were attributed to the ambient temperature, and most of (about 19.26%) were caused by moderate heat. In Tianshui, alongside with extreme temperature, the moderate temperature might be an important risk factor for CVD hospital admissions in suburban farmers.

Impact of biometeorological conditions and air pollution on influenza-like illnesses incidence in Warsaw

In order to assess the influence of atmospheric conditions and particulate matter (PM) on the seasonally varying incidence of influenza-like illnesses (ILI) in the capital of Poland-Warsaw, we analysed time series of ILI reported for the about 1.75 million residents in total and for different age groups in 288 approximately weekly periods, covering 6 years 2013-2018. Using Poisson regression, we predicted ILI by the Universal Thermal Climate Index (UTCI) as biometeorological indicator, and by PM2.5 and PM10, respectively, as air quality measures accounting for lagged effects spanning up to 3 weeks. Excess ILI incidence after adjusting for seasonal and annual trends was calculated by fitting generalized additive models. ILI morbidity increased with rising PM concentrations, for both PM2.5 and PM10, and with cooler atmospheric conditions as indicated by decreasing UTCI. While the PM effect focused on the actual reporting period, the atmospheric influence exhibited a more evenly distributed lagged effect pattern over the considered 3-week period. Though ILI incidence adjusted for population size significantly declined with age, age did not significantly modify the effect sizes of both PM and UTCI. These findings contribute to better understanding environmental conditionings of influenza seasonality in a temperate climate. This will be beneficial to forecasting future dynamics of ILI and to planning clinical and public health resources under climate change scenarios.

Impact of climate and population changes on the increasing exposure to summertime compound hot extremes

Attributing the changes in the population exposure to global compound hot extremes, which combine daytime-nighttime hot extremes with more severe impacts, is essential for climate change adaptation. Based on daily temperature data from the Coupled Model Intercomparison Project phase 6 (CMIP6) and population data, we estimate the changes in population exposure for two future periods under three scenarios of emission and socio-economic development at global and continental scales, and assess the contributions from climate and population changes. We find that the spatial patterns of exposure to compound hot extremes are similar for different periods and scenarios, and regions with high exposure are mainly located over East Asia, South Asia, Europe, and parts of eastern USA and Africa. The exposure shows an increase from baseline (1980-2014) to mid- and late 21st century periods (2021-2055 and 2056-2090) in most regions worldwide. Under the business-as-usual scenario (SSP2-4.5), the global exposure increases by ~19-fold during the late 21st century, and Africa shows the largest increase while Europe shows the smallest. Early (SSP1-2.6) and no (SSP5-8.5) actions of mitigation would relieve and aggravate the increase rate, respectively. For about 78%-87% of the global land areas, the changes in exposure are mainly caused by climate change (accounting for >69%), followed by the interaction effect (accounting for ~29%) that refers to synergistic changes in climate and population. In parts of mid- to high-latitude regions, the exposure is smaller than expected due to opposite effects of climate change and population change.

Impact of different heat wave definitions on daily mortality in Bandafassi, Senegal

OBJECTIVE: The aim of this study is to find the most suitable heat wave definition among 15 different ones and to evaluate its impact on total, age-, and gender-specific mortality for Bandafassi, Senegal. METHODS: Daily weather station data were obtained from Kedougou situated at 17 km from Bandafassi from 1973 to 2012. Poisson generalized additive model (GAM) and distributed lag non-linear model (DLNM) are used to investigate the effect of heat wave on mortality and to evaluate the nonlinear association of heat wave definitions at different lag days, respectively. RESULTS: Heat wave definitions, based on three or more consecutive days with both daily minimum and maximum temperatures greater than the 90th percentile, provided the best model fit. A statistically significant increase in the relative risk (RRs 1.4 (95% Confidence Interval (CI): 1.2-1.6), 1.7 (95% CI: 1.5-1.9), 1.21 (95% CI: 1.08-1.3), 1.2 (95% CI: 1.04-1.5), 1.5 (95% CI: 1.3-1.8), 1.4 (95% CI: 1.2-1.5), 1.5 (95% CI: 1.07-1.6), and 1.5 (95% CI: 1.3-1.8)) of total mortality was observed for eight definitions. By using the definition based on the 90th percentile of minimum and maximum temperature with a 3-day duration, we also found that females and people aged ? 55 years old were at higher risks than males and other different age groups to heat wave related mortality. CONCLUSION: The impact of heat waves was associated with total-, age-, gender-mortality. These results are expected to be useful for decision makers who conceive of public health policies in Senegal and elsewhere. Climate parameters, including temperatures and humidity, could be used to forecast heat wave risks as an early warning system in the area where we conduct this research. More broadly, our findings should be highly beneficial to climate services, researchers, clinicians, end-users and decision-makers.

Impact of environmental factors in predicting daily severity scores of atopic dermatitis

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin disease that affects 20% of children worldwide. Environmental factors including weather and air pollutants have been shown to be associated with AD symptoms. However, the time-dependent nature of such a relationship has not been adequately investigated. This paper aims to assess whether real-time data on weather and air pollutants can make short-term prediction of AD severity scores. METHODS: Using longitudinal data from a published panel study of 177 paediatric patients followed up daily for 17 months, we developed a statistical machine learning model to predict daily AD severity scores for individual study participants. Exposures consisted of daily meteorological variables and concentrations of air pollutants, and outcomes were daily recordings of scores for six AD signs. We developed a mixed-effect autoregressive ordinal logistic regression model, validated it in a forward-chaining setting and evaluated the effects of the environmental factors on the predictive performance. RESULTS: Our model successfully made daily prediction of the AD severity scores, and the predictive performance was not improved by the addition of measured environmental factors. Potential short-term influence of environmental exposures on daily AD severity scores was outweighed by the underlying persistence of preceding scores. CONCLUSIONS: Our data does not offer enough evidence to support a claim that weather or air pollutants can make short-term prediction of AD signs. Inferences about the magnitude of the effect of environmental factors on AD severity scores require consideration of their time-dependent dynamic nature.

Impact of future climate change on malaria in West Africa

Understanding the regional impact of future climate change is one of the major global challenges of this century. This study investigated possible effects of climate change on malaria in West Africa in the near future (2006-2035) and the far future (2036-2065) under two representative concentration pathway (RCP) scenarios (RCP4.5 and RCP8.5), compared to an observed evaluation period (1981-2010). Projected rainfall and temperature were obtained from the coordinated regional downscaling experiment (CORDEX) simulations of the Rossby Centre Regional Atmospheric regional climate model (RCA4). The malaria model used is the Liverpool malaria model (LMM), a dynamical malaria model driven by daily time series of rainfall and temperature obtained from the CORDEX data. Our results highlight the unimodal shape of the malaria prevalence distribution, and the seasonal malaria transmission contrast is closely linked to the latitudinal variation of the rainfall. Projections showed that the mean annual malaria prevalence would decrease in both climatological periods under both RCPs but with a larger magnitude of decreasing under the RCP8.5. We found that the mean malaria prevalence for the reference period is greater than the projected prevalence for 6 of the 8 downscaled GCMs. The study enhances understanding of how malaria is impacted under RCP4.5 and RCP8.5 emission scenarios. These results indicate that the southern area of West Africa is at most risk of epidemics, and the malaria control programs need extra effort and help to make the best use of available resources by stakeholders.

Impact of heat waves and cold spells on cause-specific mortality in the city of São Paulo, Brazil

The impact of heat waves and cold spells on mortality has become a major public health problem worldwide, especially among older adults living in low-to middle-income countries. This study aimed to investigate the effects of heat waves and cold spells under different definitions on cause-specific mortality among people aged ?65 years in São Paulo from 2006 to 2015. A quasi-Poisson generalized linear model with a distributed lag model was used to investigate the association between cause-specific mortality and extreme air temperature events. To evaluate the effects of the intensity under different durations, we considered twelve heat wave and nine cold spell definitions. Our results showed an increase in cause-specific deaths related to heat waves and cold spells under several definitions. The highest risk of death related to heat waves was identified mostly at higher temperature thresholds with longer events. We verified that men were more vulnerable to die from cerebrovascular diseases and ischemic stroke on cold spells and heat waves days than women, while women presented a higher risk of dying from ischemic heart diseases during cold spells and tended to have a higher risk of chronic obstructive pulmonary disease than men during heat waves. Identification of heat wave- and cold spell-related mortality is important for the development and promotion of public health measures.

Impact of heatwave intensity using excess heat factor on emergency department presentations and related healthcare costs in Adelaide, South Australia

Background: The health impacts of heatwaves are a growing public health concern with the frequency, intensity, and duration of heatwaves increasing with global climate change. However, little is known about the healthcare costs and the attributable morbidity associated with heatwaves Objective This study aims to examine the relationship between heatwaves and costs of emergency department (ED) presentations, and to quantify heat-attributable burden during the warm seasons of 2014-2017, in Adelaide, South Australia. Methods: Daily data on ED presentations and associated costs for the period 2014-2017 were obtained from the South Australian Department of Health and Wellbeing. Heatwave intensity was determined using the excess heat factor (EHF) index, obtained from the Australian Bureau of Meteorology. A distributed lag non-linear model (DLNM) was used to quantify the cumulative risk of heatwave-intensity over a lag of 0-7 days on ED presentations and costs. Effects of heatwaves were estimated relative to no heatwave. The number of ED presentations and costs attributable to heatwaves was calculated separately for two EHF severity categories (low-intensity and severe/extreme heatwaves). Subgroup analyses by disease-diagnosis groups and age categories were performed. Results: For most disease diagnosis and age categories, low-intensity and severe heatwaves were associated with higher rates of ED presentations and costs. We estimated a total of 1161 (95% empirical confidence interval (eCI): 342, 1944) heatwave-attributable all-cause ED presentations and associated healthcare costs (thousands) of AU $1020.3 (95% eCI: 224.9, 1804.7) during the warm seasons of 2014-2017. The heat-related illness was the disease category contributing most to ED presentations and costs. Age groups 0-14 and >= 65 years were most susceptible to heat. Conclusions: Heatwaves produced a statistically significant case-load and cost burden to the ED. Developing tailored interventions for the most vulnerable populations may help reduce the health impacts of heatwaves and to minimise the cost burden to the healthcare system. (C) 2021 Elsevier B.V. All rights reserved.

Impact of meteorological conditions at multiple scales on ozone concentration in the Yangtze River Delta

Tropospheric ozone is known to have adverse effects on human health. Ozone pollution events are often associated with specific atmospheric circulation conditions. Therefore, studying the relationship between atmospheric circulation and ozone is particularly important for early warning and forecasting of ozone pollution events. Focusing on the Yangtze River Delta region, particularly in four important large industrial cities (Xuzhou, Nanjing, Shanghai, and Hangzhou) in the Yangtze River Delta, the T-mode objective classification method was applied to classify the weather circulation that mainly affects the Yangtze River Delta region into nine types. Local wind fields for the four industrial cities were classified according to their propensity for ventilation, stagnation, and recirculation based on the Allwine and Whiteman method. Based on the analysis of large-scale atmospheric circulation, we concluded that certain circulation patterns correspond to excessive ozone concentrations, while other circulation patterns correspond to good air quality. Moreover, ozone pollution was not closely related to local regional transmission. The importance of high temperatures in potentiating ozone pollution was also identified in the study area, whereas the effect of relative humidity was negligible. Finally, the importance of the different scale atmospheric motions was analyzed by studying two specific ozone pollution events in Xuzhou area (March, 2019) and Nanjing area (July-August, 2017). This analysis was complemented by HYSPLIT model’s outputs to simulate the pollutant diffusion path. Regarding the first episode, ozone concentration is often closely related to the slowly approaching thermal high-pressure system. In the second episode, local transmission had little effect on the generation and spread of ozone pollution. Furthermore, and comparing the circulation conditions with local meteorological factors, it was found that the increase in ozone concentration was often accompanied by higher temperature, and the response to humidity was not clear.

Impact of prior and projected climate change on US Lyme disease incidence

Lyme disease is the most common vector-borne disease in temperate zones and a growing public health threat in the United States (US). The life cycles of the tick vectors and spirochete pathogen are highly sensitive to climate, but determining the impact of climate change on Lyme disease burden has been challenging due to the complex ecology of the disease and the presence of multiple, interacting drivers of transmission. Here we incorporated 18 years of annual, county-level Lyme disease case data in a panel data statistical model to investigate prior effects of climate variation on disease incidence while controlling for other putative drivers. We then used these climate-disease relationships to project Lyme disease cases using CMIP5 global climate models and two potential climate scenarios (RCP4.5 and RCP8.5). We find that interannual variation in Lyme disease incidence is associated with climate variation in all US regions encompassing the range of the primary vector species. In all regions, the climate predictors explained less of the variation in Lyme disease incidence than unobserved county-level heterogeneity, but the strongest climate-disease association detected was between warming annual temperatures and increasing incidence in the Northeast. Lyme disease projections indicate that cases in the Northeast will increase significantly by 2050 (23,619 ± 21,607 additional cases), but only under RCP8.5, and with large uncertainty around this projected increase. Significant case changes are not projected for any other region under either climate scenario. The results demonstrate a regionally variable and nuanced relationship between climate change and Lyme disease, indicating possible nonlinear responses of vector ticks and transmission dynamics to projected climate change. Moreover, our results highlight the need for improved preparedness and public health interventions in endemic regions to minimize the impact of further climate change-induced increases in Lyme disease burden.

Impact of recent climate extremes on mosquito-borne disease transmission in Kenya

Climate change and variability influence temperature and rainfall, which impact vector abundance and the dynamics of vector-borne disease transmission. Climate change is projected to increase the frequency and intensity of extreme climate events. Mosquito-borne diseases, such as dengue fever, are primarily transmitted by Aedes aegypti mosquitoes. Freshwater availability and temperature affect dengue vector populations via a variety of biological processes and thus influence the ability of mosquitoes to effectively transmit disease. However, the effect of droughts, floods, heat waves, and cold waves is not well understood. Using vector, climate, and dengue disease data collected between 2013 and 2019 in Kenya, this retrospective cohort study aims to elucidate the impact of extreme rainfall and temperature on mosquito abundance and the risk of arboviral infections. To define extreme periods of rainfall and land surface temperature (LST), we calculated monthly anomalies as deviations from long-term means (1983-2019 for rainfall, 2000-2019 for LST) across four study locations in Kenya. We classified extreme climate events as the upper and lower 10% of these calculated LST or rainfall deviations. Monthly Ae. aegypti abundance was recorded in Kenya using four trapping methods. Blood samples were also collected from children with febrile illness presenting to four field sites and tested for dengue virus using an IgG enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). We found that mosquito eggs and adults were significantly more abundant one month following an abnormally wet month. The relationship between mosquito abundance and dengue risk follows a non-linear association. Our findings suggest that early warnings and targeted interventions during periods of abnormal rainfall and temperature, especially flooding, can potentially contribute to reductions in risk of viral transmission.

Impact of temperature on hospital admission for acute lower respiratory infection (ALRI) among pre-school children in Ho Chi Minh City, Vietnam

Changes in ambient temperature have been reported as an important risk factor for respiratory diseases among pre-school children. However, there have been few studies so far on the effects of temperature on children respiratory health in developing countries including Vietnam. This study examined the impact of short-term changes in ambient temperature on hospital admissions for acute lower respiratory infection (ALRI) among children aged less than 5 years old in Ho Chi Minh City (HCMC), Vietnam. Data on daily hospital admissions from 2013 to 2017 were collected from two large paediatric hospitals of the city. Daily meteorological data of the same period were also collected. Time series analysis was performed to evaluate the association between risk of hospitalisations and temperatures categorised by seasons, age, and causes. We found that a 1 °C increase in maximum temperature was associated with 4.2 and 3.4% increase in hospital admission for ALRI among children 3-5 years old during the dry season and the rainy season, respectively. Surprisingly, in the rainy season, a rise of 1°C diurnal temperature range (DTR) was significantly associated with a decrease from 2.0 to 2.5% risk of hospitalisation for ALRI among children <3 years old. These findings suggested that although high temperature is a risk factor for hospital admissions among children in general, other modifiable factors such as age, exposure time, air conditioning usage, wearing protective clothing, socioeconomic status, and behaviour may influence the overall effect of high temperature on hospital admissions of children <5 years old in HCMC. The findings of this study have provided evidence for building public health policies aimed at preventing and minimizing the adverse health effects of temperature on children in HCMC.

Health effects from heat waves in France: An economic evaluation

BACKGROUND: Scarcity of data on the health impacts and associated economic costs of heat waves may limit the will to invest in adaptation measures. We assessed the economic impact associated with mortality, morbidity, and loss of well-being during heat waves in France between 2015 and 2019. METHODS: Health indicators monitored by the French national heat wave plan were used to estimate excess visits to emergency rooms and outpatient clinics and hospitalizations for heat-related causes. Total excess mortality and years of life loss were considered, as well as the size of the population that experienced restricted activity. A cost-of-illness and willingness-to-pay approach was used to account for associated costs. RESULTS: Between 2015 and 2019, the economic impact of selected health effects of heat waves amounts to €25.5 billion, mainly in mortality (€23.2 billion), minor restricted activity days (€2.3 billion), and morbidity (€0.031 billion). CONCLUSION: The results highlight a significant economic burden on the French health system and the population. A better understanding of the economic impacts of climate change on health is required to alert decision-makers to the urgency of mitigation and to support concrete adaptation actions.

Heat and cold-related morbidity risk in north-east of Iran: A time-stratified case crossover design

This study aimed to estimate morbidity risk/number attributed to air extreme temperatures using time-stratified case crossover study and distributed lag non-linear model in a region of Iran during 2015-2019. A time-stratified case crossover design based on aggregated exposure data was used in this study. In order to have no overlap bias in the estimations, a fixed and disjointed window by using 1-month strata was used in the design. A conditional Poisson regression model allowing for over dispersion (Quasi-Poisson) was applied into Distributed Lag Non-linear Model (DLNM). Different approaches were applied to estimate Optimum Temperature (OT). In the model, the interaction effect between temperature and humidity was assessed to see if the impact of heat or cold on Hospital Admissions (HAs) are different between different levels of humidity. The cumulative effect of heat during 21 days was not significant and it was the cold that had significant cumulative adverse effect on all groups. While the number of HAs attributed to any ranges of heat, including medium, high, extreme, and even all values were negligible, but a large number was attributable to cold values; about 10000 HAs were attributable to all values of cold temperature, of which about 9000 were attributed to medium range and about 1000 and less than 500 were attributed to high and extreme values of cold, respectively. This study highlights the need for interventions in cold seasons by policymakers. The results inform researchers as well as policy makers to address both men and women and elderly when any plan or preventive program is developed in the area under study.

Heat exposure effect on Ghanaian mining workers: A mediated-moderation approach

The lack of empirical evidence on the effect of heat exposure on the health and safety, productivity, psychological behaviour and social well-being outcomes of small- and large-scale mining workers in Africa has derailed concrete policy directions and interventions. An explanatory cross-sectional survey involving 320 small- and large-scale mining workers was used to assess this research gap. A path analysis was used to model health and safety, productivity, psychological behaviour and social well-being as a function of heat exposure, mediated and moderated by adaptation strategies and barriers, while controlling for age, gender, level of education, years of working experience and workplace environment. Significant direct adverse effects of heat exposure on mining workers’ health and safety, productivity and psychological behaviour outcomes were found. Using a pick-a-point approach, significant difference was found in simple slopes (SS) for heat exposure on adaptation strategies at medium level of barriers and a trend toward significance at the high level of barriers. Except for health and safety outcomes, there were significant conditional indirect effects of heat exposure on the performance outcomes at the medium and high levels of barriers to adaptation strategies. However, there was no evidence of mediated-moderation for heat exposure and health and safety, productivity, psychological behaviour and social well-being outcomes. We have provided empirical evidence to establish heat exposure effect on key performance outcomes of mining workers to initiate and guide the formulation of heat exposure management policies.

Heat risk assessment based on mobile phone data: Case study of Bratislava, Slovakia

The aim of this interdisciplinary study is to assess the heat risk for Bratislava. The following layers were created to compute the risk index: the hazard layer of air temperature, a mitigation layer of tree vegetation, an exposure layer of population and a vulnerability layer of individuals over 65 years of age. The MUKLIMO_3 model was used to evaluate the field of mean surface air temperature at 9 PM during selected days of the summer heat wave in August 2018. The tree vegetation layer, in the form of percentage per grid cell, was derived from Sentinel-2 satellite data. Population density data are based on mobile positioning data, and elderly population data are based on a gridded database from the statistical census. Input layers were unified into a resolution of 500 × 500 m, and the heat risk index was calculated by summation of the weighted input layers. The results reflect the variability of the population and the elderly population within the city, as well as the variability of the temperature field, which is caused by the joint effect of an urban heat island and topography. The highest values of risk index occur within the broader city centre, with specific hot spots at several places.

Heat strain and mortality effects of prolonged central European heat wave-an example of June 2019 in Poland

The occurrence of long-lasting severe heat stress, such as in July-August 2003, July 2010, or in April-May 2018 has been one of the biggest meteorological threats in Europe in recent years. The paper focuses on the biometeorological and mortality effects of the hot June that was observed in Central Europe in 2019. The basis of the study was hourly and daily Universal Thermal Climate Index (UTCI) values at meteorological stations in Poland for June 2019. The average monthly air temperature and UTCI values from 1951 to 2018 were analysed as background. Grosswetterlagen calendar of atmospheric circulation was used to assess synoptic conditions of heat wave. Several heat strain measures were applied : net heat storage (S), modelled heart rate (HR), sultriness (HSI), and UTCI index. Actual total mortality (TM) and modelled strong heat-related mortality (SHRM) were taken as indicators of biometeorological consequences of the hot June in 2019. The results indicate that prolonged persistence of unusually warm weather in June 2019 was determined by the synoptic conditions occurring over the European region and causing advection of tropical air. They led to the emergence of heat waves causing 10% increase in TM and 5 times bigger SHRM then in preceding 10 years. Such increase in SHRM was an effect of overheating and overload of circulatory system of human organism.

Heat stroke-related deaths in India: An analysis of natural causes of deaths, associated with the regional heatwave

Soaring temperatures cause deaths in large numbers in various parts of India. The number of deaths vary with region and are influenced by the demographics and socioeconomic characteristics of the region. This study tried to estimate the number of deaths associated with exposure to heat in the different states of India. Secondary data was used, which was collected from the website data.gov.in, an Open Government Data (OGD) Platform of the Indian government. Descriptive statistics were applied using Microsoft Excel-10. It was found that there 3014 men died from heat-related causes in 2001-05, which increased to 5157 in the period 2011-15. For women the number of deaths in the corresponding periods were 849 and 1254 respectively. Deaths caused by heatwaves were found to be higher than those resulting from avalanches, exposure to cold, cyclone, tornado, starvation due to natural calamity, earthquake, epidemic, flood, landslide, torrential rain and forest fire. The study revealed that there are regional variations in the number deaths due to heatstroke. From the perspective of disaster preparedness, it is important to note that deaths from heat strokes occur every year. With rising temperatures, the numbers are likely to increase. The findings of the study highlight this concern. Therefore, there is a need for targeted region-specific interventions for reducing the number of deaths due to heatwaves.

Heat-induced endoplasmic reticulum stress in soleus and gastrocnemius muscles and differential response to UPR pathway in rats

The present study aimed to investigate the differential response of oxidative (soleus) and glycolytic (gastrocnemius) muscles to heat-induced endoplasmic reticulum (ER) stress. It was hypothesized that due to compositional and functional differences, both muscles respond differently to acute heat stress. To address this, male Sprague Dawley rats (12/group) were subjected to thermoneutral (25 °C) or heat stress (42 °C) conditions for 1 h. Soleus and gastrocnemius muscles were removed for analysis post-exposure. A significant increase in body temperature and free radical generation was observed in both the muscles following heat exposure. This further caused a significant increase in protein carbonyl content, AOPP, and lipid peroxidation in heat-stressed muscles. These changes were more pronounced in heat-stressed soleus compared to the gastrocnemius muscle. Accumulation of unfolded, denatured proteins results in ER stress, causing activation of unfolded protein response (UPR) pathway. The expressions of UPR transducers were significantly higher in soleus as compared to the gastrocnemius muscle. A significant elevation in resting intracellular calcium ion was also observed in heat-stressed soleus muscle. Overloading of cells with misfolded proteins in soleus muscle activated ER-induced apoptosis as indicated by significant upregulation of C/EBP homologous protein and Caspase12. The study provides a detailed mechanistic representation of the differential response of muscles toward UPR under heat stress. Data suggests that soleus majorly being an oxidative muscle is more prone to heat stress-induced insult indicated by enhanced apoptosis. This study may aid in devising mitigation strategies to improve muscle performance under heat stress.

Heat-related illnesses in a mass gathering event and the necessity for newer diagnostic criteria: A field study

Heat-related illnesses (HRIs), mainly heat exhaustion (HE) and heat stroke (HS), are characterized by an elevation of core body temperature. In this study, we aimed to explore the HRIs’ types and patient characteristics among a sample taken from various representative in-field points in the Hajj season. A cross-sectional study was conducted in 2018 at 80 data collection points distributed in the field. Data related to demographics, features and risk factors were collected and analyzed from all encountered cases with suspected HRIs. Moreover, we developed a diagnostic tree for HRIs by using the XGBoost model. Out of the 1200 persons encountered during the study period, 231 fulfilled the criteria of HRIs spectrum and were included in this study. Around 6% had HS and 20% had HE. All HS cases (100%) were from outside of Saudi Arabia as compared with 72.5% diagnosed with HE (27.5% were from Saudi Arabia). In addition, 16% were considered as heat-induced muscle spasms, and 7% had limb heat edema. Additionally, most of HRIs cases were reported between 11 am and 1 pm. The HRIs diagnostic tree model gave a diagnostic accuracy of 93.6%. This study highlights the magnitude of HRIs among pilgrims in Hajj and provides a diagnostic tree that can aid in the risk stratification and diagnosis of these patients. We advise the implementation of more educational campaigns to pilgrims regarding preventable measures especially for the vulnerable groups (e.g. from outside Saudi Arabia, those with comorbidities and light-skinned people).

How to tackle complexity in urban climate resilience? Negotiating climate science, adaptation and multi-level governance in India

As the world’s population is expected to be over 2/3rd urban by 2050, climate action in cities is a growing area of interest in the inter-disciplines of development policy, disaster mitigation and environmental governance. The climate impacts are expected to be quite severe in the developing world, given its urban societies are densely packed, vastly exposed to natural elements while possessing limited capabilities. There is a notable ambiguity and complexity that inhibits a methodical approach in identifying urban resilience measures. The complexity is due to intersection of large number of distinct variables in climate geoscience (precipitation and temperature anomalies at different locations, RCPs, timeline), adaptation alternatives (approach, priority, intervention level) and urban governance (functional mandate, institutional capacity, and plans & policies). This research examines how disparate and complex knowledge and information in these inter-disciplines can be processed for systematic ‘negotiation’ to situate, ground and operationalize resilience in cities. With India as a case, we test this by simulating mid-term and long-run climate scenarios (2050 & 2080) to map regional climate impacts that shows escalation in the intensity of climate events like heat waves, urban flooding, landslides and sea level rise. We draw on suitable adaptation measures for five key urban sectors- water, infrastructure (including energy), building, urban planning, health and conclude a sleuth of climate resilience building measures for policy application through national/ state policies, local urban plans and preparation of city resilience strategy, as well as advance the research on ‘negotiated resilience’ in urban areas.

Human health outcomes at the neighbourhood scale implications: Elderly’s heat-related cardiorespiratory mortality and its influencing factors

The excessively warm weather, especially in cities, can lead to several adverse impacts, including heat-related mortality, becoming an increasingly important public health issue. Previous studies on heat-related mortality have assessed risk factors at the municipal scale, missing the intra-urban variability in heat risk and vulnerability. The knowledge of the spatial intra-variability can help to design spatially targeted measures to better protect citizens’ health. Through hot spot analysis, we identified the neighbourhood-scale spatial pattern of heat-related cardiorespiratory mortality in the elderly, during the yearly warmest five months of a three years period. Potential associations between spatial variability in heat-related mortality and several independent factors in each neighbourhood were investigated and their predictions. Two approaches were adopted: one is eminently statistical, using Generalized Linear Models (GLM) and another using Geographically Weighted Regression (GWR). This new recent regression technique is increasing in international attention on spatial modelling. The spatial model explains about 60% of the spatial variations in elderly’s heat-related cardiorespiratory mortality. The two-analyses produced an overlapping set of predictor variables, with emphasis on the elderly, vegetation cover and employment. The results also show that the areas where heat-related mortality is high, are also the areas where the number of deaths is higher than expected. These neighbourhoods should be considered as the most vulnerable to heat-related mortality. We concluded that studying human health outcomes at neighbourhood-scale is relevant for public health heat-related plans. Essential suggestions are provided to decision-making support and city planners designing strategies to reduce heat-related mortality.

Human health vulnerability to summer heat extremes in Romanian-Bulgarian cross-border area

Human health vulnerability (HHV) to different climate change-related phenomena, that is, summer heat extremes, is related to the exposure, sensitivity, and adaptive capacity of the affected entities. The current research is an empirical regional assessment of the human health effects of summer heat extremes in the Romania-Bulgarian Danube floodplain Calafat-Vidin-Turnu Magurele-Nikopol (CV-TMN) sector. The external biophysical and socioeconomic factors that shape the vulnerability are supported by the climate approach. The research relies on processing meteorological data from the most representative climate stations in the study area based on which some indicators-significant for measuring the impact on human health-were computed (e.g., number of extremely hot days, number of tropical days, number of tropical nights) and integrated into a composite summer heat extremes index (SHEI). To assess HHV to summer heat extremes, the vulnerability framework was completed by the internal socioeconomic factors revealed by the characteristics of the population living in urban and rural settlements in terms of demographic, health provisions, and quality of indoor living spaces. Finally, the authors computed the index of human health vulnerability to summer heat extremes (HHVI) as the Hull Score at the level of territorial local administrative units.

Human responses to high levels of carbon dioxide and air temperature

In this study, 30 subjects were exposed to different combinations of air temperature (T(a) : 24, 27, and 30°C) and CO(2) level (8000, 10 000, and 12 000 ppm) in a high-humidity (RH: 85%) underground climate chamber. Subjective assessments, physiological responses, and cognitive performance were investigated. The results showed that as compared with exposure to T(a) = 24°C, exposure to 30°C at all CO(2) levels caused subjects to feel uncomfortably warm and experience stronger odor intensity, while increased mental effort and greater intensity of acute health symptoms were reported. However, no significant effects of T(a) on task performance or physiological responses were found. This indicated that subjects had to exert more effort to maintain their performance in an uncomfortably warm environment. Increasing CO(2) from 8000 to 12 000 ppm at all T(a) caused subjects to report higher rates of headache, fatigue, agitation, and feeling depressed, although the results were statistically significant only at 24 and 27°C. The text typing performance and systolic blood pressure (SBP) decreased significantly at this exposure, whereas diastolic blood pressure (DBP) and thermal discomfort increased significantly. These effects suggest higher arousal/stress. No significant interaction effect of T(a) and CO(2) concentration on human responses was identified.

Human total fertility rate affected by ambient temperatures in both the present and previous generations

Elevated temperatures negatively affect human reproduction through several processes that regulate nutrient uptake and resource allocation in pregnant women. These can interfere with foetal development, resulting in low birth weight neonates with altered development trajectories. Temperatures that affect the current generation could, therefore, also have an impact on the following generation. We asked whether heat stress affected offspring fertility by asking if current and past ambient temperatures influenced total fertility rates (TFR) in human populations distributed across the world. We analysed time series data in 65 countries using simple regression analyses based on maximum temperatures and temperature amplitudes over 55 years. Supplemental longer time series (up to 100 years) provided information on response patterns in Northern Europe and Greenland’s colder climates. There were clear and strong effects of temperatures on the TFR in the concurrent and the previous generation. Our temperature-based models account for 71-95% of the variation in TRF in European countries and Greenland, and 56-99% of the variation in 65 countries worldwide. Our findings are consistent with studies of seasonal variation in fertility and suggest that increased temperatures will negatively influence populations subjected to monthly maximum temperatures above 15-20 °C, while fertility in colder climates benefits from elevated temperatures. Our results provide strong evidence that ambient temperatures have important effects on human fertility, and that these effects persist into the following generation.

Hydration in relation to water insecurity, heat index, and lactation status in two small-scale populations in hot-humid and hot-arid environments

OBJECTIVES: This study compared the prevalence of concentrated urine (urine specific gravity ?1.021), an indicator of hypohydration, across Tsimane’ hunter-forager-horticulturalists living in hot-humid lowland Bolivia and Daasanach agropastoralists living in hot-arid Northern Kenya. It tested the hypotheses that household water and food insecurity would be associated with higher odds of hypohydration. METHODS: This study collected spot urine samples and corresponding weather data along with data on household water and food insecurity, demographics, and health characteristics among 266 Tsimane’ households (N = 224 men, 235 women, 219 children) and 136 Daasanach households (N = 107 men, 120 women, 102 children). RESULTS: The prevalence of hypohydration among Tsimane’ men (50.0%) and women (54.0%) was substantially higher (P?

Future climate change impact on urban heat island in two Mediterranean cities based on high-resolution regional climate simulations

Farmer suicides: Effects of socio-economic, climate, and mental health factors

BACKGROUND: People working in agriculture, fishing, and forestry have elevated risks of suicide. The suicide rates for the occupations of “agriculture, fishing, and forestry” are significantly higher than any other occupation. AIMS OF STUDY: This study evaluates whether the variability in socioeconomic and demographic factors and in climate as well as the support from mental health providers and social associations affected the suicide rates of farmers in the US. METHODS: We estimate Poisson count data regression and county level-fixed effects regressions using data from the National Center for Health Statistics complemented with relevant socio-economic, climate data and data on mental health providers from a variety of sources. RESULTS: The results show more suicides in counties with more farms and with higher share of population without health insurance, lower agricultural wages and, in non-rural counties higher poverty rate. Surprisingly, we find more suicides in counties with more social associations, while the availability of mental health providers is associated with fewer suicides in non-rural counties, and lower suicide rate in southern counties. DISCUSSION: These results highlight the need for innovative targeted policy interventions instead of relying on one-size-fits-all approach. Farmers and farm workers are yet to be reached with modern and effective tools to improve mental health and prevent suicide. At the same time, factors such as the weather and climate as well as some more traditional factors such as social associations or religious participation play a limited role. IMPLICATIONS FOR HEALTH POLICIES: Support mechanisms have a differential effect in rural and urban areas. It is important to identify the specific demographic, climate, and policy changes that serve as external stressors and affect farm workers’ suicide and accidental death from on-farm injury. IMPLICATION FOR FURTHER RESEARCH: Ideally, individual level data on farmers would be best in a study that evaluates what factors cause suicides.

Field study of pedestrians’ comfort temperatures under outdoor and semi-outdoor conditions in Malaysian university campuses

Difficulties in controlling the effects of outdoor thermal environment on the human body are attracting considerable research attention. This study investigated the outdoor thermal comfort of urban pedestrians by assessing their perceptions of the tropical, micrometeorological, and physical conditions via a questionnaire survey. Evaluation of the outdoor thermal comfort involved pedestrians performing various physical activities (sitting, walking, and standing) in outdoor and semi-outdoor spaces where the data collection of air temperature, globe temperature, relative humidity, wind speed, solar radiation, metabolic activity, and clothing insulation data was done simultaneously. A total of 1011 participants were interviewed, and the micrometeorological data were recorded under outdoor and semi-outdoor conditions at two Malaysian university campuses. The neutral temperatures obtained which were 28.1 °C and 30.8 °C were within the biothermal acceptable ranges of 24-34 °C and 26-33 °C of the PET thermal sensation ranges for the outdoor and semi-outdoor conditions, respectively. Additionally, the participants’ thermal sensation and preference votes were highly correlated with the PET and strongly related to air and mean radiant temperatures. The findings demonstrated the influence of individuals’ thermal adaptation on the outdoor thermal comfort levels. This knowledge could be useful in the planning and designing of outdoor environments in hot and humid regions to create better thermal environments.

Future changes in climatic variables due to greenhouse warming increases dengue incidence in the region of the Tucurui hydroelectric dam in the Amazon

This study investigates the impact of future changes in climatic variables on dengue incidence in the region of the Tucurui dam in the Amazon. Tucurui dam is the one of the largest hydroelectric power stations in the Amazon. Correlations and regression analysis through least squares fitting between dengue cases and temperature, precipitation, and humidity are obtained. Positive correlations between dengue incidence and temperature are found for lags from 4 to 5 months (higher correlation for lag 5), dengue and precipitation for lags 0 up to 1, and dengue and humidity for lag 0. The positive correlations between dengue and precipitation and between dengue and humidity are higher for the simultaneous correlation. To investigate the impact of the future changes in these climatic variables in the region, projections of RegCM4 model simulations under the RCP 8.5 scenario are obtained. The model projections indicate a warming and moisture increase in the region near the dam at the end of the twenty-first century. Regression analysis using the model projections indicates that the dengue incidence may increase substantially in future climate scenarios in this region (more than fivefold compared with the present climate). This increase is between two and three times higher than the global estimates of dengue incidence in the future. It is suggested that the incidence of dengue cases is more sensitive to changes in temperature. Vector parameters increase with temperature in the future, indicating that the temperature conditions are highly favorable for the spread of the disease in the region. The results indicate that cities in the area surrounding the Tucurui hydroelectric dam are areas of potential dengue incidence in the future. These findings may be applied to hydroelectric dams in other areas of the world. However, future studies involving additional dams are necessary. The results suggest an increase in climate-driven risk of transmission from Aedes aegypti throughout the entire Amazon, and especially the eastern and southern parts.

Geographical distinctions of longevity indicators and their correlation with climatic factors in the area where most Chinese Yao are distributed

Longevity research is a hot topic in the health field. Considerable research focuses on longevity phenomenon in Bama Yao Autonomous County, which has a typical karst landform and is located in Southwest China. This study aims to illustrate the spatial feature of longevity indicators in other Yao areas, to analyze the correlation between climatic factors and longevity indicators, and to provide new clues and targets for further longevity studies. We collect and integrate population, climate, and terrain data into a spatial database. The main analysis methods include spatial autocorrelation, high/low clustering, and multiscale geographically weighted regression (MGWR). Two longevity clusters are identified in Guijiang River Basin (longevity index (LI%): 2.49?±?0.63) and Liujiang River Basin (LI%: 2.13?±?0.60). The spatial distribution of longevity indicators is autocorrelative (Moran’s I?=?0.652, p?

Global exposure of population and land-use to meteorological droughts under different Warming Levels and Shared Socioeconomic Pathways: A coordinated regional climate downscaling experiment-based study

Global warming is likely to cause a progressive drought increase in some regions, but how population and natural resources will be affected is still underexplored. This study focuses on global population and land-use (forests, croplands, pastures) exposure to meteorological drought hazard in the 21st century, expressed as frequency and severity of drought events. As input, we use a large ensemble of climate simulations from the Coordinated Regional Climate Downscaling Experiment, population projections from the NASA-SEDAC dataset, and land-use projections from the Land-Use Harmonization 2 project for 1981-2100. The exposure to drought hazard is presented for five SSPs (SSP1-SSP5) at four Global Warming Levels (GWLs, from 1.5 to 4 degrees C). Results show that considering only Standardized Precipitation Index (SPI; based on precipitation), the combination SSP3-GWL4 projects the largest fraction of the global population (14%) to experience an increase in drought frequency and severity (vs. 1981-2010), with this value increasing to 60% if temperature is considered (indirectly included in the Standardized Precipitation-Evapotranspiration Index, SPEI). With SPEI, considering the highest GWL for each SSP, 8 (for SSP2, SSP4, and SSP5) and 11 (SSP3) billion people, that is, more than 90%, will be affected by at least one unprecedented drought. For SSP5 (fossil-fuelled development) at GWL 4 degrees C, approximately 2 center dot 10(6) km(2) of forests and croplands (respectively, 6 and 11%) and 1.5 center dot 10(6) km(2) of pastures (19%) will be exposed to increased drought frequency and severity according to SPI, but for SPEI, this extent will rise to 17 center dot 10(6) km(2) of forests (49%), 6 center dot 10(6) km(2) of pastures (78%), and 12 center dot 10(6) km(2) of croplands (67%), with mid-latitudes being the most affected areas. The projected likely increase of drought frequency and severity significantly increases population and land-use exposure to drought, even at low GWLs, thus extensive mitigation and adaptation efforts are needed to avoid the most severe impacts of climate change.

Global patterns of aegyptism without arbovirus

The world’s most important mosquito vector of viruses, Aedes aegypti, is found around the world in tropical, subtropical and even some temperate locations. While climate change may limit populations of Ae. aegypti in some regions, increasing temperatures will likely expand its territory thus increasing risk of human exposure to arboviruses in places like Europe, Northern Australia and North America, among many others. Most studies of Ae. aegypti biology and virus transmission focus on locations with high endemicity or severe outbreaks of human amplified urban arboviruses, such as dengue, Zika, and chikungunya viruses, but rarely on areas at the margins of endemicity. The objective in this study is to explore previously published global patterns in the environmental suitability for Ae. aegypti and dengue virus to reveal deviations in the probability of the vector and human disease occurring. We developed a map showing one end of the gradient being higher suitability of Ae. aegypti with low suitability of dengue and the other end of the spectrum being equal and higher environmental suitability for both Ae. aegypti and dengue. The regions of the world with Ae. aegypti environmental suitability and no endemic dengue transmission exhibits a phenomenon we term ‘aegyptism without arbovirus’. We then tested what environmental and socioeconomic variables influence this deviation map revealing a significant association with human population density, suggesting that locations with lower human population density were more likely to have a higher probability of aegyptism without arbovirus. Characterizing regions of the world with established populations of Ae. aegypti but little to no autochthonous transmission of human-amplified arboviruses is an important step in understanding and achieving aegyptism without arbovirus.

Global population exposed to extreme events in the 150 most populated cities of the world: Implications for public health

Climate change driven increases in the frequency of extreme heat events (EHE) and extreme precipitation events (EPE) are contributing to both infectious and non-infectious disease burden, particularly in urban city centers. While the share of urban populations continues to grow, a comprehensive assessment of populations impacted by these threats is lacking. Using data from weather stations, climate models, and urban population growth during 1980-2017, here, we show that the concurrent rise in the frequency of EHE, EPE, and urban populations has resulted in over 500% increases in individuals exposed to EHE and EPE in the 150 most populated cities of the world. Since most of the population increases over the next several decades are projected to take place in city centers within low- and middle-income countries, skillful early warnings and community specific response strategies are urgently needed to minimize public health impacts and associated costs to the global economy.

Extreme heat vulnerability assessment in tropical region: A case study in Malaysia

Exertional rhabdomyolysis in newly enrolled cadets of a military academy

INTRODUCTION/AIMS: Exertional rhabdomyolysis (ER) often occurs during prolonged intense exercise in hot environments, posing a threat to the health of military personnel. In this study we aimed to investigate possible risk factors for ER and provide further empirical data for prevention and clinical treatment strategies. METHODS: A retrospective investigation of 116 concurrent ER cases was conducted. Conditional logistic regression analyses were performed to assess the association between each potential risk (or protective) factor and ER. The clinical characteristics of the 71 hospitalized patients were analyzed descriptively. RESULTS: After screening, the following variables significantly increased the risk of ER: shorter length of service (recruits; odds ratios [OR], 7.49; 95% confidence interval [CI], 2.58-21.75); higher body mass index (BMI; OR, 1.14, 95% CI, 1.03-1.26); lack of physical exercise in the last half year (less than once per month; OR, 3.20; 95% CI, 1.08-9.44); and previous heat injury (OR, 2.94; 95% CI, 1.26-6.89). Frequent fruit consumption (OR, 0.57; 95% CI, 0.33-0.99), active hydration habit (OR, 0.37; 95% CI, 0.20-0.67), water replenishment of more than 2 L on the training day (OR, 0.15; 95% CI, 0.05-0.45), and water replenishment of at least 500?mL within 1 hour before training (OR, 0.33; 95% CI, 0.12-0.88) significantly decreased the risk of ER. Of the 71 hospitalized patients, 41 (57.7%) were diagnosed with hypokalemia on admission. DISCUSSION: In military training, emphasis should be placed on incremental adaptation training before more intense training, and close attention should be given to overweight and previously sedentary recruits. Fluid replenishment before exercise, increased fruit intake, and proper potassium supplementation may help prevent ER.

Exploring the interactions between vulnerability, resilience and adaptation to extreme temperatures

Proposed ways of improving adaptation to climate change have most often been supported by narrowly framed and separate analysis. This article investigates how different levels of vulnerability and resilience interplay with adaptation to extreme temperatures, what is the nature of these relationships and whether lower vulnerability and higher resilience contribute to increased adaptation. This article explores the governance implications of a project that, unlike other, brings together vulnerability, resilience and adaptation assessments. The project has made significant advances in addressing the current deficit integrated assessments for shaping governance propositions. Such propositions argue that the diverse levels of vulnerability and resilience convey important bases for (1) targeting at-risk older individuals; (2) developing vulnerability reduction actions; (3) resilience building actions; and (4) understanding ‘success cases’ and learn from them for developing appropriate policy measures. Taken together, these propositions offer a social, psychological and health framework not simply for governing extreme temperatures but for governing responses to climate change at large.

Exposure-lag-response associations between extreme environmental conditions and primary Sjogren’s syndrome

INTRODUCTION: Patients with primary Sjögren’s syndrome (pSS) reportedly believe that their symptoms worsen on extreme weather days due to variations in environmental conditions. However, few studies have assessed the acute effects of environmental exposure on the onset of pSS. This study aimed to evaluate the exposure-response relationship between extreme environmental conditions and pSS outpatient visits. METHOD: We obtained data on pSS outpatient visits from two provincial general hospitals in Hefei, China, during 2014-2019. A distributed lag non-linear model was used to estimate the exposure-lag-response relationship between environmental variables and pSS. RESULTS: We detected significant and non-linear associations between extreme environments and pSS. The estimated relative risk (RR) for a lag of 3 days was 1.11 (95% CI: 1.03 to 1.19) for extreme cold and for a lag of 21 days was 1.07 (95% CI: 1.01 to 1.12) for extreme dampness. Long sunshine duration was positively correlated with pSS (lag 11, 1.05, 95% CI: 1.01 to 1.08). Moreover, female patients were more susceptible to these effects. Patients older than 65 years old were more vulnerable to frigid environments (lag 3, RR?=?1.30, 95% CI: 1.09 to 1.54), while younger patients were more vulnerable to extreme dampness (lag 21, RR?=?1.10, 95% CI: 1.03 to 1.16). Extreme cold and high humidity were negatively correlated with the same-day outpatient visits. CONCLUSIONS: Our findings suggest a potential relationship between exposure to extreme environmental conditions and increased risk of pSS outpatient visits. We therefore suggest that policymakers and doctors aim to further our understanding of environmental effects on pSS and adopt adequate measures to alleviate pSS symptoms. Key Points • Extreme cold, extreme dampness, and long sunshine duration increased the risk of pSS outpatient visits, especially for females. • Young pSS patients are more susceptible to a rise in humidity. • Elderly pSS patients are more sensitive to extreme cold weather.

Extensions of the distributed lag non-linear model (DLNM) to account for cumulative mortality

The effects of meteorological factors on health outcomes have gained popularity due to climate change, resulting in a general rise in temperature and abnormal climatic extremes. Instead of the conventional cross-sectional analysis that focuses on the association between a predictor and the single dependent variable, the distributed lag non-linear model (DLNM) has been widely adopted to examine the effect of multiple lag environmental factors health outcome. We propose several novel strategies to model mortality with the effects of distributed lag temperature measures and the delayed effect of mortality. Several attempts are derived by various statistical concepts, such as summation, autoregressive, principal component analysis, baseline adjustment, and modeling the offset in the DLNM. Five strategies are evaluated by simulation studies based on permutation techniques. The longitudinal climate and daily mortality data in Taipei, Taiwan, from 2012 to 2016 were implemented to generate the null distribution. According to simulation results, only one strategy, named MV(DLNM), could yield valid type I errors, while the other four strategies demonstrated much more inflated type I errors. With a real-life application, the MV(DLNM) that incorporates both the current and lag mortalities revealed a more significant association than the conventional model that only fits the current mortality. The results suggest that, in public health or environmental research, not only the exposure may post a delayed effect but also the outcome of interest could provide the lag association signals. The joint modeling of the lag exposure and the delayed outcome enhances the power to discover such a complex association structure. The new approach MV(DLNM) models lag outcomes within 10 days and lag exposures up to 1 month and provide valid results.

Extreme diurnal temperature range and cardiovascular emergency hospitalisations in a Mediterranean region

OBJECTIVES: The impact of extreme diurnal temperature range (DTR) on cardiovascular morbidity in Mediterranean regions remains uncertain. We aimed to analyse the impact of extreme low DTR (stable temperature) or high DTR (changeable temperature) on cardiovascular hospitalisations in Catalonia (Southern Europe). METHODS: We conducted a self-controlled case series study using whole-year data from the System for the Development of Research in Primary Care database and 153 weather stations from the Catalan Meteorological Service. The outcome was first emergency hospitalisation. Monthly DTR percentiles were used to define extreme DTR as low (DTR 95th percentile). We assessed two effects: same-day (1-day exposure, coinciding with the extreme DTR episode) and cumulative (3-day exposure, adding two subsequent days). Incidence rate ratios (IRR) were calculated adjusted by age, season and air pollution. Stratified analyses by gender, age or cardiovascular type and regions are provided. RESULTS: We computed 121 206 cardiovascular hospitalisations from 2006 to 2013. The IRR was 1.032 (95% CI 1.005 to 1.061) for same day and 1.024 (95% CI 1.006 to 1.042) for cumulative effects of extreme high DTR. The impact was significant for stroke and heart failure, but not for coronary heart disease. Conversely, extreme low DTR did not increase cardiovascular hospitalisations. CONCLUSIONS: Extreme high DTR increased the incidence of cardiovascular hospitalisations, but not extreme low DTR. Same-day effects of extreme high DTR were stronger than cumulative effects. These findings contribute to better understand the impact of outdoor temperature on health, and to help defining public health strategies to mitigate such impact.

Extreme heat and paediatric emergency department visits in Southwestern Ontario

OBJECTIVE: The risk of adverse health events is expected to increase with hotter temperatures, particularly among the most vulnerable groups such as elderly persons and children. The objective of this study was to assess the association between extreme heat and daily emergency department visits among children (0 to 17 years) in Southwestern Ontario. METHODS: We examined the average maximum temperature, relative humidity, and daily paediatric emergency department visits in June through August of 2002 to 2019. We reviewed emergency department visits from two academic hospitals. Daily meteorological data from the local weather station were obtained from Environment and Climate Change Canada. RESULTS: Extreme heat, defined as the 99th percentile of the maximum temperature distribution, occurred at 33.1°C and was associated with an overall 22% increase in emergency department visits, compared to the reference temperature of 21°C. This association was mostly found between the second and fifth day after the exposure, suggesting a slightly delayed effect. The results of the sub-group analysis indicate that the risk of an emergency department visit due to infectious disease increases by 35% and the most pronounced association was noted in children aged 1 to 12 years. CONCLUSIONS: Extreme heat is associated with an increased incidence of emergency department visits in children. As temperatures continue to increase, strategies to mitigate heat-related health risks among children should be developed.

Extreme heat related mortality: Spatial patterns and determinants in the United States, 1979-2011

Extreme heat has been responsible for more deaths in the United States than any other weather-related phenomenon over the past decade. The frequency and intensity of extreme heat events are projected to increase over the course of this century. In this work, we examine historical patterns of extreme heat exposure and mortality in the continental United States. We examine spatial variation in the mortality response to exposure, consider the contribution of key demographic and socio-economic factors in driving heat-related mortality, and test three different extreme heat thresholds using a national-level spatial autoregressive model and a geographically weighted regression approach. We find that the mortality response to exposure is higher in areas that do not routinely experience heat extremes, and that exposure itself is a stronger driver of heat-related mortality across the larger urban areas of the Midwest and Northeast. The importance of demographic/socio-economic factors varies substantially over space, and results are robust across alternative measures of heat extremes, suggesting that no single definition is necessarily superior. The baseline relationships established here are potentially useful for future predictions of exposure and heat-related mortality under alternative population and climate change scenarios, and may aid policy makers and planners in implementing effective adaptation and mitigation strategies.

Extreme temperatures and cardiovascular mortality: Assessing effect modification by subgroups in Ganzhou, China

BACKGROUND: Many people die from cardiovascular diseases each year, and extreme temperatures are regarded as a risk factor for cardiovascular deaths. However, the relationship between temperature and cardiovascular deaths varies in different regions because of population density, demographic inequality, and economic situation, and the evidence in Ganzhou, China is limited and inconclusive. OBJECTIVE: This study aimed to assess extreme temperature-related cardiovascular mortality and identify the potential vulnerable people. METHODS: After controlling other meteorological measures, air pollution, seasonality, relative humidity, day of the week, and public holidays, we examined temperature-related cardiovascular mortality along 21 lag days by Poisson in Ganzhou, China. RESULTS: A J-shaped relationship was observed between mean temperature and cardiovascular mortality. Extremely low temperatures substantially increased the relative risks (RR) of cardiovascular mortality. The effect of cold temperature was delayed by 2-6 days and persisted for 4-10 days. However, the risk of cardiovascular mortality related to extremely high temperatures was not significant (p > 0.05). Subgroup analysis indicated that extremely low temperatures had a stronger association with cardiovascular mortality in people with cerebrovascular diseases (RR: 1.282, 95% confidence interval [CI]: 1.020-1.611), males (RR: 1.492, 95% CI: 1.175-1.896), married people (RR: 1.590, 95% CI: 1.224-2.064), and people above the age of 65 years (RR: 1.641, 95% CI: 1.106-2.434) than in people with ischemic heart disease, females, unmarried people, and the elderly (?65 years old), respectively. CONCLUSIONS: The type of cardiovascular disease, sex, age, and marital status modified the effects of extremely low temperatures on the risk of cardiovascular mortality. These findings may help local governments to establish warning systems and precautionary measures to reduce temperature-related cardiovascular mortality.

Extreme weather and mortality: Evidence from two millennia of Chinese elites

Modern technology empowers human beings to cope with various extreme weather events. Using Chinese historical data, we examine the impact of extreme weather on long-term human mortality in an environment where individuals had no access to modern technology. By combining life-course data on 5000 Chinese elites with historical weather data over the period 1-1840 AD, we find a significant and robust negative impact of droughts in childhood on the longevity of elites. Quantitatively, encountering three years of droughts in childhood reduces an elite’s life span by about two years.

Extreme weather conditions as a gender-specific risk factor for acute myocardial infarction

BACKGROUND: Acute coronary syndrome is a disease with high prevalence and high mortality. Exposure to heat or cold increases the risks of myocardial infarction significantly. Gender-specific effects of this have not yet been examined. Our goal was to determine whether extreme weather conditions, which become more and more frequent, are gender-specific risk factors for myocardial infarction, in order to help provide faster diagnosis and revascularization therapy for patients. METHODS: We analysed the incidence of ST-elevation myocardial infarction (STEMI) in a large urban area over a 65-months period in a cohort study. A day was the unit of analysis. Incidence rate ratios (IRR) with Poisson regression models were calculated. All patients with STEMI on Saturdays and Sundays were included. Gender, high or low perceived temperatures (PT), a function of temperature, wind speed and humidity, and meteorological cold and heat warnings by the Austrian Central Institute for Meteorology and Geodynamics (ZAMG) were considered as risk factors. RESULTS: During the 562 days of the study period, a total of 1109 patients with STEMI (803; 72% men, mean age 61;14 years) were included. The gender difference between men and women was much more pronounced on cold (0 °C) days (85% of patients male; 1.8 per day) than on hot (20 °C) days (71% male; 1.4 per day) or days without extreme temperatures (72% male; 1.4 per day). We found significant interaction between gender and cold days (IRR of the interaction term 2.3 (95% CI 1.2-4.6), p = 0.02). No gender-specific effect was observed on warm days (IRR for interaction 0.9 (95% CI 0.6-1.3), p = 0.3). CONCLUSION: Low perceived temperature pronouncedly increases the already elevated risk for STEMI in males. Whether this effect is based on gender alone, or on one of the cardiovascular risk factors which are more common in men, is up to further study.

Extreme weather events and dengue outbreaks in Guangzhou, China: A time-series quasi-binomial distributed lag non-linear model

Dengue transmission is climate-sensitive and permissive conditions regularly cause large outbreaks in Asia-Pacific area. As climate change progresses, extreme weather events such as heatwaves and unusually high rainfall are predicted more intense and frequent, but their impacts on dengue outbreaks remain unclear so far. This paper aimed to investigate the relationship between extreme weather events (i.e., heatwaves, extremely high rainfall and extremely high humidity) and dengue outbreaks in China. We obtained daily number of locally acquired dengue cases and weather factors for Guangzhou, China, for the period 2006-2015. The definition of dengue outbreaks was based on daily number of locally acquired cases above the threshold (i.e., mean + 2SD of daily distribution of dengue cases during peaking period). Heatwave was defined as ?2 days with temperature ? 95th percentile, and extreme rainfall and humidity defined as daily values ?95th percentile during 2006-2015. A generalized additive model was used to examine the associations between extreme weather events and dengue outbreaks. Results showed that all three extreme weather events were associated with increased risk of dengue outbreaks, with a risk increase of 115-251% around 6 weeks after heatwaves, 173-258% around 6-13 weeks after extremely high rainfall, and 572-587% around 6-13 weeks after extremely high humidity. Each extreme weather event also had good capacity in predicting dengue outbreaks, with the model’s sensitivity, specificity, accuracy, and area under the receiver operating characteristics curve all exceeding 86%. This study found that heatwaves, extremely high rainfall, and extremely high humidity could act as potential drivers of dengue outbreaks.

Factors associated with spatial distribution of severe fever with thrombocytopenia syndrome

Severe fever with thrombocytopenia syndrome (SFTS) was firstly identified in mainland China in 2009 and the geographic distribution has expanded in recent years. In this study, we constructed ecological niche models (ENM) of SFTS with meteorological factors, environmental factor, and density of domestic animals using MaxEnt. We found four significant associated factors including altitude, yearly average temperature, yearly accumulated precipitation, and yearly average relative humidity which accounted for 94.1% percent contribution. SFTS occurrence probability was high when altitude was between -100 m and 100 m, and the probability was nearly 0 when altitude was beyond 3000 m. Response curves of SFTS to the yearly average temperature, yearly accumulated precipitation, and yearly average relative humidity were all reversed V-shape. SFTS occurrence probability was high where the yearly average temperature, yearly accumulated precipitation, and yearly relative humidity were 12.5-17.5 °C, 700-2250 mm and 63-82%, respectively. ENMs predicted that the potential high-risk areas were mainly distributed in eastern areas and central areas of China. But there were some predicted potential high-risk areas where no SFTS case was reported up to date. More researches should be done to make clear whether SFTS case had occurred in these areas.

Environmental heat-related health symptoms among community in a tropical city

Effects of extreme temperature on respiratory diseases in Lanzhou, a temperate climate city of China

Under the global climate warming, extreme weather events occur more and more frequently. Epidemiological studies have proved that extreme temperature is strongly correlated with respiratory diseases. We evaluated extreme-temperature effect on respiratory emergency room (ER) visits for 5 years in Lanzhou, a northwest temperate climate city of China from January 1st, 2013, to August 31st, 2017. We built a distributed lag non-linear model (DLNM) to evaluate the lag effect up to 30 days. Results showed the relative risk (RR) of respiratory disease always reached the maximum at lag 0 day and decreased to 1.0 at lag 5 days. Extremely low temperature showed the lag effect of 22 days and the maximum RR was 1.415 (95% CI 1.295-1.546) at lag 0 day. Extremely high temperature showed the lag effect of 7 days and the maximum RR was 1.091 (95% CI 1.069-1.114) at lag 0 day. The elders (age > 65 years) were at the greatest risk to extreme temperatures and the response were very acute. Children (age ? 15 years) were at the lowest risk but the lag effect lasted the longest lag days than other subgroups. Males showed longer-term lag effect and higher RR than females. Our study indicated that the extremely low temperature has a significantly greater effect on respiratory diseases than extremely high temperature.

Effects of meteorological factors on human leptospirosis in Colombia

Leptospirosis is a disease usually acquired by humans through water contaminated with the urine of rodents that comes into direct contact with the cutaneous lesions, eyes, or mucous membranes. The disease has an important environmental component associated with climatic conditions and natural disasters, such as floods. We analyzed the relationship between rainfall and temperature and the incidence of leptospirosis in the top 30 municipalities with the highest numbers of cases of the disease in the period of 2007 to 2016. It was an ecological study of the time series of cases of leptospirosis, rainfall, and temperature with lags of 0, 1, 2, 3, and 4 weeks. A multilevel negative binomial regression model was implemented to evaluate the relationship between leptospirosis and both meteorological factors. In the 30 evaluated municipalities during the study period, a total of 5136 cases of leptospirosis were reported. According to the implemented statistical model, there was a positive association between the incidence of leptospirosis and rainfall with a lag of 1 week and a negative association with temperature with a lag of 4 weeks. Our results show the importance of short-term lags in rainfall and temperature for the occurrence of new cases of leptospirosis in Colombia.

Effects of social vulnerability and heat index on emergency medical service incidents in San Antonio, Texas, in 2018

BACKGROUND: Excessive heat is a leading weather-related cause of fatalities in the USA. Vulnerable populations can face greater exposure to health risks during extreme heat events. The aim of this study is to examine the effects of excessive heat and community-level social vulnerability on morbidity in San Antonio, Texas, in 2018. METHODS: Heat Index (HI) data are from the National Oceanic and Atmospheric Administration. Social vulnerability is measured using the Centres for Disease Control and Prevention’s Social Vulnerability Index (SVI). Morbidity is measured as the number of emergency medical service (EMS) incidents. Sixty-one zip codes were analysed for the 153 constrained calendar days from 1 May to 30 September 2018. Negative binomial regression analysis with the time-stratified case-crossover design was conducted to predict the effects of HI and SVI on the rate of EMS incidents. RESULTS: HI is significantly and positively associated with the rate of EMS incidents. Social vulnerability has a statistically significant association with EMS incidents, with higher levels of community-level social vulnerability associated with higher rates of EMS incidents. The effect of the HI on the rate of EMS incidents is significantly and positively moderated by the SVI. CONCLUSIONS: Social vulnerability and excessive heat increase the rate of EMS incidents. As the number of excessive heat days increases and San Antonio continues to have extreme disparities by location, there will be an effect on health systems, including EMSs.

Effects of weather, air pollution and Oktoberfest on ambulance-transported emergency department admissions in Munich, Germany

BACKGROUND: Climate change and increasing risks of extreme weather events affect human health and lead to changes in the emergency department (ED) admissions and the emergency medical services (EMS) operations. For a better allocation of resources in the healthcare system, it is essential to predict ED numbers based on environmental variables. This publication aims to quantify weather, air pollution and calendar-related effects on daily ED admissions. METHODS: Analyses were based on 575,725 admissions from the web-based IVENA system recording all patients in the greater Munich area with pre-hospital emergency care in ambulance operations during 2014-2018. Linear models were used to identify statistically significant associations between daily ED admissions and calendar, meteorological and pollution factors, allowing for lag effects of one to three days. Separate analyses were performed for seasons, with additional subset analyses by sex, age and surgical versus internal department. RESULTS: ED admissions were exceptionally high during the three-week Oktoberfest, particularly for males and on the weekends, as well as during the New Year holiday. Admissions significantly increased during the years of study, decreased in spring and summer holidays, and were lower on Sundays while higher on Mondays. In the warmer seasons, admissions were significantly associated with higher temperature, adjusting for the effects of sunshine and humidity in all age groups except for the elderly. Adverse weather conditions in non-summer seasons were either linked to increasing ED admissions (from storms, gust) or decreasing them from rain. Mostly, but not exclusively, in winter, increasing ED admissions were associated with colder minimum temperatures as well as with higher NO and PM(10) concentrations. CONCLUSIONS: In addition to standard calendar-related factors, incorporating seasonal weather, air pollutant and interactions with patient demographics into resource planning models can improve the daily allocation of resources and staff of EMS operations at hospital and city levels.

Ensemble projection of city-level temperature extremes with stepwise cluster analysis

Climate change can cause property damage and deaths in cities. City-scale climate projections are essential for making informed decisions towards climate change mitigation and adaptation at city levels. This study aims at developing ensemble projections of temperature extremes at the city-level and quantifying the contributions of various factors to the resulting uncertainty of the ensemble projections. The city of Toronto will be used here as an example to demonstrate the effectiveness of the proposed research framework. In particular, the stepwise cluster analysis (SCA) model will be used to perform climate downscaling to three GCM datasets (GFDL, IPSL, and MPI) under three emission scenarios (RCP2.6, RCP4.5, and RCP8.5) in order to generate city-level climate projections for the city of Toronto. The SCA model is demonstrated to be capable of capturing the inter- and intra-annual variations of the daily maximum, mean, and minimum temperatures in the studied city. The results suggest that mean temperatures in Toronto are projected to increase at the rate of 0.15 and 0.5 degrees C/decade under RCP4.5 and RCP8.5, respectively, while no significant warming trend is detected for RCP2.6. In terms of temperature extremes, extreme warm events are projected to increase while extreme cold events decrease under all emission scenarios. The decrease in the heating demand is two to four times larger than the increase in the cooling demand, indicating a decrease in the city’s total energy use. The projected warming might be beneficial for the urban growers because of the significant increases in the growing season length and growing degree days; however, the residents of the city of Toronto are likely to experience simultaneous increases in the intensity, duration, and frequency of heatwave events in future summers. Because of the warming, coldwave events in winters are likely to become less frequent and be shorter in duration, but their intensity is expected to increase significantly. Through decomposition of the resulting uncertainty of the ensemble projections, emission scenario is found to be the dominant factor for the uncertainty associated with urban climate projection.

Epidemiological characteristics of tuberculosis and effects of meteorological factors and air pollutants on tuberculosis in Shijiazhuang, China: A distribution lag non-linear analysis

BACKGROUND: Tuberculosis (TB) is a serious public health problem in China. There is evidence to prove that meteorological factors and exposure to air pollutants have a certain impact on TB. But the evidence of this relationship is insufficient, and the conclusions are inconsistent. METHODS: Descriptive epidemiological methods were used to describe the distribution characteristics of TB in Shijiazhuang in the past five years. Through the generalized linear regression model (GLM) and the generalized additive model (GAM), the risk factors that affect the incidence of TB are screened. A combination of GLM and distribution lag nonlinear model (DLNM) was used to evaluate the lag effect of environmental factors on the TB. Results were tested for robustness by sensitivity analysis. RESULTS: The incidence of TB in Shijiazhuang showed a downward trend year by year, with seasonality and periodicity. Every 10 ?g/m(3) of PM(10) changes, the RR distribution is bimodal. The first peak of RR occurs on the second day of lag (RR = 1.00166, 95% CI: 1.00023, 1.00390); the second risk period starts from 13th day of lag and peaks on15th day (RR = 1.00209, 95% CI: 1.00076, 1.00341), both of which are statistically significant. The cumulative effect of increasing 10 ?g/m(3) showed a similar bimodal distribution. Time zones where the RR makes sense are days 4-6 and 13-20. RR peaked on the 18th day (RR = 1.02239, 95% CI: 1.00623, 1.03882). The RR has a linear relationship with the concentration. Under the same concentration, the RR peaks within 15-20 days. CONCLUSION: TB in Shijiazhuang City showed a downward trend year by year, with obvious seasonal fluctuations. The air pollutant PM(10) increases the risk of TB. The development of TB has a short-term lag and cumulative lag effects. We should focus on protecting susceptible people from TB in spring and autumn, and strengthen the monitoring and emission management of PM(10) in the atmosphere.

Estimating the magnitude and risk associated with heat exposure among Ghanaian mining workers

Many occupational settings located outdoors in direct sun, such as open cut mining, pose a health, safety, and productivity risk to workers because of their increased exposure to heat. This issue is exacerbated by climate change effects, the physical nature of the work, the requirement to work extended shifts and the need to wear protective clothing which restricts evaporative cooling. Though Ghana has a rapidly expanding mining sector with a large workforce, there appears to be no study that has assessed the magnitude and risk of heat exposure on mining workers and its potential impact on this workforce. Questionnaires and temperature data loggers were used to assess the risk and extent of heat exposure in the working and living environments of Ghanaian miners. The variation in heat exposure risk factors across workers’ gender, education level, workload, work hours, physical work exertion and proximity to heat sources is significant (p<0.05). Mining workers are vulnerable to the hazards of heat exposure which can endanger their health and safety, productive capacity, social well-being, adaptive capacity and resilience. An evaluation of indoor and outdoor Wet Bulb Globe Temperature (WBGT) in the working and living environment showed that mining workers can be exposed to relatively high thermal load, thus raising their heat stress risk. Adequate adaptation policies and heat exposure management for workers are imperative to reduce heat stress risk, and improve productive capacity and the social health of mining workers.

Evidence for a sensitive period of plasticity in brown adipose tissue during early childhood among indigenous Siberians

OBJECTIVES: Evolutionary theorists have debated the adaptive significance of developmental plasticity in organisms with long lifespans such as humans. This debate in part stems from uncertainty regarding the timing of sensitive periods. Does sensitivity to environmental signals fluctuate across development or does it steadily decline? We investigated developmental plasticity in brown adipose tissue (BAT) among indigenous Siberians in order to explore the timing of phenotypic sensitivity to cold stress. METHODS: BAT thermogenesis was quantified using infrared thermal imaging in 78 adults (25 men; 33 women). Cold exposure during gestation, infancy, early childhood, middle childhood, and adolescence was quantified using: (1) the average ambient temperature across each period; (2) the number of times daily temperature dropped below -40°F during each period. We also assessed past cold exposure with a retrospective survey of participation in outdoor activities. RESULTS: Adult BAT thermogenesis was significantly associated with the average temperature (p = 0.021), the number of times it was below -40°F (p = 0.026), and participation in winter outdoor activities (p = 0.037) during early childhood. CONCLUSIONS: Our results suggest that early childhood represents an important stage for developmental plasticity, and that culture may play a critical role in shaping the timing of environmental signals. The findings highlight a new pathway through which the local consequences of global climate change may influence human biology, and they suggest that ambient temperature may represent an understudied component of the developmental origins of health and disease.

Evolving heat waves characteristics challenge heat warning systems and prevention plans

This paper analyses how recent trends in heat waves impact heat warning systems. We performed a retrospective analysis of the challenges faced by the French heat prevention plan since 2004. We described trends based on the environmental and health data collected each summer by the French heat warning system and prevention plan. Major evolutions of the system were tracked based on the evaluations organized each autumn with the stakeholders of the prevention plan. Excess deaths numbering 8000 were observed during heat waves between 2004 and 2019, 71% of these between 2015 and 2019. We observed major changes in the characteristics, frequency and the geographical spread of heat waves since 2015. Feedbacks led to several updates of the warning system such as the extension of the surveillance period. They also revealed that risk perception remained limited among the population and the stakeholders. The sharp increase in the number of heat warnings issued per year since 2015 challenges the acceptability of the heat warnings. Recent heat waves without historical equivalent interfere with the development of evidence-based prevention strategies. The growing public health impacts heat waves emphasize the urgent need to act to adapt the population, at different levels of intervention, from individual comportments to structural modifications. A specific attention should be given to increase the resources allocated to the evaluation and the management of heat-related risks, especially considering the needs to catch with the rapid rhythm of the changing climate.

Exertional heat illnesses in marching band artists: A case series

Marching band (MB) artists frequently spend many hours engaged in outdoor physical activity. Anecdotal evidence and small studies have indicated that MB artists do experience heat-related health problems. Yet, unlike athletes, military personnel, or workers, there is very little research on heat-related hazards among this unique population. Here, we seek to understand the incidence and circumstances under which exertional heat illnesses (EHIs) occur among MB artists over a 31-year period (1990-2020) across the USA. Using an on-line news dataset, we identified 34 separate events and at least 393 total EHIs. Heat syncope (~?55%) and heat exhaustion (~?44%) comprised the majority of EHIs, although a small number of exertional heat stroke cases were also reported. EHIs were reported in all types of MB activities with?~?32% during rehearsal,?~?29% during parades,?~?21% during competition, and?~?15% during a performance. Also, the vast majority of events occurred with high school (~?88%) marching bands. Finally, EHIs overwhelmingly occurred when the weather was unusually hot by local conditions. In light of these findings, we emphasize the need for MB specific heat polices that incorporate weather-based activity modification, acclimatization, education about EHIs, and access to on-site medical professionals.

Effect of diurnal temperature change on cardiovascular risks differed under opposite temperature trends

Temperature change between neighboring days (TCN) is an important trigger for cardiovascular diseases, but the modulated effects by seasonal temperature trends have been barely taken into account. A quantified comparison between impacts of positive TCNs (temperature rise) and negative situations (temperature drop) is also needed. We evaluated the associations of TCNs with emergency room (ER) visits for coronary heart disease (CHD) and cerebral infarction (CI) in Beijing, China, from 2008 to 2012. A year was divided into two segments dominated by opposite temperature trends, quasi-Poisson regression with distributed lag nonlinear models estimating TCN-morbidity relations were employed, separately for each period. High morbidities of CHD and CI both occurred in transitional seasons accompanied by large TCNs. Under warming backgrounds, positive TCNs increased CHD risk in patients younger than 65 years, and old people showed limited sensitivity. In the cooling periods, negative TCNs induced CHD risk in females and the elderly; the highest RR showed on lag 6 d. In particular, a same diurnal temperature decrease (e.g., – 2°C) induced greater RR (RR = 1.113, 95% CIs: 1.033-1.198) on old people during warming periods than cooling counterparts (RR = 1.055, 95% CIs: 1.011-1.100). Moreover, positive TCNs elevated CI risk regardless of background temperatures, and males were particularly vulnerable. Seasonal temperature trends modify TCN-cardiovascular morbidity associations significantly, which may provide new insights into the health impact of unstable weathers.

Effect of diurnal temperature range on emergency room visits for acute upper respiratory tract infections

BACKGROUND: An acute upper respiratory tract infection (URI) is the most common disease worldwide, irrespective of age or sex. This study aimed to evaluate the short-term effect of diurnal temperature range (DTR) on emergency room (ER) visits for URI in Seoul, Korea, between 2009 and 2013. METHODS: Daily ER visits for URI were selected from the National Emergency Department Information System, which is a nationwide daily reporting system for ER visits in Korea. URI cases were defined according to International Classification of Diseases, 10(th) Revision codes J00-J06. The search for DTR effects associated with URI was performed using a semi-parametric generalized additive model approach with log link. RESULTS: There were 529,527 ER visits for URI during the study period, with a daily mean of 290 visits (range, 74-1942 visits). The mean daily DTR was 8.05 °C (range, 1.1-17.6 °C). The cumulative day (lag 02) effect of DTR above 6.57 °C per 1 °C increment was associated with a 1.42% (95% confidence interval [CI] 0.04-2.82) increase in total URI. Children (? 5 years of age) were affected by DTR above 6.57 °C per 1 °C, with 1.45% (95% CI 0.32-2.60) at lag 02, adults (19-64 years) with 2.77% (95% CI 0.39-5.20) at lag 07. When the DTR (lag02) was 6.57 °C to 11.03 °C, the relative risk was significant at 6.01% (95% CI 2.45-9.69) for every 1 °C increase in youth subjects aged for 6 to 18 years. CONCLUSIONS: DTR was associated with a higher risk for ER visits for URI. In addition, the results suggested that the lag effects and relative risks of DTR on URI were quite different according to age.

Effect of extreme hot and cold weather on cause-specific hospitalizations in Sweden: A time series analysis

Considering that several meteorological variables can contribute to weather vulnerability, the estimation of their synergetic effects on health is particularly useful. The spatial synoptic classification (SSC) has been used in biometeorological applications to estimate the effect of the entire suite of weather conditions on human morbidity and mortality. In this study, we assessed the relationships between extremely hot and dry (dry tropical plus, DT+) and hot and moist (moist tropical plus, MT+) weather types in summer and extremely cold and dry (dry polar plus, DP+) and cold and moist (moist polar, MP+) weather types in winter and cardiovascular and respiratory hospitalizations by age and sex. Time-series quasi-Poisson regression with distributed lags was used to assess the relationship between oppressive weather types and daily hospitalizations over 14 subsequent days in the extended summer (May to August) and 28 subsequent days during the extended winter (November to March) over 24 years in 4 Swedish locations from 1991 to 2014. In summer, exposure to hot weather types appeared to reduce cardiovascular hospitalizations while increased the risk of hospitalizations for respiratory diseases, mainly related to MT+. In winter, the effect of cold weather on both cause-specific hospitalizations was small; however, MP+ was related to a delayed increase in cardiovascular hospitalizations, whilst MP+ and DP + increased the risk of hospitalizations due to respiratory diseases. This study provides useful information for the staff of hospitals and elderly care centers who can help to implement protective measures for patients and residents. Also, our results could be helpful for vulnerable people who can adopt protective measures to reduce health risks.

Effect of extreme temperatures on daily emergency room visits for mental disorders

Relatively few studies investigated the effects of extreme temperatures (both heat and cold) on mental health (ICD-9: 290-319; ICD-10: F00-F99) and the potential effect modifications by individuals’ age, sex, and race. We aimed to explore the effect of extreme temperatures of both heat and cold on the emergency room (ER) visits for mental health disorders, and conducted a stratified analysis to identify possible susceptible population in Erie and Niagara counties, NY, USA. To assess the short-term impacts of daily maximum temperature on ER visits related to mental disorders (2009-2015), we applied a quasi-Poisson generalized linear model combined with a distributed lag non-linear model (DLNM). The model was adjusted for day of the week, precipitation, long-term time trend, and seasonality. We found that there were positive associations between short-term exposure to extreme ambient temperatures and increased ER visits for mental disorders, and the effects can vary by individual factors. We found heat effect (relative risk (RR) =?1.16; 95% confidence intervals (CI), 1.06-1.27) on exacerbated mental disorders became intense in the study region and subgroup of population (the elderly) being more susceptible to extreme heat than any other age group. For extreme cold, we found that there is a substantial delay effect of 14 days (RR =?1.25; 95% CI =?1.08-1.45), which is particularly burdensome to the age group of 50-64 years old and African-Americans. Our findings suggest that there is a positive association between short-term exposure to extreme ambient temperature (heat and cold) and increased ER visits for mental disorders, and the effects vary as a function of individual factors, such as age and race.

Effect of heat waves and fine particulate matter on preterm births in Korea from 2010 to 2016

BACKGROUND: Previous studies have reported that fine particulate matter (PM(2.5)) affects the incidence of premature births. In addition, recent studies have suggested that heat waves have a negative impact on birth outcomes. However, the combined effect of PM(2.5) and heat waves on the incidence of premature birth is controversial. This study investigated the independent and combined effects of PM(2.5) and heat wave exposures during the 1st and 2nd trimesters on premature birth. METHODS: The National Statistical Office of Korea provided birth data from 2010 to 2016. Preterm birth was defined as birth between 22 and 36 weeks. To assess the exposure to PM(2.5) and heat waves, we used PM(2.5) data estimated by the Community Multiscale Air Quality Modeling System (CMAQ) and heat wave warning data provided by the Korea Meteorological Administration. A multivariate logistic regression was used to investigate the risk of preterm birth according to the exposure to PM(2.5) and heat waves during the 1st and 2nd trimesters, and it was adjusted for residential area, year of birth, season of birth, parity, education level of the mother, age of the mother, and sex of the baby. RESULTS: In the 2nd trimester, compared with the 0 h of heat wave exposure (?67 percentile), 62.50-314.00 h (79-88 percentile) and>315.00 h of heat wave exposure (>88 percentile) were both significantly associated with preterm birth (OR for 79-88 percentile, 1.037, 95% CI, 1.003-1.073; OR for > 88 percentile, 1.174, 95% CI, 1.134-1.215). However, PM(2.5) exposure was not significantly associated with preterm birth. On the other hand, in the analysis to evaluate the combined effect of PM(2.5) and heat wave exposures of the 2nd trimester, compared with 0 h of heat wave exposure (?67 percentile) and<11.64 ?g/m(3) (?25 percentile) of PM(2.5), 11.64-22.74 ?g/m(3) (?25 percentile), 22.74-27.58 ?g/m(3) (26-50 percentile), and 27.57-32.39 ?g/m(3) (51-75 percentile) of PM(2.5) exposure combined with>315.00 h of heat wave exposure (>88 percentile) were all significantly associated with preterm birth. In addition, the effect size was increased with an increase of PM(2.5) exposure (OR for ? 25 percentile, 1.148, 95% CI, 1.095-1.203; OR for 26-50 percentile, 1.248, 95% CI, 1.178-1.323; OR for 51-75 percentile, 1.370, 95% CI, 1.245-1.507). CONCLUSION: Our findings suggest that the combined effect of heat wave and PM(2.5) exposure during the 2nd trimester on the risk of preterm birth was greater than that of each exposure alone. In other words, exposure to PM(2.5) increases the impact of heat waves on the risk of preterm birth. These results indicate that control of prenatal exposure to fine particular matter and extreme temperatures is important for the prevention of preterm birth.

Effect of heatwaves and greenness on mortality among Chinese older adults

Heatwaves and greenness have been shown to affect health, but the evidence on their joint effects is limited. We aim to assess the associations of the combined exposure to greenness and heatwaves. We utilized five waves (February 2000-October 2014) of the Chinese Longitudinal Healthy Longevity Survey (CLHLS), a prospective cohort of older adults aged 65. We defined heatwaves as the daily maximum temperature ?92.5th percentile with duration ?3 days. We calculated the number of heatwave days in one year before death to and cumulative Normalized Difference Vegetation Index (NDVI) during follow-up to assess individual long-term exposure to heatwaves and greenness. Cox proportional hazards models were used to assess the effects of greenness, heatwaves, and their interaction on mortality, adjusted for covariates. We conducted subgroup analyses by residence, gender, and age. There were 20,758 participants in our study, totaling 67,312 person-years of follow-up. The mean NDVI was 0·41 (SD 0.13), and the mean number of heatwave days was 8.92 (2.04). In the adjusted model, the mortality hazard ratio (HR) for each 3-day increase in heatwave days was 1.04 (95% CI 1.04, 1.05), each 0.1-unit decrease in cumulative NDVI was 1.06 (1.05, 1.07). In the adjusted model with an interaction term, the HR for the interaction term was 1.01 (1.01, 1.02) with a p-value less than 0.001. In our subgroup analyses, the HR for each 3-day increase in heatwave days was higher in urban areas than in rural areas (1.06 vs. 1.03), and the HR for 0.1-unit decrease in NDVI was higher in urban areas than in rural areas (1.08 vs. 1.04). Greenness can protect against the effect of heatwaves on mortality, and heatwaves affect the health effects of greenness. Urban dwellers have a higher response to the detrimental effect of heatwaves and a higher marginal benefit from greenness exposure.

Effect of non-optimum ambient temperature on cognitive function of elderly women in Germany

Non-optimum ambient temperature has been associated with a variety of health outcomes in the elderly population. However, few studies have examined its adverse effects on neurocognitive function. In this study, we explored the temperature-cognition association in elderly women. We investigated 777 elderly women from the German SALIA cohort during the 2007-2010 follow-up. Cognitive function was evaluated using the CERAD-Plus test battery. Modelled data on daily weather conditions were assigned to the residential addresses. The temperature-cognition association over lag 0-10 days was estimated using multivariable regression with distributed lag non-linear model. The daily mean temperature ranged between -6.7 and 26.0 °C during the study period for the 777 participants. We observed an inverse U-shaped association in elderly women, with the optimum temperature (15.3 °C) located at the 68th percentile of the temperature range. The average z-score of global cognitive function declined by -0.31 (95%CI: 0.73, 0.11) for extreme cold (the 2.5th percentile of temperature range) and -0.92 (95%CI: 1.50, -0.33) for extreme heat (the 97.5th percentile of temperature range), in comparison to the optimum temperature. Episodic memory was more sensitive to heat exposure, while semantic memory and executive function were the two cognitive domains sensitive to cold exposure. Individuals living in an urban area and those with a low educational level were particularly sensitive to extreme heat. In summary, non-optimum temperature was inversely associated with cognitive function in elderly women, with the effect size for heat exposure particularly substantial. The strength of association varied by cognitive domains and individual characteristics.

Effect of short-term exposure to fine particulate matter and temperature on acute myocardial infarction in Korea

BACKGROUND/AIM: Previous studies have suggested that the short-term ambient air pollution and temperature are associated with myocardial infarction. In this study, we aimed to conduct a time-series analysis to assess the impact of fine particulate matter (PM2.5) and temperature on acute myocardial infarction (AMI) among adults over 20 years of age in Korea by using the data from the Korean National Health Information Database (KNHID). METHODS: The daily data of 192,567 AMI cases in Seoul were collected from the nationwide, population-based KNHID from 2005 to 2014. The monitoring data of ambient PM2.5 from the Seoul Research Institute of Public Health and Environment were also collected. A generalized additive model (GAM) that allowed for a quasi-Poisson distribution was used to analyze the effects of PM2.5 and temperature on the incidence of AMI. RESULTS: The models with PM2.5 lag structures of lag 0 and 2-day averages of lag 0 and 1 (lag 01) showed significant associations with AMI (Relative risk [RR]: 1.011, CI: 1.003-1.020 for lag 0, RR: 1.010, CI: 1.000-1.020 for lag 01) after adjusting the covariates. Stratification analysis conducted in the cold season (October-April) and the warm season (May-September) showed a significant lag 0 effect for AMI cases in the cold season only. CONCLUSIONS: In conclusion, acute exposure to PM2.5 was significantly associated with AMI morbidity at lag 0 in Seoul, Korea. This increased risk was also observed at low temperatures.

Effect of temperature and its interactions with relative humidity and rainfall on malaria in a temperate city Suzhou, China

Malaria is a climate-sensitive infectious disease. Many ecological studies have investigated the independent impacts of ambient temperature on malaria. However, the optimal temperature measures of malaria and its interaction with other meteorological factors on malaria transmission are less understood. This study aims to investigate the effect of ambient temperature and its interactions with relative humidity and rainfall on malaria in Suzhou, a temperate climate city in Anhui Province, China. Weekly malaria and meteorological data from 2005 to 2012 were obtained for Suzhou. A distributed lag nonlinear model was conducted to quantify the effect of different temperature measures on malaria. The best measure was defined as that with the minimum quasi-Akaike information criterion. GeoDetector and Poisson regression models were employed to quantify the interactions of temperature, relative humidity, and rainfall on malaria transmission. A total of 13,382 malaria cases were notified in Suzhou from 2005 to 2012. Each 5 °C rise in average temperature over 10 °C resulted in a 22% (95% CI: 17%, 28%) increase in malaria cases at lag of 4 weeks. In terms of cumulative effects from lag 1 to 8 weeks, each 5 °C increase over 10 °C caused a 175% growth in malaria cases (95% CI: 139%, 216%). Average temperature achieved the best performance in terms of model fitting, followed by minimum temperature, most frequent temperature, and maximum temperature. Temperature had an interactive effect on malaria with relative humidity and rainfall. High temperature together with high relative humidity and high rainfall could accelerate the transmission of malaria. Meteorological factors may affect malaria transmission interactively. The research findings could be helpful in the development of weather-based malaria early warning system, especially in the context of climate change for the prevention of possible malaria resurgence.

Effectiveness of cascading time series models based on meteorological factors in improving health risk prediction

Meteorological factors, which are periodic and regular in a long run, have an unignorable impact on human health. Accurate health risk prediction based on meteorological factors is essential for optimal allocation of resource in healthcare units. However, due to the non-stationary and non-linear nature of the original hospitalization sequence, traditional methods are less robust in predicting it. This study aims to investigate hospital admission prediction models using time series pre-processing algorithms and deep learning approach based on meteorological factors. Using the electronic medical record data from Panyu Central Hospital and meteorological data of Panyu district from 2003 to 2019, 46,089 eligible patients with lower respiratory tract infections (LRTIs) and four meteorological factors were identified to build and evaluate the prediction models. A novel hybrid model, Cascade GAM-CEEMDAN-LSTM Model (CGCLM), was established in combination with generalized additive model (GAM), complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and long-short term memory (LSTM) networks for predicting daily admissions of patients with LRTIs. The experimental results show that CGCLM multistep method proposed in this paper outperforms single LSTM model in the prediction of health risk time series at different time window sizes. Moreover, our results also indicate that CGCLM has the best prediction performance when the time window is set to 61 days (RMSE = 1.12, MAE = 0.87, R(2) = 0.93). Adequate extraction of exposure-response relationships between meteorological factors and diseases and suitable handling of sequence pre-processing have an important role in time series prediction. This hybrid climate-based model for predicting LRTIs disease can also be extended to time series prediction of other epidemic disease.

Effects of ambient temperature and fall-related injuries in Ma’anshan, Anhui Province, China: A distributed lag nonlinear analysis

Despite the significant economic cost of falls and injuries to individuals and communities, little is known about the impact of meteorological factors on the incidence of fall-related injuries (FRIs). Therefore, a time-series study was conducted to explore the effects of meteorological factors on FRIs in Ma’anshan City, East China. Injury data from 2011 to 2017 were collected from the National Injury Monitoring Station in Ma’anshan City. A distributed lag nonlinear model was used in this study to evaluate the correlation between ambient temperature and fall injuries. The results showed a significant exposure-response relationship between temperature and FRIs in Ma’anshan City. The high temperatures increased the risk of FRIs (RR = 1.110; 95% CI, 1.005-1.225; lag 0). The lag effect appeared at lag 10 (RR = 1.032; 95% CI, 1.003-1.063), and then gradually remained stable after lag 25 (RR = 1.077; 95% CI, 1.045-1.110). The effect of ambient temperature varied with age and gender. The lag effect of high temperature appeared in the male group after lag 15 (RR = 1.042; 95% CI, 1.006-1.079). In contrast, the effect of the female group appeared for the first time at lag 0 (RR = 1.187; 95% CI, 1.042-1.352). And the ? 60 years subgroup seemed to be more sensitive in low temperature (RR = 1.017; 95% CI, 1.004-1.031; lag 0; RR = 1.003; 95% CI, 1.000-1.007; lag 25). The cumulative result is similar to the single-day effect. From the results, this study would help the establishment of fall-related injury prediction and provide evidence for the formulation and implementation of preventive strategies and measures in the future.

Effects of circulation weather types on influenza hospital admissions in Spain

In this study, we use a statistical approach based on generalized additive models, linking atmospheric circulation and the number of influenza-related hospital admissions in the Spanish Iberian Peninsula during 2003-2013. The relative risks are estimated for administrative units in the Spanish territory, which is politically structured into 15 regions called autonomous communities. A catalog of atmospheric circulation types is defined for this purpose. The relationship between the exposure and response variables is modeled using a distributed lag nonlinear model (DLNM). Types from southwest and anticyclonic are significant in terms of the probability of having more influenza-related hospital admissions for all of Spain. The heterogeneity of the results is very high. The relative risk is also estimated for each autonomous community and weather type, with the maximum number of influenza-related hospital admissions associated with circulation types from the southwest and the south. We identify six specific situations where relative risk is considered extreme and twelve with a high risk of increasing influenza-related hospital admissions. The rest of the situations present a moderate risk. Atmospheric local conditions become a key factor for understanding influenza spread in each spatial unit of the Peninsula. Further research is needed to understand how different weather variables (temperature, humidity, and sun radiation) interact and promote the spread of influenza.

Effects of climate and air pollution factors on outpatient visits for eczema: A time series analysis

Eczema resulting from external and internal factors accounts for the biggest global burden of disability owing to skin disease. This study aimed to determine an association between environmental factors and outpatient clinic visits for eczema. We collected data on dermatology clinic outpatient visits for eczema between January 2013 and July 2019. Data concerning environmental factors during this period were collated using national air quality network and air monitoring measurement parameters, namely barometric pressure, relative humidity, air temperature, and air pollutant concentrations, such as sulfur dioxide (SO(2)) and particulate matter (PM(10)). A distributed lag nonlinear model was used to investigate the relationship among eczema, environmental factors, and lagged effects. In total, 27,549 outpatient visits for eczema were recorded. In both single-factor and multiple-factor lag models, the effects of a 10-µg/m(3) increase in PM(10) and SO(2) values had significantly positive effects on the number of daily outpatient visits over a total 5 days of lag after adjusting for temperature, the number of daily outpatient visits increased with 0.87%, 7.65% and 0.69%, 5.34%, respectively. Relative humidity (RR?=?1.3870, 95% CI 1.3117-1.4665) and pressure (RR?=?1.0394, 95% CI 1.0071-1.0727) had significantly positive effects on the number of daily outpatients in single-factor lag models. However temperature had a significantly negative effect on them in the number of daily outpatients (RR?=?0.9686, 95% CI 0.9556-0.9819). Exposure to air pollution exacerbated eczema. Outpatient visits for eczema were found to have strong positive associations with changes in PM(10) levels.

Effects of climatic factors and particulate matter on Rotavirus A infections in Cheonan, Korea, in 2010-2019

Rotavirus A is the most common cause of infectious diarrhea worldwide. This study aimed to retrospectively study and analyze 4009 stool samples that were tested for viruses causing diarrhea, using multiplex reverse transcription PCR at Dankook University Hospital between 2010 and 2019. Furthermore, we determined the correlation between these factors and various climatic factors, including wind-chill temperature, relative humidity, rate of sunshine, and particulate matter. Rotavirus A infections occurred frequently in February, March, and April on an annual basis. Furthermore, during the study, the detection rate was highest at 17.0% (n=61/359) in 2011. Based on an analysis of weather big data, patient age, and period-specific infection during the summer, when the wind-chill temperature and relative humidity were high, the Rotavirus A infection rate was very low. Relative humidity (p=0.020) and particulate matter (p=0.049) were associated with the average number of monthly cases of Rotavirus A infection. However, wind chill temperature (p=0.074) and rate of sunshine (p=0.993) were not associated with the average monthly distribution of Rotavirus A cases. These results indicate that Rotavirus A infection was correlated with relative humidity and particulate matter during the study period and further the current understanding of the distribution of Rotavirus A infections resulting from climatic factors and particulate matter. This could help establish climate-related health policies to reduce the incidence of diarrhea and guide the development of vaccines against Rotavirus A.

Effects of climatic factors on human parainfluenza 1, 2, and 3 infections in Cheonan, Republic of Korea

Studying relationships between meteorological conditions and respiratory virus infections may help interpret the causality of disease outbreaks and provide a better understanding of the seasonal distribution of viruses. Therefore, in this study, we analyzed the correlations between meteorological data and the trends of infection by human parainfluenza virus-1 (HPIV-1; also known as human respirovirus 1), human parainfluenza virus-2 (human orthorubulavirus 2), and human parainfluenza virus-3 (human respirovirus 3) using 9010 viral samples collected at Dankook University Hospital from January 1, 2012, to December 31, 2018. Infection frequency data were used to detect the seasonal patterns of HPIV-1, HPIV-2, and HPIV-3 infections, and these patterns were compared with local weather data over the same period. We performed descriptive statistical analysis, frequency analysis, t test, and binomial logistic regression analysis to examine the relationships of weather and particulate matter conditions with the incidence of HPIV-1, HPIV-2, and HPIV-3 infections. The highest average infection rate with one of these three viruses (88.17%) was found in children aged 1-9 years. Specifically, the infection rate of HPIV-1 was 91.9% in children aged 1-9 years, whereas that of HPIV-2 and HPIV-3 was 86.3%. HPIV infection exhibited a meaningful relationship with climatic factors, such as temperature, wind-chill temperature, and atmospheric pressure. Our results suggest that climate changes might affect the rate of infection by HPIV. These findings may help in predicting the effectiveness of preventive strategies of HPIV infection.

Effects of different heat exposure patterns (accumulated and transient) and schizophrenia hospitalizations: A time-series analysis on hourly temperature basis

Growing studies have shown that high temperature is a potential risk factor of schizophrenia occurrence. Therefore, elaborate analysis of different temperature exposure patterns, such as cumulative heat exposure within a time period and transient exposure at a particular time point, is of important public health significance. This study aims to utilize hourly temperature data to better capture the effects of cumulative and transient heat exposures on schizophrenia during the warm season in Hefei, China. We included the daily mean temperature and daily schizophrenia hospitalizations into the distributed lag non-linear model (DLNM) to simulate the exposure-response curve and determine the heat threshold (19.4 °C). We calculated and applied a novel indicator-daily excess hourly heat (DEHH)-to examine the effects of cumulative heat exposure over a day on schizophrenia hospitalizations. Temperature measurements at each time point were also incorporated in the DLNM as independent exposure indicators to analyze the impact of transient heat exposure on schizophrenia. Each increment of interquartile range (IQR) in DEHH was associated with elevated risk of schizophrenia hospitalizations from lag 1 (RR = 1.036, 95% confidence interval (CI): 1.016, 1.057) to lag 4 (RR = 1.025, 95% CI: 1.005, 1.046). Men and people over 40 years old were more susceptible to DEHH. Besides, we found a greater risk of heat-related schizophrenia hospitalizations between 0 a.m. and 6 a.m. This study revealed the adverse effects of accumulated and transient heat exposures on schizophrenia hospitalizations. Our findings need to be further tested in other regions with distinct regional features.

Effects of diurnal temperature range on cardiovascular disease hospital admissions in farmers in China’s Western suburbs

Cardiovascular disease (CVD), reported to relate with climate change, is the leading cause of global mortality and morbidity. Since the relevant information is quite limited from suburbs and countryside in developing and underdeveloped countries, there are no studies that focused on morbidity through diurnal temperature range (DTR) for these regions. This is the first study to evaluate the short-term effect of DTR on CVD hospital admission in suburban farmers, as well as to identify vulnerable subpopulations. Daily time series data of CVD hospital admissions on suburban farmers of Qingyang, China, and meteorological data from 2011 to 2015 were collected, and a distributed lag non-linear model (DLNM) combined with a quasi-Poisson generalized additive regression model (GAM) was used to examine the exposure-response relationship and delayed effect between DTR and CVD hospital admissions. Stratified analyses by age and gender were performed and extreme DTR effects were examined. Non-linear relation between DTR and CVD hospital admissions was observed, and whether DTR lower or higher than the reference (13 °C, 50(th) percentile) had adverse effect while lower DTR have slightly higher impact. Also, both extreme low and extreme high DTR had adverse effect. Besides, adults (age < 65) and males were more vulnerable to the effects of DTR compared with the old (age ? 65) and females, respectively. This study provides evidence that not only high DTR but also low DTR had adverse effects on CVD which should be paid attention to. Adults and males were more vulnerable among suburban farmers. The results are inconsistent with the studies from urban and indicate differences between urban and suburban residents. Multiple factors such as occupations, risk awareness, and lifestyles could have a significant influence on CVD morbidity, and further study is needed to explore more evidence.

Disordered autonomic function during exposure to moderate heat or exercise in a mouse model of Dravet syndrome

OBJECTIVE: To examine autonomic regulation of core body temperature, heart rate (HR), and breathing rate (BR) in response to moderately elevated ambient temperature or moderate physical exercise in a mouse model of Dravet syndrome (DS). METHODS: We studied video-EEG, ECG, respiration, and temperature in mice with global heterozygous Scn1a knockout (KO) (DS mice), interneuron specific Scn1a KO, and wildtype (WT) mice during exposure to increased environmental temperature and moderate treadmill exercise. RESULTS: Core body temperatures of WT and DS mice were similar during baseline. After 15 mins of heat exposure, the peak value was lower in DS than WT mice. In the following mins of heat exposure, the temperature slowly returned close to baseline level in WT, whereas it remained elevated in DS mice. KO of Scn1a in GABAergic neurons caused similar thermoregulatory deficits in mice. During exercise, the HR increase was less prominent in DS than WT mice. After exercise, the HR was significantly more suppressed in DS. The heart rate variability (HRV) was lower in DS than WT mice during baseline and higher in DS during exercise-recovery periods. SIGNIFICANCE: We found novel abnormalities that expand the spectrum of interictal, ictal, and postictal autonomic dysregulation in DS mice. During mild heat stress, there was a significantly blunted correction of body temperature, and a less suppression of both HR and respiration rate in DS than WT mice. These effects were seen in mice with selective KO of Scn1A in GABAergic neurons. During exercise stress, there was diminished increase in HR, followed by an exaggerated HR suppression and HRV elevation during recovery in DS mice compared to controls. These findings suggest that different environmental stressors can uncover distinct autonomic disturbances in DS mice. Interneurons play an important role in thermoregulation. Understanding the spectrum and mechanisms of autonomic disorders in DS may help develop more effective strategies to prevent seizures and SUDEP.

Do carbon emissions impact the health of residents? Considering China’s industrialization and urbanization

Industrialization and urbanization have aggravated the contradiction between environmental protection and economic growth, leading to health issues. While there are considerable interests in understanding the health effects of carbon emissions in the context of climate change, little is observed at regional scale and by econometric methods. Applying regression analysis on 2002-2017 Chinese provincial-level panel data, this study explores the intermediary mechanisms and regional differences of carbon emissions on residents’ health. The results indicate that: (1) Carbon emissions have a long-term adverse impact on residents’ health-a 1% rise in carbon emission adds 0.298% more outpatients and 0.162% more inpatients; (2) The rise in carbon emissions impairs residents’ health mainly by raising the temperature; (3) In areas with high levels of industrialization and urbanization, increased carbon emissions bring greater health risks; and (4) In terms of China’s unique “leading industrialization and lagging urbanization” situation, only by upgrading industrial structure, improving urbanization quality, and promoting coordinated industrialization and urbanization can the harm of carbon emissions to residents’ health be reduced. Therefore, the “one-size-fits-all” policy model is not suitable for China’s current situation. To address global “climate change” issues, China must act according to local conditions by applying mitigating (adaptive) measures in economically developed (less developed) regions. Simultaneously, the authorities must focus on the interaction and synergy between industrialization and urbanization.

Do hazard mitigation plans represent the resilience priorities of residents in vulnerable Texas coastal counties?

Hazard mitigation plans (HMP) inform residents and policymakers of the risks a community is vulnerable to, as well as prioritize measures implemented to minimize hazard damage. HMP development emphasizes the importance of creating plans with a strong fact base and analysis of risk exposure, while also facilitating participatory planning with residents. This paper discusses the intersection of citizen perception of extreme heat risk, policy implementation concerning extreme heat risk and actual extreme heat risk exposure in four coastal counties in Texas, Brazoria, Cameron, Galveston and Nueces Counties. Through surveying county residents and analyzing the counties’ HMPs, it was observed that residents perceive extreme heat risk as very high but HMPs have very little information on extreme heat mitigation. By examining three major components of hazard mitigation planning (actual/projected risk exposure, policy implementation and citizen perception), planners can better understand possible disconnects and fallacies that decrease the efficacy of mitigation plans. As HMPs are updated, officials should ensure that resident perceptions, which may change over time and as the result of specific events, are reflected.

Does climatic zone of birth modify the temperature-mortality association of London inhabitants during the warm season? A time-series analysis for 2004-2013

BACKGROUND: It is known that on days with high temperatures higher mortality is observed and there is a minimum mortality temperature (MMT) point which is higher in places with warmer climate. This indicates some population adaptation to local climate but information on how quickly this adaptation will occur under climate change is lacking. METHODS: To investigate this, we associated daily mortality data with temperature during the warm period in 2004-2013 for London inhabitants born in five climatic zones (UK, Tropical, Sub-tropical, Boreal and Mixed). We fitted Poisson regression with distributed-lag non-linear models for each climatic zone group separately to estimate group-specific exposure-response associations and MMTs. We report relative risks of death comparing the 95th percentile (21 °C) and maximum (25 °C) of the temperature distribution in London with the zone-specific minimum mortality temperature. RESULTS: No heat-related mortality was observed for people born in countries with Sub-tropical and Mixed climates. We observed an increase of 26%, 35% and 39% in the risk of death at 25 °C compared to the MMT in people born in the UK (marine climate), Tropical and Boreal climate respectively. The temperatures with the lowest mortality in these groups ranged from 15.9 to 17.7 °C. DISCUSSION: Our findings imply that people born in different climatic zones do not adapt fully to their new environment within their lifetime. This implies that populations may not adapt readily to climate change and will suffer increased effects from heat. In the presence of climate change, policy makers should be aware of a delayed process of adaptation.

Drivers of autochthonous and imported malaria in Spain and their relationship with meteorological variables

Since the early twentieth century, the intensity of malaria transmission has decreased sharply worldwide, although it is still an infectious disease with a yearly estimate of 228 million cases. The aim of this study was to expand our knowledge on the main drivers of malaria in Spain. In the case of autochthonous malaria, these drivers were linked to socioeconomic and hygienic and sanitary conditions, especially in rural areas due to their close proximity to the wetlands that provide an important habitat for anopheline reproduction. In the case of imported malaria, the main drivers were associated with urban areas, a high population density and international communication nodes (e.g. airports). Another relevant aspect is that the major epidemic episodes of the twentieth century were strongly influenced by war and military conflicts and overcrowding of the healthcare system due to the temporal overlap with the pandemic flu of 1918. Therefore, military conflicts and overlap with other epidemics or pandemics are considered to be drivers of malaria that can-in a temporary manner-exponentially intensify transmission of the disease. Climatic factors did not play a relevant role as drivers of malaria in Spain (at least directly). However, they did influence the seasonality of the disease and, during the epidemic outbreak of 1940-1944, the climate conditions favored or coadjuvated its spread. The results of this study provide additional knowledge on the seasonal and interannual variability of malaria that can help to develop and implement health risk control measures. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s41207-021-00245-8.

Dynamic relationship between meteorological conditions and air pollutants based on a mixed Copula model

Many methods have been developed to verify the correlation between meteorological conditions and air pollutants; however, all have limitations that lead to biased or incomplete conclusions. Hence, improved methods are urgently required to describe this correlation comprehensively and accurately. In this study, we demonstrated the ability of the Copula function to apply time-varying correlations between meteorological factors and atmospheric pollutants. A mixed Copula model was constructed using meteorological monitoring data for Beijing and Guangzhou from 2014 to 2019 to dynamically analyse the correlation characteristics and tail dependence between these factors. We then performed a correlation analysis for the data from the average, lower, and upper tails to obtain a more accurate and comprehensive correlation description. Dynamic analysis results demonstrated significant seasonal fluctuations between meteorological conditions and pollutants relationships. Moreover, the correlation coefficient variations differ according to their average and tail values. High humidity is more likely to be accompanied by increased NO2 compared with average summer humidity. Our proposed model represents a novel application of the Copula function for determining the factors influencing air pollution. This model emphasizes the tail dependence between meteorological conditions and air pollutant concentrations and can be used to guide more targeted prevention and control strategies.

Dynamic simulation of airborne pollutant concentrations associated with the effect of climate change in Batu Muda region, Malaysia

Air pollution has been a rising concern of the 21st due to its effects to public health. Air Monitoring Stations are state-of-the-art equipment used to measure airborne pollutants concentration i.e. carbon monoxide, nitrogen oxide, sulphur dioxide, particulate matter (PM10) and ozone (O-3), as well as the meteorological parameters (i.e. ambient air temperature, relative humidity, wind speed and wind direction). Effects of climate change will affect the ambient temperature and humidity, which may induce a direct effect on air quality. In light of this, feed forward artificial neural network was employed to simulate the dynamic variations of PM10 and O-3 with relative humidity, temperature, and windspeed data being the inputs under 12 different training algorithms. Based on the results obtained, Bayesian regularization with 12 hidden neurons is the optimized network structure, with mean absolute percentage error in testing dataset of O-3 and PM10 at 51.31% and 36.49%, respectively. The models performed better in O-3 prediction as it is a photochemical reaction where ozone concentration varies according to temperature, the effect of meteorological parameters is significant. On the other hand, PM10 is not heavily dependent on meteorological parameters as the diversity of particulate matter components where most of its sources are dormant to changes in climate.

Ecological, social, and other environmental determinants of dengue vector abundance in urban and rural areas of northeastern Thailand

Aedes aegypti is the main vector of dengue globally. The variables that influence the abundance of dengue vectors are numerous and complex. This has generated a need to focus on areas at risk of disease transmission, the spatial-temporal distribution of vectors, and the factors that modulate vector abundance. To help guide and improve vector-control efforts, this study identified the ecological, social, and other environmental risk factors that affect the abundance of adult female and immature Ae. aegypti in households in urban and rural areas of northeastern Thailand. A one-year entomological study was conducted in four villages of northeastern Thailand between January and December 2019. Socio-demographic; self-reported prior dengue infections; housing conditions; durable asset ownership; water management; characteristics of water containers; knowledge, attitudes, and practices (KAP) regarding climate change and dengue; and climate data were collected. Household crowding index (HCI), premise condition index (PCI), socio-economic status (SES), and entomological indices (HI, CI, BI, and PI) were calculated. Negative binomial generalized linear models (GLMs) were fitted to identify the risk factors associated with the abundance of adult females and immature Ae. aegypti. Urban sites had higher entomological indices and numbers of adult Ae. aegypti mosquitoes than rural sites. Overall, participants’ KAP about climate change and dengue were low in both settings. The fitted GLM showed that a higher abundance of adult female Ae. aegypti was significantly (p < 0.05) associated with many factors, such as a low education level of household respondents, crowded households, poor premise conditions, surrounding house density, bathrooms located indoors, unscreened windows, high numbers of wet containers, a lack of adult control, prior dengue infections, poor climate change adaptation, dengue, and vector-related practices. Many of the above were also significantly associated with a high abundance of immature mosquito stages. The GLM model also showed that maximum and mean temperature with four-and one-to-two weeks of lag were significant predictors (p < 0.05) of the abundance of adult and immature mosquitoes, respectively, in northeastern Thailand. The low KAP regarding climate change and dengue highlights the engagement needs for vector-borne disease prevention in this region. The identified risk factors are important for the critical first step toward developing routine Aedes surveillance and reliable early warning systems for effective dengue and other mosquito-borne disease prevention and control strategies at the household and community levels in this region and similar settings elsewhere.

Effect of ambient temperature on stroke onset: A time-series analysis between 2003 and 2014 in Shenzhen, China

OBJECTIVE: Evidence on the relationship between ambient temperature and morbidity of different stroke subtypes in China is limited. This study aimed to assess the influence of ambient temperature on stroke risk in Shenzhen, China. METHODS: From 1 January 2003 to 31 December 2014, 114 552 stroke cases in Shenzhen were collected. A generalised additive model with quasi-Poisson regression combined with a distributed lag non-linear model was applied to evaluate the temperature effects on stroke subtypes. Furthermore, this study explored the variability of the effects across sex, age and education. RESULTS: The immediate heat effects on ischaemic stroke (IS) and the persistent effects of ambient temperature on intracerebral haemorrhage (ICH) were significant. Overall, the cold-related relative risks (RRs) of IS, ICH and subarachnoid haemorrhage (SAH) were 1.02 (0.97-1.07), 1.16 (1.04-1.30) and 1.12 (0.61-2.04), whereas the heat-related RRs were 1.00 (0.97-1.04), 0.80 (0.73-0.88) and 1.05 (0.63-1.78), respectively. For IS, a weakly beneficial cold effect was found among men while a detrimental heat effect among both men and women, the elderly and higher-educated population at lag0. However, regarding ICH, the temperature effects in men, the young and higher-educated population are stronger at lag0-4, lag0-7 as cold reveals threat and heat reveals protection. CONCLUSION: Responses of diverse stroke subtypes to ambient temperature varied. Effective measures should be taken to increase public awareness about the effects of ambient temperature on stroke attack and to educate the public about self-protection.

Effect of ambient temperatures on category C notifiable infectious diarrhea in China: An analysis of national surveillance data

BACKGROUND: Many studies have explored the association between meteorological factors and infectious diarrhea (ID) transmission but with inconsistent results, in particular the roles from temperatures. We aimed to explore the effects of temperatures on the transmission of category C ID, to identify its potential heterogeneity in different climate zones of China, and to provide scientific evidence to health authorities and local communities for necessary public health actions. METHODS: Daily category C ID counts and meteorological variables were collected from 270 cities in China over the period of 2014-16. Distributed lag non-linear models (DLNMs) were applied in each city to obtain the city-specific temperature-disease associations, then a multivariate meta-analysis was implemented to pool the city-specific effects. Multivariate meta-regression was conducted to explore the potential effect modifiers. Attributable fraction was calculated for both low and high temperatures, defined as temperatures below the 5th percentile of temperature or above the 95th percentile of temperature. RESULTS: A total of 2,715,544 category C ID cases were reported during the study period. Overall, a M-shaped curve relationship was observed between temperature and category C ID, with a peak at the 81st percentile of temperatures (RR = 1.723, 95% CI: 1.579-1.881) compared to 50th percentile of temperatures. The pooled associations were generally stronger at high temperatures compared to low ambient temperatures, and the attributable fraction due to heat was higher than cold. Latitude was identified as a possible effect modifier. CONCLUSIONS: The overall positive pooled associations between temperature and category C ID in China suggest the increasing temperature could bring about more category C infectious diarrhea cases, which warrants further public health measurements.

Community-based maternal health workers’ perspectives on heat risk and safety: A pilot qualitative study

In this study the authors examined how maternal health workers (MHWs) perceive the health risks of extreme heat exposure to pregnant women and fetuses. The authors conducted interviews with 12 MHWs (including midwives and doulas) in El Paso, Texas. Using qualitative analysis, the researchers identified numerous themes. Although heat was not communicated as a major health risk, participants expressed some concern with growing heat exposure and communicated standard protective measures. While all participants were familiar with some heat illness symptoms, they were generally unaware of their clients’ vulnerability. MHWs’ minimal heat-risk knowledge leaves pregnant women and developing fetuses at risk of preventable harm.

Consequences of climate change on airborne pollen in Bavaria, Central Europe

Climate change affects the reproductive life cycles of plants, including pollen production, which has consequences for allergic respiratory diseases. We examined climatic trends at eight locations in Bavaria, Southern Germany, with pollen time series of at least 10 years (up to 30 years in Munich). Climate change in Bavaria was characterized by a rise in temperature, but not during the winter. There is also a trend towards a more continental climate in Bavaria, which is significant in the Alps in the south of the territory. The influence of climate change depended on pollen type. Wind-pollinated arboreal species (e.g. Alnus, Betula and Cupressaceae/Taxaceae) showed advances in the start and end dates of pollen seasons and an increase in pollen load. These changes correlated negatively with late-winter (February) and spring temperatures (April). For herbaceous species, like Poaceae and Urticaceae, an earlier season was observed. Although precipitation is not a limiting factor in Southern Germany, water availability in the spring did influence the magnitude of grass pollen seasons. The effect of climatic change on the characteristics of pollen seasons was also more pronounced at higher altitudes, significant at > 800 m above sea level. Our results show that trends for start, end dates and intensity were similar at all locations, but only statistically significant at some. If we assume that earlier and more intense pollen seasons result in increases in prevalence and severity of allergic diseases, then the effect of climate change on public health in Bavaria may be significant.

Correlation between the positive rate of SAA in children with respiratory tract infection and ambient temperature

The purpose of this study was to explore the application of serum amyloid A (SAA) in the outcome of upper respiratory tract infection in children by analyzing the correlation between the change of mean air temperature and the positive rate of SAA detection in children. Daily data on upper respiratory tract infection diseases and weather conditions were collected in 2016-2019. A quasi-Poisson regression with a distributed lag non-linear model was used to examine the association between temperature and SAA-positive rate. The positive rate of SAA had a moderate correlation with the temperature and a weak correlation with relative humidity. Low ambient temperature (7 °C, P(1)) was related to the increase in the positive rate of SAA, with the effect lag for 0-7 days (RR 1.34 (1.19~1.74)). The increase in the SAA-positive case induced by 27 °C (P(75)) could last for 0-14 days (RR 1.07 (1.01-1.08)), and high temperature (30 °C, P(99)) could reduce the positive rate of SAA. Our findings add additional evidence to the adverse effects of sub-optimal ambient temperature and provide useful information for public health programs targeting pediatric patients.

Daily ambient temperature and mortality in Thailand: Estimated effects, attributable risks, and effect modifications by greenness

BACKGROUND: In recent years, many previous studies have examined the association between ambient temperature and mortality in different parts of the world. However, very few studies have explored the mortality burden attributable to temperature, especially those in developing countries. This study aimed to quantify the burden of mortality attributable to non-optimum temperature in Thailand and explore whether greenness, using normalized difference vegetation index (NDVI) as indicator, alleviates the mortality contributed by non-optimum ambient temperature. METHODS: Daily number of mortality (i.e., all-cause, cardiovascular and respiratory diseases) and daily meteorological data were obtained over 65 provinces in Thailand during 2010 to 2017. The two-stage statistical approach was applied to estimate the association between temperature and mortality. First, the time-stratified case-crossover analysis was performed to examine province-specific temperature-mortality association. Second, province-specific association was pooled to derive national estimates using multivariate meta-regression. Mortality burden attributable to temperature was then estimated, and the association between attributed mortality and NDVI was explored using multivariate meta-regression models. RESULTS: A total of 2,891,407 all-cause of death was included over the study period, in which 403,450 and 264,672 deaths were accounted for cardiovascular and respiratory diseases, respectively. The temperature-mortality association at cumulative lag 0-7 days was non-linear with J-shaped curve for all-cause and respiratory mortality, whereas V-shaped curve was observed for cardiovascular mortality. Using minimum mortality temperature (MMT) as optimum temperature, 3.72% (95% empirical CI: 2.18, 5.21) of all-cause, 2.92% (0.55, 5.10) of cardiovascular and 3.00% (0.27, 5.49) of respiratory mortality were attributable to non-optimum temperature (both hot and cold effects). Higher level of NDVI was associated with alleviated impacts of non-optimum temperature, especially hot temperature. CONCLUSION: Exposure to non-optimum temperature was associated with increased risks of mortality in Thailand. This finding is useful for planning the public health interventions to reduce health effects of non-optimum ambient temperature.

Daily and seasonal variabilities of thermal stress (based on the UTCI) in air masses typical for Central Europe: An example from Warsaw

The objective of research involved the comparison of daily and seasonal courses of thermal stress occurring in Central Europe depending on the inflowing air mass. The analysis used data from Warsaw (1991-2000), including air temperature (°C), water vapour pressure (hPa), wind speed (m s(-1)) and cloud cover (%). Universal thermal climate index was calculated and subsequently averaged for the individual months and four types of atmospheric air masses: polar maritime (mP), arctic(A), polar continental (cP) and tropical (T). The studies analysed differences in daily patterns of the averaged values of universal thermal climate index between air masses and determined the frequency of days with various types of thermal stress in individual air masses. The analyses indicated that under the conditions of Central Europe, the highest daily variance of biothermal conditions occurs between the masses of cP and T in the spring and autumn. Considerably greater diversity of biothermal conditions was observed between the masses during daytime compared with nighttime, especially in the warm half of the year. The thermal stress, which can be encountered in Central Europe, ranges from an “extreme cold stress” in winter at night and early morning hours to “very strong heat stress” in summer at noon. Extreme thermal stress is related primarily to the masses of cP, A and T. The most optimal biothermal conditions occur during the advection of mP air.

Decreased humidity improves cognitive performance at extreme high indoor temperature

In this study, we examined the cognitive performance of subtropically acclimatized subjects at an extreme high indoor temperature and the effect of decreased humidity on the cognitive performance at the high temperature. Forty-eight healthy subjects experienced the three exposure conditions: 26 degrees C/relative humidity (RH) 70%, 39 degrees C/RH50%, and 39 degrees C/RH70% in a climate chamber. During 140-minute-long exposures to each thermal condition, they were required to perform cognitive tests that assess the perception, spatial orientation, concentration, memory, and thinking abilities. Meanwhile, their heart rate, core temperature, skin temperature, blood pressure, and body weight were measured and subjective responses, that is, thermal comfort, perceived air quality, and acute health symptoms were investigated. At the relative humidity of 70%, increasing indoor temperature from 26 degrees C to 39 degrees C caused a significant decrease in the accuracy of these cognitive tests. However, when the relative humidity decreased from 70% to 50% at 39 degrees C, the accuracy of the cognitive tests increased significantly. Accordingly, the physiological and subjective responses of the subjects changed significantly with the changes in indoor temperature and humidity, which provided a basis to the variation in the cognitive performance. These results indicated that decreasing indoor humidity at extreme high temperature could improve the impaired cognitive performance.

Defining region-specific heatwave in China based on a novel concept of avoidable mortality for each temperature unit decrease

The distribution of temperature and temperature-health association varied largely across different regions in China, a region-specific definition for heatwave was therefore needed. We collected the data on daily mortality, meteorological factors and air pollution in 84 Chinese cities during 2013-2016, which was divided into seven regions. Based on the association between daily maximum temperature and mortality in each city in a threshold distributed lag non-linear model, where the threshold was defined as the temperature corresponding to the lowest mortality risk, we calculated the number of deaths that could be avoided for 1 degrees C decrease in maximum temperature under different thresholds, then a random-effect meta-analysis was used to generate regional results, in which the temperature with the highest avoidable mortality number for 1 degrees C decrease was considered as the most appropriate heatwave definition. We observed an immediate detrimental effect of high temperature within three lag days. Our analysis suggested to use 29.5 degrees C, 31.5 degrees C, 29.0 degrees C, 31.5 degrees C, 30.0 degrees C, and 28.5 degrees C as the heatwave standard for east, north, northeast, central, south, and southwest region, with the avoidable mortality number of 1.54 (95 % Confidence interval (CD: 0.88, 2.19), 0.55 (95 % CI: 0.16, 0.94), 0.59 (95 % CI: 0.32, 0.86), 1.14 (95 % CI: 0.68, 1.59), 1.22 (95 % CI: 0.54, 1.90), and 0.78 (95 % CI: 0.01, 1.55), respectively, while the estimated number 0.19 (95 % CI: -0.02, 0.40) in northwest region was not statistically significant. The concept of ‘avoidable mortality for 1 degrees C decrease’ was proposed to define the heatwave event, and varied maximum temperature between 28.5 and 31.5 degrees C was suggested for region-specific heatwave definition in China.

Demands to the health sector front the manifestations of climate change in Jalisco

Climate change has triggered health hazards that need to be identified and recognized in Jalisco state. A confirmed threat is the extreme maximum temperatures that lead to a necessary diagnosis of vulnerability and risk as a basis for the design and implementation of adaptation measures to current and future manifestations. The demands of attention of the health sector have increased since the period of time where there is the probability of presenting extreme temperatures and heat waves has increased from two months considered as normal to four months at present with an increase in mortality due to cardiovascular diseases and morbidity due to gastrointestinal infections, likewise, the temperature has increased by two months which promotes the increase of the population of mosquitoes that transmit dengue fever. The above requires a response from the health sector, not only in hospital care, but also in the prevention of exposure through an early warning system in the presence of danger with an evaluation of such communication strategies to break and reverse the increase in damage to the health of the Jalisco state inhabitants, particularly the Tlaquepaque, Zapopan, Tonala, Guadalajara and Puerto Vallarta urban areas which turned out to be the most vulnerable to climate change in Jalisco.

Detection and correlation analysis of shellfish pathogens in Dadeng Island, Xiamen

Food poisoning is caused by pathogenic bacteria in water and aquatic products, especially bivalves (e.g., oysters, clams), which can bioaccumulate pathogenic bacteria. Polluted water and aquatic products thus pose a serious threat to human health and safety. In this study, the types of pathogenic bacteria in water samples and shellfish collected from the Dadeng offshore area in Xiamen were examined. We also analyzed the relationships between dominant pathogens and major climate and water quality parameters. Our objective was to provide reference data that may be used to help prevent bacterial infections and to improve aquatic food hygiene in Xiamen and its surrounding areas to safe levels, thus ensuring the health of Xiamen residents. We found that the main pathogenic bacteria were Vibrio and Bacillus, with the dominant pathogen being Vibrio parahaemolyticus. Physical and chemical indexes (water temperature, salinity, pH, dissolved oxygen, and turbidity) of water bodies and the 3-day accumulated rainfall were found to be important factors affecting the occurrence and abundance of V. parahaemolyticus.

Determining public perceptions of a proposed national heat protection policy for Australian schools

ISSUE ADDRESSED: Across Australia there are inconsistent and varying guidelines or ‘recommendations’ across a number of jurisdictions for the protection of school children from heat-related consequences, yet there is no national policy for heat protection in school settings. The aim of this study was to determine public perceptions of the efficacy of implementing a heat protection policy for Australian schools. METHODS: A sample of public perceptions was drawn upon from public comments posted on a national Australian Broadcasting Corporation (ABC) news article on the proposed heat protection policy. Public comments were analysed using a social-ecological model thematic content analysis. RESULTS: Themes that emerged to support a national heat protection policy for schools included: protection from the consequences of extreme heat, reliance of children on adult/school decisions and utilising modern knowledge/technology advancements. In contrast, criticism emerged relating to the importance of having resilient children, air conditioning costs, perceived over-regulation and heat exposure being a lifestyle choice in some contexts. CONCLUSIONS: Overall, this study provides support for the introduction of a national heat protection policy with a number of key considerations identified for implementation to benefit and protect Australian school children. SO WHAT?: As a number of the heat guidelines are developed by individual organisations with differing messages, determining the public efficacy of comprehensive heat protection strategies can help lead to the development of policy for a widespread and consistent heat protection program across Australian schools.

Developing and validating heat exposure products using the US climate reference network

Extreme heat is one of the most pressing climate risks in the United States and is exacerbated by a warming climate and aging population. Much work in heat health has focused only on temperature-based metrics, which do not fully measure the physiological impact of heat stress on the human body. The U.S. Climate Reference Network (USCRN) consists of 139 sites across the United States and includes meteorological parameters that fully encompass human tolerance to heat, including relative humidity, wind, and solar radiation. Hourly and 5-min observations from USCRN are used to develop heat exposure products, including heat index (HI), apparent temperature (AT), and wet-bulb globe temperature (WBGT). Validation of this product is conducted with nearby airport and mesonet stations, with reanalysis data used to fill in data gaps. Using these derived heat products, two separate analyses are conducted. The first is based on standardized anomalies, which place current heat state in the context of a long-term climate record. In the second study, heat events are classified by time spent at various levels of severity of conditions. There is no consensus as to what defines a heat event, so a comparison of absolute thresholds (i.e., >= 30.0 degrees, 35.0 degrees, and 40.0 degrees C) and relative thresholds (>= 90th, 95th, and 98th percentile) will be examined. The efficacy of the product set will be studied using an extreme heat case study in the southeastern United States. While no heat exposure metric is deemed superior, each has their own advantages and caveats, especially in the context of public communication.

Development of air quality monitoring (AQM) models using different machine learning approaches

Air Quality assessment and forecasting are the essentials today and they attracted many researchers. Environmental organizations regularly monitor and predict the air contaminants to make the public awareness, provide a better environment, and suitable for human health. Physical factors like climate changes, Industrialization, Fires and Urbanization are some of the factors which directly affect and reduce the air quality. All these data are time-series and real-time data. The primary pollutant is PMx that affect the respiratory systems and cardiac activity of humans. The secondary pollutants are SO2, CO, NOx, and O-3. Each has allowable range of concentration levels. In this work, meteorological elements are collected in different locations in last 5 years, with time window of 24 h and mapped to the concentration level of pollutants. The Machine Learning(ML) Methods such as Non-Linear Artificial Neural Network(ANN), Statistical Multilevel Regression, Neuro- Fuzzy and Deep Learning Long-Short-Term Memory (DL-LSTM) are used; to find the current concentration level of pollutants and will be useful for Real Time Correction (RTC) to give a feedback that can be used to reduce the contaminants in air for further days. The results are compared with the parameters such as R-2, RMSE and MAPE. Using these methods, the concentration level of contaminants is predicted with the deviation of R-2 in the range of 0.71-0.89. The results proved that DL-LSTM suits well when comparing to the ANN, Neuro-fuzzy and regression algorithms.

Climate change over UK cities: The urban influence on extreme temperatures in the UK climate projections

Increasing summer temperatures in a warming climate will increase the exposure of the UK population to heat-stress and associated heat-related mortality. Urban inhabitants are particularly at risk, as urban areas are often significantly warmer than rural areas as a result of the urban heat island phenomenon. The latest UK Climate Projections include an ensemble of convection-permitting model (CPM) simulations which provide credible climate information at the city-scale, the first of their kind for national climate scenarios. Using a newly developed urban signal extraction technique, we quantify the urban influence on present-day (1981-2000) and future (2061-2080) temperature extremes in the CPM compared to the coarser resolution regional climate model (RCM) simulations over UK cities. We find that the urban influence in these models is markedly different, with the magnitude of night-time urban heat islands overestimated in the RCM, significantly for the warmest nights (up to 4 degrees C), while the CPM agrees much better with observations. This improvement is driven by the improved land-surface representation and more sophisticated urban scheme MORUSES employed by the CPM, which distinguishes street canyons and roofs. In future, there is a strong amplification of the urban influence in the RCM, whilst there is little change in the CPM. We find that future changes in soil moisture play an important role in the magnitude of the urban influence, highlighting the importance of the accurate representation of land-surface and hydrological processes for urban heat island studies. The results indicate that the CPM provides more reliable urban temperature projections, due at least in part to the improved urban scheme.

Climate change: A friend or foe to food security in Africa?

Extreme climate change is posing an increasing threat to human welfare across countries. Specifically, the devastating floods coupled with the looming spectre of drought are argued to explain cross-country differences in food security. While the debate continues and uncertainties about the precise influence of climate change on food security linger, the question of whether climate change plays a pivotal role in increased hunger and food insecurity across countries remains unanswered. This study presented new evidence of the role of climate change in Africa’s food security. We utilised the Mann-Kendall test and Sen’s slope estimator to analyse climate change trends. We also employed the pooled mean group technique and the Dumitrescu-Hurlin panel causality test to investigate the effect of climate change on food security in 15 African countries between 1970 and 2016. Our empirical findings revealed three things. First, rainfall plays a decisive role in Africa’s food security when examined broadly. However, the significance of the effect of rainfall varied substantially across the 15 countries. Second, we find no robust impact of temperature on food security in the long run. However, the short-run results showed that extreme temperatures impede food security, with varying magnitudes across countries. Third, except for rainfall, a bidirectional causality exists between food security and temperature in Africa. Given the risks associated with rain-fed agriculture, we argue that African countries need to limit their dependence on rain-fed agriculture to boost food production.

Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents

Climate drives population dynamics through multiple mechanisms, which can lead to seemingly context-dependent effects of climate on natural populations. For climate-sensitive diseases, such as dengue, chikungunya, and Zika, climate appears to have opposing effects in different contexts. Here we show that a model, parameterized with laboratory measured climate-driven mosquito physiology, captures three key epidemic characteristics across ecologically and culturally distinct settings in Ecuador and Kenya: the number, timing, and duration of outbreaks. The model generates a range of disease dynamics consistent with observed Aedes aegypti abundances and laboratory-confirmed arboviral incidence with variable accuracy (28-85% for vectors, 44-88% for incidence). The model predicted vector dynamics better in sites with a smaller proportion of young children in the population, lower mean temperature, and homes with piped water and made of cement. Models with limited calibration that robustly capture climate-virus relationships can help guide intervention efforts and climate change disease projections.

Climate vulnerability of Swedish newborns: Gender differences and time trends of temperature-related neonatal mortality, 1880-1950

BACKGROUND: In resource-poor societies, neonatal mortality (death in the first 28 days of life) is usually very high. Young infants are particularly vulnerable to environmental health risks, which are modified by socioeconomic factors that change over time. We investigated the association between ambient temperature and neonatal mortality in northern Sweden during the demographic transition. METHODS: Parish register data and temperature data in coastal Västerbotten, Sweden, between 1880 and 1950 were used. Total and sex-specific neonatal mortality was modelled as a function of mean temperature, adjusting for age, seasonality and calendar time, using discrete-time survival analysis. A linear threshold function was applied with a cut point at 14.5 °C (the minimum mortality temperature). Odds ratios (ORs) with 95% confidence intervals (CIs) were computed. Further analyses were stratified by study period (1800-1899, 1900-1929, and 1930-1950). RESULTS: Neonatal mortality was 32.1 deaths/1000 live births, higher in boys than in girls, and decreased between 1880 and 1950, with high inter-annual variability. Mean daily temperature was +2.5 °C, ranging from -40.9 °C to +28.8 °C. At -20 °C, the OR of neonatal death was 1.56 (CI 1.30-1.87) compared to the reference at +14.5 °C. Among girls, the OR of mortality at -20 °C was 1.17 (0.88-1.54), and among boys, it was 1.94 (1.53-2.45). A temperature increase from +14.5 to +20 °C was associated with a 25% increase of neonatal mortality (OR 1.25, CI 1.04-1.50). Heat- and cold-related risks were lowest between 1900 and 1929. CONCLUSIONS: In this remote sub-Arctic region undergoing socio-economic changes, we found an increased mortality risk in neonates related to low but also to high temperature. Climate vulnerability varied across time and was particularly high among boys. This demonstrates that environmental impacts on human health are complex and highly dependent on the specific local context, with many, often unknown, contributing determinants of vulnerability.

Climate warming and occupational heat and hot environment standards in Thailand

BACKGROUND: During the period 2001 to 2016, the maximum temperatures in Thailand rose from 38-41(o)C to 42-44(o)C. The current occupational heat exposure standard of Thailand issued in 2006 is based on wet bulb globe temperature (WBGT) defined for three workload levels without a work-rest regimen. This study examined whether the present standard still protects most workers. METHODS: The sample comprised 168 heat acclimatized workers (90 in construction sites, 78 in foundries). Heart rate and auditory canal temperature were recorded continuously for 2 hours. Workplace WBGT, relative humidity, and wind velocity were monitored, and the participants’ workloads were estimated. Heat-related symptoms and signs were collected by a questionnaire. RESULTS: Only 55% of the participants worked in workplaces complying with the heat standard. Of them, 79% had auditory canal temperature ? 38.5(o)C, compared with only 58% in noncompliant workplaces. 18% and 43% of the workers in compliant and noncompliant workplaces, respectively, had symptoms from heat stress, the trend being similar across all workload levels. An increase of one degree (C) in WBGT was associated with a 1.85-fold increase (95% confidence interval: 1.44-2.48) in odds for having symptoms. CONCLUSION: Compliance with the current occupational heat standard protects 4/5 of the workers, whereas noncompliance reduces this proportion to one half. The reasons for noncompliance include the gaps and ambiguities in the law. The law should specify work/rest schedules; outdoor work should be identified as an occupational heat hazard; and the staff should include occupational personnel to manage heat stress in establishments involving heat exposure.

Climate-based dengue model in Semarang, Indonesia: Predictions and descriptive analysis

BACKGROUND: Dengue is one of the most rapidly spreading vector-borne diseases, which is considered to be a major health concern in tropical and sub-tropical countries. It is strongly believed that the spread and abundance of vectors are related to climate. Construction of climate-based mathematical model that integrates meteorological factors into disease infection model becomes compelling challenge since the climate is positively associated with both incidence and vector existence. METHODS: A host-vector model is constructed to simulate the dynamic of transmission. The infection rate parameter is replaced with the time-dependent coefficient obtained by optimization to approximate the daily dengue data. Further, the optimized infection rate is denoted as a function of climate variables using the Autoregressive Distributed Lag (ARDL) model. RESULTS: The infection parameter can be extended when updated daily climates are known, and it can be useful to forecast dengue incidence. This approach provides proper prediction, even when tested in increasing or decreasing prediction windows. In addition, associations between climate and dengue are presented as a reversed slide-shaped curve for dengue-humidity and a reversed U-shaped curves for dengue-temperature and dengue-precipitation. The range of optimal temperature for infection is 24.3-30.5 °C. Humidity and precipitation are positively associated with dengue upper the threshold 70% at lag 38 days and below 50 mm at lag 50 days, respectively. CONCLUSION: Identification of association between climate and dengue is potentially useful to counter the high risk of dengue and strengthen the public health system and reduce the increase of the dengue burden.

Climatic factors influencing the anthrax outbreak of 2016 in Siberia, Russia

In 2016, an outbreak of anthrax killing thousands of reindeer and affecting dozens of humans occurred on the Yamal peninsula, Northwest Siberia, after 70 years of epidemiological situation without outbreaks. The trigger of the outbreak has been ascribed to the activation of spores due to permafrost thaw that was accelerated during the summer heat wave. The focus of our study is on the dynamics of local environmental factors in connection with the observed anthrax revival. We show that permafrost was thawing rapidly for already 6 years before the outbreak. During 2011-2016, relatively warm years were followed by cold years with a thick snow cover, preventing freezing of the soil. Furthermore, the spread of anthrax was likely intensified by an extremely dry summer of 2016. Concurrent with the long-term decreasing trend in the regional annual precipitation, the rainfall in July 2016 was less than 10% of its 30-year mean value. We conclude that epidemiological situation of anthrax in the previously contaminated Arctic regions requires monitoring of climatic factors such as warming and precipitation extremes.

Climatology of persistent high relative humidity: An example for the Lower Peninsula of Michigan, USA

The persistence of high values of relative humidity for several hours to a few days has wide-ranging implications for natural and human systems. Among its many impacts, persistent high relative humidity contributes to reduced atmospheric visibility, fog frequency and duration, road and powerline icing, the occurrence of foliar plant disease and the temperature at which heat-related morbidity and mortality can occur. Despite this, the characteristics of humidity spells-including shifts with climate change-are rarely investigated and consequently poorly understood. Hourly relative humidity, precipitation and temperature for 35 locations in the Lower Peninsula (LP) of Michigan during 2003-2017, and for seven locations during 1973-2017, were used to assess, by biweekly periods, spatial, intra-annual and inter-annual variations in the characteristics of relative humidity spells. Two humidity thresholds that accommodate a wide range of applications were used: (1) high relative humidity (HRH), defined as hourly values >= 60%, and extremely high relative humidity (EHRH), defined as hourly values >= 85%. Extended HRH and EHRH spells are frequent across the LP, with HRH spells often spanning 36 hr or longer and EHRH spells commonly persisting more than 12 hr. The probability of HRH and EHRH spells generally decreased with time during 1973-2017, particularly later in the period. Although most spells initiate in the late afternoon and early evening hours, this diurnal preference is less evident as spell length increases, especially for EHRH spells. Furthermore, precipitation is more likely to occur with EHRH spells compared to HRH spells. The orientation and strength of spatial gradients in average annual spell frequency are highly dependent on the choice of humidity and duration thresholds and the temperatures accompanying the spells. This study represents the first comprehensive analysis of the persistence of humidity spells and illustrates the potential usefulness of temporally-flexible climatological summaries relevant for a wide range of applications.

Cluster of climatic and pollutant characteristics increases admissions for acute myocardial infarction: Analysis of 30,423 patients in the metropolitan area of Sao Paulo

BACKGROUND: The impact of simultaneous adverse climate conditions in the risk of myocardial infarction (MI) was not tested before. The aim of the present study was to investigate the impact of the combination of climate and air pollution features in the number of admissions and mortality due to acute myocardial infarction in 39 municipalities of São Paulo from 2012 to 2015. METHODS: Data about MI admissions were obtained from the Brazilian public health system (DataSUS). Daily information on weather were accessed from the Meteorological Database for Teaching and Research. Additionally, daily information on air pollution were obtained from the Environmental Company of the State of São Paulo. A hierarchical cluster analysis was applied for temperature, rainfall patterns, relative air humidity, nitrogen dioxide, particulate matter 2.5 and particulate matter 10. MI admissions and in-hospital mortality were compared among the clusters. RESULTS: Data analysis produced 3 clusters: High temperature variation-Low humidity-high pollution (n=218 days); Intermediate temperature variation/high humidity/intermediate pollution (n=751 days) and low temperature variation/intermediate humidity-low pollution (n=123 days). All environmental variables were significantly different among clusters. The combination of high temperature variation, dry weather and high pollution resulted in a significant 9% increase in hospital admissions for MI [30.5 (IQR 25.0-36.0)]; patients/day; P<0.01). The differences in weather and pollution did not have impact on in-hospital mortality (P=0.88). CONCLUSION: The combination of atmospheric conditions with high temperature variation, lower temperature, dryer weather and increased inhalable particles was associated with a marked increase of hospital admissions due to MI.

Combining socio-economic and climate projections to assess heat risk

The assessments of future climate risks are common; however, usually, they focus on climate projections without considering social changes. We project heat risks for Finland to evaluate (1) what kind of differences there are in heat vulnerability projections with different scenarios and scales, and (2) how the use of socio-economic scenarios influences heat risk assessments. We project a vulnerability index with seven indicators downscaled to the postal code area scale for 2050. Three different scenario sets for vulnerability are tested: one with five global Shared Socioeconomic Pathways (SSPs) scenarios; the second with three European SSPs (EUSSPs) with data at the sub-national scale (NUTS2); and the last with the EUSSPs but aggregated data at the national scale. We construct projections of heat risk utilizing climatic heat hazard data for three different Representative Concentration Pathways (RCPs) and vulnerability and exposure data for five global SSPs up to 2100. In the vulnerability projections, each scenario in each dataset shows a decrease in vulnerability compared to current values, and the differences between the three scenario sets are small. There are evident differences both in the spatial patterns and in the temporal trends when comparing the risk projections with constant vulnerability to the projections with dynamic vulnerability. Heat hazard increases notably in RCP4.5 and RCP8.5, but a decrease of vulnerability especially in SSP1 and SSP5 alleviates risks. We show that projections of vulnerability have a considerable impact on future heat-related risk and emphasize that future risk assessments should include the combination of long-term climatic and socio-economic projections.

Changes in climatic patterns and tourism and their concomitant effect on drinking water transfers into the region of South Aegean, Greece

Global warming is already having a negative impact on vital sectors on which human development depends, such as water resource availability. In this study, the changes and abrupt change timing of climatic extreme indices, aridity and drought over the Region of South Aegean are captured using the Mann-Kendall and Pettitt tests, while the latter variables are correlated with the water volume transported by ships to the region as well as the relevant costs. The region’s climate is shifting to warmer conditions with less precipitation, since significantly positive trends were noted with regard to the number of tropical nights, warm nights, warm days, the warm spell duration index and the diurnal temperature range; significant negative trends were observed in relation to the number of cool nights, cool days and the cold spell duration index, with the change-point year for the latter variables being 2006. Inaddition, 7/11 precipitation related indices exhibited a downward trend, while significantly negative trends were observed with regard to the number of consecutive dry days, with the timing of the abrupt change being 2001. The Aridity Index (AI) reveals that the region’s climate characterization is changing from dry and sub-humid to semi-arid conditions, whilst the Reconnaissance Drought Index standardized (RDI(st)) and the Standardized Precipitation Index (SPI) indices suggests an amplification of drought phenomena over the Region. The tourism variables illustrated a significant positive trend, with the timing of the abrupt change being registered during 2006-2009, whilst the correlation analysis between tourism variables and water transfers implies that the surge on water transfer by ships to the Region occurred between 1998 and 2008. This can be mainly attributed to the changes in climate patterns. The correlation analysis documents a strong positive correlation between the water transfer dataset and the diurnal temperature range, and a moderately negative association with the precipitation related indices, annual precipitation, drought phenomena and aridity with 7/11.

Childhood visceral leishmaniasis in Tunisia: A cross-sectional study in local spatial analysis

This paper describes spatial distribution of Visceral Leishmaniasis (VL) and determines its correlation with climatic factors in an endemic focus in northern and central Tunisia. Data on VL cases in children under five years of age were obtained by consulting medical reports from all Tunisian Pediatric Departments (TPD) during 2006-2016. Three key climatic factors, namely precipitation, continentality index and pluviometric coefficient of Emberger were used as predictor variables to model the VL geographical distribution. Data handling and statistical analysis were performed using R and Arcview GIS software systems. Bayesian local spatial model was employed to analyse the data. The results show a progressive increase in the VL incidence rates in regions with high levels of precipitation, but with low values of both continentality index and pluviometric coefficient of Emberger. A likely explanation of these findings arises from the opposite local effects of climatic factors which tend to cancel each other out in the calculation of the mean parameter estimate over the whole study area. We conclude that using non-local spatial analysis approach leads to misleading epidemiological interpretations, which in turn are of relevance for more efficient and cost-effective resource allocation for control and well manage the spread of VL in the study region and elsewhere in Tunisia.

Circulation weather types and hospital admissions for cardiovascular disease in Changchun, China

Epidemiological studies have reported significant associations between weather situations and health. Cardiovascular disease is a serious chronic non-communicable disease which causes mortality and morbidity, bringing large economic burden to patients’ families. This study explored the relationship between cardiovascular disease (CVD) and weather conditions in Changchun, northeast China. The frequency distributions of 13 main circulation weather types (CWTs) were analyzed, and a comparison between air mass classification and hospital admissions was performed for various groups using an admission index (AI). The results indicated that women had a lower risk of CVD than men did. The risk of CVD for older people (aged???65 years) was lower than that for young people (aged?

Climate anomalies and childhood growth in Peru

Climate change has been linked to poor childhood growth and development through maternal stress, nutritional insults related to lean harvests, and exposure to infectious diseases. Vulnerable populations are often most susceptible to these stressors. This study tested whether susceptibility to linear growth faltering is higher among Peruvian children from indigenous, rural, low-education, and low-income households. High-resolution weather and household survey data from Demographic and Health Survey 1996-2012 were used to explore height-for-age z-scores (HAZ) at each year of life from 0 to 5. Rural, indigenous children at age 0-1 experience a HAZ reduction of 0.35 units associated with prenatal excess rainfall which is also observed at age 4-5. Urban, non-indigenous children at age 4-5 experience a HAZ increase of 0.07 units associated with postnatal excess rainfall, but this advantage is not seen among rural, indigenous children. These findings highlight the need to consider developmental stage and social predictors as key components in public health interventions targeting increased climate change resilience.

Climate change accelerates winter transmission of a zoonotic pathogen

Many zoonotic diseases are weather sensitive, raising concern how their distribution and outbreaks will be affected by climate change. At northern high latitudes, the effect of global warming on especially winter conditions is strong. By using long term monitoring data (1980-1986 and 2003-2013) from Northern Europe on temperature, precipitation, an endemic zoonotic pathogen (Puumala orthohantavirus, PUUV) and its reservoir host (the bank vole, Myodes glareolus), we show that early winters have become increasingly wet, with a knock-on effect on pathogen transmission in its reservoir host population. Further, our study is the first to show a climate change effect on an endemic northern zoonosis, that is not induced by increased host abundance or distribution, demonstrating that climate change can also alter transmission intensity within host populations. Our results suggest that rainy early winters accelerate PUUV transmission in bank voles in winter, likely increasing the human zoonotic risk in the North.

Climate change and risk of arboviral diseases in the state of Rio de Janeiro (Brazil)

Arboviral diseases are a theme of high interest in the field of public and collective health worldwide. Dengue, Zika, and Chikungunya, in particular, have shown significant expansion in terms of morbidity and mortality in different portions of the ecumene. These diseases are of great interest in geographic studies due to the characteristics of their vector (Aedes aegypti), adapted to the environmental and unequal context of the urbanization process. Given this background, this study assesses the relationship between global climate change and the risk of arboviral diseases for the state of Rio de Janeiro. To this end, the characteristics of future climate susceptibility to vector proliferation in the scenarios RCP 4.5 and 8.5 (2011-2040 and 2041-2070) were assessed using two models: Eta HadGEM2-ES and Eta MIROC5, as well as the vulnerability conditions that favor the spread of arboviruses. The results indicate that the tendency of thermal and hygrometric elevation, in association with vulnerability, may have repercussions on the intensification and spatial expansion of the risk of arboviral diseases in the state of Rio de Janeiro, since there is a spatial and temporal expansion of the optimal environmental conditions for the development of the vector.

Climate change impacts on household food security and adaptation strategies in southern Ethiopia

Climate change is predicted to adversely affect agricultural yields, particularly in African countries such as Ethiopia, where crop production relies heavily on environmental factors such as rainfall and temperature. However, there have only been a limited number of studies on the effects of climate change dynamics on food security in Africa, particularly at the household level. We therefore analyzed local climatic changes, the status of household food security, climate-related causes of food insecurity, food security determinants, and the adaptation strategies of local farmers. Three decades meteorological data were analyzed. A total of 185 farmers were selected using simple random sampling and interviewed, together with focus groups. Data were analyzed using the descriptive and inferential statistics were used together with the logit regression model. Climate change over the last three decades was found to have a negative impact the food security status of households. Crop production was constrained by poor rainfall, severe erosion, and increases in temperature. The unpredictability of rainfall, pests, and diseases were also contributing factors. Using the calorie intake approach, 60.5% of sampled respondents were found to be food insecure. Analysis using the logistic regression model showed that age and family size, as well as the amount of cultivated land and rainfall, were the significant (p < .05) factors influencing household food security status. A large proportion (69.8%) of farmers were incorporating adapting strategies into farm management including improved use of crop varieties and livestock production, in addition to income diversification. Taken together, these findings show that improving climate change awareness, facilitating the participation of female-led households in income generation, and strengthening existing adaptation measures have positive impacts on food security.

Climate change in rural Pakistan: Evidence and experiences from a people-centered perspective

Pakistan is home to a wide range of geographical landscapes, each of which faces different climate change impacts and challenges. This article presents findings from a National Geographic Society funded project, which employed a people-centered, narratives-based approach to study climate impacts and adaptation strategies of people in 19 rural study sites in four provinces of Pakistan (N = 108). The study looked at six climate-related stressors-changes in weather patterns, floods, Glacial Lake Outburst Floods, drought, heat waves, and sea-level rise-in the coastal areas of Sindh, the desert of Thar, the plains of Punjab, and the mountains of Hunza, Gilgit, and Chitral. Speaking to people at these frontlines of climate change revealed much about climate suffering and trauma. Not only is the suffering induced by losses and damages to property and livelihood, but climate impacts also take a heavy toll on people’s psycho-social wellbeing, particularly when they are displaced from their homes. The findings further demonstrate that people try to adapt in various ways, for instance by altering their agricultural practices, but they face severe barriers to effective adaptation action. Understanding people’s perceptions of climate change and incorporating their recommendations in adaptation planning can help policy-makers develop a more participatory, inclusive, and holistic climate resilience framework for the future.

Associations between ambient heat exposure early in pregnancy and risk of congenital heart defects: A large population-based study

Some epidemiological studies have confirmed the association between environmental factors and congenital heart defects (CHD). While the possibility that maternal ambient heat exposures are related to CHD has received little attention. Our study aims to investigate the association between maternal ambient extreme heat exposure early in pregnancy and the risk of CHD in offspring in China. We conducted a retrospective cohort study of 1,918,105 fetuses between 2 and 8 weeks after gestation from May to October in Guangdong, China, 2015-2019. The main heat exposure was defined as extreme heat events (EHE) by using the 90th (EHE90) or 95th (EHE95) percentile of the daily maximum temperature. For each EHE definition, we further defined four indicators: having EHE or not, frequency, duration, and cumulative days. We used the log-binomial regression models to calculate the prevalence ratios (PR) of CHD with 95% confidence intervals (CI) for the associations between CHD and EHE, adjusted for potentially confounding covariates. There are 1,918,105 infants included in the study, of which 9588 had CHD, with a prevalence rate of 499.9 per 100,000 (95% CI: 489.9, 509.8). We found that all EHE indicators were positively associated with the increased risks of overall CHD, some CHD classes (congenital malformations of cardiac septa, congenital malformations of great arteries, and congenital malformations of great arteries), and some CHD subtypes (atrial septal defect and patent ductus arteriosus). In addition, the PR yielded higher estimates when exposing to EHE95. For instance, the risk of suffering congenital malformations of great arteries was 1.548 (95% CI: 1.401, 1.712) for EHE90 exposure and 1.723 (95% CI: 1.565, 1.898) for EHE95 exposure, respectively. Our study demonstrated that EHE during 2-8 weeks postconception was associated with overall CHD in offspring, particularly atrial septal defects and patent ductus arteriosus. The associations strengthened with the extent and cumulative days of maternal exposure to EHE.

Associations between simulated future changes in climate, air quality, and human health

IMPORTANCE: Future changes in climate are likely to adversely affect human health by affecting concentrations of particulate matter sized less than 2.5 ?m (PM2.5) and ozone (O3) in many areas. However, the degree to which these outcomes may be mitigated by reducing air pollutant emissions is not well understood. OBJECTIVE: To model the associations between future changes in climate, air quality, and human health for 2 climate models and under 2 air pollutant emission scenarios. DESIGN, SETTING, AND PARTICIPANTS: This modeling study simulated meteorological conditions over the coterminous continental US during a 1995 to 2005 baseline and over the 21st century (2025-2100) by dynamically downscaling representations of a high warming scenario from the Community Earth System Model (CESM) and the Coupled Model version 3 (CM3) global climate models. Using a chemical transport model, PM2.5 and O3 concentrations were simulated under a 2011 air pollutant emission data set and a 2040 projection. The changes in PM2.5 and O3-attributable deaths associated with climate change among the US census-projected population were estimated for 2030, 2050, 2075, and 2095 for each of 2 emission inventories and climate models. Data were analyzed from June 2018 to June 2020. MAIN OUTCOMES AND MEASURES: The main outcomes were simulated change in summer season means of the maximum daily 8-hour mean O3, annual mean PM2.5, population-weighted exposure, and the number of avoided or incurred deaths associated with these pollutants. Results are reported for 2030, 2050, 2075, and 2095, compared with 2000, for 2 climate models and 2 air pollutant emissions data sets. RESULTS: The projected increased maximum daily temperatures through 2095 were up to 7.6 °C for the CESM model and 11.8 °C for the CM3 model. Under each climate model scenario by 2095, compared with 2000, an estimated additional 21?000 (95% CI, 14?000-28?000) PM2.5-attributable deaths and 4100 (95% CI, 2200-6000) O3-attributable deaths were projected to occur. These projections decreased to an estimated 15?000 (95% CI, 10?000-20?000) PM2.5-attributable deaths and 640 (95% CI, 340-940) O3-attributable deaths when simulated using a future emission inventory that accounted for reduced anthropogenic emissions. CONCLUSIONS AND RELEVANCE: These findings suggest that reducing future air pollutant emissions could also reduce the climate-driven increase in deaths associated with air pollution by hundreds to thousands.

Associations of extreme temperatures with hospitalizations and post-discharge deaths for stroke: What is the role of pre-existing hyperlipidemia?

BACKGROUND: Existing evidence has suggested that heat exposure was associated with increase of low-density lipoprotein (LDL) and decrease of high-density lipoprotein (HDL). This study aimed to assess the effects of extreme temperatures (i.e., heat and cold) on hospitalizations and post-discharge deaths for stroke amongst individuals with and without pre-existing hyperlipidemia, and examine whether individual- and community-level characteristics modified the temperature-stroke relationship. METHODS: People who were hospitalized for stroke from 1(st) January 2005 to 31(st) December 2013 in Brisbane, Australia, and died from stroke within two months after discharge were included in this cohort study. The effects of extreme temperatures on hospitalizations and post-discharge deaths for stroke in patients with and without pre-existing hyperlipidemia were quantified using a time-stratified case-crossover design with conditional logistic regression. Suburb-level temperature data were used to minimize exposure measurement bias. Relative humidity, NO(2) and PM(10) were adjusted as potential confounders in the regression. Subgroup analyses were conducted to examine if age, sex, and suburb-level greenspace (measured as normalized difference vegetation index (NDVI)) and socioeconomic status (measured as Socio-Economic Indexes for Areas (SEIFA)) modified the temperature-stroke relationship in the hyperlipidemia group and the non-hyperlipidemia group. RESULTS: There were 11,469 hospitalizations for stroke during the study period, and 2270 (19.79%) of them died within two months after discharge. Significant effect of heat on hospitalizations for stroke was observed only in individuals with pre-existing hyperlipidemia (odds ratio (OR): 1.85; 95% confidence interval (CI): 1.07-3.19), and significant effect of cold on hospitalizations was found in individuals without pre-existing hyperlipidemia (OR: 1.60; 95% CI: 1.03-2.47). Males appeared to be more vulnerable to the effects of heat and cold on hospitalizations for stroke than females. People living in suburbs with low-level greenspace (OR: 4.23; 95% CI: 1.08-16.61) were more vulnerable to heat effect on stroke hospitalizations than those living in suburbs with high-level greenspace (OR: 1.41; 95% CI: 0.32-6.16). People living in suburbs with the lowest socioeconomic advantage level or the lowest economic resources level were most vulnerable the effects of heat and cold on hospitalizations for stroke. No significant effect of heat or cold on post-discharge deaths from stroke was observed. CONCLUSIONS: This study provides suggestive evidence that heat adaptation strategies aiming to reduce stroke attacks may need to target those individuals with pre-existing hyperlipidemia.

Atmospheric tropical modes are important drivers of Sahelian springtime heatwaves

Heatwaves pose a serious threat to human health worldwide but remain poorly documented over Africa. This study uses mainly the ERA5 dataset to investigate their large-scale drivers over the Sahel region during boreal spring, with a focus on the role of tropical modes of variability including the Madden-Julian Oscillation (MJO) and the equatorial Rossby and Kelvin waves. Heatwaves were defined from daily minimum and maximum temperatures using a methodology that retains only intraseasonal scale events of large spatial extent. The results show that tropical modes have a large influence on the occurrence of Sahelian heatwaves, and, to a lesser extent, on their intensity. Depending on their convective phase, they can either increase or inhibit heatwave occurrence, with the MJO being the most important of the investigated drivers. A certain sensitivity to the geographic location and the diurnal cycle is observed, with nighttime heatwaves more impacted by the modes over the eastern Sahel and daytime heatwaves more affected over the western Sahel. The examination of the physical mechanisms shows that the modulation is made possible through the perturbation of regional circulation. Tropical modes thus exert a control on moisture and the subsequent longwave radiation, as well as on the advection of hot air. A detailed case study of a major event, which took place in April 2003, further supports these findings. Given the potential predictability offered by tropical modes at the intraseasonal scale, this study has key implications for heatwave risk management in the Sahel.

Attitudes of people toward climate change regarding the bioclimatic comfort level in tourism cities; evidence from Antalya, Turkey

In addition to several negative environmental effects, climate change, which reduces bioclimatic comfort levels especially in urban areas, also has economic implications, especially in cities where the economic structure is tourism-oriented. Considering most of the tourism practices are based on outdoor activities in cities such as Antalya, it is of great importance to determine bioclimatic comfort level as well as the attitudes of people toward climate change who live in those conditions to be able to take proper precautions in terms of tourism and urban planning. Therefore, the purpose of this study was to reveal the bioclimatic comfort conditions of Antalya city center, and a comprehensive questionnaire was conducted with the people living in the area questioning the opinions on reasons and consequences of climate change, perceivable effects of climate change in Antalya, and suggestions to prevent or reduce the adverse effects. The areas with appropriate bioclimatic comfort conditions were determined and mapped via geographical information systems using temperature and relative humidity data of the years between 1960 and 2018. The data gathered via questionnaires were analyzed using confirmatory factor analysis, regression, correlation, and structural equation modelling via SPSS and AMOS software. According to the results, it was determined that in some parts of city center the bioclimatic comfort conditions decreased to levels that could reach harmful dimensions for human health and the analysis of the questionnaires revealed that people living in that area state that the effects of climate change are perceivable as the precipitation seasons have become irregular. According to the participants, it was determined that a 1-unit increase in environmental measures causes a decrease of 0.136 units in disasters (R(2)?=?1.1%). In comparison, 1-unit increase of Administrative Precautions will cause 0.030 units decrease in effects of climate change on vital needs (R(2)?=?1.4%). These analysis results show that the respondents expect the disaster scenarios to decrease when environmental measures are increased.

Bioclimatic conditions of the Lower Silesia region (South-West Poland) from 1966 to 2017

This work analyses the temporal and spatial characteristics of bioclimatic conditions in the Lower Silesia region. The daily time values (12UTC) of meteorological variables in the period 1966-2017 from seven synoptic stations of the Institute of Meteorology and Water Management (IMGW) (Jelenia Góra, K?odzko, Legnica, Leszno, Wroc?aw, Opole, ?nie?ka) were used as the basic data to assess the thermal stress index UTCI (Universal Thermal Climate Index). The UTCI can be interpreted by ten different thermal classes, representing the bulk of these bioclimatic conditions. Stochastic autoregressive moving-average modelling (ARMA) was used for the statistical analysis and modelling of the UTCI as well as separately for all meteorological components. This made it possible to test differences in predicting UTCI as a full index or reconstructing it from single meteorological variables. The results show an annual and seasonal variability of UTCI for the Lower Silesia region. Strong significant spatial correlations in UTCI were also found in all stations of the region. “No thermal stress” is the most commonly occurring thermal class in this region (about 38%). Thermal conditions related to cold stress classes occurred more frequently (all cold classes at about 47%) than those of heat stress classes (all heat classes at about 15%). Over the available 52-year period, the occurrence of “extreme heat stress” conditions was not detected. Autoregressive analysis, although successful in predicting UTCI, was nonetheless unsuccessful in reconstructing the wind speed, which showed a persistent temporal correlation possibly due to its vectorial origin. We conclude thereby that reconstructing UTCI using linear autoregressive methods is more suitable when working directly on the UTCI as a whole rather than reconstructing it from single variables.

Beyond the hazard vulnerability analysis: Preparing health systems for climate change

INTRODUCTION: Climate change is heightening both long-term adverse risks to human health and the immediate-term risk of injuries and illness following climate-related disaster events that are becoming more frequent and severe. In addition to its direct health effects, climate change poses new threats to the nation’s health care infrastructure – with potential to negatively impact healthcare capacity amidst increasing demand – through risks of flooding, wind damage, heat stress, power outages, and other physical harm to facilities. The typical Hazard Vulnerability Analyses conducted annually by hospitals use historical data to assess risks; these analyses are likely now inadequate for future preparation due to the impact of climate change. This article describes one approach to how healthcare leaders can better assess both near-term and long-term risks due to climate change, to mitigate against unprecedented but foreseeable threats. METHODS: In our large health system in the US Northeast, a process was undertaken to gather updated data and expert projections to forecast threats faced by each of our facilities in different climate-related disaster scenarios. Hazards examined in our setting included precipitation-based and coastal flooding events, heat waves, and high wind events, in addition to seismic events. Probabilities of occurrence and extents of different hazards were projected for the near term (2030) and the long term (2070). We then performed detailed vulnerability analyses for each facility with the predicted amount of rainfall, storm surge, heat stress, and windspeed, in collaboration with leaders at each facility. This was followed by a process to understand what would be needed to mitigate each vulnerability along with the associated costs. Ultimately, a cost/benefit analysis was performed – incorporating the relative likelihood and impact of different scenarios – to decide which improvement projects to embark on immediately, and what to defer and/or incorporate into future building plans. RESULTS: In our system, all facilities were vulnerable to the effects of increased temperatures, and multiple hospitals were noted to be vulnerable to extreme precipitation, storm surge, and high winds. Specific damaging scenarios identified included flooding of basements and building infrastructure spaces, water entry through windows during high winds, and overheating of power systems during heat waves. Potential solutions included improved power redundancy for cooling systems, enhancements to roof and window systems, and the acquisition of deployable flood barriers. We identified four categories for prioritization of action based on projected impact: 1) priorities in need of urgent mitigation, 2) priorities in need of investigative study for medium-term mitigation, 3) priorities for planned capital improvement projects, and 4) priorities to integrate into new facility construction. DISCUSSION: While the specific risks and vulnerabilities for each facility will differ according to its location and structural features, the approach we describe is broadly applicable. By forecasting specific risks, diagnosing vulnerabilities, developing potential solutions, and using a risk/benefit approach to decision making, hospitals can work toward protecting facilities and patients in the face of potential climate related natural disasters in an economically sound manner.

Body mapping of regional sweat distribution in young and older males

PURPOSE: Given the pressing impact of global warming and its detrimental effect on the health of older populations, understanding age-related changes in thermoregulatory function is essential. Age differences in regional sweat distribution have been observed previously, but given the typically small measurement areas assessed, the development of whole body sweat maps for older individuals is required. Therefore, this study investigated age-related differences in regional sweat distribution in a hot environment (32 °C/50%RH) in young and older adults, using a body mapping approach. METHODS: Technical absorbent pads were applied to the skin of 14 young (age 24?±?2 years) and 14 older (68?±?5 years) males to measure regional sweat rate (RSR) at rest (30 min) and during exercise (30 min), at a fixed heat production (200 W m(-2)). Gastrointestinal (T(gi)) and skin temperature (T(sk)), heart rate, thermal sensation, and thermal comfort were also measured. RESULTS: Whole body sweat maps showed that despite equal heat production, healthy older males had significantly lower gross sweat loss (GSL) than the young and significantly lower RSR at almost all body regions at rest and at the hands, legs, ankles, and feet during exercise. The lower sweat loss in the older group coincided with a greater increase in T(gi) and a consistently higher T(sk) at the legs, despite subjectively feeling slightly cooler than younger individuals. CONCLUSION: These findings support the evidence of age-related deterioration in both autonomic and subjective responses in the heat and highlight the lower extremities as the most affected body region.

Burning embers: Synthesis of the health risks of climate change

Since 2001, a synthesizing element in Intergovernmental Panel on Climate Change assessment reports has been a summary of how risks in a particular system could change with additional warming above pre-industrial levels, generally accompanied by a figure called the burning embers. We present a first effort to develop burning embers for climate change risks for heat-related morbidity and mortality, ozone-related mortality, malaria, diseases carried by Aedes sp., Lyme disease, and West Nile fever. We used an evidence-based approach to construct the embers based on a comprehensive global literature review. Projected risks for these health outcomes under 1.5 degrees C, 2 degrees C, and >2 degrees C of warming were used to estimate at what temperatures risk levels increased from undetectable to medium, high, and very high, from the pre-industrial baseline, under three adaptation scenarios. Recent climate change has likely increased risks from undetectable to moderate for heat-related morbidity and mortality, ozone-related mortality, dengue, and Lyme disease. Recent climate change also was assessed as likely beginning to affect the burden of West Nile fever. A detectable impact of climate change on malaria is not yet apparent but is expected to occur with additional warming. The risk for each climate-sensitive health outcome is projected to increase as global mean surface temperature increases above pre-industrial levels, with the extent and pace of adaptation expected to affect the timing and magnitude of risks. The embers may be an effective tool for informing efforts to build climate-resilient health systems including through vulnerability, capacity, and adaptation assessments and the development of national adaptation plans. The embers also can be used to raise awareness of future threats from climate change and advocate for mitigation actions to reduce the overall magnitude of health risks later this century and to expand current adaptation efforts to protect populations now.

COVID-19 and heat illness in Tokyo, Japan: Implications for the Summer Olympic and Paralympic Games in 2021

The 2020 summer Olympic and Paralympic Games in Tokyo were postponed to July-September 2021 due to the coronavirus disease 2019 (COVID-19) pandemic. While COVID-19 has emerged as a monumental health threat for mass gathering events, heat illness must be acknowledged as a potentially large health threat for maintaining health services. We examined the number of COVID-19 admissions and the Tokyo rule for emergency medical care, in Tokyo, from March to September 2020, and investigated the weekly number of emergency transportations due to heat illness and weekly averages of the daily maximum Wet Bulb Globe Temperature (WBGT) in Tokyo in the summer (2016-2020). The peak of emergency transportations due to heat illness overlapped the resurgence of COVID-19 in 2020, and an increase of heat illness patients and WBGT has been observed. Respect for robust science is critical for the decision-making process of mass gathering events during the pandemic, and science-based countermeasures and implementations for COVID-19 will be warranted. Without urgent reconsiderations and sufficient countermeasures, the double burden of COVID-19 and heat-related illnesses in Tokyo will overwhelm the healthcare provision system, and maintaining essential health services will be challenging during the 2021 summer Olympic and Paralympic Games.

Calibrating UTCI’S comfort assessment scale for three Brazilian cities with different climatic conditions

Both global climate change and urbanization trends will demand adaptation measures in cities. Large agglomerations and impacts on landscape and natural environments due to city growth will require guided densification schemes in urban areas, particularly in developing countries. Human biometeorological indices such as the Universal Thermal Climate Index (UTCI) could guide this process, as they provide a clear account of expected effects on thermal sensation from a given change in outdoor settings. However, an earlier step should optimally include an adequacy test of suggested comfort and thermal stress ranges with calibration procedures based on surveys with the target population. This paper compares obtained thermal comfort ranges for three different locations in Brazil: Belo Horizonte, 20° S, Aw climate type; Curitiba, 25.5° S, Cfb subtropical climate, both locations in elevation (above 900 m a.s.l.); and Pelotas, at sea level, latitude 32° S, with a Cfa climate type. In each city, a set of outdoor comfort field campaigns has been carried out according to similar procedures, covering a wide range of climatic conditions over different seasons of the year. Obtained results indicate a variation of neutral temperatures up to 3 °C (UTCI units) as a possible latitude and local climate effect between the southern locations relative to the northernmost location. Low UTCI values were found in the two subtropical locations for the lower threshold of the thermal comfort band as compared with the original threshold. A possible explanation for that is a longer exposure to cold conditions as buildings are seldom provided with heating systems.

Can we advance individual-level heat-health research through the application of stochastic weather generators?

Individuals living in every region of the world are increasingly vulnerable to negative health outcomes due to extreme heat exposure. Children, in particular, may face long-term consequences associated with heat stress that affect their educational attainment and later life health and well-being. Retrospective individual-level analyses are useful for determining the effects of extreme heat exposure on health outcomes. Typically, future risk is inferred by extrapolating these effects using future warming scenarios that are applied uniformly over space and time without consideration of topographical or climatological gradients. We propose an alternative approach using a stochastic weather generator. This approach employs a 1 degrees C warming scenario to produce an ensemble of plausible future weather scenarios, and subsequently a distribution of future health risks. We focus on the effect of global warming on fetal development as measured by birth weight in Ethiopia. We demonstrate that predicted changes in birth weight are sensitive to the evolution of temperatures not quantified in a uniform warming scenario. Distributions of predicted changes in birth weight vary in magnitude and variability depending on geographic and socioeconomic region. We present these distributions alongside results from the uniform warming scenario and discuss the spatiotemporal variability of these predicted changes.

Assessing urban heat-related adaptation strategies under multiple futures for a major US city

Urban areas are increasingly affected by extreme heat in the face of climate change, while the size and vulnerability of exposed populations are shifting due to economic development, demographic change, and urbanization. In addition to the need to assess future urban heat-related health risks, there is also an increasing need to design adaptation strategies that will be effective under varying levels of socioeconomic development and climate change. We use the case study of Houston, Texas, to develop and demonstrate a scenario-based approach to explore the effectiveness of both autonomous and planned heat-related adaptations under multiple plausible futures. We couple a heat risk model with urban climate projections (under the Representative Concentration Pathways) and vulnerability projections (under locally extended Shared Socioeconomic Pathways) to investigate the impact of different adaptation strategies under multiple scenario combinations. We demonstrate that, in the context of Houston, community-based adaptation strategies aiming to reduce social isolation are the most effective and the least challenging to implement across all plausible futures. Scenario-based approaches can provide local policymakers with context-specific assessments of possible adaptation strategies that account for uncertain futures.

Assessment of regional health vulnerability to extreme heat – China, 2019

What is already known on this topic? The health risk caused by high-temperatures depends on the interaction between high temperature exposure and the sensitivity and adaptability of the affected populations. What is added by this report? A comprehensive assessment model was established by principal component analysis using the data of 19 cities, 15 provincial-level administrative divisions and used to identify regional characteristics and major influencing factors of health vulnerability to extreme heat in China. What are the implications for public health practice? The results of the health vulnerability assessment could effectively identify the regions highly vulnerable to extreme heat in China and provide scientific evidence for the development of adaptive measures and resource allocation plans.

Assessment of the Baltic Sea climate change impact on health

Student morbidity during adaptation to the weather and climate conditions of the Baltic Sea is evaluated from 2012 to 2017 in this study. The research used the Steadman apparent temperature method to analyse the health impact of physical factors and investigated student morbidity in three Kaliningrad universities that had different percentage responses to the local climate change. Apparent temperatures (T) with different combinations of meteorological parameters significantly deviated from monthly average temperatures. For the average temperature and maximum wind speed, apparent temperatures were found to be negative from September to March. In January and February, they were 7.8-16.8 times lower than the average T. With humidity (e.g., RH) unchanged, different combinations of physical factor posed no danger to a person dressed for the weather conditions. In January, at the minimum T and maximum wind speed (Uh), frostbite was possible after 20-30 of exposure. Apparent T close to the threshold value was observed in December and February. The climate of the Kaliningrad enclave is not the best for human health conditions. In the winter, there are serious risks of frostbite in uncovered parts of the body when threshold conditions were not met. Results suggested that disease susceptibility in non-local students representing all the universities was 1.2-1.7 times higher than these of locals students. Also, a relationship between morbidity and percentage of non-local students is obtained, suggesting that the weather and climate conditions will likely adversely affect human health during climate change adaptation that can likely increase the morbidity rate, particularly among the students.

Assessment of trends in climatic extremes from observational data in the Kashmir basin, NW Himalaya

The present study aims to assess the recent changes and trends in the extreme climate indices in the Kashmir basin using the observational records from 1980 to 2016. The extreme climate indices were computed using the ClimPACT2 software and a total of 39 indices were selected for the analysis having particular utility to various sectors like agriculture, water resources, energy consumption, and human health. Besides adopting the station scale analysis, regional averages were computed for each index. In terms of the mean climatology, an increase has been observed in the annual mean temperature with a magnitude of 0.024 °C/year. Further, differential warming patterns have been observed in the mean maximum and minimum temperatures with mean maximum temperature revealing higher increases than mean minimum temperature. On the other hand, the annual precipitation shows a decrease over most of the region, and the decreases are more pronouncing in the higher altitudes. The trend analysis of the extreme indices reveals that in consonance with the rising temperature there has been an increase in the warm temperatures and decrease in the cold temperatures across the Kashmir basin. Furthermore, our analysis suggests a decrease in the extreme precipitation events. The drought indices viz., Standardised Precipitation Index (SPI), and Standardised Precipitation Evapotranspiration Index (SPEI) manifest decreasing trends with the tendency towards drier regimes implying the need for better water resource management in the region under changing climate.

Association between ambient temperature and atopic dermatitis in Lanzhou, China: A time series analysis

Many studies have explored the association between temperature and atopic dermatitis (AD); however, the results are inconsistent. We used a quasi-Poisson function fitted to a distributed lag nonlinear model (DLNM) to evaluate the association between daily average temperature and AD outpatient visits from January 1, 2013, to December 31, 2019, in Lanzhou, China. We found that the exposure-response association curve was inversely “s-shaped,” low-temperature effects occurred at a lag of 11 days and then lasted for 10 days, and high-temperature effects occurred on the current day and then significantly decreased. Both low and high ambient temperatures can increase the risk of outpatient visits. Compared with median temperature (12.89°C), the cumulative relative risk (RR) of extreme high temperature and moderate-high temperature were 1.847 (95% confidence interval [CI]: 1.613, 2.114) and 1.447 (95% CI: 1.298, 1.614), respectively, at lag0-7 days, and the cumulative RRs of extremely low temperature and moderate-low temperature were 1.004 (95% CI: 0.904, 1.115) and 1.056 (95% CI: 0.925, 1.205), respectively, at lag0-21 days. Females were more sensitive to high temperatures than males, and high or low temperatures had significant effects on children ?14 years of age. Graphical abstract.

Association between extreme ambient temperatures and general indistinct and work-related road crashes. A nationwide study in Italy

Despite the relevance of road crashes and their impact on social and health care costs, the effects of extreme temperatures on road crashes risk have been scarcely investigated, particularly for those occurring in occupational activities. A nationwide epidemiological study was carried out to estimate the risk of general indistinct and work-related road crashes related with extreme temperatures and to identify crash and occupation parameters mostly involved. Data about road crashes, resulting in death or injury, occurring during years 2013-2015 in Italy, were collected from the National Institute of Statistics, for general indistinct road crashes, and from the compensation claim applications registered by the national workers’ compensation authority, for work-related ones. Time series of hourly temperature were derived from the results provided by the meteorological model WRF applied at a national domain with 5 km resolution. To consider the different spatial-temporal characteristics of the two road crashes archives, the association with extreme temperatures was estimated by means of a case-crossover time-stratified approach using conditional logistic regression analysis, and a time-series analysis, using over-dispersed Poisson generalized linear regression model, for general indistinct and work-related datasets respectively. The analyses were controlled for other covariates and confounding variables (including precipitation). Non-linearity and lag effects were considered by using a distributed lag non-linear model. Relative risks were calculated for increment from 75th to 99th percentiles (hot) and from 25 to first percentile (cold) of temperature. Results for general indistinct crashes show a positive association with hot temperature (RR = 1.12, 95 % CI: 1.09-1.16) and a negative one for cold (RR = 0.93, 95 % CI: 0.91-0.96), while for work-related crashes a positive association was found for both hot and cold (RR = 1.06 (95 % CI: 1.01-1.11) and RR = 1.10 (95 % CI: 1.05-1.16). The use of motorcycles, the location of accident (urban vs out of town), presence of crossroads, as well as occupational factors like the use of a vehicle on duty were all found to produce higher risks of road crashes during extreme temperatures. Mitigation and prevention measures are needed to limit social and health care costs.

Association between extreme temperatures and emergency room visits related to mental disorders: A multi-region time-series study in New York, USA

BACKGROUND: There is growing evidence suggesting that extreme temperatures have an impact on mental disorders. We aimed to explore the effect of extreme temperatures on emergency room (ER) visits for mental health disorders using 2.8 million records from New York State, USA (2009-2016), and to examine potential effect modifications by individuals’ age, sex, and race/ethnicity through a stratified analysis to determine if certain populations are more susceptible. METHOD: To assess the short-term impact of daily average temperature on ER visits related to mental disorders, we applied a quasi-Poisson generalized linear model combined with a distributed lag non-linear model (DLNM). The model was adjusted for day of the week, precipitation, as well as long-term and seasonal time trends. We also conducted a meta-analysis to pool the region-specific risk estimates and construct the overall cumulative exposure-response curves for all regions. RESULTS: We found positive associations between short-term exposure to extreme heat (27.07 (?)C) and increased ER visits for total mental disorders, as well as substance abuse, mood and anxiety disorders, schizophrenia, and dementia. We did not find any statistically significant difference among any subgroups of the population being more susceptible to extreme heat than any other. CONCLUSIONS: Our findings suggest that there is a positive association between short-term exposure to extreme heat and increased ER visits for total mental disorders. This extreme effect was also found across all sub-categories of mental disease, although further research is needed to confirm our finding for specific mental disorders, such as dementia, which accounted for less than 1% of the total mental disorders in this sample.

Association between meteorological variables and semen quality: A retrospective study

Spermatogenesis is a temperature-dependent process, and high summer temperatures have been linked to lower sperm concentration and count. However, reports describing the association between other meteorological variables and semen quality are scarce. This study evaluated the association between semen quality and temperature, humidity, pressure, apparent temperature (AT), temperature-humidity index (THI), simplified wet-bulb global temperature (sWBGT), and sunshine duration. Semen samples were obtained at the Laboratorio de Andrología y Reproducción (LAR, Argentina), from men undergoing routine andrology examination (n=11657) and computer-assisted sperm analysis (n=4705) following WHO 2010 criteria. Meteorological variables readings were obtained from the Sistema Meteorológico Nacional. Sperm quality parameters were negatively affected in summer when compared to winter. Additionally, there was a significant decrease in sperm kinematics between winter and spring. Branch and bound variable selection followed by multiple regression analysis revealed a significant association between semen quality and meteorological variables. Specifically, changes in sunshine duration and humidity reinforced the prognosis of semen quality. Highest/lowest sunshine duration and humidity quantiles resulted in decreased sperm concentration, count, motility, vitality and membrane competence, nuclear maturity, and sperm kinematics associated to highest sunshine duration and lowest humidity. Findings from this report highlight the relevance of environmental studies for predicting alterations in male reproductive health associated to variations in meteorological variables, especially considering the current climate changes around the planet due to global warming and its consequences for human health.

Association of air temperature with pediatric intussusception in northeastern China: A 10-year retrospective study

OBJECTIVE: The aim of this study was to determine whether an association existed between intussusception and air temperature. METHODS: A retrospective study was performed between March 2006 and February 2016 to determine the relationship between pediatric primary intussusception (PPI) and air temperature. Information from hospital records of 5922 cases of PPI and Mean daily temperatures of Shenyang were obtained. Pearson correlation analysis was used to examine the association between monthly PPI cases and monthly mean temperature. Factorial analysis-of-variance was used to examine differences in the numbers of seasonal PPI cases during different seasons. RESULTS: Monthly PPI cases fluctuated throughout the year, with a peak in June, and a trough in February. Pearson correlation analysis showed that monthly PPI cases was associated with the monthly mean temperature (p < 0.01). Factorial analysis-of-variance showed there was significant difference in the numbers of seasonal PPI cases during different seasons. Multiple comparison showed a significant difference in seasonal PPI cases between spring and summer, spring and winter, summer and autumn, summer and winter, autumn and winter (p < 0.01). CONCLUSIONS: Monthly PPI cases were positively associated with monthly mean temperature in Shenyang. The incidence of intussusception shows a seasonal trend, with a peak in summer (May to July).

Association of heat exposure and emergency ambulance calls: A multi-city study

Evidence of the impact of ambient temperatures on emergency ambulance calls (EACs) in developing countries contributes to the improvement and complete understanding of the acute health effects of temperatures. This study aimed to examine the impacts and burden of heat on EACs in China, quantify the contributions of regional modifiers, and identify the vulnerable populations. A semi-parametric generalized additive model with a Poisson distribution was used to analyze the city-specific impacts of the daily maximum temperature (T-ma(x)) on EACs in June-August in 2014-2017. Stratified analyses by sex and age were performed to identify the vulnerable sub-populations. Meta-analysis was undertaken to illustrate the pooled associations. Further subgroup analysis, stratified by climate, latitude, and per capita disposable income (PCDI), and meta-regression analysis were conducted to explore the regional heterogeneity and quantify the contributions of possible modifiers. The city- and region-specific attributable fractions of EACs attributable to heat were calculated. Strong associations were observed between the daily T-max and total EACs in all cities. A total of 11.7% (95% confidence interval (CI): 11.2%-12.3%) of EACs were attributed to high temperatures in ten Chinese cities, and the central region with a low level of PCDI had the highest attributable fraction of 17.8% (95% CI: 17.2%-18.4%). People living in the central region with lower PCDI, and those aged 18-44 and 0-6 years were more vulnerable to heat than the others. The combined effects of PCDI, temperature, and latitude contributed 88.6% of the regional heterogeneity. The results complemented the understanding of the burden of EACs attributable to heat in developing countries and the quantitative contribution of regional modifiers.

Association of maternal ozone exposure with term low birth weight and susceptible window identification

BACKGROUND: Ozone pollution keeps deteriorating in the context of climate change. Maternal ozone exposure may be associated with low birth weight (LBW), but the results are still inconsistent. The identification of the critical exposure windows, a specific period of particular susceptibility during pregnancy, remains unresolved. We aimed to evaluate whether ozone exposure was associated with term LBW and further identify the susceptible exposure windows. METHODS: A retrospective cohort study was conducted in Guangzhou, a megacity in the most populous and economically developed city clusters in China. We included 444,096 singleton live births between January 2015 and July 2017. From 11 fixed stations, we collected daily 1-h maximum and 8-h maximum moving average ozone level (O(3)-1 h and O(3)-8 h) and calculated exposures for each participant based on their district of residence during pregnancy. We used traditional Logistic regression to estimate the trimester-specific association between ozone exposure and term LBW, and further estimated monthly- and weekly association by distributed lag models (DLMs) with Logistic regression. Odds ratios (ORs) and 95% confidence intervals (CIs) of term LBW were calculated for an interquartile range (IQR) increase in ozone exposure. Stratified analyses and heterogeneity tests were conducted by maternal age and infant sex. RESULTS: The incidence of term LBW was 1.9%. During the study period, the mean O(3)-1 h and O(3)-8 h levels were 112.6 µg/m(3) and 84.5 µg/m(3), respectively. Increased O(3)-1 h (IQR: 90 µg/m(3)) and O(3)-8 h (73 µg/m(3)) exposure during the second trimester were associated with increased risk of term LBW. At a monthly level, the term LBW risk was associated with O(3)-1 h exposure during the 4th-6th month and O(3)-8 h exposure during the 6th month. By estimating the weekly-specific association, we observed that critical exposure windows were the 15th- 26th gestational weeks for O(3)-1 h, and the 20th-26th weeks for O(3)-8 h, respectively. Estimated ORs and 95% CIs ranged from 1.012 (1.000, 1.024) to 1.023 (1.007, 1.039). When examined by subgroups, the effects were present among women ? 35 years or < 25 years old and those with female babies. CONCLUSIONS: This study provides compelling evidence that exposure to O(3) was associated with increased risk of term LBW, and gestational weeks 15th- 26th was found to be particularly susceptible. These findings provide a research basis for further mechanism examination, public health interventions, and targeted environmental policy-making.

Allergenic pollen season variations in the past two decades under changing climate in the United States

Prevalence of allergic diseases has been increasing due to multiple factors, among which climate change has had the most impact. Climate factors increase production of pollen, which also exhibits increased allergenicity. Also, as a result of climate change, there has been a shift in flowering phenology and pollen initiation causing prolonged pollen exposure. Various numerical models have been developed to understand the effect of climate change on pollen emission and transport and the impact on allergic airway diseases.

Ambient air pollution and cerebrovascular disease mortality: An ecological time-series study based on 7-year death records in central China

Most studies of short-term exposure to ambient air pollution and cerebrovascular diseases focused on specific stroke-related outcomes, and results were inconsistent due to data unavailability and limited sample size. It is unclear yet how ambient air pollution contributes to the total cardiovascular mortality in central China. Daily deaths from cerebrovascular diseases were obtained from the Disease Surveillance Point System (DSPs) of Wuhan Center for Disease Control and Prevention during the period from 2013 to 2019. Air pollution data were obtained from Wuhan Ecology and Environment Institute from 10 national air quality monitoring stations, including average daily PM(2.5), PM(10), SO(2), NO(2), and O(3). Average daily temperature and relative humidity were obtained from Wuhan Meteorological Bureau. We performed a Poisson regression in generalized additive models (GAM) to examine the association between ambient air pollution and cerebrovascular disease mortality. We observed a total of 84,811 deaths from cerebrovascular diseases from 1 January 2013 to 31 December 2019 in Wuhan. Short-term exposure to PM(2.5), PM(10), SO(2), and NO(2) was positively associated with daily deaths from cerebrovascular diseases, and no significant association was found for O(3). The largest effect on cerebrovascular disease mortality was found at lag0 for PM(2.5) (ERR: 0.927, 95% CI: 0.749-1.105 per 10 ?g/m3) and lag1 for PM(10) (ERR: 0.627, 95% CI: 0.493-0.761 per 10 ?g/m(3)), SO(2) (ERR: 2.518, 95% CI: 1.914, 3.122 per 10 ?g/m(3)), and NO(2) (ERR: 1.090, 95% CI: 0.822-1.358 per 10 ?g/m(3)). The trends across lags were statistically significant. The stratified analysis demonstrated that females were more susceptible to SO(2) and NO(2), while elder individuals aged above 65 years old, compared with younger people, suffered more from air pollution, especially from SO(2). Short-term exposure to PM(2.5), PM(10), SO(2), and NO(2) were significantly associated with a higher risk of cerebrovascular disease mortality, and elder females seemed to suffer more from air pollution. Further research is required to reveal the underlying mechanisms.

Ambient temperature and genome-wide DNA methylation: A twin and family study in Australia

Little is known about the association between ambient temperature and DNA methylation, which is a potential biological process through which ambient temperature affects health. This study aimed to evaluate the association between ambient temperature and DNA methylation across human genome. We included 479 Australian women, including 132 twin pairs and 215 sisters of these twins. Blood-derived DNA methylation was measured using the HumanMethylation450 BeadChip array. Data on average ambient temperature during eight different exposure windows [lag0d (the blood draw day), lag0-7d (the current day and previous seven days prior to blood draw), lag0-14d, lag0-21d, lag0-28d, lag0-90d, lag0-180d, and lag0-365d)] was linked to each participant’s home address. For each cytosine-guanine dinucleotide (CpG), we evaluated the association between its methylation level and temperature using generalized estimating equations (GEE), adjusting for important covariates. We used comb-p and DMRcate to identify differentially methylated regions (DMRs). We identified 31 CpGs at which blood DNA methylation were significantly associated with ambient temperature with false discovery rate [FDR] < 0.05. There were 82 significant DMRs identified by both comb-p (Sidak p-value < 0.01) and DMRcate (FDR < 0.01). Most of these CpGs and DMRs only showed association with temperature during one specific exposure window. These CpGs and DMRs were mapped to 85 genes. These related genes have been related to many human chronic diseases or phenotypes (e.g., diabetes, arthritis, breast cancer, depression, asthma, body height) in previous studies. The signals of short-term windows (lag0d and lag0-21d) showed enrichment in biological processes related to cell adhesion. In conclusion, short-, medium-, and long-term exposures to ambient temperature were all associated with blood DNA methylation, but the target genomic loci varied by exposure window. These differential methylation signals may serve as potential biomarkers to understand the health impacts of temperature.

Ambient temperature and mental health hospitalizations in Bern, Switzerland: A 45-year time-series study

BACKGROUND: Psychiatric disorders constitute a major public health concern that are associated with substantial health and socioeconomic burden. Psychiatric patients may be more vulnerable to high temperatures, which under current climate change projections will most likely increase the burden of this public health concern. OBJECTIVE: This study investigated the short-term association between ambient temperature and mental health hospitalizations in Bern, Switzerland. METHODS: Daily hospitalizations for mental disorders between 1973 and 2017 were collected from the University Hospital of Psychiatry and Psychotherapy in Bern. Population-weighted daily mean ambient temperatures were derived for the catchment area of the hospital from 2.3-km gridded weather maps. Conditional quasi-Poisson regression with distributed lag linear models were applied to assess the association up to three days after the exposure. Stratified analyses were conducted by age, sex, and subdiagnosis, and by subperiods (1973-1989 and 1990-2017). Additional subanalyses were performed to assess whether larger risks were found during the warm season or were due to heatwaves. RESULTS: The study included a total number of 88,996 hospitalizations. Overall, the hospitalization risk increased linearly by 4.0% (95% CI 2.0%, 7.0%) for every 10°C increase in mean daily temperature. No evidence of a nonlinear association or larger risks during the warm season or heatwaves was found. Similar estimates were found across for all sex and age categories, and larger risks were found for hospitalizations related to developmental disorders (29.0%; 95% CI 9.0%, 54.0%), schizophrenia (10.0%; 95% CI 4.0%, 15.0%), and for the later rather than the earlier period (5.0%; 95% CI 2.0%, 8.0% vs. 2.0%; 95% CI -3.0%, 8.0%). CONCLUSIONS: Our findings suggest that increasing temperatures could negatively affect mental status in psychiatric patients. Specific public health policies are urgently needed to protect this vulnerable population from the effects of climate change.

Ambient temperatures, heatwaves and out-of-hospital cardiac arrest in Brisbane, Australia

BACKGROUND: The health impacts of temperatures are gaining attention in Australia and worldwide. While a number of studies have investigated the association of temperatures with the risk of cardiovascular diseases, few examined out-of-hospital cardiac arrest (OHCA) and none have done so in Australia. This study examined the exposure-response relationship between temperatures, including heatwaves and OHCA in Brisbane, Australia. METHODS: A quasi-Poisson regression model coupled with a distributed lag non-linear model was employed, using OHCA and meteorological data between 1 January 2007 and 31 December 2019. Reference temperature was chosen to be the temperature of minimum risk (21.4°C). Heatwaves were defined as daily average temperatures at or above a heat threshold (90th, 95th, 98th, 99th percentile of the yearly temperature distribution) for at least two consecutive days. RESULTS: The effect of any temperature above the reference temperature was not statistically significant; whereas low temperatures (below reference temperature) increased OHCA risk. The effect of low temperatures was delayed for 1 day, sustained up to 3 days, peaking at 2 days following exposures. Heatwaves significantly increased OHCA risk across the operational definitions. When a threshold of 95th percentile of yearly temperature distribution was used to define heatwaves, OHCA risk increased 1.25 (95% CI 1.04 to 1.50) times. When the heat threshold for defining heatwaves increased to 99th percentile, the relative risk increased to 1.48 (1.11 to 1.96). CONCLUSIONS: Low temperatures and defined heatwaves increase OHCA risk. The findings of this study have important public health implications for mitigating strategies aimed at minimising temperature-related OHCA.

An advanced empirical model for quantifying the impact of heat and climate change on human physical work capacity

Occupational heat stress directly hampers physical work capacity (PWC), with large economic consequences for industries and regions vulnerable to global warming. Accurately quantifying PWC is essential for forecasting impacts of different climate change scenarios, but the current state of knowledge is limited, leading to potential underestimations in mild heat, and overestimations in extreme heat. We therefore developed advanced empirical equations for PWC based on 338 work sessions in climatic chambers (low air movement, no solar radiation) spanning mild to extreme heat stress. Equations for PWC are available based on air temperature and humidity, for a suite of heat stress assessment metrics, and mean skin temperature. Our models are highly sensitive to mild heat and to our knowledge are the first to include empirical data across the full range of warm and hot environments possible with future climate change across the world. Using wet bulb globe temperature (WBGT) as an example, we noted 10% reductions in PWC at mild heat stress (WBGT = 18°C) and reductions of 78% in the most extreme conditions (WBGT = 40°C). Of the different heat stress indices available, the heat index was the best predictor of group level PWC (R(2) = 0.96) but can only be applied in shaded conditions. The skin temperature, but not internal/core temperature, was a strong predictor of PWC (R(2) = 0.88), thermal sensation (R(2) = 0.84), and thermal comfort (R(2) = 0.73). The models presented apply to occupational workloads and can be used in climate projection models to predict economic and social consequences of climate change.

Analysis of indoor human thermal comfort in Pelotas municipality, extreme southern Brazil

The indoor human thermal comfort (HTC) was investigated in residences located in the Pelotas City, southern Brazil, by the effective temperature index (ETI). In this study, temperature and relative humidity were measured inside 429 houses, located in different regions of Pelotas city, from January 11 to August 27, 2019. Samples were obtained using HOBO data loggers, indoor sensors, installed in different regions of the municipality, in the context of a cohort study of children between 2 and 4 years old and their respective mothers, led by Epidemiological Research Center of the Federal University of Pelotas (UFPEL). In general, all regions had average hourly values of effective temperature index above the comfort zone in summer and below the comfort zone in the winter. In terms of spatial variability, the indoor HTC was dependent on environmental factors such as lake breeze and indoor behavior factors, such as the use of air conditioning system in the downtown buildings.

Analysis of the association between meteorological variables and mortality in the elderly applied to different climatic characteristics of the state of Sao Paulo, Brazil

With the rising trends in elderly populations around the world, there is a growing interest in understanding how climate variability is related to the health of this population group. Therefore, we analyzed the associations between mortality in the elderly due to cardiovascular (CVD) and respiratory diseases (RD) and meteorological variables, for three cities in the State of Sao Paulo, Brazil: Campos do Jordao, Ribeirao Preto, and Santos, all in different subtropical regions, from 1996 to 2017. The main objective was to verify how these distinct subtropical climates impact elderly mortality differently. We applied the autoregressive model integrated with moving average (ARIMA) and the principal component analysis (PCA), in order to evaluate statistical associations. Results showed CVD as a major cause of mortality, particularly in the cold period, when a high mortality rate is also observed due to RD. The mortality rate was higher in Campos do Jordao and lower in Santos. In Campos do Jordao, results indicate an increased probability of mortality from CVD and RD due to lower temperatures. In Ribeirao Preto, the lower relative humidity may be related to the increase in CVD and RD deaths. This study emphasizes that, even among subtropical climates, there are significant differences on how climate impacts human health, which can assist decision-makers in the implementation of mitigating and adaptive measures.

Anomalously warm weather and acute care visits in patients with multiple sclerosis: A retrospective study of privately insured individuals in the US

BACKGROUND: As the global climate changes in response to anthropogenic greenhouse gas emissions, weather and temperature are expected to become increasingly variable. Although heat sensitivity is a recognized clinical feature of multiple sclerosis (MS), a chronic demyelinating disorder of the central nervous system, few studies have examined the implications of climate change for patients with this disease. METHODS AND FINDINGS: We conducted a retrospective cohort study of individuals with MS ages 18-64 years in a nationwide United States patient-level commercial and Medicare Advantage claims database from 2003 to 2017. We defined anomalously warm weather as any month in which local average temperatures exceeded the long-term average by ?1.5°C. We estimated the association between anomalously warm weather and MS-related inpatient, outpatient, and emergency department visits using generalized log-linear models. From 75,395,334 individuals, we identified 106,225 with MS. The majority were women (76.6%) aged 36-55 years (59.0%). Anomalously warm weather was associated with increased risk for emergency department visits (risk ratio [RR] = 1.043, 95% CI: 1.025-1.063) and inpatient visits (RR = 1.032, 95% CI: 1.010-1.054). There was limited evidence of an association between anomalously warm weather and MS-related outpatient visits (RR = 1.010, 95% CI: 1.005-1.015). Estimates were similar for men and women, strongest among older individuals, and exhibited substantial variation by season, region, and climate zone. Limitations of the present study include the absence of key individual-level measures of socioeconomic position (i.e., race/ethnicity, occupational status, and housing quality) that may determine where individuals live-and therefore the extent of their exposure to anomalously warm weather-as well as their propensity to seek treatment for neurologic symptoms. CONCLUSIONS: Our findings suggest that as global temperatures rise, individuals with MS may represent a particularly susceptible subpopulation, a finding with implications for both healthcare providers and systems.

Approaching environmental human thermophysiological thresholds for the case of Ankara, Turkey

The disclosed study undertook a ‘human centred-approach’ that ascertained and categorised environmental human thermophysiological risk factors by relating them to the human biometeorological system through the use of three widely utilised energy balance model (EBM) indices, the physiologically equivalent temperature (PET), the modified PET, and the universal thermal climate index (UTCI). The disclosed assessment was carried out over the past decade (i.e., 2010-2019) with a 3-h temporal resolution for the case of Ankara through two WMO meteorological stations to compare both local urban and peri-urban environmental conditions. The study recognised extreme annual variability of human physiological stress (PS) during the different seasons as a result of the biometeorological processing of the singular variables, which in the case of average PET for both stations, varied by up to 75 °C between the winter and summer for the same annual dataset (2012). In addition, all EBMs indicated higher heat stress within the city centre that were conducive of both urban extreme heatwaves and very hot days during the summer months, with extreme heat stress levels lasting for longer than a week with PET values reaching a maximum of 48 °C. Similar cold extremes were found for the winter months, with PET values reaching -?30 °C, and average PS levels varying lower in the case of the peri-urban station. Graphical abstract.

A human-centred assessment framework to prioritise heat mitigation efforts for active travel at city scale

Hot weather not only impacts upon human physical comfort and health, but also impacts the way that people access and experience active travel options such as walking and cycling. By evaluating the street thermal environment of a city alongside an assessment of those communities that are the most vulnerable to the effects of heat, we can prioritise areas in which heat mitigation interventions are most needed. In this paper, we propose a new approach for policy makers to determine where to delegate limited resources for heat mitigation with most effective outcomes for the communities. We use eye-level street panorama images and community profiles to provide a bottom-up, human-centred perspective of the city scale assessment, highlighting the situation of urban tree shade provision throughout the streets in comparison with environmental and social-economic status. The approach leverages multiple sources of spatial data including satellite thermal images, Google street view (GSV) images, land use and demographic census data. A deep learning model was developed to automate the classification of streetscape types and percentages at the street- and eye-view level. The methodology is metrics based and scalable which provides a data driven assessment of heat-related vulnerability. The findings of this study first contribute to sustainable development by developing a method to identify geographical areas or neighbourhoods that require heat mitigation; and enforce policies improving tree shade on routes, as a heat adaptation strategy, which will lead to increasing active travel and produce significant health benefits for residents. The approach can be also used to guide post COVID-19 city planning and design.

A large epidemic of a necrotic skin infection in the Democratic Republic of São Tomé and Principe: An epidemiological study

INTRODUCTION: In 2016-18, the Democratic Republic of São Tomé and Príncipe suffered a necrotic skin infection epidemic. METHODS: A surveillance system was established after increased hospitalisations for this infection. Microbiology results were available for samples analysed in December 2016 and March 2017 using whole genome sequencing and metagenomics. Negative binomial regression was used to study the association of weather conditions with monthly case counts in a time-series analysis. RESULTS: From October 2016 to October 2018, the epidemic cumulative attack rate was 1.5%. The first peak lasted 5 months, accounting for one-third of total cases. We could not conclusively identify the aetiological agent(s) due to the country’s lack of microbiology capacity. Increased relative humidity was associated with increased monthly cases (incidence rate ratio (IRR) 1.05, 95% CI 1.02-1.09), and higher precipitation in the previous month with a higher number of cases in the following month (months with 0-49 mm rainfall compared with months with 50-149 mm and ?150 mm: IRR 1.44, 95 % CI 1.13-1.78 and 1.50, 95% CI 1.12-1.99, respectively). DISCUSSION: This epidemic was favoured by increased relative humidity and precipitation, potentially contributing to community-based transmission of ubiquitous bacterial strains superinfecting skin wounds. FUNDING: World Health Organization Regional Office for Africa, Ministry of Health.

A modified physiological strain index for workplace-based assessment of heat strain experienced by agricultural workers

BACKGROUND: As global temperatures rise, increasing numbers of individuals will work in hot environments. Interventions to protect their health are critical, as are reliable methods to measure the physiological strain experienced from heat exposure. The physiological strain index (PSI) is a measure of heat strain that relies on heart rate and core temperature but is challenging to calculate in a real-world occupational setting. METHODS: We modified the PSI for use in field settings where resting temperature and heart rate are not available and used the modified physiological strain index (mPSI) to describe risk factors for high heat strain (mPSI???7) experienced by agricultural workers in Florida during the summers of 2015 through 2017. mPSI was calculated for 221 workers, yielding 465 days of data. RESULTS: A higher heat index (??=?0.185; 95% CI: 0.064, 0.307) and higher levels of physical activity at work (0.033; 95% CI: 0.017, 0.050) were associated with a higher maximum mPSI. More years worked in US agriculture (-0.041; 95% CI: -0.061, -0.020) were protective against a higher maximum mPSI. Out of 23 workdays that a participant experienced a maximum mPSI???7,?22 were also classified as strained by at least one other measure of high heat strain (core temperature [Tc] >38.5°C, sustained heart rate >(180?-?age), and mean heart rate?>?115?bpm). CONCLUSIONS: This study provides critical information on risk factors for elevated heat strain for agricultural workers and suggests a practical approach for using PSI in field-based settings.

A rapid fine-scale approach to modelling urban bioclimatic conditions

Surface characteristics play a vital role in simulations for urban bioclimatic conditions. Changing relationships and distribution patterns of sealed and vegetated surfaces as well as building geometry across different scales in urban environments influence surface temperatures. Cities comprise different urban forms, which, depending on their surface characteristics, enhance the heating process, increasing the emergence of urban heat islands (UHIs). Detecting priority areas to introduce multi-beneficial climate change adaptation measures is set to be a key task for the cities long-term strategies to improve climatic conditions across different urban structures and scales. We introduce a simple and fast spatial modelling approach to carry out fine-scale simulations for land surface temperature (LST), mean radiant temperature (MRT) and Universal Thermal Climate Index (UTCI) in a 2D environment. Capabilities of our modelling approach are demonstrated in evaluating urban thermal comfort in the alpine city of Innsbruck, the capital of Tyrol in western Austria. Results show a major contrast between sealed and vegetated surfaces reflected in the distributional patterns and values of LST, MRT and UTCI, correlating with the appearance and frequency of specific surface classes. We found the Sky View Factor to have a substantial impact on calculations for bioclimatic conditions and see high-albedo surfaces decrease LST but increase the apparent temperature (MRT and UTCI values) effecting human thermal comfort. Furthermore, MRT and UTCI are more sensitive to changes in emissivity values, whereas LST is more sensitive to changes in Bowen Ratio values. Application of our modelling approach can be used to identify priority areas and maximise multi-functionality of climate change adaptation measures, to support urban planning processes for heat mitigation and the implementation of policy suggestions to achieve sustainable development goals and other political objectives.

A simple technique for the traditional method to estimate mean radiant temperature

The mean radiant temperature (T(mrt)) is the most important meteorological factor influencing human thermal comfort in urban areas. Numerous methods have been implemented for estimating T(mrt) using measured radiometer or thermometer data, and exhibit different levels of accuracy. This study presents a simple technique based on the traditional method (T(mrt_TM)) to estimate T(mrt) by utilizing measured radiation data from the radiometers. The estimated T(mrt) values from the six-directional method (T(mrt_SM)) and two black globe thermometer methods (T(mrt_BG) and T(mrt_BGv)) at two stations (sky view factor 0.69 and 0.94) in Jeju, Republic of Korea, for 8 days (5 sunny days, 3 (semi-) cloudy days) in spring and summer were used to validate the T(mrt_TM). The results showed that the mean differences between T(mrt_TM) and T(mrt_SM) were within the required accuracy for comfort in ISO 7726 (±?2 ?) on sunny days and were reduced to 0.1-0.3 ? in high T(mrt) conditions such as clear summer days. The T(mrt_BG) in most sunny and semi-cloudy days and T(mrt_BGv) on all days resulted in large mean differences from the T(mrt_TM) that exceeded the required accuracy for thermal stress in ISO 7726 (±?5 ?). Therefore, both black globe thermometer methods should be used carefully when estimating T(mrt), especially during sunny days. The correlations between T(mrt_TM) and T(mrt_SM) were highly significant, 0.93 on all days (p?=?0.01). The newly developed regression equations between T(mrt_TM) and T(mrt_SM) could reduce mean differences within 0.5 ? for all days, and their r(2) values exceeded 0.87. Therefore, the simple T(mrt_TM) technique can be used for T(mrt) estimation in human thermal comfort studies.

A spatiotemporal reconstruction of daily ambient temperature using satellite data in the Megalopolis of Central Mexico from 2003 to 2019

While weather stations generally capture near-surface ambient air temperature (Ta) at a high temporal resolution to calculate daily values (i.e., daily minimum, mean, and maximum Ta), their fixed locations can limit their spatial coverage and resolution even in densely populated urban areas. As a result, data from weather stations alone may be inadequate for Ta-related epidemiology particularly when the stations are not located in the areas of interest for human exposure assessment. To address this limitation in the Megalopolis of Central Mexico (MCM), we developed the first spatiotemporally resolved hybrid satellite-based land use regression Ta model for the region, home to nearly 30 million people and includes Mexico City and seven more metropolitan areas. Our model predicted daily minimum, mean, and maximum Ta for the years 2003-2019. We used data from 120 weather stations and Land Surface Temperature (LST) data from NASA’s MODIS instruments on the Aqua and Terra satellites on a 1?×?1 km grid. We generated a satellite-hybrid mixed-effects model for each year, regressing Ta measurements against land use terms, day-specific random intercepts, and fixed and random LST slopes. We assessed model performance using 10-fold cross-validation at withheld stations. Across all years, the root-mean-square error ranged from 0.92 to 1.92?K and the R (2) ranged from .78 to .95. To demonstrate the utility of our model for health research, we evaluated the total number of days in the year 2010 when residents ?65?years old were exposed to Ta extremes (above 30°C or below 5°C). Our model provides much needed high-quality Ta estimates for epidemiology studies in the MCM region.

A temperature binning approach for multi-sector climate impact analysis

Characterizing the future risks of climate change is a key goal of climate impacts analysis. Temperature binning provides a framework for analyzing sector-specific impacts by degree of warming as an alternative or complement to traditional scenario-based approaches in order to improve communication of results, comparability between studies, and flexibility to facilitate scenario analysis. In this study, we estimate damages for nine climate impact sectors within the contiguous United States (US) using downscaled climate projections from six global climate models, at integer degrees of US national warming. Each sector is analyzed based on socioeconomic conditions for both the beginning and the end of the century. The potential for adaptive measures to decrease damages is also demonstrated for select sectors; differences in damages across adaptation response scenarios within some sectors can be as much as an order of magnitude. Estimated national damages from these sectors based on a reactive adaptation assumption and 2010 socioeconomic conditions range from $600 million annually per degree of national warming for winter recreation to $8 billion annually per degree of national warming for labor impacts. Results are also estimated per degree of global temperature change and for 2090 socioeconomic conditions.

A vast increase in heat exposure in the 21st century is driven by global warming and urban population growth

Over the 21st century, human-caused climate change is projected to vastly increase the occurrence of severe heat, which has deleterious health, economic, and societal impacts. Over the same period, global human population is expected to increase from 7.8 to 10.9 billion, placing more people in harm’s way. Here, we combine projections of sustained heat from climate models with spatially explicit population projection scenarios. We find that: (1) by 2090, high climate change and population growth scenarios show a -5-, -10-, and -100-1000-fold increase in the population exposed to a mean hottest monthly temperature of 30 degrees C, 35 degrees C, and 40 degrees C, respectively; (2) globally, population growth, warming, and their interaction, are the major drivers for the increase in exposure at milder, harsher, and extreme, temperatures, respectively; and (3) differences between population growth scenarios show that policy can potentially reduce the level of increase in exposure by up to 70%. Based on our analyses, the major driver for the increased heat exposure is the dangerous combination between global warming and population growth in already-warm cities in regions like Africa, India, and the Middle East.

Active women demonstrate acute autonomic and hemodynamic shifts following exercise in heat and humidity: A pilot study

The purpose of this study was to assess autonomic and hemodynamic recovery in women who performed moderate-intensity exercise in heat. Seven women (31.7 ± 7.6 years, 67.5 ± 4.4 kg, 25.7 ± 5.6% Fat, 43.9 ± 5.1 mL/kg/min) completed two identical bouts of graded treadmill walking (~60% VO(2)peak). One bout was hot (37.5 ± 1.4°C, 46.5 ± 4.6% relative humidity (RH)), and the other was moderate (20.7 ± 1.1°C, 29.9 ± 4.1% RH). For 24 h before and one h after each bout, participants had heart rate variability monitored. After each exercise bout HR and BP were measured during 30 min of supine recovery and 10 min of orthostatic challenge. HF power and RMSSD were lower and LF power and LF:HF ratio greater following exercise in the heat and remained different from the moderate condition for 30 min (p < 0.05). During supine recovery, heat exposure led to higher HR (p = 0.002) and lower DBP (p = 0.016). SBP (p = 0.037) and DBP (p = 0.008) were both lower after 10 min of supine recovery following hot exercise than after moderate temperature. Average response did not reveal orthostatic hypotension despite heat causing a higher HR (p = 0.011) and lower SBP (p = 0.026) after 10 min of orthostatic exposure. Trained women exhibit an autonomic shift toward sympathetic dominance for at least 30 min after exercise in heat. Women who exercise in heat should be wary of an exacerbated HR response after exercise and low recovery blood pressures.

Air pollution and hospitalization in megacities: Empirical evidence from Pakistan

Air pollution has become a threat to human health in urban settlements, ultimately leading to negative impacts on overall economic system as well. Already developed nations and still developing countries both are at the risk of air pollution globally. In this scenario, this work aims to investigate the associations of asthma (AS) and acute upper respiratory infection (ARI) patients with satellite-based aerosol optical depth (AOD) and meteorological factors, i.e., relative humidity (RH), temperature (TEMP), and wind speed (WS). We applied second-generation unit root tests to provide empirical evidence. Two sets of unit root tests confirmed mix order of integration, and the other Westerlund co-integration test further showed strong linkages between estimated variables. Fully modified ordinary least square (FMOLS) and dynamic ordinary least square (DOLS) tests were applied, only to explore that TEMP and WS lower the number of AS and ARI patients, but RH and AOD increase the number of patients. Therefore, in accordance with these findings, our study provides some important policy instruments to improve the health status in megacities of Pakistan.

Acute effects of ambient air pollution on clinic visits of college students for upper respiratory tract infection in Wuhan, China

Ambient air pollutants have been linked to adverse health outcomes, but evidence is still relatively rare in college students. Upper respiratory tract infection (URTI) is a common disease of respiratory system among college students. In this study, we assess the acute effect of air pollution on clinic visits of college students for URTI in Wuhan, China. Data on clinic visits due to URTI were collected from Wuhan University Hospital, meteorological factors (including daily temperature and relative humidity) provided by Wuhan Meteorological Bureau, and air pollutants by Wuhan Environmental Protection Bureau. In the present study, generalized additive model with a quasi-Poisson distribution link function was used to examine the association between ambient air pollutants (fine particulate matter (PM(2.5)), particulate matter (PM(10)), sulfur dioxide (SO(2)), nitrogen dioxide (NO(2)), and ozone (O(3))) and the daily number of clinic visits of college students for URTI at Wuhan University Hospital in Wuhan, China. In the meantime, the model was adjusted for the confounding effects of long-term trends, seasonality, day of the week, public holidays, vacation, and meteorological factors. The best degrees of free in model were selected based on AIC (Akaike Information Criteria). The effect modification by gender was also examined. A total of 44,499 cases with principal diagnosis of URTI were included from January 1, 2016, to December 31, 2018. In single-pollutant models, the largest increment of URTI visits were found at lag 0 day in single-day lags, and the effect values in cumulative lags were greater than those in single-day lags. PM(2.5) (0.74% (95%CI: 0.05, 1.44)) at lag 0 day, PM(10) (0.61% (95%CI: 0.12, 1.11)) and O(3) (1.01% (95%CI: 0.24, 1.79)) at lag 0-1 days, and SO(2) (9.18% (95%CI: 3.27, 15.42)) and NO(2) (3.40% (95% CI:1.64, 5.19)) at lag 0-3 days were observed to be strongly and significantly associated with clinic visits for URTI. PM(10) and NO(2) were almost still significantly associated with URTI after controlling for the other pollutants in our two-pollutant models, where the effect value of SO(2) after inclusion of O(3) appeared to be the largest and the effects of NO(2) were also obvious compared with the other pollutants. Subgroups analysis demonstrated that males were more vulnerable to PM(10) and O(3), while females seemed more vulnerable to exposure to SO(2) and NO(2). This study implied that short-term exposure to ambient air pollution was associated with increased risk of URTI among college students at Wuhan University Hospital in Wuhan, China. And gaseous pollutants had more negative health impact than solid pollutants. SO(2) and NO(2) were the major air pollutants affecting the daily number of clinic visits on URTI, to which females seemed more vulnerable than males.

Air quality and meteorological patterns of an early spring heatwave event in an industrialized area of Attica, Greece

Heatwaves-excessively hot ambient conditions that are considered a serious threat to human health-are often associated with poor air quality. The aim of this study was to examine the impact of an early heatwave episode in an industrialized plain in the eastern Mediterranean region (Thriasio, Greece) on human thermal discomfort and urban air quality. The heatwave occurred in mid (15-20) May 2020, shortly after some of the restrictions that were improsed to halt the spread of coronavirus disease 2019 (COVID-19) in Greece were lifted (on 4 May). The discomfort index (DI) and the daily air quality index (DAQI) were calculated on an hourly basis throughout spring 2020 (March, April, May) using data from two stations that measure meteorological parameters and air pollutant concentrations in the Thriasio Plain. The analysis showed that the air temperature increased during 7-17 May to levels that were more than 10 °C above the monthly average value (25.8 °C). The maximum measured air temperature was 38 °C (on 17 May). The results showed a high level of thermal discomfort. The DI exceeded the threshold of 24 °C for several hours during 13-20 May. Increased air pollution levels were also identified. The average DAQI was estimated as 0.83?±?0.1 and 1.14?±?0.2 at two monitoring stations in the region of interest during the heatwave. Particulate matter (diameter < 10 ?m) appeared to contribute significantly to the poor air quality. Significant correlations between the air temperature, DI, and AQSI were also identified.

Work adaptations insufficient to address growing heat risk for US agricultural workers

The over one million agricultural workers in the United States (U.S.) are amongst the populations most vulnerable to the health impacts of extreme heat. Climate change will further increase this vulnerability. Here we estimate the magnitude and spatial patterns of the growing heat exposure and health risk faced by U.S. crop workers and assess the effect of workplace adaptations on mitigating that risk. We find that the average number of days spent working in unsafe conditions will double by mid-century, and, without mitigation, triple by the end of it. Increases in rest time and the availability of climate-controlled recovery areas can eliminate this risk but could affect farm productivity, farm worker earnings, and/or labor costs much more than alternative measures. Safeguarding the health and well-being of U.S. crop workers will therefore require systemic change beyond the worker and workplace level.

Years of life lost and mortality due to heat and cold in the three largest English cities

There is a well-established relationship between temperature and mortality, with older individuals being most at risk in high-income settings. This raises the question of the degree to which lives are being shortened by exposure to heat or cold. Years of life lost (YLL) take into account population life expectancy and age at which mortality occurs. However, YLL are rarely used as an outcome-metric in studies of temperature-related mortality. This represents an important gap in knowledge; to better comprehend potential impacts of temperature in the context of climate change and an ageing population, it is important to understand the relationship between temperature and YLL, and also whether the risks of temperature related mortality and YLL have changed over recent years. Gridded temperature data derived from observations, and mortality data were provided by the UK Met Office and the Office for National Statistics (ONS), respectively. We derived YLL for each death using sex-specific yearly life expectancy from ONS English-national lifetables. We undertook an ecological time-series regression analysis, using a distributed-lag double-threshold model, to estimate the relationship between daily mean temperature and daily YLL and mortality between 1996 and 2013 in Greater London, the West Midlands including Birmingham, and Greater Manchester. Temperature-thresholds, as determined by model best fit, were set at the 91st (for heat-effects) and 35th (for cold-effects) percentiles of the mean temperature distribution. Secondly, we analysed whether there had been any changes in heat and cold related risk of YLL and mortality over time. Heat-effects (lag 0-2 days) were greatest in London, where for each 1 °C above the heat-threshold the risk of mortality increased by 3.9% (CI 3.5%, 4.3%) and YLL increased by 3.0% (2.5%, 3.5%). Between 1996 and 2013, the proportion of total deaths and YLL attributable to heat in London were 0.50% and 0.40% respectively. Cold-effects (lag 0-27 days) were greatest in the West Midlands, where for each 1 °C below the cold-threshold, risk of mortality increased by 3.1% (2.4%, 3.7%) and YLL also increased by 3.1% (2.2%, 3.9%). The proportion of deaths and YLL attributable to cold in the West Midlands were 3.3% and 3.2% respectively. We found no evidence of decreasing susceptibility to heat and cold over time. The addition of life expectancy information into calculations of temperature-related risk and mortality burdens for English cities is novel. We demonstrate that although older individuals are at greatest risk of temperature-related mortality, heat and cold still make a significant contribution to the YLL due to premature death.

Years of life lost and mortality risk attributable to non-optimum temperature in Shenzhen: A time-series study

To assess YLL and mortality burden attributable to non-optimum ambient temperature, we collected mortality and environmental data from June 1, 2012 to December 30, 2017 in Shenzhen. We applied distributed lag nonlinear models with 21 days of lag to examine temperature-YLL and temperature-mortality associations, and calculated the attributable fractions of YLL and deaths for non-optimum temperature, including four subranges, mild cold, mild heat, extreme cold, and extreme heat. Cold and heat were distinguished by the optimum temperature, and each was separated into extreme and mild by cutoffs at 2.5th (12.2?°C) and 97.5th (30.4?°C) temperature percentile further. The optimum temperature was defined as the temperature that had minimum effect on YLL or mortality risk. The optimum temperature for non-accidental YLL was 24.5?°C, and for mortality it was 25.4?°C. Except for the population older than 65 years, the optimum temperature was generally lower in the YLL model than the mortality model. Of the total 61,576 non-accidental deaths and 1,350,835.7 YLL within the study period, 17.28% (95% empirical CI 9.42-25.14%) of YLL and 17.27% (12.70-21.34%) of mortality were attributable to non-optimum temperature. More YLL was caused by cold (10.14%, 3.94-16.36%) than by heat (7.14%, 0.47-13.88%). Mild cold (12.2-24.5?°C) was responsible for far more YLL (8.78%, 3.00-14.61%) than extreme cold (3.5-12.2?°C). As for cardiovascular deaths, only the fractions attributable to overall and cold temperature were significant, with mild cold contributing the largest fraction to YLL (16.31%, 6.85-25.82%) and mortality (16.08%, 9.77-21.22%). Most of the temperature-related YLL and mortality was attributable to mild but non-optimum weather, especially mild cold, while the YLL model implied a more prominent heat effect on premature death. Our findings can supply additional evidence from multiperspectives for health planners to define priorities and make targeted policies for mitigating the burden of adverse temperatures.

Years of life lost with premature death due to ambient temperatures in a southwest plateau region of China: A cause-specific and individual characteristics stratified mortality study

We aimed to explore whether there were cold and heat temperature adverse effects on years of life lost (YLL) for non-accidental mortality in Yuxi, a southwest plateau region of China. From data for 89,467 non-accidental deaths over an 8-year study period, we used a general linear regression model combined with a distributed lag non-linear model to assess the burden of disease non-accidental mortality due to ambient temperature with the YLL indicator. We estimated the mean YLL change per 1 °C decrease from the 25th to 1st percentile mean temperature as the cold effect and per 1 °C increase from the 75th to 99th percentile as the heat effect. The 95% empirical confidence intervals (eCIs) were calculated by using a bootstrap simulation method. The exposure-response curve between average temperature and YLL was U-shaped. The cold effect peaked at the first day after exposure and disappeared at 2 weeks, and the heat effect only lasted for the first 3 days. A per 1 °C decrease from the 25th to 1st mean temperature percentile was associated with an increase of 15.6 (95% eCI: 2.4, 22.9) in YLL for non-accidental diseases, and the cumulative effects due to cold were stronger in contrast to that attributed by heat. Cold temperature had a significant impact on YLL among the subgroups, with higher YLL in cardiovascular disease, stroke, males, Han nationality, married, and those engaged in agriculture than their corresponding categories. An increasing death burden of non-accidental in Yuxi of China due to cold temperature was demonstrated, and the association was also modified by specific disease causes and individual features.

Zika virus transmission by Brazilian Aedes aegypti and Aedes albopictus is virus dose and temperature-dependent

BACKGROUND: Zika virus (ZIKV) emerged in the Pacific Ocean and subsequently caused a dramatic Pan-American epidemic after its first appearance in the Northeast region of Brazil in 2015. The virus is transmitted by Aedes mosquitoes. We evaluated the role of temperature and infectious doses of ZIKV in vector competence of Brazilian populations of Ae. aegypti and Ae. albopictus. METHODOLOGY/PRINCIPAL FINDINGS: Two Ae. aegypti (Rio de Janeiro and Natal) and two Ae. albopictus (Rio de Janeiro and Manaus) populations were orally challenged with five viral doses (102 to 106 PFU / ml) of a ZIKV strain (Asian genotype) isolated in Northeastern Brazil, and incubated for 14 and 21 days in temperatures mimicking the spring-summer (28°C) and winter-autumn (22°C) mean values in Brazil. Detection of viral particles in the body, head and saliva samples was done by plaque assays in cell culture for determining the infection, dissemination and transmission rates, respectively. Compared with 28°C, at 22°C, transmission rates were significantly lower for both Ae. aegypti populations, and Ae. albopictus were not able to transmit the virus. Ae. albopictus showed low transmission rates even when challenged with the highest viral dose, while both Ae. aegypti populations presented higher of infection, dissemination and transmission rates than Ae. albopictus. Ae. aegypti showed higher transmission efficiency when taking virus doses of 105 and 106 PFU/mL following incubation at 28°C; both Ae. aegypti and Ae. albopictus were unable to transmit ZIKV with virus doses of 102 and 103 PFU/mL, regardless the incubation temperature. CONCLUSIONS/SIGNIFICANCE: The ingested viral dose and incubation temperature were significant predictors of the proportion of mosquito’s biting becoming infectious. Ae. aegypti and Ae. albopictus have the ability to transmit ZIKV when incubated at 28°C. However Brazilian populations of Ae. aegypti exhibit a much higher transmission potential for ZIKV than Ae. albopictus regardless the combination of infection dose and incubation temperature.

A 21-year retrospective analysis of environmental impacts on paediatric acute gastroenteritis in an affluent setting

BACKGROUND: Extreme weather events happen more frequently along with global warming and they constitute a challenge for public health preparedness. For example, many investigations showed heavy rainfall was associated with an increased risk of acute gastroenteritis. In this study, we examined the associations between different meteorological factors and paediatric acute gastroenteritis in an affluent setting in China controlling for pollutant effects. METHODS: Aggregated total weekly number of intestinal infection-related hospital admissions, and meteorological and air pollution data during 1998-2018 in Hong Kong were collected and analysed by a combination of quasi-Poisson generalized additive model and distributed lag nonlinear model. Study population was restricted to children under 5 years of age at the time of admission. RESULTS: While heavy rainfall did not exhibit a statistically significant association with the risk of paediatric admission due to intestinal infections, low temperature and humidity extremes (both relative humidity and vapour pressure) did. Compared with the temperature at which the lowest risk was detected (i.e. 22.5 °C), the risk was 6.4% higher (95% confidence interval: 0.0% to 13.0% at 15.1 °C (i.e. the 5th percentile)). We also found the risk of paediatric admission was statistically significantly associated with an increase in the number of extreme cold days in a week over the study period. CONCLUSION: Cold condition may have greater impact on disease transmission through increased stability and infectivity of enteric viruses in affluent settings like Hong Kong and thus resulted in an increased risk for paediatric acute gastroenteritis. On the contrary, an insignificant impact from heavy rainfall and high temperature may indicate a minor effect on disease transmission through bacterial growth in contaminated food and water. With the identified impacts of weather factors, extreme weather events are likely to distort the prevalence and seasonal pattern of diarrhoeal diseases in the future.

A gendered lens to self-evaluated and actual climate change knowledge

Gender-sensitive and gender-responsive approaches are important to increase adaptive capacity in a changing climate given the gendered nature of exposure levels to climate shocks. Nonetheless, knowledge and perception of the public to climate change influence behavioural intention to adapt. While literature is replete with public perception and adaptation strategies to climate change, there is a dearth of information exploring the influence of gender on climate change knowledge. This paper employs quantitative and qualitative data to examine the influence of gender on knowledge in climate trends in Beitbridge Rural District, Zimbabwe, using questionnaire surveys. This survey tool consisted of demographic questions on gender and other variables. Our results indicate that compared to women, actual knowledge of trends in selected variables of climate change was higher among men. Furthermore, male respondents had higher self-evaluated knowledge on climate trends compared to female participants. We recommend gender disaggregated data in the vulnerability and adaptation assessments and the education, training and awareness sections of the National Communications to the United Nations Convention on Climate Change.

Weather and aggressive behavior among patients in psychiatric hospitals – An exploratory study

Background: The number of meteoropaths, or people negatively affected by weather conditions, is rising dramatically. Meteoropathy is developing rapidly due to ever poorer adaptations of people to changes in weather conditions. Strong weather stimuli may not only exacerbate symptoms in people with diseases of the cardiovascular and respiratory systems but may also induce aggressive behavior. Researchers have shown that patients suffering from mental illnesses are most vulnerable to changes in the weather and postulate a connection between the seasons and aggressive behavior. Methods: The goal of the study was to analyze the relationship between coercive measures and weather factors. The researchers identified what meteorological conditions prevailed on days with an increased number of incidents of aggressive behavior leading to the use of physical coercion towards patients in a psychiatric hospital in Poland. In order to determine the impact of weather conditions on the frequency at which physical coercion measures were used, the hospital’s “coercion sheets” from 1 January 2015 to 31 March 2017 were analyzed. The data were correlated with meteorological data. In order to determine the relationship between the occurrence of specific weather conditions and the number of coercive interventions (N), researchers utilized Spearman’s rank correlation analysis together with two-dimensional scatter diagrams (dependency models), multiple regression, stepwise regression, frequencies, and conditional probability (%). Results: Lower barometric pressure and foehn wind increased aggressive behavior in patients that led to coercive measures. For temperature (positive correlation) and humidity (negative correlation), there was a poor but statistically significant correlation. Conclusions: Monitoring weather conditions might be useful in predicting and preventing aggression by patients who are susceptible to weather changes.

Weather fluctuations may have an impact on stroke occurrence in a society: A population-based cohort study

BACKGROUND: Stroke has been found to have a seasonally varying incidence; blood pressure, one of its risk factors, is influenced by humidity and temperature. The relationship between the incidence of stroke and meteorological parameters remains controversial. OBJECTIVE: We investigated whether meteorological conditions are significant risk factors for stroke, focusing on the fluctuation of weather elements that triggers the onset of stroke. METHODS: We collected ambulance transportation data recorded by emergency personnel from Gifu Prefecture. We included cases where the cause of the transportation was stroke and excluded cases of trauma. We combined these data with meteorological data as well as data on average temperature, average air pressure, and humidity provided publicly by the Japan Meteorological Agency. Our target period was from January 2012 to December 2016. RESULTS: In the 5-year target period, there were 5,501 occurrences of ambulance transportation due to stroke. A seasonal tendency was confirmed, since ambulance transportation for stroke occurred more frequently at low temperatures (p < 0.001). Temperature (odds ratio: 0.91; p < 0.001) and humidity change (odds ratio: 1.50; p = 0.016) were identified as risk factors for ambulance transportation due to stroke. An increase in temperature incurs a lower risk than a decrease (odds ratio: 0.58; p = 0.09), although there is no statistically significant difference. CONCLUSIONS: Meteorological effects on the frequency of ambulance transportation due to stroke were studied. A lower temperature and radical humidity change were identified as risk factors for ambulance transportation due to stroke, and a decrease in temperature was also associated. We speculate on the possibilities of using meteorological data to optimize the assignment of limited medical resources in medical economics.

Weather regimes and patterns associated with temperature-related excess mortality in the UK: A pathway to sub-seasonal risk forecasting

Non-optimal temperatures, both warm and cold, are associated with enhanced mortality in the United Kingdom (UK). In this study we demonstrate a pathway to sub-seasonal and medium range forecasting of temperature-related mortality risk by quantifying the impact of large-scale weather regimes and synoptic scale weather patterns on temperature-associated excess deaths in 12 regions across the UK. We find a clear dominance of the NAO- regime in leading to high wintertime excess mortality across all regions. In summer, we note that cold spells lead to comparable cumulative excess mortality as moderate hot days, with cold days accounting for 11 (London) to 100% (Northern Ireland) of the summer days with the highest 5% cumulative excess mortality. However, exposure to high temperatures is typically associated with an immediate but short lived spike in mortality, while the impact of cold weather tends to be more delayed and spread out over a longer period. Weather patterns with a Scandinavian high component are most likely to be associated with summer hot extremes, while a strong zonal jet stream weather pattern which rarely occurs in summer is most likely to be associated with summer cold spells.

Wet bulb globe temperature and recorded occupational injury rates among sugarcane harvesters in southwest Guatemala

As global temperatures continue to rise it is imperative to understand the adverse effects this will pose to workers laboring outdoors. The purpose of this study was to investigate the relationship between increases in wet bulb globe temperature (WBGT) and risk of occupational injury or dehydration among agricultural workers. We used data collected by an agribusiness in Southwest Guatemala over the course of four harvest seasons and Poisson generalized linear modelling for this analysis. Our analyses suggest a 3% increase in recorded injury risk with each degree increase in daily average WBGT above 30 °C (95% CI: -6%, 14%). Additionally, these data suggest that the relationship between WBGT and injury risk is non-linear with an additional 4% acceleration in risk for every degree increase in WBGT above 30 °C (95% CI: 0%, 8%). No relationship was found between daily average WBGT and risk of dehydration. Our results indicate that agricultural workers are at an increased risk of occupational injury in humid and hot environments and that businesses need to plan and adapt to increasing global temperatures by implementing and evaluating effective occupational safety and health programs to protect the health, safety, and well-being of their workers.

Which heatwave measure has higher predictive power to prevent health risks related to heat: EHF or GATO IV? – Evidence from modelling Lisbon mortality data from 1980 to 2016

To prevent the risk associated with heat-related health, several countries and institutions have built heat-health warning systems (HHWS). An HHWS is designed to alert the general public and decision-makers about the danger of high temperature by triggering a series of actions that avoid adverse health outcomes. The comparison of the various HHWS is complicated because there is no universal quantitative definition to predict and define a heatwave. The slightest variability at the threshold of definition the heatwave can trigger considerable differences in the action plan, health service demand and the time the population at risk must prepare. The choice of the index influences the number of days of heatwaves and its characteristics, such as severity. Estimating the risk of mortality associated with heatwave is variable according to the indexes, and the selection of the threshold is essential to prevent the burdens of heat on public health. The aim is the comparison between two metrics to know, which has higher predictive power to prevent health risks related to heat. On the one hand, a new way of defining heatwaves that have generated high consensus worldwide – the Excess Heat Factor (EHF); on the other hand, the Generalized Accumulated Thermal Overload (GATO IV) – an opportunity to improve the existing Lisbon heatwaves surveillance system. Daily mortalities and air temperatures from 1980 to 2016 in Lisbon with both indexes are modelled using Generalized Linear Models, with the calculation of the predictive power of the models using ROC curves for two levels of mortality severity. It is concluded that for total mortality, both indexes were statistically significant. Though, for daily mortality in individuals with 65 years or older with all diseases of the circulatory and respiratory system, when considering both indexes together, GATO IV was the only index significantly predicting the impact of heatwaves on mortality. GATO IV metric seems to have the best statistical properties. Nevertheless, EHF also stands out as a good indicator to predict heat-related mortality in Lisbon.

Which urban design parameters provide climate-proof cities? An application of the urban cooling InVEST model in the city of Milan comparing historical planning morphologies

Urban Heat Island (UHI) effect has become one of the most significant hazards for cities, presenting a challenge for dense anthropic areas affected by climate change with enormous consequences for health and human wellbeing. Ecosystem Services (ES) are increasingly attracting attention for their use in setting urban design parameters and criteria which can be deployed in planning and projects, also considering the Cooling Capacity (CC) useful to mitigate heatwaves effect and high temperatures. The paper investigates how ES assessment could support the definition of urban design parameters influencing the CC of cities. We modelled CC in the city of Milan using InVEST software identifying the urban design criteria that most influence temperature and associated urban comfort. This empirical test was conducted by selecting different urban districts built during four main historical periods which correspond to four urban planning approaches, namely: 1) Cited Berutiana; 2) Clan Moderna; 3) Gina anni ’60-’70 and 4) Cited Contemporanea. Results demonstrate how different urban planning approaches have shaped the design of the city in terms of green areas, permeability, built-up footprint, and tree density and cover while influencing the CC of the system.

Urban heat island mitigation in Singapore: Evaluation using WRF/multilayer urban canopy model and local climate zones

Mitigation and adaption measures must be designed strategically by urban planners, designers, and decision-makers to reduce urban heat island (UHI) related risks. We employed the Weather Research and Forecasting (WRF) model to assess UHI mitigation scenarios for the tropical city of Singapore during April 2016, including two heat wave periods. The local climate zones for Singapore were used as the land use/land cover data to account for the intra-urban variability. The simulations show that the canopy layer UHI intensity in Singapore can reach up to 5 degrees C in compact areas during nighttime. The results reveal that city-scale deployment of cool roofs can provide an overall reduction of 1.3 degrees C in the near-surface daytime air temperature in large lowrise areas. Increasing the thermostat set temperature to 25 degrees C from 21 degrees C in city-wide buildings can potentially reduce the air temperature due to less (similar to 20%) waste heat discharge from airconditioning units. A densification scenario considering an increase from approximately 7 841 people/km(2) (2016) to 9040-9,600 people/km(2) (2030) under the current climate leads to air temperature increase of 1.4 degrees C, which demonstrates the importance of limiting the densification of less compact areas in maintaining thermal comfort in the future.

Urban heat islets: Street segments, land surface temperatures, and medical emergencies during heat advisories

Objectives. To examine the relationships among environmental characteristics, temperature, and health outcomes during heat advisories at the geographic scale of street segments.Methods. We combined multiple data sets from Boston, Massachusetts, including remotely sensed measures of temperature and associated environmental characteristics (e.g., canopy cover), 911 dispatches for medical emergencies, daily weather conditions, and demographic and physical context from the American Community Survey and City of Boston Property Assessments. We used multilevel models to analyze the distribution of land surface temperature and elevated vulnerability during heat advisories across streets and neighborhoods.Results. A substantial proportion of variation in land surface temperature existed between streets within census tracts (38%), explained by canopy, impervious surface, and albedo. Streets with higher land surface temperature had a greater likelihood of medical emergencies during heat advisories relative to the frequency of medical emergencies during non-heat advisory periods. There was no independent effect of the average land surface temperature of the census tract.Conclusions. The relationships among environmental characteristics, temperature, and health outcomes operate at the spatial scale of the street segment, calling for more geographically precise analysis and intervention. (Am J Public Health. Published online ahead of print May 21, 2020: e1-e8. doi:10.2105/AJPH.2020.305636).

Urban heat stress and human health in Bangkok, Thailand

Heat stress has been recognized as one of the consequences of climate change in urban areas. Its adverse effects on the urban population range from economy, social, environment, and human health. With the increasing urbanization and economic development in cities, heat stress is expected to worsen. This particular study aims to achieve two objectives: (1) to understand the determinants of heat stress, especially the roles of the urban environment in exacerbating the heat stress, and (2) to explore the effects of heat stress to human health using self-reported health assessment. We employed a cross-sectional study using a survey questionnaire from 505 respondents living in the urban area of Bangkok, Thailand. We found that socioeconomic conditions of the individual and urban environment were significant determinants of urban heat stress. Low-income urban populations living in high-density areas with less green open space were more likely to experience heat stress. We also found that heat stress significantly affects human health. Those who reported a higher level of heat stress were more likely to have adverse health and well-being outcomes. The findings suggest that the increased risk of heat stress represents a major problem in the Bangkok, Thailand. It is necessary to address heat stress in adaptation policy and measures at the city levels amid the continued increase of global temperature and climate change.

Use of meteorological parameters for forecasting scarlet fever morbidity in Tianjin, Northern China

The scarlet fever incidence has increased drastically in recent years in China. However, the long-term relationship between climate variation and scarlet fever remains contradictory, and an early detection system is lacking. In this study, we aim to explore the potential long-term effects of variations in monthly climatic parameters on scarlet fever and to develop an early scarlet-fever detection tool. Data comprising monthly scarlet fever cases and monthly average climatic variables from 2004 to 2017 were retrieved from the Notifiable Infectious Disease Surveillance System and National Meteorological Science Center, respectively. We used a negative binomial multivariable regression to assess the long-term impacts of weather parameters on scarlet fever and then built a novel forecasting technique by integrating an autoregressive distributed lag (ARDL) method with a nonlinear autoregressive neural network (NARNN) based on the significant meteorological drivers. Scarlet fever was a seasonal disease that predominantly peaked in spring and winter. The regression results indicated that a 1 °C increment in the monthly average temperature and a 1-h increment in the monthly aggregate sunshine hours were associated with 17.578% (95% CI 7.674 to 28.393%) and 0.529% (95% CI 0.035 to 1.025%) increases in scarlet fever cases, respectively; a 1-hPa increase in the average atmospheric pressure at a 1-month lag was associated with 12.996% (95% CI 9.972 to 15.919%) decrements in scarlet fever cases. Based on the model evaluation criteria, the best-performing basic and combined approaches were ARDL(1,0,0,1) and ARDL(1,0,0,1)-NARNN(5, 22), respectively, and this hybrid approach comprised smaller performance measures in both the training and testing stages than those of the basic model. Climate variability has a significant long-term influence on scarlet fever. The ARDL-NARNN technique with the incorporation of meteorological drivers can be used to forecast the future epidemic trends of scarlet fever. These findings may be of great help for the prevention and control of scarlet fever.

Using a qualitative phenomenological approach to inform the etiology and prevention of occupational heat-related injuries in Australia

Epidemiological evidence has shown an association between exposure to high temperatures and occupational injuries, an issue gaining importance with environmental change. The aim of this study was to better understand contributing risk factors and preventive actions based on personal experiences. Interviews were conducted with 21 workers from five Australian states using a critical phenomenological approach to capture the lived experiences of participants, whilst exploring contextual factors that surround these experiences. Two case studies are presented: a cerebrovascular injury and injuries among seasonal horticulture workers. Other accounts of heat-related injuries and heat stress are also presented. Risk factors were classified as individual, interpersonal and organizational. In terms of prevention, participants recommended greater awareness of heat risks and peer-support for co-workers. Adding value to current evidence, we have provided new insights into the etiology of the health consequences of workplace heat exposure with workers identifying a range of influencing factors, prevention measures and adaptation strategies. Underpinning the importance of these are future climate change scenarios, suggesting that extended hot seasons will lead to increasing numbers of workers at risk of heat-stress and associated occupational injuries.

Using climate to explain and predict West Nile Virus Risk in Nebraska

We used monthly precipitation and temperature data to give early warning of years with higher West Nile Virus (WNV) risk in Nebraska. We used generalized additive models with a negative binomial distribution and smoothing curves to identify combinations of extremes and timing that had the most influence, experimenting with all combinations of temperature and drought data, lagged by 12, 18, 24, 30, and 36 months. We fit models on data from 2002 through 2011, used Akaike’s Information Criterion (AIC) to select the best-fitting model, and used 2012 as out-of-sample data for prediction, and repeated this process for each successive year, ending with fitting models on 2002-2017 data and using 2018 for out-of-sample prediction. We found that warm temperatures and a dry year preceded by a wet year were the strongest predictors of cases of WNV. Our models did significantly better than random chance and better than an annual persistence naïve model at predicting which counties would have cases. Exploring different scenarios, the model predicted that without drought, there would have been 26% fewer cases of WNV in Nebraska through 2018; without warm temperatures, 29% fewer; and with neither drought nor warmth, 45% fewer. This method for assessing the influence of different combinations of extremes at different time intervals is likely applicable to diseases other than West Nile, and to other annual outcome variables such as crop yield.

Using detection and attribution to quantify how climate change is affecting health

The question of whether, how, and to what extent climate change is affecting health is central to many climate and health studies. We describe a set of formal methods, termed detection and attribution, used by climatologists to determine whether a climate trend or extreme event has changed and to estimate the extent to which climate change influenced that change. We discuss events where changing weather patterns were attributed to climate change and extend these analyses to include health impacts from heat waves in 2018 and 2019 in Europe and Japan, and we show how such impact attribution could be applied to melting ice roads in the Arctic. Documenting the causal chain from emissions of greenhouse gases to observed human health outcomes is important input into risk assessments that prioritize health system preparedness and response interventions and into financial investments and communication about potential risk to policy makers and to the public.

Using green to cool the grey: Modelling the cooling effect of green spaces with a high spatial resolution

The urban heat island effect creates warmer and drier conditions in urban areas than in their surrounding rural areas. This effect is predicted to be exacerbated in the future, under a climate change scenario. One way to mitigate this effect is to use the urban green infrastructure as a way to promote the cooling island effect. In this study we aimed to model, with a high spatial resolution, how Mediterranean urban parks can be maximized to be used as cooling islands, by answering the following questions: i) which factors influence the cooling effect and when?; ii) what type of green spaces contributes the most to the cooling effect?; iii) what is the cooling distance of influence? To answer these questions we established a sampling design where temperature and relative humidity were measured in different seasons, in locations with contrasting characteristics of green and grey cover. We were able to model the effect of green and grey spaces in the cooling island effect and build high spatial resolution predicting maps for temperature and relative humidity. Our study showed that even green spaces with reduced areas can regulate microclimate, alleviating temperature by 1-3 °C and increasing moisture by 2-8%, on average. Green spaces with a higher density of trees were more efficient in delivering the cooling effect. The morphology, aspect and level of exposure of grey surfaces to the solar radiation were also important features included in the models. Green spaces influenced temperature and relative humidity up to 60 m away from the parks’ limits, whereas grey areas influenced in a much lesser range, from 5 m up to 10 m. These models can now be used by citizens and stakeholders for green spaces management and human well-being impact assessment.

Using the theory of planned behavior to identify key beliefs underlying heat adaptation behaviors in elderly populations

As the literature on heat tolerance suggests that the elderly are generally more heat-intolerant and suffer more from the substantial impacts of excessive heat on human health, exacerbated by their higher rate of chronic diseases, it is important to learn how to better protect this vulnerable population. Moreover, many studies have shown that, despite their vulnerability, the elderly do not necessarily perceive themselves as being at risk or see heat waves as a danger to their health. This lower risk perception could hinder their adoption of adaptive behavior. Thus, using the theory of planned behavior and the health belief model, this study aimed at developing a more thorough understanding of what motivates older people from the province of Quebec, Canada, to adopt pro-adaptive behaviors to protect themselves from the heat, to better predict and explain their self-reported heat adaptation behaviors, and to identify their most important beliefs. In this quantitative study, a telephone sample of 1002 persons was used to explore the decision-making process of seniors in a way that led us to illustrate specific variables that could be targeted for awareness raising. All three variables of the theory of planned behavior (i.e., attitude, perceived social pressure, and perceived behavioral control) had a statistically significant impact on intention to adapt, while intention itself was linked to adoption of adaptive behaviors. This shows that increasing elderly people’s intention to adapt can have a positive impact on their adaptation to heat, which could help prevent this at-risk population from suffering the dangerous effects of heat waves.

Viability of public spaces in cities under increasing heat: A transdisciplinary approach

Cities are particularly sensitive to the effects of climate change, causing an increasing incidence of heat waves. Extreme temperatures can impair the use of public spaces in cities, as heat stress endangers human well-being and health. Identifying suitable adaptation measures to maintain the full functionality of public spaces requires a multidimensional approach, accounting for interrelated scientific, social, and practical aspects. As one result we introduce an inter- and transdisciplinary concept that addresses the challenge of adapting public spaces to climate change. Additionally we present a pilot study from Heidelberg, Germany, where a new, sustainable urban quarter experienced more pronounced heat stress than the historic city centre in the hot and dry summer of 2018. The study shows the suitability of our approach to identify appropriate heat adaptation measures. Solar potential modelling and mental map surveys proved to be particularly effective methods. We find that adaptation measures generate synergy effects by improving both climatic and social conditions.

Visceral leishmaniasis in northwest China from 2004 to 2018: A spatio-temporal analysis

BACKGROUND: Although visceral leishmaniasis (VL), a disease caused by parasites, is controlled in most provinces in China, it is still a serious public health problem and remains fundamentally uncontrolled in some northwest provinces and autonomous regions. The objective of this study is to explore the spatial and temporal characteristics of VL in Sichuan Province, Gansu Province and Xinjiang Uygur Autonomous Region in China from 2004 to 2018 and to identify the risk areas for VL transmission. METHODS: Spatiotemporal models were applied to explore the spatio-temporal distribution characteristics of VL and the association between VL and meteorological factors in western China from 2004 to 2018. Geographic information of patients from the National Diseases Reporting Information System operated by the Chinese Center for Disease Control and Prevention was defined according to the address code from the surveillance data. RESULTS: During our study period, nearly 90% of cases occurred in some counties in three western regions (Sichuan Province, Gansu Province and Xinjiang Uygur Autonomous Region), and a significant spatial clustering pattern was observed. With our spatiotemporal model, the transmission risk, autoregressive risk and epidemic risk of these counties during our study period were also well predicted. The number of VL cases in three regions of western China concentrated on a few of counties. VL in Kashi Prefecture, Xinjiang Uygur Autonomous Region is still serious prevalent, and integrated control measures must be taken in different endemic areas. CONCLUSIONS: The number of VL cases in three regions of western China concentrated on a few of counties. VL in Kashi Prefecture, Xinjiang Uygur Autonomous Region is still serious prevalent, and integrated control measures must be taken in different endemic areas. Our findings will strengthen the VL control programme in China.

Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050

In the aftermath of the 2015 pandemic of Zika virus, concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we used a previously established temperature-dependent transmission model for Zika virus (ZIKV) to project climate change impacts on transmission suitability risk by mid-century (a generation into the future). Based on these model predictions, in the worst-case scenario, over 1.3 billion new people could face suitable transmission temperatures for ZIKV by 2050. The next generation will face substantially increased ZIKV transmission temperature suitability in North America and Europe, where naïve populations might be particularly vulnerable. Mitigating climate change even to moderate emissions scenarios could significantly reduce global expansion of climates suitable for ZIKV transmission, potentially protecting around 200 million people. Given these suitability risk projections, we suggest an increased priority on research establishing the immune history of vulnerable populations, modeling when and where the next ZIKV outbreak might occur, evaluating the efficacy of conventional and novel intervention measures, and increasing surveillance efforts to prevent further expansion of ZIKV.

Time changes in the spectrum of urinary stone composition: A role for climate variations?

BACKGROUND: An increase of the frequency of uric acid urinary stones compared to calcium-containing ones has been recently described. This study was aimed at assessing the frequency of different types of urinary stones in the population of northern Italy in the period 2016-18 compared to 2001-2003. METHODS: Analyses by infrared spectroscopy of 1007 stones endoscopically removed at two institutions in the area of Milan (Northern Italy) were retrospectively considered. Stones were classified as calcium oxalate monohydrate (COM) and dihydrate (COD), mixed uric acid/calcium oxalate (UC); uric acid (UA), struvite (ST); apatite (CAP); mixed calcium oxalate / apatite (CAPOX); others. The patients were divided into two groups: 2001-2003 and 2016-2018. The average temperature values of the region over the two time periods were obtained by the national statistical institute. RESULTS: The average age of the 2001-2003 group (45.8+/-?15.4?years) was significantly lower than the average age of the 2016-18 group (57.9+/-?14.8) (0.000). M / F ratio was similar in the two groups: 119 / 69 (1,0.58) in 2001-2003 and 527 / 292 (1,0.55) in 2016-18 (p =?0.862). COM stones tended to more frequent in 2016-18 group than in 2001-03. COD stones were significantly more frequent in 2001-03 than in 2016-18. ST stone frequency was increased from 2001 to 03 to 2016-18. No increase of uric acid containing stones was observed in 2016-18. Results were confirmed after adjustment by age. Averages annual regional temperatures increased from 14?°C to 15.4?°C during the two observation periods. CONCLUSIONS: No increase of UA stones was observed, probably due to the limited impact of the global warming in our temperate climate.

Time series analysis of meteorological factors and air pollutants and their association with hospital admissions for acute myocardial infarction in Korea

BACKGROUND: We assessed the association between multiple meteorological factors and air pollutants and the number of acute myocardial infarction (AMI) cases using a multi-step process. METHODS: Daily AMI hospitalizations matched with 16 meteorological factors and air pollutants in 7 metropolitan provinces of the Republic of Korea from 2002 to 2017 were analyzed. We chose the best fit model after conducting the Granger causality (GC) test and examined the daily lag time effect on the orthogonalized impulse response functions. To define dose-response relationships, we performed a time series analysis using multiple generalized additive lag models based on seasons. RESULTS: A total of 196,762 cases of AMI in patients older than 20 years admitted for hospitalization were identified. The distribution of meteorological factors and air pollutants showed characteristics of a temperate climate. The GC test revealed a complex interaction between meteorological factors, including air pollutants, and AMI. The final selected factors were NO(2) and temperature; these increased the incidence of AMI on lag day 4 during summer (NO(2): population-attributable fraction [PAF], 3.9%; 95% confidence interval [CI], 3.6-4.0; mean temperature: PAF, 3.3%; 95% CI, 2.7-3.9). CONCLUSIONS: This multi-step time series analysis found that average temperature and NO(2) are the most important factors impacting AMI hospitalizations, specifically during summer. Based on the model, we were able to visualize the effect-time association of meteorological factors and air pollutants and AMI.

Time series analysis of total and direct associations between high temperatures and preterm births in Detroit, Michigan

OBJECTIVES: Preterm births (PTBs) represent significant health risks, and several studies have found associations between high outdoor temperatures and PTB. We estimated both the total and natural direct effects (independent of particulate matter, ozone and nitrogen dioxide air pollutants) of the prior 2-day mean apparent temperature (AT) on PTB. We evaluated effect modification by maternal age, race, education, smoking status and prenatal care. DESIGN AND SETTING: We obtained birth records and meteorological data for the Detroit, Michigan, USA area, for the warm months (May to September), 1991 to 2001. We used a time series Poisson regression with splines of AT, wind speed, solar radiation and citywide average precipitation to estimate total effects. To accommodate multiple mediators and exposure-mediator interactions, AT inverse odds weights, predicted by meteorological and air pollutant covariates, were added in a subsequent model to estimate direct effects. RESULTS: At 24.9°C relative to 18.6°C, 10.6% (95% CI: 3.8% to 17.2%) of PTBs were attributable to the total effects of AT, and 10.4% (95% CI: 2.2% to 17.5%) to direct effects. Relative excess risks of interaction indicated that the risk of PTB with increasing temperature above 18.6°C was significantly lower among black mothers and higher among mothers less than 19, older than 30, with late or no prenatal care and who smoked. CONCLUSION: This additional evidence of a direct association between high temperature and PTB may motivate public health interventions to reduce extreme heat exposures among pregnant women, particularly among those who may have enhanced vulnerability.

Time-lagged inverse-distance weighting for air temperature analysis in an equatorial urban area (Guayaquil, Ecuador)

It is well known that sudden variations of air temperature have the potential to cause severe impacts on human health. Therefore, it becomes necessary to provide information capable of quantifying the severity of the problem, considering that the continuous increase of temperature due to global warming and urban development will cause more intense effects in heavily populated areas. Due to its geographical location and local characteristics, Ecuador, a country located on the western coast of South America, is characterized by a high vulnerability to climatic extremes. The present research develops an evaluation of urban climate change effects through the analysis of extreme temperature indices using four meteorological stations situated in the city of Guayaquil (southwest Ecuador). Since the available data are not adequate for extreme temperature indices criteria, it was necessary to employ an infilling method for times series in an innovative way that can be applicable at the small scale. Thus, a cross-correlation-enhanced inverse distance weighting (CC-IDW) method was proposed. The method entails a spatial interpolation based on data of urban stations situated outside of Guayaquil by taking into account cross-correlation among times series at precise lags that leads to an improvement in the way of estimating the missing values. Subsequently, a homogeneity test, data quality control and the calculation of extreme temperature indices chosen from those proposed by the World Meteorological Organization (WMO) were implemented. The results show that there is a general tendency of warming with quite homogenous temperatures for all considered stations. However, it should be recognized that the climate pattern of this region is strongly modulated by the El Nino Southern Oscillation (ENSO) cycle. Only for two extreme indices: the highest maximum temperature (TXx) and the warm days (TX90p), are the resulting trend co-efficients statistically significant. The study suggests a deteriorated climatic condition due to heat stress that warrants further study using the available database for the city of Guayaquil.

Tomorrow’s disasters – Embedding foresight principles into disaster risk assessment and treatment

Disaster risk is a complex, uncertain and evolving threat to society which changes based on broad drivers of hazard, exposure and vulnerability such as population, economic and climatic change, along with new technologies and social preferences. It also evolves as a function of decisions of public policy and public/private investment which alters future risk profiles. These factors however are often not captured within disaster risk assessments and explicitly excluded from the UN General Assembly definition of a disaster risk assessment which focuses on the current state of risk. This means that 1) we cannot adequately capture changes in risk and risk assessments are out of date as soon as published but also 2) we cannot show the benefit of proactive risk treatments in our risk assessments. This paper therefore outlines a generic, scale-neutral, framework for integrating foresight – thinking about the future – into risk assessment methodologies. This is demonstrated by its application to a disaster risk assessment of heatwave risk in Tasmania, Australia, and shows how risk changes across three future scenarios and what proactive treatments could be possible mitigating the identified drivers of future risk.

Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23°C and 26°C

The temperature-dependence of many important mosquito-borne diseases has never been quantified. These relationships are critical for understanding current distributions and predicting future shifts from climate change. We used trait-based models to characterize temperature-dependent transmission of 10 vector-pathogen pairs of mosquitoes (Culex pipiens, Cx. quinquefascsiatus, Cx. tarsalis, and others) and viruses (West Nile, Eastern and Western Equine Encephalitis, St. Louis Encephalitis, Sindbis, and Rift Valley Fever viruses), most with substantial transmission in temperate regions. Transmission is optimized at intermediate temperatures (23-26°C) and often has wider thermal breadths (due to cooler lower thermal limits) compared to pathogens with predominately tropical distributions (in previous studies). The incidence of human West Nile virus cases across US counties responded unimodally to average summer temperature and peaked at 24°C, matching model-predicted optima (24-25°C). Climate warming will likely shift transmission of these diseases, increasing it in cooler locations while decreasing it in warmer locations.

Two-year monitoring of tick abundance and influencing factors in an urban area (city of Hanover, Germany)

Ticks may transmit a variety of human and animal pathogens. Prevalence of Borrelia spp., Rickettsia spp. and Anaplasma phagocytophilum in ticks has been monitored in the city of Hanover, Germany, since 2005. However, to determine the infection risk for humans and animals, not only pathogen prevalence, but also tick abundance and seasonality need to be taken into account. Therefore, the aim of this study was to investigate tick abundance at ten different collection sites in the city of Hanover, Germany. Collection of questing ticks was performed by the flagging method in the first and second half of each month during the tick season (April-October) in 2017 and 2018. At each 200 m² collection site, one of four 50 m² fields was sampled per visit on a rotational basis, resulting in 100 m² sampled per month. In addition, data on weather conditions, near-ground temperature, relative humidity and vegetation composition were noted at each collection event. In 2017, a total of 1770 ticks were collected, while 1866 ticks were collected in 2018. Ixodes ricinus was the most prevalent species (97.0 % of all ticks, 98.0 % of nymphs, 91.6 % of adults) followed by I. inopinatus (2.3 % of all ticks, 1.1 % of nymphs, 8.0 % of adults), I. frontalis (0.6 % of all ticks, 0.6 % of nymphs, 0.3 % of adults) and I. hexagonus (0.03 % of all ticks, 0.03 % of nymphs, 0.0 % of adults). Using generalized linear mixed modeling, density of I. ricinus and I. inopinatus in 2017 was significantly higher than in 2018. Regarding different landscape types, ticks were significantly more abundant in mixed forests than in parks, with more than 50 ticks/100 m² on average in both years. In urban parks, average tick density amounted to 15 ticks/100 m² in 2017 and 11 ticks/100 m² in 2018 and in broad-leaved forests average tick density was 13 and 18 ticks/100 m² in 2017 and 2018, respectively. Tick density showed a marked peak in June 2017 and in May 2018 at most sites, whereas a less pronounced peak was recognizable in September. Tick density varied considerably between collection sites. However, no statistically significant effect of (micro-)climatic variables, including near-ground temperature, relative humidity and saturation deficit, was found. Thus, further factors, such as the abundance of wildlife hosts, need to be considered in future studies to explain the differences between collection sites.

Understanding the spatio-temporal structure of recent heat waves over India

Major heat waves are occurring over India during the hottest months of May and June. Since the temperature extremes have major impact on human health and agriculture, better understanding the dynamics behind its evolution and propagation will help us to develop effective mitigation strategies. Understanding the spatio-temporal distribution, evolution and dynamics associated with heat waves is lacking over this region, due to the lack of high-resolution weather information. Here, we developed a high-resolution (4 x 4 km) dynamically downscaled hourly climate data for April to June during period of 2001-2016. The downscaled daily surface temperature is in good agreement with station observations, which is also in agreement with the observed features of temperature distribution during this period. Based on the Indian meteorological department definition, intensity of the heat waves is identified and re-classified into minor and severe category. The spatio-temporal distribution of each heat wave shows variation in its spatial coverage and also in its intensity. The distributions of heat waves are mainly over central India, North-West India and states such as Odisha, Andhra Pradesh and Telangana during pre-monsoon season. Results show that the increase in meridional heat transport is higher than the zonal advection component, and intensification of heat waves is linked with heat accumulation over a particular region associated with weakening of heat transport. The further amplification associated with depletion of soil moisture will result in the reduction in evaporative cooling, and it will further amplify the surface air temperature.

Unpacking the levels of household and individual climate change adaptation: Empirical evidence from Leeds, United Kingdom

This study set out to empirically determine the current state of individual and household adaptation to climate change in the United Kingdom and how policy makers can improve on it. The study utilized both qualitative and quantitative approaches (mixed method). For the quantitative aspect of the study, a quota-sampling technique was employed in the selection of 650 respondents for the study using a well-structured questionnaire. The quota representation was based on age and gender. Data were analyzed using descriptive statistics and binary logit regression. In addition, qualitative content/topic analysis of an in-depth interview of the respondents was employed in further analyzing why and how policy makers can improve climate change adaptation. Findings from the study indicate the dire need for continued government support in household and individual adaptation in Leeds, and this support should also be encouraged in other cities where government intervention is low. Interventions in the form of subsidies, direct regulations, and public awareness are needed. The implementation of these measures is expected to generate a wide range of additional benefits to most vulnerable groups who should be central to the rapidly expanding climate change research and policy agenda in the United Kingdom. SIGNIFICANCE STATEMENT Evidence shows that periods of extremely cold winters have been perceived to have increased in frequency in the United Kingdom over the years. This points to the need to uncover what policy and behavioral adaptation measures required to improve individual and household adaptation measures to cold spells in the United Kingdom. We utilized both qualitative and quantitative approaches (mixed method) to find out the drivers and hindrances to adaptation against cold spells, using Leeds as a case study. We found out that over 70% of the respondents adopted all of the short-term coping strategies, whereas 55% did not indicate any changes in their behavior in response to cold spells. Also, government support, the prospect of relocation (people’s intention of leaving their home), and the high technicalities in installing adaptation tools significantly affect individuals’ tendency to adopt long-term coping strategies.

The relationship between atmospheric circulation patterns and extreme temperature events in North America

Extreme temperature events (ETEs) pose a significant risk to society, especially vulnerable populations with limited access to shelter and water and those with pre-existing respiratory and cardiovascular ailments. This research examines the relationship of atmospheric circulation with a myriad of metrics related to ETEs to better understand which synoptic-scale circulations are likely to have negative health/thermal comfort outcomes. Daily sea-level pressure (SLP) and 500-hPa geopotential height (z500) data from the North American Regional Reanalysis (NARR) were used to identify circulation patterns over North America. Self-organizing maps were used to partition the variability in circulation patterns over five distinct domains covering North America for both variables. Daily 2-m temperature, 2-m dewpoint temperature, and 10-m wind data from the NARR were used to derive five major categories of ETEs based on 95th percentiles: temperature events, apparent temperature events, dew point events, and excess heat and excess cold temperature events. The relationship of circulation pattern frequencies (SOM nodes) leading up to ETEs were assessed using point biserial correlations, accounting for spatial and temporal autocorrelation. The results show that z500 has a stronger association with ETEs than does SLP. A great deal of spatial variability exists in the strength of relationship for many ETE variables with circulation patterns likely due to the local geographical influence (e.g., leeside mountain adiabatic warming and low-level maritime flow). Generally, high extremes are associated with broad ridging and anticyclonic flow and cold extremes are associated with high amplitude trough patterns with low-level flow originating from the continental interior. The use of self-organizing maps presents a unique way of examining the potential for human health risks related ETEs and may be an effective method for statistically downscaling climate model data to assess the potential for ETEs in the future.

The relationship between temperature and hip and wrist fracture incidence

INTRODUCTION: Predicting when fracture incidence will rise assists in healthcare planning and delivery of preventative strategies. The aim of this study was to investigate the relationship between temperature and the incidence of hip and wrist fractures. METHODS: Data for adults presenting to our unit with a hip or wrist fracture over a seven and eight-year period respectively were analysed. Incidence rates were calculated and compared with meteorological records. A Poisson regression model was used to quantify the relationship between temperature and fracture rate. RESULTS: During the respective study periods, 8,380 patients presented with wrist fractures and 5,279 patients were admitted with hip fractures. All women (?50 years: p<0.001; <50 years: p<0.001) and men aged ?50 years (p=0.046) demonstrated an increased wrist fracture rate with reduced temperature. Men aged <50 years also had an increased wrist fracture rate with increased temperature (p<0.001).The hip fracture rate was highest in women aged ?50 years but was not associated with temperature (p=0.22). In men aged ?50 years, there was a significant relationship between reduced temperature and increased fracture rate (p<0.001). CONCLUSIONS: Fragility fracture of the wrist is associated with temperature. Compared with an average summer, an additional 840 procedures are performed for wrist fractures during an average winter in our trust with an additional 798 bed days taken up at a cost of £3.2 million. The winter increase seen in male hip fracture incidence requires approximately 888 surgical procedures, with 18,026 bed days, and costs £7.1 million. Hip fracture incidence in older women is not related to temperature.

The relative role of climate variation and control interventions on Malaria elimination efforts in El Oro, Ecuador: A modeling study

Malaria is a vector-borne disease of significant public health concern. Despite widespread success of many elimination initiatives, elimination efforts in some regions of the world have stalled. Barriers to malaria elimination include climate and land use changes, such as warming temperatures and urbanization, which can alter mosquito habitats. Socioeconomic factors, such as political instability and regional migration, also threaten elimination goals. This is particularly relevant in areas where local elimination has been achieved and consequently surveillance and control efforts are dwindling and are no longer a priority. Understanding how environmental change, impacts malaria elimination has important practical implications for vector control and disease surveillance strategies. It is important to consider climate change when monitoring the threat of malaria resurgence due to socioeconomic influences. However, there is limited assessment of how the combination of climate variation, interventions and socioeconomic pressures influence long-term trends in malaria transmission and elimination efforts. In this study, we used Bayesian hierarchical mixed models and malaria case data for a 29-year period to disentangle the impacts of climate variation and malaria control efforts on malaria risk in the Ecuadorian province of El Oro, which achieved local elimination in 2011. We found shifting patterns of malaria between rural and urban areas, with a relative increase ofPlasmodium vivaxin urbanized areas. Minimum temperature was an important driver of malaria seasonality and the association between warmer minimum temperatures and malaria incidence was greater forPlasmodium falciparumcompared toP. vivaxmalaria. There was considerable heterogeneity in the impact of three chemical vector control measures on bothP. falciparumandP. vivaxmalaria. We found statistically significant associations between two of the three measures [indoor residual spraying (IRS) and space spraying] and a reduction in malaria incidence, which varied between malaria type. We also found environmental suitability for malaria transmission is increasing in El Oro, which could limit future elimination efforts if malaria is allowed to re-establish. Our findings have important implications for understanding environmental obstacles to malaria elimination and highlights the importance of designing and sustaining elimination efforts in areas that remain vulnerable to resurgence.

The role of individual and small-area social and environmental factors on heat vulnerability to mortality within and outside of the home in Boston, MA

Climate change is resulting in heatwaves that are more frequent, severe, and longer lasting, which is projected to double-to-triple the heat-related mortality in Boston, MA if adequate climate change mitigation and adaptation strategies are not implemented. A case-only analysis was used to examine subject and small-area neighborhood characteristics that modified the association between hot days and mortality. Deaths of Boston, Massachusetts residents that occurred from 2000-2015 were analyzed in relation to the daily temperature and heat index during the warm season as part of the case-only analysis. The modification by small-area (census tract, CT) social, and environmental (natural and built) factors was assessed. At-home mortality on hot days was driven by both social and environmental factors, differentially across the City of Boston census tracts, with a greater proportion of low-to-no income individuals or those with limited English proficiency being more highly represented among those who died during the study period; but small-area built environment features, like street trees and enhanced energy efficiency, were able to reduce the relative odds of death within and outside the home. At temperatures below current local thresholds used for heat warnings and advisories, there was increased relative odds of death from substance abuse and assault-related altercations. Geographic weighted regression analyses were used to examine these relationships spatially within a subset of at-home deaths with high-resolution temperature and humidity data. This revealed spatially heterogeneous associations between at-home mortality and social and environmental vulnerability factors.

The role of maternal methylation in the association between prenatal meteorological conditions and neonatal H19/H19-DMR methylation

Meteorological conditions during pregnancy can affect birth outcome, which has been linked to the H19/H19-differentially methylated region (DMR). However, the detailed mechanisms underlying this association are unclear. This was investigated in the present study to provide epidemiological evidence for elucidating the pathogenesis of adverse birth outcomes. A total of 550 mother-newborn pairs were recruited in Zhengzhou, China from January 2010 to January 2012. Meteorological data including temperature (T), relative humidity (RH), and sunshine duration (SSD) were obtained from the China Meteorological Data Sharing Service System. Bisulfite sequencing PCR was performed to determine the methylation levels of H19/H19-DMR using genomic DNA extracted from maternal peripheral and umbilical cord blood. The results showed that H19-DMR methylation status in cord blood was positively associated with that in maternal blood. Neonatal H19-DMR methylation was negatively associated with T and RH during the first trimester and positively associated with these variables during the third trimester. There was a positive correlation between neonatal H19-DMR methylation and SSD during the second trimester and a negative correlation during the third trimester. Similar associations were observed between maternal H19-DMR methylation and prenatal meteorological conditions. We also observed significant interaction effects of maternal H19/H19-DMR methylation and most prenatal meteorological factors on neonatal methylation, and found that changes in the methylation status of maternal H19-DMR were responsible for the effects of prenatal meteorological conditions on neonatal methylation. In summary, neonatal H19-DMR methylation was significantly associated with prenatal meteorological conditions, which was modified and mediated by maternal H19-DMR methylation changes. These findings provide insights into the relationship between meteorological factors during pregnancy and adverse birth outcomes or disease susceptibility in offspring, and can serve as a reference for environmental policy-making.

The simultaneous effects of thermal stress and air pollution on body temperature of Tehran traffic officers

PURPOSE: Global warming and air pollution are among the most important problems all over the world. Considering the key role of traffic officers who saliently deal with traffic management and are in full, constant and direct exposure to thermal stress and air pollution index, this study aims to investigate the simultaneous effects of these factors on the body temperature of traffic officers in the main squares of Tehran. METHODS: This study was conducted among 119 traffic officers who were working in 29 squares of Tehran, located near the active pollutant’s stations during 2017. Samples were selected by the census method. Environmental parameters such as air temperature (dry and wet), radiation temperature, the level of air pollution in the main squares and characteristics of officers such as body temperature and the Wet-Bulb-Globe-Temperature (WBGT) index were evaluated. Data were analyzed through independent samples t-test and factorial ANOVA with a p value of p???0.05 in SPSS software. RESULTS: There was no significant relationship between air pollution and ear temperature, but there was a statistically significant difference between the wet-bulb temperature and the ear temperature (t?=?26.4, P?

The temporal characteristics of the lag-response relationship and related key time points between ambient temperature and hand, foot and mouth disease: A multicity study from mainland China

BACKGROUND: Previous studies have thoroughly elucidated the exposure-response relationship between ambient temperature and hand, foot, and mouth disease (HFMD), whereas very little concern has been to the lag-response relationship and related key time points. OBJECTIVES: We aimed to clarify the temporal characteristics of the lag-response relationship between ambient temperature and HFMD and how they may vary spatially. METHODS: We retrieved the daily time series of meteorological variables and HFMD counts for 143 cities in mainland China between 2009 and 2014. We estimated the city-specific lag-response curve between ambient temperature and HFMD and related key time points by applying common distributed lag nonlinear models (DLNM) and Monte Carlo simulation methods. Then, we pooled the city-specific estimates by performing a meta-regression with the city-specific characteristics as meta-predictors to explain the potential spatial heterogeneity. RESULTS: We found a robust lag pattern between temperature and HFMD for different levels of temperatures. The temporal change of risk obtained its maximum value on the current day but dropped sharply thereafter and then rebounded to a secondary peak, which implied the presence of a harvesting effect. By contrast, the estimation of key time points showed substantial heterogeneity, especially at high temperature (the I(2) statistics ranged from 47% to 80%). With one unit increase in the geographic index, the secondary peak would arrive 0.37 (0.02, 0.71) days later. With one unit increase in the economic index and climatic index, the duration time of the lag-response curve would be lengthened by 0.36 (0.1, 0.62) and 0.92 (0.54, 1.29) days, respectively. CONCLUSION: Our study examined the lag pattern and spatial heterogeneity of the lag-response relationship between temperature and HFMD. Those findings gave us new insights into the complex association and the related mechanisms between weather and HFMD and important information for weather-based disease early warning systems.

The three little houses: A comparative study of indoor and ambient temperatures in three low-cost housing types in Gauteng and Mpumalanga, South Africa

Low-cost houses make up the majority of the homes in townships (racially segregated areas which are usually underdeveloped) in South Africa and there has been limited research on the indoor temperatures experienced by residents of these homes. As a developing nation the price and availability of construction materials, often takes precedence over the potential thermal efficiency of the house. Occupants of low-cost houses are particularly vulnerable to climatic changes which may increase the likelihood of exposure to extreme temperatures in South Africa. This study focused on the relationship between indoor and ambient temperature in two study areas namely; Kathorus in Gauteng and Wakkerstroom in Mpumalanga. Three housing types were included in the study (government funded apartheid era houses, government funded post-apartheid houses and informal houses (shacks)). Temperature data loggers were installed in each home, in each area, from June 2017 to July 2018. Ambient temperature data were collected for the period June 2017 to July 2018. The houses studied were built with different materials which affect their thermal efficiency. The study also included semi-structured interviews where occupant’s perspectives on housing could be surveyed. Household temperatures in Kathorus and Wakkerstroom, both in the warmer and colder months fluctuated substantially throughout the day. There was an 8 °C, 9 °C and 14 °C fluctuations in daily indoor temperatures of apartheid-era, post-apartheid and shacks houses, and daily outdoor fluctuations of 5-15 °C, with higher fluctuations measured in Wakkerstroom. Generally, ambient and indoor temperatures were correlated but showed high variability. Indoor data for the winter months were less well correlated. Data showed that residents are subjected to extreme temperatures and these are expected to increase. The householder’s perceptions of thermal comfort were often not related to indoor temperature readings but to behavioural changes including the use of warm clothes and wood burning stoves. The study’s findings suggest that a majority of low-cost houses are thermally inefficient especially for those built in the post-apartheid era and shacks. With these houses showing a clear link between ambient and indoor temperature fluctuations. The occupants of these homes are poor and vulnerable to health risks which could be exacerbated by temperature fluctuations. Small changes such as installation of ceilings and use of insulation could make a large difference in these houses.

The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003-2017)

BACKGROUND: In Thailand, dengue fever is one of the most well-known public health problems. The objective of this study was to examine the epidemiology of dengue and determine the seasonal pattern of dengue and its associate to climate factors in Bangkok, Thailand, from 2003 to 2017. METHODS: The dengue cases in Bangkok were collected monthly during the study period. The time-series data were extracted into the trend, seasonal, and random components using the seasonal decomposition procedure based on loess. The Spearman correlation analysis and artificial neuron network (ANN) were used to determine the association between climate variables (humidity, temperature, and rainfall) and dengue cases in Bangkok. RESULTS: The seasonal-decomposition procedure showed that the seasonal component was weaker than the trend component for dengue cases during the study period. The Spearman correlation analysis showed that rainfall and humidity played a role in dengue transmission with correlation efficiency equal to 0.396 and 0.388, respectively. ANN showed that precipitation was the most crucial factor. The time series multivariate Poisson regression model revealed that increasing 1% of rainfall corresponded to an increase of 3.3% in the dengue cases in Bangkok. There were three models employed to forecast the dengue case, multivariate Poisson regression, ANN, and ARIMA. Each model displayed different accuracy, and multivariate Poisson regression was the most accurate approach in this study. CONCLUSION: This work demonstrates the significance of weather in dengue transmission in Bangkok and compares the accuracy of the different mathematical approaches to predict the dengue case. A single model may insufficient to forecast precisely a dengue outbreak, and climate factor may not only indicator of dengue transmissibility.

The trends of human dirofilariasis in Croatia: Yesterday – today – tomorrow

INTRODUCTION: Human dirofilariasis is a disease historically linked to the Mediterranean area. For the last few decades, however, Dirofilaria nematodes have been spreading, both in terms of prevalence and the geographical expansion in non-endemic areas. Currently, cases of human dirofilariasis are recorded in more than 40 countries worldwide. Croatia is considered an endemic area of the Adriatic basin. METHODS: In a nationwide investigation, new and previously published cases of human dirofilariasis in Croatia were analyzed. RESULTS: Since 1996, 30 cases of human dirofilariosis were reported in Croatia. A total of 14 (46,67%) cases were from the coastal and 16 (53,33%) from continental regions of the country. Based on anatomical location, 13 (43,33%) cases were subcutaneous, 12 (40%) were ocular and five (16,67%) occurred in the reproductive organs. In all 30 cases, Dirofilaria repens was identified as the causative agent. CONCLUSIONS: An increase in air temperature as climate change, changes in mosquito fauna, high prevalence of D. repens in dogs and limited use of chemoprophylaxis are possible risk factors for Dirofilaria infection in the Croatian population. Since reporting to epidemiological services is not mandatory in this country, the real number of human dirofilariasis cases is probably significantly higher than published. This emphasizes the need for mandatory reporting of human cases and surveillance of Dirofilaria infection in dogs and mosquitoes in Croatia, following the “One Health” concept.

The value of US urban tree cover for reducing heat-related health impacts and electricity consumption

High air temperatures are a public health threat, causing 1300 deaths annually in the United States (US) along with heat-related morbidity and increased electricity consumption for air-conditioning (AC). Increasing tree canopy cover has been proposed as one way to reduce urban air temperatures. Here, we assemble tree cover and developed land-cover information for 97 US cities, housing 59 million people, and use regression relationships to analyze how much current urban tree cover reduces summer (JJA) air temperatures and associated heat-related mortality, morbidity, and electricity consumption. We find that 78% of urban dwellers are in neighborhoods with less than 20% tree cover. Some 15.0 million people (25% of total) experience a reduction of 0.5-1.0 degrees C from tree cover, with another 7.9 million (13% of total) experiencing a reduction of greater than 1.0 degrees C. Current relationships between temperature and health outcomes imply that urban tree cover helps avoid 245-346 deaths annually. Heat-mortality relationships in the 1980s, when a smaller fraction of US households had AC, imply a greater role in the past for urban tree cover in avoiding heat-related mortality. As AC availability has increased, the value of tree cover for avoiding heat-related mortality has decreased, while the value of tree cover for reducing electricity consumption likely has increased. Currently, for the 97 cities studied, the total annual economic value of avoided mortality, morbidity, and electricity consumption is an estimated $1.3-2.9 billion, or $21-49 annually per capita. Applying our results to the entire US urban population, we estimate urban tree cover annually supplies heat-reduction services worth $5.3-12.1 billion.

Thermal comfort and cooling strategies in the Brazilian Amazon. An assessment of the concept of fuel poverty in tropical climates

Fuel poverty has increasingly been associated with thermal discomfort, health related issues and winter deaths in the Global North because it can force families to choose between food and a warmer environment. Juxtaposing the concept of fuel poverty in rural tropical areas of the Global South, it is likely that a similar pattern between fuel poverty and heat related illnesses can be found. A recent study shows that between 1.8 and 4.1 billion people, especially in India, Southeast Asia and Sub-Saharan Africa will need indoor cooling to avoid heat related health issues. This paper aims to address a blind spot in the literature on the links between fuel poverty, thermal comfort and cooling strategies in the Brazilian Amazon. This study draws from current definitions and indicators of fuel poverty in the Global North and juxtaposes it in the context of tropical areas to understand how fuel poverty affects human health, livelihood strategies and social justice in rural communities that live in hot climates. To do so, this paper uses qualitative methods and a conceptual framework to guide the analysis. I call the intersection between vernacular architecture and sustainable cooling practices ‘energy relief.

Thermal comfort and mortality in a dry region of Iran, Kerman; a 12-year time series analysis

This study was conducted in order to explore the effect of thermal comfort on all-cause mortality using three indices in different lag times, in a semi-arid to dry region of Iran. Three thermal comfort indices based on the energy balance of the human body including physiologically equivalent temperature (PET), predicted mean vote (PMV), and standard effective temperature (SET) were used to assess the effects of thermal comfort on mortality. Distributed lag non-linear models were used to assess the relation. The natural cubic spline was chosen as the basis function for the space of predictors and lags, with 4 degrees of freedom. All three indices showed the same pattern in general, but the relative risk for PMV values were more than the other indices in different lags. For all three indices, lag 0 had the highest relative risk of mortality in warm and hot indices. The relative risk for warm and hot values was more than cool and cold values in lag 0, and for the PMV index, it was larger than the two other indices. These results were different in lags 5 to 8, and the relative risks for cool and cold values were more than warm and hot values. This study showed that heat stress has a stronger and more immediate adverse effect on mortality than cold stress. Also, the elderly and females are more vulnerable than others. The most apparent effect was seen in lags 0-12.

Thermal thresholds heighten sensitivity of West Nile virus transmission to changing temperatures in coastal California

Temperature is widely known to influence the spatio-temporal dynamics of vector-borne disease transmission, particularly as temperatures vary across critical thermal thresholds. When temperature conditions exhibit such ‘transcritical variation’, abrupt spatial or temporal discontinuities may result, generating sharp geographical or seasonal boundaries in transmission. Here, we develop a spatio-temporal machine learning algorithm to examine the implications of transcritical variation for West Nile virus (WNV) transmission in the Los Angeles metropolitan area (LA). Analysing a large vector and WNV surveillance dataset spanning 2006-2016, we found that mean temperatures in the previous month strongly predicted the probability of WNV presence in pools of Culex quinquefasciatus mosquitoes, forming distinctive inhibitory (10.0-21.0°C) and favourable (22.7-30.2°C) mean temperature ranges that bound a narrow 1.7°C transitional zone (21-22.7°C). Temperatures during the most intense months of WNV transmission (August/September) were more strongly associated with infection probability in Cx. quinquefasciatus pools in coastal LA, where temperature variation more frequently traversed the narrow transitional temperature range compared to warmer inland locations. This contributed to a pronounced expansion in the geographical distribution of human cases near the coast during warmer-than-average periods. Our findings suggest that transcritical variation may influence the sensitivity of transmission to climate warming, and that especially vulnerable locations may occur where present climatic fluctuations traverse critical temperature thresholds.

The influence of climatic conditions on hospital admissions for asthma in children and adolescents living in Belo Horizonte, Minas Gerais, Brazil

Limited research exists on the influence of climatic conditions on the risk of hospital admission for asthma in Minas Gerais, Brazil. The objectives of this article are: a) to evaluate the influence of climatic conditions on hospital admissions for asthma and lower respiratory tract infections (LRTIs) among children and adolescents living in Belo Horizonte during the period 2002 to 2012 and identify epidemic peaks of admissions for asthma; b) to compare local seasonal patterns of admissions for asthma and LRTIs. Using hospital admission data stratified by aged group, regression analysis was performed to determine the relationship between the variables. Epidemic peaks were identified using an ARIMA model. There was an increase in admissions for asthma with an increase in relative humidity after rainy periods; admissions for bronchiolitis were associated with low levels of maximum temperature and rainfall. Rainy periods can lead to an increase in indoor and outdoor humidity, facilitating fungal proliferation, while cold periods can lead to an increase in the spread of viruses.

The influence of heat on daily police, medical, and fire dispatches in Boston, Massachusetts: Relative risk and time-series analyses

Objectives. To examine the impact of extreme heat on emergency services in Boston, MA.Methods. We conducted relative risk and time series analyses of 911 dispatches of the Boston Police Department (BPD), Boston Emergency Medical Services (BEMS), and Boston Fire Department (BFD) from November 2010 to April 2014 to assess the impact of extreme heat on emergency services.Results. During the warm season, there were 2% (95% confidence interval [CI]?=?0%, 5%) more BPD dispatches, 9% (95% CI?=?7%, 12%) more BEMS dispatches, and 10% (95% CI?=?5%, 15%) more BFD dispatches on days when the maximum temperature was 90°F or higher, which remained consistent when we considered multiple days of heat. A 10°F increase in daily maximum temperature, from 80° to 90°F, resulted in 1.016, 1.017, and 1.002 times the expected number of daily BPD, BEMS, and BFD dispatch calls, on average, after adjustment for other predictors.Conclusions. The burden of extreme heat on local emergency medical and police services may be agency-wide, and impacts on fire departments have not been previously documented.Public Health Implications. It is important to account for the societal burden of extreme heat impacts to most effectively inform climate change adaptation strategies and planning.

The influence of meteorological conditions on the Yellow Fever epidemic in Cadiz (Southern Spain) in 1800: A historical scientific controversy

A yellow fever epidemic occurred in Cadiz and other areas of southern Spain during the last months of 1800. An anonymous author attributed this disease to the contrast between the cold and rainy winter and spring, and the subsequent very hot summer. However, the physician J.M. Arejula published a report in 1806 where he refuted this conclusion after a detailed analysis of the meteorological conditions in the area. This controversy is a good example of the discussion about the relationships between meteorological conditions and public health. In this work, this “scientific” controversy is studied. Although the arguments of both authors were inspired by the neo-Hippocratic medical paradigm, the anonymous author put forth a simple cause effect hypothesis, while Arejula recognized the complexity of the problem, introducing the concept of “concause” to explain the confluence of environmental and contagious effects.

The influence of meteorological factors on the dynamic of Ambrosia artemisiifolia pollen in an invaded area

The aim of the present study was to analyse the effect of weather conditions on Ambrosia artemisiifolia air pollen concentrations in the highly invaded area of western Romania. The investigation of Ambrosia pollen concentrations was carried out for a period of ten years by means of the volumetric method. Ambrosia pollen concentrations had increasing trend over study period. The results of cluster analysis show that two main groups were identified: group A, with lower SPI and group B, with much higher SPI. The statistical correlation between pollen concentrations and meteorological factors was determined by Pearson’s test. The relationships between Ambrosia pollen concentrations and meteorological parameters, were further assessed using multiple linear regression techniques. The pollen emissions are affected by meteorological factors in the main pollen season. Our results suggest that the abundance of Ambrosia artemisiifolia in western Romania is massive. The Ambrosia pollen load of Timisoara is most important between 15 August – 15 September. Consequently, this is the most dangerous period of the year for allergic reactions. The investigation of Ambrosia pollen behaviour in the atmosphere is a compulsory step for measures to stop the spread and establishing control. Ambrosia pollen represents a major health problem and can be considered the main aero allergenic plant pollen in our region.

The influence of seasonal factors on the incidence of peritoneal dialysis-associated peritonitis

OBJECTIVES: To investigate the effects of climatic variables on peritoneal dialysis-associated peritonitis (PDAP) among patients receiving PD, such as seasonal variations in temperature and humidity. METHODS: A retrospective analysis was performed on PD patients, from 1 January 2011, to 31 December 2019. We evaluated the influence of seasonal factors on peritonitis rates and outcomes. RESULTS: Over the 9-year study period, 667 peritonitis episodes occurred, in 401 PD patients. Diarrhea-associated peritonitis occurred more frequently in summer compared with other seasons. Eating raw and cold food was identified as the primary cause of peritonitis in the summer. More peritonitis episodes occurred during summer. The peritonitis rate associated with gram-negative bacteria (p?=?0.050) during summer was higher than those in all other seasons. The gram-negative bacterial peritonitis rate was positively correlated with monthly mean temperature (r?=?0.504, p?<?0.01) and humidity (r?=?0.561, p?<?0.01). A similar trend was observed for Enterobacterial peritonitis (temperature: r?=?0.518, p?<?0.01; humidity: r?=?0.456, p?=?0.001). Logistic regression analysis showed that summer was a risk factor for peritonitis (p?=?0.041). Peritonitis prognosis during summer was significantly worse than those for all other seasons (p?=?0.037). CONCLUSIONS: Seasonal variations exist in the incidence of dialysis-associated peritonitis, with peak incidents caused by gram-negative bacteria in the summer. High average temperature and humidity are associated with significant increases in the gram-negative bacteria and Enterobacterial peritonitis rates. Peritonitis prognosis during summer is worse.

The influence of tree traits on urban ground surface shade cooling

The physical nature of the built urban environment gives rise to urban heat islands (UHI), making many cities frequently thermally uncomfortable in the summer, with potentially serious effects on human health. When climate change effects of higher summer temperatures and prolonged heatwaves are factored in, it is clear that adaptive measures are needed to ensure the liveability of cities. The shade provided by planting trees is one such adaptation measure. This study, in Bolzano, Italy, used a thermal camera to record the surface temperatures of three common urban surfaces – asphalt, porphyry, and grass – in the shade of 332 single tree crowns, of 85 different species, during the peak temperature period of summer days. By comparing with the temperature of adjacent unshaded ground, estimates of the degree of surface cooling were made. Measurements at three locations within the shadow revealed higher cooling in the centre and at the western edge. The cooling was related to a multitude of tree traits, of which Leaf Area Index estimate (LAIcept) and crown width were the most important. Median average cooling of 16.4, 12.9 and 8.5 degrees C was seen in the western edge of the tree shade for asphalt, porphyry and grass, respectively. Maximum temperatures were reduced by roughly 19 degrees C for all surface types. Coniferous trees were capable of providing high cooling, however, crown dimensions may limit the receiving surface area. Descriptive and predictive multiple linear regression models were able to predict cooling with some success from several of the predictor variables (LAIcept and gap fraction). Strategic planting of single trees in cities can have significant impacts on the absorption of solar radiation by ground surface materials thus reducing the heat storage that contributes to UHIs.

The interactive effects between Particulate Matter and heat waves on circulatory mortality in Fuzhou, China

The interactive effects between particulate matter (PM) and heat waves on circulatory mortality are under-researched in the context of global climate change. We aimed to investigate the interaction between heat waves and PM on circulatory mortality in Fuzhou, a city characterized by a humid subtropical climate and low level of air pollution in China. We collected data on deaths, pollutants, and meteorology in Fuzhou between January 2016 and December 2019. Generalized additive models were used to examine the effect of PM on circulatory mortality during the heat waves, and to explore the interaction between different PM levels and heat waves on the circulatory mortality. During heat waves, circulatory mortality was estimated to increase by 8.21% (95% confidence intervals (CI): 0.32-16.72) and 3.84% (95% CI: 0.28-7.54) per 10 ?g/m(3) increase of PM(2.5) and PM(10), respectively, compared to non-heat waves. Compared with low-level PM(2.5) concentration on non-heat waves layer, the high level of PM(2.5) concentration on heat waves layer has a significant effect on the cardiovascular mortality, and the effect value was 48.35% (95% CI: 6.37-106.89). Overall, we found some evidence to suggest that heat waves can significantly enhance the impact of PM on circulatory mortality.

The long-term effects of meteorological parameters on pertussis infections in Chongqing, China, 2004-2018

Evidence on the long-term influence of climatic variables on pertussis is limited. This study aims to explore the long-term quantitative relationship between weather variability and pertussis. Data on the monthly number of pertussis cases and weather parameters in Chongqing in the period of 2004-2018 were collected. Then, we used a negative binomial multivariable regression model and cointegration testing to examine the association of variations in monthly meteorological parameters and pertussis. Descriptive statistics exhibited that the pertussis incidence rose from 0.251 per 100,000 people in 2004 to 3.661 per 100,000 persons in 2018, and pertussis was a seasonal illness, peaked in spring and summer. The results from the regression model that allowed for the long-term trends, seasonality, autoregression, and delayed effects after correcting for overdispersion showed that a 1 hPa increment in the delayed one-month air pressure contributed to a 3.559% (95% CI 0.746-6.293%) reduction in the monthly number of pertussis cases; a 10 mm increment in the monthly aggregate precipitation, a 1 °C increment in the monthly average temperature, and a 1 m/s increment in the monthly average wind velocity resulted in 3.641% (95% CI 0.960-6.330%), 19.496% (95% CI 2.368-39.490%), and 3.812 (95% CI 1.243-11.690)-fold increases in the monthly number of pertussis cases, respectively. The roles of the mentioned weather parameters in the transmission of pertussis were also evidenced by a sensitivity analysis. The cointegration testing suggested a significant value among variables. Climatic factors, particularly monthly temperature, precipitation, air pressure, and wind velocity, play a role in the transmission of pertussis. This finding will be of great help in understanding the epidemic trends of pertussis in the future, and weather variability should be taken into account in the prevention and control of pertussis.

The modification effect of the diurnal temperature range on the exposure-response relationship between temperature and pediatric hand, foot and mouth disease

BACKGROUND: Growing evidence suggests that the diurnal temperature range (DTR) could modify the temperature-disease relationship for those environmentally-related infectious diseases. However, there is a lack of evidence on the hand, foot and mouth disease (HFMD). In this study, we thoroughly examined this hypothesis via a nationwide study. METHOD: We collected the daily time series of HFMD cases and meteorological factors of 143 cities in mainland China from 2009 to 2014. For each city, we calculated the arithmetic average of the meteorological factors as a proxy for the climatic differences. We then performed two-stage time series analyses for four different climatic regions. Specifically, a distributed lag nonlinear model was applied to estimate the temperature-HFMD relationship for each city, and then a multivariate meta-regression was implemented to examine whether the DTR could explain the potential heterogeneity as an effect modifier. In addition, we compared the modification effect of the DTR with those of other climatic factors. RESULT: We found a significant modification effect of DTR on the temperature-HFMD relationship in the moderate-temperature region. Besides, the modification effect was only observed at hot temperatures. Comparing the maximum temperature (32.2 °C) to the median temperature (11.9 °C), the risk ratio was 1.60 (1.33, 1.92) when DTR was in the 10th percentile (6.8 °C) and 0.81 (0.69, 0.96) when the DTR was in the 90th percentile (11.8 °C). By comparing DTR with other climatic variables, we found that the DTR had the best performance in improving the model fit (?QAIC= 10.1) and reducing the heterogeneity (?I(2) = 3.1%) in the multivariate meta-regression. CONCLUSION: Our findings verified that DTR can modify the temperature-HFMD relationship. Besides, our findings also implied that DTR could be used as a proxy variable to comprehensively reflect the modification effects of multiple climatic factors.

The modifying effects of heat and cold wave characteristics on cardiovascular mortality in 31 major Chinese cities

Cardiovascular disease is the most common cause of death globally. Examining the relationship between the extreme temperature events (e.g. heat and cold waves) and cardiovascular mortality has profound public significance. However, this evidence is scarce, particularly those from China. We collected daily data on cardiovascular mortality and meteorological conditions from 31 major Chinese cities during the maximum period of 2007-2013. A two-stage analysis was used to estimate the effects of heat and cold waves, and the potential effect modification of their characteristics (intensity, duration, and timing in season) on cardiovascular mortality. Firstly, a generalized quasi-Poisson regression combined with distributed lag nonlinear model was used to evaluate city-specific effects. Then, the meta-analysis was performed to pool effect estimates at the national scale. Overall, cardiovascular mortality risk increased by 19.03% (95%CI: 11.92%, 26.59%) during heat waves and 54.72% (95%CI: 21.20%, 97.51%) during cold waves. The effect estimates varied by the wave’s characteristics. In heat wave days, the cardiovascular mortality risks increased by 3.28% (95%CI: -0.06%, 6.73%) for every 1 degrees C increase in intensity, 2.84% (95%CI: 0.92%, 4.80%) for every 1-d more in duration and -0.07% (95%CI: -0.38%, 0.24%) for every 1-d late in the staring of heat wave; the corresponding estimates for cold wave were 1.82% (95%CI: -0.04%, 3.72%), 1.52% (95%CI: 0.60%, 2.44%) and -0.26% (95%CI: -0.67%, 0.16%). Increased susceptibility to heat and cold waves was observed among patients with ischemic heart disease, females, the elderly, and those with lower education level. And consistent vulnerable populations were found for the effects of changes in cold and heat wave’s characteristics. The findings have important implications for the development of early warning systems and plans in response to heat and cold waves, which may contribute to mitigating health threat to vulnerable populations.

The mortality risk and socioeconomic vulnerability associated with high and low temperature in Hong Kong

(1) Background: The adverse health effect associated with extreme temperature has been extensively reported in the current literature. Some also found that temperature effect may vary among the population with different socioeconomic status (SES), but found inconsistent results. Previous studies on the socioeconomic vulnerability of temperature effect were mainly achieved by multi-city or country analysis, but the large heterogeneity between cities may introduce additional bias to the estimation. The linkage between death registry and census in Hong Kong allows us to perform a city-wide analysis in which the study population shares virtually the same cultural, lifestyle and policy environment. This study aims to examine and compare the high and low temperature on morality in Hong Kong, a city with a subtropical climate and address a key research question of whether the extreme high and low temperature disproportionally affects population with lower SES. (2) Methods: Poisson-generalized additive models and distributed-lagged nonlinear models were used to examine the association between daily mortality and daily mean temperature between 2007-2015 with other meteorological and confounding factors controlled. Death registry was linked with small area census and area-level median household income was used as the proxy for socioeconomic status. (3) Results: 362,957 deaths during the study period were included in the analysis. The minimum mortality temperature was found to be 28.9 °C (82nd percentile). With a subtropical climate, the low temperature has a stronger effect than the high temperature on non-accidental, cardiovascular, respiratory and cancer deaths in Hong Kong. The hot effect was more pronounced in the first few days, while cold effect tended to last up to three weeks. Significant heat effect was only observed in the lower SES groups, whilst the extreme low temperature was associated with significantly higher mortality risk across all SES groups. The older population were susceptible to extreme temperature, especially for cold. (4) Conclusions: This study raised the concern of cold-related health impact in the subtropical region. Compared with high temperature, low temperature may be considered a universal hazard to the entire population in Hong Kong rather than only disproportionally affecting people with lower SES. Future public health policy should reconsider the strategy at both individual and community levels to reduce temperature-related mortality.

The mosquito, the virus, the climate: An unforeseen réunion in 2018

The 2018 outbreak of dengue in the French overseas department of Réunion was unprecedented in size and spread across the island. This research focuses on the cause of the outbreak, asserting that climate played a large role in the proliferation of the Aedes albopictus mosquitoes, which transmitted the disease, and led to the dengue outbreak in early 2018. A stage-structured model was run using observed temperature and rainfall data to simulate the life cycle and abundance of the Ae. albopictus mosquito. Further, the model was forced with bias-corrected subseasonal forecasts to determine if the event could have been forecast up to 4 weeks in advance. With unseasonably warm temperatures remaining above 25°C, along with large tropical-cyclone-related rainfall events accumulating 10-15 mm per event, the modeled Ae. albopictus mosquito abundance did not decrease during the second half of 2017, contrary to the normal behavior, likely contributing to the large dengue outbreak in early 2018. Although subseasonal forecasts of rainfall for the December-January period in Réunion are skillful up to 4 weeks in advance, the outbreak could only have been forecast 2 weeks in advance, which along with seasonal forecast information could have provided enough time to enhance preparedness measures. Our research demonstrates the potential of using state-of-the-art subseasonal climate forecasts to produce actionable subseasonal dengue predictions. To the best of the authors’ knowledge, this is the first time subseasonal forecasts have been used this way.

The potential distribution and dynamics of important vectors Culex pipiens pallens and Culex pipiens quinquefasciatus in China under climate change scenarios: An ecological niche modelling approach

BACKGROUND: Intense studies have been carried out on the effects of climate change on vector-borne diseases and vectors. Culex pipiens pallens and Culex pipiens quinquefasciatus are two medically concerned mosquito species in temperate and tropical areas, which serve as important disease-transmitting pests of a variety of diseases. The ongoing geographical expansion of these mosquitoes has brought an increasing threat to public health. RESULTS: Based on mosquito occurrence records and high-resolution environmental layers, an ecological niche model was established to model their current and future potential distribution in China. Our model showed that the current suitable area for Cx. p. pallens is distributed in the central, eastern and northern parts of China, while Cx. p. quinquefasciatus is distributed in vast areas in southern China. Under future climate change scenarios, both species are predicted to expand their range to varying degrees and RCP 8.5 provides the largest expansion. Northward core shifts will occur in ranges of both species. Environmental variables which have significant impact on the distribution of mosquitoes were also revealed by our model. CONCLUSION: Severe habitat expansion of vectors is likely to occur in the future 21st century. Our models mapped the high-risk areas and risk factors which needs to be paid attention. The results of our study can be referenced in further ecological surveys and will guide the development of strategies for the prevention and control of vector-borne diseases. © 2020 Society of Chemical Industry.

The potential impact of climate change on the transmission risk of tick-borne encephalitis in Hungary

BACKGROUND: Impact of climate change on tick-borne encephalitis (TBE) prevalence in the tick-host enzootic cycle in a given region depends on how the region-specific climate change patterns influence tick population development processes and tick-borne encephalitis virus (TBEV) transmission dynamics involving both systemic and co-feeding transmission routes. Predicting the transmission risk of TBEV in the enzootic cycle with projected climate conditions is essential for planning public health interventions including vaccination programs to mitigate the TBE incidence in the inhabitants and travelers. We have previously developed and validated a mathematical model for retroactive analysis of weather fluctuation on TBE prevalence in Hungary, and we aim to show in this research that this model provides an effective tool for projecting TBEV transmission risk in the enzootic cycle. METHODS: Using the established model of TBEV transmission and the climate predictions of the Vas county in western Hungary in 2021-2050 and 2071-2100, we quantify the risk of TBEV transmission using a series of summative indices – the basic reproduction number, the duration of infestation, the stage-specific tick densities, and the accumulated (tick) infections due to co-feeding transmission. We also measure the significance of co-feeding transmission by observing the cumulative number of new transmissions through the non-systemic transmission route. RESULTS: The transmission potential and the risk in the study site are expected to increase along with the increase of the temperature in 2021-2050 and 2071-2100. This increase will be facilitated by the expected extension of the tick questing season and the increase of the numbers of susceptible ticks (larval and nymphal) and the number of infected nymphal ticks co-feeding on the same hosts, leading to compounded increase of infections through the non-systemic transmission. CONCLUSIONS: The developed mathematical model provides an effective tool for predicting TBE prevalence in the tick-host enzootic cycle, by integrating climate projection with emerging knowledge about the region-specific tick ecological and pathogen enzootic processes (through model parametrization fitting to historical data). Model projects increasing co-feeding transmission and prevalence of TBEV in a recognized TBE endemic region, so human risk of TBEV infection is likely increasing unless public health interventions are enhanced.

The potential impacts of climate factors and malaria on the Middle Palaeolithic population patterns of ancient humans

Previous studies that observed the fact that Middle Palaeolithic sites mainly were concentrated in arid and semi-arid areas in Africa and Southwest Asia, concluded that climate factors determined the distribution patterns. We argue that biological factors could have been equally important. In present-day sub-Saharan Africa, mosquito borne diseases and especially falciparum malaria have a serious impact on human populations. This study was aimed to investigate the possible former effect of falciparum malaria on Middle Palaeolithic site distribution patterns and explain why ancient humans avoided the humid areas in the tropical and subtropical regions. It was found that the early human settlements situated in those regions of Africa and Southwest Asia where the potential annual development period of falciparum parasites was short in the mosquitoes, the area was not too humid, and the potential falciparum malaria incidence values were low or moderate. In the Indian Peninsula, precipitation played a less significant role in determining human settlements. The number of the months when the extrinsic development of Plasmodium falciparum parasites was possible showed the strongest structural overlap with the modelled malaria incidences according to the spatial occurrence of the Middle Paleolithic archaeological sites in the case of Africa and in Southwest Asia. In the Indian Peninsula, climatic factors showed the strongest structural overlap with the modelled malaria incidences according to the occurrence patterns of the Middle Palaeolithic archaeological sites.

The impact of heat waves on emergency department visits in Roanoke, Virginia

The evolving distribution of relative humidity conditional upon daily maximum temperature in a warming climate

The impacts of heat waves in a warming climate depend not only on changing temperatures but also on changing humidity. Using 35 simulations from the Community Earth System Model Large Ensemble (CESM LENS), we investigate the long-term evolution of the joint distribution of summer relative humidity (RH) and daily maximum temperature (Tmax) near four U.S. cities (New York City, Chicago, Phoenix, and New Orleans) under the high-emissions Representative Concentration Pathway (RCP) 8.5. We estimate the conditional quantiles of RH givenTmaxwith quantile regression models, using functions of temperature for each city in July for three time periods (1990-2005, 2026-2035, and 2071-2080). Quality-of-fit diagnostics indicate that these models accurately estimate conditional quantiles for each city. As expected, each quantile ofTmaxincreases from 1990-2005 to 2071-2080, while mean RH decreases modestly. Conditional upon a fixed quantile ofTmax, the median and high quantiles of RH decrease, while those of the Heat Index (HI) and dew point both increase. This result suggests that, despite a modest decrease in median relative humidity, heat stress measured by metrics considering both humidity and temperature in a warming climate will increase faster than that measured by temperatures alone would indicate. For a fixedTmax, the high quantiles of RH (and thus of HI and dew point) increase from 1990-2005 to 2071-2080 in all four cities. This result suggests that the heat stress of a day at a givenTmaxwill increase in a warming climate due to the increase of RH.

The health burden fall, winter and spring extreme heat events in the in Southern California and contribution of Santa Ana Winds

Background: Extreme heat is associated with increased morbidity but most studies examine this relationship in warm seasons. In Southern California, Santa Ana winds (SAWs) are associated with high temperatures during the fall, winter and spring, especially in the coastal region. Objectives: Our aim was to examine the relationship between hospitalizations and extreme heat events in the fall, winter and spring, and explore the potential interaction with SAWs. Methods: Hospitalizations from 1999-2012 were obtained from the Office of Statewide Health Planning and Development Patient Discharge Data. A time-stratified case crossover design was employed to investigate the association between off-season heat and hospitalizations for various diagnoses. We examined the additive interaction of SAWs and extreme heat events on hospitalizations. Results: Over 1.5 million hospitalizations occurred in the Southern California coastal region during non-summer seasons. The 99th percentile-based thresholds that we used to define extreme heat events varied from a maximum temperature of 22.8 degrees C to 35.1 degrees C. In the fall and spring, risk of hospitalization increased for dehydration (OR: 1.23, 95% CI: 1.04, 1.45 and OR: 1.47 95% CI: 1.25, 1.71, respectively) and acute renal failure (OR: 1.35, 95% CI: 1.15, 1.58 and OR: 1.39, 95% CI: 1.19, 1.63, respectively) during 1-day extreme heat events. We also found an association between 1-day extreme heat events and hospitalization for ischemic stroke, with the highest risk observed in December. The results indicate that SAWs correspond to extreme heat events, particularly in the winter. Finally, we found no additive interaction with SAWs. Discussion: Results suggest that relatively high temperatures in non-summer months are associated with health burdens for several hospitalization outcomes. Heat action plans should consider decreasing the health burden of extreme heat events year-round.

The heat health warning system in Germany-Application and warnings for 2005 to 2019

During intense heat episodes, the human population suffers from an increased morbidity and mortality. In order to minimize such negative health impacts, the general public and the public health authorities are informed and warned by means of an advanced procedure known as a “heat health warning system” (HHWS). It is aimed at triggering interventions and at taking preventive measures. The HHWS in Germany has been in operation since 2005. The present work is aimed at showing the updated structure of an advanced HHWS that has been developed further several times during its 15 years of operation. This is to impart knowledge to practitioners about the concept of the system. In Germany, dangerous heat episodes are predicted on the basis of the numerical weather forecast. The perceived temperature as an appropriate thermal index is calculated and used to assess the levels of heat stress. The thermo-physiologically based procedure contains variable thresholds taking into account the short time acclimatization of the people. The forecast system further comprises the nocturnal indoor conditions, the specific characteristics of the elderly population, and the elevation of a region. The heat warnings are automatically generated, but they are published with possible adjustments and a compulsory confirmation by the biometeorology forecaster. Preliminary studies indicate a reduction in the heat related outcomes. In addition, the extensive duration of the strongest heat wave in summer 2018, which lasted three weeks, highlights the necessity of the HHWS to protect human health and life.

The impact of a Six-Year climate anomaly on the “Spanish Flu” pandemic and WWI

The H1N1 “Spanish influenza” pandemic of 1918-1919 caused the highest known number of deaths recorded for a single pandemic in human history. Several theories have been offered to explain the virulence and spread of the disease, but the environmental context remains underexamined. In this study, we present a new environmental record from a European, Alpine ice core, showing a significant climate anomaly that affected the continent from 1914 to 1919. Incessant torrential rain and declining temperatures increased casualties in the battlefields of World War I (WWI), setting the stage for the spread of the pandemic at the end of the conflict. Multiple independent records of temperature, precipitation, and mortality corroborate these findings.

The impact of climate and antigenic evolution on seasonal influenza virus epidemics in Australia

Although seasonal influenza viruses circulate globally, prevention and treatment occur at the level of regions, cities, and communities. At these scales, the timing, duration and magnitude of epidemics vary substantially, but the underlying causes of this variation are poorly understood. Here, based on analyses of a 15-year city-level dataset of 18,250 laboratory-confirmed and antigenically-characterised influenza virus infections from Australia, we investigate the effects of previously hypothesised environmental and virological drivers of influenza epidemics. We find that anomalous fluctuations in temperature and humidity do not predict local epidemic onset timings. We also find that virus antigenic change has no consistent effect on epidemic size. In contrast, epidemic onset time and heterosubtypic competition have substantial effects on epidemic size and composition. Our findings suggest that the relationship between influenza population immunity and epidemiology is more complex than previously supposed and that the strong influence of short-term processes may hinder long-term epidemiological forecasts.

The impact of climatic changes on total horticultural production and food security in agro-ecological zones of Iran

Arid and semi-arid climates, including that of Iran, are more susceptible to environmental changes due to their special ecological structure than other climates. Therefore, climate change in these areas appears to have significant effects on agricultural and food production systems. The present study explores the effect of climatic changes on total horticultural production and food security in agro-ecological zones of Iran. The study was conducted in two steps. In the first step, the effects of climatic parameters on total horticultural production were investigated using time series data (1985-2017) and a regression model. In the second step, due to the important role of horticultural products in per capita food consumption in Iran, the effect of climate parameters on food security was also examined. Results revealed that total horticultural production was influenced by temperature, evapotranspiration, and wind speed at the 0.05 level. With the increase in temperature (at a rate of one unit), total horticultural production is reduced to 0.01 million tons. Evapotranspiration and wind speed have had a negative effect on total horticultural production, and with increasing evapotranspiration and wind speed, total horticultural production was 0.029 and 0.008 million, respectively, tons decreased. Also, food security was influenced by temperature, precipitation, and wind speed.

The impact of climatic variables on the population dynamics of the main malaria vector, Anopheles stephensi Liston (Diptera: Culicidae), in southern Iran

Objective: To determine the significance of temperature, rainfall and humidity in the seasonal abundance of Anopheles stephensi in southern Iran. Methods: Data on the monthly abundance of Anopheles stephensi larvae and adults were gathered from earlier studies conducted between 2002 and 2019 in malaria prone areas of southeastern Iran. Climatic data for the studied counties were obtained from climatology stations. Generalized estimating equations method was used for cluster correlation of data for each study site in different years. Results: A significant relationship was found between monthly density of adult and larvae of Anopheles stephensi and precipitation, max temperature and mean temperature, both with simple and multiple generalized estimating equations analysis (P<0.05). But when analysis was done with one month lag, only relationship between monthly density of adults and larvae of Anopheles stephensi and max temperature was significant (P<0.05). Conclusions: This study provides a basis for developing multivariate time series models, which can be used to develop improved appropriate epidemic prediction systems for these areas. Long-term entomological study in the studied sites by expert teams is recommended to compare the abundance of malaria vectors in the different areas and their association with climatic variables.

The impact of extreme heat and heat waves on emergency ambulance dispatches due to external cause in Shenzhen, China

BACKGROUND: Compared to hospital admissions (HAs), emergency ambulance dispatches (EADs) can be considered a real-time outcome for evaluating the public health impacts of ambient temperature. OBJECTIVES: This study aimed to assess if temperature has a causal effect on cause-specific EADs and its potential main and added effect in Shenzhen from 2013 to 2017. METHODS: A distributed lag nonlinear model (DLNM) with quasi-Poisson distribution was applied to quantify the association between temperature and EADs. Likewise, the fraction of EADs attributable to different temperature ranges was calculated to identify extreme temperature ranges affecting population health. We then explored the main and added wave effects of heatwaves. RESULTS: Ambient temperature showed a U-shaped association with EADs. The minimum risk temperature was 17 °C (16th percentile of the daily mean temperature). Compared with the cold, the relative risk (RR) of heat on EADs presented smaller but the attributable risk larger. The main effects of heatwaves on EADs varied with external causes; and the peak RR of heat on EADs was observed in suicidal behaviors with heatwaves defined as 3 or more days with temperatures above the 75th percentile (RR = 4.53, 95% CI: 1.23-16.68), followed by assault (RR = 2.36, 95% CI: 1.25-4.48) and accidents (RR = 1.72, 95% CI: 1.30-2.28), while the added wave effect was negligible. CONCLUSIONS: Heat was responsible for a higher proportion of EADs than cold. Most of the increase in health risk during warm season can be simply ascribed to the independent effects of daily temperature occurrences whether it is or not on the heat-wave day. And the main effects of heatwaves on cause-specific EADs showed varied change trends, of which the incidence of suicides seems more susceptible, followed by assault and accidents.

The impact of heat waves on daily mortality in districts in Madrid: The effect of sociodemographic factors

Although there is significant scientific evidence on the impact of heat waves, there are few studies that analyze the effects of sociodemographic factors on the impact of heat waves below the municipal level. The objective of this study was to analyze the role of income level, percent of the population over age 65, existence of air conditioning units and hectares (Ha) of green zones in districts in Madrid, in the impact of heat on daily mortality between January 1, 2010 and December 31, 2013. Seventeen districts were analyzed, and Generalized Linear (GLM) Poisson Regression Models were used to calculate relative risks (RR) and attributable risks (RA) for the impact of heat waves on mortality due to natural causes (CIEX:A00-R99). The pattern of risks obtained was analyzed using GLM univariates and multivariates of the binomial family (link logit), introducing the socioeconomic and demographic variables mentioned above. The results indicate that heat wave had an impact in only three of the districts analyzed. In the univariate models, all of the variables were statistically significant, but Ha of green zones lost significance in the multivariate model. Income level, existence of air conditioning units, and percent of the population over age 65 in the district remained as variables that modulate the impact of heat wave on daily mortality in the municipality of Madrid. Income level was the key variable that explained this behavior. The results obtained in this study show that there are factors at levels below the municipal level (district level) that should be considered as focus areas for health policy in order to decrease the impact of heat and promote the process of adaptation to heat in the context of climate change.

The impact of high ambient temperatures on delivery timing and gestational lengths

Hot weather can cause early childbirth, meaning shorter gestation. Daily US birth-rate data from 1969 to 1988 show that deliveries increased on hot days and that those births occurred up to two weeks early. Around 25,000 infants were born early each year, representing over 150,000 gestational days lost annually. Evidence suggests that heat exposure increases delivery risk for pregnant women. Acceleration of childbirth leads to shorter gestation, which has been linked to later health and cognitive outcomes. However, estimates of the aggregate gestational losses resulting from hot weather are lacking in the literature. Here, we use estimated shifts in daily county birth rates to quantify the gestational losses associated with heat in the United States from 1969 to 1988. We find that extreme heat causes an increase in deliveries on the day of exposure and on the following day and show that the additional births were accelerated by up to two weeks. We estimate that an average of 25,000 infants per year were born earlier as a result of heat exposure, with a total loss of more than 150,000 gestational days annually. Absent adaptation, climate projections suggest additional losses of 250,000 days of gestation per year by the end of the century.

The impact of non-optimum ambient temperature on years of life lost: A multi-county observational study in Hunan, China

The ambient temperature-health relationship is of growing interest as the climate changes. Previous studies have examined the association between ambient temperature and mortality or morbidity, however, there is little literature available on the ambient temperature effects on year of life lost (YLL). Thus, we aimed to quantify the YLL attributable to non-optimum ambient temperature. We obtained data from 1 January 2013 to 31 December 2017 of 70 counties in Hunan, China. In order to combine the effects of each county, we used YLL rate as a health outcome indicator. The YLL rate was equal to the total YLL divided by the population of each county, and multiplied by 100,000. We estimated the associations between ambient temperature and YLL with a distributed lag non-linear model (DNLM) in a single county, and then pooled them in a multivariate meta-regression. The daily mean YLL rates were 22.62 y/(p·100,000), 10.14 y/(p·100,000) and 2.33 y/(p·100,000) within the study period for non-accidental, cardiovascular, and respiratory disease death. Ambient temperature was responsible for advancing a substantial fraction of YLL, with attributable fractions of 10.73% (4.36-17.09%) and 16.44% (9.09-23.79%) for non-accidental and cardiovascular disease death, respectively. However, the ambient temperature effect was not significantly for respiratory disease death, corresponding to 5.47% (-2.65-13.60%). Most of the YLL burden was caused by a cold temperature than the optimum temperature, with an overall estimate of 10.27% (4.52-16.03%) and 15.94% (8.82-23.05%) for non-accidental and cardiovascular disease death, respectively. Cold and heat temperature-related YLLs were higher in the elderly and females than the young and males. Extreme cold temperature had an effect on all age groups in different kinds of disease-caused death. This study highlights that general preventative measures could be important for moderate temperatures, whereas quick and effective measures should be provided for extreme temperatures.

The impact of weather and air pollution on viral infection and disease outcome among pediatric pneumonia patients in Chongqing, China from 2009 to 2018: A prospective observational study

BACKGROUND: For pediatric pneumonia, the meteorological and air pollution indicators had been frequently investigated for their association with viral circulation, however, not for their impact on disease severity. METHODS: We performed a 10-year prospective observational study in one hospital in Chongqing, China to recruit children with pneumonia. Eight commonly seen respiratory viruses were tested. Autoregressive distributed lag (ADL) and Random forest (RF) models were performed to fit monthly detection rates of each virus at population level and predict the possibility of severe pneumonia at individual level, respectively. RESULTS: Between 2009?2018, 6 611 pediatric pneumonia patients were included, and 4 846 (73.3%) tested positive for at least one respiratory virus. The median age of the patients was 9 (IQR: 4?20) months. ADL models demonstrated a decent fitting of detection rates of four viruses (R2 >0.7 for RSV, HRV, PIV, and HMPV). Based on the RF models, the AUC for host-related factors alone is 0.88 (95% CI: 0.87?0.89), 0.86 (95% CI: 0.85?0.88) for meteorological and air pollution indicators alone, and 0.62 (95% CI: 0.60?0.63) for viral infections alone. The final model indicated that nine weather and air pollution indicators were important determinants of severe pneumonia, with relative contribution of 62.53%, significantly higher than respiratory viral infections (7.36%). CONCLUSIONS: Meteorological and air pollution predictors contributed more to severe pneumonia in children than respiratory viruses. These meteorological data could help predict times when children would be at increased risk for severe pneumonia, and interventions such as reducing outdoor activities, may be warranted.

The influence of air humidity on human heat stress in a hot environment

This article aims to present the physical adaptation capabilities of a human, seen as a response to extreme hot and dry or hot and humid conditions. Adaptation capabilities are expressed as safe exposure time in two variants: at rest and during physical activity. The study shows the results of calculations of the variability over time of the core temperature and skin temperature as well as heat balance. Calculations were made according to Standard No. EN ISO 7933:2005 on the basis of assumed and actual meteorological data. The results of the calculations show that in these conditions a hot but dry environment enables a human (although to a limited extent) to stay and perform low physical activity, provided access to drinking water is ensured. In contrast, a hot but humid environment causes more serious problems, due to the inability to reduce skin temperature by evaporation of sweat from the skin surface.

The influence of apparent temperature on mortality in the Kintampo health and demographic surveillance area in the middle belt of Ghana: A retrospective time-series analysis

Globally, studies have shown that diurnal changes in weather conditions and extreme weather events have a profound effect on mortality. Here, we assessed the effect of apparent temperature on all-cause mortality and the modifying effect of sex on the apparent temperature-mortality relationship using mortality and weather data archived over an eleven-year period. An overdispersed Poisson regression and distributed lag nonlinear models were used for this analysis. With these models, we analysed the relative risk of mortality at different temperature values over a 10-day lag period. By and large, we observed a nonlinear association between mean daily apparent temperature and all-cause mortality. An assessment of different temperature values over a 10-day lag period showed an increased risk of death at the lowest apparent temperature (18°C) from lag 2 to 4 with the highest relative risk of mortality (RR?=?1.61, 95% CI: 1.2, 2.15, p value?=?0.001) occurring three days after exposure. The relative risk of death also varied between males (RR?=?0.31, 95% CI: 0.10, 0.94) and females (RR?=?4.88, 95% CI: 1.40, 16.99) by apparent temperature and lag. On the whole, males are sensitive to both temperature extremes whilst females are more vulnerable to low temperature-related mortality. Accordingly, our findings could inform efforts at reducing temperature-related mortality in this context and other settings with similar environmental and demographic characteristics.

The effect of temperature on cause-specific mental disorders in three subtropical cities: A case-crossover study in China

BACKGROUND: Little is known about the association between ambient temperature and cause-specific mental disorders, especially in subtropical areas. OBJECTIVE: To investigate the effect of ambient temperature on mental disorders in subtropical cities. METHOD: Daily morbidity data for mental disorders in three Chinese cities (Shenzhen, Zhaoqing, and Huizhou) were collected from medical record systems of local psychiatric specialist hospitals, covering patients of all ages. Case-crossover design combined with a distributed lag nonlinear model (DLNM) was used to assess the nonlinear and delayed effects of temperatures on five specific mental disorders (affective disorders, anxiety, depressive disorders, schizophrenia, and organic mental disorders), with analyses stratified by gender and age. The temperature of minimum effect was used as the reference value to calculate estimates. RESULTS: We observed inversed J-shaped exposure-response curves between temperature and mental morbidity and observed that low temperatures had a significant and prolonged effect on most types of mental disorders in the three cities. For example, the effect of the cold (2.5th percentile) on anxiety was consistently observed in the three cities with an odds ratio (OR) of 1.29 (95% CI: 1.06-1.57) in Zhaoqing, 1.26 (95% CI: 1.18-1.34) in Shenzhen, and 1.45 (95% CI: 1.17-1.81) in Huizhou. Low temperature was also associated with an increased risk of depressive disorders and schizophrenia. For the high temperature exposure (97.5th percentile), we only observed a significant, harmful effect on anxiety [OR = 1.30 (95% CI: 1.08, 1.58) in Shenzhen, OR = 1.16 (95% CI: 1.00, 1.34) in Zhaoqing], affective disorders [OR = 1.32 (95% CI: 1.08, 1.62) in Shenzhen], and schizophrenia [OR = 1.24 (95% CI: 1.03, 1.48) in Zhaoqing, OR = 1.03 (95% CI: 1.00, 1.06) in Huizhou]. CONCLUSIONS: Our study suggests that both low and high temperatures might be important drivers of morbidity from mental disorders, and low temperature may have a more general and wide-spread effect on this cause-specific morbidity than high temperature.

The effect of weather variables on mosquito activity: A snapshot of the main point of entry of Cyprus

Mosquitoes are vectors of pathogens, causing human and animal diseases. Their ability to adapt and expand worldwide increases spread of mosquito-borne diseases. Climate changes contribute in enhancing these “epidemic conditions”. Understanding the effect of weather variables on mosquito seasonality and host searching activity contributes towards risk control of the mosquito-borne disease outbreaks. To enable early detection of Aedes invasive species we developed a surveillance network for both invasive and native mosquitoes at the main point of entry for the first time in Cyprus. Mosquito sampling was carried out for one year (May 2017-June 2018), at bimonthly intervals around Limassol port. Morphological and molecular identification confirmed the presence of 5 species in the study region: Culex. pipiens, Aedes detritus, Ae. caspius, Culiseta longiareolata and Cs. annulata. No invasive Aedes mosquito species were detected. The Pearson’s correlation and multiple linear regression were used to compare number of sampled mosquitoes and weather variables for three most numerous species (Cx. pipiens, Ae. detritus and Ae. caspius). The population densities of the most numerous species were highest from February to April. Number of Cx. pipiens (-0.48), Ae. detritus (-0.40) and Ae. caspius (-0.38) specimens sampled was negatively correlated with average daily temperature. Monthly relative humidity showed positive correlation with the numbers of the species sampled, Cx. pipiens (0.66) Ae. detritus (0.68), and Ae. caspius (0.71). Mosquito abundance of Cx. pipiens (0.97) and Ae. detritus (0.98) was strongly correlated to seasonal precipitation as well. Our work is a stepping stone to further stimulate implementation of International Health Regulations and implementation of early warning surveillance system for detection of invasive Aedes mosquitoes, native mosquitoes and arboviruses they may transmit. A network for the surveillance of both invasive and native mosquito species at the main point of entry for the first time in Cyprus was developed. Number of mosquitoes sampled was correlated with weather factors to identify parameters that might predict mosquito activity and species distribution to the prevention of international spread of vector mosquitoes and vector-borne diseases.

The effectiveness of narrative versus didactic information formats on pregnant women’s knowledge, risk perception, self-efficacy, and information seeking related to climate change health risks

Climate change is a global threat that poses significant risks to pregnant women and to their developing fetus and newborn. Educating pregnant women about the risks to their pregnancy may improve maternal and child health outcomes. Prior research suggests that presenting health information in narrative format can be more effective than a didactic format. Hence, the purpose of this study was to test the effectiveness of two brief educational interventions in a diverse group of pregnant women (n = 151). Specifically, using a post-test only randomized experiment, we compared the effectiveness of brief information presented in a narrative format versus a didactic format; both information formats were also compared to a no information control group. Outcome measures included pregnant women’s actual and perceived knowledge, risk perception, affective assessment, self-efficacy, intention to take protective behaviors, and subsequent information seeking behavior. As hypothesized, for all outcome measures, the narrative format was more effective than the didactic format. These results suggest the benefits of a narrative approach (versus a didactic approach) to educating pregnant women about the maternal and child health threats posed by climate change. This study adds to a growing literature on the effectiveness of narrative-based approaches to health communication.

The effects of changing meteorological parameters on fatal aortic catastrophes

BACKGROUND: Over the span of the last decade, medical research has been increasingly putting greater emphasis on the study of meteorological parameters due to their connection to cardiovascular diseases. The main goal of this study was to explore the relationship between fatal aortic catastrophes and changes in atmospheric pressure and temperature. METHODS: We used a Cox process model to quantify the effects of environmental factors on sudden deaths resulting from aortic catastrophes. We used transfer entropy to draw conclusion about the causal connection between mortality and meteorological parameters. Our main tool was a computer program which we developed earlier in order to evaluate the relationship between pulmonary embolism mortality and weather on data sets comprised of aortic aneurysm (AA) and acute aortic dissection (AAD) cases, where one of these two medical conditions had led to fatal rupture of the aorta. Our source for these cases were the autopsy databases of Semmelweis University, from the time period of 1994 to 2014. We have examined 160 aneurysm and 130 dissection cases in relation to changes in meteorological parameters. The algorythm implemented in our program is based on a non-parametric a Cox process model. It is capable of splitting slowly varying unknown global trends from fluctuations potentially caused by weather. Furthermore, it allows us to explore complex non-linear interactions between meteorological parameters and mortality. RESULTS: Model measures the relative growth of the expected number of events on the n(th) day caused by the deviation of environmental parameters from its mean value. The connection between ruptured aortic aneurysms (rAA) and changes in atmospheric pressure is more significant than their connection with mean daily temperatures. With an increase in atmospheric pressure, the rate of rAA mortality also increased. The effects of meteorological parameters were weaker for deaths resulting from acute aortic dissections (AAD), although low mean daily temperatures increased the intensity of occurrence for AAD-related deaths. CONCLUSION: The occurrence rate of fatal aortic catastrophes showed a slight dependence on the two examined parameters within our groups.

The effects of climate on the incidence of benign paroxysmal positional vertigo

Benign paroxysmal positional vertigo (BPPV) is one of the most common vestibular disorders. An investigation into the factors related to BPPV could contribute to its prevention and appropriate management. We investigated the association between climatic factors and incidence of BPPV in this study. A total of 365 patients who were diagnosed with idiopathic BPPV in the emergency room of our hospital in 2015 were included. The number of patients diagnosed with BPPV per week was calculated (every week). Climatic factors, including daily average humidity, temperature, atmospheric pressure, cloud amount, sunshine amount, and daylight time, were documented daily. The weekly mean climatic value in each week was calculated. Simple correlation analysis and multivariate regression analyses were performed to identify climatic factors associated with the number of patients diagnosed with BPPV. Simple correlation analysis revealed a significant association between the humidity (r?=?0.276, p?=?0.048), temperature (r?=?0.275, p?=?0.049), and cloud amount (r?=?0.293, p?=?0.035) and the number of BPPV patients diagnosed per week. Multivariate regression analysis revealed that only the cloud amount was a statistically significant factor associated with the number of BPPV patients diagnosed every week. A significant positive association was discovered between the cloud amount and BPPV incidence. Cloud amount can therefore have an association with the incidence of BPPV.

The effects of heat exposure on human mortality throughout the United States

Exposure to high ambient temperatures is an important cause of avoidable, premature death that may become more prevalent under climate change. Though extensive epidemiological data are available in the United States, they are largely limited to select large cities, and hence, most projections estimate the potential impact of future warming on a subset of the U.S. population. Here we utilize evaluations of the relative risk of premature death associated with temperature in 10 U.S. cities spanning a wide range of climate conditions to develop a generalized risk function. We first evaluate the performance of this generalized function, which introduces substantial biases at the individual city level but performs well at the large scale. We then apply this function to estimate the impacts of projected climate change on heat-related nationwide U.S. deaths under a range of scenarios. During the current decade, there are 12,000 (95% confidence interval 7,400-16,500) premature deaths annually in the contiguous United States, much larger than most estimates based on totals for select individual cities. These values increase by 97,000 (60,000-134,000) under the high-warming Representative Concentration Pathway (RCP) 8.5 scenario and by 36,000 (22,000-50,000) under the moderate RCP4.5 scenario by 2100, whereas they remain statistically unchanged under the aggressive mitigation scenario RCP2.6. These results include estimates of adaptation that reduce impacts by ~40-45% as well as population increases that roughly offset adaptation. The results suggest that the degree of climate change mitigation will have important health impacts on Americans.

The effects of prenatal exposure to temperature extremes on birth outcomes: The case of China

This paper investigates the effects of prenatal exposure to extreme temperatures on birth outcomes-specifically, the log of birth weight and an indicator for low birth weight-using a nationally representative dataset on rural China. During the time period we examine (1991-2000), indoor air conditioning was not widely available and migration was limited, allowing us to address identification issues endemic in the climate change literature related to adaptation and location sorting. We find substantial heterogeneity in the effects of extreme temperature exposure on birth outcomes. In particular, prenatal exposure to heat waves has stronger negative effects than exposure to cold spells on surviving births.

The effects of seasonal climate variability on dengue annual incidence in Hong Kong: A modelling study

In recent years, dengue has been rapidly spreading and growing in the tropics and subtropics. Located in southern China, Hong Kong’s subtropical monsoon climate may favour dengue vector populations and increase the chance of disease transmissions during the rainy summer season. An increase in local dengue incidence has been observed in Hong Kong ever since the first case in 2002, with an outbreak reaching historically high case numbers in 2018. However, the effects of seasonal climate variability on recent outbreaks are unknown. As the local cases were found to be spatially clustered, we developed a Poisson generalized linear mixed model using pre-summer monthly total rainfall and mean temperature to predict annual dengue incidence (the majority of local cases occur during or after the summer months), over the period 2002-2018 in three pre-defined areas of Hong Kong. Using leave-one-out cross-validation, 5 out of 6 observations of area-specific outbreaks during the major outbreak years 2002 and 2018 were able to be predicted. 42 out of a total of 51 observations (82.4%) were within the 95% confidence interval of the annual incidence predicted by our model. Our study found that the rainfall before and during the East Asian monsoon (pre-summer) rainy season is negatively correlated with the annual incidence in Hong Kong while the temperature is positively correlated. Hence, as mosquito control measures in Hong Kong are intensified mainly when heavy rainfalls occur during or close to summer, our study suggests that a lower-than-average intensity of pre-summer rainfall should also be taken into account as an indicator of increased dengue risk.

The effects of sunshine duration and ambient temperature on suicides in Hungary

BACKGROUND: A couple of studies suggest that sunshine duration and ambient temperature contribute to suicide. Few studies have happened in East-Central European area. OBJECTIVE: We scrutinized the daily suicide rates and other measured meteorological parameters spanning from 1971 to 2013 in the region of Hungary exhibiting the highest suicide rate. METHODS: The meteorological parameters measured in the area signified the independent variables of the statistical model, while the observed suicide rate connoted the dependent variable. Dynamic Regression, a time series analytical method was employed for creating the model. RESULTS: Three meteorological parameters displayed a weak, yet statistically significant relationship with suicide rates. 1/ Daily sunshine duration has shown an immediate, significant positive correlation, 2/ daily changes in temperature at ground level also exhibited a significant relationship, albeit it followed a complex transient profile overarching three days. Tropopause height was also significant in the model: an immediate positive effect was followed by a negative effect six days later. CONCLUSIONS: We estimated consistent and immediate positive associations between daily suicide and daily change of elevated ambient temperature and duration of sunshine in a high rated area of Hungary.

The effects of temperature on accident and emergency department attendances in London: A time-series regression analysis

The epidemiological research relating mortality and hospital admissions to ambient temperature is well established. However, less is known about the effect temperature has on Accident and Emergency (A&E) department attendances. Time-series regression analyses were conducted to investigate the effect of temperature for a range of cause- and age-specific attendances in Greater London (LD) between 2007 to 2012. A seasonally adjusted Poisson regression model was used to estimate the percent change in daily attendances per 1 °C increase in temperature. The risk of overall attendance increased by 1.0% (95% CI 0.8, 1.4) for all ages and 1.4% (1.2, 1.5) among 0- to 15-year-olds. A smaller but significant increase in risk was found for cardiac, respiratory, cerebrovascular and psychiatric presentations. Importantly, for fracture-related attendances, the risk rose by 1.1% (0.7, 1.5) per 1 °C increase in temperature above the identified temperature threshold of 16 °C, with the highest increase of 2.1% (1.5, 3.0) seen among 0- to 15-year-olds. There is a positive association between increasing temperatures and A&E department attendance, with the risk appearing highest in children and the most deprived areas. A&E departments are vulnerable to increased demand during hot weather and therefore need to be adequately prepared to address associated health risks posed by climate change.

The effects of weather on daily emergency ambulance service demand in Taipei: A comparison with Hong Kong

Numerous studies have examined the effects of weather on emergency ambulance service (EAS) demand. Given Taipei’s unique physical and social environments, empirical evidence collected from other regions may not be applicable. Collecting more information about the characteristics of vulnerable groups and the effects of weather could help the EAS managing authority in formulating cost-effective EAS policies. This study aims to look at the effects of weather on EAS demand in Taipei and to make a comparison with Hong Kong, which is also an Asian city and has a similar cultural context. The study analyzed over 370,000 EAS usage records from the Taipei City Fire Department. These records were aggregated into time series data according to patients’ characteristics and then regressed on meteorological data via multivariate forward regression. The effect size differences of the variance explained by different groups of EAS users’ regression models were compared. Afterward, the results of the regression analysis from Taipei were compared with those from a Hong Kong study. Elderly and critical patients in both cities showed significantly more sensitivity to weather than other patients. Further analysis showed that non-trauma cases were related to weather in Taipei. Although both cities had similar results, the Taipei study clearly showed that elderly and critical patients were more sensitive to weather than other patient subgroups. Health education programs should focus on the vulnerable groups identified in this study in order to increase their awareness and help them protect themselves before the onset of adverse weather conditions. By generating results that are directly applicable to Taipei, the formulation of inappropriate EAS policies can be prevented.

The emergence of heat and humidity too severe for human tolerance

Humans’ ability to efficiently shed heat has enabled us to range over every continent, but a wet-bulb temperature (TW) of 35 degrees C marks our upper physiological limit, and much lower values have serious health and productivity impacts. Climate models project the first 35 degrees C TW occurrences by the mid-21st century. However, a comprehensive evaluation of weather station data shows that some coastal subtropical locations have already reported a TW of 35 degrees C and that extreme humid heat overall has more than doubled in frequency since 1979. Recent exceedances of 35 degrees C in global maximum sea surface temperature provide further support for the validity of these dangerously high TW values. We find the most extreme humid heat is highly localized in both space and time and is correspondingly substantially underestimated in reanalysis products. Our findings thus underscore the serious challenge posed by humid heat that is more intense than previously reported and increasingly severe.

The estimated burden of scrub typhus in Thailand from national surveillance data (2003-2018)

BACKGROUND: Scrub typhus is a major cause of acute febrile illness in the tropics and is endemic over large areas of the Asia Pacific region. The national and global burden of scrub typhus remains unclear due to limited data and difficulties surrounding diagnosis. METHODOLOGY/PRINCIPAL FINDINGS: Scrub typhus reporting data from 2003-2018 were collected from the Thai national disease surveillance system. Additional information including the district, sub-district and village of residence, population, geographical, meteorological and satellite imagery data were also collected for Chiangrai, the province with the highest number of reported cases from 2003-2018. From 2003-2018, 103,345 cases of scrub typhus were reported with the number of reported cases increasing substantially over the observed period. There were more men than women, with agricultural workers the main occupational group affected. The majority of cases occurred in the 15-64 year old age group (72,144/99,543, 72%). Disease burden was greatest in the northern region, accounting for 53% of the total reported cases per year (mean). In the northern region, five provinces-Chiangrai, Chiangmai, Tak, Nan and Mae Hong Son-accounted for 84% (46,927/55,872) of the total cases from the northern region or 45% (46,927/103,345) of cases nationally. The majority of cases occurred from June to November but seasonality was less marked in the southern region. In Chiangrai province, elevation, rainfall, temperature, population size, habitat complexity and diversity of land cover contributed to scrub typhus incidence. INTERPRETATION: The burden of scrub typhus in Thailand is high with disease incidence rising significantly over the last two decades. However, disease burden is not uniform with northern provinces particularly affected. Agricultural activity along with geographical, meteorological and land cover factors are likely to contribute to disease incidence. Our report, along with existing epidemiological data, suggests that scrub typhus is the most clinically important rickettsial disease globally.

The environmental drivers of bacterial meningitis epidemics in the Democratic Republic of Congo, central Africa

INTRODUCTION: Bacterial meningitis still constitutes an important threat in Africa. In the meningitis belt, a clear seasonal pattern in the incidence of meningococcal disease during the dry season has been previously correlated with several environmental parameters like dust and sand particles as well as the Harmattan winds. In parallel, the evidence of seasonality in meningitis dynamics and its environmental variables remain poorly studied outside the meningitis belt. This study explores several environmental factors associated with meningitis cases in the Democratic Republic of Congo (DRC), central Africa, outside the meningitis belt area. METHODS: Non-parametric Kruskal-Wallis’ tests were used to establish the difference between the different health zones, climate and vegetation types in relation to both the number of cases and attack rates for the period 2000-2018. The relationships between the number of meningitis cases for the different health zones and environmental and socio-economical parameters collected were modeled using different generalized linear (GLMs) and generalized linear mixed models (GLMMs), and different error structure in the different models, i.e., Poisson, binomial negative, zero-inflated binomial negative and more elaborated multi-hierarchical zero-inflated binomial negative models, with randomization of certain parameters or factors (health zones, vegetation and climate types). Comparing the different statistical models, the model with the smallest Akaike’s information criterion (AIC) were selected as the best ones. 515 different health zones from 26 distinct provinces were considered for the construction of the different GLM and GLMM models. RESULTS: Non-parametric bivariate statistics showed that there were more meningitis cases in urban health zones than in rural conditions (?2 = 6.910, p-value = 0.009), in areas dominated by savannah landscape than in areas with dense forest or forest in mountainous areas (?2 = 15.185, p-value = 0.001), and with no significant difference between climate types (?2 = 1.211, p-value = 0,449). Additionally, no significant difference was observed for attack rate between the two types of heath zones (?2 = 0.982, p-value = 0.322). Conversely, strong differences in attack rate values were obtained for vegetation types (?2 = 13.627, p-value = 0,001) and climate types (?2 = 13.627, p-value = 0,001). This work demonstrates that, all other parameters kept constant, an urban health zone located at high latitude and longitude eastwards, located at low-altitude like in valley ecosystems predominantly covered by savannah biome, with a humid tropical climate are at higher risk for the development of meningitis. In addition, the regions with mean range temperature and a population with a low index of economic well-being (IEW) constitute the perfect conditions for the development of meningitis in DRC. CONCLUSION: In a context of global environmental change, particularly climate change, our findings tend to show that an interplay of different environmental and socio-economic drivers are important to consider in the epidemiology of bacterial meningitis epidemics in DRC. This information is important to help improving meningitis control strategies in a large country located outside of the so-called meningitis belt.

The evolution of minimum mortality temperatures as an indicator of heat adaptation: The cases of Madrid and Seville (Spain)

The increase in the frequency and intensity of heat waves is one of the most unquestionable effects of climate change. Therefore, the progressive increase in maximum temperatures will have a clear incidence on the increase in mortality, especially in countries that are vulnerable due to geographical location or their socioeconomic characteristics. Different research studies show that the mortality attributable to heat is decreasing globally, and research is centred on future scenarios. One way of detecting the existence of a lesser impact of heat is through the increase in the so-called temperature of minimum mortality (TMM). The objective of this study is to determine the temporal evolution of TMM in two Spanish provinces (Seville and Madrid) during the 1983-2018 period and to evaluate whether the rate of adaptation to heat is appropriate. We used the gross rate of daily mortality due to natural causes (CIEX: A00-R99) and the maximum daily temperature (°C) to determine the quinquennial TMM using dispersion diagrams and realizing fit using quadratic and cubic curvilinear estimation. The same analysis was carried out at the annual level, by fitting an equation to the line of TMM for each province, whose slope, if significant (p < 0.05) represents the annual rate of variation in TMM. The results observed in this quinquennial analysis showed that the TMM is higher in Seville than in Madrid and that it is higher among men than women in the two provinces. Furthermore, there was an increase in TMM in all of the quinquennium and a clear decrease in the final period. At the annual level, the linear fit was significant for Madrid for the whole population and corresponds to an increase in the TMM of 0.58 °C per decade. For Seville the linear fits were significant and the slopes of the fitted lines was 1.1 °C/decade. Both Madrid and Seville are adapting to the increase in temperatures observed over the past 36 years, and women are the group that is more susceptible to heat, compared to men. The implementation of improvements and evaluation of prevention plans to address the impact of heat waves should continue in order to ensure adequate adaptation in the future.

The effect of physiological equivalent temperature index variations on mortality in Urmia (The Northwest of Iran)

The different effects of climate extremes on physiological health among agroecology and conventional smallholder rice farmers

As climate change increases temperatures and the frequency of extreme heat events, farm workers are among the most affected. Because of the nature of the work, farmers working at hot temperatures may experience physiological changes in their body such as increases in body temperature, blood pressure, and heart rate, as well as leading to intolerance of blood glucose and blood cholesterol. This study speculates that extreme heat hazards may lead to incidence of heat-related diseases among farmers in the workplace and other metabolic disorders. The purpose of this study is to determine the potential health effects of heat exposure between agroecology and conventional rice farmers. This study recruited 33 agroecology and 25 conventional rice farmers in the northern state of peninsular Malaysia. The adapted questionnaire was used to obtain the respondent’s background information. Also, the environmental and physiological measurements were carried out to determine the heat stress index (HSI) and physiological strain index (PSI). The HSI was monitored by using WetBulb globe temperature meter, whereas the physiological parameters were assessed by using thermometer, blood pressure monitor, and blood cholesterol/glucose monitor kit. The study shows that there is a significant difference between HSI, blood pressure, and blood glucose levels among organic and conventional farmers. Both groups of farmers also have a significant association between blood glucose and blood pressure. The findings of this study suggest that pesticide use can act as a synergistic effect, resulting in more significant health effects for those who were exposed to heat in their work environment. Given the impact of climate change on the agriculture sector, the disparity in the heat-related health effects between pesticides used and nonpesticides used farming community may serve as a critical factor to consider while implementing the workplace heat stress program in the agricultural industry.

The effect of ambient temperature on infectious diarrhea and diarrhea-like illness in Wuxi, China

BACKGROUND: The disease burden of infectious diarrhea cannot be underestimated. Its seasonal patterns indicate that weather patterns may play an important role and have an important effect on it. The objective of this study was to clarify the relationship between temperature and infectious diarrhea, and diarrhea-like illness. METHODS: Distributed lag non-linear model, which was based on the definition of a cross-basis, was used to examine the effect. RESULTS: Viral diarrhea usually had high incidence in autumn-winter and spring with a peak at -6°C; Norovirus circulated throughout the year with an insignificant peak at 8°C, while related bacteria usually tested positive in summer and peaked at 22°C. The lag-response curve of the proportion of diarrhea-like cases in outpatient and emergency cases revealed that at -6°C, with the lag days increasing, the proportion increased. Similar phenomena were observed at the beginning of the curves of virus and bacterial positive rate, showing that the risk increased as the lag days increased, peaking on days 16 and 9, respectively. The shape of lag-response curve of norovirus positive rate was different from others, presenting m-type, with 2 peaks on day 3 and day 18. CONCLUSION: Weather patterns should be taken into account when developing surveillance programs and formulating relevant public health intervention strategies.

The effect of climate change on yellow fever disease burden in Africa

Yellow Fever (YF) is an arbovirus endemic in tropical regions of South America and Africa and it is estimated to cause 78,000 deaths a year in Africa alone. Climate change may have substantial effects on the transmission of YF and we present the first analysis of the potential impact on disease burden. We extend an existing model of YF transmission to account for rainfall and a temperature suitability index and project transmission intensity across the African endemic region in the context of four climate change scenarios. We use these transmission projections to assess the change in burden in 2050 and 2070. We find disease burden changes heterogeneously across the region. In the least severe scenario, we find a 93.0%[95%CI(92.7, 93.2%)] chance that annual deaths will increase in 2050. This change in epidemiology will complicate future control efforts. Thus, we may need to consider the effect of changing climatic variables on future intervention strategies.

The effect of climate variables on the incidence of Crimean Congo Hemorrhagic Fever (CCHF) in Zahedan, Iran

BACKGROUND: The Crimean-Congo Hemorrhagic fever (CCHF) is endemic in Iran and has a high fatality rate. The aim of this study was to investigate the association between CCHF incidence and meteorological variables in Zahedan district, which has a high incidence of this disease. METHODS: Data about meteorological variables and CCHF incidence was inquired from 2010 to 2017 for Zahedan district. The analysis was performed using univariate and multivariate Seasonal Autoregressive Integrated Moving Average (SARIMA) models and Generalized Additive Models (GAM) using R software. AIC, BIC and residual tests were used to test the goodness of fit of SARIMA models, and R(2) was used to select the best model in GAM/GAMM. RESULTS: During the years under study, 190 confirmed cases of CCHF were identified in Zahedan district. The fatality rate of the disease was 8.42%. The disease trend followed a seasonal pattern. The results of multivariate SARIMA showed the (0,1,1) (0,1,1)(12) model with maximum monthly temperature lagged 5?months, forecasted the disease better than other models. In the GAM, monthly average temperature lagged 5?months, and the monthly minimum of relative humidity and total monthly rainfall without lag, had a nonlinear relation with the incidence of CCHF. CONCLUSIONS: Meteorological variables can affect CCHF occurrence.

The effect of diurnal temperature range on blood pressure among 46,609 people in Northwestern China

BACKGROUND: A large number of studies have found a positive association between diurnal temperature range (DTR) and cardiovascular diseases (CVDs) incidence and mortality. Few studies regarding the effects of DTR on blood pressure (BP) are available. OBJECTIVE: To investigate the effects of DTR on BP in Jinchang, northwestern China. METHODS: Based on a prospective cohort research, a total of 46,609 baseline survey data were collected from 2011 to 2015. The meteorological observation data and environmental monitoring data were collected in the same period. The generalized additive model (GAM) was used to estimate the relationship between DTR and BP after adjusting for confounding variables. RESULTS: Our study found that there was a positive linear correlation between DTR and systolic blood pressure (SBP) and plus pressure (PP), and a negative linear correlation between DTR and diastolic blood pressure (DBP). With a 1 °C increase of DTR, SBP and PP increased 0.058 mmHg (95%CI: 0.018-0.097) and 0.114 mmHg (95%CI: 0.059-0.168) respectively, and DBP decreased 0.039 mmHg (95%CI:-0.065 ~ -0.014). There was a significant interaction between season and DTR on SBP and PP. DTR had the greatest impact on SBP and PP in hot season. The association between DTR and BP varied significantly by education level. CONCLUSION: There was a significant association between DTR and BP in Jinchang, an area with large temperature change at high altitudes in northwestern China. These results provide new evidence that DTR is an independent risk factor for BP changes among general population. Therefore, effective control and management of BP in the face of temperature changes can help prevent CVDs.

The effect of green roofs on the reduction of mortality due to heatwaves: Results from the application of a spatial microsimulation model to four European cities

Embedding nature-based solutions (NBS) in cities is expected to bring quantifiable benefits, including resilience to flooding, drought, and heatwaves, and air quality improvement. Among NBS, green roofs have an important role in temperature regulation in buildings and in lowering the damaging effects of heatwaves on human health. In this paper a spatial microsimulation model is implemented to simulate temperature impacts of green roofs installations in cities and their capacity to attenuate the effects of heatwave episodes. Particularly vulnerable to heatwaves are elderly people with limited mobility, who have limited means to seek cooling and create cooler indoor environments. The model, implemented using the Netlogo platform (version 6.0.4), considers as agents the elderly citizens in a city area and simulates the heatwave-related health impacts, which are measured in mortality likelihood. In particular, the model simulates a generalised 1.5 degrees C to 3 degrees C indoor temperature reduction range induced by green roofs (based on inferences from green roof literature) in four different European cities: Szeged (Hungary), Alcal’a de Henares (Spain), Metropolitan City of Milan (Italy) and Cankaya municipality (Turkey). The simulation utilises a ceteris paribus modelling approach, meaning that the relationships of the observed phenomenon (mortality induced by heatwaves) with other possible influencing factors (e.g. level of sport and physical activities practiced by people) are not taken into account. In the case of Szeged, Alcal’a de Henares, and Cankaya municipality a substantial reduction in mortality is found to occur associated with green roofs roll out. In the case of the Metropolitan city of Milan, green roofs installations show a low mitigation effect in some scenarios. The underlying factor is the temperature threshold parameter of the model, above which heatwave mortality occurs. This parameter was inferred from the literature (Baccini M., et al., 2008) and it resulted to be substantially higher in the Metropolitan city of Milan (31.8 degrees C) than in the other cities. The simulation helps in obtaining results which are specific to a given city and particular scenarios therein, and provides additional insights, such as expected temperature mitigation effect induced by green roofs under climate change conditions, or the indoor temperature reduction targets that are needed for a particular city to have a maximum desired heatwave mitigation impact. However, the model parameters have to be carefully selected, after an accurate study of the domain literature.

The effect of heat and cold waves on the mortality of persons with Dementia in Germany

We investigated whether persons with dementia (PwD) are at particular risk of mortality when exposed to extreme temperatures and whether the temperature effect depends on long-term care (LTC) need and residency. German health claims data provide information on inpatient and outpatient sectors. Data from the German Meteorological Service were merged, and measures of immediate and delayed heat, cold, and normal temperature (Heat Index, Wind Chill Temperature Index) were calculated. Cox models were applied to explore the interaction of temperature, dementia, and LTC, as well as residency. Immediate and delayed effects of heat and cold were tested as compared to normal temperatures. Models were adjusted for age, sex, comorbidities, urban/rural living, and summer/winter climate zones. The 182,384 persons aged >= 65 contributed 1,084,111 person-years and 49,040 deaths between 2004 and 2010. At normal temperatures, PwD had a 37% (p-value < 0.001) increased mortality risk compared to persons without dementia (PwoD). Immediate heat effects further increased this effect by 11% (p = 0.031); no immediate heat effect existed for PwoD. The immediate heat effect was even greater for PwD suffering from severe or extreme physical impairment and for those living in private households and nursing homes. Immediate and delayed cold effects increased mortality independent of dementia. Care level and type of residency did not modify this effect among PwD. PwD revealed an increased vulnerability to immediate heat effects. Cold waves were risk factors for both groups. LTC need appeared to be an important intervening factor.

The effect of meteorological variables on suicide

We aimed to reveal the relationship between the meteorological variables and suicide rates (completed suicides and suicide attempts) independently of the seasonal cycle and holiday effects. This is an observational retrospective study. We collected the data on age, gender, and suicide method of all suicide cases transferred to hospitals from the scene by emergency medical services as well as those cases in which the victim died on the scene between January 1, 2017 and June 30, 2019. We also collected data on maximum, minimum, and average temperatures (°C), average humidity (%), and average actual pressure (hPa) measured daily in Ankara. The total number of cases due to suicide between the given dates was 6777. The suicide method in 60.1% of the cases was drug poisoning, which was the most common suicide method. Investigating the effect of meteorological variables on suicide cases (suicide attempts and completed suicides), the present study found that after smoothing the effect of the day of the week and seasonality, an increase in the minimum temperature on the day of the application by 1 unit (1°C degree) leads to an increase in the number of suicides by 0.01 point (0.01?±?0.005, p =?0.046). There was no significant change in the variables other than the minimum temperature. We believe that the results of the present study will contribute to growing body literature about the epidemiology of suicide. We also believe that there is a need for large-scale studies that include individual data to reveal causality.

The Association between air temperature and mortality in two Brazilian health regions

Air temperature, both cold and hot, has impacts on mortality and morbidities, which are exacerbated by poor health service and protection responses, particularly in under-developed countries. This study was designed to analyze the effects of air temperature on the risk of deaths for all and specific causes in two regions of Brazil (Florianopolis and Recife), between 2005 and 2014. The association between temperature and mortality was performed through the fitting of a quasi-Poisson non-linear lag distributed model. The association between air temperature and mortality was identified for both regions. The results showed that temperature exerted influence on both general mortality indicators and specific causes, with hot and cold temperatures bringing different impacts to the studied regions. Cerebrovascular and cardiovascular deaths were more sensitive to cold temperatures for Florianopolis and Recife, respectively. Based on the application of the very-well documented state-of-the-art methodology, it was possible to conclude that there was evidence that extreme air temperature influenced general and specific deaths. These results highlighted the importance of consolidating evidence and research in tropical countries such as Brazil as a way of understanding climate change and its impacts on health indicators.

The Association between the frequency of Rhegmatogenous Retinal Detachment and atmospheric temperature

Rhegmatogenous retinal detachment (RRD) frequency was observed to be higher with an increase in the daily temperature range. This showed that a wide daily range of temperature, rather than the absolute value of the temperature, is associated with the occurrence of RRD. Purpose. To investigate the association between the frequency of rhegmatogenous retinal detachment (RRD) and the atmospheric temperature. Method. A retrospective review of consecutive eyes that had undergone primary RRD surgery from 1996 to 2016 at Chungbuk National University Hospital was conducted. Temperature data (highest, lowest, and mean daily temperatures and daily temperature range) in Chungbuk Province were obtained from the Korean Meteorological Administration database. We investigated the relationship between the daily temperature range and the frequency of RRD surgery. We also analyzed the association between various temperature data and the frequency of RRD surgery. Result. There were 1,394 RRD surgeries from 1996 to 2016. Among them, 974 eyes were included in this study. The monthly average number of RRD operations showed a bimodal peak (in April and October) throughout the year. With the same tendency as the frequency of RRD, the monthly average of the daily temperature range over 1 year also showed a bimodal peak in April and October. There was a significant positive correlation between the monthly average of the daily temperature range and the number of RRD surgeries (r?=?0.297, P < 0.001). However, there were no associations between RRD frequency and the mean temperature, highest temperature, and lowest temperature. Conclusion. The higher the daily temperature range, the higher was the RRD frequency observed. We speculated that dynamic changes in temperature during the day may affect degrees in chorioretinal adhesion and liquefaction of the vitreous, which may eventually result in retinal detachment. Therefore, further experimental studies on the correlation between temperature changes and retinal detachment are needed.

The association between ambient temperature and clinical visits for inflammation-related diseases in rural areas in China

BACKGROUND: The association between temperature and mortality has been widely reported. However, it remains largely unclear whether inflammation-related diseases, caused by excessive or inappropriate inflammatory reaction, may be affected by ambient temperature, particularly in low-income areas. OBJECTIVES: To explore the association between ambient temperature and clinical visits for inflammation-related diseases in rural villages in the Ningxia Hui Autonomous Region, China, during 2012?2015. METHODS: Daily data on inflammation-related diseases and weather conditions were collected from 258 villages in Haiyuan (161 villages) and Yanchi (97 villages) counties during 2012?2015. A Quasi-Poisson regression with distributed lag non-linear model was used to examine the association between temperature and clinical visits for inflammation-related diseases. Stratified analyses were performed by types of diseases including arthritis, gastroenteritis, and gynecological inflammations. RESULTS: During the study period, there were 724,788 and 288,965 clinical visits for inflammation-related diseases in Haiyuan and Yanchi, respectively. Both exposure to low (RR: 2.045, 95% CI: 1.690, 2.474) and high temperatures (RR: 1.244, 95% CI: 1.107, 1.399) were associated with increased risk of total inflammation-related visits in Haiyuan county. Low temperatures were associated with increased risks of all types of inflammation-related diseases in Yanchi county (RR: 4.344, 95% CI: 2.887, 6.535), while high temperatures only affected gastroenteritis (RR: 1.274, 95% CI: 1.040, 1.561). Moderate temperatures explained approximately 26% and 33% of clinical visits due to inflammation-related diseases in Haiyuan and Yanchi, respectively, with the burden attributable to cold exposure higher than hot exposure. The reference temperature values ranged from 17 to 19 in Haiyuan, and 12 to 14 in Yanchi for all types of clinical visits. CONCLUSIONS: Our findings add additional evidence for the adverse effect of suboptimal ambient temperature and provide useful information for public health programs targeting people living in rural villages.

The association between ambient temperature and sperm quality in Wuhan, China

BACKGROUND: Few epidemiological investigations have focused on the influence of environmental temperature on human sperm quality. Here, we evaluated the potential association between ambient temperature and human sperm quality in Wuhan, China, and examined the interactive effect of particulate matter (PM(2.5)) and temperature. METHODS: 1780 males who had been living in Wuhan for no less than three months and received semen analysis at the Department of Reproductive Medicine in Renmin Hospital of Wuhan University between April 8, 2013 and June 30, 2015 were recruited. Daily mean meteorological data and air pollution data (PM(2.5), O(3) and NO(2)) in Wuhan between 2013 and 2015 were collected. A generalized linear model was used to explore the associations between ambient temperature and sperm quality (including sperm concentration, percentage of normal sperm morphology, and progressive motility) at 0-9, 10-14, 15-69, 70-90, and 0-90?days before semen examination, and the interaction between temperature and PM(2.5). RESULTS: The associations between ambient temperature and sperm quality were an inverted U-shape at five exposure windows, except for a lag of 0-9?days for sperm concentration. A 1?°C increase in ambient temperature above the thresholds was associated with a 2.038 (1.292?~?2.783), 1.814 (1.217?~?2.411), 1.458 (1.138?~?1.777), 0.934(0.617?~?1.251) and 1.604 (1.258?~?1.951) decrease in the percentage of normal sperm morphology at lag 0-9, lag 10-14, lag 15-69, lag 70-90, and lag 0-90?days, respectively. The interaction p-values of PM(2.5) and temperature were mostly less than 0.05 at five exposure windows. When ambient temperature exposure levels were above the thresholds, a 0.979 (0.659-1.299) and 3.559 (0.251?~?6.867) decrease in percentage of normal sperm morphology per 1?°C increase in temperature at lag 0-90?days was observed in the PM(2.5)???P(50) group and PM(2.5)?>?P(50) group, respectively. CONCLUSIONS: Our results indicate that exposure to ambient temperature has a threshold effect on sperm quality, and PM(2.5) enhances the effect of temperature on sperm quality when temperatures are above the threshold.

The association between pneumothorax onset and meteorological parameters and air pollution

BACKGROUND: The aim of this study was to investigate the possible relation of meteorological parameters and air pollutant particle concentrations with the incidence of spontaneous pneumothorax in the Bolu region of Turkey. METHODS: Between January 2015 and February 2019, a total of 200 patients (175 males, 25 females; mean age 42.5±19.9 years, range, 10 to 88 years) with spontaneous pneumothorax were retrospectively analyzed. For each day, standard weather parameters including daily average temperature, relative humidity, wind speed, actual pressure, and daily total precipitation and concentration of air pollutants (PM(10) and SO(2)) were recorded. RESULTS: During the study period, there were 200 cases with spontaneous pneumothorax within 178 days. The number of days with spontaneous pneumothorax represented 11.8% of the total number of days (1,504 days). In the study, 76.9% of the days with spontaneous pneumothorax were clustered. All meteorological (temperature, humidity, pressure, wind speed, and precipitation) and air pollution parameters (PM10 a nd SO(2)) were available for 1,438 days (95.61%) and 853 days (56.71%), respectively. There was a significant relationship between spontaneous pneumothorax and air temperature (r=-0.094, p=0.001), and air pollution (PM10, r=-0.080, p=0.020; SO(2), r=-0.067, p=0.045). CONCLUSION: Our study results show a relationship between spontaneous pneumothorax and air temperature, and air pollution. Preventing air pollution, which is a public health problem, can lead to a reduction in spontaneous pneumothorax.

The association between sporadic Legionnaires’ disease and weather and environmental factors, Minnesota, 2011-2018

From 2011 through 2018, there was a notable increase in sporadic Legionnaires’ disease in the state of Minnesota. Sporadic cases are those not associated with a documented outbreak. Outbreak-related cases are typically associated with a common identified contaminated water system; sporadic cases typically do not have a common source that has been identified. Because of this, it is hypothesised that weather and environmental factors can be used as predictors of sporadic Legionnaires’ disease. An ecological design was used with case report surveillance data from the state of Minnesota during 2011 through 2018. Over this 8-year period, there were 374 confirmed Legionnaires’ disease cases included in the analysis. Precipitation, temperature and relative humidity (RH) data were collected from weather stations across the state. A Poisson regression analysis examined the risk of Legionnaires’ disease associated with precipitation, temperature, RH, land-use and age. A lagged average 14-day precipitation had the strongest association with Legionnaires’ disease (RR 2.5, CI 2.1-2.9), when accounting for temperature, RH, land-use and age. Temperature, RH and land-use also had statistically significant associations to Legionnaires’ disease, but with smaller risk ratios. This study adds to the body of evidence that weather and environmental factors play an important role in the risk of sporadic Legionnaires’ disease. This is an area that can be used to target additional research and prevention strategies.

The association between the seasonality of pediatric pandemic influenza virus outbreak and ambient meteorological factors in Shanghai

BACKGROUND AND OBJECTIVES: The number of pediatric patients diagnosed with influenza types A and B is increasing annually, especially in temperate regions such as Shanghai (China). The onset of pandemic influenza viruses might be attributed to various ambient meteorological factors including temperature, relative humidity (Rh), and PM(1) concentrations, etc. The study aims to explore the correlation between the seasonality of pandemic influenza and these factors. METHODS: We recruited pediatric patients aged from 0 to 18?years who were diagnosed with influenza A or B from July 1st, 2017 to June 30th, 2019 in Shanghai Children’s Medical Centre (SCMC). Ambient meteorological data were collected from the Shanghai Meteorological Service (SMS) over the same period. The correlation of influenza outbreak and meteorological factors were analyzed through preliminary Pearson’s r correlation test and subsequent time-series Poisson regression analysis using the distributed lag non-linear model (DLNM). RESULTS: Pearson’s r test showed a statistically significant correlation between the weekly number of influenza A outpatients and ambient meteorological factors including weekly mean, maximum, minimum temperature and barometric pressure (P?

The burden of air pollution and temperature on Raynaud’s phenomenon secondary to systemic sclerosis

OBJECTIVES: to evaluate the effect of air pollution (ozone – O3 and particulate matter <=10 ?m and <=2.5 ?m - PM10 and PM2.5) on the severity of Raynaud's phenomenon (RP) secondary to systemic sclerosis (SSc). DESIGN: cross-sectional, observational, and single centre study. SETTING AND PARTICIPANTS: all consecutive SSc patients residing in Lombardy (Northern Italy) were enrolled. PM10, PM2.5, and O3 concentrations were calculated for each patient at municipality resolution in the week before the evaluation. Similar considerations were made for meteorological variables (temperature and humidity). MAIN OUTCOME MEASURES: patients were asked to assess RP severity during the week before the evaluation according to a visual analogue scale (VAS). Ordinal logistic regression models were fitted to evaluate the short-term effect of temperature and air pollution with respect to RP. A univariate linear regression model was created to consider the association between temperature and pollutants. RESULTS: in this study, 87 SSc patients were enrolled. Temperature was confirmed to strongly influence RP severity. PM10 and PM.5 were found to significantly worsen RP severity for the first four days before the evaluation, including the day of the visit, and as mean up to six days before the evaluation. O3 seemed to exert a protective effect on RP severity that was significant for the first four days before the evaluation, including the day of the visit, and as mean up to seven days before the evaluation. CONCLUSIONS: since the overwhelming effect of temperature on RP, final conclusions about the exact contribution of pollutants on RP severity cannot be drawn because of the strong inter-correlation between air pollution and temperature.

The burden of childhood hand-foot-mouth disease morbidity attributable to relative humidity: A multicity study in the Sichuan Basin, China

Hand, foot and mouth disease (HFMD) is a growing threat to children’s health, causing a serious public health burden in China. The relationships between associated meteorological factors and HFMD have been widely studied. However, the HFMD burden due to relative humidity from the perspective of attributable risk has been neglected. This study investigated the humidity-HFMD relationship in three comprehensive perspectives, humidity-HFMD relationship curves, effect modification and attributable risks in the Sichuan Basin between 2011 and 2017. We used multistage analyses composed of distributed lag nonlinear models (DLNMs), a multivariate meta-regression model and the calculations of attributable risk to quantify the humidity-HFMD association. We observed a J-shaped pattern for the pooled cumulative humidity-HFMD relationship, which presented significant heterogeneity relating to the geographical region and number of primary school students. Overall, 27.77% (95% CI 25.24-30.02%) of HFMD infections were attributed to humidity. High relative humidity resulted in the greatest burden of HFMD infections. The proportion of high humidity-related HFMD in the southern basin was higher than that in the northern basin. The findings provide evidence from multiple perspectives for public health policy formulation and health resource allocation to develop priorities and targeted policies to ease the HFMD burden associated with humidity.

The contribution of air temperature and ozone to mortality rates during hot weather episodes in eight German cities during the years 2000 and 2017

Hot weather episodes are globally associated with excess mortality rates. Elevated ozone concentrations occurring simultaneously also contribute to excess mortality rates during these episodes. However, the relative importance of both stressors for excess mortality rates is not yet known and assumed to vary from region to region. This study analyzes time series of daily observational data of air temperature and ozone concentrations for eight of the largest German cities during the years 2000 and 2017 with respect to the relative importance of both stressors for excess mortality rates in each city. By using an event-based risk approach, various thresholds for air temperature were explored for each city to detect hot weather episodes that are statistically associated with excess mortality rates. Multiple linear regressions were then calculated to investigate the relative contribution of variations in air temperature and ozone concentrations to the explained variance in mortality rates during these episodes, including the interaction of both predictors. In all cities hot weather episodes were detected that are related to excess mortality rates. Across the cities, a strong increase of this relation was observed around the 95th percentile of each city-specific air temperature distribution. Elevated ozone concentrations during hot weather episodes are also related to excess mortality rates in all cities. In general, the relative contribution of elevated ozone concentrations on mortality rates declines with increasing air temperature thresholds and occurs mainly as a statistically inseparable part of the air temperature impact. The specific strength of the impact of both stressors varies across the investigated cities. City-specific drivers such as background climate and vulnerability of the city population might lead to these differences and could be the subject of further research. These results underline strong regional differences in the importance of both stressors during hot weather episodes and could thus help in the development of city-specific heat- ozone-health warning systems to account for city-specific features.

Targeted temperature management in patients with severe heatstroke: Three case reports and treatment recommendations

RATIONALE: Unprecedented heatwaves over the past several years are getting worse with longer duration in the course of global warming. Heatstroke is a medical emergency with multiple organ involvement and life-threatening illness with a high mortality rate of up to 71%. Uncontrolled damage to the central nervous system can result in severe cerebral edema, permanent neurological sequelae, and death. However, regarding the therapeutic aspects of heat stroke, there was no therapeutic strategy after the rapid cooling of the core body temperature to <39°C to prevent further injury. PATIENT CONCERNS: Each of 3 patients developed a change of mental statuses after the exposure to summer heatwaves or relatively high environmental temperatures with high humidity in the sauna. DIAGNOSES: The patients were diagnosed with severe heatstroke since they showed cerebral edema and multiple organ dysfunction based on the results from laboratory tests and the findings in brain computed tomography scan. INTERVENTIONS: The patients underwent induced therapeutic hypothermia (<36°C) between 24 and 36?hours in the management of severe heatstroke. OUTCOMES: The patients survived from cerebral edema and multiple organ dysfunction. LESSONS: We believe that targeted temperature management (<36°C) will help treat severe heatstroke. Thus it should be considered for reducing the chance of development of complications in multiple organs, especially in the central nervous system, when managing patients with severe heatstroke.

Temperature and hand, foot and mouth disease in California: An exploratory analysis of emergency department visits by season, 2005-2013

BACKGROUND: For the past decade, hand, foot and mouth disease (HFMD), caused by entero and coxsackie viruses, has been spreading in Asia, particularly among children, overloading healthcare settings and creating economic hardships for parents. Recent studies have found meteorological factors, such as temperature, are associated with HFMD in Asia. However, few studies have explored the relationship in the United States, although HFMD cases have steadily increased recently. As concerns of climate change grow, we explored the association between temperature and HFMD admissions to the Emergency Department (ED) in California. METHODS: Weekly counts of HFMD for 16 California climate zones were collected from 2005 to 2013. We calculated weekly temperature for each climate zone using an inverse distance-weighting method. For each climate zone stratified by season, we conducted a time-series using Poisson regression models. We adjusted models for weekly averaged relative humidity, average number of HFMD cases in previous weeks and long-term temporal trends. Climate zone estimates were combined to obtain an overall seasonal estimate. We attempted stratified analyses by region, race/ethnicity, and sex to identify sensitive subpopulations. RESULTS: Risk of ED visits for HFMD per 1 °F increase in mean temperature during the same week increased 2.00% (95% confidence intervals 1.15, 2.86%) and 2.35% (1.38, 3.33%) during the warm and cold seasons, respectively. The coastal region showed a higher, though not statistically different, association during the cold season [3.18% (1.99, 4.39)] than the warm season [1.64% (0.47, 2.82)]. CONCLUSIONS: Our findings indicated an association between temperature and ED visits for HFMD, with variation by season and region. Thus, the causative pathogen’s ability to persist in the atmosphere may vary by season. Furthermore, the mild and wet winter in the coastal region of California may contribute to different results than studies in Asia. With the onset of climate change, HFMD cases will likely grow in California, warranting further investigation on this relationship, including new populations at-risk.

Temperature and humidity associated with increases in tuberculosis notifications: A time-series study in Hong Kong

Previous studies have revealed associations of meteorological factors with tuberculosis (TB) cases. However, few studies have examined their lag effects on TB cases. This study was aimed to analyse nonlinear lag effects of meteorological factors on the number of TB notifications in Hong Kong. Using a 22-year consecutive surveillance data in Hong Kong, we examined the association of monthly average temperature and relative humidity with temporal dynamics of the monthly number of TB notifications using a distributed lag nonlinear models combined with a Poisson regression. The relative risks (RRs) of TB notifications were >1.15 as monthly average temperatures were between 16.3 and 17.3 °C at lagged 13-15 months, reaching the peak risk of 1.18 (95% confidence interval (CI) 1.02-1.35) when it was 16.8 °C at lagged 14 months. The RRs of TB notifications were >1.05 as relative humidities of 60.0-63.6% at lagged 9-11 months expanded to 68.0-71.0% at lagged 12-17 months, reaching the highest risk of 1.06 (95% CI 1.01-1.11) when it was 69.0% at lagged 13 months. The nonlinear and delayed effects of average temperature and relative humidity on TB epidemic were identified, which may provide a practical reference for improving the TB warning system.

Temperature and light effects on Trichobilharzia szidati cercariae with implications for a risk analysis

BACKGROUND: Cercarial dermatitis (swimmer’s itch) caused by bird schistosome cercariae, released from intermediate host snails, is a common disorder also at higher latitudes. Several cases were observed in the artificial Danish freshwater Ringen Lake frequently used by the public for recreational purposes. The lake may serve as a model system when establishing a risk analysis for this zoonotic disease. In order to explain high risk periods we determined infection levels of intermediate host snails from early spring to late summer (March, June and August) and elucidated the effect of temperature and light on parasite shedding, behavior and life span. RESULTS: Field studies revealed no shedding snails in March and June but in late summer the prevalence of Trichobilharzia szidati infection (in a sample of 226 pulmonate Lymnaea stagnalis snails) reached 10%. When investigated under laboratory conditions the cercarial shedding rate (number of cercariae shed per snail per day) was positively correlated to temperature raising from a mean of 3000 (SD 4000) at 7 °C to a mean of 44,000 (SD 30,000) at 27 °C). The cercarial life span was inversely correlated to temperature but the parasites remained active for up to 60 h at 20 °C indicating accumulation of cercariae in the lake during summer periods. Cercariae exhibited positive phototaxy suggesting a higher pathogen concentration in surface water of the lake during daytime when the public visits the lake. CONCLUSION: The only causative agent of cercarial dermatitis in Ringen Lake detected was T. szidati. The infection risk associated with aquatic activities is low during spring and early summer (March-June). In late summer the risk of infection is high since the release, behavior and life span of the infective parasite larvae have optimal conditions.

Temperature and preeclampsia: Epidemiological evidence that perturbation in maternal heat homeostasis affects pregnancy outcome

INTRODUCTION: This study aims to determine the association between temperature and preeclampsia and whether it is affected by seasonality and rural/urban lifestyle. METHODS: This cohort study included women who delivered at our medical center from 2004 to 2013 (31,101 women, 64,566 deliveries). Temperature values were obtained from a spatiotemporally resolved estimation model performing predictions at a 1×1km spatial resolution. In “Warm” pregnancies >50% of gestation occurred during the spring-summer period. In cold pregnancies >50% of gestation occurred during the fall and winter. Generalized estimating equation multivariable models were used to estimate the association between temperature and incidence of preeclampsia. RESULTS: 1) The incidence of preeclampsia in at least one pregnancy was 7% (2173/64,566); 2) during “warm” pregnancies, an elevation of one IQR of the average temperature in the 1st or the 3rd trimesters was associated with an increased risk to develop preeclampsia [patients with Jewish ethnicity: 1st trimester: relative risk (RR) of 2.38(95%CI 1.50; 3.80), 3rd trimester 1.94(95%CI 1.34;2.81); Bedouins: 1st trimester: RR = 2.91(95%CI 1.98;4.28), 3rd trimester: RR = 2.37(95%CI 1.75;3.20)]; 3) In “cold” pregnancies, an elevation of one IQR of average temperature was associated with a lower risk to develop preeclampsia among patients with Bedouin-Arab ethnicity RR = 0.68 (95% CI 0.49-0.94) for 1st trimester and RR = 0.62 (95% CI 0.44-0.87) for 3rd trimester. CONCLUSIONS: 1) Elevated averaged temperature during the 1st or 3rd trimesters in “warm” pregnancies confer an increased risk for the development of preeclampsia, especially in nomadic patients; 2) Of interest, during cold pregnancies, elevated averaged temperature was associated with a lower risk to develop preeclampsia for nomadic patients. 3) These findings suggest temperature might be associated with perturbations in maternal heat homeostasis resulting in reallocation of energy resources and their availability to the fetus that may increase the risk for preeclampsia. This observation is especially relevant in the context of global warming and its effects on maternal/fetal reproductive health.

Temperature and self-reported mental health in the United States

This study estimates the association between temperature and self-reported mental health. We match individual-level mental health data for over three million Americans between 1993 and 2010 to historical daily weather information. We exploit the random fluctuations in temperature over time within counties to identify its effect on a 30-day measure of self-reported mental health. Compared to the temperature range of 60-70°F, cooler days in the past month reduce the probability of reporting days of bad mental health while hotter days increase this probability. We also find a salience effect: cooler days have an immediate effect, whereas hotter days tend to matter most after about 10 days. Using our estimates, we calculate the willingness to pay to avoid an additional hot day in terms of its impact on self-reported mental health.

Temperature as a modifier of the effects of air pollution on cardiovascular disease hospital admissions in Cape Town, South Africa

Climate change and air pollution are two independent risk factors to cardiovascular diseases (CVD). Few studies investigated their interaction and potential effect modification of one another in developing countries. Individual level CVD hospital admission (ICD10: I00-I99) data for 1 January 2011 to 31 October 2016 were obtained from seven private hospitals in Cape Town. NO(2), SO(2), PM(10), temperature and relative humidity data were obtained from the South African Weather Services and the City of Cape Town. A case-crossover epidemiological study design and conditional logistic regression model were applied. Various cut-off values were applied to classify cold and warm days. In total, 54,818 CVD hospital admissions were included in the study. In general, on warm and cold days the 15-64 years old group was more at risk for CVD hospitalization with increasing air pollution levels compared to all ages combined or the ??65 years old group. Females appeared to be more at risk than males with increasing PM(10) levels. In contrast, males were more vulnerable to the effects of NO(2) and SO(2) than females. The study showed the modification effect of temperature on air pollution associated with CVD hospital admissions. The consideration of such interaction will help in policy making and public health interventions dealing with climate change-related health risks.

Temperature decline is a trigger of subarachnoid hemorrhage: Case-crossover study with distributed lag model

OBJECTIVE: The aim was to use a novel statistical test to predict the trend of subarachnoid hemorrhage (SAH) incidence in response to temperature change and demonstrate its delayed effect in a short hazard period. PATIENTS AND METHODS: In a retrospective study, data collected between January 2005 and September 2019 were analyzed and 1682 consecutive SAH patients from one hospital were enrolled. Meteorological data in this period including temperature, atmospheric pressure, and humidity were obtained from the China Surface Meteorological Station. Using a case-crossover analysis and distributed lag linear model (DLM) with 4 days lag period to assess the association of temperature change from the previous day (TCP) and risk of SAH. Results were presented as overall cumulative odds ratios (ORs) and 95% CI. RESULTS: Temperature decline was associated with increased risks of SAH: overall cumulative OR was 1.14 (95% CI: 1.05-1.23) for -1.1°C; 2.11 (95% CI: 1.37-3.25) for -6.2°C, as compared with a reference TCP of 0°C. Temperature decline on the day of SAH onset was significantly associated with SAH incidence days, ORs 1.34 (95% CI: 1.19-1.52). In addition, December, ORs 1.49 (95% CI: 1.17-1.90) in winter was the ictus peak in Rizhao throughout the year. CONCLUSIONS: Temperature decline from the previous day is a trigger for the occurrence of SAH. Its effect was most apparent on the day of exposure.

Temperature modulation of the adverse consequences on human mortality due to exposure to fine particulates: A study of multiple cities in China

Exposure to particulate matter of smaller than 2.5 ?m in diameter (PM(2.5)) is linked to increased human mortality, and could be further complicated by concurrent ambient air temperatures. Published reports indicate that the association between ambient temperatures and mortality due to PM(2.5) exposure is dissimilar across different geographic areas. Thus, it is unclear how ambient temperatures at different geographic locations can together modulate the influence of PM(2.5) on mortality. In this paper, we examined how temperature modulated the association between mortality and PM(2.5) exposure in 15 Chinese cities during 2014-2016. For analysis, First, Poisson generalized additive models under different temperature stratifications (<10th, 10-90th, and >90th temperature percentiles) was used to estimate PM(2.5) associations to mortality, which were specific to different cities. Second, we used a meta-analysis to combine the effects at each temperature stratum and region (southern and northern China). Results revealed that high temperatures (daily mean temperature >90th percentile) robustly amplified observed associations of mortality and PM(2.5) exposure, and the modifications were heterogeneous geographically. In the northern regions, a 10 ?g/m(3) increment in PM(2.5) was associated with 0.18%, 0.28%, and 1.54% increase in non-accidental mortalities and 0.33%, 0.39%, and 1.32% increase in cardiovascular mortalities at low, moderate, and high temperature levels, respectively. In the southern regions, a 10 ?g/m(3) increment in PM(2.5) was associated with 0.52%, 0.62%, and 1.90% increase in non-accidental mortalities and 0.55%, 0.98%, and 2.25% increase in cardiovascular mortalities at low, moderate, and high temperature levels, respectively. It is concluded that temperature altered PM(2.5)-mortality associations in southern and northern China synergistically, but the effect was more pronounced in the south. Therefore, geography and temperature need to be considered when studying how PM(2.5) affects health.

Temperature variability and hospital admissions for Chronic Obstructive Pulmonary Disease: Analysis of attributable disease burden and vulnerable subpopulation

PURPOSE: Chronic obstructive pulmonary disease (COPD) is a major cause of chronic diseases causing considerable social and economic burden globally. Despite substantial evidence on temperature-COPD association, few studies have investigated the acute effect of temperature variability (TV), a potential trigger of exacerbation of COPD disease, and it remains unknown what fraction of the disease burden of COPD is attributable to TV. PATIENTS AND METHODS: Based on 71,070 COPD hospitalizations during 2013-2015 in Guangzhou, China, we conducted a time-series analysis using quasi-Poisson regression to assess the association between TV and hospital admission for COPD after adjusting for daily mean temperature. Short-term TV was captured by the standard deviation of hourly or daily temperatures across various exposure days. We also provided the fraction (total number) of COPD attributable to TV. Stratified analyses by admission route, sex, age, occupation, marital status and season were performed to identify vulnerable subpopulations. RESULTS: We found a linear relationship between TV and COPD hospitalization, with a 1°C increase in hourly TV and daily TV associated with 4.3% (95%CI: 2.2-6.4) and 4.0% (2.3-5.8) increases in COPD, respectively. The greater relative risks of TV identified males, people aged 0-64 years, blue collar, and divorced/widowed people as vulnerable population. There were 12.0% (8500 cases) of COPD hospitalization attributable to hourly TV during the study period. Daily TV produced similar estimates of relative effects (relative risk) but grater estimates of absolute effects (attributable fraction) than hourly TV. CONCLUSION: We concluded that TV was an independent risk factor of COPD morbidity, especially among the susceptible subgroups. These findings would be helpful to guide the development of targeted public intervention.

Temperature-dependent variation in the extrinsic incubation period elevates the risk of vector-borne disease emergence

Identifying ecological drivers of disease transmission is central to understanding disease risks. For vector-borne diseases, temperature is a major determinant of transmission because vital parameters determining the fitness of parasites and vectors are highly temperature-sensitive, including the extrinsic incubation period required for parasites to develop within the vector. Temperature also underlies dramatic differences in the individual-level variation in the extrinsic incubation period, yet the influence of this variation in disease transmission is largely unexplored. We incorporate empirical estimates of dengue virus extrinsic incubation period and its variation across a range of temperatures into a stochastic model to examine the consequences for disease emergence. We find that such variation impacts the probability of disease emergence because exceptionally rapid, but empirically observed incubation – typically ignored by modelling only the average – increases the chance of disease emergence even at the limits of the temperature range for dengue transmission. We show that variation in the extrinsic incubation period causes the greatest proportional increase in the risk of disease emergence at cooler temperatures where the mean incubation period is long, and associated variation is large. Thus, ignoring EIP variation will likely lead to underestimation of the risk of vector-borne disease emergence in temperate climates.

Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming

BACKGROUND: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. METHODS: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993-2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. RESULTS: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49% (95%CI: 3.82-7.19) and 0.81% (95%CI: 0.72-0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 °C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45% (95%CI: -0.02-1.06) at 3 °C, 1.53% (95%CI: 0.96-2.06) at 4 °C, and 2.88% (95%CI: 1.60-4.10) at 5 °C, compared to today’s warming level of 1 °C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 °C versus 1 °C of GMT rise. CONCLUSIONS: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany’s most populated cities.

Temporal and climate characteristics of respiratory syncytial virus bronchiolitis in neonates and children in Sousse, Tunisia, during a 13-year surveillance

This study established the correlation between respiratory syncytial virus (RSV) bronchiolitis and climate factors in the area of Sousse, Tunisia, during 13 years (2003-2015), from neonates and children <=?5 years old and hospitalized in Farhat Hached University-Hospital of Sousse. The meteorological data of Sousse including temperature, rainfall, and humidity were obtained. RSV detection was carried out with the direct immunofluorescence assay. The impact of climate factors on viral circulation was statistically analyzed. From 2003 to 2015, the total rate of RSV bronchiolitis accounted for 34.5% and peaked in 2007 and 2013. RSV infection was higher in male cases and pediatric environment (p<0.001) and was detected in 47.3% of hospitalizations in intensive care units. The epidemic of this pathogen started in October and peaked in January (41.6%). When the infectivity of RSV was at its maximum, the monthly average rainfall was high (31 mm) and the monthly average temperature and the monthly average humidity were at their minimum (11 °C and 66%, respectively). RSV activity was negatively correlated with temperature (r?=?-?0.78, p?=?0.003) and humidity (r?=?-?0.62, p?=?0.03). Regression analysis showed that the monthly average temperature fits into a linear model (R(2)?=?61%, p?

Temporal changes in years of life lost associated with heat waves in the Czech Republic

Seniors constitute the population group generally most at risk of mortality due to heat stress. As life expectancy increases and health conditions of elderly people improve over time, vulnerability of the population to heat changes as well. We employed the years-of-life-lost (YLL) approach, considering life expectancy at the time of each death, to investigate how population ageing affects temporal changes in heat-related mortality in the Czech Republic. Using an updated gridded meteorological database, we identified heat waves during 1994-2017, and analysed temporal changes in their impacts on YLL and mortality. The mean impact of a heat-wave day on relative excess mortality and YLL had declined by approximately 2-3% per decade. That decline abated in the current decade, however, and the decreasing trend in mean excess mortality as well as YLL vanished when the short-term mortality displacement effect was considered. Moreover, the cumulative number of excess deaths and YLL during heat waves rose due to increasing frequency and intensity of heat waves during the examined period. The results show that in studies of temporal changes it is important to differentiate between mean effects of heat waves on mortality and the overall death burden associated with heat waves. Analysis of the average ratio of excess?YLL/death per heat-wave day indicated that the major heat-vulnerable population group shifted towards older age (70+?years among males and 75+?years among females). Our findings highlight the importance of focusing heat-protection measures especially upon the elderly population, which is most heat-vulnerable and whose numbers are rising.

Temporal trends of the association between ambient temperature and hospitalisations for cardiovascular diseases in Queensland, Australia from 1995 to 2016: A time-stratified case-crossover study

BACKGROUND: In the context of global warming, studies have turned to assess the temporal trend of the association between temperature and health outcomes, which can be used to reflect whether human beings have adapted to the local temperature. However, most studies have only focused on hot temperature and mortality. We aim to investigate the temporal variations in the association between ambient temperature and hospitalisations for cardiovascular diseases in Queensland, Australia from 1995 to 2016. METHODS AND FINDINGS: We obtained data on 1,855,717 cardiovascular hospitalisations (mean age: 65.9 years, 42.7% female) from all 443 postal areas in Queensland, Australia between January 1, 1995 and December 31, 2016. Grid-level meteorological data were downloaded from scientific information for landowners. We used a time-stratified case-crossover design fitted with a conditional quasi-Poisson regression model and time-varying distributed lag nonlinear model (DLNM) to evaluate the association between temperature and cardiovascular hospitalisations and the temporal trends of the associations. Stratified analyses were performed in different age, sex, and climate zones. In all groups, relative risks (RRs) of cardiovascular hospitalisations associated with high temperatures (heat effects) increased, but cold effects showed a decreasing trend from 1995 to 2016. The increasing magnitude of heat effects was larger (p = 0.002) in men than in women and larger (p < 0.001) in people aged ?69 years than in those aged ?70 years. There was no apparent difference amongst different climate zones. The study was limited by the switch from ICD-9 to ICD-10 coding systems, by being unable to separate first-time hospitalisation from repeated hospitalisations, and possibly by confounding by air pollution or by influenza infections. CONCLUSION: The impacts of cold temperatures on cardiovascular hospitalisations have decreased, but the impacts of high temperatures have increased in Queensland, Australia. The findings highlight that Queensland people have adapted to the impacts of cold temperatures, but not high temperatures. The burden of cardiovascular hospitalisations due to high temperatures is likely to increase in the context of global warming.

Term birthweight and critical windows of prenatal exposure to average meteorological conditions and meteorological variability

BACKGROUND: Heat stress during pregnancy may limit fetal growth, with ramifications throughout the life course. However, critical exposure windows are unknown, and effects of meteorological variability have not been investigated. OBJECTIVES: We aimed to identify sensitive windows for the associations of mean and variability of temperature and humidity with term birthweight. METHODS: We analyzed data from two French mother-child cohorts, EDEN and PELAGIE (n = 4771), recruited in 2002-2006. Temperature exposure was assessed using a satellite-based model with daily 1-km(2) resolution, and relative humidity exposure data were obtained from Météo France monitors. Distributed lag models were constructed using weekly means and standard deviation (SD, to quantify variability) from the first 37 gestational weeks. Analyses were then stratified by sex. Results for each exposure were adjusted for the other exposures, gestational age at birth, season and year of conception, cohort and recruitment center, and individual confounders. RESULTS: There was no evidence of association between term birthweight and mean temperature. We identified a critical window in weeks 6-20 for temperature variability (cumulative change in term birthweight of -54.2 g [95% CI: -102, -6] for a 1 °C increase in SD of temperature for each week in that window). Upon stratification by sex of the infant, the relationship remained for boys (weeks 1-21, cumulative change: -125 g [95% CI: -228, -21]). For mean humidity, there was a critical window in weeks 26-37, with a cumulative change of -28 g (95% CI: -49, -7) associated with a 5% increase in humidity for each week. The critical window was longer and had a stronger association in boys (weeks 29-37; -37 g, 95% CI: -63, -11) than girls (week 14; -1.8 g, 95% CI: -3.6, -0.1). DISCUSSION: Weekly temperature variability and mean humidity during critical exposure windows were associated with decreased term birthweight, especially in boys.

Study of the relationship between the average annual temperature of atmospheric air and the number of tick-bitten humans in the north of European Russia

In recent decades, a considerable increase in the number of tick-bitten humans has been recorded in the north of European Russia. At the same time, significant climatic changes, such as an increase in air temperature, were noticed in this region. The northern border of the ixodidae distribution area lies in the north of European Russia, therefore the analysis of the population dynamics is of particular interest regarding the possible impact of the climate changes. Unfortunately, in such a large territory field, studies on tick abundance are very difficult. In our study, the official statistics for the number of tick-bitten humans were used. This kind of statistical analysis has been conducted in the Russian Federation for many years, and can be used for the estimation of climate change impact on tick abundance. Statistical data on tick-bitten humans have been collected in three large regions for several decades. For the same regions, the average annual air temperature was calculated and modeled. An S-shaped distribution of the number of victims depending on the average annual air temperature was established, which can be described as “Verhulst’s law”, or logistic function. However, the development of the population does not depend on time, but on the temperature of the ambient air.

Study of thermal comfort in the residents of different climatic regions of India – Effect of the COVID-19 lockdown

Thermal comfort standards are essential to ensure comfortable and enjoyable indoor conditions, and they also help in optimizing energy use. Thermal comfort studies, either climate chamber-based or field investigation, are conducted across the globe in order to ascertain the comfort limits as per the climatic and other adaptive features. However, very few studies are conducted when the occupants are subjected to a stressed condition, like the COVID-19 lockdown, which may not only have the health impacts but also have psychological impacts on the adaptation. In this paper, we present the results of the online study conducted regarding the status of thermal comfort during the COVID-19 lockdown in India. A total of 406 complete responses were collected from subjects located across 3 different climatic regions of India, that is, cold climate, composite climate, and hot and humid climate. Variations in clothing insulation, thermal sensation, and preference were noted across the different climatic regions. We also present the variation in opening of windows and running of fans with the variation in outdoor mean air temperature. The self-judged productivity, comfort, desire to go outdoors, and effectiveness of working from home were seen to vary with the increase in the days of lockdown.

Study on subjective sensation and physiological reaction with high physical activity influenced by air temperature of stadium

As the main venue for sports training and competition, the thermal environment of a stadium directly could affect the comfort and health of a moving body and sports performance. In this study, the quantitative relationship between ambient temperature and subjective sensation evaluation was established by monitoring the actual thermal sensation evaluation, fatigue sensation cognition and physiological response with high physical activity, under different conditions of ambient temperature. The results show that 90% of subjects can actually accept an ambient temperature range of 18.6 degrees C-26 degrees C. This is 2 degrees C higher than the maximum recommended range in the ISO 7730:2005 thermal comfort standard, reflecting a strong tolerance of the moving human body to low or high temperature environments. A high temperature environment could cause exercise fatigue to occur prematurely. Moreover, the study suggests that the critical point for early occurrence of fatigue sensation in a moving human body is 28 degrees C. The relationship between the environmental temperature and the physiological response was evaluated by mean skin temperature, blood pressure and heart rate of the human body. These are used as evaluation indexes of physiological parameters. Ambient temperature has a significant effect on the objective physiological response of the moving human body, which coincides with the subject’s definition of subjective sensory evaluation to the ambient temperature.

Stunted from the start: Early life weather conditions and child undernutrition in Ethiopia

This paper examines the relationship between weather conditions and child nutrition in Ethiopia. We link data from four rounds of the Ethiopia Demographic and Health Survey to high-resolution climate data to measure exposure to rainfall and temperature in utero and during early life. We then estimate a set of multivariate regression models to understand how weather conditions impact child stunting, an indicator of sustained early life undernutrition. We find that greater rainfall during the rainy seasons in early life is associated with greater height for age. In addition, higher temperatures in utero, particularly during the first and third trimesters, and more rainfall during the third trimester, are positively associated with severe stunting, though stunting decreases with temperature in early life. We find potential evidence for a number of pathways underlying the weather-child nutrition relationship including agricultural livelihoods, heat stress, infectious disease transmission, and women’s time use during pregnancy. These findings illuminate the complex pathways through which climate change may influence child health and should motivate additional research focused on identifying the causal mechanisms underlying these links.

Suicide and apparent temperature in the two capitals cities in the iberian peninsula

Different authors have identified geographic variations in the rates of suicide. This study aims to discuss the limitations of the officially recorded suicide data and to evaluate the statistical relationship between a biometeorological index, Apparent Temperature (AT), and suicide in Madrid and Lisbon. We performed a time-series study. The association was analyzed using a quasi-Poisson regression model. To assess potential delayed and non-linear effects of AT on suicides, a lag non-linear model was fitted in a generalized additive model. There was an average rate of 3.30 suicides/100,000 inhabitants in Madrid and of 7.92 suicides/100,000 inhabitants in Lisbon, and a downward trend was found throughout the period. In Madrid, there is no statistically significant association between AT and suicide. However, in Lisbon, under higher AT, there was a higher risk of suicide. The highest accumulated statistically significant Relative Risk (RR) of suicide was detected at 7 days after the exposure, when at 38 °C, the risk of suicide is 2.7 times that existing at the median AT, 20.62°. The average mortality rate recorded in Lisbon was 41.6% higher than that registered in Madrid. However, the limitations of suicide record databases in Spain and Portugal have to be taken into account when analyzing incidence and especially when comparing data from different countries. It is necessary to improve the filing systems of violent deaths in order to perform reliable epidemiological studies.

Suicide behavior and meteorological characteristics in hot and arid climate

BACKGROUND: Suicidal behavior is determined by the consequence of an interaction between biological, psychological and sociological factors, as well as between individual and environmental effects. Fluctuations in meteorological factors can modify human behavior and affect suicidal rates. We hypothesize that high temperatures can be associated with an increase rate of suicidal attempts. METHODS: We included all the patients admitted to Soroka University Medical Center (SUMC) due to suicide attempts between the years 2002-2017 and were residents of Southern Israel. We computed two sets of regression models: first, a time stratified case-crossover design to control for seasonality and individual differences. Results are presented as odds ratio (OR) with confidence interval (CI); and then, time-series analyses to calculate the incidence rate ratio (IRR) and the cumulative effect of temperature on the daily incidences of emergency department (ED) admissions after suicide attempts. We stratified the analyses by demographic variables to identify significant individual differences. RESULTS: We identified 3100 attempts, by 2338 patients who lived in Be’er Sheva between 16 and 90 years of age; 421 patients made 2+ attempts. Suicide attempts were associated with a 5 °C increase during the summer season (OR 1.59, 95% CI 1.22-2.08) and a 5 °C increase in all seasons was associated with those who have made multiple attempts (OR 1.18, 95% CI 1.0005-1.38). The cumulative effect of 5 °C increment is associated with more suicide attempts over 2 days (IRR 1.10, 95% CI 0.98; 1.24) and 5 days (IRR 1.04, 95% CI 1.00; 1.08). The associations were greater for patients with psychiatric diagnosis and patients with multiple attempts. In a stratified analysis by individual characteristics we didn’t find significant association. CONCLUSION: High temperatures and low amount of precipitations are evidently of great impact on people’s susceptibility to suicidal behavior, especially for individuals who have had a prior suicide attempt. Our findings indicate the need for public health attention in the summer when temperature increases precipitously over days, especially for those who have made a prior suicide attempt.

Summer thermal comfort in Czech cities: Measured effects of blue and green features in city centres

This study consists of nine case studies addressing thermal comfort in the public areas of city centres, with particular emphasis on the measurable effects of blue and green infrastructure on thermal exposure. Daytime on-site measurements were taken in summer in the paved areas of squares, in the proximity of water fountains, and in the shade of trees in order to evaluate levels of heat stress based on the universal thermal climate index (UTCI). The differences in UTCI values between the research points confirm substantial cooling associated with high vegetation (trees induced differences up to 10.5 degrees C in UTCI), while the measurable cooling effect of low vegetation was negligible (not more than 2.3 degrees C UTCI). It was also quite low around water fountains, spray fountains, and misting systems. It follows that municipal authorities should consider the differences in cooling effect potential of individual types of blue and green infrastructure when incorporating climate adaptation measures into urban planning.

Summer thermal discomfort in substandard housing with openable windows in Hong Kong

The sub-divided unit (SDU) is the major type of substandard housing in Hong Kong. This study monitored the microclimatic conditions in eight SDUs for 24 h in summer. The mean CO2 concentration (1012 mg/m(3)) under natural ventilation was much higher than the outdoor level (similar to 410 mg/m(3)), suggesting that ventilation was ineffective in most SDUs. The mean predicted mean vote (PMV) was 1.7 (warm), corresponding to 75% predicted percentage dissatisfied (PPD). None of the SDUs was thermally acceptable (PPD < 20%) at any time in the monitoring period. If the adaptive thermal comfort standard was considered, the acceptable temperature range would be between 23.4 degrees C and 30.4 degrees C in operative temperature and the thermally acceptable time would be 47%. Larger openable window size, larger external wall area and poor ventilation significantly contributed to higher maximum indoor air temperature.

Summer, sun and sepsis-The influence of outside temperature on nosocomial bloodstream infections: A cohort study and review of the literature

BACKGROUND: The incidence of many infections is seasonal e.g. surgical site infections, urinary tract infection and bloodstream infections. We questioned whether there is seasonal variation even in climate-controlled hospitalized patients, and analyzed the influence of climate parameters on nosocomial bloodstream infections. METHODS AND FINDINGS: The retrospective cohort study is based on two databases: The German national surveillance system for nosocomial infections in intensive care units (ICU-KISS) from 2001 to 2015 and aggregated monthly climate data. Primary bloodstream infection (PBSI) is defined as a positive blood culture with one (or more) pathogen(s) which are not related to an infection on another site and which were not present at admission. Monthly infection data were matched with postal code, calendar month and corresponding monthly climate and weather data. All analyses were exploratory in nature. 1,196 ICUs reported data on PBSI to KISS. The ICUs were located in 779 hospitals and in 728 different postal codes in Germany. The majority of the 19,194 PBSI were caused by gram-positive bacteria. In total, the incidence density of BSI was 17% (IRR 1.168, 95%CI 1.076-1.268) higher in months with high temperatures (?20°C) compared to months with low temperatures (<5°C). The effect was most prominent for gram-negatives; more than one third (38%) higher followed by gram-positives with 13%. Fungi reached their highest IRR at moderately warm temperatures between 15-20°C. At such temperatures fungi showed an increase of 33% compared to temperatures below 5°C. PBSI spiked in summer with a peak in July and August. PBSI differed by pathogen: The majority of bacteria increased with rising temperatures. Enterococci showed no seasonality. S. pneumoniae reached a peak in winter time. The association of the occurrence of PBSI and temperatures ?20°C was stronger when the mean monthly temperature in the month prior to the occurrence of BSI was considered instead of the temperature in the month of the occurrence of BSI. High average temperatures ?20°C increased the risk of the development of a PBSI by 16% compared with low temperatures <5°C. CONCLUSIONS: Most nosocomial infections are endogenous in nature; the microbiome plays a crucial role in host health. If gut and skin microbiome varies with season, environmental parameters will contribute to the observed incidence patterns. Similarly, the impact of global warming on both local weather patterns and extreme weather events may influence the acquisition of pathogens. A better understanding of the etiology of these infections is needed to provide guidance for future infection control strategies.

Summertime thermal conditions and senior resident behaviors in public housing: A case study in Elizabeth, NJ, USA

As heat waves become more extreme, there is a growing concern for the health of elderly city dwellers who have poor living conditions and limited access to resources. Much research has documented socioeconomic links to heat vulnerability, but limited studies have investigated the detailed living conditions of vulnerable populations, despite increasing requests from local communities. In this paper, we examine the summertime thermal performance of 24 senior apartments within 3 public housing sites (2 conventional multifamily and 1 LEED-rated building), and the seniors’ adaptive responses in Elizabeth, NJ, USA. Time-series data were collected from sensors, interviews and observations on the thermal environment and behavior, from May-October 2017. Our multi-level, occupant-centric approach utilizes the indoor heat index as a proxy for heat stress, against site and building characteristics, and environmental and personal variables. Panel regressions show thermal variations among sites/apartments and illustrate the significant effect of actions, such as window opening and air conditioner use. Results also show how the seniors’ adaptive responses vary by site; residents with central air-conditioning use it, while residents from the two older sites engage in a wider range of adaptive actions, and in some cases achieve similar indoor heat indexes as apartments from the green building. Indoor heat stress experienced by low-income seniors can be greatly reduced through cost-effective strategies that target individual behaviors and outdoor amenities. This implies the need for integrated solutions to the heat waves problem across scales; including changes to residents’ habits, building envelopes, building operations, and outdoor spaces.

Synergies between urban heat island and heat waves in Seoul: The role of wind speed and land use characteristics

The effects of heat waves (HW) are more pronounced in urban areas than in rural areas due to the additive effect of the urban heat island (UHI) phenomenon. However, the synergies between UHI and HW are still an open scientific question and have only been quantified for a few metropolitan cities. In the current study, we explore the synergies between UHI and HW in Seoul city. We consider summertime data from two non-consecutive years (i.e., 2012 and 2016) and ten automatic weather stations. Our results show that UHI is more intense during HW periods than non-heat wave (NHW) periods (i.e., normal summer background conditions), with a maximum UHI difference of 3.30°C and 4.50°C, between HW and NHW periods, in 2012 and 2016 respectively. Our results also show substantial variations in the synergies between UHI and HW due to land use characteristics and synoptic weather conditions; the synergies were relatively more intense in densely built areas and under low wind speed conditions. Our results contribute to our understanding of thermal risks posed by HW in urban areas and, subsequently, the health risks on urban populations. Moreover, they are of significant importance to emergency relief providers as a resource allocation guideline, for instance, regarding which areas and time of the day to prioritize during HW periods in Seoul.

Spatial variability of heat-related mortality in Barcelona from 1992-2015: A case crossover study design

Numerous studies have demonstrated the relationship between summer temperatures and increased heat-related deaths. Epidemiological analyses of the health effects of climate exposures usually rely on observations from the nearest weather station to assess exposure-response associations for geographically diverse populations. Urban climate models provide high-resolution spatial data that may potentially improve exposure estimates, but to date, they have not been extensively applied in epidemiological research. We investigated temperature-mortality relationships in the city of Barcelona, and whether estimates vary among districts. We considered georeferenced individual (natural) mortality data during the summer months (June-September) for the period 1992-2015. We extracted daily summer mean temperatures from a 100-m resolution simulation of the urban climate model (UrbClim). Summer hot days (above percentile 70) and reference (below percentile 30) temperatures were compared by using a conditional logistic regression model in a case crossover study design applied to all districts of Barcelona. Relative Risks (RR), and 95% Confidence Intervals (CI), of all-cause (natural) mortality and summer temperature were calculated for several population subgroups (age, sex and education level by districts). Hot days were associated with an increased risk of death (RR = 1.13; 95% CI = 1.10-1.16) and were significant in all population subgroups compared to the non-hot days. The risk ratio was higher among women (RR = 1.16; 95% CI= 1.12-1.21) and the elderly (RR = 1.18; 95% CI = 1.13-1.22). Individuals with primary education had similar risk (RR = 1.13; 95% CI = 1.08-1.18) than those without education (RR = 1.10; 95% CI= 1.05-1.15). Moreover, 6 out of 10 districts showed statistically significant associations, varying the risk ratio between 1.12 (95% CI = 1.03-1.21) in Sants-Montjuïc and 1.25 (95% CI = 1.14-1.38) in Sant Andreu. Findings identified vulnerable districts and suggested new insights to public health policy makers on how to develop district-specific strategies to reduce risks.

Spatial-temporal patterns of malaria incidence in Uganda using HMIS data from 2015 to 2019

BACKGROUND: As global progress to reduce malaria transmission continues, it is increasingly important to track changes in malaria incidence rather than prevalence. Risk estimates for Africa have largely underutilized available health management information systems (HMIS) data to monitor trends. This study uses national HMIS data, together with environmental and geographical data, to assess spatial-temporal patterns of malaria incidence at facility catchment level in Uganda, over a recent 5-year period. METHODS: Data reported by 3446 health facilities in Uganda, between July 2015 and September 2019, was analysed. To assess the geographic accessibility of the health facilities network, AccessMod was employed to determine a three-hour cost-distance catchment around each facility. Using confirmed malaria cases and total catchment population by facility, an ecological Bayesian conditional autoregressive spatial-temporal Poisson model was fitted to generate monthly posterior incidence rate estimates, adjusted for caregiver education, rainfall, land surface temperature, night-time light (an indicator of urbanicity), and vegetation index. RESULTS: An estimated 38.8 million (95% Credible Interval [CI]: 37.9-40.9) confirmed cases of malaria occurred over the period, with a national mean monthly incidence rate of 20.4 (95% CI: 19.9-21.5) cases per 1000, ranging from 8.9 (95% CI: 8.7-9.4) to 36.6 (95% CI: 35.7-38.5) across the study period. Strong seasonality was observed, with June-July experiencing highest peaks and February-March the lowest peaks. There was also considerable geographic heterogeneity in incidence, with health facility catchment relative risk during peak transmission months ranging from 0 to 50.5 (95% CI: 49.0-50.8) times higher than national average. Both districts and health facility catchments showed significant positive spatial autocorrelation; health facility catchments had global Moran’s I?=?0.3 (p <?0.001) and districts Moran’s I?=?0.4 (p <?0.001). Notably, significant clusters of high-risk health facility catchments were concentrated in Acholi, West Nile, Karamoja, and East Central – Busoga regions. CONCLUSION: Findings showed clear countrywide spatial-temporal patterns with clustering of malaria risk across districts and health facility catchments within high risk regions, which can facilitate targeting of interventions to those areas at highest risk. Moreover, despite high and perennial transmission, seasonality for malaria incidence highlights the potential for optimal and timely implementation of targeted interventions.

Spatio-temporal variation and trends of long-term meteorological variables in Nigeria

Natural environmental disasters in the developing countries of West Africa are at alarming rate which necessitate the investigation of long-term trend of rainfall and temperature. Current variation, trends of temperature, and rainfall across Nigeria were investigated using parametric and non-parametric statistical tools. Meteorological data obtained from the Nigeria Meteorological Agency in Lagos, Nigeria, from 1970 to 2010 were used for this analysis. Seasonal and annual trends of maximum temperature, minimum temperature, and rainfall were carried out using Mann-Kendall and Sen’s slope methods. Long-term linear regression of these meteorological variables was analyzed across eighteen locations in the country. Spatial distribution of seasonal trends of these variables was also estimated for the four seasons in Nigeria. The result of the linear regression on temperatures and rainfall showed increasing trends in most of the locations across the country. Similarly, Mann-Kendall and Sen’s slope analysis showed a significant increasing trend in most areas across the country. Consequently, recent phenomena of environmental hazard such as an outbreak of airborne diseases and flooding leading to the collapse of buildings and various environmental disasters can be linked to the observed result.

Spatio-temporal variation of the urban heat island in Santiago, Chile during summers 2005-2017

Urban heat islands (UHIs) can present significant risks to human health. Santiago, Chile has around 7 million residents, concentrated in an average density of 480 people/km(2). During the last few summer seasons, the highest extreme maximum temperatures in over 100 years have been recorded. Given the projections in temperature increase for this metropolitan region over the next 50 years, the Santiago UHI could have an important impact on the health and stress of the general population. We studied the presence and spatial variability of UHIs in Santiago during the summer seasons from 2005 to 2017 using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery and data from nine meteorological stations. Simple regression models, geographic weighted regression (GWR) models and geostatistical interpolations were used to find nocturnal thermal differences in UHIs of up to 9 degrees C, as well as increases in the magnitude and extension of the daytime heat island from summer 2014 to 2017. Understanding the behavior of the UHI of Santiago, Chile, is important for urban planners and local decision makers. Additionally, understanding the spatial pattern of the UHI could improve knowledge about how urban areas experience and could mitigate climate change.

Spatiotemporal analysis of hand, foot and mouth disease data using time-lag geographically-weighted regression

Hand, Foot, and Mouth Disease (HFMD) is a common and widespread infectious disease. Previous studies have presented evidence that climate factors, including the monthly averages of temperature, relative humidity, air pressure, wind speed and Cumulative Risk (CR) all have a strong influence on the transmission of HFMD. In this paper, the monthly time-lag geographically- weighted regression model was constructed to investigate the spatiotemporal variations of effect of climate factors on HFMD occurrence in Inner Mongolia Autonomous Region, China. From the spatial and temporal perspectives, the spatial and temporal variations of effect of climate factors on HFMD incidence are described respectively. The results indicate that the effect of climate factors on HFMD incidence shows very different spatial patterns and time trends. The findings may provide not only an indepth understanding of spatiotemporal variation patterns of the effect of climate factors on HFMD occurrence, but also provide helpful evidence for making measures of HFMD prevention and control and implementing appropriate public health interventions at the county level in different seasons.

Spatiotemporal changes of heat waves and extreme temperatures in the main cities of China from 1955 to 2014

In the past decades, severe heat waves have frequently occurred in many parts of the world. These conspicuous heat waves exerted terrible influences on human health, society, the economy, agriculture, the ecosystem and so on. Based on observed daily temperatures in China, an integrated index of heat waves and extreme-temperature days was established involving the frequency, duration, intensity and scale of these events across large cities in China. Heat waves and extreme-temperature days showed an increasing trend in most regions except northwest China from 1955 to 2014. After the late 1980s, the increasing trend was more obvious than the decades before. The cities in the middle and lower reaches of the Yangtze River were threatened by the most serious heat events in the past 60 years, especially Chongqing and Changsha. Due to the subtropical monsoon climate and special terrain, Chongqing experienced the most heat events in a long period of time. In particular, there was obvious fluctuation of hot years in 31 cities, which did not continuously rise with global warming; 21 cities mainly located in the eastern and southern regions of China had an obvious rising trend; eight cities had a clear declining trend which was mainly distributed in the western and northern regions of China; and there were no extreme-temperature days in Kunming and Lhasa in the past 60 years. The study revealed an obvious differentiation of heat events for 31 cities under climate change; heat threat in most cities is increasing but declining or remaining unchanged in the other cities. The trend is likely to intensify with global warming.

Spatiotemporal distribution and risk assessment of heat waves based on apparent temperature in the One Belt and One Road Region

Heat waves seriously affect the productivity and daily life of human beings. Therefore, they bring great risks and uncertainties for the further development of countries in the One Belt and One Road (OBOR) region. In this study, we used daily meteorological monitoring data to calculate the daily apparent temperature and annual heat wave dataset for 1989-2018 in the OBOR region. Then, we studied their spatiotemporal distribution patterns. Additionally, multi-source data were used to assess heat wave risk in the OBOR region. The main results are as follows: (1) The daily apparent temperature dataset and annual heat wave dataset for 1989-2018 in the OBOR region at 0.1 degrees x 0.1 degrees gridded resolution were calculated. China, South Asia and Southeast Asia are suffering the most serious heat waves in the OBOR region, with an average of more than six heat waves, lasting for more than 60 days and the extreme apparent temperature has reached over 40 degrees C. Additionally, the frequency, duration and intensity of heat waves have been confirmed to increase continuously. (2) The heat wave risk in the OBOR region was assessed. Results show that the high heat wave risk areas are distributed in eastern China, northern South Asia and some cities. The main conclusion is that the heat wave risk in most areas along the OBOR route is relatively high. In the process of deepening the development of countries in the OBOR region, heat wave risk should be fully considered.

Spatiotemporal evolution of heat wave severity and coverage across the United States

Heat waves have pronounced impacts on human health, ecosystems, and society. Heat waves have become more frequent and intense globally and are likely to intensify further in a warming climate. Across the United States there is a warming trend in average surface temperatures, but concordant increase in heat wave severity appears absent. Limitations in heat waves studies may be responsible for limited detection of a heat wave warming signal. We track daily spatiotemporal evolution of heat waves using geometric concepts and clustering algorithms to investigate how heat manifests on the land surface. We develop a spatial metric combining heat wave frequency, magnitude, duration, and areal extent. We find mixed trends in some individual heat wave characteristics across the United States during 1981-2018. However, exploration of the spatiotemporal evolution of combined heat wave characteristics shows considerable increases during this period and indicates a substantial increase in heat wave hazard across the United States.

Spatiotemporal expansion of human brucellosis in Shaanxi Province, northwestern China and model for risk prediction

BACKGROUND: Human brucellosis imposes a heavy burden on the health and economy of endemic regions. Since 2011, China has reported at least 35,000 human brucellosis cases annually, with more than 90% of these cases reported in the northern. Given the alarmingly high incidence and variation in the geographical distribution of human brucellosis cases, there is an urgent need to decipher the causes of such variation in geographical distribution. METHOD: We conducted a retrospective epidemiological study in Shaanxi Province from January 1, 2005 to December 31, 2018 to investigate the association between meteorological factors and transmission of human brucellosis according to differences in geographical distribution and seasonal fluctuation in northwestern China for the first time. RESULTS: Human brucellosis cases were mainly distributed in the Shaanbei upland plateau before 2008 and then slowly extended towards the southern region with significant seasonal fluctuation. The results of quasi-Poisson generalized additive mixed model (GAMM) indicated that air temperature, sunshine duration, rainfall, relative humidity, and evaporation with maximum lag time within 7 months played crucial roles in the transmission of human brucellosis with seasonal fluctuation. Compared with the Shaanbei upland plateau, Guanzhong basin had more obvious fluctuations in the occurrence of human brucellosis due to changes in meteorological factors. Additionally, the established GAMM model showed high accuracy in predicting the occurrence of human brucellosis based on the meteorological factors. CONCLUSION: These findings may be used to predict the seasonal fluctuations of human brucellosis and to develop reliable and cost-effective prevention strategies in Shaanxi Province and other areas with similar environmental conditions.

Spatiotemporal variability and key influencing factors of river fecal coliform within a typical complex watershed

Fecal coliform bacteria are a key indicator of human health risks; however, the spatiotemporal variability and key influencing factors of river fecal coliform have yet to be explored in a rural-suburban-urban watershed with multiple land uses. In this study, the fecal coliform concentrations in 21 river sections were monitored for 20 months, and 441 samples were analyzed. Multivariable regressions were used to evaluate the spatiotemporal dynamics of fecal coliform. The results showed that spatial differences were mainly dominated by urbanization level, and environmental factors could explain the temporal dynamics of fecal coliform in different urban patterns except in areas with high urbanization levels. Reducing suspended solids is a direct way to manage fecal coliform in the Beiyun River when the natural factors are difficulty to change, such as temperature and solar radiation. The export of fecal coliform from urban areas showed a quick and sensitive response to rainfall events and increased dozens of times in the short term. Landscape patterns, such as the fragmentation of impervious surfaces and the overall landscape, were identified as key factors influencing urban non-point source bacteria. The results obtained from this study will provide insight into the management of river fecal pollution.

Spatiotemporal variations of asthma admission rates and their relationship with environmental factors in Guangxi, China

OBJECTIVE: The study aimed to determine if and how environmental factors correlated with asthma admission rates in geographically different parts of Guangxi province in China. SETTING: Guangxi, China. PARTICIPANTS: This study was done among 7804 asthma patients. PRIMARY AND SECONDARY OUTCOME MEASURES: Spearman correlation coefficient was used to estimate correlation between environmental factors and asthma hospitalisation rates in multiple regions. Generalised additive model (GAM) with Poisson regression was used to estimate effects of environmental factors on asthma hospitalisation rates in 14 regions of Guangxi. RESULTS: The strongest effect of carbon monoxide (CO) was found on lag1 in Hechi, and every 10?µg/m(3) increase of CO caused an increase of 25.6% in asthma hospitalisation rate (RR 1.26, 95%?CI 1.02 to 1.55). According to the correlation analysis, asthma hospitalisations were related to the daily temperature, daily range of temperature, CO, nitrogen dioxide (NO(2)) and particulate matter (PM(2.5)) in multiple regions. According to the result of GAM, the adjusted R(2) was high in Beihai and Nanning, with values of 0.29 and 0.21, which means that environmental factors are powerful in explaining changes of asthma hospitalisation rates in Beihai and Nanning. CONCLUSION: Asthma hospitalisation rate was significantly and more strongly associated with CO than with NO(2), SO(2) or PM(2.5) in Guangxi. The risk factors of asthma exacerbations were not consistent in different regions, indicating that targeted measures should differ between regions.

Statistical modelling of temperature-attributable deaths in Portuguese metropolitan areas under climate change: Who is at risk?

Several studies emphasize that temperature-related mortality can be expected to have differential effects on different subpopulations, particularly in the context of climate change. This study aims to evaluate and quantify the future temperature-attributable mortality due to circulatory system diseases by age groups (under 65 and 65+ years), in Lisbon metropolitan area (LMA) and Porto metropolitan area (PMA), over the 2051-2065 and 2085-2099 time horizons, considering the greenhouse gas emissions scenario RCP8.5, in relation to a historical period (1991-2005). We found a decrease in extreme cold-related deaths of 0.55% and 0.45% in LMA, for 2051-2065 and 2085-2099, respectively. In PMA, there was a decrease in cold-related deaths of 0.31% and 0.49% for 2051-2065 and 2085-2099, respectively, compared to 1991-2005. In LMA, the burden of extreme heat-related mortality in age group 65+ years is slightly higher than in age group <65 years, at 2.22% vs. 1.38%, for 2085-2099. In PMA, only people aged 65+ years showed significant temperature-related burden of deaths that can be attributable to hot temperatures. The heat-related excess deaths increased from 0.23% for 2051-2065 to 1.37% for 2085-2099, compared to the historical period.

Statistical modelling of the effects of weather factors on Malaria occurrence in Abuja, Nigeria

Background: despite the increase in malaria control and elimination efforts, weather patterns and ecological factors continue to serve as important drivers of malaria transmission dynamics. This study examined the statistical relationship between weather variables and malaria incidence in Abuja, Nigeria. Methodology/Principal Findings: monthly data on malaria incidence and weather variables were collected in Abuja from the year 2000 to 2013. The analysis of count outcomes was based on generalized linear models, while Pearson correlation analysis was undertaken at the bivariate level. The results showed more malaria incidence in the months with the highest rainfall recorded (June-August). Based on the negative binomial model, every unit increase in humidity corresponds to about 1.010 (95% confidence interval (CI), 1.005-1.015) times increase in malaria cases while the odds of having malaria decreases by 5.8% for every extra unit increase in temperature: 0.942 (95% CI, 0.928-0.956). At lag 1 month, there was a significant positive effect of rainfall on malaria incidence while at lag 4, temperature and humidity had significant influences. Conclusions: malaria remains a widespread infectious disease among the local subjects in the study area. Relative humidity was identified as one of the factors that influence a malaria epidemic at lag 0 while the biggest significant influence of temperature was observed at lag 4. Therefore, emphasis should be given to vector control activities and to create public health awareness on the proper usage of intervention measures such as indoor residual sprays to reduce the epidemic especially during peak periods with suitable weather conditions.

Steps towards comprehensive heat communication in the frame of a heat health warning system in Slovenia

Occupational heat stress has an important negative impact on the well-being, health and productivity of workers and should; therefore, be recognized as a public health issue in Europe. There is no comprehensive heat health warning system in Slovenia combining public health measures with meteorological forecasts. The aim of this research was to provide insight into the development of such a system in Slovenia, turning the communication from the current meteoalarm into a broader system that has more information for different social groups. To achieve this goal, the following steps were used: Analysis of summer temperatures and issued meteoalarms, a survey of the general knowledge about heat among the public, organization and management of two stakeholder symposia, and a final survey on workers’ opinions on heat stress and measures, supplemented by interviews with employers. Summer average daily temperature distributions in Slovenia changed during the investigated period (1961-2019) and the mean values increased over time by 2-3 °C. Additionally, the number of days with fulfilled yellow (potentially dangerous) and especially orange (dangerous) meteoalarm conditions increased significantly after 1990. The survey of the general public about heat stress and warnings showed that efforts to raise awareness of heat issues need to be intensified and that public health measures should effectively target vulnerable groups. Stakeholder symposia and further surveys have shown that awareness and understanding of the negative effects of heat stress on health and productivity are still quite low, so effective ways of disseminating information to different sectors while striking the best balance between efficiency, feasibility and economic cost have to be found.

Snowfall, temperature, and the risk of death from Myocardial Infarction: A case-crossover study

Previous research has associated snowfall with risk of myocardial infarction (MI). Most studies have been conducted in regions with harsh winters; it remains unclear whether snowfall is associated with risk of MI in regions with milder or more varied climates. A case-crossover design was used to investigate the association between snowfall and death from MI in British Columbia, Canada. Deaths from MI among British Columbia residents between October 15 and March 31 from 2009 to 2017 were identified. The day of each death from MI was treated as the case day, and each case day was matched to control days drawn from the same day of the week during the same month. Daily snowfall amount was assigned to case and control days at the residential address, using weather stations within 15 km of the residence and 100 m in elevation. In total, 3,300 MI case days were matched to 10,441 control days. Compared with days that had no snowfall, odds of death from MI increased 34% (95% confidence interval: 0%, 80%) on days with heavy snowfall (?5 cm). In stratified analysis of deaths from MI as a function of both maximum temperature and snowfall, risk was significantly increased on snowfall days when the temperature was warmer.

Social and behavioral determinants of indoor temperatures in air-conditioned homes

The causes and consequences of indoor heat exposure are receiving growing attention as global temperature rises and people seek respite from the heat in indoor spaces. In this study, we measured indoor temperatures of 46 air-conditioned residences in Phoenix, Arizona, United States. Temperatures were collected concurrently at 5-min intervals from August 21 to September 19, 2016. Indoor temperatures exhibited significant heterogeneity across all residences, ranging from 16.5 to 37.2 degrees C with a mean (SD) of 26.4 degrees C (2.2 degrees C). On average, the 5-min indoor temperatures were moderately correlated with outdoor temperature (r = 0.421), although individual household correlations were highly variable, ranging from r = -0.244 to r = 0.924. Households were grouped into six clusters using K-means based on 19 temperature metrics. We tested for differences in demographic, behavior, and infrastructure indicators between those six clusters based on responses to a social survey. Nearly half the variance in preferred thermostat setting was explained by cluster (R-2 = 0.455, p < .001). For the most part, measures of air-conditioning use, limitations on air-conditioning use, and household resources (e.g., income) did not vary significantly by cluster. The same was true for heat-related health and comfort outcomes. Two households that did not pay their own electric bill were by far the coldest homes (average temperature of 20.0 degrees C). We conclude that indoor temperature preference may supersede concerns related to the cost of using air-conditioning and that resource-constrained households may be sacrificing other necessities to keep their homes comfortable.

Social inequalities in heat-attributable mortality in the city of Turin, northwest of Italy: A time series analysis from 1982 to 2018

BACKGROUND: Understanding context specific heat-health risks in urban areas is important, especially given anticipated severe increases in summer temperatures due to climate change effects. We investigate social inequalities in the association between daily temperatures and mortality in summer in the city of Turin for the period 1982-2018 among different social and demographic groups such as sex, age, educational level, marital status and household occupants. METHODS: Mortality data are represented by individual all-cause mortality counts for the summer months between 1982 and 2018. Socioeconomic level and daily mean temperature were assigned to each deceased. A time series Poisson regression with distributed lag non-linear models was fitted to capture the complex nonlinear dependency between daily mortality and temperature in summer. The mortality risk due to heat is represented by the Relative Risk (RR) at the 99th percentile of daily summer temperatures for each population subgroup. RESULTS: All-cause mortality risk is higher among women (1.88; 95% CI?=?1.77, 2.00) and the elderly (2.13; 95% CI?=?1.94, 2.33). With regard to education, the highest significant effects for men is observed among higher education levels (1.66; 95% CI?=?1.38, 1.99), while risks for women is higher for the lower educational level (1.93; 95% CI?=?1.79, 2.08). Results on marital status highlighted a stronger association for widower in men (1.66; 95% CI?=?1.38, 2.00) and for separated and divorced in women (2.11; 95% CI?=?1.51, 2.94). The risk ratio of household occupants reveals a stronger association for men who lived alone (1.61; 95% CI?=?1.39, 1.86), while for women results are almost equivalent between alone and not alone groups. CONCLUSIONS: The associations between heat and mortality is unequal across different aspects of social vulnerability, and, inter alia, factors influencing the population vulnerability to temperatures can be related to demographic, social, and economic aspects. A number of issues are identified and recommendations for the prioritisation of further research are provided. A better knowledge of these effect modifiers is needed to identify the axes of social inequality across the most vulnerable population sub-groups.

Social isolation and vulnerability to heatwave-related mortality in the urban elderly population: A time-series multi-community study in Korea

Although several studies have reported that social isolation is one of the important health risk factors in the elderly population living in urban areas, its effects on vulnerability to heatwaves have been studied relatively less than climatic and other socio-economic factors. Thus, we investigated the association between social isolation levels and heatwave-related mortality risk in the elderly population in 119 urban administrative districts in Korea, using a time-series multi-city dataset (2008-2017). We used a two-stage analysis. In the first stage, we estimated the heatwave-related mortality risk in the elderly population (age ? 65) for each district using a time-series regression with a distributed lag model. Subsequently, in the second stage, we applied meta-regressions to pool the estimates across all the districts and estimate the association between social isolation variables and heatwave-related mortality risk. Our findings showed that higher social gathering and mutual aid levels were associated with lower heatwave-related mortality risk. Further, the lower percentage of single elderly households living in detached houses was also related to higher heatwave-related mortality risk. The associations were generally more evident in males compared to females. Our findings suggest that vulnerability to heatwave-related mortality among the urban, city-dwelling, elderly population may be amplified by higher isolation indicators.

Spatial analysis and factors associated with leptospirosis in Santa Catarina, Brazil, 2001-2015

INTRODUCTION: Leptospirosis is an endemic disease in Brazil that can become an epidemic during the rainy season resulting from floods in areas susceptible to natural disasters. These areas are widespread in Santa Catarina, particularly in the coastal region. Therefore, the objective of this study was to identify environmental, climatic, and demographic factors associated with the incidence of leptospirosis in the municipalities of Santa Catarina from 2001 to 2015, taking into account possible spatial dependence. METHODS: This was an ecological study aggregated by municipality. To evaluate the association between the incidence of leptospirosis and the factors under study (temperature, altitude, occurrence of natural disasters, etc.) while taking into account spatial dependence, linear regression models and models with global spatial error were used. RESULTS: Lower altitudes, higher temperatures, and areas of natural disaster risk in the municipality contributed the most to explaining the variability in the incidence rate. After taking spatial dependence into account, only the minimum altitude variable remained significant. The regions of lower altitude, where the highest rates of leptospirosis were recorded, corresponded to the eastern portion of the state near the coastal region, where floods, urban floods, and overflows are common occurrences. No associations were found concerning demographic factors. CONCLUSIONS: The incidence of leptospirosis in Santa Catarina was associated with environmental factors, particularly low altitude, even when considering the spatial dependence structure present in the data. The spatial error model allowed for adequate modeling of spatial autocorrelation.

Socioeconomic inequality in vulnerability to all-cause and cause-specific hospitalisation associated with temperature variability: A time-series study in 1814 Brazilian cities

BACKGROUND: Exposure to temperature variability has been associated with increased risk of mortality and morbidity. We aimed to evaluate whether the association between short-term temperature variability and hospitalisation was affected by local socioeconomic level in Brazil. METHODS: In this time-series study, we collected city-level socioeconomic data, and daily hospitalisation and weather data from 1814 Brazilian cities between Jan 1, 2000, and Dec 31, 2015. All-cause and cause-specific hospitalisation data was from the Hospital Information System of the Unified Health System in Brazil. City-specific daily minimum and maximum temperatures came from a 0·25°?×?0·25° Brazilian meteorological dataset. We represented city-specific socioeconomic level using literacy rate, urbanisation rate, average monthly household income per capita (using the 2000 and 2010 Brazilian census), and GDP per capita (using statistics from the Brazilian Institute of Geography and Statistics for 2000-15), and cities were categorised according to the 2015 World Bank standard. We used quasi-Poisson regression to do time-series analyses and obtain city-specific associations between temperature variability and hospitalisation. We pooled city-specific estimates according to different socioeconomic quartiles or levels using random-effect meta-analyses. Meta-regressions adjusting for demographic and climatic characteristics were used to evaluate the modification effect of city-level socioeconomic indicators on the association between temperature variability and hospitalisation. FINDINGS: We included a total of 147?959?243 hospitalisations (59·0% female) during the study period. Overall, we estimated that the hospitalisation risk due to every 1°C increase in the temperature variability in the current and previous day (TV(0-1)) increased by 0·52% (95% CI 0·50-0·55). For lower-middle-income cities, this risk was 0·63% (95% CI 0·58-0·69), for upper-middle-income cities it was 0·50% (0·47-0·53), and for high-income cities it was 0·39% (0·33-0·46). The socioeconomic inequality in vulnerability to TV(0-1) was especially evident for people aged 0-19 years (effect estimate 1·21% [1·11-1·31] for lower-middle income vs 0·52% [0·41-0·63] for high income) and people aged 60 years or older (0·60% [0·50-0·70] vs 0·43% [0·31-0·56]), and for hospitalisation due to infectious diseases (1·62% [1·46-1·78] vs 0·56% [0·30-0·82]), respiratory diseases (1·32% [1·20-1·44] vs 0·55% [0·37-0·74]), and endocrine diseases (1·21% [0·99-1·43] vs 0·32% [0·02-0·62]). INTERPRETATION: People living in less developed cities in Brazil were more vulnerable to hospitalisation related to temperature variability. This disparity could exacerbate existing health and socioeconomic inequalities in Brazil, and it suggests that more attention should be paid to less developed areas to mitigate the adverse health effects of short-term temperature fluctuations. FUNDING: None.

Spatial analysis of wildfire incidence in the USA: The role of climatic spillovers

Wildfires constitute a serious threat for both the environment and human well-being. The US fire policy aims to tackle this problem, devoting a sizeable amount of resources and resorting extensively to fire suppression strategies. The theoretical literature has established a link between climate conditions and wildfire incidence. Using state-level data from 2002 to 2013 for the USA, this work proposes a wildfire incidence indicator and runs a generalized spatial ordered probit model in order to test the findings of the previous literature empirically. Moreover, this article investigates the extent of spatial spillovers in the climatic covariates. The results highlight a significant impact of precipitation and temperature on fire incidence and provide some evidence of the role of spatial spillovers. In particular, transitions from lower to higher wildfire incidence levels are significantly encouraged by increases in local temperature and significantly discouraged by increases in both local precipitation and lagged precipitation. The present analysis complements the recent literature, confirming the previous findings with a solid empirical investigation and offering a policy-oriented picture of wildfire risks all over the USA.

Socioeconomic level and associations between heat exposure and all-cause and cause-specific hospitalization in 1,814 Brazilian cities: A nationwide case-crossover study

BACKGROUND: Heat exposure, which will increase with global warming, has been linked to increased risk of a range of types of cause-specific hospitalizations. However, little is known about socioeconomic disparities in vulnerability to heat. We aimed to evaluate whether there were socioeconomic disparities in vulnerability to heat-related all-cause and cause-specific hospitalization among Brazilian cities. METHODS AND FINDINGS: We collected daily hospitalization and weather data in the hot season (city-specific 4 adjacent hottest months each year) during 2000-2015 from 1,814 Brazilian cities covering 78.4% of the Brazilian population. A time-stratified case-crossover design modeled by quasi-Poisson regression and a distributed lag model was used to estimate city-specific heat-hospitalization association. Then meta-analysis was used to synthesize city-specific estimates according to different socioeconomic quartiles or levels. We included 49 million hospitalizations (58.5% female; median [interquartile range] age: 33.3 [19.8-55.7] years). For cities of lower middle income (LMI), upper middle income (UMI), and high income (HI) according to the World Bank’s classification, every 5°C increase in daily mean temperature during the hot season was associated with a 5.1% (95% CI 4.4%-5.7%, P < 0.001), 3.7% (3.3%-4.0%, P < 0.001), and 2.6% (1.7%-3.4%, P < 0.001) increase in all-cause hospitalization, respectively. The inter-city socioeconomic disparities in the association were strongest for children and adolescents (0-19 years) (increased all-cause hospitalization risk with every 5°C increase [95% CI]: 9.9% [8.7%-11.1%], P < 0.001, in LMI cities versus 5.2% [4.1%-6.3%], P < 0.001, in HI cities). The disparities were particularly evident for hospitalization due to certain diseases, including ischemic heart disease (increase in cause-specific hospitalization risk with every 5°C increase [95% CI]: 5.6% [-0.2% to 11.8%], P = 0.060, in LMI cities versus 0.5% [-2.1% to 3.1%], P = 0.717, in HI cities), asthma (3.7% [0.3%-7.1%], P = 0.031, versus -6.4% [-12.1% to -0.3%], P = 0.041), pneumonia (8.0% [5.6%-10.4%], P < 0.001, versus 3.8% [1.1%-6.5%], P = 0.005), renal diseases (9.6% [6.2%-13.1%], P < 0.001, versus 4.9% [1.8%-8.0%], P = 0.002), mental health conditions (17.2% [8.4%-26.8%], P < 0.001, versus 5.5% [-1.4% to 13.0%], P = 0.121), and neoplasms (3.1% [0.7%-5.5%], P = 0.011, versus -0.1% [-2.1% to 2.0%], P = 0.939). The disparities were similar when stratifying the cities by other socioeconomic indicators (urbanization rate, literacy rate, and household income). The main limitations were lack of data on personal exposure to temperature, and that our city-level analysis did not assess intra-city or individual-level socioeconomic disparities and could not exclude confounding effects of some unmeasured variables. CONCLUSIONS: Less developed cities displayed stronger associations between heat exposure and all-cause hospitalizations and certain types of cause-specific hospitalizations in Brazil. This may exacerbate the existing geographical health and socioeconomic inequalities under a changing climate.

Spatial and temporal characteristics of four main types of meteorological disasters in East China

Based on the disaster census data of four types of meteorological disasters (floods induced by rainstorms, droughts, damages due to low temperatures and high temperatures and heat waves) in 637 counties (districts) of East China, the spatial distribution and inter-annual variation in the number of records and the amount of impacts or losses caused by the four types of disasters were analyzed. The results indicate that rainstorm-induced flood disasters had the largest number of records and the largest affected population, death population, affected crop, total crop failure and direct economic loss in East China. The yearly percentage of affected population and direct economic loss caused by the four types of meteorological disasters increased significantly at rates of 1.4 and 2.2% per decade, respectively, but the deaths decreased significantly at a rate of 2.2% per decade during 1984-2010. There was no statistical significance in the percentage change of affected crop area and total crop failure area in East China. Spatially, the total number of people affected by the four types of meteorological disasters was higher in Anhui and Jiangxi, and the deaths were more in southern Anhui, Jiangxi, Zhejiang, and Fujian. Both the affected area and the total failure area of crops were higher in northern Anhui, eastern Jiangsu and eastern Shandong, and the direct economic losses were higher in the southern part of East China and Anhui province.

Spatial and temporal patterns of dengue incidence in Bhutan: A Bayesian analysis

Dengue is an important emerging vector-borne disease in Bhutan. This study aimed to quantify the spatial and temporal patterns of dengue and their relationship to environmental factors in dengue-affected areas at the sub-district level. A multivariate zero-inflated Poisson regression model was developed using a Bayesian framework with spatial and spatiotemporal random effects modelled using a conditional autoregressive prior structure. The posterior parameters were estimated using Bayesian Markov Chain Monte Carlo simulation with Gibbs sampling. A total of 708 dengue cases were notified through national surveillance between January 2016 and June 2019. Individuals aged ?14 years were found to be 53% (95% CrI: 42%, 62%) less likely to have dengue infection than those aged >14 years. Dengue cases increased by 63% (95% CrI: 49%, 77%) for a 1°C increase in maximum temperature, and decreased by 48% (95% CrI: 25%, 64%) for a one-unit increase in normalized difference vegetation index (NDVI). There was significant residual spatial clustering after accounting for climate and environmental variables. The temporal trend was significantly higher than the national average in eastern sub-districts. The findings highlight the impact of climate and environmental variables on dengue transmission and suggests prioritizing high-risk areas for control strategies.

Spatial epidemiology of yellow fever: Identification of determinants of the 2016-2018 epidemics and at-risk areas in Brazil

Optimise control strategies of infectious diseases, identify factors that favour the circulation of pathogens, and propose risk maps are crucial challenges for global health. Ecological niche modelling, once relying on an adequate framework and environmental descriptors can be a helpful tool for such purposes. Despite the existence of a vaccine, yellow fever (YF) is still a public health issue. Brazil faced massive sylvatic YF outbreaks from the end of 2016 up to mid-2018, but cases in human and non-human primates have been recorded until the beginning of 2020. Here we used both human and monkey confirmed YF cases from two epidemic periods (2016/2017 and 2017/2018) to describe the spatial distribution of the cases and explore how biotic and abiotic factors drive their occurrence. The distribution of YF cases largely overlaps for humans and monkeys, and a contraction of the spatial extent associated with a southward displacement is observed during the second period of the epidemics. More contributive variables to the spatiotemporal heterogeneity of cases were related to biotic factors (mammal richness), abiotic factors (temperature and precipitation), and some human-related variables (population density, human footprint, and human vaccination coverage). Both projections of the most favourable conditions showed similar trends with a contraction of the more at-risk areas. Once extrapolated at a large scale, the Amazon basin remains at lower risk, although surrounding forest regions and notably the North-West region, would face a higher risk. Spatial projections of infectious diseases often relied on climatic variables only; here for both models, we instead highlighted the importance of considering local biotic conditions, hosts vulnerability, social and epidemiological factors to run the spatial risk analysis correctly: all YF cases occurring later on, in 2019 and 2020, were observed in the predicted at-risk areas.

Spatial exploration of the CDC ?s Social Vulnerability Index and heat -related health outcomes in Georgia

Heat-related illness, an environmental exposure-related outcome commonly treated in U.S. hospital emergency departments (ED), is likely to rise with increased incidence of heat events related to climate change. Few studies demonstrate the spatial and statistical relationship of social vulnerability and heat-related health outcomes. We explore relationships of Georgia county-level heat-related ED visits and mortality rates (2002–2008), with CDC’s Social Vulnerability Index (CDC SVI). Bivariate Moran’s I analysis revealed significant clustering of high SVI rank and high heat-related ED visit rates (0.211, p <0.001) and high smoothed mortality rates (0.210, p <0.001). Regression revealed that for each 10% increase in SVI ranking, ED visit rates significantly increased by a factor of 1.18 (95% CI ¼1.17–1.19), and mortality rates significantly increased by a factor of 1.31 (95% CI ¼1.16–1.47). CDC SVI values are spatially linked and significantly associated with heat-related ED visit, and mortality rates in Georgia.

Spatial patterns of health vulnerability to heatwaves in Vietnam

The increasing frequency and intensity of heat events have weighty impacts on public health in Vietnam, but their effects vary across regions. In this study, we have applied a vulnerability assessment framework (VAF) to systematically assess the spatial pattern of health vulnerability to heatwaves in Vietnam. The VAF was computed as the function of three dimensions: exposure, sensitivity, and adaptive capacity, with the indicators for each dimension derived from the relevant literature, consultation with experts, and available data. An analytic hierarchy process (AHP) was used to determine the weight of indicators. Each province in Vietnam’s vulnerability to the health impacts of heatwaves was evaluated by applying the vulnerability index, computed using 13 indicators (sensitivity index, 9; adaptive capacity index, 3; and exposure index, 1). As a result of this analysis, this study has identified heatwave vulnerability ‘hotspots’, primarily in the Southeast, Central Highlands, and South Central Coast of Vietnam. However, these hotspots are not necessarily the same as the area most vulnerable to climate change, because some areas that are more sensitive to heatwaves may have a higher capacity to adapt to them due to a host of factors including their population characteristics (e.g. rates of the elderly or children), socio-economic and geographical conditions, and the availability of air-conditioners. This kind of information, provided by the vulnerability index framework, allows policymakers to determine how to more efficiently allocate resources and devise appropriate interventions to minimise the impact of heatwaves with strategies tailored to each region of Vietnam.

Spatial patterns of recent US summertime heat trends: Implications for heat sensitivity and health adaptations

Heat is known to cause illness and death not only at extreme temperatures, but also at moderate levels. Although substantial research has shown how summertime temperature distributions have changed over recent decades in the United States, less is known about howthe heat index-a potentially more health applicable metric of heat-has similarly evolved over this period. Moreover, the extent to which these distributional changes have overlapped with indicators of social vulnerability has not been established, despite the applicability of co-varying climatic and sociodemographic characteristics to heat-related health adaptations. Presented here is an analysis of trends in the median, 95th percentile, and ‘warm-tail spread’ (i.e., intra-seasonal range between the upper extreme andmedian) of warm-season (May-September) maximum heat index between 1979 and 2018 across the conterminous US. Using 40 years of data from the North American Regional Reanalysis dataset, it is shown that most of the US has experienced statistically significant positive trends in summertime heat, and that both the magnitude of trends and the shape of the frequency distributions of these measures vary regionally. Comparisons with data from the Social Vulnerability Index show that the most socially vulnerable counties appear to be warming faster than the least vulnerable, but that opposite patterns hold for trends in warm-tail spread. These findings may be applicable to further studies on climate change, heat adaptations, and environmental justice in the US.

Short-term effect of apparent temperature on daily emergency visits for mental and behavioral disorders in Beijing, China: A time -series study

Shifting transmission risk for malaria in Africa with climate change: A framework for planning and intervention

BACKGROUND: Malaria continues to be a disease of massive burden in Africa, and the public health resources targeted at surveillance, prevention, control, and intervention comprise large outlays of expense. Malaria transmission is largely constrained by the suitability of the climate for Anopheles mosquitoes and Plasmodium parasite development. Thus, as climate changes, shifts in geographic locations suitable for transmission, and differing lengths of seasons of suitability will occur, which will require changes in the types and amounts of resources. METHODS: The shifting geographic risk of malaria transmission was mapped, in context of changing seasonality (i.e. endemic to epidemic, and vice versa), and the number of people affected. A published temperature-dependent model of malaria transmission suitability was applied to continental gridded climate data for multiple future AR5 climate model projections. The resulting outcomes were aligned with programmatic needs to provide summaries at national and regional scales for the African continent. Model outcomes were combined with population projections to estimate the population at risk at three points in the future, 2030, 2050, and 2080, under two scenarios of greenhouse gas emissions (RCP4.5 and RCP8.5). RESULTS: Estimated geographic shifts in endemic and seasonal suitability for malaria transmission were observed across all future scenarios of climate change. The worst-case regional scenario (RCP8.5) of climate change predicted an additional 75.9 million people at risk from endemic (10-12 months) exposure to malaria transmission in Eastern and Southern Africa by the year 2080, with the greatest population at risk in Eastern Africa. Despite a predominance of reduction in season length, a net gain of 51.3 million additional people is predicted be put at some level of risk in Western Africa by midcentury. CONCLUSIONS: This study provides an updated view of potential malaria geographic shifts in Africa under climate change for the more recent climate model projections (AR5), and a tool for aligning findings with programmatic needs at key scales for decision-makers. In describing shifting seasonality, it was possible to capture transitions between endemic and epidemic risk areas, to facilitate the planning for interventions aimed at year-round risk versus anticipatory surveillance and rapid response to potential outbreak locations.

Short-term effect of ambient temperature change on the risk of tuberculosis admissions: Assessments of two exposure metrics

BACKGROUND: Although the effects of seasonal variations and ambient temperature on the incidence of tuberculosis (TB) have been well documented, it is still unknown whether ambient temperature change is an independent risk factor for TB. The aim of this study was to assess the association between ambient temperature change and the risk of TB admissions. METHOD: A distributed lag non-linear model (DLNM) combined with Poisson generalized linear regression model was performed to assess the association between ambient temperature change and the risk of TB admissions from 2014 to 2018 in Hefei, China. Two temperature change metrics including temperature change between neighboring days (TCN) and diurnal temperature range (DTR) were used to assess the effects of temperature change exposure. Subgroup analyses were performed by gender, age and season. Besides, the attributable risk was calculated to evaluated the public health significance. RESULTS: The overall exposure-response curves suggested that there were statistically significant associations between two temperature change metrics and the risk of TB admissions. The maximum lag-specific relative risk (RR) of TB admissions was 1.088 (95%CI: 1.012-1.171, lag 4 day) for exposing to large temperature drop (TCN= -4 °C) in winter. Besides, the overall cumulative risk of TB admissions increased continuously and peaked at a lag of 7 days (RR=1.350, 95%CI: 1.120-1.628). Subgroup analysis suggested that exposure to large temperature drop had an adverse effect on TB admissions among males, females and adults. Similarly, large level of DTR exposure (DTR=15 °C) in spring also increased the risk of TB admissions on lag 0 day (RR=1.039, 95%CI: 1.016-1.063), and the cumulative RRs peaked at a lag of 1 days (RR=1.029, 95%CI: 1.012-1.047). We also found that females and elderly people were more vulnerable to the large level of DTR exposure. Additionally, the assessment of attributable risk suggested that taking target measures for the upcoming large temperature drop (b-AF = 4.17%, 95% eCI: 1.24%, 7.22%, b-AN = 1195) may achieve great public health benefits for TB prevention. CONCLUSION: This study suggests that ambient temperature change is associated with the risk of TB admissions. Besides, TCN may be a better predictor for the TB prevention and public health.

Short-term effect of extreme air temperature on hospital emergency room visits for cardiovascular diseases from 2009 to 2012 in Beijing, China

Extreme air temperature directly affected human health. However, the short-term effect of extreme air temperature on the incidence of cardiovascular diseases has rarely been reported in China. In this study, we focused on Beijing, China, and assessed the effects of cold/warm days and nights on the number of hospital emergency room (ER) visits for cardiovascular diseases from 2009 to 2012. We used a generalized additive model (GAM) to estimate the association between extreme air temperature and the number of hospital ER visits for cardiovascular diseases. We divided the entire study group into two gender subgroups and three age subgroups. The results showed that the short-term effect of extreme air temperature on hospital ER visits for cardiovascular diseases was more profound in females and the elderly (aged ??75 years). Among all the study subgroups, the highest relative risk (RR) of cardiovascular diseases associated with extremely cold days, warm days, cold nights, and warm nights was 3.0% (95% CI, 1.6%-4.4%), 0.8% (95% CI, -?0.9%-2.6%), 2.8% (95% CI, 1.6%-4.2%), and 1.8% (95% CI, 0.6%-4.3%), respectively. Overall, the effect of extremely low air temperature (during both days and nights) on the incidence of cardiovascular diseases was stronger and more acute than that of extremely high air temperature.

Short-term effects of Saharan dust intrusions and biomass combustion on birth outcomes in Spain

The objective of this study is to analyze the short-term effects of atmospheric pollutant concentrations (PM(10), NO(2) and O(3)) and heat and cold waves on the number of pre-term births and cases of low birth weight related to Saharan dust advection and biomass combustion. The dependent variables used in this analysis were the total number of births, births with low weight (>2.500?g) and pre-term births (<37?weeks), that occurred at the province level. Data provided by the NSI included: days with Saharan dust intrusion or biomass advection classified in terms of information provided by MITECO for each of the nine regions in Spain. A representative city was selected for reach region in which the registered average daily concentrations of PM(10), NO(2) and O(3) (?g/m(3)) were used. These were also provided by MITECO. The daily maximum and daily minimum temperature (°C) used was those registered by the meteorological observatory station located in each province capital, provided by AEMET. Using Poisson log linear regression models, the associated relative risks (RR) were measured as well as the population attributable risk (PAR) corresponding to the variables that resulted statistically significant at p?

Short-term effects of atmospheric pollution on daily mortality and their modification by increased temperatures associated with a climatic change scenario in northern Mexico

Short-term effects of air pollution on the health of residents in the Metropolitan Area of Monterrey, Mexico were assessed from 2012-2015 using a time-series approach. Guadalupe had the highest mean concentrations for SO(2), CO and O(3); whereas Santa Catarina showed the highest NO(2) concentrations. Escobedo and Garcia registered the highest levels for PM(10). Only PM(10) and O(3) exceeded the maximum permissible values established in the Mexican official standards. Most of pollutants and municipalities showed a great number of associations between an increase of 10% in their current concentrations and mortality, especially for people >60 years. Different scenarios resulting from climatic change were built (increases of 5-25% in daily mean temperature), but only the increase of 25% (5 °C) showed a significant association with air pollutant concentrations and mortality. All pollutants and municipalities showed significant increases in relative risk indexes (RRI) resulting from an increase of 5 °C when people >60 years was considered. Results were comparable to those reported by other authors around the world. The RRI were low but significant, and thus are of public concern. This study demonstrated that the elderly is strongly threatened not only by atmospheric pollution but also by climatic change scenarios in warm and semiarid places.

Short-term effects of diurnal temperature range on hospital admission in Bangkok, Thailand

Diurnal temperature range (DTR) is a key indicator reflecting climate stability. Many previous studies have examined the effects of ambient temperature, both hot and cold, on human morbidity and mortality, but few studies have evaluated health effects of DTR, especially those in developing countries. This study aimed to investigate the association between short-term exposure to DTR and hospital admissions for cardiovascular and respiratory diseases in Bangkok, Thailand. We obtained daily meteorological variables from the Thai Meteorological Department from January 2006 through December 2014 and daily hospital admissions from the National Health Security Office during the same period. Quasi-Poisson generalized linear regression model combined with distributed lag non-linear model was used to examine the association between DTR and cardiovascular and respiratory hospital admissions controlling for daily average temperature, relative humidity, day of the week, public holiday, and seasonal and long-term trend. A J-shape relationship between DTR and hospital admissions was observed. With 7.8 °C DTR as a reference value, the relative risks for cardiovascular and respiratory hospital admission associated with extremely high DTR (11.6 °C) at cumulative lag 0-21 (21-day cumulative effects) were 1.206 (95% CI: 1.002-1.452) and 1.021 (95% CI: 0.856-1.218), respectively. The effects of extremely high DTR relative to a reference value did not significantly differ between males and females, as well as between young people (<65 years) and the elderly (?65 years) for both cardiovascular and respiratory admission. When stratifying the effects by season, the effect of extremely high DTR in winter was greater than that in summer and rainy season. This study showed that short-term exposure to extremely high DTR was significantly associated with increased risk of hospital admissions for cardiovascular disease in Bangkok, especially during winter. Results from this study could provide important scientific evidence for policy decision making to protect populations from adverse health effects of DTR.

Short-term effects of extreme temperatures on cause specific cardiovascular admissions in Beijing, China

Extreme temperature-related cardiovascular diseases (CVDs) have become a growing public health concern. However, the impact of temperature on the cause of specific CVDs has not been well studied in the study area. The objective of this study was to assess the impact of temperature on cause-specific cardiovascular hospital admissions in Beijing, China. We obtained data from 172 large general hospitals from the Beijing Public Health Information Center Cardiovascular Case Database and China. Meteorological Administration covering 16 districts in Beijing from 2013 to 2017. We used a time-stratified case crossover design with a distributed lag nonlinear model (DLNM) to derive the impact of temperature on CVD in hospitals back to 27 days on CVD admissions. The temperature data were stratified as cold (extreme and moderate ) and hot (moderate and extreme ). Within five years (January 2013-December 2017), a total of 460,938 (male 54.9% and female 45.1%) CVD admission cases were reported. The exposure-response relationship for hospitalization was described by a “J” shape for the total and cause-specific. An increase in the six-day moving average temperature from moderate hot (30.2 °C) to extreme hot (36.9 °C) resulted in a significant increase in CVD admissions of 16.1%(95% CI = 12.8%-28.9%). However, the effect of cold temperature exposure on CVD admissions over a lag time of 0-27 days was found to be non significant, with a relative risk of 0.45 (95% CI = 0.378-0.55) for extreme cold (-8.5 °C)and 0.53 (95% CI = 0.47-0.60) for moderate cold (-5.6 °C). The results of this study indicate that exposure to extremely high temperatures is highly associated with an increase in cause-specific CVD admissions. These finding may guide to create and raise awareness of the general population, government and private sectors regarding on the effects of current weather conditions on CVD.

Short-term exposure to ambient fine particulate matter and out-of-hospital cardiac arrest: A nationwide case-crossover study in Japan

BACKGROUND: PM(2·5) is an important but modifiable environmental risk factor, not only for pulmonary diseases and cancers, but for cardiovascular health. However, the evidence regarding the association between air pollution and acute cardiac events, such as out-of-hospital cardiac arrest (OHCA), is inconsistent, especially at concentrations lower than the WHO daily guideline (25 ?g/m(3)). This study aimed to determine the associations between exposure to ambient air pollution and the incidence of OHCA. METHODS: In this nationwide case-crossover study, we linked prospectively collected population-based registry data for OHCA in Japan from Jan 1, 2014, to Dec 31, 2015, with daily PM(2·5), carbon monoxide (CO), nitrogen dioxide (NO(2)), photochemical oxidants (O(x)), and sulphur dioxide (SO(2)) exposure on the day of the arrest (lag 0) or 1-3 days before the arrest (lags 1-3), as well as the moving average across days 0-1 and days 0-3. Daily exposure was calculated by averaging the measurements from all PM(2·5) monitoring stations in the same prefecture. The effect of PM(2·5) on risk of all-cause or cardiac OHCA was estimated using a time-stratified case-crossover design coupled with conditional logistic regression analysis, adjusted for daily temperature and relative humidity. Single-pollutant models were also investigated for the individual gaseous pollutants (CO, NO(2), O(x), and SO(2)), as well as two-pollutant models for PM(2·5) with these gaseous pollutants. Subgroup analyses were done by sex and age. FINDINGS: Over the 2 years, 249?372 OHCAs were identified, with 149?838 (60·1%) presumed of cardiac origin. The median daily PM(2·5) was 11·98 ?g/m(3) (IQR 8·13-17·44). Each 10 ?g/m(3) increase in PM(2·5) was associated with increased risk of all-cause OHCA on the same day (odds ratio [OR] 1·016, 95% CI 1·009-1·023) and at lags of up to 3 days, ranging from OR 1·015 (1·008-1·022) at lag 1 to 1·033 (1·023-1·043) at lag 0-3. Results for cardiac OHCA were similar (ORs ranging from 1·016 [1·007-1·025] at lags 1 and 2 to 1·034 [1·021-1·047] at lag 0-3). Patients older than 65 years were more susceptible to PM(2·5) exposure than younger age groups but no sex differences were identified. CO, O(x), and SO(2) were also positively associated with OHCA while NO(2) was not. However, in two-pollutant models of PM(2·5) and gaseous pollutants, only PM(2·5) (positive association) and NO(2) (negative association) were independently associated with increased risk of OHCA. INTERPRETATION: Short-term exposure to PM(2·5) was associated with an increased risk of OHCA even at relatively low concentrations. Regulatory standards and targets need to incorporate the potential health gains from continual air quality improvement even in locations already meeting WHO standards. FUNDING: None.

Simulated climate change, but not predation risk, accelerates Aedes aegypti emergence in a microcosm experiment in western Amazonia

Climate change affects individual life-history characteristics and species interactions, including predator-prey interactions. While effects of warming on Aedes aegypti adults are well known, clarity the interactive effects of climate change (temperature and CO2 concentration) and predation risk on the larval stage remains unexplored. In this study, we performed a microcosm experiment simulating temperature and CO2 changes in Manaus, Amazonas, Brazil, for the year 2100. Simulated climate change scenarios (SCCS) were in accordance with the Fourth Assessment Report of Intergovernmental Panel on Climate Change (IPCC). Used SCCS were: Control (real-time current conditions in Manaus: average temperature is ~25.76°C ± 0.71°C and ~477.26 ± 9.38 parts per million by volume (ppmv) CO2); Light: increase of ~1,7°C and ~218 ppmv CO2; Intermediate: increase of ~2.4°C and ~446 ppmv CO2; and Extreme: increase of ~4.5°C and ~861 ppmv CO2, all increases were relative to a Control SCCS. Light, Intermediate and Extreme SCCS reproduced, respectively, the B1, A1B, and A2 climatic scenarios predicted by IPCC (2007). We analyzed Aedes aegypti larval survivorship and adult emergence pattern with a factorial design combining predation risk (control and predator presence-Toxorhynchites haemorrhoidalis larvae) and SCCS. Neither SCCS nor predation risk affected Aedes aegypti larval survivorship, but adult emergence pattern was affected by SCCS. Accordingly, our results did not indicate interactive effects of SCCS and predation risk on larval survivorship and emergence pattern of Aedes aegypti reared in SCCS in western Amazonia. Aedes aegypti is resistant to SCCS conditions tested, mainly due to high larval survivorship, even under Extreme SCCS, and warmer scenarios increase adult Aedes aegypti emergence. Considering that Aedes aegypti is a health problem in western Amazonia, an implication of our findings is that the use of predation cues as biocontrol strategies will not provide a viable means of controlling the accelerated adult emergence expected under the IPCC climatic scenarios.

Simulation models of dengue transmission in Funchal, Madeira Island: Influence of seasonality

The recent emergence and established presence of Aedes aegypti in the Autonomous Region of Madeira, Portugal, was responsible for the first autochthonous outbreak of dengue in Europe. The island has not reported any dengue cases since the outbreak in 2012. However, there is a high risk that an introduction of the virus would result in another autochthonous outbreak given the presence of the vector and permissive environmental conditions. Understanding the dynamics of a potential epidemic is critical for targeted local control strategies. Here, we adopt a deterministic model for the transmission of dengue in Aedes aegypti mosquitoes. The model integrates empirical and mechanistic parameters for virus transmission, under seasonally varying temperatures for Funchal, Madeira Island. We examine the epidemic dynamics as triggered by the arrival date of an infectious individual; the influence of seasonal temperature mean and variation on the epidemic dynamics; and performed a sensitivity analysis on the following quantities of interest: the epidemic peak size, time to peak, and the final epidemic size. Our results demonstrate the potential for summer and autumn season transmission of dengue, with the arrival date significantly affecting the distribution of the timing and peak size of the epidemic. Late-summer arrivals were more likely to produce large epidemics within a short peak time. Epidemics within this favorable period had an average of 11% of the susceptible population infected at the peak, at an average peak time of 95 days. We also demonstrated that seasonal temperature variation dramatically affects the epidemic dynamics, with warmer starting temperatures producing large epidemics with a short peak time and vice versa. Overall, our quantities of interest were most sensitive to variance in the date of arrival, seasonal temperature, transmission rates, mortality rate, and the mosquito population; the magnitude of sensitivity differs across quantities. Our model could serve as a useful guide in the development of effective local control and mitigation strategies for dengue fever in Madeira Island.

Seasonal and climatic variation in the incidence of adult acute appendicitis: A seven year longitudinal analysis

BACKGROUND: Acute appendicitis represents an extremely common surgical emergency, yet its aetiology remains uncertain. A multifactorial understanding of its causation has emerged along with increasing evidence of seasonal variation. This study seeks to find evidence for such a circannual trend within the United Kingdom (UK), and further assess key meteorological indicators which may be causative of any such variation. METHODS: The patient records of a region health body in the North East of England were retrospectively assessed over a 7-year period. The incident cases of acute appendicitis were recorded and averaged by month before undergoing statistical analysis for variation and correlation with average temperature, sunlight hours, and rainfall. RESULTS: The incidence of acute appendicitis revealed significant seasonal variation with only 38 incident cases in the months of January compared to 73 in July, a 92.1% increase. Only a weak correlation was seen between incidence and average sunlight hours/rainfall, however a significant, positive correlation was found between incidence and average temperature (r?=?0.58, p?=?0.048). CONCLUSION: Compelling evidence is found to support the existence of a circannual trend for acute appendicitis. Data suggests a seasonal peak in the month of July, accompanied by a low in January, a finding that develops the understanding of this trend from previously equivocal research in the UK. A clear correlation is also established between the incidence of acute appendicitis and average temperature. The 92.1% increase between the coolest and warmest months suggests a greater magnitude for this as a risk factor than has previously been shown.

Seasonal distribution and meteorological factors associated with Hand, Foot, and Mouth Disease among children in Xi’an, Northwestern China

Hand, foot, and mouth disease (HFMD) is a common infectious disease in the Asia-Pacific region that primarily affects children younger than 5 years. Previous studies have confirmed that the seasonal transmission of this disease is strongly related to meteorological factors, but the results are not consistent. In addition, the associations between weather conditions and HFMD in northwestern China have not been investigated. Therefore, we aimed to examine this issue in Xi’an, the largest city of northwestern China that has been suffering from serious HFMD epidemics. In the current study, data for HFMD and six meteorological factors were collected from 2009 to 2018. Using cross-correlation analysis, the Granger causality test, and the distributed lag nonlinear model, we estimated the quantitative relationships and exposure-lag-response effects between weekly meteorological factors and HFMD incidence among children. We found that the seasonal distribution of HFMD in Xi’an has two peaks each year and is significantly impacted by the weekly temperature, precipitation, and evaporation over an 8-week period. Higher values of temperature and evaporation had positive associations with disease transmission, whereas the association between precipitation and HFMD showed an inverted-U shape. The maximum relative risks (RRs) of HFMD for the weekly mean temperature (approximately 31.1°C), weekly cumulative evaporation (57.9 mm), and weekly cumulative precipitation (30.0 mm) were 1.56 (95% CI: 1.35-1.81), 1.40 (95% CI: 1.05-1.88), and 1.16 (95% CI: 1.11-1.70), respectively. The identified risk determinants and lag effects could provide important information for early interventions to reduce the local disease burden.

Seasonal dynamics and spatial distribution of Aedes albopictus (Diptera: Culicidae) in a temperate region in Europe, Southern Portugal

Aedes albopictus is an invasive mosquito that has colonized several European countries as well as Portugal, where it was detected for the first time in 2017. To increase the knowledge of Ae. albopictus population dynamics, a survey was carried out in the municipality of Loulé, Algarve, a Southern temperate region of Portugal, throughout 2019, with Biogents Sentinel traps (BGS traps) and ovitraps. More than 19,000 eggs and 400 adults were identified from May 9 (week 19) and December 16 (week 50). A positive correlation between the number of females captured in the BGS traps and the number of eggs collected in ovitraps was found. The start of activity of A. albopictus in May corresponded to an average minimum temperature above 13.0 °C and an average maximum temperature of 26.2 °C. The abundance peak of this A. albopictus population was identified from September to November. The positive effect of temperature on the seasonal activity of the adult population observed highlight the importance of climate change in affecting the occurrence, abundance, and distribution patterns of this species. The continuously monitoring activities currently ongoing point to an established population of A. albopictus in Loulé, Algarve, in a dispersion process to other regions of Portugal and raises concern for future outbreaks of mosquito-borne diseases associated with this invasive mosquito species.

Seasonal pattern of influenza and the association with meteorological factors based on wavelet analysis in Jinan City, Eastern China, 2013-2016

BACKGROUND: Influenza is a disease under surveillance worldwide with different seasonal patterns in temperate and tropical regions. Previous studies have conducted modeling of influenza seasonality using climate variables. This study aimed to identify potential meteorological factors that are associated with influenza seasonality in Jinan, China. METHODS: Data from three influenza sentinel hospitals and respective climate factors (average temperature, relatively humidity (RH), absolute humidity (AH), sunshine duration, accumulated rainfall and speed of wind), from 2013 to 2016, were collected. Statistical and wavelet analyses were used to explore the epidemiological characteristics of influenza virus and its potential association with climate factors. RESULTS: The dynamic of influenza was characterized by annual cycle, with remarkable winter epidemic peaks from December to February. Spearman’s correlation and wavelet coherence analysis illuminated that temperature, AH and atmospheric pressure were main influencing factors. Multiple wavelet coherence analysis showed that temperature and atmospheric pressure might be the main influencing factors of influenza virus A(H3N2) and influenza virus B, whereas temperature and AH might best shape the seasonality of influenza virus A(H1N1)pdm09. During the epidemic season, the prevalence of influenza virus lagged behind the change of temperature by 1-8 weeks and atmospheric pressure by 0.5-3 weeks for different influenza viruses. CONCLUSION: Climate factors were significantly associated with influenza seasonality in Jinan during the influenza epidemic season and the optional time for influenza vaccination is before November. These finding should be considered in influenza planning of control and prevention.

Seasonal population dynamics of the primary yellow fever vector Haemagogus leucocelaenus (Dyar & Shannon) (Diptera: Culicidae) is mainly influenced by temperature in the Atlantic Forest, southeast Brazil

BACKGROUND: Southeast Brazil has recently experienced a Yellow Fever virus (YFV) outbreak where the mosquito Haemagogus leucocelaenus was a primary vector. Climatic factors influence the abundance of mosquito vectors and arbovirus transmission. OBJECTIVES: We aimed at describing the population dynamics of Hg. leucocelaenus in a county touched by the recent YFV outbreak. METHODS: Fortnightly egg collections with ovitraps were performed from November 2012 to February 2017 in a forest in Nova Iguaçu, Rio de Janeiro, Brazil. The effects of mean temperature and rainfall on the Hg. leucocelaenus population dynamics were explored. FINDINGS: Hg. leucocelaenus eggs were continuously collected throughout the study, with a peak in the warmer months (December-March). The climatic variables had a time-lagged effect and four weeks before sampling was the best predictor for the positivity of ovitraps and total number of eggs collected. The probability of finding > 50% positive ovitraps increased when the mean temperature was above 24ºC. The number of Hg. leucocelaenus eggs expressively increase when the mean temperature and accumulated precipitation surpassed 27ºC and 100 mm, respectively, although the effect of rainfall was less pronounced. MAIN CONCLUSIONS: Monitoring population dynamics of Hg. leucocelaenus and climatic factors in YFV risk areas, especially mean temperature, may assist in developing climate-based surveillance procedures to timely strengthening prophylaxis and control.

Seasonal temperature and rainfall extremes 1911-2017 for northern Australian population centres: Challenges for human activity

More than 40% of the human population reside in global tropical zones despite the extreme climates that frequently approach the upper thermotolerance levels for human physical activity and societal flourishing. Many of these regions also regularly subject resident populations to extreme weather events. Australia’s tropical regions experience exceptionally high climatic variability, making it one of the world’s most challenging for human settlements. Adaptation planning, project management and health protection agencies working at local scales require localized analysis on long-term climatic trends and projections. Utility of existing large-scale analyses is constrained by climatic heterogeneity across expansive national scales. Here we track historical changes in seasonal climatic extremes for seven key population centres across Australia’s north between the periods 1911-1940 and 1988-2017 as measured against the 1961-1990 period. Shifts in daily minimum temperature (20 degrees C or more), maximum temperature (10th, 90th and 95th percentiles), trends in heatwaves (5 days or longer) and in 1- and 3-day heavy rainfall events (95th and 98th percentiles) are provided. Results indicate the greatest warming has occurred during the Dry season and in coastal locations. Rainfall extremes demonstrate a pattern of marked spatial non-uniformity. This location-centred approach to identifying shifts in climatic extremes has wide applicability for adaptation planning across diverse global climatic regions.

Seasonal variation of sand fly populations in Kala-azar endemic areas of the Malda district, West Bengal, India

Vector control is one of the main aspects to reach the target of eliminating visceral leishmaniasis from Indian sub-continent as set by the World Health Organisation. Data on different aspects of vector like ecology, behaviour, population dynamics and their association with environmental factors are very important for formulating an effective vector control strategy. The present work was designed to study the species abundance and impact of environmental factors on population dynamics of vector P. argentipes in a visceral leishmaniasis endemic area of Malda district, West Bengal. Adult sand flies were collected using light traps and mouth aspirators from twelve kala-azar affected villages of Habibpur block of Malda district, on a monthly basis from January to December, 2018. Morphological and molecular methods were used for species identification. Population dynamics were assessed by man hour density and per night per trap collection. Data were analysed using SPSS software to determine the impact of environmental factors on vector population P. argentipes was found to the predominant species and prevalent throughout the year. A significantly higher number of sand flies were collected from cattle sheds than human dwellings and peri-domestic vegetation. A portion of the P. argentipes population was exophilic and exophagic as evidenced by their collection from peri-domestic vegetation. The highest population density was recorded during April to September. Population dynamics were mostly influenced by average temperature along humidity and rain fall. Resting behaviour of sand flies was not restricted to the lower portion of the wall but equally distributed throughout the wall and ceiling. Programme officials should consider management of outdoor populations of the sand flies and timings of indoor residual spray for chemical control purpose.

Seasonal variations and associated factors of gout attacks: A prospective multicenter study in Korea

BACKGROUND: We purposed to evaluate the seasonality and associated factors of the incidence of gout attacks in Korea. METHODS: We prospectively enrolled patients with gout attacks who were treated at nine rheumatology clinics between January 2015 and July 2018 and followed them for 1-year. Demographic data, clinical and laboratory features, and meteorological data including seasonality were collected. RESULTS: Two hundred-five patients (men, 94.1%) were enrolled. The proportion of patients with initial gout attacks was 46.8% (n = 96). The median age, body mass index, attack duration, and serum uric acid level at enrollment were 50.0 years, 25.4, 5.0 days, and 7.4 mg/dL, respectively. Gout attacks were most common during spring (43.4%, P < 0.001) and in March (23.4%, P < 0.001). A similar pattern of seasonality was observed in the group with initial gout attacks. Alcohol was the most common provoking factor (39.0%), particularly during summer (50.0%). The median diurnal temperature change on the day of the attack was highest in the spring (9.8°C), followed by winter (9.3°C), fall (8.6°C), and summer (7.1°C) (P = 0.027). The median change in humidity between the 2 consecutive days (the day before and the day of the attack) was significantly different among the seasons (3.0%, spring; 0.3%, summer; -0.9%, fall; -1.2%, winter; P = 0.015). One hundred twenty-five (61%) patients completed 1-year follow-up (51% in the initial attack group). During the follow-up period, 64 gout flares developed (21 in the initial attack group). No significant seasonal variation in the follow-up flares was found. CONCLUSION: In this prospective study, the most common season and month of gout attacks in Korea are spring and March, respectively. Alcohol is the most common provoking factor, particularly during summer. Diurnal temperature changes on the day of the attack and humidity changes from the day before the attack to the day of the attack are associated with gout attack in our cohort.

Seasonal variations and climatic factors on acute primary angle-closure admission in southern China: A 5-year hospital-based retrospective study

PURPOSE: To delineate the seasonality of acute primary angle-closure (APAC) admission in a coastal city of southern China and its association with climatic factors. METHODS: A total of 1155 Chinese subjects with principal diagnosis of APAC attack were recruited from 2012 to 2016, and their medical records were retrieved. Monthly climatic factors were obtained from the Meteorological Bureau of Shantou. Monthly and seasonal APAC admissions were compared, and its correlation with climatic factors was evaluated. RESULTS: APAC admission was higher in female subjects (75.9%) with an overall mean age of 64.7 ± 9.3 years. APAC admission was highest in summer with the peak onset in June. The peak of APAC admission for female subjects aged ? 65 years was in June, and that for> 65 years was in July. The peak of APAC admission for male subjects aged > 65 years was in August. Precipitation was positively correlated with APAC admission rate for both aged ? 65 (? = 0.415, p = 0.001) and > 65 years old (? = 0.364, p = 0.004) female subjects. In contrast, surface temperature was positively correlated with APAC admission rate for male subjects aged > 65 years (? = 0.441, p < 0.001). No climatic factor was correlated with APAC admission rate for male subjects ? 65 years. CONCLUSIONS: This study revealed the peak season of APAC admission in summer, and surface temperature and precipitation are the associated factors. Close monitoring of climate changes could help to reduce the incidence of APAC attack.

Seasonal variations in incidence and maternal-fetal outcomes of gestational diabetes

AIMS: To determine whether the neonatal and delivery outcomes of gestational diabetes vary seasonally in the context of a relatively cool temperate climate. METHODS: A retrospect cohort of 23 735 women consecutively delivering singleton, live-born term infants in a single tertiary obstetrics centre in the UK (2004-2008) was identified. A total of 985 (4.1%) met the diagnostic criteria for gestational diabetes. Additive dynamic regression models, adjusted for maternal age, BMI, parity and ethnicity, were used to compare gestational diabetes incidence and outcomes over annual cycles. Outcomes included: random plasma glucose at booking; gestational diabetes diagnosis; birth weight centile; and delivery mode. RESULTS: The incidence of gestational diabetes varied by 30% from peak incidence (October births) to lowest incidence (March births; P=0.031). Ambient temperature at time of testing (28 weeks) was strongly positively associated with diagnosis (P<0.001). Significant seasonal variation was evident in birth weight in gestational diabetes-affected pregnancies (average 54(th) centile June to September; average 60(th) centile December to March; P=0.027). Emergency Caesarean rates also showed significant seasonal variation of up to 50% (P=0.038), which was closely temporally correlated with increased birth weights. CONCLUSIONS: There is substantial seasonal variation in gestational diabetes incidence and maternal-fetal outcomes, even in a relatively cool temperate climate. The highest average birth weight and greatest risk of emergency Caesarean delivery occurs in women delivering during the spring months. Recognizing seasonal variation in neonatal and delivery outcomes provides new opportunity for individualizing approaches to managing gestational diabetes.

Seasonal variations in the skin parameters of Caucasian women from Central Europe

BACKGROUND: The human skin is greatly affected by external factors such as UV radiation (UVR), ambient temperature (T), and air humidity. These factors oscillate during the year giving rise to the seasonal variations in the skin properties. The aim of this study was to evaluate the effect of seasons, environmental T, relative and absolute humidity on the skin parameters of Caucasian women, perform a literature review and discuss the possible factors lying behind the found changes. MATERIALS AND METHODS: We measured stratum corneum (SC) hydration, transepidermal water loss (TEWL), sebum level, erythema index, and elasticity parameters R2 and R7 on the forehead and the cheek of Caucasian women from the Czech Republic throughout the year. We also performed a non-systematic literature review focused on the seasonal variations in these skin parameters. RESULTS: We confirmed a well-documented low SC hydration and sebum production in winter. In spring, we found the lowest TEWL (on the forehead) and the highest SC hydration but also the highest erythema index and the lowest elasticity presumably indicating skin photodamage. For most of the skin parameters, the seasonal variations probably arise due to a complex action of different factors as we extensively discussed. CONCLUSION: The data about the seasonal variations in the skin parameters are still highly inconsistent and further studies are needed for better understanding of the normal skin changes throughout the year.

Seasonality and Cardio-Cerebrovascular risk factors for benign Paroxysmal Positional Vertigo

Background: Benign paroxysmal positional vertigo (BPPV) is the most common cause of vertigo, especially in the elderly. Several studies have revealed a possible seasonality to BPPV. However, whether the seasonality of BPPV also exists in China is unclear. The characteristics of cardio-cerebrovascular risk factors for BPPV in the cold season have not yet been investigated. Objectives: (1) To investigate the seasonality of BPPV; (2) To explore the relationship between cardio-cerebrovascular risk factors and seasonality of BPPV. Methods: A retrospective observational study was performed in Beijing Tiantan Hospital from Jan 2016 to Dec 2018. The study included 1,409 new-onset BPPV patients aged 18-88 years. The demographic data, onset time, and medical history of BPPV were collected. The meteorological data, including temperature, atmospheric pressure, rainfall, and insolation, was obtained from Beijing Meteorological service. The x (2) goodness of fit test was used to evaluate whether BPPV patients’ numbers were significantly different among different months of the year. The Spearman correlation was used to detect the correlation between numbers of BPPV patients diagnosed monthly with each climatic parameter. The chi-square test for linear-by-linear association were used to investigate the relationship between cardio-cerebrovascular risk factor and seasonality of BPPV. Results: November to next March is the top 5 months with higher BPPV patient numbers (P < 0.001). The numbers of BPPV diagnosed monthly were conversely correlated with temperature and rainfall (r = -0.736, P = 0.010; r = -0.650, P = 0.022, respectively), positively correlated with atmospheric pressure (r = 0.708, P = 0.010), but no significant correlated with insolation. BPPV in the cold season (including January, February, March, November, and December) had a higher proportion, accounting for 54.2% of all BPPV patients. Among BPPV patients with ?2, 1, and none cardio-cerebrovascular risk factors, the cold season accounted for 57.0, 56.0, 49.8%, respectively. As the number of cardio-cerebrovascular risk factors increased, the proportion of patients in the cold season of BPPV increased (P = 0.025). Conclusions: BPPV patients are seen more in the months with low temperature, low rainfall, and high atmospheric pressure. Compared with the non-cold season, BPPV patients have more risk factors for cardio-cerebrovascular diseases in the cold season.

Sensing physiological change and mental stress in older adults from hot weather

This study combines wearable sensors, weather data, and self-reported mood surveys to assess mental stress on older adults from heat experience. It is designed as a pilot and feasibility study in preparation for a large-scale experiment of older adults; mental wellbeing during extreme heat events. Results show that on-body temperatures from two i-Button sensors coupled with heart rate monitored from a smart watch are important indicators to evaluate individualized heat stress given a relatively uniform outdoor temperature. Furthermore, assessing their mood in their own environment demonstrates potential for understanding mental wellbeing that can change with varying time and location.

Respiratory syncytial virus infection trend is associated with meteorological factors

Respiratory syncytial virus (RSV) infects young children and causes influenza-like illness. RSV circulation and prevalence differ among countries and climates. To better understand whether climate factors influence the seasonality of RSV in Thailand, we examined RSV data from children???5 years-old who presented with respiratory symptoms from January 2012-December 2018. From a total of 8,209 nasopharyngeal samples, 13.2% (1,082/8,209) was RSV-positive, of which 37.5% (406/1,082) were RSV-A and 36.4% (394/1,082) were RSV-B. The annual unimodal RSV activity from July-November overlaps with the rainy season. Association between meteorological data including monthly average temperature, relative humidity, rainfall, and wind speed for central Thailand and the incidence of RSV over 7-years was analyzed using Spearman’s rank and partial correlation. Multivariate time-series analysis with an autoregressive integrated moving average (ARIMA) model showed that RSV activity correlated positively with rainfall (r?=?0.41) and relative humidity (r?=?0.25), but negatively with mean temperature (r?=?-?0.27). The best-fitting ARIMA (1,0,0)(2,1,0)(12) model suggests that peak RSV activity lags the hottest month of the year by 4 months. Our results enable possible prediction of RSV activity based on the climate and could help to anticipate the yearly upsurge of RSV in this region.

Responses of rice qualitative characteristics to elevated carbon dioxide and higher temperature: Implications for global nutrition

BACKGROUND: Protein and some minerals of rice seed are negatively affected by projected carbon dioxide (CO(2) ) levels. However, an in-depth assessment of rice quality that encompasses both CO(2) and temperature for a wide range of nutritional parameters is not available. Using a free-air CO(2) enrichment facility with temperature control, we conducted a field experiment with two levels of CO(2) (ambient; ambient?+?200?ppm) and two levels of temperature (ambient; ambient?+?1.5 °C). An in-depth examination of qualitative factors indicated a variable nutritional response. RESULTS: For total protein, albumin, glutelin, and prolamin, elevated CO(2) reduced seed concentrations irrespective of temperature. Similarly, several amino acids declined further as a function of higher temperature and elevated CO(2) relative to elevated CO(2) alone. Higher temperature increased the lipid percentage of seed; however, elevated CO(2) reduced the overall lipid content. At the nutrient elements level, whereas elevated CO(2) reduced certain elements, a combination of CO(2) and temperature could compensate for CO(2) reductions but was element dependent. CONCLUSION: Overall, these data are, at present, the most detailed analysis of rising CO(2) /temperature on the qualitative characteristics of rice. They indicate that climate change is likely to significantly impact the nutritional integrity of rice, with subsequent changes in human health on a global basis. © 2020 Society of Chemical Industry.

Reversal of the seasonality of temperature-attributable mortality from respiratory diseases in Spain

A growing number of epidemiological studies have recently assessed temporal variations in vulnerability and/or mortality attributable to hot and cold temperatures. However, the eventual changes in the seasonal distribution of temperature-attributable mortality remain unexplored. Here, we analyse countrywide daily time-series of temperature and mortality counts from respiratory diseases by sex, age group and province of residence during the period 1980-2016 in Spain. We show the complete reversal of the seasonality of temperature-attributable mortality, with a significant shift of the maximum monthly incidence from winter to summer, and the minimum monthly incidence from early and late summer to winter. The reversal in the seasonal distribution of the attributable deaths is not driven by the observed warming in both winter and summer temperatures, but rather by the very large decrease in the risk of death due to cold temperatures and the relatively much smaller reduction due to hot temperatures. We conclude that the projected decrease in the number of moderate and extreme cold days due to climate warming will not contribute to a further reduction of cold-attributable respiratory deaths.

Revisiting recent US heat waves in a warmer and more humid climate

The frequency and intensity of heat waves in the United States is projected to increase in the 21st century. We investigate dry and humid heat waves in a pair of high-resolution model simulations that constrain large-scale atmospheric circulation, to isolate the thermodynamic impacts on characteristics of present and future heat waves over the United States. The two kinds of heat waves show differences in mean intensity, amplitude, duration, and frequency over the Southeast, Northeast, and Midwest, while their characteristics are largely similar in the drier central and western United States. In a warmer climate, relative humidity is projected to decrease during dry heat waves, whereas it remains unchanged during humid heat waves. However, the overall increase in daily maximum temperature intensifies the heat stress during future humid and dry heat waves across all regions. With large-scale circulation constrained, these simulations emphasize the importance of thermodynamic drivers in determining future heat wave characteristics.

Risk assessment of temperature and air pollutants on hospitalizations for mental and behavioral disorders in Curitiba, Brazil

BACKGROUND: Extreme ambient temperatures and air quality have been directly associated with various human diseases from several studies around the world. However, few analyses involving the association of these environmental circumstances with mental and behavioral disorders (MBD) have been carried out, especially in developing countries such as Brazil. METHODS: A time series study was carried out to explore the associations between daily air pollutants (SO(2), NO(2), O(3), and PM(10)) concentrations and meteorological variables (temperature and relative humidity) on hospital admissions for mental and behavioral disorders for Curitiba, Brazil. Daily hospital admissions from 2010 to 2016 were analyzed by a semi-parametric generalized additive model (GAM) combined with a distributed lag non-linear model (DLNM). RESULTS: Significant associations between environmental conditions (10??g/m(3) increase in air pollutants and temperature °C) and hospitalizations by MBD were found. Air temperature was the environmental variable with the highest relative risk (RR) at 0-day lag for all ages and sexes analyzed, with RR values of 1.0182 (95% CI: 1.0009-1.0357) for men, and 1.0407 (95% CI: 1.0230-1.0587) for women. Ozone exposure was a risk for all women groups, being higher for the young group, with a RR of 1.0319 (95% CI: 1.0165-1.0483). Elderly from both sexes were more susceptible to temperature variability, with a RR of 1.0651 (95% CI: 1.0213-1.1117) for women, and 1.0215 (95% CI: 1.0195-1.0716) for men. CONCLUSIONS: This study suggests that temperatures above and below the thermal comfort threshold, in addition to high concentrations of air pollutants, present significant risks on hospitalizations by MBD; besides, there are physiological and age differences resulting from the effect of this exposure.

Risk factors associated with Bronchiolitis in Puerto Rican children

OBJECTIVE: The objective of this study was to identify frequency, severity, and risk factors associated with bronchiolitis in Puerto Rican children. METHODS: A cross-sectional was study performed at 4 emergency departments of Puerto Rico’s metropolitan area, between June 2014 and May 2015. We included children younger than 24 months, with a clinical diagnosis of bronchiolitis, who were born and living in Puerto Rico at the time of recruitment. A physician-administered questionnaire inquiring about the patient’s medical, family, and social history and a bronchiolitis severity assessment were performed. Daily weather conditions were monitored, and aeroallergens were collected with an air sample and precision weather station within the metropolitan area to evaluate environmental factors. RESULTS: We included 600 patients for 12 months. More than 50% of the recruited patients had a previous episode of bronchiolitis, of which 40% had been hospitalized. Older age (odds ratio [OR], 18.3; 95% confidence interval [CI], 9.2-36.5), male sex (OR, 1.6; 95% CI, 1.1-2.4), history of asthma (OR, 8.9; 95% CI, 3.6-22), allergic rhinitis (OR, 3.6; 95% CI, 1.8-7.4), and smoke exposure by a caretaker (OR, 2.3; 95% CI, 1.2-4.4) were predictors of bronchiolitis episodes. Bronchiolitis episodes were associated with higher severity score (P = 0.040), increased number of atopic factors (P < 0.001), and higher number of hospitalizations (P < 0.001). CONCLUSIONS: This study identifies Puerto Rican children who may present a severe clinical course of disease without traditional risk factors. Atopy-related factors are associated with frequency and severity of bronchiolitis. Puerto Rican children present risk factors related to atopy earlier in life, some of which may be modified to prevent the subsequent development of asthma.

Risk factors for occupational heat-related illness among California workers, 2000-2017

BACKGROUND: As climate change increases global temperatures, heat-related morbidity and mortality are projected to rise. Outdoor workers and those who perform exertional tasks are particularly susceptible to heat-related illness (HRI). Using workers’ compensation data, we aimed to describe rates of occupational HRI in California and identify demographic and occupational risk factors to inform prevention efforts. METHODS: We identified HRI cases during 2000-2017 in the California Workers’ Compensation Information System (WCIS) using International Classification of Diseases Ninth and Tenth Revision codes, WCIS nature and cause of injury codes, and HRI keywords. We assigned industry and occupation codes using the NIOSH Industry and Occupation Computerized Coding System (NIOCCS). We calculated HRI rates by sex, age group, year, county, industry, and occupation, and estimated confidence intervals using generalized linear models. RESULTS: We identified 15,996 HRI cases during 2000-2017 (6.0 cases/100,000 workers). Workers aged 16-24 years had the highest HRI rate (7.6) among age groups, and men (8.1) had a higher rate than women (3.5). Industry sectors with the highest HRI rates were Agriculture, Farming, Fishing, and Forestry (38.6), and Public Administration (35.3). Occupational groups with the highest HRI rates were Protective Services (56.6) and Farming, Fishing, and Forestry (36.6). Firefighters had the highest HRI rate (389.6) among individual occupations. CONCLUSIONS: Workers in certain demographic and occupational groups are particularly susceptible to HRI. Additional prevention efforts, including outreach and enforcement targeting high-risk groups, are needed to reduce occupational HRI. Workers’ compensation data can provide timely information about temporal trends and risk factors for HRI.

Risk of chronic kidney disease in patients with heat injury: A nationwide longitudinal cohort study in Taiwan

Global climate change has led to a significant increase in temperature over the last century and has been associated with significant increases in the severity and frequency of heat injury (HI). The consequences of HI included dehydration and rhabdomyolysis, leading to acute kidney injury, which is now recognized as a clear risk factor for chronic kidney disease (CKD). We aimed to investigate the effects of HI on the risk of CKD. This nationwide longitudinal population-based retrospective cohort study utilized the Taiwan National Health Insurance Research Database (NHIRD) data. We enrolled patients with HI who were followed in NHIRD system between 2000 and 2013.We excluded patients diagnosed with CKD or genital-urinary system-related disease before the date of the new HI diagnosis. The control cohort consisted of individuals without HI history. The patients and control cohort were selected by 1:4 matching according to the following baseline variables: sex, age, index year, and comorbidities. The outcome measure was CKD diagnosis. In total, 815 patients diagnosed with HI were identified. During the 13 year observation period, we identified 72 CKD events (8.83%) in the heat stroke group and 143 (4.38%) CKD events in the control group. Patients with heat stroke had an increased risk of CKD than the control patients (adjusted HR = 4.346, P < 0.001) during the follow-up period. The risk of end-stage renal disease was also significantly increased in the heat stroke group than in the control group (adjusted hazards ratio: 9.078, p < 0.001). HI-related CKD may represent one of the first epidemics due to global warming. When compared to those without HI, patients with HI have an increased CKD risk.

Risk of kidney injury among construction workers exposed to heat stress: A longitudinal study from Saudi Arabia

Saudi Arabia (SA) is one of the hottest countries in the world. This study was conducted to assess the impact of summer heat stress in Southeastern SA on short-term kidney injury (KI) among building construction workers and to identify relevant risk factors. Measurements of urinary albumin-creatinine ratio (ACR), height, weight, hydration, symptoms, daily work and behavioral factors were collected in June and September of 2016 from a cohort of construction workers (n = 65) in Al-Ahsa Province, SA. KI was defined as ACR ?30 mg/g. Multivariate linear regression analysis was used to assess factors related to cross-summer changes in ACR. A significant increase in ACR occurred among most workers over the study period; incidence of KI was 18%. Risk factors associated with an increased ACR included dehydration, short sleep, and obesity. The findings suggest that exposure to summer heat may lead to the development of KI among construction workers in this region. Adequate hydration and promotion of healthy habits among workers may help reduce the risk of KI. A reduction in work hours may be the most effective intervention because this action can reduce heat exposure and improve sleep quality.

Risk screening methods for extreme heat: Implications for equity-oriented adaptation

Morbidity and mortality impacts of extreme heat amplified by climate change will be unequally distributed among communities given pre-existing differences in socioeconomic, health, and environmental conditions. Many governments are interested in adaptation policies that target those especially vulnerable to the risks, but there are important questions about how to effectively identify and support communities most in need of heat adaptations. Here, we use an equity-oriented adaptation program from the state of California as a case study to evaluate the implications of the currently used environmental justice index (CalEnviroScreen 3.0) for the identification of socially vulnerable communities with climate change adaptation needs. As CalEnviroScreen is geared towards air and water pollution, we assess how community heat risks and adaptation needs would be evaluated differently under two more adaptation-relevant vulnerability indices: the Social Vulnerability Index and the Heat-Health Action Index. Our analysis considers communities at the census tract scale, as well as the patterns emerging at the regional scale. Using the current index, the state designates 25% of its census tracts as “disadvantaged” communities eligible for special adaptation funds. However, an additional 12.6% of the state’s communities could be considered vulnerable if the two other indices were considered instead. Only 13.4% of communities are vulnerable across all three vulnerability indices studied. Choice of vulnerability index shapes statewide trends in extreme heat risk and is linked to a community’s likelihood of receiving heat-related California Climate Investments (CCI) projects. Tracts that are vulnerable under the current pollution-focused index, but not under the heat-health specific index, received four times the number of heat-related interventions as tracts vulnerable under the reverse scenario. This study demonstrates important nuances relevant to implementing equity-oriented adaptation and explores the challenges, trade-offs, and opportunities in quantifying vulnerability.

Role of climatic factors in the incidence of Takotsubo syndrome: A nationwide study from 2012 to 2016

AIMS: This study aimed to investigate the influence of climatic factors on the onset of Takotsubo syndrome (TTS). METHODS AND RESULTS: We performed a retrospective nationwide study among patients registered in the Japanese Registry of All Cardiac and Vascular Diseases and Diagnosis Procedure Combination (JROAD-DPC) discharge database, between 2012 and 2016. Before the analysis, a multicentre validation study was conducted for assessing the accuracy of the JROAD-DPC classification for TTS. First, we investigated the seasonal variation of incidences of TTS. Second, we analysed the associations between the incidence of TTS and climatic factors using the hierarchical Poisson regression modelling, and we also investigated the associations between typhoon landfalls and hospitalization for TTS, using the fixed-effects conditional Poisson regression model. The sensitivity and specificity for diagnosis were 83% and 100%, respectively. Then we analysed 5643 patients with TTS. The mean patient age was 74 (standard deviation ± 11) years; 79% were female. TTS was diagnosed significantly more frequently in the summer and early autumn. The incidence of TTS was related to higher temperatures; adjusted incidence rate ratios were 1.46 [95% confidence interval (CI): 1.33-1.60, P < 0.01] and 1.47 (95% CI: 1.34-1.62, P < 0.01) for temperatures of 20-25°C and >25°C, respectively. The incidence rate ratio for the first 2 days after a typhoon landfall was 1.85 (95% CI: 1.07-3.19; P = 0.03). CONCLUSIONS: This study demonstrates distinct patterns of seasonal variation in the incidence of TTS, as well as a significant association between its onset and climatic factors, including typhoon landfalls.

Season-stratified effects of meteorological factors on childhood asthma in Shanghai, China

OBJECTIVES: There has been increasing interest in identifying the adverse effects of ambient environmental factors on asthma exacerbations (AE), but season-stratified effects of meteorological factors on childhood asthma remain unclear. We explored the season-stratified effects of meteorological factors on childhood AE in Shanghai, China. METHODS: Poisson generalized linear regression model combined with a distributed lag nonlinear model was used to examine the lagged and nonlinear effects of meteorological factors on childhood AE after adjustment for putative confounders. We also performed a season-stratified analysis to determine whether the season modified the relationship between meteorological factors and childhood AE. RESULTS: There were 23,103 emergency department visits (EDVs) for childhood AE, including 15,466 boys and 7637 girls during 2008-2017. Most meteorological factors (e.g., temperature, diurnal temperature range (DTR), relative humidity (RH) and wind speed (WS)) were significantly associated with EDVs for childhood AE, even after adjustment for the confounding effects of air pollutants. In the whole year, extreme cold, moderate heat, higher DTR, lower RH and WS increased the relative risk (RR) for childhood AE. In the cold season, lower RH and wind speed increased the risks of childhood AE (RR(lag0-28) for the 5th percentile (p5) of RH: 9.744, 95% CI: 3.567, 26.616; RR(lag0-28) for the p5 of wind speed: 10.671, 95% CI: 1.096, 103.879). In the warm season, higher temperature and DTR, lower RH and WS increased the RR for childhood AE (RR(lag0-5) for the p95 of temperature: 1.871, 95% CI: 1.246, 2.810; RR(lag0-2) for the p95 of DTR: 1.146, 95% CI: 1.010, 1.300; RR(lag0-5) for the p5 of RH: 1.931, 95% CI: 1.191, 3.128; RR(lag0-2) for the p5 of WS: 1.311, 95% CI: 1.005, 1.709). CONCLUSIONS: Extreme meteorological factors appeared to be triggers of EDVs for childhood AE in Shanghai and the effects modified by season. These findings provide evidence for developing season-specific and tailored strategies to prevent and control childhood AE.

Rapid warming in summer wet bulb globe temperature in China with human-induced climate change

On the basis of a newly developed observational dataset and a suite of climate model simulations, we evaluate changes in summer mean wet bulb globe temperature (WBGT) in China from 1961 through 2080. We show that summer mean WBGT has increased almost everywhere across China since 1961 as a result of human-induced climate change. Consequently, hot summers as measured by summer mean WBGT are becoming more frequent and more conducive to heat stress. Hot summers like the hottest on record during 1961-2015 in western or eastern China are now expected occur once every 3-4 years. These hot WBGT summers have become more than 140 times as likely in eastern China in the present decade (2010s) as in the 1961-90 baseline period and more than 1000 times as likely in western China. The substantially larger influence in western China is associated with its stronger warming signal, which is likely due to the high Bowen ratio of sensible to latent heat fluxes of dry soils and increases in absorbed solar radiation from the decline in mountain snow cover extent. Observation-constrained projections of future summer mean WBGT under the RCP8.5 emissions scenario indicate that, by the 2040s, almost every summer in China will be at least as hot as the hottest summer in the historical record, and by the 2060s it will be common (on average, every other year) for summers to be as much as 3.0 degrees C hotter than the historical record, pointing to potentially large increases in the likelihood of human heat stress and to a massive adaption challenge.

Rates of increase of antibiotic resistance and ambient temperature in Europe: A cross-national analysis of 28 countries between 2000 and 2016

BackgroundThe rapid increase of bacterial antibiotic resistance could soon render our most effective method to address infections obsolete. Factors influencing pathogen resistance prevalence in human populations remain poorly described, though temperature is known to contribute to mechanisms of spread.AimTo quantify the role of temperature, spatially and temporally, as a mechanistic modulator of transmission of antibiotic resistant microbes.MethodsAn ecologic analysis was performed on country-level antibiotic resistance prevalence in three common bacterial pathogens across 28 European countries, collectively representing over 4?million tested isolates. Associations of minimum temperature and other predictors with change in antibiotic resistance rates over 17?years (2000-2016) were evaluated with multivariable models. The effects of predictors on the antibiotic resistance rate change across geographies were quantified.ResultsDuring 2000-2016, for Escherichia coli and Klebsiella pneumoniae, European countries with 10°C warmer ambient minimum temperatures compared to others, experienced more rapid resistance increases across all antibiotic classes. Increases ranged between 0.33%/year (95%?CI:?0.2?to?0.5) and 1.2%/year (95%?CI:?0.4?to?1.9), even after accounting for recognised resistance drivers including antibiotic consumption and population density. For Staphylococcus aureus a decreasing relationship of -0.4%/year (95%?CI:? -0.7 to 0.0) was found for meticillin resistance, reflecting widespread declines in meticillin-resistant S. aureus across Europe over the study period.ConclusionWe found evidence of a long-term effect of ambient minimum temperature on antibiotic resistance rate increases in Europe. Ambient temperature might considerably influence antibiotic resistance growth rates, and explain geographic differences observed in cross-sectional studies. Rising temperatures globally may hasten resistance spread, complicating mitigation efforts.

Re-introduction of vivax malaria in a temperate area (Moscow region, Russia): A geographic investigation

BACKGROUND: Between 1999 and 2008 Russia experienced a flare-up of transmission of vivax malaria following its massive importation with more than 500 autochthonous cases in European Russia, the Moscow region being the most affected. The outbreak waned soon after a decrease in importation in mid-2000s and strengthening the control measures. Compared with other post-eradication epidemics in Europe this one was unprecedented by its extension and duration. METHODS: The aim of this study is to identify geographical determinants of transmission. The degree of favourability of climate for vivax malaria was assessed by measuring the sum of effective temperatures and duration of season of effective infectivity using data from 22 weather stations. For geospatial analysis, the locations of each of 405 autochthonous cases detected in Moscow region have been ascertained. A MaxEnt method was used for modelling the territorial differentiation of Moscow region according to the suitability of infection re-emergence based on the statistically valid relationships between the distribution of autochthonous cases and environmental and climatic factors. RESULTS: In 1999-2004, in the beginning of the outbreak, meteorological conditions were extremely favourable for malaria in 1999, 2001 and 2002, especially within the borders of the city of Moscow and its immediate surroundings. The greatest number of cases occurred at the northwestern periphery of the city and in the adjoining rural areas. A significant role was played by rural construction activities attracting migrant labour, vegetation density and landscape division. A cut-off altitude of 200 m was observed, though the factor of altitude did not play a significant role at lower altitudes. Most likely, the urban heat island additionally amplified malaria re-introduction. CONCLUSION: The malariogenic potential in relation to vivax malaria was high in Moscow region, albeit heterogeneous. It is in Moscow that the most favourable conditions exist for vivax malaria re-introduction in the case of a renewed importation. This recent event of large-scale re-introduction of vivax malaria in a temperate area can serve as a case study for further research.

Recent trends on human thermal bioclimate conditions in KYIv, Ukraine

The human-biometeorological conditions in Kyiv (Ukraine) and changes in the frequency of heat stress during the summer period due to recent climate trends were analyzed. The evaluation based on physiologically equivalent temperature (PET). The results revealed the highest probability of thermal comfortable conditions in Kyiv is from the last 10-day period of April to the end of June and from the last 10-day period of August to the end of September. The probability of heat stress reached nearly 90% during the second and third 10-day periods of July. A pronounced increase in thermal stress during the studied heat wave cases (HW), as well as increasing amount of days with heat stress in the period 1991-2015, were found.

Reducing the risks of extreme heat for seniors: Communicating risks and building resilience

INTRODUCTION: As the global climate changes, heat waves are having a disproportionate impact on seniors and other socially vulnerable groups. In order to mitigate the threats of extreme heat, it is critical to develop and promote resources for coping during these events. A better understanding of the role of risk perceptions and the factors that influence them is needed in order to improve public responses to threatening events, particularly among seniors. METHODS: This mixed-methods study examined risk perceptions and coping practices in seniors using qualitative interviews (n = 15) and a survey (n = 244) of seniors across Waterloo Region, Ontario. RESULTS: Seniors showed relatively accurate risk tracking as indicated by the link between measures of actual risk and perception of personal risk. While vulnerability to heat is often believed to be associated with inaccurate perceptions of risk, within our sample, vulnerability appears more strongly related to social location and access to resources. Participants described social connections as important resources for resilience, but the stigma surrounding vulnerability, and other social norms, as barriers to seeking support. CONCLUSION: The positive relationship between participants’ risk perceptions and actual risk for negative consequences of extreme heat was an important finding, given that problems of emergency preparedness and risk reduction are often framed as issues of awareness of risk, rather than social location and inequality. Along with increased public resources for coping with extreme heat, communicating about resources, fostering social connections and reducing stigma may be important leverage points for increasing the resiliency of seniors to heat waves.

Relationship between air temperature parameters and the number of deaths stratified by cause in Gifu Prefecture, Japan

OBJECTIVE: It is well known that air temperature is closely related to health outcomes. We investigated the relationship between air temperature parameters and the number of deaths stratified by cause in Gifu prefecture, Japan. METHODS: The number of deaths stratified by cause in Gifu prefecture Japan between January 2007 and December 2016 was obtained from the official homepage of Gifu prefecture, Japan. Air temperature parameters (?), i.e., the mean air temperature, mean of the highest air temperature, mean of the lowest air temperature, the highest air temperature, and the lowest air temperature during the same period in Gifu city were also obtained from the Japan Meteorological Agency official home page. The relationship between air temperature parameters and the number of deaths was evaluated in an ecological study. RESULTS: The number of deaths due to heart disease, cerebrovascular disease, pneumonia, accidents, or renal failure in January (coldest winter season in Japan) was the highest among the months. Simple correlation analysis also demonstrated a significant and negative relationship between air temperature parameters and the number of deaths due to heart disease, cerebrovascular disease, senility, pneumonia, accidents, and renal failure. CONCLUSION: Lower air temperature may be associated with a higher number of deaths due to diseases in Gifu prefecture, Japan.

Relationship between biometeorological factors and the number of hospitalizations due to asthma

The incidence of asthma exacerbation depends on atmospheric conditions, including such meteorological factors as the ambient temperature, relative air humidity or concentration of atmospheric aerosols. An assessment of relations between the frequency of asthma exacerbation and environmental conditions was made according to the meteorological components, the biometeorological index UTCI (Universal Thermal Climate Index), as well as selected air quality parameters, including concentrations of PM(10) and PM(2.5). The study was conducted on the basis of a retrospective analysis of medical data collected at the Independent Public Hospital of Tuberculosis and Pulmonary Diseases in Olsztyn (Poland). Our analysis of patient data (from 1 January 2013 until 31 December 2017) showed a significant correlation between the number of asthma exacerbation and the UTCI value. More frequent asthma exacerbations are observed in patients aged over 65 years when air humidity increases. The UTCI values contained within class 5, describing thermoneutral conditions, correspond to an average frequency of asthma exacerbation. A decline in the UTCI value leads to a reduced number of asthma exacerbation, while a rise makes the cases of asthma exacerbations increase.

Relationship between energy demand, indoor thermal behaviour and temperature-related health risk concerning passive energy refurbishment interventions

The main objective of this article is to demonstrate that passive energy refurbishment interventions influence comfort conditions of households for both cold and hot annual periods, while they help to avoid or promote temperature-related health risk situations. However, improving the thermal efficiency of the building envelope is encouraged in order to reduce energy demand for heating and cooling instead of considering also their impact on users’ health. The calculation methodology to quantify improvements, on the other hand, is drawn from regulation-based standards, which describe the optimal achievable efficiency levels and energy cost savings. The present study, however, addresses how diverse thermal performance variables are (climate, thermal comfort range and occupancy rate), and shows that different thermal assessment standards influence the obtained results. An energy simulation approach was developed to evaluate different scenarios and compare the results. In conclusion, the results contribute to an understanding or to a discussion of the suitability of current energy renovation policies with regard to indoor thermal comfort and temperature-related health risk situations.

Relationship between environmental temperature and the diagnosis and treatment of gestational diabetes mellitus: An observational retrospective study

INTRODUCTION: Environmental temperature has been described to affect plasma glucose levels after oral glucose tolerance testing (OGTT). AIMS: We evaluated the relationship between seasons and environmental temperature and gestational diabetes mellitus (GDM) diagnosis and treatment. METHODS: We analyzed data from 2374 women retrospectively. GDM was diagnosed in 473 patients by a 100-g OGTT. OGTT results and needing of insulin therapy were evaluated in relation to seasons and environmental temperature (mean temperature and temperature change) the day of the OGTT and the preceding 14 and 28 days. RESULTS: We found significant seasonal differences in the percentage of GDM: 24.4% in summer vs. 15.6% in autumn (p < 0.01). The odds ratio (OR) for being diagnosed with GDM was 1.78 in summer relative to autumn, after controlling for age. A higher mean temperature the day of the OGTT and the preceding 14 and 28 days increased the risk of being diagnosed with GDM the months in which temperature was rising (March-August) but not the months in which temperature was decreasing (September-February). We observed a negative correlation between temperature and fasting glucose and a positive correlation with post-load glucose. Neither the season nor the environmental temperature affected the risk of requiring insulin therapy. CONCLUSIONS: There is a higher prevalence of GDM diagnosis at warmer seasons and at rising temperatures the 2-4 weeks prior to the OGTT. The impact of temperature is different between fasting and post-load glucose.

Relationship between temporal anomalies in PM(2.5) concentrations and reported influenza/influenza-like illness activity

A small number of studies suggest atmospheric particulate matter with diameters 2.5 micron and smaller (PM(2.5)) may possibly play a role in the transmission of influenza and influenza-like illness (ILI) symptoms. Those studies were predominantly conducted under moderately to highly polluted outdoor atmospheres. The purpose of this study was to extend the data set to include a less polluted atmospheric environment. A relationship between PM2.5 and ILI activity extended to include lightly to moderately polluted atmospheres could imply a more complicated mechanism than that suggested by existing studies. We obtained concurrent PM(2.5) mass concentration data, meteorological data and reported Influenza and influenza-like illness (ILI) activity for the light to moderately polluted atmospheres over the Tucson, AZ region. We found no relation between PM2.5 mass concentration and ILI activity. There was an expected relation between ILI, activity, temperature, and relative humidity. There was a possible relation between PM2.5 mass concentration anomalies and ILI activity. These results might be due to the small dataset size and to the technological limitations of the PM measurements. Further study is recommended since it would improve the understanding of ILI transmission and thereby improve ILI activity/outbreak forecasts and transmission model accuracies.

Relationship of meteorological factors and air pollutants with medical care utilization for gastroesophageal reflux disease in urban area

BACKGROUND: Gastroesophageal reflux disease (GERD) is a highly prevalent disease of the upper gastrointestinal tract, and it is associated with environmental and lifestyle habits. Due to an increasing interest in the environment, several groups are studying the effects of meteorological factors and air pollutants (MFAPs) on disease development. AIM: To identify MFAPs effect on GERD-related medical utilization. METHODS: Data on GERD-related medical utilization from 2002 to 2017 were obtained from the National Health Insurance Service of Korea, while those on MFAPs were obtained from eight metropolitan areas and merged. In total, 20071900 instances of GERD-related medical utilizations were identified, and 200000 MFAPs were randomly selected from the eight metropolitan areas. Data were analyzed using a multivariable generalized additive Poisson regression model to control for time trends, seasonality, and day of the week. RESULTS: Five MFAPs were selected for the prediction model. GERD-related medical utilization increased with the levels of particulate matter with a diameter ? 2.5 ?m (PM(2.5)) and carbon monoxide (CO). S-shaped and inverted U-shaped changes were observed in average temperature and air pollutants, respectively. The time lag of each variable was significant around nine days after exposure. CONCLUSION: Using five MFAPs, the final model significantly predicted GERD-related medical utilization. In particular, PM(2.5) and CO were identified as risk or aggravating factors for GERD.

Projections of excess mortality related to diurnal temperature range under climate change scenarios: A multi-country modelling study

BACKGROUND: Various retrospective studies have reported on the increase of mortality risk due to higher diurnal temperature range (DTR). This study projects the effect of DTR on future mortality across 445 communities in 20 countries and regions. METHODS: DTR-related mortality risk was estimated on the basis of the historical daily time-series of mortality and weather factors from Jan 1, 1985, to Dec 31, 2015, with data for 445 communities across 20 countries and regions, from the Multi-Country Multi-City Collaborative Research Network. We obtained daily projected temperature series associated with four climate change scenarios, using the four representative concentration pathways (RCPs) described by the Intergovernmental Panel on Climate Change, from the lowest to the highest emission scenarios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5). Excess deaths attributable to the DTR during the current (1985-2015) and future (2020-99) periods were projected using daily DTR series under the four scenarios. Future excess deaths were calculated on the basis of assumptions that warmer long-term average temperatures affect or do not affect the DTR-related mortality risk. FINDINGS: The time-series analyses results showed that DTR was associated with excess mortality. Under the unmitigated climate change scenario (RCP 8.5), the future average DTR is projected to increase in most countries and regions (by -0·4 to 1·6°C), particularly in the USA, south-central Europe, Mexico, and South Africa. The excess deaths currently attributable to DTR were estimated to be 0·2-7·4%. Furthermore, the DTR-related mortality risk increased as the long-term average temperature increased; in the linear mixed model with the assumption of an interactive effect with long-term average temperature, we estimated 0·05% additional DTR mortality risk per 1°C increase in average temperature. Based on the interaction with long-term average temperature, the DTR-related excess deaths are projected to increase in all countries or regions by 1·4-10·3% in 2090-99. INTERPRETATION: This study suggests that globally, DTR-related excess mortality might increase under climate change, and this increasing pattern is likely to vary between countries and regions. Considering climatic changes, our findings could contribute to public health interventions aimed at reducing the impact of DTR on human health. FUNDING: Korea Ministry of Environment.

Projections of heat stress and associated work performance over India in response to global warming

Summertime heat stress future projections from multi-model mean of 18 CMIP5 models show unprecedented increasing levels in the RCP 4.5 and RCP 8.5 emission scenarios over India. The estimated heat stress is found to have more impact on the coastal areas of India having exposure to more frequent days of extreme caution to danger category along with the increased probability of occurrence. The explicit amount of change in temperature, increase in the duration and intensity of warm days along with the modulation in large scale circulation in future are seemingly connected to the increasing levels of heat stress over India. A decline of 30 to 40% in the work performance is projected over India by the end of the century due to the elevated heat stress levels which pose great challenges to the country policy makers to design the safety mechanisms and to protect people working under continuous extreme hot weather conditions.

Projections of temperature-related cause-specific mortality under climate change scenarios in a coastal city of China

BACKGROUND: Numerous studies have been conducted to project temperature-related mortality under climate change scenarios. However, most of the previous evidence has been limited to the total or non-accidental mortality, resulting in insufficient knowledge on the influence of climate change on different types of disease. OBJECTIVES: We aimed to project future temperature impact on mortality from 16 causes under multiple climate change models in a coastal city of China. METHODS: We first estimated the baseline exposure-response relationships between daily average temperature and cause-specific mortality during 2009-2018. Then, we acquired downscaled future temperature projections from 28 general circulation models (GCMs) under two Representative Concentration Pathway (RCP4.5 and RCP8.5). Finally, we combined these exposure-response associations with projected temperature to estimate the change in the temperature-related death burden in different future decades in comparison to the 2010 s, assuming no demographic changes and population acclimatization. RESULTS: We found a consistently decreasing trend in cold-related mortality but a steep rise in heat-related mortality among 16 causes under climate change scenarios. Compared with the 2010 s, the net change in the fraction of total mortality attributable to temperature are projected to -0.54% (95% eCI: -1.69% to 0.71%) and -0.38% (95% eCI: -2.73% to 2.12%) at the end of the 21st century under RCP4.5 and RCP8.5, respectively. However, the magnitude of future cold and heat effects varied by different causes of death. A net reduction of future temperature-related death burden was observed among 10 out of 15 causes, with estimates ranging from -5.02% (95% eCI: -17.42% to 2.50%) in mental disorders to -1.01% (95% eCI: -5.56% to 3.28%) in chronic lower respiratory disease. Conversely, the rest diseases are projected to experience a potential net increase of temperature-related death burden, with estimates ranging from 0.44% (95% eCI: -4.40% to 6.02%) in ischemic heart disease and 4.80% (95% eCI: -0.04% to 9.84%) in external causes. CONCLUSIONS: Our study indicates that the mortality burden of climate change varied greatly by the mortality categories. Further investigations are warranted to comprehensively understand the impacts of climate change on different types of disease across various regions.

Prolonged life expectancy for those dying of stroke by achieving the daily PM(2.5) targets

This time-series study collects data on stroke-related mortality, years of life lost (YLL), air pollution, and meteorological conditions in 96 Chinese cities from 2013 to 2016 and proposes a three-stage strategy to generate the national and regional estimations of avoidable YLL, gains in life expectancy and stroke-related population attributable fraction by postulating that the daily fine particulate matter (PM(2.5)) has been kept under certain standards. A total of 1 318 911 stroke deaths are analyzed. Each 10 µg m(-3) increment in PM(2.5) at lag(03) is associated with a city-mean increase of 0.31 (95% CI: 0.19, 0.44) years of life lost from stroke. A number of 914.11 (95% CI: 538.28, 1288.94) years of city-mean life lost from stoke could be avoided by attaining the WHO’s Air Quality Guidelines (AQG) (25 µg m(-3)). Moreover, by applying the AQG standard, 0.11 (0.08, 0.15) years of life lost might be prevented for each death, and about 0.91% (95% CI: 0.62%, 1.19%) of the total years of life lost from stroke might be explained by the daily excess PM(2.5) exposure. This study indicates that stroke patients can have a longer life expectancy if stricter PM(2.5) standards are put in place, especially ischemic stroke patients.

Public health implications of solar UV exposure during extreme cold and hot weather episodes in 2018 in Chilton, South East England

Consideration of the implications of solar UV exposure on public health during extreme temperature events is important due to their increasing frequency as a result of climate change. In this paper public health impacts of solar UV exposure, both positive and negative, during extreme hot and cold weather in England in 2018 were assessed by analysing environmental variations in UV and temperature. Consideration was given to people’s likely behaviour, the current alert system and public health advice. During a period of severe cold weather in February-March 2018 UV daily doses were around 25-50% lower than the long-term average (1991-2017); however, this would not impact on sunburn risk or the benefit of vitamin D production. In spring 2018 unseasonably high temperatures coincided with high UV daily doses (40-75% above long-term average) on significant days: the London Marathon (22 April) and UK May Day Bank Holiday weekend, which includes a public holiday on the Monday (5-7 May). People were likely to have intermittent excess solar UV exposure on unacclimatised skin, causing sunburn and potentially increasing the risk of skin cancers. No alerts were raised for these events since they occurred outside the alerting period. During a heat-wave in summer 2018 the environmental availability of UV was high-on average of 25% above the long-term average. The public health implications are complex and highly dependent on behaviour and sociodemographic variables such as skin colour. For all three periods Pearson’s correlation analysis showed a statistically significant (p<0.05) positive correlation between maximum daily temperature and erythema-effective UV daily dose. Public health advice may be improved by taking account of both temperature and UV and their implications for behaviour. A health impact-based alert system would be of benefit throughout the year, particularly in spring and summer.

Quantifying the risk of hand, foot, and mouth disease (HFMD) attributable to meteorological factors in East China: A time series modelling study

BACKGROUND: Hand, foot, and mouth disease (HFMD) is a widespread infectious disease in China. Associated meteorological factors have been widely studied, but their attributable risks have not been well quantified. OBJECTIVES: The study aimed to quantify the HFMD burden attributable to temperature and other meteorological factors. METHODS: The daily counts of HFMD and meteorological factors in all 574 counties of East China were obtained for the period from 2009 to 2015. The exposure-lag-response relationships between meteorological factors and HFMD were quantified by using a distributed lag non-linear model for each county and the estimates from all the counties were then pooled using a multivariate mete-regression model. Attributable risks were estimated for meteorological variables according to the exposure-lag-response relationships obtained before. RESULTS: The study included 4,058,702 HFMD cases. Non-optimal values of meteorological factors were attributable to approximately one third of all HFMD cases, and the attributable numbers of non-optimal ambient temperature, relative humidity, wind speed and sunshine hours were 815,942 (95% CI: 796,361-835,888), 291,759 (95% CI: 226,183-358,494), 92,060 (95% CI: 59,655-124,738) and 62,948 (95% CI: 20,621-105,773), respectively. The exposure-response relationship between temperature and HFMD was non-linear with an approximate “M” shape. High temperature had a greater influence on HFMD than low temperature did. There was a geographical heterogeneity related to water body, and more cases occurred in days with moderate high and low temperatures than in days with extreme temperature. The effects of meteorological factors on HFMD were generally consistent across subgroups. CONCLUSIONS: Non-optimal temperature is the leading risk factor of HFMD in East China, and moderate hot and moderate cold days had the highest risk. Developing subgroup-targeted and region-specific programs may minimize the adverse consequences of non-optimum weather on HFMD risk.

Quantitative assessment of the contribution of meteorological variables to the prediction of the number of heat stroke patients for Tokyo

This study reveals the best combination of meteorological variables for the prediction of the number of emergency transport due to heat stroke over 64 years old in Tokyo metropolis based on a generalized linear model using 2008-2016 data. Temperature, relative humidity, wind speed, and solar radiation were used as candidates of the explanatory variables. The variable selection with Akaike’s information criterion (AIC) showed that all the four meteorological elements were selected for the prediction model. Additional analysis showed that the combination of daily mean temperature, maximum relative humidity, maximum wind speed, and total solar radiation as explanatory variables gives the best prediction, with approximately 19% less error than the conventional single-variable model which only uses the daily mean temperature. Finally, we quantitatively estimated the relative contribution of each variable to the prediction of the daily number of heat stroke patients using standardized partial regression coefficients. The result reveals that temperature is the largest contributor. Solar radiation is second, with approximately 20% of the temperature effect. Relative humidity and wind speed make relatively small contributions, each contributing approximately 10% and 9% of the temperature, respectively. This result provides helpful information to propose more sophisticated thermal indices to predict heat stroke risk.

Prediction model for Dry Eye Syndrome incidence rate using air pollutants and meteorological factors in South Korea: Analysis of sub-region deviations

Here, we develop a dry eye syndrome (DES) incidence rate prediction model using air pollutants (PM10, NO2, SO2, O-3, and CO), meteorological factors (temperature, humidity, and wind speed), population rate, and clinical data for South Korea. The prediction model is well fitted to the incidence rate (R-2= 0.9443 and 0.9388,p< 2.2 x 10(-16)). To analyze regional deviations, we classify outpatient data, air pollutant, and meteorological factors in 16 administrative districts (seven metropolitan areas and nine states). Our results confirm NO(2)and relative humidity are the factors impacting regional deviations in the prediction model.

Predictors associated with health-related heat risk perception of urban citizens in Germany

The rising probability of extremely high temperatures and an increasing number of consecutive hot days caused by climate change-combined with the impact of these high temperatures on human health-is widely discussed in the literature. There are calls for the development of heatwave adaptation measures by governmental and scientific institutions. In this research, the predictors of health-related heat risk perception of urban citizens in Augsburg, Germany, were investigated. An online survey was conducted with 468 citizens, asking about their heat risk perception, knowledge about heat risks, and demographic data and health information. Statistical methods (Spearman correlation, unpaired t-test, ANOVA and multiple regression) were used to determine which factors were significant and relevant. The results show that the knowledge of heat risks, heat risk sensitivity and an external locus of control are the most important factors for heat risk perception. The health implication score and chronic disease show significant effects in descriptive statistics. Furthermore, younger people showed the highest heat risk perception of all age groups. Surprisingly, income, education, living alone and gender did not play a role in heat risk perception. The findings imply a need for better and intensified heat risk communication in urban areas-especially among elderly people-and thus are important for creating acceptance towards heat wave risks, which is a prerequisite of willingness to adapt.

Prenatal exposure to ambient air temperature and risk of early delivery

BACKGROUND: Preterm birth is a major determinant of adverse health consequences, and early term births are also associated with increased risk of various outcomes. In light of climate change, the effect of ambient temperature on earlier delivery is an important factor to consider. Several studies have focused on associations of ambient air temperature (Ta) on preterm birth, but few have examined associations with early term births. AIMS: To investigate the association of prenatal exposure to Ta with preterm birth (<37 completed gestation weeks) and with early-term birth (<39 completed gestation weeks) in a semi-arid climate. METHODS: All singleton deliveries at the Soroka Medical Center from the Southern district of Israel, with estimated conception dates between May 1, 2004 and March 31, 2013 (N = 62,547) were linked to prenatal Ta estimates from a spatiotemporally resolved model, with daily 1 km resolution. We used time-dependent Cox regression models with weekly mean Ta throughout gestation, adjusted for calendar month and year of conception, ethnicity, census-level socio-economic status and population density. RESULTS: Ta was positively associated with late preterm birth (31 + 0/7 - 36 + 6/7 weeks), with increased risk in the upper Ta quintile as compared to the third quintile, hazard ratio (HR) = 1.31, 95% confidence interval (CI) = 1.11-1.56. Ta also associated with early term birth (37 + 0/6 - 38 + 6/7), with increased risk in the upper Ta quintile as compared to the third quintile, HR = 1.24, 95% CI = 1.13-1.36. CONCLUSION: Exposure to high ambient temperature during pregnancy is associated with a higher risk of preterm and early term birth in southern Israel.

Prenatal exposure to particulate air pollution and gestational age at delivery in Massachusetts neonates 2001-2015: A perspective of causal modeling and health disparities

There is a lack of evidence on causal effects of air pollution on gestational age (GA) at delivery. METHODS: Inverse probability weighting (IPW) quantile regression was applied to derive causal marginal population-level GA reduction for GA percentiles associated with increased ambient particulate matter with diameter <2.5 ?m (PM(2.5)) levels at maternal residential address for each trimester and the month preceding delivery using Massachusetts birth registry 2001 to 2015. Stratified analyses were conducted for neonatal sex, maternal age/race/education, and extreme ambient temperature conditions. RESULTS: For neonates at 2.5th, 10th, 25th, 50th, 75th, and 97.5th percentiles of GA at delivery, we estimated an adjusted GA reduction of 4.2 days (95% confidence interval [CI] = 3.4, 5.0), 1.9 days (1.6, 2.1), 1.2 days (1.0, 1.4), 0.82 days (0.72, 0.92), 0.74 days (0.54, 0.94), and 0.54 days (0.15, 0.93) for each 5 ?g/m3 increment in third trimester average PM(2.5) levels. Final gestational month average exposure yielded a similar effect with greater magnitude. Male neonates and neonates of younger (younger than 35 years) and African American mothers as well as with high/low extreme temperature exposure in third trimester were more affected. Estimates were consistently higher at lower GA percentiles, indicating preterm/early-term births being more affected. Low-exposure analyses yielded similar results, restricting to areas with PM(2.5) levels under US ambient annual standard of 12 ?g/m(3). CONCLUSIONS: Prenatal exposure to PM(2.5) in late pregnancy reduced GA at delivery among Massachusetts neonates, especially among preterm/early-term births, male neonates, and neonates of younger and African American mothers. Exposure to extremely high/low temperature amplifies the effect of PM(2.5) on GA.

Present and future climatic suitability for dengue fever in Africa

The number of dengue fever incidence and its distribution has increased considerably in recent years in Africa. However, due to inadequate research at the continental level, there is a limited understanding regarding the current and future spatial distribution of the main vector, the mosquitoAedes aegypti, and the associated dengue risk due to climate change. To fill this gap we used reported dengue fever incidences, the presence of Ae. aegypti, and bioclimatic variables in a species distribution model to assess the current and future (2050 and 2070) climatically suitable areas. High temperatures and with high moisture levels are climatically suitable for the distribution of Ae. aegypti related to dengue fever. Under the current climate scenario indicated that 15.2% of the continent is highly suitable for dengue fever outbreaks. We predict that climatically suitable areas for Ae. aegypti related to dengue fever incidences in eastern, central and western part of Africa will increase in the future and will expand further towards higher elevations. Our projections provide evidence for the changing continental threat of vector-borne diseases and can guide public health policy decisions in Africa to better prepare for and respond to future changes in dengue fever risk.

Prevalence of acute Myocardial Infarction and changing meteorological conditions in Iran: Fuzzy clustering approach

BACKGROUND: The prevalence of Acute Myocardial Infarction (AMI) varies from region to region caused by seasonal climate changes and temperature variation. This study aimed to assess the relationship between changing meteorological conditions and incidence of AMI in Iran. METHODS: This retrospective prevalence study was based on medical records of the heart center of Mazandaran Province on all patients diagnosed with AMI in Mazandaran, northern Iran between 2013 and 2015. Patients’ sex and the day, month, year and time of hospital admission were extracted from patients’ records. Moreover, the meteorological reports were gathered. RESULTS: A statistically significant difference was found between the distributions of AMI cases across 12 months of the year (P < 0.01). Fuzzy clustering analysis using 16 different climatic variables showed that March, April, and May were in the same cluster together. The other 9 months were in different clusters. CONCLUSION: Significant increase in AMI was seen in March, April and May (cold to hot weather).

Probability risk of heat- and cold-related mortality to temperature, gender, and age using GAM Regression Analysis

We have examined the heat and cold-related mortality risk subject to cold and heat extremes by using a generalized additive model (GAM) regression technique to quantify the effect of the stimulus of mortality in the presence of covariate data for 2007-2014 in Nicosia, Cyprus. The use of the GAM technique with multiple linear regression allowed for the continuous covariates of temperature and diurnal temperature range (DTR) to be modeled as smooth functions and the lag period was considered to relate mortality to lagged values of temperature. Our findings indicate that the previous three days’ temperatures were strongly predictive of mortality. The mortality risk decreased as the minimum temperature (T-min) increased from the coldest days to a certain threshold temperature about 20-21 degrees C (different for each age group and gender), above which the mortality risk increased as T-min increased. The investigated fixed factors analysis showed an insignificant association of gender-mortality, whereas the age-mortality association showed that the population over 80 was more vulnerable to temperature variations. It was recommended that the minimum mortality temperature is calculated using the minimum daily temperatures because it has a stronger correlation to the probability for risk of mortality. It is still undetermined as to what degree a change in existing climatic conditions will increase the environmental stress to humans as the population is acclimatized to different climates with different threshold temperatures and minimum mortality temperatures.

Prognostic factors of severe fever with thrombocytopenia syndrome in South Korea

Severe fever with thrombocytopenia syndrome (SFTS), a tick-borne infectious disease, is difficult to differentiate from other common febrile diseases. Clinically distinctive features and climate variates associated with tick growth can be useful predictors for SFTS. This retrospective study (2013-2019) demonstrated the role of climatic factors as predictors of SFTS and developed a clinical scoring system for SFTS using climate variables and clinical characteristics. The presence of the SFTS virus was confirmed using reverse transcription polymerase chain reaction (RT-PCR) tests. In the univariate analysis, the SFTS-positive group was significantly associated with higher mean ambient temperature and humidity compared with the SFTS-negative group (22.5 °C vs. 18.9 °C; 77.9% vs. 70.7%, all p < 0.001). In the multivariate analysis, poor oral intake (Odds ratio [OR] 5.87, 95% CI: 2.42-8.25), lymphadenopathy (OR 7.20, 95% CI: 6.24-11.76), mean ambient temperature ? 20 °C (OR 4.62, 95% CI: 1.46-10.28), absolute neutrophil count ? 2000 cells/?L (OR 8.95, 95% CI: 2.30-21.25), C-reactive protein level ? 1.2 mg/dL (OR 6.42, 95% CI: 4.02-24.21), and creatinine kinase level ? 200 IU/L (OR 5.94, 95% CI: 1.42-24.92) were significantly associated with the SFTS-positive group. This study presents the risk factors, including ambient temperature and clinical characteristics, that physicians should consider when suspecting SFTS.

Projected future temporal trends of two different Urban Heat Islands in Athens (Greece) under three climate change scenarios: A statistical approach

This is the first study to look at future temporal urban heath island (UHI) trends of Athens (Greece) under different UHI intensity regimes. Historical changes in the Athens UHI, spanning 1971-2016, were assessed by contrasting two air temperature records from stable meteorological stations in contrasting urban and rural settings. Subsequently, we used a five-member regional climate model (RCM) sub-ensemble from EURO-CORDEX with a horizontal resolution of 0.11 degrees (similar to 12 x 12 km) to simulate air temperature data, spanning the period 1976-2100, for the two station sites. Three future emissions scenarios (RCP2.6, RCP4.5, and RCP8.5) were implanted in the simulations after 2005 covering the period 2006-2100. Two 20-year historical reference periods (1976-1995 and 1996-2015) were selected with contrasting UHI regimes; the second period had a stronger intensity. The daily maximum and minimum air temperature data (T(max)and T-min) for the two reference periods were perturbed to two future periods, 2046-2065 and 2076-2095, under the three RCPs, by applying the empirical quantile mapping (eqm) bias-adjusting method. This novel approach allows us to assess future temperature developments in Athens under two UHI intensity regimes that are mainly forced by differences in air pollution and heat input. We found that the future frequency of days with T-max> 37 degrees C in Athens was only different from rural background values under the intense UHI regime. Thus, the impact of heatwaves on the urban environment of Athens is dependent on UHI intensity. There is a large increase in the future frequency of nights with T-min> 26 degrees C in Athens under all UHI regimes and climate scenarios; these events remain comparatively rare at the rural site. This large urban amplification of the frequency of extremely hot nights is likely caused by air pollution. Consequently, local mitigation policies aimed at decreasing urban atmospheric pollution are expected to be highly effective in reducing urban temperatures and extreme heat events in Athens under future climate change scenarios. Such policies directly have multiple benefits, including reduced electricity (energy) needs, improved living quality and strong health advantages (heat- and pollution-related illness/deaths).

Projected shifts in the distribution of malaria vectors due to climate change

Climate change is postulated to alter the distribution and abundance of species which serve as vectors for pathogens and is thus expected to affect the transmission of infectious, vector-borne diseases such as malaria. The ability to project and therefore, to mitigate the risk of potential expansion of infectious diseases requires an understanding of how vectors respond to environmental change. Here, we used an extensive dataset on the distribution of the mosquito Anopheles sacharovi, a vector of malaria parasites in Greece, southeast Europe, to build a modeling framework that allowed us to project the potential species range within the next decades. In order to account for model uncertainty, we employed a multi-model approach, combining an ensemble of diverse correlative niche models and a mechanistic model to project the potential expansion of species distribution and to delineate hotspots of potential malaria risk areas. The performance of the models was evaluated using official records on autochthonous malaria incidents. Our projections demonstrated a gradual increase in the potential range of the vector distribution and thus, in the malaria receptive areas over time. Linking the model outputs with human population inhabiting the study region, we found that population at risk increases, relative to the baseline period. The methodological framework proposed and applied here, offers a solid basis for a climate change impact assessment on malaria risk, facilitating informed decision making at national and regional scales.

Projecting impacts of temperature and population changes on respiratory disease mortality in Yancheng

Respiratory diseases cause significant morbidity and mortality, especially in developing countries. Recently, the influence of global warming on respiratory disease mortality has become a growing concern in research. Data on respiratory disease mortality, meteorological elements and air pollutants during 2014-2017 were collected from Yancheng in China. We applied the distributed lag non-linear model (DLNM) and performed a quasi-Poisson distribution fitting to evaluate the baseline relationship between the mean temperature and total respiratory diseases mortality, and then projected the future changes of total respiratory diseases mortality without adaptation and with adaptation in Yancheng during three future periods under two Representative Concentration Pathways (RCP) scenarios(RCP4.5 and RCP8.5) and three population scenarios including one constant and two Shared Socio-economic Pathways (SSP) scenarios (55P2 and 55P5). Under four combination scenarios, future warming causes additional heat-related mortality but reduced cold-related mortality in Yancheng from the 2030s to the 2070s. Under SSP population scenarios, the reduced numbers of cold-related deaths offsetting the additional numbers of heat-related deaths lead to the decreases in net temperature-related mortality in the 2050s and 2070s. Future population change has more influence on respiratory mortality than future climate change scenarios does. When the adaptation was adpoted, the heat-related mortality risks and the net temperature-related mortality risks become smaller, but the cold-related mortality risks become larger than that without adaptation.

Projection of mortality attributed to heat and cold; the impact of climate change in a dry region of Iran, Kerman

BACKGROUND: Estimating the effects of climate change on human health can help health policy makers plan for the future. In Iran, there are few studies, about investigating the effects of climate change on mortality. This study aimed to project the effect of low (cold) and high (heat) temperature on mortality in a dry region of Iran, Kerman. METHODS: Mortality attributed to temperature was projected by estimating the temperature-mortality relation for the observed data, projection of future temperatures by the statistical downscaling model (SDSM), and quantifying the attributable fraction by applying the observed temperature-mortality relation on the projected temperature. Climate change projection was done by three climate scenarios base on Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5). Adaptation was considered by using different minimum mortality temperatures (MMT) and risk reduction approaches. The current decade (2010-19) was considered as the reference period. RESULTS: All three climate change scenarios, showed that the mean of temperature will rise about 1 °C, by 2050 in Kerman. The number of deaths attributed to heat were obviously higher than cold in all periods. Assuming no adaptation, over 3700 deaths attributed to temperature will happen in each decade (2020s, 2030s and 2040s) in the future, in which over 3000 deaths will be due to heat and over 450 due to cold. In the predictions, as Minimum Mortality Temperature (MMT) went up, the contribution of heat to mortality slightly decreased, and cold temperature played a more important role. By considering the risk reduction due to adaptation, the contribution of heat in mortality slightly and insignificantly decreased. CONCLUSION: The results showed that although low temperatures will contribute to temperature-related mortality in the future, but heat will be a stronger risk factor for mortality, especially if adaptation is low.

Projections for COVID-19 pandemic in India and effect of temperature and humidity

BACKGROUND AND AIMS: As, the COVID-19 has been deemed a pandemic by World Health Organization (WHO), and since it spreads everywhere throughout the world, investigation in relation to this disease is very much essential. Investigation of pattern in the occurrence of COVID-19, to check the influence of different meteorological factors on the incidence of COVID-19 and prediction of incidence of COVID-19 are the objectives of this paper. METHODS: For trend analysis, Sen’s Slope and Man-Kendall test have been used, Generalized Additive Model (GAM) of regression has been used to check the influence of different meteorological factors on the incidence and to predict the frequency of COVID-19, and Verhulst (Logistic) Population Model has been used. RESULTS: Statistically significant linear trend found for the daily-confirmed cases of COVID-19. The regression analysis indicates that there is some influence of the interaction of average temperature (AT) and average relative humidity (ARH) on the incidence of COVID-19. However, this result is not consistent throughout the study area. The projections have been made up to 21st May, 2020. CONCLUSIONS: Trend and regression analysis give an idea of the incidence of COVID-19 in India while projection made by Verhulst (Logistic) Population Model for the confirmed cases of the study area are encouraging as the sample prediction is as same as the actual number of confirmed COVID-19 cases.

Physiological and subjective thermal responses to heat exposure in northern and southern Chinese people

When studying the thermal adaptation of building occupants, understanding the effects of different thermal experiences on adaptation is necessary, particularly for moderate and severe heat exposure. However, this area has seen limited research. Further, skin temperature, a common parameter for quantifying thermal sensation, may insufficiently reflect the automatic thermoregulation of the human body. This study investigates the effects of long-term heat exposure on the human body using multiple physiological and subjective indexes. Two heat exposure experiments were conducted on healthy male participants from northern and southern China. Participant responses, including skin temperature, heart rate, heart rate variability, blood volume pulse (BVP), subjective thermal comfort, thermal sensation, thermal acceptability, and normalized high and low frequency values were collected and compared. The results indicated that the subjective responses of northern and southern participants were not significantly different; however, the subjective physiological symptoms and self-reported discomfort of the latter were less than those of the former, indicating that the southern participants had superior heat tolerance. Additionally, the physiological responses of all the participants were largely similar. However, southern participants showed slightly higher normalized high frequency and BVP values, indicating that they have more active vagus nerves and better vasodilation. They also showed a wider acceptable temperature range and better acclimation to heat exposure. Notably, the mean skin temperature could not effectively predict thermal sensation during heat exposure; this was more accurately achieved using the rate of change of skin temperature. These findings suggest that long-term thermal experiences can affect building occupants’ thermal adaptability.

Population ageing determines changes in heat vulnerability to future warming

Population ageing, an increase in the older age group’s portion of the total population, worsens the heat tolerance of a society. However, impacts of ageing on the social exposure to projected unprecedented hot summers (UHSs) are uncertain. We show that a shifting of the population distribution towards older ages amplifies the vulnerability of a country to the increasing frequency of UHSs as a result of warming during 2040-2070, especially in most populated regions such as China, India, and sub-Saharan countries. The warming scenarios from Representative Concentration Pathway (RCP) 8.5 are combined with population scenarios from three Shared Socio-economic Pathways (SSPs) SSP2, SSP3, and SSP5 together to estimate the exposure to UHSs. The ageing-driven increase in the exposure of elderly to UHSs ranges 51-198, 91-261, and 47-156 million in China, India, and sub-Saharan countries, respectively, between population scenarios. In China, with decreasing total population, the exposure to UHSs will be increased by rapid population ageing. In India and sub-Saharan countries, the potential of ageing to raise the exposure to UHSs will be even larger than that of warming. In contrast, in aged societies with slow ageing trend, e.g. United States and Europe, the warming mainly increases the exposure to UHSs. Our results suggest the changing age structure could exacerbate a country’s heat vulnerability despite limiting warming to a certain level in the future.

Population exposure to concurrent daytime and nighttime heatwaves in Huai River Basin, China

Heatwaves are likely to increase over different regions of the world as the climate warms, which poses potential risk to the environment, society, and public health. Concurrent daytime and nighttime heatwaves have a more significant impact on human health than individually occurring heatwaves, especially in regions with high population density. The Huai River Basin (HRB) is taken as a case in this study to explore the characteristics of concurrent daytime and nighttime heatwaves in a high-population-density area, including quantification of the population’s exposure to concurrent heatwaves. Nighttime hot events are found to increase to greater extent than daytime hot events from 1961 to 2017. A single daytime or nighttime hot event can provide 40-60 % capacity for the concurrent daytime and nighttime hot events. The concurrent daytime and nighttime heatwaves show an obvious southeast-northwest gradient with high values in the southeast and low values in the northwest of the HRB. Daytime hot events, nighttime hot events, and concurrent daytime and nighttime heatwave events all show significant upward trends from 1987 to 2017. The population exposed to the heat extremes increased significantly over this period, especially in regards to concurrent daytime and nighttime heatwaves. The population exposure in terms of the quantity, duration, and magnitude of concurrent daytime and nighttime heatwaves increased by around 5-, 9-, and 35-fold from 1984 to 2017. Atmospheric circulation analysis of the 2013 concurrent daytime and nighttime heatwaves in the HRB shows a long-lasting anomalous circulation background (e.g., anomalous high pressure system and low cloud water content) leading to severe concurrent daytime and nighttime heatwaves.

Population exposure to extreme heat in China: Frequency, intensity, duration and temporal trends

Research on population exposure to extreme heat is hindered by the limited spatial coverage of weather station and single exposure characteristic. In this study, a random forest regression model was developed to estimate monthly mean maximum temperature and extreme temperature. A cross-regional statistics in mean maximum temperature and extreme temperature was created to calculate a threshold which was used to reflect extreme temperature events. The threshold was used to develop the frequency, intensity and duration in extreme heat exposure for mean maximum temperature and extreme temperature, and quantified their spatiotemporal trends across residential areas in China in summer, 2001-2013. Results show that the risk of extreme heat was the highest in East China and was lower in Northeast and Northwest. The frequency of extreme heat exposure increased in most areas for mean maximum temperature, decreased in northern areas and increased in southern areas for extreme temperature. The intensity of extreme heat exposure increased in East, Central, South, and Southwest China for both mean maximum temperature and extreme temperature. The duration of extreme heat exposure increased nationwide for mean maximum temperature, and decreased in northern areas for extreme temperature. Frequency, intensity and duration of extreme heat exposure increased significantly, accompanied by high frequency, intense intensity and long-lasting in East, Central, Southwest, and South China. Overall, the results identify the high-risk hotspots over China in summer, 2000-2013.

Possible ramifications of climate variability on HPAI-H5N1 outbreak occurrence: Case study from the Menoufia, Egypt

Long endemicity of the Highly Pathogenic Avian Influenza (HPAI) H5N1 subtype in Egypt poses a lot of threats to public health. Contrary to what is previously known, outbreaks have been circulated continuously in the poultry sectors all year round without seasonality. These changes call the need for epidemiological studies to prove or deny the influence of climate variability on outbreak occurrence, which is the aim of this study. This work proposes a modern approach to examine the degree to which the HPAI-H5N1disease event is being influenced by climate variability as a potential risk factor using generalized estimating equations (GEEs). GEE model revealed that the effect of climate variability differs according to the timing of the outbreak occurrence. Temperature and relative humidity could have both positive and negative effects on disease events. During the cold seasons especially in the first quarter, higher minimum temperatures, consistently show higher risks of disease occurrence, because this condition stimulates viral activity, while lower minimum temperatures support virus survival in the other quarters of the year with the highest negative effect in the third quarter. On the other hand, relative humidity negatively affects the outbreak in the first quarter of the year as the humid weather does not support viral circulation, while the highest positive effect was found in the second quarter during which low humidity favors the disease event.

Potential impacts of cool and green roofs on temperature-related mortality in the Greater Boston region

Many cities are developing mitigation plans in an effort to reduce the population health impacts from expected future increases in the frequency and intensity of heat waves. To inform heat mitigation and adaptation planning, information is needed on the extent to which available mitigation strategies, such as reflective and green roofs, could result in significant reductions in heat exposure. Using the Weather Research and Forecasting (WRF) model, we analysed the impact of green and cool (reflective) roofs on the urban heat island (UHI) and temperature-related deaths in the Greater Boston area (GBA) and New England area (NEA) in summer and winter. In the GBA, green and cool roofs reduced summertime population-weighted temperature by 0.35 degrees C and 0.40 degrees C, respectively. In winter, green roofs did not affect temperature, whereas cool roofs caused a temperature reduction of 0.40 degrees C. In the NEA, the cooler summers induced by green and cool roofs were estimated to reduce the heat-related mortality rates by 0.21% and 0.17%, respectively, compared to baseline. Cool-roof-induced temperature reduction in winter could increase the cold-related mortality rate by 0.096% compared to baseline. These results suggest that both green and cool roofing strategies have the potential to reduce the impact of heat on premature deaths. Additionally, the differing effects in winter suggest the need for a careful consideration of health trade-offs in choosing heat island mitigation strategies.

Potential impacts of meteorological variables on acute ischemic stroke onset

PURPOSE: The effects of meteorological parameters on stroke occurrence remain debated. The aim of the study was to assess the association between meteorological parameters and ischemic stroke onset in cold seasons in Tianjin. PATIENTS AND METHODS: Patients with acute ischemic stroke (946) were identified by standard sampling from one stroke unit in the Second Hospital of Tianjin Medical University, Tianjin, China, from 10/1/2014 to 4/30/2019. Generalized linear Poisson regression models were used to explore the effect of meteorological parameters (air temperature, barometric pressure, and relative humidity) on daily ischemic stroke onset after adjusting for air pollutants, day of week, and public holiday. RESULTS: The results showed that ischemic stroke onset was positively associated with the diurnal variation of temperature (? coefficient: 0.020, 95% CI [0.001, 0.038] p<0.05). Significant positive correlation between ischemic stroke onset and barometric pressure (mean, minimum) was found (? coefficient: 0.010, 95% CI [0.001,0.019] p<0.05; 0.010, 95% CI [0.001,0.019] p<0.05). The subgroup analysis considering age and gender difference showed that the older and the female were more vulnerable to weather conditions. CONCLUSION: Our study demonstrated that there was a measurable effect of weather parameters on daily ischemic stroke onset in colder seasons, suggesting that meteorological variables may, at least in part, play as risk factors for ischemic stroke onset, especially for the aging and female population.

Predicted future mortality attributed to increases in temperature and PM(10) concentration under Representative Concentration Pathway scenarios

As climate change progresses, understanding the impact on human health associated with the temperature and air pollutants has been paramount. However, the predicted effect on temperature associated with particulate matter (PM(10)) is not well understood due to the difficulty in predicting the local and regional PM(10). We compared temperature-attributable mortality for the baseline (2003-2012), 2030s (2026-2035), 2050s (2046-2055), and 2080s (2076-2085) based on a distributed lag non-linear model by simultaneously considering assumed levels of PM(10) on historical and projected temperatures under representative concentration pathway (RCP) scenarios. The considered projected PM(10) concentrations of 35, 50, 65, 80, and 95 ?g/m(3) were based on historical concentration quantiles. Our findings confirmed greater temperature-attributable risks at PM(10) concentrations above 65 ?g/m(3) due to the modification effect of the pollutants on temperature. In addition, this association between temperature and PM(10) was higher under RCP8.5 than RCP4.5. We also confirmed regional heterogeneity in temperature-attributable deaths by considering PM(10) concentrations in South Korea with higher risks in heavily populated areas. These results demonstrated that the modification association of air pollutants on health burdens attributable to increasing temperatures should be considered by researchers and policy makers.

Predicted impact of increasing average ambient temperature over the coming century on mortality from cardiovascular disease and stroke in the USA

BACKGROUND AND AIMS: Future climate change may adversely impact human health. The direct effects of extreme hot temperatures on mortality are well established, and their future impact well modelled. However, less extreme changes in ambient temperature (Ta) have been previously associated with increased mortality from circulatory and metabolic diseases, but their future impact is less clear. METHODS: We evaluated the spatial association between cardiovascular diseases (CVD) and stroke mortality with average Ta across the US mainland, and then used this relationship to model future temporal trends in mortality from CVD and stroke until the end of the century (2099), using different warming scenarios for each US county. RESULTS: Ta was significantly associated with crude levels of CVD mortality (R(2) = 0.269) and stroke mortality (R(2) = 0.264). Moreover, there was a strong positive link between Ta and physical inactivity (PIA) (R(2) = 0.215). Once adjusted for PIA the associations between Ta and CVD and stroke mortality were much reduced (R(2) = 0.054 and R(2) = 0.091 respectively) but still highly significant. CONCLUSIONS: By 2099 modelling suggests between 8844 and 25,486 extra deaths each year from CVD, and between 2,063 and 13,039 extra deaths for stroke, beyond the increases expected from population expansion. Mortality due to changes in the mean Ta may be as, or more, significant than the impacts of extreme hot weather events.

Predicting Aedes aegypti infestation using landscape and thermal features

Identifying Aedes aegypti breeding hotspots in urban areas is crucial for the design of effective vector control strategies. Remote sensing techniques offer valuable tools for mapping habitat suitability. In this study, we evaluated the association between urban landscape, thermal features, and mosquito infestations. Entomological surveys were conducted between 2016 and 2019 in Vila Toninho, a neighborhood of São José do Rio Preto, São Paulo, Brazil, in which the numbers of adult female Ae. aegypti were recorded monthly and grouped by season for three years. We used data from 2016 to 2018 to build the model and data from summer of 2019 to validate it. WorldView-3 satellite images were used to extract land cover classes, and land surface temperature data were obtained using the Landsat-8 Thermal Infrared Sensor (TIRS). A multilevel negative binomial model was fitted to the data, which showed that the winter season has the greatest influence on decreases in mosquito abundance. Green areas and pavements were negatively associated, and a higher cover of asbestos roofs and exposed soil was positively associated with the presence of adult females. These features are related to socio-economic factors but also provide favorable breeding conditions for mosquitos. The application of remote sensing technologies has significant potential for optimizing vector control strategies, future mosquito suppression, and outbreak prediction.

Predicting Malaria transmission dynamics in Dangassa, Mali: A novel approach using functional generalized additive models

Mali aims to reach the pre-elimination stage of malaria by the next decade. This study used functional regression models to predict the incidence of malaria as a function of past meteorological patterns to better prevent and to act proactively against impending malaria outbreaks. All data were collected over a five-year period (2012-2017) from 1400 persons who sought treatment at Dangassa’s community health center. Rainfall, temperature, humidity, and wind speed variables were collected. Functional Generalized Spectral Additive Model (FGSAM), Functional Generalized Linear Model (FGLM), and Functional Generalized Kernel Additive Model (FGKAM) were used to predict malaria incidence as a function of the pattern of meteorological indicators over a continuum of the 18 weeks preceding the week of interest. Their respective outcomes were compared in terms of predictive abilities. The results showed that (1) the highest malaria incidence rate occurred in the village 10 to 12 weeks after we observed a pattern of air humidity levels >65%, combined with two or more consecutive rain episodes and a mean wind speed <1.8 m/s; (2) among the three models, the FGLM obtained the best results in terms of prediction; and (3) FGSAM was shown to be a good compromise between FGLM and FGKAM in terms of flexibility and simplicity. The models showed that some meteorological conditions may provide a basis for detection of future outbreaks of malaria. The models developed in this paper are useful for implementing preventive strategies using past meteorological and past malaria incidence.

Particulate matter and temperature: Increased risk of adverse clinical outcomes in patients with atrial fibrillation

OBJECTIVE: To test the hypothesis that particulate matter with an aerodynamic diameter of less than 10 ?m (PM(10)) and temperature are associated with an increased risk of adverse clinical outcomes in patients with atrial fibrillation (AF) taking vitamin K antagonists (VKAs). PATIENTS AND METHODS: We included patients with AF whose condition was stable while taking VKAs (international normalized ratio, 2.0 to 3.0) for 6 months seen in a tertiary hospital (recruitment from May 1, 2007, to December 1, 2007). During a median follow-up of 6.5 years (interquartile range, 4.3 to 7.9 years), ischemic strokes, major bleeding, adverse cardiovascular events, and mortality were recorded. From 2007 to 2016, data on average temperature and PM(10) were compared with clinical outcomes. RESULTS: The study group included 1361 patients (663 [48.7%] male; median age, 76 years [interquartile range, 71 to 81 years]). High PM(10) and low temperatures were associated with higher risk of major bleeding (adjusted hazard ratio [aHR], 1.44; 95% CI, 1.22 to 1.70 and aHR, 1.03; 95% CI, 1.01 to 1.05, respectively) and mortality (aHR, 1.50; 95% CI, 1.34 to 1.69 and aHR, 1.04; 95% CI, 1.02 to 1.06, respectively); PM(10) was also associated with ischemic stroke and temperature with cardiovascular events. The relative risk (RR) for cardiovascular events and mortality increased in months in the lower quartile of temperature (RR, 1.12; 95% CI, 1.04 to 1.21 and RR, 1.41; 95% CI, 1.15 to 1.74, respectively). Comparing seasons, there were higher risks of cardiovascular events in spring, autumn, and winter than in summer, whereas the risk of mortality increased only in winter. CONCLUSION: In patients with AF taking VKAs, high PM(10) and low temperature were associated with increased risk of ischemic stroke and cardiovascular events, respectively. Both factors increased major bleeding and mortality risks, which were higher during colder months and seasons.

Passive cooling for thermal comfort in informal housing

Energy-poor households in Africa’s burgeoning urban informal settlements are especially likely to suffer from heatwaves because of thermally inefficient dwellings and lack of affordable cooling options. This study utilised a controlled experiment to assess the effectiveness of passive cooling through specially formulated paints (cool coatings) in standard informal structures. The test structures were built to simulate typical shack dwellings in South Africa’s urban informal settlements. Results showed that the mean daily maximum temperatures of the coated structure were up to 4.3 degrees C lower than those in the uncoated structure. The same cooling trend was observed for the minimum daily temperatures, which were lower by an average of 2.2 degrees C. Besides, the annual frequency of maximum temperature exceedances beyond the critical heat stroke value of 40 degrees C dropped from 19% for the uncoated structure to 1% for the coated structure. These temperature differences were found to be statistically and subjectively significant, implying that cool coatings may be effective in promoting thermal comfort and climate resilience in poor urban communities. It is recommended that governmental authorities and relevant role players invest in the production and assisted application of cool coatings in urban informal settlements. The interventions promise hope of reduced energy burden on poor households and could be implemented in parallel with ongoing efforts focused on the design and implementation of low-cost, durable and thermally comfortable houses for indigent communities. Ultimately, the endeavours could be a potential policy change to assist in expanding poor households’ access to alternative and green energy resources.

Past, present, and future vulnerability to Dengue in Jamaica: A spatial analysis of monthly variations

Over the years, Jamaica has experienced sporadic cases of dengue fever. Even though the island is vulnerable to dengue, there is paucity in the spatio-temporal analysis of the disease using Geographic Information Systems (GIS) and remote sensing tools. Further, access to time series dengue data at the community level is a major challenge on the island. This study therefore applies the Water-Associated Disease Index (WADI) framework to analyze vulnerability to dengue in Jamaica based on past, current and future climate change conditions using three scenarios: (1) WorldClim rainfall and temperature dataset from 1970 to 2000; (2) Climate Hazard Group InfraRed Precipitation with Station data (CHIRPS) rainfall and land surface temperature (LST) as proxy for air temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the period 2002 to 2016, and (3) maximum temperature and rainfall under the Representative Concentration Pathway (RCP) 8.5 climate change scenario for 2030 downscaled at 25 km based on the Regional Climate Model, RegCM4.3.5. Although vulnerability to dengue varies spatially and temporally, a higher vulnerability was depicted in urban areas in comparison to rural areas. The results also demonstrate the possibility for expansion in the geographical range of dengue in higher altitudes under climate change conditions based on scenario 3. This study provides an insight into the use of data with different temporal and spatial resolution in the analysis of dengue vulnerability.

Patient-related factors associated with severe heat-related illnesses in Karachi: A hospital perspective

In 2015, Karachi saw its first ever epidemic of severe heatrelated illnesses that resulted in an extraordinary number of hospital admissions, especially in the intensive care, for fatal heat stroke within-hospital mortality of 3.7%.We conducted this study to elucidate the patient-related factors that lead to an increase in hospital admissions with heat-related illnesses in a tertiary care hospital. It was a descriptive case series conducted in the department of medicine at the Aga Khan University in June 2015. A total of 134 patients were admitted with heat-related illnesses of which 76(56.7%) were males. The mean age of the patients was 66 ±14.5 years. Heatstroke was present in 86 (64.2%) patients, followed by heat exhaustion in 48 (35.8%) and in-hospital mortality from heat-related illnesses was 5(3.7%). Hypertension (OR 2(95 % CI 1.0, 3.6) and insufficient sleep or food or water intake (OR 1.7(95 % CI 0.8, 3.8) was associated with severe heat-related illnesses. The effects remained even after adjusting for type and area of residence.

Pattern of climate connectivity and equivalent niche of Triatominae species of the Phyllosoma complex

The Phyllosoma complex is a Triatominae (Hemiptera: Reduviidae) group of medical importance involved in Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) transmission. Most of the members of this group are endemic and sympatric species with distribution in Mexico and the southern U.S.A. We employed MaxEnt to construct ecological niche models of nine species of Triatominae to test three hypothesis: (a) whether species with a broad climatic niche breadth occupy a broader geographical range than species with a narrow climatic breadth, (b) whether species with broad distribution present high degree of climatic fragmentation/isolation, which was tested through landscape metrics; and (c) whether the species share the same climatic niche space (niche conservatism) considered through an equivalence test implemented in ENMtools. Overall, our results suggest that the geographical distribution of this complex is influenced mainly by temperature seasonality where all suitable areas are places of current and potential transmission of T. cruzi. Niche breadth in the Phyllosoma complex is associated with the geographical distribution range, and the geographical range affects the climatic connectivity. We found no strong evidence of niche climatic divergence in members of this complex. We discuss the epidemiological implications of these results.

Perception of potential health risk of climate change and utilization of fans and air conditioners in a representative population of Hong Kong

Climate change, especially as reflected in heat waves, is a rising threat worldwide. Appropriate use of cooling devices can protect people from health impacts during a heat wave. A population-based telephone survey was conducted in a representative sample of residents in Hong Kong to investigate ownership and use of domestic cooling devices, identify correlates, and examine their associations with risk perception of potential health impact of climate change. More than 90% of the 1002 respondents owned and used cooling devices at home. The majority (57.7%) perceived the potential health risk of climate change at a high level. However, risk perception had no relationship with ownership and utilization of cooling devices. Old people (>= 65 years), the low-educated, those with low income, and those with chronic diseases were more likely not to use air conditioners when feeling hot. Our findings suggest that there are no signs showing people have taken more protective actions although half of respondents recognized climate change as a threat. Familial economic condition may be a major determinant in ownership and use of air conditioners at home. Old people and those with chronic diseases are at high risk of adverse exposure to climate change and therefore should be equipped with appropriate measures to use cooling devices.

Performance evaluation of a smart mobile air temperature and humidity sensor for characterizing intracity thermal environment

Heat stress caused by high air temperature and high humidity is a serious health concern for urban residents. Mobile measurement of these two parameters can complement weather station observations because of its ability to capture data at fine spatial scales and in places where people live and work. In this paper, we describe a smart temperature and humidity sensor (Smart-T) for use on bicycles to characterize intracity variations in human thermal conditions. The sensor has several key characteristics of internet of things (IoT) technology, including lightweight, low cost, low power consumption, ability to communicate and geolocate the data (via the cyclist’s smartphone), and the potential to be deployed in large quantities. The sensor has a reproducibility of 0.03 degrees-0.05 degrees C for temperature and of 0.18%-0.33% for relative humidity (one standard deviation of variation among multiple units). The time constant with a complete radiation shelter and moving at a normal cycling speed is 9.7 and 18.5 s for temperature and humidity, respectively, corresponding to a spatial resolution of 40 and 70 m. Measurements were made with the sensor on street transects in Nanjing, China. Results show that increasing vegetation fraction causes reduction in both air temperature and absolute humidity and that increasing impervious surface fraction has the opposite effect.

Performance of heat-health warning systems in Shanghai evaluated by using local heat-related illness data

In response to more frequent heatwaves, various regional or national heat-health warning systems (HHWSs) have been developed recently as adaptation measures. A wide range of methodologies have been utilized to issue warnings, as there is no universal definition of “heat event” or “heatwave”, nor are there quantified thresholds of human-health tolerance to extreme weather. The performance of these warning systems has rarely been evaluated with actual heat-health data, especially the morbidity data, in regions with severe impact. In this study, we assessed the performance of the Shanghai HHWS based on heat-related illness data collected by the Chinese Center for Disease Control and Prevention (China CDC) and then conducted a comparative analysis among the Shanghai HHWS, the China Meteorological Administration HHWS, the Chinese national standard for heatwave indexes, the heat index adopted by the USA’s National Weather Service and the definition suggested by the World Meteorological Organization to understand their potential performance for application in Shanghai and to evaluate the temperature thresholds and different meteorological indices employed. The results show that: 1) during the research period, 50% of heat-related illnesses and 58.2% of heat-related deaths in Shanghai occurred on dates that had no heat warnings; 2) for the current threshold (35 °C), the single metric of temperature outperformed the temperature-duration two-parameter method; 3) different from existing studies, while infants and seniors are deemed as vulnerable population groups to heat, young and middle-aged males were found to suffer more heat-related illnesses in hot weather. More detailed analyses reveal that the performance of heat-health warning systems needs to be evaluated and revised periodically, and warning thresholds utilized must be localized to reflect public tolerance to heat and to address the vulnerability of target population groups. Temperature is the dominant threshold in heat-related morbidity and mortality analysis. While a decrease in the temperature threshold would definitely increase the warning frequency and socioeconomic costs, it might also cause warning fatigue. The trade-off between these two aspects is essential for decision-makers and other stakeholders in HHWS design and improvement.

Persistent heat waves projected for Middle East and North Africa by the end of the 21st century

The duration and intensity of future heat waves are analyzed for 53 cities in the Middle East and the North Africa (MENA) region for the 21st century under two different scenarios (RCP4.5 and RCP8.5). A consistent approach is carried out using data from 13 Regional models within the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX). By the end of the century, 80% of the most populated MENA cities are expected to be at least 50% of the days under heat wave conditions during the warm season. In addition, the mean and maximum intensity of the heat waves will also increase. Changes in the duration and intensity of heat waves have shown to be negatively correlated. Therefore, the vulnerability of the MENA cities to future heat waves was determined using a cumulative index (CI) that takes into account both duration and intensity. This CI indicates that Middle East and the eastern part of Africa will suffer the most unfavorable temperature conditions in the future. Assuming no intervention trough adaptation/mitigation strategies, these results, together with the particular properties of the MENA region, such as aridity or lack of precipitation, make it likely that the area will be affected by disease or famine.

Occurrence and human exposure assessment of organophosphate esters in atmospheric PM(2.5) in the Beijing-Tianjin-Hebei region, China

Organophosphate esters (OPEs) in atmospheric fine particles (PM(2.5)) were comprehensively investigated in the Beijing-Tianjin-Hebei (BTH) region from April 2016 to March 2017. The concentrations of ?(8)OPEs in all the five sampling sites ranged from 90 to 8291 pg/m(3) (mean 1148 ± 1239 pg/m(3); median 756 pg/m(3)). The highest level (median 1067 pg/m(3)) was found at one of the urban sites in Beijing, followed by Tianjin (746 pg/m(3)) and Shijiazhuang (724 pg/m(3)). Tris(2-chloroethyl) phosphate (TCEP) and tri[(2R)-1-chloro-2-propyl] phosphate (TCPP) were the dominant compounds across the five sampling locations. Generally, the concentrations of chlorinated OPEs were relatively higher in summer than in winter (p < 0.05), but no significant seasonal difference was discovered for non-chlorinated individual OPEs. The concentrations of tri-n-butyl phosphate (TBP), TCEP, TCPP and triphenyl phosphate (TPP) were positively correlated with the meteorological parameters (i.e. temperature and relative humidity) (p < 0.05), indicating an evident influence of meteorological condition on OPE distribution. We observed a negative correlation (p < 0.05) between octanol-air partition coefficients (logK(oa)) and the ratio of PM(2.5)-bound OPE concentrations to total suspended particulates-bound OPE concentrations, suggesting that physicochemical properties affect the particle-size distribution of OPEs. Furthermore, the median value of cancer hazard quotients (HQs) of TCEP was higher than TBP and tris(2-ethylhexyl) phosphate (TEHP). The health risk assessment showed that HQ values for children were ~1.6 times higher than those for adults. Relatively higher health risk induced by PM(2.5)-bound OPEs via inhalation was found during severe hazy days than in clear days.

On the association of ambient temperature and elderly mortality in a Mediterranean island – Crete

Extreme weather conditions affect human health. This study analyses the association of high and low temperature with cardiovascular and respiratory diseases on people over 65?years old for the years 2007 to 2015, in the region of Chania, Greece. The mortality is examined by time series analysis and further investigated by Poisson, and Negative Binomial regression, showing that one-lag in maximum temperature strongly affects the health of the elderly. Finally, cluster analysis is used from May to October, which is confirmed by discriminant analysis.

On the potential of building adaptation measures to counterbalance the impact of climatic change in the tropics

Climate change is one of the most significant environmental issues facing communities, while poor construction and absence of effective air-conditioning (AC) predominantly cause indoor overheating. Although AC may help meeting indoor comfort, it increases the vulnerability of low-income residents, triggers large energy consumption, and generates anthropogenic heat, which worsens heat stress out-door. The capacity of buildings to maintain comfortable thermal conditions without mechanical cooling is the key factor protecting occupants against the rising temperature. Residents of Darwin, Australia, will be largely affected by increasing temperature where the annual peak ambient temperature may increase by 7.4 degrees C in 2060, while the number of hours above 30 degrees C will rise by 70%. Based on regional climate modelling for the Australian area and using a building energy simulation platform, we computed that by 2060 the indoor air temperature in a typical residential building may exceed 30 degrees C for over 4000 h under free-floating condition, with a peak daytime and night-time temperatures of 39 degrees C and 36.5 degrees C, respectively. The sensible thermal energy need for cooling per unit area under thermostatically controlled condition will increase from the current level of 110.7 kWh/m 2 to 196.8 kWh/m(2) in 2060. Different adaptation techniques when applied to the typical residential building yield to the peak indoor air temperature drop by 3.3-12 degrees C, and cooling energy needs reductions by 23.5-195.3 kWh/m(2) (12-99.7%) for low, medium, and high retrofit buildings compared to the typical residential building in 2060. Our study indicates that improved building quality is necessary to enhance survivability and energy efficiency in Darwin considering the role of building adaptation measures to counterbalance the impacts of global warming. (C) 2020 Elsevier B.V. All rights reserved.

On the widespread enhancement in fine particulate matter across the Indo-Gangetic Plain towards winter

Fine particulate matter (PM(2.5), aerodynamic diameter ?2.5?µm) impacts the climate, reduces visibility and severely influences human health. The Indo-Gangetic Plain (IGP), home to about one-seventh of the world’s total population and a hotspot of aerosol loading, observes strong enhancements in the PM(2.5) concentrations towards winter. We performed high-resolution (12?km × 12?km) atmospheric chemical transport modeling (WRF-Chem) for the post-monsoon to winter transition to unravel the underlying dynamics and influences of regional emissions over the region. Model, capturing the observed variations to an extent, reveals that the spatial distribution of PM(2.5) having patches of enhanced concentrations (?100 µgm(-3)) during post-monsoon, evolves dramatically into a widespread enhancement across the IGP region during winter. A sensitivity simulation, supported by satellite observations of fires, shows that biomass-burning emissions over the northwest IGP play a crucial role during post-monsoon. Whereas, in contrast, towards winter, a large-scale decline in the air temperature, significantly shallower atmospheric boundary layer, and weaker winds lead to stagnant conditions (ventilation coefficient lower by a factor of ~4) thereby confining the anthropogenic influences closer to the surface. Such changes in the controlling processes from post-monsoon to winter transition profoundly affect the composition of the fine aerosols over the IGP region. The study highlights the need to critically consider the distinct meteorological processes of west-to-east IGP and changes in dominant sources from post-monsoon to winter in the formulation of future pollution mitigation policies.

Optimal control and temperature variations of malaria transmission dynamics

Malaria is a Plasmodium parasitic disease transmitted by infected female Anopheles mosquitoes. Climatic factors, such as temperature, humidity, rainfall, and wind, have significant effects on the incidence of most vector-borne diseases, including malaria. The mosquito behavior, life cycle, and overall fitness are affected by these climatic factors. This paper presents the results obtained from investigating the optimal control strategies for malaria in the presence of temperature variation using a temperature-dependent malaria model. The study further identified the temperature ranges in four different geographical regions of sub-Saharan Africa, suitable for mosquitoes. The optimal control strategies in the temperature suitable ranges suggest, on average, a high usage of both larvicides and adulticides followed by a moderate usage of personal protection such as bednet. The average optimal bednet usage mimics the solution profile of the mosquitoes as the mosquitoes respond to changes in temperature. Following the results from the optimal control, this study also investigates using a temperature-dependent model with insecticide-sensitive and insecticide-resistant mosquitoes the impact of insecticide-resistant mosquitoes on disease burden when temperature varies. The results obtained indicate that optimal bednet usage on average is higher when insecticide-resistant mosquitoes are present. Besides, the average bednet usage increases as temperature increases to the optimal temperature suitable for mosquitoes, and it decreases after that, a pattern similar to earlier results involving insecticide-sensitive mosquitoes. Thus, personal protection, particularly the use of bednets, should be encouraged not only at low temperatures but particularly at high temperatures when individuals avoid the use of bednets. Furthermore, control and reduction of malaria may be possible even when mosquitoes develop resistance to insecticides.

Orthomageddon: A retrospective cohort study of weather-dependent variations in emergency department volume in a Canadian city

INTRODUCTION: Unique weather patterns can dramatically increase the number of emergency department (ED) visits due to falls on snow or ice compared to winter averages. They can create “Orthomageddon” incidences; days when the number of orthopedic injuries dramatically exceeds average. The study objective was to identify weather-dependent differences in demographics, length-of-stay (LOS) predictors, and volume for fall-injury presenting to the ED. The authors placed emphasis on Chinook or Foehn phenomenon (rapid freeze-thaw cycles) common east of the Rocky Mountains. METHOD: Patients with extremity and hip fractures from fall on snow or ice were identified from the Calgary Zone Alberta Health Services ED database from November 1st 2013 to March 31st 2018 (n = 3894). High-volume dates were the 90th percentile of all dates by volume (n = 76). This equated to all dates with >10 fall-injuries. The authors compared post-Chinook, night-freezing, high-volume, and regular winter conditions. Meteorological data was collected from the Environment Canada weather station at the Calgary International Airport. RESULTS: The authors identified 588 post-Chinook, and 1149 night-freezing presenters. Weather was strongly predictive of ED fall-injury volume. Night-freezing events (above-freezing temperatures prior to 1800 hours the preceding day, followed by freezing temperatures prior to 0600 hours the following day) correlated with elevated fall-injury volume (OR, 6.84; 95% CI, 5.88, 7.97) as were recent Chinook events (OR, 2.19; 95% CI, 1.84, 2.62). CONCLUSION: Weather, particularly nighttime conditions, are highly predictive of winter, fall-related ED volume. This may inform future population-level alerts for dates of elevated fall risk and ED staffing patterns.

Outdoor thermal comfort in different settings of a tropical planning region: A study on Sriniketan-Santiniketan Planning Area (SSPA), eastern India

Outdoor Thermal Comfort (OTC) is largely influenced by urban morphology and geometry of the urban landscape. In this study, the Local Climatic Zones (LCZs) approach was adopted to assess the OTC in different settings of Sriniketan-Santiniketan Planning Area (SSPA) during the summer season. The basic objective of this study is to assess OTC from both subjective and objective perspectives over eight LCZs. This study assessed OTC over LCZs using both field measurements and questionnaire survey. Non-parametric tests such as ANOVA and Kruskal-Wallis tests were also performed to find out the significant difference of perception across LCZs. The result of ANOVA and Krushkal-Walls test showed that subjective perception of OTC across LCZs varied due to diversified physical landscape settings. The result also showed that the maximum (above 40 degrees C) and minimum (28 degrees C) temperature was recorded in built types (particularly compact low rise) and natural land cover types (dense forest and water) respectively. Highest PET was also recorded over the built-up LCZs (about 50 degrees C) that led to this planning region thermally very hot or extreme heat stress. The respondents living in LCZ3 and LCZ6 were more sensitive to the thermal sensation as compared to those living in other LCZs.This study was probably the first attempt dealing with the assessment of OTC over the tropical planning region using LCZ approach from subjective and objective perspectives. Therefore, this research study has an immense potentiality to formulate strategies to deal with the outdoor thermal conditions as well to implement climate sensitive planning for urban sustainability in tropical cities.

Outdoor thermal comfort in various microentrepreneurial settings in hot humid tropical Kolkata: Human biometeorological assessment of objective and subjective parameters

Extreme heat and associated health risks increasingly become threats to urban populations, especially in developing countries of the tropics. Although human thermal exposure in cities has been studied across the globe, current narratives insufficiently discuss mixed-used spaces, informal economic activity settings, and informal settlements. This study assessed outdoor human thermal comfort in the tropical city of Kolkata, India where uncomfortable hot and humid climatic conditions prevail year-round. Thermal Comfort Perception Surveys (TCPS) and biometeorological observations were conducted during summer and winter in three microentrepreneurial neighborhoods (Kumartuli, Boipara, and Mallickghat). A one-way ANOVA was performed to investigate the variance in Physiologically Equivalent Temperature (PET) values of 318 survey samples across neighborhoods. Through multiple linear regression and ANCOVA, significant relationships were established between various climatic and non-climatic parameters. No respondent reported a neutral thermal sensation during the summer. Annual neutral PET across neighborhoods was 23.6 °C with a neutral PET range of 19.5 °C to 27.6 °C. Annual neutral PET was 22.7 °C and 26.5 °C in Mallickghat and Boipara, respectively. Respondents in Boipara were more sensitive towards warmer sensation than in Mallickghat. Even in the winter, people reported warmer sensation votes. PET was a better predictor of the mean Thermal Sensation Vote (mTSV) compared to air temperature. In a few cases, acclimatization and expectations improved thermal comfort. Results can be useful in formulating strategies towards improving outdoor microclimate and heat health in tropical cities.

Outdoor thermal comfort: Coupling microclimatic parameters with subjective thermal assessment to design urban performative spaces

Thermal comfort plays a main role in encouraging people to use outdoor spaces, specifically in hot arid and humid climates. The reconciliation of climatic aspects during the urban design phase is limited in implementation, due to the need for multidisciplinary collaboration between desperate scientific fields of climatology, urban planning, and urban environmental modelling. This paper aims to create an integrated interface between the microclimate, outdoor thermal comfort, and design guidelines. The investigation combines subjective and objective approaches, including on-site field measurements, a structured questionnaire using the seven-point American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 55) thermal sensation votes, and a correlation study of these votes and the microclimatic parameters. Pedestrian thermal comfort was then examined under six shading scenarios, addressing the form and opening of shading devices using computational fluid dynamics. Modelling is based on four dependent variables: wind velocity, ventilation flow rate, air temperature, and the physiological equivalent temperature (PET) index. Findings indicate that the form and location of apertures of the shading devices were the dominant factors in achieving thermal comfort on the urban scale, and led to a reduction in air temperature and a physiological equivalent temperature of 2.3-2.4 degrees C. Subjective votes indicate that people who live in hot arid climates have a wider range of adaptation and tolerance to local climatic conditions Accordingly, a psychometric chart, for the case study outdoor thermal comfort was developed.

Overview of injuries associated with extreme weather events in New Hampshire, US, 2001-2009

Global climate change is an environmental hazard with significant public health impacts. High-impact weather events including periods of extreme temperature or extreme precipitation are frequently associated with adverse effects on human health. This study evaluates the impact of extreme weather events on injuries across New Hampshire. A set of five daily extreme weather metrics (EWMs) was analyzed: daily maximum temperature <= 32 degrees F (0 degrees C), daily maximum temperature >= 90 degrees F (32 degrees C), daily maximum temperature >= 95 degrees F (35 degrees C), daily precipitation >= 1 ”, and daily precipitation >= 2 ”. Exposure to these EWMs was defined by linking the population within 10 miles of nine weather stations distributed across the state. Injuries were defined as hospitalizations categorized as: all-cause injury, vehicle accidents, accidental falls, accidents due to natural and environmental causes (including excessive heat, excessive cold, exposure due to weather conditions, lightning, and storms and floods), accidental drowning, and carbon monoxide poisoning. The associations between all injury categories and all EWMs as well as daily maximum temperature and daily precipitation were explored. A quasi-Poisson regression model was used to evaluate the relationship between the four strongest exposure-outcome pairs linking maximum temperature to all-cause injury-, vehicle accident-, accidental fall-, and heat-related hospital visits. Results indicate that daily maximum temperature (>90 degrees F) was most strongly associated with heat-related hospital visits and was also associated with all-cause injury-related hospital visits. Future work should include further analysis of cold weather metrics and incorporate these findings into public health planning and response efforts.

Mortality risk of a future heat event across a subtropical city: Implications for community planning and health policy

In this study, we applied the Weather Research and Forecasting model to project 2050 urban and rural temperature. We applied a time-stratified analysis to compare it with mortality between 2001 and 2014 and between 2011 and 2014, to estimate the elevated risk of a 2050 heat event. We included change in daytime versus nighttime and urban versus rural temperatures as factors to project mortality, to evaluate the potential influence of climate change on mortality risk. Increases of 2.9 degrees C and 2.6 degrees C in maximum and minimum air temperature are projected in a 2050 heat event, with a day and a night that will have respective temperatures 9.8 degrees C and 4.9 degrees C higher than 2001-2014. Significantly higher mortality risk is forecasted in 2050 compared to 2001-2014 (IRR 1.721 [1.650, 1.796]) and 2011-2014 (IRR 1.622 [1.547, 1.701]) without consideration of temperature change. After consideration of changing temperature, change in maximum temperature in rural areas will induce the highest mortality risk during 2050, possibly due to rapid urbanization across the city, and with the second highest mortality risk induced by the change in minimum temperature in urbanized areas, possibly because local people in the city have been adapted to the maximum level of urban thermal stress during a summer day. Improvements to heat warning systems and sustainable planning protocols are urgently needed for climate change mitigation.

Mountain specific multi-hazard risk management framework (MSMRMF): Assessment and mitigation of multi-hazard and climate change risk in the Indian Himalayan Region

Mountains are characterized by their specificities such as fragility, marginality and remoteness. They are prone to various hazards such as drought, flood, forest fire, landslide and therefore physical, ecological and social systems of the mountains are at risk. Climate change adds to intensifying the magnitude of multi-hazard risk in mountains. The present study attempts to evaluate risk induced by multi-hazard and climate change in the Indian Himalayan Region (IHR) using the Intergovernmental Panel on Climate Change (IPCC) framework. The proposed multi-hazard risk index was based on indicators from a broader domain and applied on 109 administrative districts of IHR. Exposure, sensitivity, adaptive capacity, and coping capacity were defined using comprehensive and sub-regional indicators identified through inductive and deductive approaches. The result showed that the differential risks among the districts of IHR were governed by the multiplicity of the factor such as demography, amenities, natural capital, partnership, technology and spatial specificities of the districts. The result highlighted the need of inclusion of spatial specificities for the risk mitigation in the IHR and therefore a Mountain Specific Risk Management Framework (MSMRMF) was proposed for sustaining the mountainous communities. The proposed MSMRMF contained two broad components as risk assessment and risk addressal. The framework detailed the risk mitigation and coping strategies (based on adjustment of internal and external strengths) for addressing risks. Risk mitigation was proposed to achieved through habitation resilience, natural capital enhancement, external partnerships, climate change adaptation, and technological interventions. The framework would provide an insight of risk and risk management strategies for the multi-hazard prone mountain regions for the sustainable development under the global change.

Multi-risk assessment of heat waves under intensifying climate change using Bayesian Networks

Continuous climate change has increased the intensity and frequency of abnormal weather, temperature fluctuations, and natural disasters, along with their subsequent damages. The temperature rise is related to the increased number of days with heat waves and tropical nights, which generate problems in many different areas. The risks from heat waves appear in multiple forms, such as disease severity and energy shortages. To respond effectively to such complex risks, it is necessary to analyze where and what risks occur. Recently, Bayesian Network methodology has been applied in various fields, and the causality and probability of occurrence of complex events can be evaluated. Particularly, it is suitable for fields, such as climate change and disaster because of its consideration to uncertainty. Therefore, in this study, multi-risk networks were built, and a multi risk assessment using Bayesian Network was performed considering statistical probabilities. In addition, this study examined the change in future risks by reflecting the climate scenarios proposed by Intergovernmental Panel on Climate Change. The disease risks related to heat waves have increased with time, particularly in the areas adjacent to the coast, centering on the southeast side of South Korea. As for energy shortage, the risk increased in the region around Daegu, a city known for its high temperatures as well as in the Seoul metropolitan areas. Through this study, it is possible to improve the methodology for evaluating multi-risks, and the analyzed results will be able to provide support for effective responses to risks caused by heat waves in Korea.

Multilevel and spatial analyses of childhood malnutrition in Uganda: Examining individual and contextual factors

In this study, we examine the concepts of spatial dependence and spatial heterogeneity in the effect of macro-level and micro-level factors on stunting among children aged under five in Uganda. We conducted a cross-sectional analysis of 3624 Ugandan children aged under five, using data from the 2016 Ugandan Demographic and Health Survey. Multilevel mixed-effect analysis, spatial regression methods and multi-scale geographically weight regression (MGWR) analysis were employed to examine the association between our predictors and stunting as well as to analyse spatial dependence and variability in the association. Approximately 28% of children were stunted. In the multilevel analysis, the effect of drought, diurnal temperature and livestock per km(2) on stunting was modified by child, parent and household factors. Likewise, the contextual factors had a modifiable effect on the association between child’s sex, mother’s education and stunting. The results of the spatial regression models indicate a significant spatial error dependence in the residuals. The MGWR suggests rainfall and diurnal temperature had spatial varying associations with stunting. The spatial heterogeneity of rainfall and diurnal temperature as predictors of stunting suggest some areas in Uganda might be more sensitive to variability in these climatic conditions in relation to stunting than others.

Multiple impacts and pathways of urban form and environmental factors on cardiovascular mortality

Air pollution and heat are significant threats to public health, especially in urban areas with intensive human activities under the trend of climate change. However, the mediation effects of urban form on health via air pollution and heat have been overlooked in previous investigations. This study explored the potential impacts and pathways of urban form on cardiovascular mortality through air pollutants and heat by using partial least squares model with data from Taiwan. The measurable characteristics of urban form include city size, urban sprawl, and mixed land use. Other factors that influence cardiovascular mortality, such as urban industrial level, economic status, aging population, and medical resource, were also considered in the model. Results revealed that maximizing mixed land use and minimizing city size and urban sprawl can help reduce cardiovascular mortality, and the minimizing city size was the most important one. Urban industrial level, economic status, aging population, and medical resource were also influential factors. This is the first study to consider the pathways and impacts of urban form on cardiovascular mortality, and our results indicate that proper urban planning and policy could reduce cardiovascular mortality.

Multiple linear regression models on interval-valued Dengue data with interval-valued climatic variables

Reported dengue fever cases are increasing day by day in the world as well as in Sri Lanka. Model, Prediction and Control are three major parts of the process of analysis of the dengue incidence which leads to reduce the burden of the dengue. There is an increasing trend in the applications and developments in interval-valued data analysis over recent years. Particularly, under regressions there have being developed various techniques to handle interval-valued dependent and independent variables. Representation of data as intervals is very much useful to capture uncertainty and missing details associated with variables. Further, the predictions in intervals suit well when the situations of exact forecasts may not necessary. In this study interval-valued dengue data with interval-valued minimum temperature, maximum temperature and rainfall from 2009 to 2015 in the Colombo district, Sri Lanka were model using three interval valued regression procedures, namely, Center Method (CM), Center and Range Method (CRM) and Constrained Center and Range Method (CCRM). Predicted dengue cases in a range is particularly important because actions taking towards controlling the dengue do not depend on exact number but on magnitude of the values represent in the interval. Data in the year 2016 used for the validation of the models which is developed under three methods. Root of the mean square error, coefficient of determination as well as square root of variance of the models were used to select the best procedure to predict dengue cases. Among the three regression procedures both CRM and CCRM perform well in predicting monthly dengue cases in Colombo.

Neonatal mortality and temperature in two northern Swedish rural parishes, 1860-1899-The significance of ethnicity and gender

The aim of this study was to analyze the association between season of birth and daily temperature for neonatal mortality in two Swedish rural parishes between 1860 and 1899. Further, we aimed to study whether the association varied according to ethnicity (indigenous Sami reindeer herders and non-Sami settlers) and gender. The source material for this study comprised digitized parish records from the Demographic Data Base, Umeå University, combined with local weather data provided by the Swedish Meteorological and Hydrological Institute. Using a time event-history approach, we investigated the association between daily temperature (at birth and up to 28 days after birth) and the risk of neonatal death during the coldest months (November through March). The results showed that Sami neonatal mortality was highest during winter and that the Sami neonatal mortality risk decreased with higher temperatures on the day of birth. Male neonatal risk decreased with higher temperatures during the days following birth, while no effect of temperature was observed among female neonates. We conclude that weather vulnerability differed between genders and between the indigenous and non-indigenous populations.

Nested species distribution models of Chlamydiales in Ixodes ricinus (tick) hosts in Switzerland

The tick Ixodes ricinus is the vector of various pathogens, including Chlamydiales bacteria, which potentially cause respiratory infections. In this study, we modeled the spatial distribution of I. ricinus and associated Chlamydiales over Switzerland from 2009 to 2019. We used a total of 2,293 ticks and 186 Chlamydiales occurrences provided by a Swiss Army field campaign, a collaborative smartphone application, and a prospective campaign. For each tick location, we retrieved from Swiss federal data sets the environmental factors reflecting the topography, climate, and land cover. We then used the Maxent modeling technique to estimate the suitability of particular areas for I. ricinus and to subsequently build the nested niche of Chlamydiales bacteria. Results indicate that I. ricinus habitat suitability is determined by higher temperature and normalized difference vegetation index (NDVI) values, lower temperature during the driest months, and a higher percentage of artificial and forest areas. The performance of the model was improved when extracting the environmental variables for a 100-m radius buffer around the sampling points and when considering the climatic conditions of the 2 years previous to the sampling date. Chlamydiales bacteria were favored by a lower percentage of artificial surfaces, drier conditions, high precipitation during the coldest months, and short distances to wetlands. From 2009 to 2018, we observed an extension of areas suitable to ticks and Chlamydiales, associated with a shift toward higher altitude. The importance of considering spatiotemporal variations in the environmental conditions for obtaining better prediction was also demonstrated.IMPORTANCE Ixodes ricinus is the vector of pathogens including the agent of Lyme disease, the tick-borne encephalitis virus, and the less well-known Chlamydiales bacteria, which are responsible for certain respiratory infections. In this study, we identified the environmental factors influencing the presence of I. ricinus and Chlamydiales in Switzerland and generated maps of their distribution from 2009 to 2018. We found an important expansion of suitable areas for both the tick and the bacteria during the last decade. Results also provided the environmental factors that determine the presence of Chlamydiales within ticks. Distribution maps as generated here are expected to bring valuable information for decision makers in controlling tick-borne diseases in Switzerland and establishing prevention campaigns. The methodological framework presented could be used to predict the distribution and spread of other host-pathogen pairs to identify environmental factors driving their distribution and to develop control or prevention strategies accordingly.

Non-linear effect of temperature variation on childhood rotavirus infection: A time series study from Kathmandu, Nepal

INTRODUCTION: This study aimed to investigate the effects of temperature variability on rotavirus infections among children under 5 years of age in Kathmandu, Nepal. Findings may inform infection control planning, especially in relation to the role of environmental factors in the transmission of rotavirus infection. METHODS: Generalized linear Poisson regression equations with distributed lag non-linear model were fitted to estimate the effect of temperature (maximum, mean and minimum) variation on weekly counts of rotavirus infections among children under 5 years of age living in Kathmandu, Nepal, over the study period (2013 to 2016). Seasonality and long-term effects were adjusted in the model using Fourier terms up to the seventh harmonic and a time function, respectively. We further adjusted the model for the confounding effects of rainfall and relative humidity. RESULTS: During the study period, a total of 733 cases of rotavirus infection were recorded, with a mean of 3 cases per week. We detected an inverse non-linear association between rotavirus infection and average weekly mean temperature, with increased risk (RR: 1.52; 95% CI: 1.08-2.15) at the lower quantile (10th percentile) and decreased risk (RR: 0.64; 95% CI: 0.43-0.95) at the higher quantile (75th percentile). Similarly, we detected an increased risk [(RR: 1.93; 95% CI: 1.40-2.65) and (RR: 1.42; 95% CI: 1.04-1.95)] of rotavirus infection for both maximum and minimum temperature at their lower quantile (10th percentile). We estimated that 344 (47.01%) cases of rotavirus diarrhoea among the children under 5 years of age were attributable to minimum temperature. The significant effect of temperature on rotavirus infection was not observed beyond lag zero week. CONCLUSION: An inverse non-linear association was estimated between rotavirus incidence and all three indices of temperature, indicating a higher risk of infection during the cooler times of the year, and suggesting that transmission of rotavirus in Kathmandu, Nepal may be influenced by temperature.

Nonlinear and threshold effect of meteorological factors on Japanese encephalitis transmission in southwestern China

Although previous studies have reported that meteorological factors might affect the risk of Japanese encephalitis (JE), the relationship between meteorological factors and JE remains unclear. This study aimed to evaluate the relationship between meteorological factors and JE and identify the threshold temperature. Daily meteorological data and JE surveillance data in Dazhou, Sichuan, were collected for the study period from 2005 to 2012 (restricting to May-October because of the seasonal distribution of JE). A distributed lag nonlinear model was used to analyze the lagged and cumulative effect of daily average temperature and daily rainfall on JE transmission. A total of 622 JE cases were reported over the study period. We found JE was positively associated with daily average temperature and daily rainfall with a 25-day lag and 30-day lag, respectively. The threshold value of the daily average temperature is 20°C. Each 5°C increase over the threshold would lead to a 13% (95% CI: 1-17.3%) increase in JE. Using 0 mm as the reference, a daily rainfall of 100 mm would lead to a 132% (95% CI: 73-311%) increase in the risk of JE. Japanese encephalitis is climate-sensitive; meteorological factors should be taken into account for the future prevention and control measure making, especially in a warm and rainy weather condition.

Nonlinear effect of temperature on hand, foot, and mouth disease in Lanzhou, China

To examine the effects of temperature on the daily cases of hand, foot, and mouth disease (HFMD).Data on the daily cases of HFMD in Lanzhou from 2008 to 2015 were obtained, and meteorological data from the same period were collected. A distributed lag nonlinear model was fitted to reveal the relationship between the daily mean temperature and the daily cases of HFMD.From 2008 to 2015, 25,644 cases were reported, of which children under 5 years of age accounted for 78.68% of cases. The highest peak of HFMD cases was usually reported between April to July each year. An inverse V-shaped relationship was observed between daily mean temperature and HFMD cases; a temperature of 18°C was associated with a maximum risk of HFMD. The relative risk (RR) was 1.57 (95% confidence interval: 1.23-1.23), and boys and children aged 3 to 5 years were populations with the highest risk. The cumulative risks of high temperature (20.2°C and 25.2°C) in the total, age-specific, and gender-specific groups peaked on lag 14 days; RR was higher in girls than in boys and in children aged 1 to 2 years than in other age groups. However, the effects of low temperature (-5.3°C, 2.0°C, and 12.8°C) were not significant for both gender-specific and age-specific patients.High temperature may increase the risk of HFMD, and boys and children aged 3 to 5 years were at higher risks on lag 0 day; however, the cumulative risks in girls and children aged 1 to 2 years increased with the increasing number of lag days.

Nonlinear temperature-suicide association in Japan from 1972 to 2015: Its heterogeneity and the role of climate, demographic, and socioeconomic factors

It has been reported that suicide is associated with ambient temperature; however, the heterogeneity in this association and its underlying factors have not been extensively investigated. Therefore, we investigated the spatial and temporal variation in the temperature-suicide association and examined climatic, demographic, and socioeconomic factors that may underlie such heterogeneity. We analyzed the daily time-series data for the suicide counts and ambient temperature, which were collected for the 47 prefectures of Japan from 1972 to 2015, using a two-stage analysis. In the first stage, the prefecture-specific temperature-suicide association was estimated by using a generalized linear model. In the second stage, the prefecture-specific associations were pooled, and key factors explaining the spatial and temporal variation were identified by using mixed effects meta-regression. Results showed that there is an inverted J-shape nonlinear association between temperature and suicide; the suicide risk increased with temperature but leveled off above 24.4 °C. The nationwide relative risk (RR) for the maximum suicide temperature versus 5th temperature percentile (2.9 °C) was estimated as 1.26 (95% CI: 1.22, 1.29). The RRs were larger for females than for males (1.32 vs. 1.22) and larger for elderly people (?65 y) than for the non-elderly (15-64 y) (1.51 vs. 1.18). The RRs were larger for rural prefectures, which are characterized by smaller population, higher proportions of females and elderly people, and lower levels of financial capability and the proportion of highly educated people. The RRs were also larger in colder and less humid prefectures. These findings may help in understanding the potential mechanism of the temperature-suicide association and projecting the future risk of suicide under climate change.

Occupational heat stress induced health impacts: A cross-sectional study from South Indian working population

Rising temperature and heat stress risks in the changing climate scenario might potentially affect workers globally, especially the ones with strenuous workload in tropical settings. We used a cross-sectional study design to profile the heat exposures of similar to 1900 workers from eight industrial sectors using a QuesTemp Wet Bulb Globe Temperature (WBGT) monitor, quantified select heat-strain indicators viz., rise in Core Body Temperature, Sweat Rate, and Urine Specific Gravity and evaluated the perceived health impacts of heat stress using a structured questionnaire. Heat exposures (average WBGT: 30.1 +/- 2.6 degrees C) exceeded the Threshold Limit Value for 67% workers and was positively associated with the rise in Core Body Temperature >1 degrees C in 13% and elevated Urine Specific Gravity >1.020 in 9% workers. Heat-related health concerns were reported by 86% workers, and the heat-exposed workers had 2.3 times higher odds of adverse health outcomes compared to unexposed workers (p < 0.0001). Exposure to higher WBGT and adverse renal health among salt-pan workers were significantly associated (p = 0.004), and steel workers had 9% prevalence of kidney stones. Evidence presented clearly points to heat stress as a health and productivity risk factor that could have long-term and irreversible health impacts. In-depth assessments are urgently needed to develop scientifically sound preventative interventions and protective labor policies to avert the adverse occupational health and productivity consequences for millions of workers globally, thereby aiding poverty reduction.

Modeling the effects of meteorological factors and unreported cases on seasonal Influenza outbreaks in Gansu Province, China

Influenza usually breaks out seasonally in temperate regions, especially in winter, infection rates and mortality rates of influenza increase significantly, which means that dry air and cold temperatures accelerate the spread of influenza viruses. However, the meteorological factors that lead to seasonal influenza outbreaks and how these meteorological factors play a decisive role in influenza transmission remain unclear. During the epidemic of infectious diseases, the neglect of unreported cases leads to an underestimation of infection rates and basic reproduction number. In this paper, we propose a new non-autonomous periodic differential equation model with meteorological factors including unreported cases. First, the basic reproduction number is obtained and the global asymptotic stability of the disease-free periodic solution is proved. Furthermore, the existence of periodic solutions and the uniformly persistence of the model are demonstrated. Second, the best-fit parameter values in our model are identified by the MCMC algorithm on the basis of the influenza data in Gansu province, China. We also estimate that the basic reproduction number is 1.2288 (95% CI:(1.2287, 1.2289)). Then, to determine the key parameters of the model, uncertainty and sensitivity analysis are explored. Finally, our results show that influenza is more likely to spread in low temperature, low humidity and low precipitation environments. Temperature is a more important factor than relative humidity and precipitation during the influenza epidemic. In addition, our results also show that there are far more unreported cases than reported cases.

Modeling the impact of seasonal weather variations on the infectiology of brucellosis

A deterministic mathematical model for brucellosis that incorporates seasonality on direct and indirect transmission parameters for domestic ruminants, wild animals, humans, and the environment was formulated and analyzed in this paper. Both analytical and numerical simulations are presented. From this study, the findings show that variations in seasonal weather have the great impact on the transmission dynamics of brucellosis in humans, livestock, and wild animals. Thus, in order for the disease to be controlled or eliminated, measures should be timely implemented upon the fluctuation in the transmission of the disease.

Modeling the relative role of human mobility, land-use and climate factors on dengue outbreak emergence in Sri Lanka

BACKGROUND: More than 80,000 dengue cases including 215 deaths were reported nationally in less than 7 months between 2016 and 2017, a fourfold increase in the number of reported cases compared to the average number over 2010-2016. The region of Negombo, located in the Western province, experienced the greatest number of dengue cases in the country and is the focus area of our study, where we aim to capture the spatial-temporal dynamics of dengue transmission. METHODS: We present a statistical modeling framework to evaluate the spatial-temporal dynamics of the 2016-2017 dengue outbreak in the Negombo region of Sri Lanka as a function of human mobility, land-use, and climate patterns. The analysis was conducted at a 1?km?×?1?km spatial resolution and a weekly temporal resolution. RESULTS: Our results indicate human mobility to be a stronger indicator for local outbreak clusters than land-use or climate variables. The minimum daily temperature was identified as the most influential climate variable on dengue cases in the region; while among the set of land-use patterns considered, urban areas were found to be most prone to dengue outbreak, followed by areas with stagnant water and then coastal areas. The results are shown to be robust across spatial resolutions. CONCLUSIONS: Our study highlights the potential value of using travel data to target vector control within a region. In addition to illustrating the relative relationship between various potential risk factors for dengue outbreaks, the results of our study can be used to inform where and when new cases of dengue are likely to occur within a region, and thus help more effectively and innovatively, plan for disease surveillance and vector control.

Modeling the time-lag effect of sea surface temperatures on ciguatera poisoning in the South Pacific: Implications for surveillance and response

Ciguatera poisoning (CP), arising from ciguatoxins produced by toxic dinoflagellate Gambierdiscus, is one of the most common food-borne diseases in the South Pacific. Climate change as well as its related events have been hypothesized to a higher abundance and wider presence of toxic dinoflagellates, hence a higher risk of the disease. Yet existing studies assessing the relationship between climate factors and CP are limited or based on old data. In this study, we used prewhitened cross-correlation analysis and auto-regressive integrated moving-average (ARIMA) modeling to develop predictive models of monthly CP incidence in Cook Islands and French Polynesia, two ciguatera-endemic regions in the South Pacific, utilizing the latest epidemiological data. Results reveal the significant time-lagged associations between the monthly CP incidence rate and several indicators relating to sea surface temperature (SST). In particular, SST anomaly is proven to be a strong positive predictor of an increased ciguatera incidence for both countries. If these time-lags can be supported by more investigations, it will allow health authorities to take appropriate actions, to limit or avoid an epidemic risk, especially on high-risk climate scenarios.

Modelling and analyzing spatial clusters of leptospirosis based on satellite-generated measurements of environmental factors in Thailand during 2013-2015

This study statistically identified the association of remotely sensed environmental factors, such as Land Surface Temperature (LST), Night Time Light (NTL), rainfall, the Normalised Difference Vegetation Index (NDVI) and elevation with the incidence of leptospirosis in Thailand based on the nationwide 7,495 confirmed cases reported during 2013-2015. This work also established prediction models based on empirical findings. Panel regression models with random-effect and fixed-effect specifications were used to investigate the association between the remotely sensed environmental factors and the leptospirosis incidence. The Local Indicators of Spatial Association (LISA) statistics were also applied to detect the spatial patterns of leptospirosis and similar results were found (the R2 values of the random-effect and fixed-effect models were 0.3686 and 0.3684, respectively). The outcome thus indicates that remotely sensed environmental factors possess statistically significant contribution in predicting this disease. The highest association in 3 years was observed in LST (random- effect coefficient = -9.787, P<0.001; fixed-effect coefficient = -10.340, P=0.005) followed by rainfall (random-effect coefficient = 1.353, P<0.001; fixed-effect coefficient = 1.347, P<0.001) and NTL density (random-effect coefficient = -0.569, P=0.004; fixed-effect coefficient = -0.564, P=0.001). All results obtained from the bivariate LISA statistics indicated the localised associations between remotely sensed environmental factors and the incidence of leptospirosis. Particularly, LISA’s results showed that the border provinces in the northeast, the northern and the southern regions displayed clusters of high leptospirosis incidence. All obtained outcomes thus show that remotely sensed environmental factors can be applied to panel regression models for incidence prediction, and these indicators can also identify the spatial concentration of leptospirosis in Thailand.

Modelling climate change impacts on attributable-related deaths and demographic changes in the largest metropolitan area in Portugal: A time-series analysis

Previous studies have consistently analyzed the impact that extreme temperatures will have on human health. However, there are very few data on temperature-related mortality burden considering future demographic changes in a context of climate change in Portugal. This study aims to quantify the impact of climate change on heat-, cold-, and net change mortality burdens, taking into account the future demographic changes in Lisbon Metropolitan Area, Portugal. We applied a time-series generalized linear model with a quasi-Poisson model via a distributed lag nonlinear model to project temperature-related mortality burden for two climatological scenarios: a present (or reference, 1986-2005) scenario and a future scenario (2046-2065), in this case the Representative Concentration Pathway RCP8.5, which reflects the worst set of expectations (with the most onerous impacts). The results show that the total attributable fraction due to temperature, extreme and moderate cold, is statistically significant in the historical period and the future projected scenarios, while extreme and moderate heat were only significant in the projected future summer period. Net differences were attributed to moderate cold in the future winter months. Projections show a consistent and significant increase in future heat-related mortality burden. The attributable fraction due to heat in the future period, compared to the historical period, ranges from 0 to 1.5% for moderate heat and from 0 to 0.5% for extreme heat. Adaptation should be implemented at the local level, so as to prevent and diminish the effects on citizens and healthcare services, in a context of climate change.

Modelling the impact of climate change on the distribution and abundance of tsetse in Northern Zimbabwe

BACKGROUND: Climate change is predicted to impact the transmission dynamics of vector-borne diseases. Tsetse flies (Glossina) transmit species of Trypanosoma that cause human and animal African trypanosomiasis. A previous modelling study showed that temperature increases between 1990 and 2017 can explain the observed decline in abundance of tsetse at a single site in the Mana Pools National Park of Zimbabwe. Here, we apply a mechanistic model of tsetse population dynamics to predict how increases in temperature may have changed the distribution and relative abundance of Glossina pallidipes across northern Zimbabwe. METHODS: Local weather station temperature measurements were previously used to fit the mechanistic model to longitudinal G. pallidipes catch data. To extend the use of the model, we converted MODIS land surface temperature to air temperature, compared the converted temperatures with available weather station data to confirm they aligned, and then re-fitted the mechanistic model using G. pallidipes catch data and air temperature estimates. We projected this fitted model across northern Zimbabwe, using simulations at a 1 km × 1 km spatial resolution, between 2000 to 2016. RESULTS: We produced estimates of relative changes in G. pallidipes mortality, larviposition, emergence rates and abundance, for northern Zimbabwe. Our model predicts decreasing tsetse populations within low elevation areas in response to increasing temperature trends during 2000-2016. Conversely, we show that high elevation areas (> 1000 m above sea level), previously considered too cold to sustain tsetse, may now be climatically suitable. CONCLUSIONS: To our knowledge, the results of this research represent the first regional-scale assessment of temperature related tsetse population dynamics, and the first high spatial-resolution estimates of this metric for northern Zimbabwe. Our results suggest that tsetse abundance may have declined across much of the Zambezi Valley in response to changing climatic conditions during the study period. Future research including empirical studies is planned to improve model accuracy and validate predictions for other field sites in Zimbabwe.

Modification effects of temperature on the ozone-mortality relationship: A nationwide multicounty study in China

Both ozone exposure and extreme temperatures are found to be significantly associated with mortality; however, inconsistent results have been obtained on the modification effects of temperature on the ozone-mortality association. In the present study, we conducted a nationwide time-series analysis in 128 counties from 2013-2018 to examine whether temperature modifies the association between short-term ozone exposure with nonaccidental and cause-specific mortality in China. First, we analyzed the effects of ozone exposure on mortality at different temperature levels. Then, we calculated the pooled effects through a meta-analysis across China. We found that high-temperature conditions (>75th percentile in each county) significantly enhanced the effects of ozone on nonaccidental, cardiovascular, and respiratory mortality, with increases of 0.44% (95% confidence interval (CI): 0.36 and 0.51%), 0.42% (95% CI: 0.32 and 0.51%) and 0.50% (95% CI: 0.31 and 0.68%), respectively, for a 10 ?g/m(3) increase in ozone at high temperatures. Stronger effects on nonaccidental and cardiovascular mortality were observed at high temperatures among elderly individuals aged 65 years and older compared with the younger people. Our findings provide evidence that health damage because of ozone may be influenced by the impacts of increasing temperatures, which point to the importance of mitigating ozone exposure in China under the context of climate change to further reduce the public health burden.

Modification of the effect of ambient air temperature on cardiovascular and respiratory mortality by air pollution in Ahvaz, Iran

OBJECTIVES: This study investigated the modification of temperature effects on cardiovascular and respiratory mortality by air pollutants (particulate matter less than 2.5 and 10 µm in diameter [respectively], ozone, nitrogen dioxide, carbon monoxide, and sulfur dioxide). METHODS: Poisson additive models with a penalized distributed lag non-linear model were used to assess the association of air temperature with the daily number of deaths from cardiovascular and respiratory diseases in Ahvaz, Iran from March 21, 2014 to March 20, 2018, controlling for day of the week, holidays, relative humidity, wind speed, air pollutants, and seasonal and long-term trends. Subgroup analyses were conducted to evaluate the effect modification for sex and age group. To assess the modification of air pollutants on temperature effects, the level of each pollutant was categorized as either greater than the median value or less than/equal to the median value. RESULTS: We found no significant associations between temperature and cardiovascular and respiratory mortality. In the subgroup analyses, however, high temperatures were significantly associated with an increased risk of cardiovascular mortality among those 75 years old and older, with the strongest effect observed on day 0 relative to exposure. The results revealed a lack of interactive effects between temperature and air pollutants on cardiovascular and respiratory mortality. CONCLUSIONS: A weak but significant association was found between high temperature and cardiovascular mortality, but only in elderly people. Air pollution did not significantly modify the effect of ambient temperature on cardiovascular and respiratory mortality.

Modulations of synoptic and climatic changes on ozone pollution and its health risks in mountain-basin areas

Ozone (O-3) pollution in China tends to become increasingly severe despite recent emission reductions. O(3 )is sensitive to atmospheric conditions, but its modulations by changing synoptic systems and climate are unclear, especially in mountain-basin areas such as the Sichuan Basin (SCB). This study examines the impacts of typical synoptic systems and their secular changes on O-3 pollution and its health risks in mountain-basin areas, by taking SCB as an example. Seven dominant synoptic patterns are identified and three typical synoptic patterns with high- (low-) pressure are associated with high (low) O-3 concentrations over entire SCB, while the pattern with uniform-pressure is accompanied by heavy (light) pollution in western (eastern) SCB. Under the synoptic patterns with high-pressure, clear weather with fewer clouds, strong solar radiation, weak convection, and hot and dry atmosphere enhances the photochemical reactions of O-3 precursors and weakens the vertical mixing of O-3 and its precursors, thus favoring heavy O-3 pollution and posing higher health risks; whereas, the synoptic patterns with low-pressure induce the opposite changes in O-3 concentration and health risks. The uniform-pressure pattern is accompanied by district spatial variations of O-3 via favoring O-3-related physical and chemical processes in eastern SCB and inhibiting that in the west. Under climatic changes, increasing synoptic pattern with high-pressure and decreasing synoptic pattern with low-pressure over SCB significantly increased O-3 concentration and the resultant health risks over the past 40 years. Our findings provide scientific evidence from synoptic and climatic views for forecasting O-3 and its health risks and for mitigating O-3 pollution in mountain-basin areas.

Moist heat stress extremes in India enhanced by irrigation

Intensive irrigation in India has been demonstrated to decrease surface temperature, but the influence of irrigation on humidity and extreme moist heat stress is not well understood. Here we analysed a combination of in situ and satellite-based datasets and conducted meteorological model simulations to show that irrigation modulates extreme moist heat. We found that intensive irrigation in the region cools the land surface by 1 degrees C and the air by 0.5 degrees C. However, the decreased sensible heat flux due to irrigation reduces the planetary boundary layer height, which increases low-level moist enthalpy. Thus, irrigation increases the specific and relative humidity, which raises the moist heat stress metrics. Intense irrigation over the region results in increased moist heat stress in India, Pakistan, and parts of Afghanistan-affecting about 37-46 million people in South Asia-despite a cooler land surface. We suggest that heat stress projections in India and other regions dominated by semi-arid and monsoon climates that do not include the role of irrigation overestimate the benefits of irrigation on dry heat stress and underestimate the risks. Intensive irrigation in India cools the land surface, but increases the moist heat stress in South Asia, according to an analysis of observational datasets and meteorological models.

Monitoring and analysis of the effects of atmospheric temperature and heat extreme of the environment on human health in Central Iran, located in southwest Asia

Investigation of temperature extremes is very important as one of the most important climate parameters in different parts. If exposed to enough heat, humans will suffer from extreme heat. Maximum temperature and heat can adversely affect many living organisms. The effects of extreme heat on people with chronic lung disease, including asthma and emphysema, are greater; even for people with healthy lungs, outdoor activities are not recommended during high ozone levels. The purpose of this study is to monitor and analyze the effects of atmospheric temperature extreme and extreme heat on human health in Central Iran. Therefore, the minimum and maximum data of 15 synoptic stations in the study area for the period (1988-2018) using hybrid artificial neural network (HANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used. Finally, multi-criteria decision-making (MCDM) models TOSIS and SAW were used to prioritize the areas exposed to rising temperature. The results showed that according to ANFIS modelling for predicting extreme temperatures, the lowest mean training error and the mean error of validation for the minimum temperature were equal to 0.10 for the Yazd Station and 1.66% for the Damghan station. The lowest mean training error and the mean error of validation for the maximum extreme temperature obtained 0.016 for the Garmsar station and 9.39% for the Shahroud station. The maximum extreme temperature of two stations of Garmsar and Bafgh (1 and 0.9689, respectively) was more exposed to extreme temperatures based on the TOPSIS model. Garmsar and Salafchegan Stations (1 and 0.9873, respectively) were more exposed to extreme temperatures based on the SAW model. Climate change is fundamentally changing the Earth’s climate system in a way that directly and indirectly endangers human physical and mental health. Severe increase in temperature is directly associated with death from cardiovascular and respiratory diseases, especially in the elderly. Also in the study area, the house is a place for peace and comfort for every human being. Climatic and weather conditions have a direct impact on creating a sense of comfort in any architectural space. Proper heating and air conditioning in the interior of the building is another case of architecture that will not be easy because this architectural issue is related to the comfort or non-comfort of man, and the concepts of heat or cold are mostly due to the natural feeling of man and his physiological conditions. The rising trend of thermal stresses in the studied stations increases the need to pay attention to the issue of thermal stresses and the spread of diseases (heat attack, syncope, and muscle cramps) in terms of crisis planning and management.

Monitoring culicine mosquitoes (Diptera: Culicidae) as a vector of flavivirus in Incheon metropolitan city and Hwaseong-Si, Gyeonggi-Do, Korea, during 2019

The flaviviruses are small single-stranded RNA viruses that are typically transmitted by mosquitoes or tick vectors and are etiological agents of acute zoonotic infections. The viruses are found around the world and account for significant cases of human diseases. We investigated population of culicine mosquitoes in central region of Korean Peninsula, Incheon Metropolitan City and Hwaseong-si. Aedes vexans nipponii was the most frequently collected mosquitoes (56.5%), followed by Ochlerotatus dorsalis (23.6%), Anopheles spp. (10.9%), and Culex pipiens complex (5.9%). In rural regions of Hwaseong, Aedes vexans nipponii was the highest population (62.9%), followed by Ochlerotatus dorsalis (23.9%) and Anopheles spp. (12.0%). In another rural region of Incheon (habitat of migratory birds), Culex pipiens complex was the highest population (31.4%), followed by Ochlerotatus dorsalis (30.5%), and Aedes vexans vexans (27.5%). Culex pipiens complex was the predominant species in the urban region (84.7%). Culicine mosquitoes were identified at the species level, pooled up to 30 mosquitoes each, and tested for flaviviral RNA using the SYBR Green-based RT-PCR and confirmed by cDNA sequencing. Three of the assayed 2,683 pools (989 pools without Anopheles spp.) were positive for Culex flaviviruses, an insect-specific virus, from Culex pipiens pallens collected at the habitats for migratory birds in Incheon. The maximum likelihood estimation (the estimated number) for Culex pipiens pallens positive for Culex flavivirus was 25. Although viruses responsible for mosquito-borne diseases were not identified, we encourage intensified monitoring and long-term surveillance of both vector and viruses in the interest of global public health.

More perceived but not faster evolution of heat stress than temperature extremes in the future

Global warming is projected to intensify during the twenty-first century. Yet, only few studies investigate how global warming could be perceived by future populations. Here, we propose an assessment of how climate change could be perceived by combining climatological indicators. We analyse extremes of temperature (T-99) and simplified Wet-Bulb Globe Temperature (WBGT(99)), a heat stress index assessing the combined effect of elevated temperature and humidity on the human body. The speed of change is defined for each year as the difference between the previous 20 years and the twenty upcoming years (i.e. with a moving baseline), and we assess how these speeds emerge from each last 20-year interannual variability. Using a set of 12 CMIP5 models, speeds of change ofT(99)and WBGT(99)in 2080 are both twice as fast compared with current speeds in mid-latitudes, and by up to four times faster in the tropics under the RCP8.5 scenario. Warming accelerations are thus similar forT(99)and WBGT(99). However, these speeds in tropical regions in 2080 are projected to be 2.3 times larger than the last 20-year interannual variability for WBGT(99), and only 1.5 to 1.8 times larger forT(99). According to the models, the WBGT(99)intensification will be more emergent from the recent year-to-year variability than theT(99)warming. This analysis suggests that the accelerated warming of heat extremes will be felt more strongly by populations than current changes for RCP8.5, and that this evolution will be more perceived in heat stress than in temperature, particularly within the tropics.

Mechanisms associated with daytime and nighttime heat waves over the contiguous United States

Heat waves are extreme climate events that have the potential to cause immense stress on human health, agriculture, and energy systems, so understanding the processes leading to their onset is crucial. There is no single accepted definition for heat waves, but they are generally described as a sustained amount of time over which temperature exceeds a local threshold. Multiple different temperature variables are potentially relevant, because high values of both daily maximum and minimum temperatures can be detrimental to human health. In this study, we focus explicitly on the different mechanisms associated with summertime heat waves manifested during daytime hours versus nighttime hours over the contiguous United States. Heat waves are examined using the National Aeronautics and Space Administration Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Over 1980-2018, the increase in the number of heat-wave days per summer was generally stronger for nighttime heat-wave days than for daytime heat-wave days, with localized regions of significant positive trends. Processes linked with daytime and nighttime heat waves are identified through composite analysis of precipitation, soil moisture, clouds, humidity, and fluxes of heat and moisture. Daytime heat waves are associated with dry conditions, reduced cloud cover, and increased sensible heating. Mechanisms leading to nighttime heat waves differ regionally across the United States, but they are typically associated with increased clouds, humidity, and/or low-level temperature advection. In the midwestern United States, enhanced moisture is transported from the Gulf of Mexico during nighttime heat waves.

Mental health and weather extremes in a Southeastern U.S. City: Exploring group differences by race

The connection between mental health and weather extremes is a public health concern, but less studied to date than physical health. This exploratory study examines the mental health impacts of two kinds of weather extremes increasingly linked to climate change-summer heat waves and extreme winter weather-in a low- to middle-income population in the Southeastern U.S. The distribution of mental health impacts, and potential pathways to them, are examined with a focus on race. Data are from a random-sample survey of 426 participants and are analyzed with bivariate statistics and path analysis. Self-reported mental health impacts, in both seasons, were common in our study, with White participants tending to report worse impacts than participants who identified with other racial groups. Physical health had direct effects on mental health across several models, overall and by racial group. For summer heat waves, concern about climate change and social cohesion had direct and indirect effects, respectively, on mental health in White participants only. For extreme winter weather, preparedness had a direct negative effect on mental health in White, but not Black, participants. Results suggest that there may be racial differences in the influence of human and social capital factors on mental health related to weather extremes, warranting further study of this critical topic and with larger racial subgroup samples.

Mental health disorders and summer temperature-related mortality: A case crossover study

Identifying the most vulnerable subjects is crucial for the effectiveness of health interventions aimed at limiting the adverse consequences of high temperatures. We conducted a case crossover study aimed at assessing whether suffering from mental health disorders modifies the effect of high temperatures on mortality. We included all deaths occurred in the area of Bologna Local Health Trust during the summers 2004-2017. Subjects with mental disorders were identified by using the local Mental Health Registry. A conditional logistic model was applied, and a z-test was used to study the effect modification. Several models were estimated stratifying by subjects’ characteristics. For every 1 °C above 24 °C, mortality among people without mental disorders increased by 1.9% (95% CI 1.0-2.6, p < 0.0001), while among mental health service users, mortality increased by 5.5% (95% CI 2.4-8.6, p < 0.0001) (z-test equal to p = 0.0259). The effect modification varied according to gender, residency and cause of death. The highest probability of dying due to an increase in temperature was registered in patients with depression and cognitive decline. In order to reduce the effects of high temperatures on mortality, health intervention strategies should include mental health patients among the most vulnerable subjects taking account of their demographic and clinical characteristics.

Meteorological and chronobiological factors and the occurrence of acute aortic dissection

Although a number of studies have demonstrated seasonal variations in acute cardiovascular events, the association between winter and low temperatures and the incidence rate of acute aortic dissection has not been fully elucidated. In this study, we investigated the association between meteorological and chronobiological factors and the occurrence of acute aortic dissection classified by the Stanford type, sex and age. We retrospectively collected 131 patients who had been admitted consecutively to our institution with acute aortic dissection, including 58 type A patients and 73 type B patients, from January 2013 to December 2017. The meteorological data were downloaded from the homepage of the Japan Meteorological Agency. The daily incidence of aortic dissection was higher in winter (10.2%) than in fall (5.3%) (P?=?0.04), and a significant winter peak was also observed in the sub-groups of males and type B, while there were no significant differences in the proportions of type A, female, and ??70- and >?70-year-old patients. The maximum, mean and minimum temperatures on the days with aortic dissection were significantly lower than on the days without aortic dissection. Divided into four seasons, lower temperatures were found only in spring. The most significant and greatest difference was observed between the maximum temperature on the day of aortic dissection and that at 2 days earlier. The multivariate logistic regression analysis showed that the difference in the maximum temperature between the day of and 2 days before the incident (odds ratio 0.91; 95% confidence interval 0.87-0.96; P?

Meteorological drivers of respiratory syncytial virus infections in Singapore

Meteorological drivers are known to affect transmissibility of respiratory viruses including respiratory syncytial virus (RSV), but there are few studies quantifying the role of these drivers. We used daily RSV hospitalization data to estimate the daily effective reproduction number (R(t)), a real-time measure of transmissibility, and examined its relationship with environmental drivers in Singapore from 2005 through 2015. We used multivariable regression models to quantify the proportion of the variance in R(t) explained by each meteorological driver. After constructing a basic model for RSV seasonality, we found that by adding meteorological variables into this model we were able to explain a further 15% of the variance in RSV transmissibility. Lower and higher value of mean temperature, diurnal temperature range (DTR), precipitation and relative humidity were associated with increased RSV transmissibility, while higher value of maximum wind speed was correlated with decreased RSV transmissibility. We found that a number of meteorological drivers were associated with RSV transmissibility. While indoor conditions may differ from ambient outdoor conditions, our findings are indicative of a role of ambient temperature, humidity and wind speed in affecting RSV transmission that could be biological or could reflect indirect effects via the consequences on time spent indoors.

Meteorological factors affecting respiratory syncytial virus infection: A time-series analysis

INTRODUCTION: Respiratory syncytial virus (RSV) infection is a major cause of hospitalization in children. Meteorological factors are known to influence seasonal RSV epidemics, but the relationship between meteorological factors and RSV infection in children is not well understood. We aimed to explore the relationship between meteorological factors and RSV infections among hospitalized children, using different statistical models. METHODS: We conducted a retrospective review concerning children with RSV infections admitted to a tertiary pediatric hospital in Wenzhou, China, between January 2008 and December 2017. The relationship between meteorological factors (average daily temperatures, average daily relative humidity, rainfall, rainfall days, and wind speed) and the incidence of RSV in hospitalized children was analyzed using three time-series models, namely an autoregressive integrated moving average (ARIMA) model, a generalized additive model (GAM), and a least absolute shrinkage and selection operator (LASSO)-based model. RESULTS: In total, 15?858 (17.6%) children tested positive for RSV infection. The ARIMA model revealed a marked seasonal pattern in the RSV detection rate, which peaked in winter and spring. The model was a good predictor of RSV incidence (R(2) : 83.5%). The GAM revealed that a lower temperature and higher wind speed preceded increases in RSV detection. The LASSO-based model revealed that temperature and relative humidity were negatively correlated with RSV detection. CONCLUSIONS: Seasonality of RSV infection in hospitalized children correlated strongly with temperature. The LASSO-based model can be used to predict annual RSV epidemics using weather forecast data.

Mitigating heat-related mortality risk in Shanghai, China: System dynamics modeling simulations

Numerous studies in epidemiology, meteorology, and climate change research have demonstrated a significant association between abnormal ambient temperature and mortality. However, there is a shortage of research attention to a systematic assessment of potential mitigation measures which could effectively reduce the heat-related morbidity and mortality risks. This study first illustrates a conceptualization of a systems analysis version of urban framework for climate service (UFCS). It then constructs a system dynamics (SD) model for the UFCS and employs this model to quantify the impacts of heat waves on public health system in Shanghai and to evaluate the performances of two mitigation measures in the context of a real heat wave event in July 2013 in the city. Simulation results show that in comparison with the baseline without mitigation measures, if the hospital system could prepare 20% of beds available for emergency response to heat waves once receiving the warning in advance, the number of daily deaths could be reduced by 40-60 (15.8-19.5%) on the 2 days of day 7 and day 8; if increasing the minimum living allowance of 790 RMB/month in 2013 by 20%, the number of daily deaths could be reduced by 50-70 (17.7-21.9%) on the 2 days of day 8 and day 12. This tool can help policy makers systematically evaluate adaptation and mitigation options based on performance assessment, thus strengthening urban resilience to changing climate.

Mitigation of urban heat island effects through “Green Infrastructure”: Integrated design of constructed wetlands and neighborhood development

Extreme heat threatens desert city residents throughout the hot summer months and inhibits outdoor recreation and activity. Ecosystem services provide various benefits for urban environments. For desert cities, few are more critical than microclimate regulation and water treatment and conservation. This study evaluates the degree to which artificial wetlands support cooler microclimates and reduce the local urban heat island effect. The authors use (a) remotely sensed temperature data for Avondale, Arizona, to measure temperature differences between neighborhoods with and without water features and (b) resident surveys to evaluate perceptions of potential cooling effects. Results show substantial differences in the daytime surface temperatures for the wetland neighborhood compared to those without water features. More than a third of residents perceived a cooling effect throughout the year. The authors conclude that artificial wetlands within a desert city increase human comfort by reducing surface and air temperature and should be considered an urban heat island mitigation strategy.

Modeling an association between malaria cases and climate variables for Keonjhar district of Odisha, India: A Bayesian approach

Malaria, a vector-borne disease, is a significant public health problem in Keonjhar district of Odisha (the malaria capital of India). Prediction of malaria, in advance, is an urgent need for reporting rolling cases of disease throughout the year. The climate condition do play an essential role in the transmission of malaria. Hence, the current study aims to develop and assess a simple and straightforward statistical model of an association between malaria cases and climate variates. It may help in accurate predictions of malaria cases given future climate conditions. For this purpose, a Bayesian Gaussian time series regression model is adopted to fit a relationship of the square root of malaria cases with climate variables with practical lag effects. The model fitting is assessed using a Bayesian version of R(2) (RsqB). Whereas, the predictive ability of the model is measured using a cross-validation technique. As a result, it is found that the square root of malaria cases with lag 1, maximum temperature, and relative humidity with lag 3 and 0 (respectively), are significantly positively associated with the square root of the cases. However, the minimum and average temperatures with lag 2, respectively, are observed as negatively (significantly) related. The considered model accounts for moderate amount of variation in the square root of malaria cases as received through the results for RsqB. We also present Absolute Percentage Errors (APE) for each of the 12 months (January-December) for a better understanding of the seasonal pattern of the predicted (square root of) malaria cases. Most of the APEs obtained corresponding to test data points is reasonably low. Further, the analysis shows that the considered model closely predicted the actual (square root of) malaria cases, except for some peak cases during the particular months. The output of the current research might help the district to develop and strengthen early warning prediction of malaria cases for proper mitigation, eradication, and prevention in similar settings.

Modeling and prediction of dengue occurrences in Kolkata, India, based on climate factors

Dengue is one of the most serious vector-borne infectious diseases in India, particularly in Kolkata and its neighbouring districts. Dengue viruses have infected several citizens of Kolkata since 2012 and it is amplifying every year. It has been derived from earlier studies that certain meteorological variables and climate change play a significant role in the spread and amplification of dengue infections in different parts of the globe. In this study, our primary objective is to identify the relative contribution of the putative drivers responsible for dengue occurrences in Kolkata and project dengue incidences with respect to the future climate change. The regression model was developed using maximum temperature, minimum temperature, relative humidity and rainfall as key meteorological factors on the basis of statistically significant cross-correlation coefficient values to predict dengue cases. Finally, climate variables from the Coordinated Regional Climate Downscaling Experiment (CORDEX) for South Asia region were input into the statistical model to project the occurrences of dengue infections under different climate scenarios such as Representative Concentration Pathways (RCP4.5 and RCP8.5). It has been estimated that from 2020 to 2100, dengue cases will be higher from September to November with more cases in RCP8.5 (872 cases per year) than RCP4.5 (531 cases per year). The present research further concludes that from December to February, RCP8.5 leads to suitable warmer weather conditions essential for the survival and multiplication of dengue pathogens resulting more than two times dengue cases in RCP8.5 than in RCP4.5. Furthermore, the results obtained will be useful in developing early warning systems and provide important evidence for dengue control policy-making and public health intervention.

Modeling heat stress changes based on wet-bulb globe temperature in respect to global warming

Background This ecological study aims to model the trend of changes in exposure of outdoor workers to heat stress in outdoors in the coming decades with the use of the Wet-Bulb Globe Temperature (WBGT), Hadley Coupled Atmosphere- Ocean General Circulation Model, version 3 (HADCM3), and Long Ashton Research Station Weather Generator (LARS-WG) in Tehran, Iran, considering the climate change and the global warming. Methods The hourly values of environmental parameters including minimum and maximum air temperature, relative humidity, precipitation and radiation related to Prakash , Shahriar and Damavand cities were obtained from the Meteorological Organization of Iran. These data were recorded during 1965 to 2015. The climate modeling was done for 2011-2030, 2046-2065, and 2080-2099. Results The minimum and maximum air temperatures in the different months of the year in the three studied cities show an increasing trend. Our finding shows that the WBGT will be increased by 2099. In Pakdasht, this index will be close to the danger zone in the coming years, especially in 2080-2099. Conclusions All the results obtained indicate an increase in risk of heat stress in outdoor workplaces, given the global warming.

Long-term monitoring of the seasonal density of questing ixodid ticks in Vienna (Austria): Setup and first results

The first long-term monitoring to document both activity and density of questing ixodid ticks in Vienna, Austria, is introduced. It was started in 2017 and is planned to run over decades. Such long-term monitorings are needed to quantify possible effects of climate change or to develop tick density forecast models. The monthly questing tick density at three sites has been observed by using a standardized sampling method by dragging an area of [Formula: see text] at each occasion. Popular recreational areas were chosen as study sites. These are the Prater public park, the wooded Kahlenberg, and a wildlife garden in Klosterneuburg. First results show a 3-year time series of nymphs and adults of the Ixodes ricinus species complex and Haemaphysalis concinna for the period 2017-2019. Whereas questing nymphs of the I. ricinus species complex were collected from February to November, H. concinna nymphs were only dragged from May to October. The peak of nymphal activity of the I. ricinus species complex was in May, that of H. concinna in August. In addition, a brief overview is given about ticks and tick-borne pathogens occurring in urban and suburban areas of Vienna.

Long-term trends in PM(2.5) mass and particle number concentrations in urban air: The impacts of mitigation measures and extreme events due to changing climates

Urbanisation and industrialisation led to the increase of ambient particulate matter (PM) concentration. While subsequent regulations may have resulted in the decrease of some PM matrices, the simultaneous changes in climate affecting local meteorological conditions could also have played a role. To gain an insight into this complex matter, this study investigated the long-term trends of two important matrices, the particle mass (PM(2.5)) and particle number concentrations (PNC), and the factors that influenced the trends. Mann-Kendall test, Sen’s slope estimator, the generalised additive model, seasonal decomposition of time series by LOESS (locally estimated scatterplot smoothing) and the Buishand range test were applied. Both PM(2.5) and PNC showed significant negative monotonic trends (0.03-0.6 ?g m(-3). yr(-1) and 0.40-3.8 × 10(3) particles. cm(-3). yr(-1), respectively) except Brisbane (+0.1 ?g m(-3). yr(-1) and +53 particles. cm(-3). yr(-1), respectively). For the period covered in this study, temperature increased (0.03-0.07 °C.yr(-1)) in all cities except London; precipitation decreased (0.02-1.4 mm. yr(-1)) except in Helsinki; and wind speed was reduced in Brisbane and Rochester but increased in Helsinki, London and Augsburg. At the change-points, temperature increase in cold cities influenced PNC while shifts in precipitation and wind speed affected PM(2.5). Based on the LOESS trend, extreme events such as dust storms and wildfires resulting from changing climates caused a positive step-change in concentrations, particularly for PM(2.5). In contrast, among the mitigation measures, controlling sulphur in fuels caused a negative step-change, especially for PNC. Policies regarding traffic and fleet management (e.g. low emission zones) that were implemented only in certain areas or in a progressive uptake (e.g. Euro emission standards), resulted to gradual reductions in concentrations. Therefore, as this study has clearly shown that PM(2.5) and PNC were influenced differently by the impacts of the changing climate and by the mitigation measures, both metrics must be considered in urban air quality management.

Low ambient temperatures correlate with increased risk of hypoglycemia in patients with type 2 diabetes: An ecological study in Taiwan

Little evidence is available about the relationship between ambient temperatures and hypoglycemia in Taiwan. The purpose of the present paper is to investigate whether there is an association between ambient temperatures and hypoglycemia in patients with type 2 diabetes.An ecological study was conducted to analyze the type 2 diabetes dataset of the Taiwan National Health Insurance Program. Every episode of hypoglycemia diagnosed at emergency department among subjects with type 2 diabetes was identified monthly between 2006 and 2013. Average monthly ambient temperatures in Celsius between 2006 and 2013 were measured according to the database of the Central Weather Bureau in Taiwan.The incidence rates of hypoglycemia were higher during the period of cold ambient temperatures (from December to March) than the period of warm ambient temperatures (from April to November). The peak period of hypoglycemia always occurred in winter months (January and February).Patients with type 2 diabetes in Taiwan are more susceptible to hypoglycemia during the period of cold ambient temperatures, particularly in winter months. Clinicians in Taiwan should remind patients to make a preventive strategy for hypoglycemia during the periods of cold ambient temperatures.

Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia

The robust estimate and forecast capability of random forests (RF) has been widely recognized, however this ensemble machine learning method has not been widely used in mosquito-borne disease forecasting. In this study, two sets of RF models were developed at the national (pooled department-level data) and department level in Colombia to predict weekly dengue cases for 12-weeks ahead. A pooled national model based on artificial neural networks (ANN) was also developed and used as a comparator to the RF models. The various predictors included historic dengue cases, satellite-derived estimates for vegetation, precipitation, and air temperature, as well as population counts, income inequality, and education. Our RF model trained on the pooled national data was more accurate for department-specific weekly dengue cases estimation compared to a local model trained only on the department’s data. Additionally, the forecast errors of the national RF model were smaller to those of the national pooled ANN model and were increased with the forecast horizon increasing from one-week-ahead (mean absolute error, MAE: 9.32) to 12-weeks ahead (MAE: 24.56). There was considerable variation in the relative importance of predictors dependent on forecast horizon. The environmental and meteorological predictors were relatively important for short-term dengue forecast horizons while socio-demographic predictors were relevant for longer-term forecast horizons. This study demonstrates the potential of RF in dengue forecasting with a feasible approach of using a national pooled model to forecast at finer spatial scales. Furthermore, including sociodemographic predictors is likely to be helpful in capturing longer-term dengue trends.

Machine learning approaches to predict peak demand days of cardiovascular admissions considering environmental exposure

BACKGROUND: Accumulating evidence has linked environmental exposure, such as ambient air pollution and meteorological factors, to the development and severity of cardiovascular diseases (CVDs), resulting in increased healthcare demand. Effective prediction of demand for healthcare services, particularly those associated with peak events of CVDs, can be useful in optimizing the allocation of medical resources. However, few studies have attempted to adopt machine learning approaches with excellent predictive abilities to forecast the healthcare demand for CVDs. This study aims to develop and compare several machine learning models in predicting the peak demand days of CVDs admissions using the hospital admissions data, air quality data and meteorological data in Chengdu, China from 2015 to 2017. METHODS: Six machine learning algorithms, including logistic regression (LR), support vector machine (SVM), artificial neural network (ANN), random forest (RF), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM) were applied to build the predictive models with a unique feature set. The area under a receiver operating characteristic curve (AUC), logarithmic loss function, accuracy, sensitivity, specificity, precision, and F1 score were used to evaluate the predictive performances of the six models. RESULTS: The LightGBM model exhibited the highest AUC (0.940, 95% CI: 0.900-0.980), which was significantly higher than that of LR (0.842, 95% CI: 0.783-0.901), SVM (0.834, 95% CI: 0.774-0.894) and ANN (0.890, 95% CI: 0.836-0.944), but did not differ significantly from that of RF (0.926, 95% CI: 0.879-0.974) and XGBoost (0.930, 95% CI: 0.878-0.982). In addition, the LightGBM has the optimal logarithmic loss function (0.218), accuracy (91.3%), specificity (94.1%), precision (0.695), and F1 score (0.725). Feature importance identification indicated that the contribution rate of meteorological conditions and air pollutants for the prediction was 32 and 43%, respectively. CONCLUSION: This study suggests that ensemble learning models, especially the LightGBM model, can be used to effectively predict the peak events of CVDs admissions, and therefore could be a very useful decision-making tool for medical resource management.

Malaria and meningitis under climate change: Initial assessment of climate information service in Nigeria

It is often difficult to define the relationship and the influence of climate on the occurrence and distribution of disease. To examine this issue, the effects of climate indices on the distributions of malaria and meningitis in Nigeria were assessed over space and time. The main purpose of the study was to evaluate the relationships between climatic variables and the prevalence of malaria and meningitis, and develop an early warning system for predicting the prevalence of malaria and meningitis as the climate varies. An early warning system was developed to predetermine the months in a year that people are vulnerable to malaria and meningitis. The results revealed a significant positive relationship between rainfall and malaria, especially during the wet season with correlation coefficient R-2 >= 60.0 in almost all the ecological zones. In the Sahel, Sudan and Guinea, there appears to be a strong relationship between temperature and meningitis with R-2 > 60.0. In all, the results further reveal that temperatures and aerosols have a strong relationship with meningitis. The assessment of these initial data seems to support the finding that the occurrence of meningitis is higher in the northern region, especially the Sahel and Sudan. In contrast, malaria occurrence is higher in the southern part of the study area. We suggest that a thorough investigation of climate parameters is critical for the reallocation of clinical resources and infrastructures in economically underprivileged regions.

Malaria and the climate in Karachi: An eight year review

BACKGROUND AND OBJECTIVE: Malaria is an arthropod-borne infectious disease transmitted by the mosquito Anopheles and claims millions of lives globally every year. Reasons for failure to eradicate this disease are multifactorial. The seasonality of the malaria is principally determined by climatic factors conducive for breeding of the vector. We aimed to study the relationship between climatic variability and the seasonality of malaria over an eight-year duration. METHODS: This was a retrospective medical chart review of 8,844 confirmed cases of malaria which presented to The Indus Hospital, Karachi from January 2008 to November 2015. Cases were plotted against meteorological data for Karachi to elicit monthly variation. RESULTS: A secular incline and seasonality in malaria cases over the duration of eight years was seen. More cases were reported in the summer, rainy season compared with the other three seasons in each year. There was significant association with specific climate variables such as temperature, moisture, and humidity. CONCLUSION: There is a marked seasonal variation of malaria in Karachi, influenced by various environmental factors. Identification of the ‘the concentrated period’ of malaria can be helpful for policymakers to deploy malaria control interventions.

Malaria patterns across altitudinal zones of Mount Elgon following intensified control and prevention programs in Uganda

BACKGROUND: Malaria remains a major tropical vector-borne disease of immense public health concern owing to its debilitating effects in sub-Saharan Africa. Over the past 30?years, the high altitude areas in Eastern Africa have been reported to experience increased cases of malaria. Governments including that of the Republic of Uganda have responded through intensifying programs that can potentially minimize malaria transmission while reducing associated fatalities. However, malaria patterns following these intensified control and prevention interventions in the changing climate remains widely unexplored in East African highland regions. This study thus analyzed malaria patterns across altitudinal zones of Mount Elgon, Uganda. METHODS: Times-series data on malaria cases (2011-2017) from five level III local health centers occurring across three altitudinal zones; low, mid and high altitude was utilized. Inverse Distance Weighted (IDW) interpolation regression and Mann Kendall trend test were used to analyze malaria patterns. Vegetation attributes from the three altitudinal zones were analyzed using Normalized Difference Vegetation Index (NDVI) was used to determine the Autoregressive Integrated Moving Average (ARIMA) model was used to project malaria patterns for a 7 year period. RESULTS: Malaria across the three zones declined over the study period. The hotspots for malaria were highly variable over time in all the three zones. Rainfall played a significant role in influencing malaria burdens across the three zones. Vegetation had a significant influence on malaria in the higher altitudes. Meanwhile, in the lower altitude, human population had a significant positive correlation with malaria cases. CONCLUSIONS: Despite observed decline in malaria cases across the three altitudinal zones, the high altitude zone became a malaria hotspot as cases variably occurred in the zone. Rainfall played the biggest role in malaria trends. Human population appeared to influence malaria incidences in the low altitude areas partly due to population concentration in this zone. Malaria control interventions ought to be strengthened and strategically designed to achieve no malaria cases across all the altitudinal zones. Integration of climate information within malaria interventions can also strengthen eradication strategies of malaria in such differentiated altitudinal zones.

Mapping heat-related risks in Northern Jiangxi Province of China based on two spatial assessment frameworks approaches

Heat-health risk is a growing concern in many regions of China due to the more frequent occurrence of extremely hot weather. Spatial indexes based on various heat assessment frameworks can be used for the assessment of heat risks. In this study, we adopted two approaches-Crichton’s risk triangle and heat vulnerability index (HVI) to identify heat-health risks in the Northern Jiangxi Province of China, by using remote sensing and socio-economic data. The Geographical Information System (GIS) overlay and principal component analysis (PCA) were separately used in two frameworks to integrate parameters. The results show that the most densely populated community in the suburbs, instead of city centers, are exposed to the highest heat risk. A comparison of two heat assessment mapping indicates that the distribution of HVI highlights the vulnerability differences between census tracts. In contrast, the heat risk index of Crichton’s risk triangle has a prominent representation for regions with high risks. The stepwise multiple linear regression zero-order correlation coefficient between HVI and outdoor workers is 0.715, highlighting the vulnerability of this particular group. Spearman’s rho nonparametric correlation and the mean test reveals that heat risk index is strongly correlated with HVI in most of the main urban regions in the study area, with a significantly lower value than the latter. The analysis of variance shows that the distribution of HVI exhibits greater variety across urban regions than that of heat risk index. Our research provides new insight into heat risk assessment for further study of heat health risk in developing countries.

Mapping human vulnerability to extreme heat: A critical assessment of Heat Vulnerability Indices created using Principal Components Analysis

BACKGROUND: Extreme heat poses current and future risks to human health. Heat vulnerability indices (HVIs), commonly developed using principal components analysis (PCA), are mapped to identify populations vulnerable to extreme heat. Few studies critically assess implications of analytic choices made when employing this methodology for fine-scale vulnerability mapping. OBJECTIVE: We investigated sensitivity of HVIs created by applying PCA to input variables and whether training input variables on heat-health data produced HVIs with similar spatial vulnerability patterns for Detroit, Michigan, USA. METHODS: We acquired 2010 Census tract and block group level data, land cover data, daily ambient apparent temperature, and all-cause mortality during May-September, 2000-2009. We used PCA to construct HVIs using: a) “unsupervised”-PCA applied to variables selected a priori as risk factors for heat-related health outcomes; b) “supervised”-PCA applied only to variables significantly correlated with proportion of all-cause mortality occurring on extreme heat days (i.e., days with 2-d mean apparent temperature above month-specific 95th percentiles). RESULTS: Unsupervised and supervised HVIs yielded differing spatial vulnerability patterns, depending on selected land cover input variables. Supervised PCA explained 62% of variance in the input variables and was applied on half the variables used in the unsupervised method. Census tract-level supervised HVI values were positively associated with increased proportion of mortality occurring on extreme heat days; supervised PCA could not be applied to block group data. Unsupervised HVI values were not associated with extreme heat mortality for either tracts or block groups. DISCUSSION: HVIs calculated using PCA are sensitive to input data and scale. Supervised HVIs may provide marginally more specific indicators of heat vulnerability than unsupervised HVIs. PCA-derived HVIs address correlation among vulnerability indicators, although the resulting output requires careful contextual interpretation beyond generating epidemiological research questions. Methods with reliably stable outputs should be leveraged for prioritizing heat interventions. https://doi.org/10.1289/EHP4030.

Mapping the global potential transmission hotspots for severe fever with thrombocytopenia syndrome by machine learning methods

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with increasing spread. Currently SFTS transmission has expanded beyond Asian countries, however, with definitive global extents and risk patterns remained obscure. Here we established an exhaustive database that included globally reported locations of human SFTS cases and the competent vector, Haemaphysalis longicornis (H. longicornis), as well as the explanatory environmental variables, based on which, the potential geographic range of H. longicornis and risk areas for SFTS were mapped by applying two machine learning methods. Ten predictors were identified contributing to global distribution for H. longicornis with relative contribution >= 1%. Outside contemporary known distribution, we predict high receptivity to H. longicornis across two continents, including northeastern USA, New Zealand, parts of Australia, and several Pacific islands. Eight key drivers of SFTS cases occurrence were identified, including elevation, predicted probability of H. longicornis presence, two temperature-related factors, two precipitation-related factors, the richness of mammals and percentage coverage of water bodies. The globally model-predicted risk map of human SFTS occurrence was created and validated effective for discriminating the actual affected and unaffected areas (median predictive probability 0.74 vs. 0.04, P < 0.001) in three countries with reported cases outside China. The high-risk areas (probability >= 50%) were predicted mainly in east-central China, most parts of the Korean peninsula and southern Japan, and northern New Zealand. Our findings highlight areas where an intensive vigilance for potential SFTS spread or invasion events should be advocated, owing to their high receptibility to H. longicornis distribution.

Mapping urban heat vulnerability of extreme heat in Hangzhou via comparing two approaches

Extreme heat is the leading cause of heat-related mortality around the world. Extracting heat vulnerability information from the urban complexity system is crucial for urban health studies. Using heat vulnerability index (HVI) is the most common approach for urban planners to locate the places with high vulnerability for intervention and protection. Previous studies have demonstrated that HVI can play a vital role in determining which areas are at risk of heat-related deaths. Both equal weight approach (EWA) and principal component analysis (PCA) are the conventional methods to aggregate indicators to HVI. However, seldom studies have compared the differences between these two approaches in estimating HVI. In this paper, we evaluated the HVIs in Hangzhou in 2013, employing EWA and PCA, and assessed the accuracies of these two HVIs by using heat-related deaths. Our results show that both HVI maps showed that areas with high vulnerability are located in the central area while those with low vulnerability are located in the suburban area. The comparison between HVI(EWA)and HVI(PCA)shows significantly different spatial distributions, which is caused by the various weight factors in EWA and PCA. The relationship between HVI(EWA)and heat-related deaths performs better than the relationship between HVI(PCA)and deaths, implying EWA could be a better method to evaluate heat vulnerability than PCA. The HVI(EWA)can provide a spatial distribution of heat vulnerability at intracity to direct heat adaptation and emergency capacity planning.

Measuring the impact of sea surface temperature on the human incidence of Vibrio sp. infection in British Columbia, Canada, 1992-2017

BACKGROUND: Vibrio growth in the environment is related to sea surface temperature (SST). The incidence of human Vibrio illness increased sharply in British Columbia (BC) between 2008 and 2015 for unknown reasons, culminating in the largest outbreak of shellfish-associated Vibrio parahaemolyticus (Vp) in Canadian history in 2015. Our objective was to assess the relationship between SST and Vibrio illness in BC, Canada during 1992-2017 and assess the role of SST and other environmental factors in the 2015 Vp outbreak. METHODS: Cases of Vibrio infection reported to the BC Centre for Disease Control during 1992-2017 were used. SST data were obtained from NOAA and NASA. We assessed changes in incidence trend of annual Vibrio cases during 1992-2017 using a Poisson regression. We assessed the correlation between annual Vibrio cases and the average annual maximum SST using a Spearman rank-order correlation. We modeled the association between weekly Vp case counts, SST and other environmental factors during 2007-2017 using a Poisson regression. RESULTS: There was a significant increase in Vibrio cases between 2008 and 2015 (annual slope?=?0.163, P?

Measuring wet bulb globe temperatures at point-of-exertion in worldwide UK military settings: A longitudinal observational study determining the accuracy of a portable WBGT monitor

INTRODUCTION: Heat illness among the UK Armed Forces is usually exertional, and therefore preventable, yet the incidence has not reduced since 2011. JSP 539 explicitly states that wet bulb globe temperature (WBGT) should be measured ‘at the location of greatest heat risk’, not ‘that of most convenience’. A handheld WBGT tracker used at point-of-exertion could reduce this incidence if proven to be as accurate as the current in-service device. METHODS: Longitudinal observational comparison and equipment feasibility study of the Kestrel 5400 and QUESTemp 34 (QT-34) in worldwide firm base and deployed UK Armed Forces locations. The locations chosen were Kenya, South Sudan, Belize, Tidworth, Aldershot and Brecon. Paired data points of WBGT readings were collected from November 2017 to August 2018 in all weather conditions. RESULTS: WBGT readings were comparable between the QT-34 and Kestrel 5400 across the UK and overseas. In addition, there was no change in accuracy between readings taken from the Kestrel 5400 when tripod-mounted and handheld. The Kestrel was easy to set up and far less susceptible to resupply or power supply limitations, as it requires no user input for wet bulb temperature, and runs on AA batteries. CONCLUSION: This equipment feasibility study has shown that the Kestrel 5400 gives an acceptable accuracy and is easier to use than the QT-34. The authors recommend that the Kestrel 5400 is introduced as an adjunct to the QT-34, and its use within the military setting monitored through ongoing comparative data collection in a large-scale proof-of-concept study.

Lag effect of ambient temperature on the cardiovascular disease hospital admission in Jiuquan, China

The association between temperature and cardiovascular disease has been widely reported. In the city of Jiuquan, a developing area that has seldom been studied, the association is still unclear. The hospital data of cardiovascular disease (CVD) admissions and meteorological data were collected from the new rural cooperative medical insurance of Gansu Province and China Meteorological Science Data Sharing Service, respectively. A total of 26,383 cases were admitted during the research period. Poisson regression with a distributed lag nonlinear model was selected to evaluate the association between temperature and the hospital admissions of CVD. Subgroup analysis was performed according to gender and age. At first, the low temperature effect was obvious, but it then attenuated at lags 0-7 days. The maximum impact caused by high temperature occurred on the current day (lag 0) and then attenuated along the lag days. The cold effect was more harmful than heat effect. The adults and males were found to be more vulnerable to the temperature than the elderly and females, respectively. The study provides some reference for the development of the local public health by quantifying these impacts.

Learning is inhibited by heat exposure, both internationally and within the United States

Human capital generally, and cognitive skills specifically, play a crucial role in determining economic mobility and macroeconomic growth. While elevated temperatures have been shown to impair short-run cognitive performance, much less is known about whether heat exposure affects the rate of skill formation. We combine standardized achievement data for 58 countries and 12,000 US school districts with detailed weather and academic calendar information to show that the rate of learning decreases with an increase in the number of hot school days. These results provide evidence that climatic differences may contribute to differences in educational achievement both across countries and within countries by socioeconomic status and that may have important implications for the magnitude and functional form of climate damages in coupled human-natural systems.

Life loss of cardiovascular diseases per death attributable to ambient temperature: A national time series analysis based on 364 locations in China

BACKGROUND: Although the effect of ambient temperature on cardiovascular disease (CVDs) has been well explored, studies using years of life lost (YLLs) as the outcome especially evaluating the average life loss per death attributable to temperatures were rare. We examine the associations between ambient temperature and YLLs of CVDs, and further quantify temperature-related life loss per death. METHODS: Daily YLL rates were calculated using death data from 364 locations across China during 2006-2017, and meteorological data were collected for the same period. A distributed-lag nonlinear model and meta-regression were applied to examine the relationships between temperature and YLL rates of CVDs. Subgroup analyses by age, gender, region, and cause-specific CVDs were investigated. The total YLLs and average YLLs per death attributable to temperature were further quantified to assess life loss caused by non-optimal temperature. RESULTS: Both high and low temperatures significantly increased YLL rates of CVDs, with greater effects for cold than heat. Cerebrovascular diseases (CEDs) account for the largest proportion (47.17%) of total YLLs of CVDs attributable to non-optimal temperature. On average, life loss per CVD death attributable to non-optimal temperatures was 1.51 (95% eCI: 1.33, 1.69) years, with 1.07 (95% eCI: 1.00, 1.15) years from moderate cold. Average life losses per death were observed higher for males (1.71, 95% eCI: 1.43, 1.99), younger population (3.82, 95% eCI: 2.86, 4.75), central China (1.62; 95% eCI: 1.41, 1.83) and hemorrhagic stroke (2.86, 95% eCI: 2.63, 3.10) than their correspondents. CONCLUSIONS: We found that non-optimal temperature significantly aggravated premature death of CVD, with CEDs being the most affected, and most of temperature-related life loss of CVD was attributed to moderate cold. Our findings imply that peoples with CEDs in moderate cold days are vulnerable populations, which may contribute to a better understanding the adverse effects and pathogenesis of temperature on CVDs.

Loaded March and FORCE Combat (TM) performance: Effects of heat exposure and previous experience

Purpose: This study investigated the effects of heat exposure and previous experience on thermoregulatory and cardiovascular responses to performing a loaded march in the HEAT and on FORCE Combat (TM) circuit performance. Methods: Ten civilians (inexperienced) and 10 infantry reservists (experienced) performed a 60 min loaded march (similar to 35kg), in NORMAL (21 +/- 0.2 degrees C) and HEAT (30 +/- 0.2 degrees C) conditions and the FORCE Combat (TM) military physical performance evaluation. Participant groups were matched for morphology and physiological capacity. Results: Out of the 10 experienced participants that participated in the loaded march in HEAT, 9 completed the full 60 min but only 5 of 10 inexperienced participants were able to do the same. Performing a loaded march in the HEAT caused a state of uncompensable heat stress (continuous increase in core temperature) for both the inexperienced and experienced participants. Heart rate (134 +/- 12vs143 +/- 9bpm,p=0.027), rate of perceived exertion (13 +/- 1vs10 +/- 1,p=0.001) and thermal comfort (1.9 +/- 0.5vs2.4 +/- 0.4,p=0.011) were lower in the experienced compared to the inexperienced group during the loaded march in HEAT. The FORCE Combat (TM) completion times were higher in HEAT compared to NORMAL, but lower in experienced participants in both conditions (p=0.05). Conclusion: Both heat exposure and previous experience had an effect on cardiovascular, thermal and subjective measures during the loaded march and on completion time of the FORCE Combat (TM) circuit.

Local actions to health risks of heatwaves and dengue fever under climate change: Strategies and barriers among primary healthcare professionals in southern China

BACKGROUND: Climate change and extreme weather poses significant threats to community health, which need to be addressed by local health workforce. This study investigated the perceptions of primary healthcare professionals in Southern China on individual and institutional strategies for actions on health impacts of climate change and the related barriers. METHODS: A mixed methodological approach was adopted, involving a cross-sectional questionnaire survey of 733 primary healthcare professionals (including medical doctors, nurses, public health practitioners, allied health workers and managers) selected through a multistage cluster randomized sampling strategy, and in-depth interviews of 25 key informants in Guangdong Province, China. The questionnaire survey investigated the perceptions of respondents on the health impacts of climate change and the individual and institutional actions that need to be taken in response to climate change. Multivariate logistic regression models were established to determine sociodemographic factors associated with the perceptions. The interviews tapped into coping strategies and perceived barriers in primary health care to adapt to tackle challenges of climate change. Contents analyses were performed to extract important themes. RESULTS AND CONCLUSION: The majority (64%) of respondents agreed that climate change is happening, but only 53.6% believed in its human causes. Heat waves and infectious diseases were highly recognized as health problems associated with climate change. There was a strong consensus on the need to strengthen individual and institutional capacities in response to health impacts of climate change. The respondents believed that it is important to educate the public, take active efforts to control infectious vectors, and pay increased attention to the health care of vulnerable populations. The lack of funding and limited local workforce capacity is a major barrier for taking actions. Climate change should be integrated into primary health care development through sustainable governmental funding and resource support.

Local extreme heat planning: An interactive tool to examine a Heat Vulnerability Index for Philadelphia, Pennsylvania

Exposure to extreme heat contributes to high morbidity and mortality relative to other climate hazards. The city of Philadelphia, PA is particularly vulnerable to the impacts of extreme heat, due to the urban heat island effect and high prevalence of sensitive populations. We developed a heat vulnerability index, which identified priority areas that are most at-risk of experiencing adverse heat-related health outcomes and in need of preparedness and mitigation interventions. An interactive website was created to display the maps and allow the public to navigate the data with links to potential resources for relief from extreme heat days. Such methods can be adapted for other cities that wish to identify and target long-term priority areas.

Long-term effects of latitude, ambient temperature, and ultraviolet radiation on the incidence of multiple sclerosis in two cohorts of US women

BACKGROUND: Differences in multiple sclerosis (MS) risk by latitude have been observed worldwide; however, the exposures driving these associations are unknown. Ultraviolet radiation (UV) has been explored as a risk factor, and ambient temperature has been correlated with disease progression. However, no study has examined the impact of all three exposures. We examined the association between these exposures and incidence of MS within two nationwide prospective cohorts of women, the Nurses’ Health Study (NHS) and Nurses’ Health Study II (NHSII). METHODS: Both cohorts were followed with biennial questionnaires to ascertain new diagnoses and risk factors. Time-varying exposures to latitude, cumulative average July temperature (°C), and cumulative average July erythemal UV (mW/m(2)) were predicted at each participant’s biennially updated residential addresses. Using Cox proportional hazards models adjusted for MS risk factors, we calculated hazard ratios (HR) and 95% confidence intervals (CIs) within each cohort and pooled via meta-analyses. RESULTS: In multivariable models, there were suggestions that decreasing latitude (meta-analysis multivariable-adjusted HR = 0.72; 95% CI 0.55, 0.94 for women living <35.73° compared with those ?42.15°, P-for-trend = 0.007) and increasing cumulative average July temperature (meta-analysis multivariable-adjusted HR = 0.81; 95% CI 0.72, 0.91 for each interquartile range increase [3.91°]) were associated with decreasing risk of MS. There was no evidence of heterogeneity between cohorts. We did not observe consistent associations with cumulative average UV. CONCLUSION: Our results suggest that adult exposures to decreasing latitude and increasing temperature, but not UV, were associated with reduced MS risk in these two cohorts of women. Studies of MS incidence may want to consider temperature as a risk factor.

Intensity-duration-frequency relationship of WBGT extremes using regional frequency analysis in South Korea

The risk levels of heat-related extreme events need to be estimated for prediction and real-time monitoring to mitigate their impacts on air quality, public health, the ecosystem, and critical infrastructure. Many countries have adopted meteorological variable base thresholds for assessing the risk level of heat-related extreme events. These thresholds provide an approximate risk level for a specific event but do not consider its intensity and duration in the risk assessment. The current study provides a statistical tool to assess the risk of heat-related extreme events while concurrently considering their intensities and durations based on the wet-bulb globe temperature (WBGT). To this end, the intensity-duration-frequency (IDF) relationship of the extreme WBGT in South Korea was derived. Regional frequency analysis was employed to understand the IDF relationship. Return levels of heat-related extreme events in South Korea were calculated and their characteristics were investigated based on the annual maximum WBGT observations. The results showed that the IDF relationship could provide the risks of heat-related extreme events while concurrently considering their intensities and durations. The extreme WBGT in South Korea was used to categorize two regions such as coastal and inland based on their statistical characteristics. The return levels of the annual maximum WBGT events were found to vary largely by location. The return levels corresponding to 32 °C with 3-h duration for stations in the coastal and inland regions ranged from 1- to 100-years and 3- to 1000-years, respectively. Mean values of return levels for heatwave events in Seoul, Incheon, Daejon, Gwangju, Daegu, and Busan were 2.8-, 8.4-, 15.3-, 2.8-, 1.6-, and 2.2-years, respectively. The return levels of heatwaves for the warmer cities are smaller than those for cooler cities. The return levels of the heatwave events in South Korea showed a significant increasing trend in several cities, supporting the notion that the impact of heatwave events on South Korea might become more severe in the future.

Interaction effects of air pollution and climatic factors on circulatory and respiratory mortality in Xi’an, China between 2014 and 2016

Several studies have reported that air pollution and climatic factors are major contributors to human morbidity and mortality globally. However, the combined interactive effects of air pollution and climatic factors on human health remain largely unexplored. This study aims to investigate the interactive effects of air pollution and climatic factors on circulatory and respiratory mortality in Xi’an, China. Time-series analysis and the distributed lag non-linear model (DLNM) were employed as the study design and core statistical method. The interaction relative risk (IRR) and relative excess risk due to interaction (RERI) for temperature and Air Quality Index (AQI) interaction on circulatory mortality were 0.973(0.969, 0.977) and -0.055(-0.059, -0.048), respectively; while for relative humidity and AQI interaction, 1.098(1.011, 1.072) and 0.088(0.081, 0.107) respectively, were estimated. Additionally, the IRR and RERI for temperature and AQI interaction on respiratory mortality were 0.805(0.722, 0.896) and -0.235(-0.269, -0.163) respectively, while 1.008(0.965, 1.051) and -0.031(-0.088, 0.025) respectively were estimated for relative humidity and AQI interaction. The interaction effects of climatic factors and AQI were synergistic and antagonistic in relation to circulatory and respiratory mortality, respectively. Interaction between climatic factors and air pollution contributes significantly to circulatory and respiratory mortality.

Interactions and marginal effects of meteorological factors on haemorrhagic fever with renal syndrome in different climate zones: Evidence from 254 cities of China

BACKGROUND: Haemorrhagic fever with renal syndrome (HFRS) is climate sensitive. HFRS-weather associations have been investigated by previous studies, but few of them looked into the interaction of meteorological factors on HFRS in different climate zones. OBJECTIVE: We aim to explore the interactions and marginal effects of meteorological factors on HFRS in China. METHODS: HFRS surveillance data and meteorological data were collected from 254 cities during 2006-2016. A monthly time-series study design and generalized estimating equation models were adopted to estimate the interactions and marginal effects of meteorological factors on HFRS in different climate zones of China. RESULTS: Monthly meteorological variables and the number of HFRS cases showed seasonal fluctuations and the patterns varied by climate zone. We found that maximum lagged effects of temperature on HFRS were 1-month in temperate zone, 2-month in warm temperate zone, 3-month in subtropical zone, respectively. There is an interaction effect between mean temperature and precipitation in temperate zone, while in warm temperate zone the interaction effect was found between mean temperature and relative humidity. CONCLUSION: The interaction effects and marginal effects of meteorological factors on HFRS varied from region to region in China. Findings of this study may be helpful for better understanding the roles of meteorological variables in the transmission of HFRS in different climate zones, and provide implications for the development of weather-based HFRS early warning systems.

Interactions between climate factors and air quality index for improved childhood asthma self-management

BACKGROUND: Daily air quality index (AQI) forecast can provide early warning information, and it is not clear whether it is appropriate for childhood asthma hospitalizations (CAHs). Furthermore, little is known about the effects of AQI on CAHs, as well as the interactions between temperature, humidity and AQI. METHODS: We collected 32,238 cases in Hefei from 2013 to 2016 and estimated the association between daily CAHs and AQI by combining the Poisson Generalized Linear Models (PGLMs) with the Distributed Lag Nonlinear Models (DLNMs). The interaction between AQI and temperature was tested by stratifying AQI and temperature, as well as humidity. RESULTS: AQI was associated with an increased risk of hospitalizations for childhood asthma. The adverse effect first appeared on the 3rd day, with the RR of 1.011 (95%CI: 1.000-1.023) and continued until the 19th day of lag (RR = 1.010, 95%CI: 1.001-1.020). In the subgroup analysis, the male and pre-school children were more sensitive to AQI, and there are seasonal differences in the effects of AQI on CAHs. Besides, in a stratified analysis with an AQI of 150, we found synergies between temperature, humidity and AQI. The interaction relative risk (IRR) and relative excess risk due to interaction (RERI) for the interaction between temperature and AQI were 1.157 (95%CI: 1.029-1.306) and 0.122 (95%CI: 0.022-0.223) respectively. For the humidity, the IRR and RERI were 1.090 (95%CI: 1.056-1.206) and 0.083 (95%CI: 0.083-0.143) respectively. Exploring different subgroups in the interaction analyses, it was worth noting that female and pre-school children were more sensitive to the interaction between AQI and temperature, while school-age children were more sensitive to the interaction between AQI and humidity. CONCLUSIONS: The study found that not only AQI can significantly increase the risk of CAHs, but also that under the context of climate change, temperature and humidity have a synergistic effect on AQI, suggesting that considering only the warning information of air pollution is not enough to strengthen the prevention of childhood asthma hospitalization.

Intra-urban differences of outdoor thermal comfort in Ghent on seasonal level and during record-breaking 2019 heat wave

A comprehensive analysis of meteorological (air temperature, relative humidity, wind speed and global radiation) and outdoor thermal comfort (OTC) conditions (Physiological Equivalent Temperature and Mean Radiant Temperature) was carried out in six Local Climate Zones (LCZs) in Ghent (Belgium) on annual and seasonal level (2017) and during two heat waves (moderate in 2017 and record-breaking in 2019). The continuously monitored data originates from the local urban climate network MOCCA (Monitoring the City’s Climate and Atmosphere). The maximum hourly urban heat island (UHI) of 8.7 degrees C was noticed during the record-breaking 2019 heat wave. OTC was calculated with RayMan based on the observations from the MOCCA network and characteristics of the micro-environment which affect the estimated OTC conditions. The results show that cold stress is more apparent in Ghent during all seasons, except for summer. Downtown locations had more comfortable conditions on seasonal and annual level when compared to the rural location which had the most uncomfortable OTC conditions mostly due to cold stress. However, during the daytime period of heat waves, the open downtown and rural location were most frequently exposed to extreme heat stress, while the urban park in the sparsely built LCZ was the most comfortable area because it was able to effectively mitigate heat stress. This study illustrates the subtlety of the results of a thermal comfort study if one investigates both heat and cold stress on a yearly basis and during the extreme heat wave periods in a city with a moderate climate.

Intraurban social risk and mortality patterns during extreme heat events: A case study of Moscow, 2010-2017

There is currently an increase in the number of heat waves occurring worldwide. Moscow experienced the effects of an extreme heat wave in 2010, which resulted in more than 10,000 extra deaths and significant economic damage. This study conducted a comprehensive assessment of the social risks existing during the occurrence of heat waves and allowed us to identify the spatial heterogeneity of the city in terms of thermal risk and the consequences for public health. Using a detailed simulation of the meteorological regime based on the COSMO-CLM regional climate model and the physiologically equivalent temperature (PET), a spatial assessment of thermal stress in the summer of 2010 was carried out. Based on statistical data, the components of social risk (vulnerabilities and adaptive capacity of the population) were calculated and mapped. We also performed an analysis of their changes in 2010-2017. A significant differentiation of the territory of Moscow has been revealed in terms of the thermal stress and vulnerability of the population to heat waves. The spatial pattern of thermal stress agrees quite well with the excess deaths observed during the period from July to August 2010. The identified negative trend of increasing vulnerability of the population has grown in most districts of Moscow. The adaptive capacity has been reduced in most of Moscow. The growth of adaptive capacity mainly affects the most prosperous areas of the city.

Investigating future urbanization’s impact on local climate under different climate change scenarios in MEGA-urban regions: A case study of the Pearl River Delta, China

Urbanization is one of the most significant contributing factors to anthropogenic climate change. However, a lack of projected city land use data has posed significant challenges to factoring urbanization into climate change modeling. Thus, the results from current models may contain considerable errors in estimating future climate scenarios. The Pearl River Delta region was selected as a case study to provide insight into how large-scale urbanization and different climate change scenarios impact the local climate. This study adopts projected land use data from freely available satellite imagery and applies dynamic simulation land use results to the Weather Research and Forecasting Model (WRF). The simulation periods cover the summer periods in 2010 and 2029-2031, the latter of which is averaged to represent the year 2030. The WRF simulation used the observed local climate conditions in 2010 to represent the current scenario and the projected local climate changes for 2030 as the future scenario. Under all three future climate change scenarios, the warming trend is prominent (around 1-2 degrees C increase), with a widespread reduction in wind speed in inland areas (1-2 ms(-1)). The vulnerability of human health to thermal stress was evaluated by adopting the wet-bulb globe temperature (WBGT). The results from the future scenarios suggest a high public health risk due to rising temperatures in the future. This study provides a methodology for a more comprehensive understanding of future urbanization and its impact on regional climate by using freely available satellite images and WRF simulation tools. The simulated temperature and WBGT results can serve local governments and stakeholders in city planning and the creation of action plans that will reduce the potential vulnerability of human health to excessive heat.

Investigating persistent measles dynamics in Niger and associations with rainfall

Measles is a major cause of child mortality in sub-Saharan Africa. Current immunization strategies achieve low coverage in areas where transmission drivers differ substantially from those in high-income countries. A better understanding of measles transmission in areas with measles persistence will increase vaccination coverage and reduce ongoing transmission. We analysed weekly reported measles cases at the district level in Niger from 1995 to 2004 to identify underlying transmission mechanisms. We identified dominant periodicities and the associated spatial clustering patterns. We also investigated associations between reported measles cases and environmental drivers associated with human activities, particularly rainfall. The annual and 2-3-year periodicities dominated the reporting data spectrum. The annual periodicity was strong with contiguous spatial clustering, consistent with the latitudinal gradient of population density, and stable over time. The 2-3-year periodicities were weaker, unstable over time and had spatially fragmented clustering. The rainy season was associated with a lower risk of measles case reporting. The annual periodicity likely reflects seasonal agricultural labour migration, whereas the 2-3-year periodicity potentially results from multiple mechanisms such as reintroductions and vaccine coverage heterogeneity. Our findings suggest that improving vaccine coverage in seasonally mobile populations could reduce strong measles seasonality in Niger and across similar settings.

Investigating thermal comfort and energy impact through microclimate monitoring – A citizen science approach

The increasing frequency of extreme hot days has a considerable impact on health and energy. Heat stress related to high temperatures cause increased rates of mortality and morbidity, particularly amongst vulnerable populations such as those belonging to lower socio-economic groups. Most studies on heat related mortality and morbidity generally use temperatures from weather stations that do not consider the urban heat island (UHI) effect, leading to inaccurate predictions, particularly during heat waves. This study uses data collected by citizen scientists in predicting outdoor thermal comfort as well as indoor heat stress and peak cooling energy for low income housing in Australia. The results show that the outdoor Universal thermal climate index (UTCI) values estimated during hot afternoon ranged from 26 degrees C to 46 degrees C which equate to moderate to extreme heat stress. The indoor Discomfort index (DI) values calculated inside the living and bedrooms were below the heat stress limits (DI < 28) when Bureau of Meteorology (BoM) data was used as the input for calculation. However, indoor DI exceeded the threshold when actual on-ground data was used in the calculations, indicating that people will be at severe risks of heat related illnesses. It was also found that 60% of the time DI exceeded the threshold value as opposed to 2% with the use of BoM data. Furthermore, the peak cooling load was increased by 24% when on-ground data was used. The results show that low income houses and the neighbourhoods where they are located can cause significant heat related health risks which are normally overlooked in typical simulation studies. This study demonstrated a cost-effective way of collecting microclimate data for urban heat island mitigation and adaptation studies. (C) 2020 Published by Elsevier B.V.

Investigation of effective climatology parameters on COVID-19 outbreak in Iran

SARS CoV-2 (COVID-19) Coronavirus cases are confirmed throughout the world and millions of people are being put into quarantine. A better understanding of the effective parameters in infection spreading can bring about a logical measurement toward COVID-19. The effect of climatic factors on spreading of COVID-19 can play an important role in the new Coronavirus outbreak. In this study, the main parameters, including the number of infected people with COVID-19, population density, intra-provincial movement, and infection days to end of the study period, average temperature, average precipitation, humidity, wind speed, and average solar radiation investigated to understand how can these parameters effects on COVID-19 spreading in Iran? The Partial correlation coefficient (PCC) and Sobol’-Jansen methods are used for analyzing the effect and correlation of variables with the COVID-19 spreading rate. The result of sensitivity analysis shows that the population density, intra-provincial movement have a direct relationship with the infection outbreak. Conversely, areas with low values of wind speed, humidity, and solar radiation exposure to a high rate of infection that support the virus’s survival. The provinces such as Tehran, Mazandaran, Alborz, Gilan, and Qom are more susceptible to infection because of high population density, intra-provincial movements and high humidity rate in comparison with Southern provinces.

Investigation of the importance of climatic factors in COVID-19 worldwide intensity

The transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the severity of the related disease (COVID-19) are influenced by a large number of factors. This study aimed to investigate the correlation of COVID-19 case and death rates with possible causal climatological and sociodemographic factors for the March to May 2020 (first wave) period in a worldwide scale by statistically processing data for over one hundred countries. The weather parameters considered herein were air temperature, relative humidity, cumulative precipitation, and cloud cover, while sociodemographic factors included population density, median age, and government measures in response to the pandemic. The results of this study indicate that there is a statistically significant correlation between average atmospheric temperature and the COVID-19 case and death rates, with chi-square test p-values in the 0.001-0.02 range. Regarding sociodemographic factors, there is an even stronger dependence of the case and death rates on the population median age (p = 0.0006-0.0012). Multivariate linear regression analysis using Lasso and the forward stepwise approach revealed that the median age ranks first in importance among the examined variables, followed by the temperature and the delays in taking first governmental measures or issuing stay-at-home orders.

Is sensible heat flux useful for the assessment of thermal vulnerability in Seoul (Korea)?

Climate change has led to increases in global temperatures, raising concerns regarding the threat of lethal heat waves and deterioration of the thermal environment. In the present study, we adopted two methods for spatial modelling of the thermal environment based on sensible heat and temperature. A vulnerability map reflecting daytime temperature was derived to plot thermal vulnerability based on sensible heat and climate change exposure factors. The correlation (0.73) between spatial distribution of sensible heat vulnerability and mortality rate was significantly greater than that (0.30) between the spatial distribution of temperature vulnerability and mortality rate. These findings indicate that deriving thermally vulnerable areas based on sensible heat are more objective than thermally vulnerable areas based on existing temperatures. Our findings support the notion that the distribution of sensible heat vulnerability at the community level is useful for evaluating the thermal environment in specific neighbourhoods. Thus, our results may aid in establishing spatial planning standards to improve environmental sustainability in a metropolitan community.

Isolation and characterization of potentially pathogenic Vibrio species in a temperate, higher latitude hotspot

The recent emergence of Vibrio infections at high latitudes represents a clear human health risk attributable to climate change. Here, we investigate the population dynamics of three Vibrio species: Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae within a British coastal estuarine site, with contrasting salinity and temperature regimes during an intense heatwave event. Water samples were collected weekly through the summer of 2018 and 2019 and filtered using membrane filtration and subsequently grown on selective media. Suspected vibrios were confirmed using a conventional species-specific PCR assay and further analysed for potential pathogenic markers. Results showed that Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae were present at high concentrations throughout both years, with their populations at substantially greater abundances corresponding to conditions of higher water temperatures during the heatwave of 2018 and at lower salinity sites, which is comparable to the results of previous studies. A subset of strains isolated during the extreme heatwave event in 2018 (46 Vibrio parahaemolyticus, 11 Vibrio cholerae and 4 Vibrio vulnificus) were genomically sequenced. Analysis of these 63 sequenced strains revealed a broad phenotypic and genomic diversity of strains circulating in the environment. An analysis of pathogenicity attributes identified a broad array of virulence genes across all three species, including a variety of genes associated with human disease. This study highlights the importance of the need for an increased Vibrio spp. surveillance system in temperate regions and the potential impact warming events such as heatwaves may have on the abundance of potentially pathogenic bacteria in the environment.

Japanese Encephalitis and associated environmental risk factors in Eastern Uttar Pradesh: A time series analysis from 2001 to 2016

India and other Southeast Asian countries are severely affected by Japanese encephalitis (JE), one of the deadliest vector-borne disease threat to human health. Several epidemiological observations suggest climate variables play a role in providing a favorable environment for mosquito development and virus transmission. In this study, generalized additive models were used to determine the association of JE admissions and mortality with climate variables in Gorakhpur district, India, from 2001-2016. The model predicted that every 1 unit increase in mean (Tmean;°C), and minimum (Tmin;°C) temperature, rainfall (RF; mm) and relative humidity (RH; %) would on average increase the JE admissions by 22.23 %, 17.83 %, 0.66 %, and 5.22 % respectively and JE mortality by 13.27 %, 11.77 %, 0.94 %, and 3.27 % respectively Conversely, every unit decrease in solar radiation (Srad; MJ/m(2)/day) and wind speed (WS; Kmph) caused an increase in JE admission by 17% and 11.42% and in JE mortality by 9.37% and 4.88% respectively suggesting a protective effect at higher levels. The seasonal analysis shows that temperature was significantly associated with JE in pre-monsoon and post-monsoon while RF, RH, Srad, and WS are associated with the monsoon. Effect modification due to age and gender showed an equal risk for both genders and increased risk for adults above 15 years of age, however, males and age groups under 15 years outnumbered females and adults. Sensitivity analysis results to explore lag effects in climate variables showed that climate variables show the strongest association at lag 1 to 1.5 months with significant lag effect up tp lag 0-60 days. The exposure-response curve for climate variables showed a more or less linear relationship, with an increase in JE admissions and mortality after a certain threshold and decrease were reported at extreme levels of exposure. The study concludes that climate variables could influence the JE vector development and multiplication and parasite maturation and transmission in the Gorakhpur region whose indirect impact was noted for JE admission and mortality. In response to the changing climate, public health interventions, public awareness, and early warning systems would play an unprecedented role to compensate for future risk.

Kerteszia cruzii and extra-Amazonian malaria in Brazil: Challenges due to climate change in the Atlantic Forest

Kerteszia cruzii is a sylvatic mosquito and the primary vector of Plasmodium spp., which can cause malaria in humans in areas outside the Amazon River basin in Brazil. Anthropic changes in the natural environments are the major drivers of massive deforestation and local climate change, with serious impacts on the dynamics of mosquito communities and on the risk of acquiring malaria. Considering the lack of information on the dynamics of malaria transmission in areas across the Atlantic Forest biome, where Ke. cruzii is the dominant vector, and the impact of climate drivers of malaria, the present study aimed to: (i) investigate the occurrence and survival rate of Ke. cruzii based on the distinct vegetation profiles found in areas across the coastal region of the Brazilian Atlantic Forest biome; (ii) estimate the extrinsic incubation period (EIP) and survival rates of P. vivax and P. falciparum parasites in Ke. cruzii under current and future scenarios. The potential distribution of Plasmodium spp. was estimated using simulation analyses under distinct scenarios of average temperature increases from 1 °C to 3.7 °C. Our results showed that two conditions are necessary to explain the occurrence and survival of Ke. cruzii: warm temperature and presence of the Atlantic Forest biome. Moreover, both Plasmodium species showed a tendency to decrease their EIP and increase their estimated survival rates in a scenario of higher temperature. Our findings support that the high-risk malaria areas may include the southern region of the distribution range of the Atlantic Forest biome in the coming years. Despite its limitations and assumptions, the present study provides robust evidence of areas with potential to be impacted by malaria incidence in a future scenario. These areas should be monitored in the next decades regarding the occurrence of the mosquito vector and the potential for malaria persistence and increased occurrence.

Increased mosquito abundance and species richness in Connecticut, United States 2001-2019

Historical declines in multiple insect taxa have been documented across the globe in relation to landscape-level changes in land use and climate. However, declines have either not been universally observed in all regions or examined for all species. Because mosquitoes are insects of public health importance, we analyzed a longitudinal mosquito surveillance data set from Connecticut (CT), United States (U.S.) from 2001 to 2019 to identify changes in mosquito community composition over time. We first analyzed annual site-level collections and metrics of mosquito community composition with generalized linear/additive mixed effects models; we also examined annual species-level collections using the same tools. We then examined correlations between statewide collections and weather variables as well as site-level collections and land cover classifications. We found evidence that the average trap night collection of mosquitoes has increased by ~?60% and statewide species richness has increased by ~?10% since 2001. Total species richness was highest in the southern portion of CT, likely due to the northward range expansion of multiple species within the Aedes, Anopheles, Culex, and Psorophora genera. How the expansion of mosquito populations in the northeast U.S. will alter mosquito-borne pathogen transmission in the region will require further investigation.

Increased rates of hypernatraemia during modest heatwaves in temperate climates

BACKGROUND: Hypernatraemia is associated with morbidity and mortality, particularly in the older person. Last summer, Ireland experienced prolonged periods of excessive heat. The Irish meteorological service defines a heatwave as temperatures exceeding 25°C for five consecutive days. AIM: This study sought to compare the frequency of hypernatraemia (sodium (Na+) >145 mmol/l) observed during a modest heatwave with that during average ambient temperature in the temperate Irish climate. DESIGN: Retrospective cross-sectional analysis with nested case-control study. METHODS: The 10-day period from 24 June to 3 July in 2017 and 2018 were chosen as the control and heatwave periods, respectively. Patients aged >65 with at least one Na+ value recorded on the laboratory information system were included. Local meteorological data, age, gender and Na+ levels were evaluated. RESULTS: Maximum air temperatures were significantly higher during the heatwave period (mean 27°C vs. 16.8°C, P?

Increased temperatures reduce the vectorial capacity of Aedes mosquitoes for Zika virus

Rapid and significant range expansion of both Zika virus (ZIKV) and its Aedes vector species has resulted in ZIKV being declared a global health threat. Mean temperatures are projected to increase globally, likely resulting in alterations of the transmission potential of mosquito-borne pathogens. To understand the effect of diurnal temperature range on the vectorial capacity of Ae. aegypti and Ae. albopictus for ZIKV, longevity, blood-feeding and vector competence were assessed at two temperature regimes following feeding on infectious blood meals. Higher temperatures resulted in decreased longevity of Ae. aegypti [Log-rank test, ?2, df 35.66, 5, P < 0.001] and a decrease in blood-feeding rates of Ae. albopictus [Fisher's exact test, P < 0.001]. Temperature had a population and species-specific impact on ZIKV infection rates. Overall, Ae. albopictus reared at the lowest temperature regime demonstrated the highest vectorial capacity (0.53) and the highest transmission efficiency (57%). Increased temperature decreased vectorial capacity across groups yet more significant effects were measured with Ae. aegypti relative to Ae. albopictus. The results of this study suggest that future increases in temperature in the Americas could significantly impact vector competence, blood-feeding and longevity, and potentially decrease the overall vectorial capacity of Aedes mosquitoes in the Americas.

Increased winter drownings in ice-covered regions with warmer winters

Winter activities on ice are culturally important for many countries, yet they constitute a high safety risk depending upon the stability of the ice. Because consistently cold periods are required to form stable and thick ice, warmer winters could degrade ice conditions and increase the likelihood of falling through the ice. This study provides the first large-scale assessment of winter drowning from 10 Northern Hemisphere countries. We documented over 4000 winter drowning events. Winter drownings increased exponentially in regions with warmer winters when air temperatures neared 0°C. The largest number of drownings occurred when winter air temperatures were between -5°C and 0°C, when ice is less stable, and also in regions where indigenous traditions and livelihood require extended time on ice. Rates of drowning were greatest late in the winter season when ice stability declines. Children and adults up to the age of 39 were at the highest risk of winter drownings. Beyond temperature, differences in cultures, regulations, and human behaviours can be important additional risk factors. Our findings indicate the potential for increased human mortality with warmer winter air temperatures. Incorporating drowning prevention plans would improve adaptation strategies to a changing climate.

Independent and combined effects of heatwaves and PM2.5 on preterm birth in Guangzhou, China: A survival analysis

BACKGROUND: Both extreme heat and air pollution exposure during pregnancy have been associated with preterm birth; however, their combined effects are unclear. OBJECTIVES: Our goal was to estimate the independent and joint effects of heatwaves and fine particulate matter [PM  < 2.5 ?m in aerodynamic diameter (PM2.5)], exposure during the final gestational week on preterm birth. METHODS: Using birth registry data from Guangzhou, China, we included 215,059 singleton live births in the warm season (1 May-31 October) between January 2015 and July 2017. Daily meteorological variables from 5 monitoring stations and PM2.5 concentrations from 11 sites were used to estimate district-specific exposures. A series of cut off temperature thresholds and durations (2, 3, and 4 consecutive d) were used to define 15 different heatwaves. Cox proportional hazard models were used to estimate the effects of heatwaves and PM2.5 exposures during the final week on preterm birth, and departures from additive joint effects were assessed using the relative excess risk due to interaction (RERI). RESULTS: Numbers of preterm births increased in association with heatwave exposures during the final gestational week. Depending on the heatwave definition used, hazard ratios (HRs) ranged from 1.10 (95% CI: 1.01, 1.20) to 1.92 (1.39, 2.64). Associations were stronger for more intense heatwaves. Combined effects of PM2.5 exposures and heatwaves appeared to be synergistic (RERIs > 0) for less extreme heatwaves (i.e., shorter or with relatively low temperature thresholds) but were less than additive (RERIs < 0) for more intense heatwaves. CONCLUSIONS: Our research strengthens the evidence that exposure to heatwaves during the final gestational week can independently trigger preterm birth. Moderate heatwaves may also act synergistically with PM2.5 exposure to increase risk of preterm birth, which adds new evidence to the current understanding of combined effects of air pollution and meteorological variables on adverse birth outcomes. https://doi.org/10.1289/EHP5117.

Independent association between meteorological factors, PM2.5, and seasonal influenza activity in Hangzhou, Zhejiang province, China

BACKGROUND: Due to variations in climatic conditions, the effects of meteorological factors and PM(2.5) on influenza activity, particularly in subtropical regions, vary in existing literature. In this study, we examined the relationship between influenza activity, meteorological parameters, and PM(2.5) . METHODS: A total of 20 165 laboratory-confirmed influenza cases in Hangzhou, Zhejiang province, were documented in our dataset and aggregated into weekly counts for downstream analysis. We employed a combination of the quasi-Poisson-generalized additive model and the distributed lag non-linear model to examine the relationship of interest, controlling for long-term trends, seasonal trends, and holidays. RESULTS: A hockey-stick association was found between absolute humidity and the risk of influenza infections. The overall cumulative adjusted relative risk (ARR) was statistically significant when weekly mean absolute humidity was low (<10 µg/m(3) ) and high (>17.5 µg/m(3) ). A slightly higher ARR was observed when weekly mean temperature reached over 30.5°C. A statistically significantly higher ARR was observed when weekly mean relative humidity dropped below 67%. ARR increased statistically significantly with increasing rainfall. For PM(2.5) , the ARR was marginally statistically insignificant. In brief, high temperature, wet and dry conditions, and heavy rainfall were the major risk factors associated with a higher risk of influenza infections. CONCLUSIONS: The present study contributes additional knowledge to the understanding of the effects of various environmental factors on influenza activities. Our findings shall be useful and important for the development of influenza surveillance and early warning systems.

Influence of Atlantic and Pacific sea surface temperatures on heat-related mortality in the United States

The frequency and magnitude of extreme summer temperature events in the United States have increased in the past few decades. Long-term exposure to extreme summer temperatures can be detrimental to human health, due to potential risks of dehydration and thermoregulation strains on the cardiovascular system, which may often lead to heat-related mortality (HRM). The summer climate of the United States is influenced by variability in Atlantic and Pacific sea surface temperatures, driven in part by Atlantic Multidecadal Oscillation (AMO) and El-Nino Southern Oscillation (ENSO), respectively. However, the influence of AMO and ENSO on HRM in the United States has not been investigated. Here the longest time series of HRM spanning the past five decades is analyzed in relation with AMO and ENSO. We find that HRM doubled in the early-1990s, coinciding with the positive phase of the AMO. Furthermore, we note a positive association between the variability in HRM and summer temperatures across all regions of the United States, with the strongest association found over the Southern United States. Therefore, this research suggests that variability in Atlantic and Pacific sea surface temperatures has both a nationwide and regional impact on HRM in the United States. Hence, by understanding variability in sea surface temperatures, the future burden of heat-attributed emergencies during extreme summer temperature events can be reduced not only for the United States, but also worldwide.

Influence of climate variables on the rising incidence of nontuberculous mycobacterial (NTM) infections in Queensland, Australia 2001-2016

International reports indicate a rising incidence of nontuberculous mycobacterial (NTM) disease. Many infectious diseases have seasonal variation in incidence, and major weather events and climate change have been implicated. The aim of this study was to explore the relationship between climate variables and NTM incident cases in Queensland, Australia. METHODS: NTM data were obtained from the Queensland notifiable conditions database for the period 2001-2016. Rainfall and temperature data were obtained from the Australian Bureau of Meteorology. Poisson regression models were used to assess notification rates (incidence cases per 100,000 population) over time and to estimate incidence rate ratios (IRR). Cross correlation coefficients were used to examine the relationship between rainfall and temperature data and NTM incidence over time in each Hospital and Health Service (HHS). RESULTS: 12,219 NTM cases were reported. The most common species was M. intracellulare (39.1%), followed by M. avium (9.8%), M abscessus (8.5%), M. fortuitum (8.3%), M. chelonae (3.3%), and M. kansasii (2.4%). The estimated incidence rate increased from 11.10 (95% CI 8.10-15.22) in 2001 to 25.88 (95%CI 21.78-30.73) per 100,000 in 2016. The estimated IRR increased for all common species, except M. kansasii. Although increased IRRs were observed for most NTM species, geospatial heterogeneity was observed. The effect of rainfall and temperature on NTM incidence differed between species and geographic regions. CONCLUSIONS: The incidence of NTM infections increased between 2001 and 2016. Variations in temperature and rainfall may play a role in environmental exposure to some species of NTM. Spatial variation in IRR suggests that there may also be other environmental factors that influence transmission.

Influence of climatic stress on nonmetric sexually dimorphic features of the skull and pelvis

OBJECTIVES: Human sexual dimorphism is frequently assessed through skull and pelvic size and shape. Researchers suggest that climatic variation and the associated stress may be significant factors in sexual dimorphism’s etiology. However, little research has specifically investigated climatic effects on nonmetric skeletal indicators of sex. To further appreciate the plasticity of human biology, a comparative study of standard skull and pelvic nonmetric sex indicators is presented. METHODS: A Native Alaskan archeological sample (n = 104) and a component of the Terry collection (n = 99) represent populations originating from different climatic environments in recent history. These sex-balanced groups are compared through Tukey-Kramer’s method and Greene’s t-test to determine any variation in degree of sexual dimorphism within and between samples. RESULTS: The results reinforce the complex and multifaceted relationship between climate and sexual dimorphism. The Terry sample demonstrated a greater degree of sexual dimorphism with statistically significant differences in robusticity of the mastoid process and nuchal crest compared with the Native Alaskans. A more “male” morphotype and reduced dimorphism are appreciated in the pelves of Native Alaskans than the Terry sample. CONCLUSIONS: This research highlights a reduction in sexual dimorphism in populations under greater climatic stress and contributes to the production of more accurate skeletal assessments in future investigations. Discussion of confounding factors suggest more research is necessary to untangle climate and human morphology’s complex relationship. This study contributes to a greater appreciation of human biological plasticity, ecogeographic variation, and the evolution of modern human diversity.

Influence of meteorological conditions on the incidence of chronic subdural haematoma, subarachnoid and intracerebral haemorrhages – The “Bleeding Weather Hypothesis”

AIM: To elucidate possible causal relationships on climate change and intracranial haematomas. MATERIAL and METHODS: In a retrospective study we examined all patients (N=1169) treated for subarachnoid haemorrhage (SAH; n=484), intracerebral haemorrhage (ICH; n=417) or chronic subdural haematoma (CSDH; n=268) in our department over a 7-year-period between 1st June 2005 until 31th May 2012. The date of admission was correlated with the corresponding meteorological parameters which included; mean daily temperature (degrees C), relative humidity (%), vapor pressure (hPa), barometric pressure (hPa), cloud amount (/8), and wind speed (m/s). RESULTS: Incidence of SAH tended to increase in April, ICH in January and CSDH in July, respectively, but X-2 test did not reveal any statistical significance in seasonality for the three bleeding pathologies. Comparing the arithmetic average of meteorological key parameters of uneventful and eventful days by using student’s t-test within the three groups (SAH, ICH, CSDH) we could not demonstrate any statistical significance (p>0.05). For SAH, logistic regression analyses revealed an increased risk associated with a decrease of barometric pressure (p=0.021). CONCLUSION: Although our data suggest seasonal variabilities of SAH, ICH and CSDH, the single weather parameters do not demonstrate causal relationships with the incidence of cerebrovascular events. However, incidence of SAH tended to increase with changes of barometric pressure which confirms previously published results and might indicate a possible underlying relationship.

Influence of temperature and humidity on hand, foot, and mouth disease in Guangzhou, 2013-2017

OBJECTIVE: To explore associations between temperature, humidity and hand, foot and mouth disease (HFMD) incidence in Guangzhou, China from 2013 to 2017. METHODS: A distributed lag non-linear model was applied to estimate the effects of daily temperature and humidity on HFMD incidence after adjusting for long-term trends, seasonal trends, and day of the week. RESULTS: In total, 353,431 confirmed HFMD cases were reported in Guangzhou over the study period. A bimodal seasonal pattern was observed. High temperatures had acute short-term effects on HFMD incidence that declined quickly over time. The effects of low humidity declined over lag periods, but increased when the humidity surpassed 60.5%. Temperature and humidity were both inversely associated with HFMD incidence during lag days 0 to 3 and with lag periods. CONCLUSIONS: Temperature and humidity play important roles in HFMD incidence. These data are important for developing public health strategies.

Intensified impacts on mortality due to compound winter extremes in the Czech Republic

Although impacts of extremely cold temperatures on human health have been widely studied, adverse effects of other extreme weather phenomena have so far received much less attention. We employed a high-quality long-term mortality time series (1982-2017) to evaluate impacts of extreme winter weather in the Czech Republic. We aimed to clarify whether compound events of extreme weather cause larger impacts on mortality than do each type of extreme if evaluated individually. Using daily data from the E-OBS and ERA5 datasets, we analyzed 9 types of extreme events: extreme wind gust, precipitation, snowfall, and sudden temperature and pressure changes. Relative mortality deviations from the adjusted baseline were used to estimate the immediate effect of the selected extreme events on excess mortality. The impact was adjusted for the effect of extreme cold. Extreme events associated with sudden rise of minimum temperature and pressure drops had generally significant impact on excess mortality (3.7% and 1.4% increase). The impacts were even more pronounced if these events occurred simultaneously or were compounded with other types of extremes, such as heavy precipitation, snowfall, maximum temperature rise, and their combinations (increase as great as 14.4%). Effects of some compound events were significant even for combinations of extremes having no significant impact on mortality when evaluated separately. On the other hand, a “protective” effect of pressure increases reduced the risk for its compound events. Meteorological patterns during extreme events linked to excess mortality indicate passage of a low-pressure system northerly from the study domain. We identified extreme winter weather events other than cold temperatures with significant impact on excess mortality. Our results suggest that occurrence of compound extreme events strengthen the impacts on mortality and therefore analysis of multiple meteorological parameters is a useful approach in defining adverse weather conditions.

Impact of meteorological factors on the occurrence of acute aortic dissection in Fujian Province, China: A single-center seven-year retrospective study

BACKGROUND: The aim of this study was to investigate the correlation between meteorological factors and the occurrence of acute aortic dissection (AAD) in Fujian Province, China. METHODS: The clinical data of 2004 patients diagnosed with AAD in our hospital and the relevant local meteorological data from January 2013 to November 2019 were retrospectively analyzed. RESULTS: The incidence of AAD had a clear tendency toward concentration, and the corresponding peak in terms of the occurrence date was from January 13 to 14. The average minimum temperature, the average maximum temperature, and the average daily temperature differences on the “day with AAD” were significantly lower than those on the “day without AAD”. From 5?days to 3?days before AAD onset, the average daily temperature difference showed a downward trend, but statistical analysis showed that the average minimum, average maximum and average daily temperature differences were not significantly different from the values 5?days to 0?days before AAD onset. CONCLUSIONS: The incidence of AAD is related to the season and month. The lowest average temperature may increase the incidence of AAD in patients with complicated cardiovascular diseases.

Impact of passive heat acclimation on markers of kidney function during heat stress

NEW FINDINGS: What is the central question of this study? Does passive heat acclimation alter glomerular filtration rate and urine-concentrating ability in response to passive heat stress? What is the main finding and its importance? Glomerular filtration rate remained unchanged after passive heat stress, and heat acclimation did not alter this response. However, heat acclimation mitigated the reduction in urine-concentrating ability and reduced the incidence of albuminuria in young healthy adults after passive heat stress. Collectively, these results suggest that passive heat acclimation might improve structural integrity and reduce glomerular permeability during passive heat stress. ABSTRACT: Little is known about the effect of heat acclimation on kidney function during heat stress. The purpose of this study was to determine the impact of passive heat stress and subsequent passive heat acclimation on markers of kidney function. Twelve healthy adults (seven men and five women; 26 ± 5 years of age; 72.7 ± 8.6 kg; 172.4 ± 7.5 cm) underwent passive heat stress before and after a 7 day controlled hyperthermia heat acclimation protocol. The impact of passive heat exposure on urine and serum markers of kidney function was evaluated before and after heat acclimation. Glomerular filtration rate, determined from creatinine clearance, was unchanged with passive heat stress before (pre, 133 ± 41 ml min(-1) ; post, 127 ± 51 ml min(-1) ; P = 0.99) and after (pre, 129 ± 46 ml min(-1) ; post, 130 ± 36 ml min(-1) ; P = 0.99) heat acclimation. The urine-to-serum osmolality ratio was reduced after passive heating (P < 0.01), but heat acclimation did not alter this response. In comparison to baseline, free water clearance was greater after passive heating before (pre, -0.86 ± 0.67 ml min(-1) ; post, 0.40 ± 1.01 ml min(-1) ; P < 0.01) but not after (pre, -0.16 ± 0.57 ml min(-1) ; post, 0.76 ± 1.2 ml min(-1) ; P = 0.11) heat acclimation. Furthermore, passive heating increased the fractional excretion rate of potassium (P < 0.03) but not sodium (P = 0.13) or chloride (P = 0.20). Lastly, heat acclimation reduced the fractional incidence of albuminuria after passive heating (before, 58 ± 51%; after, 8 ± 29%; P = 0.03). Collectively, these results demonstrate that passive heat stress does not alter the glomerular filtration rate. However, heat acclimation might improve urine-concentrating ability and filtration within the glomerulus.

Impact of relative change in temperature and atmospheric pressure on Acute Aortic Syndrome occurrence in France

Acute aortic syndromes (AAS) have been related to significant circadian and seasonal conditions. We used time series analyses to study the impact of meteorological variations on AAS occurrence. We retrospectively assessed 140 patients presenting with AAS over a 6-year period in a French university hospital. Average daily temperature (T) and atmospheric pressure (AP) at the location of the event were collected within the previous 10 days, and their association with AAS investigated with generalized additive models. A decrease in temperature of more than 5?°C within the previous seven days was significantly associated with an increased risk of AAS occurrence (OR equal to 1.86 [1.06; 3.44]). Subgroup analysis revealed that the risk was only significant among normotensive individuals (n?=?41) free from blood pressure lowering medication (OR equal to 2.3 [1.05; 5.37]), but not among hypertensive individuals under blood pressure lowering medication despite a larger patient number (n?=?99). Similarly, only among the subgroup of normotensive individuals a decrease of AP between 2 and 4 kPa within the previous 3 days was associated with an increased risk of AAS (OR equal to 2.93 [1.1; 8.15]) and an increased between 2 and 4 kPa was associated with a decreased risk (OR equal to 0.59 [0.36; 1.00]). Variations of meteorological conditions (temperature and AP) within the previous week seem to have effects on triggering AAS especially among the population free from blood pressure lowering medication.

Impact of temperature on the extrinsic incubation period of Zika virus in Aedes aegypti

Since Zika virus (ZIKV) emerged as a global human health threat, numerous studies have pointed to Aedes aegypti as the primary vector due to its high competence and propensity to feed on humans. The majority of vector competence studies have been conducted between 26-28°C, but arboviral extrinsic incubation periods (EIPs), and therefore transmission efficiency, are known to be affected strongly by temperature. To better understand the relationship between ZIKV EIPs and temperature, we evaluated the effect of adult mosquito exposure temperature on ZIKV infection, dissemination, and transmission in Ae. aegypti at four temperatures: 18°C, 21°C, 26°C, and 30°C. Mosquitoes were exposed to viremic mice infected with a 2015 Puerto Rican ZIKV strain, and engorged mosquitoes were sorted into the four temperatures with 80% RH and constant access to 10% sucrose. ZIKV infection, dissemination, and transmission rates were assessed via RT-qPCR from individual mosquito bodies, legs and wings, and saliva, respectively, at three to five time points per temperature from three to 31 days, based on expectations from other flavivirus EIPs. The median time from ZIKV ingestion to transmission (median EIP, EIP50) at each temperature was estimated by fitting a generalized linear mixed model for each temperature. EIP50 ranged from 5.1 days at 30°C to 24.2 days at 21°C. At 26°C, EIP50 was 9.6 days. At 18°C, only 15% transmitted by day 31 so EIP50 could not be estimated. This is among the first studies to characterize the effects of temperature on ZIKV EIP in Ae. aegypti, and the first to do so based on feeding of mosquitoes on a live, viremic host. This information is critical for modeling ZIKV transmission dynamics to understand geographic and seasonal limits of ZIKV risk; it is especially relevant for determining risk in subtropical regions with established Ae. aegypti populations and relatively high rates of return travel from the tropics (e.g. California or Florida), as these regions typically experience cooler temperature ranges than tropical regions.

Impact of temperature variability on childhood allergic rhinitis in a subtropical city of China

BACKGROUND: Many studies have shown an association of childhood respiratory diseases with short-term temperature variability such as diurnal temperature range (DTR) and temperature change between two neighboring days (TCN). However, the impact of temperature variability on allergic rhinitis (AR) has not been investigated so far. This study sought to evaluate the short-term effect of temperature variability (i.e., TCN and DTR) on AR, as well as to identify vulnerable subpopulations. METHOD: We collected daily data on emergency room visits and outpatients for AR and weather variables in Hefei, China during 2014-2016. A distributed lag non-linear model that controlled for long-term trend and seasonality, mean temperature, relative humidity, day of week was used to fit the associations of AR with DTR and TCN. Stratified analyses by age, sex and occupation were also performed. RESULTS: During the study period, there were a total of 53,538 cases and the average values of DTR and TCN were 8.4?°C (range: 1.0?°C to 21.2?°C) and 0?°C (range: -?12.2?°C to 5.9?°C), respectively. While we did not observe an adverse effect of DTR on AR, TCN was significantly associated with increased risk of AR. Specifically, a large temperature drop between two adjacent days (3.8?°C, 5th percentile of TCN) has a delayed and short-lasting effect on AR, with the estimated relative risk of 1.02 (95% confidence interval: 1.01 to 1.04) at lag 12. Moreover, boys and children older than 15?years seemed to be more vulnerable to the effect of TCN. CONCLUSIONS: This study provided evidence of an adverse effect of large temperature drops between two adjacent days on childhood AR. Attention paid to boys and older children may help prevent AR attacks.

Impact of urbanization on the predictions of urban meteorology and air pollutants over four major North American cities

The sensitivities of meteorological and chemical predictions to urban effects over four major North American cities are investigated using the high-resolution (2.5-km) Environment and Climate Change Canada’s air quality model with the Town Energy Balance (TEB) scheme. Comparisons between the model simulation results with and without the TEB effect show that urbanization has great impacts on surface heat fluxes, vertical diffusivity, air temperature, humidity, atmospheric boundary layer height, land-lake circulation, air pollutants concentrations and Air Quality Health Index. The impacts have strong diurnal variabilities, and are very different in summer and winter. While the diurnal variations of the impacts share some similarities over each city, the magnitudes can be very different. The underlying mechanisms of the impacts are investigated. The TEB impacts on the predictions of meteorological and air pollutants over Toronto are evaluated against ground-based observations. The results show that the TEB scheme leads to a great improvement in biases and root-mean-square deviations in temperature and humidity predictions in downtown, uptown and suburban areas in the early morning and nighttime. The scheme also leads to a big improvement of predictions of NOx, PM2.5 and ground-level ozone in the downtown, uptown and industrial areas in the early morning and nighttime.

Impact of weather conditions on incidence and mortality of COVID-19 pandemic in Africa

OBJECTIVE: The weather-related conditions change the ecosystem and pose a threat to social, economic and environmental development. It creates unprecedented or unanticipated human health problems in various places or times of the year. Africa is the world’s second largest and most populous continent and has relatively changeable weather conditions. The present study aims to investigate the impact of weather conditions, heat and humidity on the incidence and mortality of COVID-19 pandemic in various regions of Africa. MATERIALS AND METHODS: In this study, 16 highly populated countries from North, South, East, West, and Central African regions were selected. The data on COVID-19 pandemic including daily new cases and new deaths were recorded from World Health Organization. The daily temperature and humidity figures were obtained from the weather web “Time and Date”. The daily cases, deaths, temperature and humidity were recorded from the date of appearance of first case of “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)” in the African region, from Feb 14 to August 2, 2020. RESULTS: In African countries, the daily basis mean temperature from Feb 14, 2020 to August 2, 2020 was 26.16±0.12°C, and humidity was 57.41±0.38%. The overall results revealed a significant inverse correlation between humidity and the number of cases (r= -0.192, p<0.001) and deaths (r= -0.213, p<0.001). Similarly, a significant inverse correlation was found between temperature and the number of cases (r= -0.25, p<0.001) and deaths (r=-0.18, p<0.001). Furthermore, the regression results showed that with 1% increase in humidity the number of cases and deaths was significantly reduced by 3.6% and 3.7% respectively. Congruently, with 1°C increase in temperature, the number of cases and deaths was also significantly reduced by 15.1% and 10.5%, respectively. CONCLUSIONS: Increase in relative humidity and temperature was associated with a decrease in the number of daily cases and deaths due to COVID-19 pandemic in various African countries. The study findings on weather events and COVID-19 pandemic have an impact at African regional levels to project the incidence and mortality trends with regional weather events which will enhance public health readiness and assist in planning to fight against this pandemic.

Impacts of low temperatures on Wolbachia (Rickettsiales: Rickettsiaceae)-infected Aedes aegypti (Diptera: Culicidae)

In recent decades, the occurrence and distribution of arboviral diseases transmitted by Aedes aegypti mosquitoes has increased. In a new control strategy, populations of mosquitoes infected with Wolbachia are being released to replace existing populations and suppress arboviral disease transmission. The success of this strategy can be affected by high temperature exposure, but the impact of low temperatures on Wolbachia-infected Ae. aegypti is unclear, even though low temperatures restrict the abundance and distribution of this species. In this study, we considered low temperature cycles relevant to the spring season that are close to the distribution limits of Ae. aegypti, and tested the effects of these temperature cycles on Ae. aegypti, Wolbachia strains wMel and wAlbB, and Wolbachia phage WO. Low temperatures influenced Ae. aegypti life-history traits, including pupation, adult eclosion, and fertility. The Wolbachia-infected mosquitoes, especially wAlbB, performed better than uninfected mosquitoes. Temperature shift experiments revealed that low temperature effects on life history and Wolbachia density depended on the life stage of exposure. Wolbachia density was suppressed at low temperatures but densities recovered with adult age. In wMel Wolbachia there were no low temperature effects specific to Wolbachia phage WO. The findings suggest that Wolbachia-infected Ae. aegypti are not adversely affected by low temperatures, indicating that the Wolbachia replacement strategy is suitable for areas experiencing cool temperatures seasonally.

Implications of indoor air temperature variation on the health and performance of Brazilian students

The aim of the present study was to evaluate the relationship between cognitive performance, health and environmental comfort as a function of indoor air temperature (T-a) variation. A total of 360 undergraduate students were subjected to the variation of the T-a at 20, 24 and 30 degrees C; their thermal responses were evaluated over three consecutive days. Performance variables measured in the study were cognitive performance, blood pressure, heart rate (HR) and comfort. The environmental variables measured were T-a, globe temperature (T-g), illumination, noise, airflow velocity and air quality. The variation in HR was influenced by the variables, relative air humidity and mean radiant temperature (T-rm) during the three days of observation, where HR was higher than 100 bpm when T-g was greater than T-a. T-rm increased proportionally to the increase in T-g, thus characterising heat exchange by radiation. The number of correct answers and test response time were also positively influenced by T-rm when T-a was 20 degrees C. Teaching environments (TEs) with increased heat load due to the individual body heat of students, increased outdoor T-a and urban morphology associated with the building of the TEs result in increasing in T-rm due to the T-g being higher than the air temperature, with possible impacts on health and performance variables.

Implications of projected hydroclimatic change for Tularemia outbreaks in high-risk areas across Sweden

Hydroclimatic change may affect the range of some infectious diseases, including tularemia. Previous studies have investigated associations between tularemia incidence and climate variables, with some also establishing quantitative statistical disease models based on historical data, but studies considering future climate projections are scarce. This study has used and combined hydro-climatic projection outputs from multiple global climate models (GCMs) in phase six of the Coupled Model Intercomparison Project (CMIP6), and site-specific, parameterized statistical tularemia models, which all imply some type of power-law scaling with preceding-year tularemia cases, to assess possible future trends in disease outbreaks for six counties across Sweden, known to include tularemia high-risk areas. Three radiative forcing (emissions) scenarios are considered for climate change projection until year 2100, incuding low (2.6 Wm(-2)), medium (4.5 Wm(-2)), and high (8.5 Wm(-2)) forcing. The results show highly divergent changes in future disease outbreaks among Swedish counties, depending primarily on site-specific type of the best-fit disease power-law scaling characteristics of (mostly positive, in one case negative) sub- or super-linearity. Results also show that scenarios of steeper future climate warming do not necessarily lead to steeper increase of future disease outbreaks. Along a latitudinal gradient, the likely most realistic medium climate forcing scenario indicates future disease decreases (intermittent or overall) for the relatively southern Swedish counties Örebro and Gävleborg (Ockelbo), respectively, and disease increases of considerable or high degree for the intermediate (Dalarna, Gävleborg (Ljusdal)) and more northern (Jämtland, Norrbotten; along with the more southern Värmland exception) counties, respectively.

In the subtropical monsoon climate high-density city, what features of the neighborhood environment matter most for public health?

Urbanization and climate change have been rapidly occurring globally. Evidence-based healthy city development is required to improve living quality and mitigate the adverse impact of the outdoor neighborhood environment on public health. Taking Guangzhou as an example to explore the association of neighborhood environment and public health and preferably to offer some implications for better future city development, we measured ten environmental factors (temperature (T), wind-chill index (WCI), thermal stress index (HSI), relative humidity (RH), average wind speed (AWS), negative oxygen ions (NOI), PM2.5, luminous flux (LF), and illuminance (I)) in four seasons in four typical neighborhoods, and the SF-36 health scale was employed to assess the physical and mental health of neighborhood residents in nine subscales (health transition(HT), physiological functions (PF), general health status (GH), physical pain (BP), physiological functions (RP), energy vitality (VT), mental health (MH), social function (SF), and emotional functions (RE)). The linear mixed model was used in an analysis of variance. We ranked the different environmental factors in relation to aspects of health and weighted them accordingly. Generally, the thermal environment had the greatest impact on both physical and mental health and the atmospheric environment and wind environment had the least impact on physical health and mental health, respectively. In addition, the physical health of the resident was more greatly affected by the environment than mental health. According to the results, we make a number of strategic suggestions for the renewal of the outdoor neighborhood environment in subtropical monsoon climate high-density cities and provide a theoretical basis for improving public health through landscape architecture at the neighborhood scale.

Inaction on climate change projected to reduce European life expectancy

Climate change-related excess mortality estimates clearly demonstrate a dramatic impact on public health and human mortality. However, life expectancy at birth is more easily communicated and understood by the public. By properly situating climate change mortality within the contexts of life expectancy, we better represent the cost of climate change on longevity. In this paper, we convert excess mortality estimates due to increases in extreme weather from climate change (heat waves, cold waves, droughts, wildfires, river and coastal floods, and windstorms) into potential reductions in life expectancy at birth in thirty-one European countries. We project climate change extremes to reduce life expectancy at birth by 0.24 years for the average European country with differences in excess of 1.0 years in some countries by 2100. We only estimate the impact of mortality directly related to climate extremes, making our estimates conservative. Thus, the cost of inaction on climate change could approach, and likely to exceed, one year of life in some European countries.

Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa

Continental-scale models of malaria climate suitability typically couple well-established temperature-response models with basic estimates of vector habitat availability using rainfall as a proxy. Here we show that across continental Africa, the estimated geographic range of climatic suitability for malaria transmission is more sensitive to the precipitation threshold than the thermal response curve applied. To address this problem we use downscaled daily climate predictions from seven GCMs to run a continental-scale hydrological model for a process-based representation of mosquito breeding habitat availability. A more complex pattern of malaria suitability emerges as water is routed through drainage networks and river corridors serve as year-round transmission foci. The estimated hydro-climatically suitable area for stable malaria transmission is smaller than previous models suggest and shows only a very small increase in state-of-the-art future climate scenarios. However, bigger geographical shifts are observed than with most rainfall threshold models and the pattern of that shift is very different when using a hydrological model to estimate surface water availability for vector breeding.

Increase in the risk of snakebites incidence due to changes in humidity levels: A time series study in four municipalities of the state of Rondônia

INTRODUCTION: Snakebites represent a serious global public health problem, especially in tropical countries. In Brazil, the incidence of snakebites ranges from 19 to 22 thousand cases per 100000 persons annually. The state of Rondônia, in particular, has had an increasing incidence of snakebites. METHODS: A retrospective cross-sectional study on snakebites was conducted from January 2007 to December 2018. Brazil’s Information System for Notifiable Diseases was queried for all snakebites reported in Porto Velho, Ariquemes, Cacoal, and Vilhena. Data on land surface temperatures during the day and night, precipitation, and humidity were obtained using the Google Earth Engine. A Bayesian time series model was constructed to describe the pattern of snakebites and their relationship with climate data. RESULTS: In total, 6326 snakebites were reported in Rondônia. Accidents were commonly caused by Bothrops sp. (n=2171, 81.80%). Snakebites most frequently occurred in rural areas (n=2271, 85.5%). Men, with a median age of 34 years (n=2101, 79.1%), were the most frequent bitten. Moderate clinical manifestation was the most common outcome of an accident (n=1101, 41.50%). There were clear seasonal patterns with respect to rainfall, humidity, and temperature. Rainfall and land surface temperature during the day or night did not increase the risk of snakebites in any city; however, changes in humidity increased the risk of snakebites in all cities. CONCLUSION: This study identified the population exposed to snakes and the influence of anthropic and climatic factors on the incidence of snakebites. According to climate data, changes in humidity increased the risk of snakebites.

Impact of ambient temperature and relative humidity on the incidence of Hand-Foot-Mouth Disease in Wuhan, China

Background: Few studies have previously explored the relationship between hand, foot, and mouth disease (HFMD) and meteorological factors with the effect modification of air pollution, and these studies had inconsistent findings. We therefore applied a time-series analysis assessing the effects of temperature and humidity on the incidence of HFMD in Wuhan, China to deepen our understanding of the relationship between meteorological factors and the risk of HFMD. Methods: Daily HFMD cases were retrieved from Hubei Provincial Center for Disease Control and Prevention from 1 February 2013 to 31 January 2017. Daily meteorological data including 24 h average temperature, relative humidity, wind velocity, and atmospheric pressure were obtained from Hubei Meteorological Bureau. Data on Air pollution was collected from 10 national air-monitoring stations in Wuhan city. We adopted a distributed lag non-linear model (DLNM) combined with Poisson regression and time-series analysis to estimate the effects of temperature and relative humidity on the incidence HFMD. Results: We found that the association between temperature and HFMD incidence was non-linear, exhibiting an approximate “M” shape with two peaks occurring at 2.3 °C (RR = 1.760, 95% CI: 1.218-2.542) and 27.9 °C (RR = 1.945, 95% CI: 1.570-2.408), respectively. We observed an inverted “V” shape between relative humidity and HFMD. The risk of HFMD reached a maximum value at a relative humidity of 89.2% (RR = 1.553, 95% CI: 1.322-1.824). The largest delayed cumulative effects occurred at lag 6 for temperature and lag 13 for relative humidity. Conclusions: The non-linear relationship between meteorological factors and the incidence of HFMD on different lag days could be used in the early targeted warning system of infectious diseases, reducing the possible outbreaks and burdens of HFMD among sensitive populations.

Impact of average temperature, energy demand, sectoral value added, and population growth on water resource quality and mortality rate: It is time to stop waiting around

It is an overwhelming concern that increases in global average temperature lead to serious consequences on the natural environment in the form of deteriorating water resource quality and damaging healthcare sustainability agenda. The sustainable innovation forum (COP21) shows a high concern on climate changes and suggested to reduce global average temperature less than 2 °C. The study brings an idea from the stated theme and analyzed the relationship between climate change and water resource quality in order to redesign economic and environmental policies to improve water quality and healthcare sustainability in the context of Pakistan. The country has serious issues regarding the provision of safe drinking water, improved water resource quality, and healthcare sustainability, which can be achieved by sustainable policies to handle the extreme temperature in Pakistan. The study employed simultaneous generalized method of moments (GMM) technique in order to estimate parameters of the study during the period of 1980-2016. The results show that energy demand and industry value added substantially decrease water resource quality (WRQ), while agriculture value added and per capita income significantly increase WRQ in a country. The other regression apparatus, where health expenditures serve as the response variable, shows that average temperature, industry value added, population growth, and foreign direct investment (FDI) inflows significantly increase healthcare expenditures while WRQ has a negative impact on healthcare expenditures in a country. The final regression model shows that average temperature and per capita income decrease, while WRQ and industrial value added increase mortality rate in a country. The overall results confirm that WRQ affected by climate change, energy demand, and population growth that need sustainable water resource policies in order to achieve long-term sustained growth. The climate actions required more policy instruments to combat environmental challenges that should support healthcare sustainability agenda across the globe.

Impact of climate variability on length of stay in hospital for childhood pneumonia in rural Bangladesh

OBJECTIVES: Pneumonia is a significant contributor to mortality and morbidity in children aged <5 years, and it is also one of the leading causes of hospitalisation for children in this age group. This study assessed the association between climate variability, patient characteristics (i.e. age, sex, weight, parental education, socio-economic status) and length of stay (LOS) in hospital for childhood pneumonia and its economic impact on rural Bangladesh. STUDY DESIGN: An ecological study design was used. METHODS: Data on daily hospitalisation for pneumonia in children aged <5 years (including patient characteristics) and daily climate data (temperature and relative humidity) between 1st January 2012 and 31st December 2016 were obtained from the Matlab Hospital (the International Centre for Diarrhoeal Disease Research, Bangladesh) and the Bangladesh Meteorological Department, respectively. A generalised linear model with Poisson link was used to quantify the association between climate factors, patient characteristics and LOS in hospital. RESULTS: The study showed that average temperature, temperature variation and humidity variation were positively associated with the LOS in hospital for pneumonia. A 1°C rise in average temperature and temperature variation during hospital stay increased the LOS in hospital by 1% (relative risk [RR]: 1.010, 95% confidence interval [CI]: 1.001-1.018) and 9.3% (RR: 1.093, 95% CI: 1.051-1.138), respectively. A 1% increase in humidity variation increased the LOS in hospital for pneumonia by 2.2% (RR: 1.022, 95% CI: 1.004-1.039). In terms of economic impact, for every 1° C temperature variation during the period of hospital stay, there is an addition of 0.81 USD/day/patient as a result of direct costs and 1.8 USD/day/patient for total costs. Annually, this results in an additional 443 USD for direct and 985 USD for total costs. CONCLUSIONS: Climate variation appears to significantly contribute to the LOS in hospital for childhood pneumonia. These findings may help policymakers to develop effective disease management and prevention strategies.

Impact of climatic factors on the seasonal fluctuation of leishmaniasis vectors in central Morocco (Meknes prefecture)

The impact of climate factors on the epidemiology of diseases in general and leishmaniasis in particular continues to be a subject of research and analysis. Changes in climatic parameters contribute to the creation of ecological conditions favorable to the multiplication of the vectors of certain diseases. With this in mind, this study presents an entomological survey conducted in Meknes prefecture and the study of the link between the abundance of sandflies, an indicator of the risk of leishmaniasis in a given area, and the climatic factors. Monthly trapping of this fauna was carried out during a year from March 2016 until April 2017 using adhesive traps. Climatic data from the region were used to determine the effect of climate on the distribution of sandflies. A total of 941 leishmaniasis vector specimens were captured. The dominant species is Ph. sergenti (73.32), followed by Ph. longicuspis (8.25%), then Ph. perniciosus (7.94%) and Ph. papatasi (6.31%). The sex ratio study showed that males are more abundant than females for all species. The seasonal fluctuation is bimodal with two peaks, the first in July and the second in September. The results show a positive correlation between temperature and abundance of sandflies (r?=?0.99) and a negative correlation with humidity and precipitation with a correlation coefficient of r?=?-0.87 and r?=?-0.72. Indeed, the medium-term climatological forecasts are essential tools to develop a warning system for leishmaniasis.

Impact of climatic variations on drug-induced skin reactions in two different regions of India

Background: Around 2-3% of hospitalizations have been reported due to dermatological adverse drug reactions. Recent studies suggest that climatic variations affect the skin barrier function and extreme conditions aggravate skin disorders.

Objective: The present study was designed to compare the impact of climatic variations on drug-induced skin reactions in the Northern and Eastern regions of India. Methods: We performed a one-year retrospective study to evaluate the impact of climatic variations (temperature and humidity) in Eastern (Kalyani, West Bengal) and Northern (Karnal, Haryana) regions on drug-induced skin reactions. Drug-induced skin reactions were reported month-wise in both the Eastern and Northern regions. Temperature and humidity level were also noted month-wise in both the regions. The direct correlation between climatic variations and number of drug reactions were assessed using Pearson’s correlation and quadratic regression analysis.

Results and Discussion: Overall, 99 and 81 dermatological adverse drug reactions were reported in tertiary care hospitals in the Northern and Eastern regions, respectively. During the summer season, the humidity level was found to be low in the Northern region as compared to the Eastern region. During this period, drug-induced skin reactions were reported significantly (p<0.05) more in the Northern region as compared to the Eastern region. Furthermore, quadratic regression analysis revealed that climatic variations contributed to drug reaction variability in the Northern region (68.5%) and Eastern region (23.5%).

Conclusion: Therefore, the difference in the prevalence of drug-induced skin reactions may be related to the different climatic conditions among these two regions. Further studies in controlled climatic conditions should be performed for definitive correlations and to look into possible solutions.

.

Impact of environmental and climate factors on spatial distribution of Cutaneous Leishmaniasis in Northeastern Iran: Utilizing remote sensing

BACKGROUND: Cutaneous leishmaniasis (CL) is a dermal and parasitic disease.. The aim of this study was to determine the effect of environmental and climate factors on spatial distribution of CL in northeastern Iran by utilizing remote sensing from 20 March 2016 to 19 March 2017. METHODS: In this ecological study, the data were divided into two parts: The descriptive data on human CL cases were gathered from Communicable Diseases center of Iran. The remote sensing techniques and satellite imagery data (TRMM, MODIS-Aqua, MODIS-Terra and AMSR-2 with spatial resolution 0.25°, 0.05°, 5600m and 10km) of environmental and climate factors were used to determine the spatial pattern changes of cutaneous leishmaniasis incidence. RESULTS: The incidence of CL in North Khorasan, Razavi Khorasan, and South Khorasan was 35.80 per 100,000 people (309/863092), 34.14 per 100,000 people (2197/6,434,501) and 7.67 per 100,000 people (59/768,898), respectively. The incidence of CL had the highest correlation with soil moisture and evapotranspiration. Moreover, the incidence of disease was significantly correlated with Normalized Difference Vegetation Index (NDVI) and air humidity while it had the lowest correlation with rainfall. Furthermore, the CL incidence had an indirect correlation relation with the air temperature meaning that with an increase in the temperature, the incidence of disease decreased. CONCLUSION: As such, the incidence of disease was also higher in the northern regions; most areas of North Khorasan and northern regions of Razavi Khorasan; where the rainfall, vegetation, specific humidity, evapotranspiration, and soil moisture was higher than the southern areas.

Impact of extreme hot climate on COVID-19 outbreak in India

Coronavirus Disease 2019 (COVID-19) pandemic poses extreme threat to public health and economy, particularly to the nations with higher population density. The disease first reported in Wuhan, China; later, it spreads elsewhere, and currently, India emerged as COVID-19 hotspot. In India, we selected 20 densely populated cities having infection counts higher than 500 (by 15 May) as COVID-19 epicenters. Daily COVID-19 count has strong covariability with local temperature, which accounts approximately 65-85% of the explained variance; i.e., its spread depends strongly on local temperature rise prior to community transmission phase. The COVID-19 cases are clustered at temperature and humidity ranging within 27-32°C and 25-45%, respectively. We introduce a combined temperature and humidity profile, which favors rapid COVID-19 growth at the initial phase. The results are highly significant for predicting future COVID-19 outbreaks and modeling cities based on environmental conditions. On the other hand, CO(2) emission is alarmingly high in South Asia (India) and entails high risk of climate change and extreme hot summer. Zoonotic viruses are sensitive to warming induced climate change; COVID-19 epicenters are collocated on CO(2) emission hotspots. The COVID-19 count distribution peaks at 31.0°C, which is 1.0°C higher than current (2020) and historical (1961-1990) mean, value. Approximately, 72% of the COVID-19 cases are clustered at severe to record-breaking hot extremes of historical temperature distribution spectrum. Therefore, extreme climate change has important role in the spread of COVID-19 pandemic. Hence, a strenuous mitigation measure to abate greenhouse gas (GHG) emission is essential to avoid such pandemics in future.

Impact of extreme temperatures on ambulance dispatches due to cardiovascular causes in North-West Spain

Introduction and objectives. The increase in mortality and hospital admissions associated with high and low temperatures is well established. However, less is known about the influence of extreme ambient temperature conditions on cardiovascular ambulance dispatches. This study seeks to evaluate the effects of minimum and maximum daily temperatures on cardiovascular morbidity in the cities of Vigo and A Coruña in North-West Spain, using emergency medical calls during the period 2005-2017. Methods. For the purposes of analysis, we employed a quasi-Poisson time series regression model, within a distributed non-linear lag model by exposure variable and city. The relative risks of cold- and heat-related calls were estimated for each city and temperature model. Results. A total of 70,537 calls were evaluated, most of which were associated with low maximum and minimum temperatures on cold days in both cities. At maximum temperatures, significant cold-related effects were observed at lags of 3-6 days in Vigo and 5-11 days in A Coruña. At minimum temperatures, cold-related effects registered a similar pattern in both cities, with significant relative risks at lags of 4 to 12 days in A Coruña. Heat-related effects did not display a clearly significant pattern. Conclusions. An increase in cardiovascular morbidity is observed with moderately low temperatures without extremes being required to establish an effect. Public health prevention plans and warning systems should consider including moderate temperature range in the prevention of cardiovascular morbidity.

Impact of extreme temperatures on ambulance dispatches in London, UK

BACKGROUND: Associations between extreme temperatures and health outcomes, such as mortality and morbidity, are often observed. However, relatively little research has investigated the role of extreme temperatures upon ambulance dispatches. METHODS: A time series analysis using London Ambulance Service (LAS) incident data (2010-2014), consisting of 5,252,375 dispatches was conducted. A generalized linear model (GLM) with a quasi-likelihood Poisson regression was applied to analyse the associations between ambulance dispatches and temperature. The 99(th) (22.8°C) and 1(st) (0.0°C) percentiles of temperature were defined as extreme high and low temperature. Fourteen categories of ambulance dispatches were investigated, grouped into ‘respiratory’ (asthma, dyspnoea, respiratory chest infection, respiratory arrest and chronic obstructive pulmonary disease), ‘cardiovascular’ (cardiac arrest, chest pain, cardiac chest pain RCI, cardiac arrhythmia and other cardiac problems) and ‘other’ non-cardiorespiratory (dizzy, alcohol related, vomiting and ‘generally unwell’) categories. The effects of long-term trends, seasonality, day of the week, public holidays and air pollution were controlled for in the GLM. The lag effect of temperature was also investigated. The threshold temperatures for each category were identified and a distributed lag non-linear model (DLNM) was reported using relative risk (RR) values at 95% confidence intervals. RESULTS: Many dispatch categories show significant associations with extreme temperature. Total calls from 999 dispatches and ‘generally unwell’ dispatch category show significant RRs at both low and high temperatures. Most respiratory categories (asthma, dyspnoea and RCI) have significant RRs at low temperatures represented by with estimated RRs ranging from 1.392 (95%CI: 1.161-1.699) for asthma to 2.075 (95%CI: 1.673-2.574) for RCI. The RRs for all other non-cardiorespiratory dispatches were often significant for high temperatures ranging from 1.280 (95% CI: 1.128-1.454) for ‘generally unwell’ to 1.985 (95%CI: 1.422-2.773) for alcohol-related. For the cardiovascular group, only chest pain dispatches reported a significant RR at high temperatures. CONCLUSIONS: Ambulance dispatches can be associated with extreme temperatures, dependent on the dispatch category. It is recommended that meteorological factors are factored into ambulance forecast models and warning systems, allowing for improvements in ambulance and general health service efficiency.

Impact of extreme weather conditions on healthcare provision in urban Ghana

Extreme weather events pose significant threats to urban health in low- and middle-income countries, particularly in sub-Saharan Africa where there are systemic health challenges. This paper investigates health system vulnerabilities associated with flooding and extreme heat, along with strategies for resilience building by service providers and community members, in Accra and Tamale, Ghana. We employed field observations, rainfall records, temperature measurements, and semi-structured interviews in health facilities within selected areas of both cities. Results indicate that poor building conditions, unstable power supply, poor sanitation and hygiene, and the built environment reduce access to healthcare for residents of poor urban areas. Health facilities are sited in low-lying areas with poor drainage systems and can be 6 °C warmer at night than reported by official records from nearby weather stations. This is due to a combination of greater thermal inertia of the buildings and the urban heat island effect. Flooding and extreme heat interact with socioeconomic conditions to impact physical infrastructure and disrupt community health as well as health facility operations. Community members and health facilities make infrastructural and operational adjustments to reduce extreme weather stress and improve healthcare provision to clients. These measures include: mobilisation of residents to clear rubbish and unclog drains; elevating equipment to protect it from floods; improving ventilation during extreme heat; and using alternative power sources for emergency surgery and storage during outages. Stakeholders recommend additional actions to manage flood and heat impacts on health in their cities, such as, improving the capacity of drainage systems to carry floodwaters, and routine temperature monitoring to better manage heat in health facilities. Finally, more timely and targeted information systems and emergency response plans are required to ensure preparedness for extreme weather events in urban areas.

Impact of heat exposure on health during a warm period in Cyprus

People exposed to heat experience symptoms of varying severity, from mild manifestations to heat stroke. Due to global warming, interest in the impact of heat exposure on human health has been increasing. This study investigated the association between outdoor thermal conditions and heat-related symptoms experienced by pedestrians in a temperate-Mediterranean and hot semi-arid climate. In the study, pedestrians participated in questionnaire-based surveys at outdoor sites in Cyprus in summer and autumn 2019 while the weather conditions at the sites were recorded. In the surveys, pedestrians reported whether they had experienced heat-related symptoms. The physiologically equivalent temperature (PET) was used to estimate the effect of the thermal environment. Statistical analyses of the data included the use of multivariable logistic regression models. In total, 1880 individuals (999 males, 54.2%; mean age +/- standard deviation 38.4 +/- 18.4 years) responded to the surveys of heat-related symptoms. An increase of 1 degrees C in air temperature (adjusted odds ratio (aOR): 1.10, 95% confidence interval (CI): 1.04-1.16) or PET (aOR: 1.04, 95% CI: 1.01-1.07) was associated with an elevated probability of reporting heat-related symptoms. The magnitude of the association of PET with the reporting of heat-related symptoms was found to be higher for nonpermanent residents in Cyprus (aOR: 1.11, 95% CI: 1.02-1.21). Females were more likely than males to report heat-related symptoms (aOR: 2.36, 95% CI: 1.82-3.06). Visiting the monitoring site for work (aOR: 1.69, 95% CI: 1.26-2.26) or reporting a medical history of respiratory disease (aOR: 3.60, 95% CI: 2.39-5.42) were associated with an increased likelihood of reporting heat-related symptoms. The thermal conditions and participant characteristics were associated with increased reporting of heat-related symptoms during non-heat-wave but warm periods in Cyprus. These results could have implications for adaptation measures, healthcare delivery, and public health services.

Impact of heatwaves and cold spells on the morbidity of respiratory diseases: A case study in Lanzhou, China

More than four hundred million people suffer from respiratory diseases each year. Respiratory diseases are associated with a large disease burden. Heatwaves and cold spells, the two most common extreme weather events, have been shown to have crucial negative effects on the prevalence of respiratory diseases. However, impacts of extreme weather on the prevalence of respiratory diseases has been largely overlooked in western China, where more intense and frequent extreme temperature events have been occurring over the past decades. This research gap will obtain an attribution bias in the effects of extreme weather events on the prevalence of respiratory diseases. Therefore, in this study, we analyzed the impact of heatwaves and cold spells on the morbidity of respiratory diseases using a distributed lag nonlinear model with daily disease cases from 2013 to 2016 in Lanzhou, one of the largest cities in western China. A reverse U-shaped relationship depicted the relationship between temperature and the morbidity of respiratory diseases. The highest relative risk was found at 2.6 degrees C by 1.15 (95% confidence interval: 1.09-1.21). Furthermore, we found a significant decrease in the relative risk for heatwaves and a significant increase in the relative risk of cold spells when the temperature exceeded the corresponding threshold by 1 degrees C. Heatwaves and cold spells play harvest effects on the morbidity of respiratory diseases. Our study suggest that the relative risk of respiratory diseases will increase as the climate warms in the future, and thus a preventive system is needed for individuals and medical policy-makers.

Impact of meteorological factors on the COVID-19 transmission: A multi-city study in China

The purpose of the present study is to explore the associations between novel coronavirus disease 2019 (COVID-19) case counts and meteorological factors in 30 provincial capital cities of China. We compiled a daily dataset including confirmed case counts, ambient temperature (AT), diurnal temperature range (DTR), absolute humidity (AH) and migration scale index (MSI) for each city during the period of January 20th to March 2nd, 2020. First, we explored the associations between COVID-19 confirmed case counts, meteorological factors, and MSI using non-linear regression. Then, we conducted a two-stage analysis for 17 cities with more than 50 confirmed cases. In the first stage, generalized linear models with negative binomial distribution were fitted to estimate city-specific effects of meteorological factors on confirmed case counts. In the second stage, the meta-analysis was conducted to estimate the pooled effects. Our results showed that among 13 cities that have less than 50 confirmed cases, 9 cities locate in the Northern China with average AT below 0 °C, 12 cities had average AH below 4 g/m(3), and one city (Haikou) had the highest AH (14.05 g/m(3)). Those 17 cities with 50 and more cases accounted for 90.6% of all cases in our study. Each 1 °C increase in AT and DTR was related to the decline of daily confirmed case counts, and the corresponding pooled RRs were 0.80 (95% CI: 0.75, 0.85) and 0.90 (95% CI: 0.86, 0.95), respectively. For AH, the association with COVID-19 case counts were statistically significant in lag 07 and lag 014. In addition, we found the all these associations increased with accumulated time duration up to 14 days. In conclusions, meteorological factors play an independent role in the COVID-19 transmission after controlling population migration. Local weather condition with low temperature, mild diurnal temperature range and low humidity likely favor the transmission.

High ambient temperature in summer and risk of stroke or transient ischemic attack: A national study in Israel

Objective: To examine whether high ambient temperature and diurnal temperature range during the summer are associated with risk of stroke/transient ischemic attack (TIA). Methods: A time-stratified case-crossover study design was conducted. The study sample comprised all individuals aged >= 50 years who had a stroke/TIA reported to the Israeli National Stroke Registry between 2014 and 2016 during the summer season. Daily temperature data were retrieved from the Israel Meteorological Service. Conditional logistic regression models were used with relative humidity and air pollution as covariates. Results: The sample included 15,123 individuals who had a stroke/TIA during the summer season (mean age 73 +/- 12 years; 54% males). High ambient temperature was associated with stroke/TIA risk starting from the day before the stroke event, and increasing in strength over a six-day lag (OR = 1.10 95%CI 1.09-1.12). Moreover, a larger diurnal temperature range prior to stroke/TIA occurrence was associated with decreased stroke/TIA risk (OR = 0.96 95%CI 0.95-0.97 for a six-day lag). Conclusions: High ambient temperature may be linked to increased risk of cerebrovascular events in subsequent days. However, relief from the heat during the night may attenuate this risk.

High and low ambient temperature at night and the prescription of hypnotics

STUDY OBJECTIVES: This study investigated the association between ambient nighttime temperature and sleep problems assessed by the prescription dose of sleeping pills in South Korean adults. METHODS: We used the 2002-2015 National Health Insurance Service-National Sample Cohort. A total of 711,079 adults who were 20 years old or older were included, wherein 42,858 adults (~6%) had been prescribed hypnotic medications including zolpidem (N05CF02) and triazolam (N05CD05). Ambient temperature data was calculated as the mean highest temperature of nighttime (23:00-07:00) for every month from January to December. We combined the drug-prescribed date with the administrative districts-level daily nighttime temperature between 2002 and 2015. RESULTS: We found that a non-linear, U-shaped relationship between nighttime temperature and hypnotic medication prescription. With an increase per 1°C temperature or an increase in a square per 1°C, the prescription dose of sleeping pills was significantly increased (both p < 0.05). At each 5°C nighttime temperature, subjects belonging to low (?0°C and 0-5°C) or high (20-25°C and ?25°C) temperature categories had significantly higher doses of sleeping pills than those at the reference temperature (10-15°C). Changes in nighttime temperature had a significant non-linear effect on the prescribed dosage of hypnotic medications for both adults (p < 0.0001) and the elderly (p = 0.0006). CONCLUSION: We found that either a high or low nighttime temperature was significantly associated with a high daily dose of hypnotic medications in the Korean population.

High and low temperatures aggravate airway inflammation of asthma: Evidence in a mouse model

Epidemiology suggests ambient temperature is the triggers and potential activator of asthma. The role of high and low temperatures on airway inflammation of asthma, and the underlying molecular mechanism are not yet understood. A mouse model of asthma was adopted in our experiment. The BALB/c mice were exposed at different temperature for 4 h (2 h in the morning and 2 h in the afternoon) on weekday. The exposure temperatures were 10 degrees C, 24 degrees C and 40 degrees C. Ovalbumin (OVA) was used to sensitize the mice on days 14, 18, 22, 26, and 30, followed by an aerosol challenge for 30 min from day 32-38. After the final OVA challenge, lung function, serum protein and pulmonary inflammation were assessed. Comparing the OVA with the saline group at 24 degrees C, we saw a significant increase in: serum Total-IgE (p <0.05); OVA-sIgE (p <0.01); IL-4 (p <0.05); IL-beta (p <0.01); IL-6 (p <0.01); TNIF-alpha (p <0.01); and the ratio of IL-4/IFN-gamma (p <0.01). At the same time, there was a significant decrease in IFN-gamma (p <0.01). As the temperature increase, there is a U shape for immune proteins and pro-inflammatory factors with a peak value at 24 degrees C, exception for IFN-gamma (inverted U-shape). After the high and low temperature exposure, the Ri and Re increased significantly, while Cldyn decreased significantly compared with the 24 degrees C group. Histopathological analysis of the OVA groups showed airway remodeling, airway wall thickening and deforming, and subepithelial fibrosis. More obvious changes were found in the high and low temperature exposure groups. The immunohistochemistry suggested that TRPs changed with temperatures. High and low temperatures can aggravate airway inflammation in a mouse model of asthma. TRPs play an important role in temperature aggravation of allergic asthma. The results suggest that asthmatics should avoid exposure to high and low temperatures for too long time. (C) 2019 Elsevier Ltd. All rights reserved.

High temperature impairs cognitive performance during a moderate intensity activity

High temperatures are one of the main causes of work safety accidents associated with cognitive impairment. However, the effects of elevated ambient temperature on cognitive performance during moderate-intensity activities are unclear. In this study, subjects (N = 32) were exposed to four different air temperatures, i.e., 26, 30, 33, and 37 degrees C, and a relative humidity of 70% in a climate chamber. During the experiment, the subjects were required to complete neurobehavioral cognitive tests while walking on a treadmill with an estimated metabolic rate of 165 W/m(2). During the 90-min experiment, the tympanic temperature, weight loss, heart rate, and percentage of adjacent inter-beat cardiac intervals differing by > 50 ms (pNN50) were measured. Subjective responses were collected using questionnaires.The accuracy of subjects’ responses to the semantic interference and visual perception tests were significantly decreased at 37 degrees C after 45 min of exercise. Additionally, over the exposure period at 37 degrees C, the accuracy of various cognitive tests also decreased, while the speed increased. The changes in the cognitive test results at 37 degrees C were associated with the elevation of the tympanic temperature, heart rate, dehydration rate, and decline of the pNN50. Similarly, the elevated thermal discomfort and intensity of neurobehavioral symptoms were related to these changes.In conclusion, exposure to a temperature of 37 degrees C for 45 min has a negative impact on the accuracy of personnel with moderate-activity intensity. Therefore, 45 min is recommended as a safe time for continuous work with moderate intensity at 37 degrees C.

High temperatures and emergency department visits in 18 sites with different climatic characteristics in China: Risk assessment and attributable fraction identification

BACKGROUND: Health impacts of high temperatures on hospital emergency department visits (EDVs) have been less reported, especially from developing countries. OBJECTIVES: To investigate high temperature-EDVs relationship in various regions with different climatic characteristics, to explore the regional differences, to identify vulnerable populations, and to provide scientific evidence for climate change adaptation strategies in China. METHODS: Daily data on weather, air pollution and EDVs were collected from 18 sites in China from June to August during 2014-2017. A quasi-Poisson generalized additive regression model was applied to examine the high temperature-EDVs relationship in each site. Site-specific risks of EDVs were pooled using a random effect meta-analysis model. Stratified analyses were performed by gender, age-groups, cause-specific EDVs and regions. Attributable fractions of EDVs due to high temperatures were calculated in different regions. RESULTS: 1 °C increase in daily mean temperature was associated with 1.07% (95% CI, 0.46-1.67%) increase in EDVs across all study regions. The negative health effects from high temperatures were worse for the people living in southern China, in subtropical monsoon climate zone or in counties, with percentage change of 1.96% (95% CI, 0.92-3.02%), 1.35% (95% CI, 0.95-1.76%) and 1.41% (95% CI, 0.48-2.34%), respectively. People under 18 were more vulnerable to high temperatures. Exposure to high temperatures increased EDVs risks from endocrine, respiratory, and digestive diseases and injury. The attributable fraction due to high temperatures was 8.64% for overall EDVs, 11.70% for the people living in southern China, 10.80% for people living in subtropical monsoon climate zone and 12.65% for the county population. CONCLUSIONS: Exposure to high temperatures resulted in extra burden to China’s already overloaded hospital emergency departments. More resources are needed to meet increasing demands and effective preventative measurements are warranted to tackle such a challenge. Further studies should pay more attention to both heat and cold-related EDVs risks and socioeconomic cost for better climate change adaptation.

Holistic approach to assess co-benefits of local climate mitigation in a hot humid region of Australia

Overheated outdoor environments adversely impact urban sustainability and livability. Urban areas are particularly affected by heat waves and global climate change, which is a serious threat due to increasing heat stress and thermal risk for residents. The tropical city of Darwin, Australia, for example, is especially susceptible to urban overheating that can kill inhabitants. Here, using a modeling platform supported by detailed measurements of meteorological data, we report the first quantified analysis of the urban microclimate and evaluate the impacts of heat mitigation technologies to decrease the ambient temperature in the city of Darwin. We present a holistic study that quantifies the benefits of city-scale heat mitigation to human health, energy consumption, and peak electricity demand. The best-performing mitigation scenario, which combines cool materials, shading, and greenery, reduces the peak ambient temperature by 2.7 °C and consequently decreases the peak electricity demand and the total annual cooling load by 2% and 7.2%, respectively. Further, the proposed heat mitigation approach can save 9.66 excess deaths per year per 100,000 people within the Darwin urban health district. Our results confirm the technological possibilities for urban heat mitigation, which serves as a strategy for mitigating the severity of cumulative threats to urban sustainability.

Hot and cold weather based on the spatial synoptic classification and cause-specific mortality in Sweden: A time-stratified case-crossover study

The spatial synoptic classification (SSC) is a holistic categorical assessment of the daily weather conditions at specific locations; it is a useful tool for assessing weather effects on health. In this study, we assessed (a) the effect of hot weather types and the duration of heat events on cardiovascular and respiratory mortality in summer and (b) the effect of cold weather types and the duration of cold events on cardiovascular and respiratory mortality in winter. A time-stratified case-crossover design combined with a distributed lag nonlinear model was carried out to investigate the association of weather types with cause-specific mortality in two southern (Skåne and Stockholm) and two northern (Jämtland and Västerbotten) locations in Sweden. During summer, in the southern locations, the Moist Tropical (MT) and Dry Tropical (DT) weather types increased cardiovascular and respiratory mortality at shorter lags; both hot weather types substantially increased respiratory mortality mainly in Skåne. The impact of heat events on mortality by cardiovascular and respiratory diseases was more important in the southern than in the northern locations at lag 0. The cumulative effect of MT, DT and heat events lagged over 14 days was particularly high for respiratory mortality in all locations except in Jämtland, though these did not show a clear effect on cardiovascular mortality. During winter, the dry polar and moist polar weather types and cold events showed a negligible effect on cardiovascular and respiratory mortality. This study provides valuable information about the relationship between hot oppressive weather types with cause-specific mortality; however, the cold weather types may not capture sufficiently effects on cause-specific mortality in this sub-Arctic region.

Hot weather and suicide deaths among older adults in Hong Kong, 1976-2014: A retrospective study

Findings of the association between hot weather and suicide in a subtropical city such as Hong Kong are inconsistent. This study aimed to revisit the association by identifying meteorological risk factors for older-adult suicides in Hong Kong using a time-series approach. A retrospective study was conducted on older-adult (aged ?65) suicide deaths in Hong Kong from 1976 to 2014. Suicides were classified into those involving violent methods and those involving nonviolent methods. Meteorological data, including ambient temperature, were retrieved. Transfer function time-series models were fitted. In total, 7314 older-adult suicide deaths involving violent methods and 630 involving nonviolent methods were recorded. For violent-method suicides, a monthly average daily minimum ambient temperature was determined to best predict the monthly rate, and a daily maximum ambient temperature of 30.3 °C was considered the threshold. For suicide deaths involving nonviolent methods, the number of days in a month for which the daily maximum ambient temperature exceeded 32.7 °C could best predict the monthly rate. Higher ambient temperature was associated with more older-adult suicide deaths, both from violent and nonviolent methods. Weather-focused preventive measures for older-adult suicides are necessary, such as the provision of more public air-conditioned areas where older adults can shelter from extreme hot weather.

How to determine the early warning threshold value of meteorological factors on influenza through big data analysis and machine learning

Infectious diseases are a major health challenge for the worldwide population. Since their rapid spread can cause great distress to the real world, in addition to taking appropriate measures to curb the spread of infectious diseases in the event of an outbreak, proper prediction and early warning before the outbreak of the threat of infectious diseases can provide an important basis for early and reasonable response by the government health sector, reduce morbidity and mortality, and greatly reduce national losses. However, if only traditional medical data is involved, it may be too late or too difficult to implement prediction and early warning of an infectious outbreak. Recently, medical big data has become a research hotspot and has played an increasingly important role in public health, precision medicine, and disease prediction. In this paper, we focus on exploring a prediction and early warning method for influenza with the help of medical big data. It is well known that meteorological conditions have an influence on influenza outbreaks. So, we try to find a way to determine the early warning threshold value of influenza outbreaks through big data analysis concerning meteorological factors. Results show that, based on analysis of meteorological conditions combined with influenza outbreak history data, the early warning threshold of influenza outbreaks could be established with reasonable high accuracy.

Human contribution to the record-breaking June and July 2019 heatwaves in Western Europe

Two extreme heatwaves hit Western Europe in the summer of 2019, with historical records broken by more than a degree in many locations, and significant societal impacts, including excess mortality of several thousand people. The extent to which human influence has played a role in the occurrence of these events has been of large interest to scientists, media and decision makers. However, the outstanding nature of these events poses challenges for physical and statistical modeling. Using an unprecedented number of climate model ensembles and statistical extreme value modeling, we demonstrate that these short and intense events would have had extremely small odds in the absence of human-induced climate change, and equivalently frequent events would have been 1.5 degrees C to 3 degrees C colder. For instance, in France and in The Netherlands, the July 3-day heatwave has a 50-150-year return period in the current climate and a return period of more than 1000 years without human forcing. The increase in the intensities is larger than the global warming by a factor 2 to 3. Finally, we note that the observed trends are much larger than those in current climate models.

Human ophthalmomyiasis caused by Oestrus ovis-first report from Croatia and review on cases from Mediterranean countries

Oestrus ovis is the most common cause of human ophthalmomyiasis. So far, majority of ophthalmomyiasis cases have been reported from Mediterranean countries, but not from Croatia. In current study, we present first two cases of human ophthalmomyiasis in Croatia, caused by O. ovis larvae. Reviewing a PubMed database, additional 259 cases of human ophthalmomyiasis in countries of Mediterranean basin have been reported. A total of 260 (99.62%) cases had external, while 1 (0.38%) had internal form of ocular myiasis. In all cases, O. ovis larvae were identified as the causative agent. O. ovis infestation is usually reported in shepherds and farmers although there is a high prevalence of infection in urban areas as well. Various climatic factors influence O. ovis larvipositional activity. Air temperature is the most important factor affecting O. ovis larviposition, while humidity, wind speed, and time of the day play only a moderate role. Most common symptoms of ophthalmomyiasis are irritation and redness, and in more than half of cases infestation is multiple. Ophthalmomyiasis interna is eye-compromising condition. Since there is reduced awareness among patients and medical professionals, the real number of ophthalmomyiasis cases is probably significantly higher than published. Global warming predisposes future increase of O. ovis prevalence in humans, which emphasizes the need for mandatory reporting and surveillance of disease.

Human-centric microclimate analysis of urban heat island: Wearable sensing and data-driven techniques for identifying mitigation strategies in New York City

Urban heat island (UHI) is the best acknowledged climate-change related phenomenon also because it affects population health conditions in dense urban areas, even exacerbated during heat waves. While most of field studies are performed by means of permanent weather stations, this paper presents an intra-urban microclimate analysis through wearable sensing techniques for monitoring and characterizing granular peculiarities as perceived by urban pedestrians. The study is implemented in four areas of New York City presenting already mitigation techniques. These strategies are specifically analyzed from the pedestrians’ perspective, who may walk along parks and sidewalks, to better study real boundary conditions responsible for thermal perception, even in those areas where vehicles are not allowed. A novel cluster analysis procedure is then carried out to perform data-driven identification of urban microclimate peculiarities in relation to its morphology (e.g. urban canyons etc.). Results show a non-negligible dependency from urban configuration both in winter and in summer. Measurements in the high-packed district winter daytime show a drop off of 0.6 degrees C in air temperature close to small parks. The packed low-rise district presents highest values of CO2, with respect to the other monitored areas both in winter and in summer. The same areas are automatically recognized through the data-driven clustering process. The data-driven approach may be therefore successfully integrated into classic measurements to investigate UHI and heat stress in dense anthropized areas.

Humans in the city: Representing outdoor thermal comfort in urban canopy models

The negative effects of urban heat islands (UHIs) on citizens’ well-being and life quality are widely acknowledged, but they still represent critical challenges, particularly since urban population is predicted to rise to 60% of the world population by 2030. Computational models have become useful tools for addressing these challenges and investigating urban microclimate repercussions on citizens’ comfort and urban liveability. Despite that, humans typically remain absent from such models. This work bridges this gap, moving beyond purely thermodynamic Urban Canopy Models (UCMs) to highlight the importance of integrating even simplified pedestrians’ biophysics for comfort assessment. Human physiology parameterization is therefore introduced into the Princeton Urban Canopy Model (PUCM), which had been designed to investigate the effect of greenery and novel materials on the UHI. Human thermal comfort is assessed in terms of the skin temperature and then evaluated against the apparent temperature, a widely-used thermal comfort indicator. Different configurations of the same urban canyon are therefore tested to assess the effectiveness of cool materials and trees for human thermal comfort enhancement. Results show that cool skins in the canyon’s built environment lead to an air temperature reduction up to 1.92 K, but slightly worsen human comfort in terms of a warmer computed skin temperature by 0.27 K. The indirect effect of trees, that exclude shading, are negligible for human thermal comfort. The new integrated human-centric model can help policymakers and urban planners to easily assess the potential benefits or threats to citizens’ well-being associated with specific urban configurations.

Identification and seasonality of rhinovirus and respiratory syncytial virus in asthmatic children in tropical climate

INTRODUCTION: Asthma is a disease that has been associated with the presence of different genetic and socio-environmental factors. OBJECTIVE: To identify and evaluate the seasonality of respiratory syncytial virus (RSV) and human rhinovirus (RV) in asthmatic children and adolescents in tropical climate, as well as to assess the socioeconomic and environmental factors involved. METHODS: The study was conducted in a referral hospital, where a total of 151 children were recruited with a respiratory infection. The International Study of Asthma and Allergies in Childhood (ISAAC) protocol and a questionnaire were applied, and a skin prick test was performed. The nasal swab was collected to detect RV and RSV through molecular assay. National Meteorological Institute (INMET) database was the source of climatic information. RESULTS: The socio-environmental characterization of asthmatic children showed the family history of allergy, disturbed sleep at night, dry cough, allergic rhinitis, individuals sensitized to at least one mite. We identified RV in 75% of children with asthma and 66.7% of RSV in children with asthma. There was an association between the presence of RV and the dry season whereas the presence of the RSV was associated with the rainy season. Contributing to these results, a negative correlation was observed between the RSV and the wind speed and the maximum temperature (T. Max) and a positive correlation with precipitation. CONCLUSIONS: The results suggest a high prevalence of RV and RSV in asthmatic children and the seasonality of these viruses were present in different climatic periods. This has significant implications for understanding short- and long-term clinical complications in asthmatic patients.

Impact of 1.5 (o)C and 2 (o)C global warming scenarios on malaria transmission in East Africa

Background: Malaria remains a global challenge with approximately 228 million cases and 405,000 malaria-related deaths reported in 2018 alone; 93% of which were in sub-Saharan Africa. Aware of the critical role than environmental factors play in malaria transmission, this study aimed at assessing the relationship between precipitation, temperature, and clinical malaria cases in East Africa and how the relationship may change under 1.5 C and 2.0 C global warming levels (hereinafter GWL1.5 and GWL2.0, respectively). Methods: A correlation analysis was done to establish the current relationship between annual precipitation, mean temperature, and clinical malaria cases. Differences between annual precipitation and mean temperature value projections for periods 2008-2037 and 2023-2052 (corresponding to GWL1.5 and GWL2.0, respectively), relative to the control period (1977-2005), were computed to determine how malaria transmission may change under the two global warming scenarios. Results: A predominantly positive/negative correlation between clinical malaria cases and temperature/precipitation was observed. Relative to the control period, no major significant changes in precipitation were shown in both warming scenarios. However, an increase in temperature of between 0.5 C and 1.5 C and 1.0 C to 2.0 C under GWL1.5 and GWL2.0, respectively, was recorded. Hence, more areas in East Africa are likely to be exposed to temperature thresholds favourable for increased malaria vector abundance and, hence, potentially intensify malaria transmission in the region. Conclusions: GWL1.5 and GWL2.0 scenarios are likely to intensify malaria transmission in East Africa. Ongoing interventions should, therefore, be intensified to sustain the gains made towards malaria elimination in East Africa in a warming climate.

Heat wave-related mortality in Sweden: A case-crossover study investigating effect modification by neighbourhood deprivation

Aims: The present study aimed to investigate if set thresholds in the Swedish heat-wave warning system are valid for all parts of Sweden and if the heat-wave warning system captures a potential increase in all-cause mortality and coronary heart disease (CHD) mortality. An additional aim was to investigate whether neighbourhood deprivation modifies the relationship between heat waves and mortality. Methods: From 1990 until 2014, in 14 municipalities in Sweden, we collected data on daily maximum temperatures and mortality for the five warmest months. Heat waves were defined according to the categories used in the current Swedish heat-wave warning system. Using a case-crossover approach, we investigated the association between heat waves and mortality in Sweden, as well as a modifying effect of neighbourhood deprivation. Results: On a national as well as a regional level, heat waves significantly increased both all-cause mortality and CHD mortality by approximately 10% and 15%, respectively. While neighbourhood deprivation did not seem to modify heat wave-related all-cause mortality, CHD mortality did seem to modify the risk. Conclusions: It may not be appropriate to assume that heat waves in Sweden will have the same impact in a northern setting as in a southern, or that the impact of heat waves will be the same in affluent and deprived neighbourhoods. When designing and implementing heat-wave warning systems, neighbourhood, regional and national information should be incorporated.

Heat wave characteristics, mortality and effect modification by temperature zones: A time-series study in 130 counties of China

BACKGROUND: The substantial disease burden attributed to heat waves, and their increasing frequency and intensity due to climate change, highlight the importance of understanding the health consequences of heat waves. We explore the mortality risk due to heat wave characteristics, including the timing in the seasons, the day of the heat wave, the intensity and the duration, and the modifying effect of temperature zones. METHODS: Heat waves were defined as ? 2?days with a temperature ?99th percentile for the county from 1 May through 30 September. Heat waves were characterized by their intensity, duration, timing in the season, and day of the heat wave. Within each county, we estimated the total non-accidental death and cardiovascular disease mortality during each heat wave compared with non-heat wave days by controlling for potential confounders in summer. We combined individual heat wave effect estimates using a random-effects model to calculate overall effects at the temperature zone and national levels. RESULTS: The average daily total number of non-accidental deaths was nine in the warm season (across all the counties). Approximately half of the daily total number of non-accidental deaths were cardiovascular-related deaths (approximately four persons per day). The average and maximum temperatures across the study area were 23.1?°C (range: -1.2-35.9?°C) and 28.3?°C (range: 5.4-42.8?°C), respectively. The average relative humidity during the study was 68.9% (range: 8.0-100.0%). Heat waves increase the risk of total non-accidental death by 15.7% [95% confidence interval (CI): 12.5, 18.9] compared with non-heat wave periods, and the risk of cardiovascular-related death increases by 22.0% (95% CI: 16.9, 27.4). The risk of non-accidental death during the first heat wave of the season increases by 16.3% (95% CI: 12.6, 20.2), the risk during the second heat wave increases by 6.3% (95% CI: 2.8, 9.9) and during subsequent heat waves increases by -2.1% (95% CI: -4.6, 0.4). The first day and the second to third days of heat waves increase the risk of total non-accidental death by 11.7% (95% CI: 7.6, 15.9) and 17.0% (95% CI: 13.1, 21.0), respectively. Effects of heat waves on mortality lasted more than 4?days (6.3%, 95% CI: 2.4, 10.5) and are non-significantly different from the first day of heat waves. We found non-significant differences of the heat wave-associated mortality risks across mid-, Warm and subtropical temperature zones. CONCLUSIONS: In China, the effect of heat waves on mortality is acute, and varies by certain characteristics of heat waves. Given these results, national heat wave early warning systems should be developed, as well as precautions and protection warranted according to characteristics of heat waves.

Heat, heatwaves and cardiorespiratory hospital admissions in Helsinki, Finland

Background: There is a lack of knowledge concerning the effects of ambient heat exposure on morbidity in Northern Europe. Therefore, this study aimed to evaluate the relationships of daily summertime temperature and heatwaves with cardiorespiratory hospital admissions in the Helsinki metropolitan area, Finland. Methods: Time series models adjusted for potential confounders, such as air pollution, were used to investigate the associations of daily temperature and heatwaves with cause-specific cardiorespiratory hospital admissions during summer months of 2001-2017. Daily number of hospitalizations was obtained from the national hospital discharge register and weather information from the Finnish Meteorological Institute. Results: Increased daily temperature was associated with a decreased risk of total respiratory hospital admissions and asthma. Heatwave days were associated with 20.5% (95% CI: 6.9, 35.9) increased risk of pneumonia admissions and during long or intense heatwaves also with total respiratory admissions in the oldest age group (?75 years). There were also suggestive positive associations between heatwave days and admissions due to myocardial infarction and cerebrovascular diseases. In contrast, risk of arrhythmia admissions decreased 20.8% (95% CI: 8.0, 31.8) during heatwaves. Conclusions: Heatwaves, rather than single hot days, are a health threat affecting morbidity even in a Northern climate.

Heat, infant mortality, and adaptation: Evidence from India

We examine the impact of extreme heat during pregnancy on infant mortality and check if public interventions can serve as effective adaptation strategies. We show that 2 children die as infants out of 1000 births in India for high temperature during pregnancy, tentatively due to reduced agricultural yields, wages, and greater disease prevalence like diarrhea. The heat-infant mortality relationship holds in rural India only. Using phased introduction of an employment guarantee program and partial introduction of a community health care worker program for identification, we find that only the health program is effective in modifying the temperature-infant mortality relationship in rural India.

Heat-associated mortality in a hot climate : Maricopa County, Arizona, 2006-2016

OBJECTIVES: Maricopa County, Arizona (2017 population about 4.3 million), is located in the Sonoran Desert. In 2005, the Maricopa County Department of Public Health (MCDPH) established a heat-associated mortality surveillance system that captures data on circumstances of death for Maricopa County residents and visitors. We analyzed 2006-2016 surveillance system data to understand the characteristics and circumstances of heat-associated deaths. METHODS: We classified heat-associated deaths based on International Classification of Diseases, Tenth Revision codes (X30, T67.X, and P81.0) and phrases (heat exposure, environ, exhaustion, sun, heat stress, heat stroke, or hyperthermia) in part I or part II of the death certificate. We summarized data on decedents’ demographic characteristics, years lived in Arizona, location of death (indoors vs outdoors), presence and functionality of air conditioning, and whether the decedent had been homeless. We examined significant associations between variables by using the Pearson ?(2) tests and logistic regression. RESULTS: During 2006-2016, MCDPH recorded data on 920 heat-associated deaths, 912 of which included location of injury. Of 565 (62%) heat-associated deaths that occurred outdoors, 458 (81%) were among male decedents and 243 (43%) were among decedents aged 20-49. Of 347 (38%) heat-associated deaths that occurred indoors, 201 (58%) were among decedents aged ?65. Non-Arizona residents were 5 times as likely as Arizona residents to have a heat-associated death outdoors (P < .001). Of 727 decedents with data on duration of Arizona residency, 438 (60%) had resided in Arizona ?20 years. CONCLUSIONS: Ongoing evaluation of interventions that target populations at risk for both outdoor and indoor heat-associated deaths can further inform refinement of the surveillance system and identify best practices to prevent heat-associated deaths.

Heat-related illness-clinical profile and predictors of outcome from a healthcare center in South India

BACKGROUND: Heat-related illness is a common medical emergency. There is failure of thermoregulatory mechanisms of the body resulting in multiple organ dysfunction syndrome which if not identified and treated urgently can result in high mortality rate and permanent neurological damage. This study provides description of clinical profile patients presenting with heat-related illness and identifies clinical and laboratory variables resulting in poor outcome. METHODS: This retrospective study was done identifying adult patients admitted with a diagnosis of heat-related illness from April to August 2019 in tertiary care center. Their clinical profile, laboratory investigations and outcome were extracted from medical records and variables associated with poor outcome were analyzed for statistical significance. RESULTS: Mean age of the patients in the study was 61 years with mean heat index of the localities being 39.6-degree C. 66% of patients had multiple organ dysfunction with central nervous system dysfunction (77%) followed by respiratory distress syndrome (61%) as the most common organ derangement. Evaporative cooling measures were incorporated in management of all patients, followed by cold saline infusion in 60%. Higher J-ERATO score at admission was found to be a predictor for underlying multiple organ dysfunction syndrome (P value < 0.029). The mortality rate associated with heat-related illness in this study was 11.1%. CONCLUSIONS: Multiple organ dysfunction is seen in majority of the patients and calculation of simple admission J-ERATO score helps in predicting the same. Declining mortality rate observed in our study as compared to the earlier studies could be attributed to increased awareness, prompt diagnosis and initiation of rapid cooling measures.

Heat-related injuries in Australian workplaces: Perspectives from health and safety representatives

Introduction: Hot weather poses occupational health and safety concerns for people working in hot environments. It is known that work-related injuries increase during hot weather, yet there is an incomplete understanding of the underlying factors. Methods: A national online survey was conducted in Australia among health and safety representatives (HSRs) to better understand factors contributing to heat-related injuries in workplaces. Risk factors and preventive measures associated with reported injuries were identified using log-poisson regression models. Results: In total, 222 HSRs completed the survey. Overall, 43% reported that injuries or incidents caused by hot/very humid weather occur sometimes or often in their workplace. Factors found to be associated with reported heat-related injuries included ‘the wearing of personal protective equipment (PPE)’ which can hinder the loss of body heat, and ‘inadequate resources and facilities’. ‘Piece-rate workers’ and ‘new workers’ were identified as being at high risk. The most frequently adopted preventive measures for outdoor and indoor workers were the provision of PPE (despite some identified issues) and access to cool drinking water. HSRs reported that less injuries occurred in hot weather among outdoor workers if work was rescheduled to cooler times and shade was provided; and in indoor environments where there was adequate ventilation, heat sources were shielded and workers were able to self-pace. Conclusion: Organisational issues, workplace hazards, personal factors and preventive measures, are all determinants of heat-related injuries in Australian workplaces. Wider adoption of identified prevention measures could reduce the incidence of heat-related injuries in outdoor and indoor workplaces.

Heat-related mortality at the beginning of the twenty-first century in Rio de Janeiro, Brazil

Temperature record-breaking events, such as the observed more intense, longer-lasting, and more frequent heat waves, pose a new global challenge to health sectors worldwide. These threats are of particular interest in low-income regions with limited investments in public health and a growing urban population, such as Brazil. Here, we apply a comprehensive interdisciplinary climate-health approach, including meteorological data and a daily mortality record from the Brazilian Health System from 2000 to 2015, covering 21 cities over the Metropolitan Region of Rio de Janeiro. The percentage of absolute mortality increase due to summer extreme temperatures is estimated using a negative binomial regression modeling approach and maximum/minimum temperature-derived indexes as covariates. Moreover, this study assesses the vulnerability to thermal stress for different age groups and both genders and thoroughly analyzes four extremely intense heat waves during 2010 and 2012 regarding their impacts on the population. Results showed that the highest absolute mortality values during heat-related events were linked to circulatory illnesses. However, the highest excess of mortality was related to diabetes, particularly for women within the elderly age groups. Moreover, results indicate that accumulated heat stress conditions during consecutive days preferentially preceded by persistent periods of moderate-temperature, lead to higher excess mortality rather than sporadic single hot days. This work may provide directions in human health policies related to extreme climate events in large tropical metropolitan areas from developing countries, contributing to altering the historically based purely reactive response.

Heat-related mortality: An analysis of the impact of heatwaves in Germany between 1992 and 2017

BACKGROUND: As a consequence of global warming, heat waves are expected to become more frequent, more intense, and longer. The elderly and persons with chronic diseases are especially vulnerable to health problems due to heat. This article is devoted to the question of the extent to which the effects of heat waves in Germany are changing over time, and whether preventive health measures are working. METHODS: We use a statistical model to quantify the effect of high mean temperatures on mortality. Within this model, different exposure-response curves for the three temporal intervals 1992-2000, 2001-2010, and 2011-2017 are estimated. Attention is also paid to the delayed effect on mortality of high mean temperatures in the preceding week. RESULTS: Our analysis reveals a clear, systematic association of the mean temperature in the current week, as well as the mean temperature in the preceding week, with weekly mortality. This association is more pronounced for higher age groups and decreases over the years under analysis, with the exception of a relatively weak effect of heat in southern Germany in 1992-2000. The strongest effects were related to the heat waves in 1994 and 2003, with approximately 10 200 and 9600 fatalities, respectively. Approximately 7800 fatalities were estimated for the summer of 2006, and 4700 and 5200 for 2010 and 2015, respectively. CONCLUSION: In Germany, as elsewhere, climate change has been causing more frequent, more intense, and longer periods of heat in the summer. The harmful effect of heat on health is reduced by adaptive processes, presumably including successful preventive measures. Such measures should be extended in the future, and perhaps complemented by other measures in order to further diminish the effect of heat on mortality .

Heat-related productivity loss: Benefits derived by working in the shade or work-time shifting

Purpose Agricultural workers represent an important part of the population exposed to high heat-related health and productivity risks. This study aims to estimate the heat-related productivity loss (PL) for moderate work activities in sun and shady areas and evaluating the economic cost locally in an Italian farm and generally in the whole province of Florence. Benefits deriving by working in the shade or work-time shifting were provided. Comparisons between PL estimated in Mediterranean (Florence, Italy) and subtropical (Guangzhou, China) areas were also carried out. Design/methodology/approach Meteorological data were collected during summers 2017-2018 through a station installed in a farm in the province of Florence and by two World Meteorological Organization (WMO)-certified meteorological stations located at the Florence and Guangzhou airports. These data were used to calculate the wet-bulb globe temperature and to estimate the hourly PL and the economic cost during the typical working time (from 8 a.m. to 5 p.m.) and by advancing of 1 h and 2 h the working time. Significant differences were calculated through nonparametric tests. Findings The hourly PL and the related economic cost significantly decreased (p < 0.05) by working in the shade and by work-time shifting. Higher PL values were observed in Guangzhou than in Florence. The decrease of PL observed by work-time shifting was greater in Florence than in Guangzhou. Originality/value Useful information to plan suitable heat-related prevention strategies to counteract the effects of heat in the workplace are provided. These findings are essential to quantify the beneficial effects due to the implementation of specific heat-related adaptation measures to counter the impending effects of climate change.

Heatwave damage prediction using random forest model in Korea

Climate change increases the frequency and intensity of heatwaves, causing significant human and material losses every year. Big data, whose volumes are rapidly increasing, are expected to be used for preemptive responses. However, human cognitive abilities are limited, which can lead to ineffective decision making during disaster responses when artificial intelligence-based analysis models are not employed. Existing prediction models have limitations with regard to their validation, and most models focus only on heat-associated deaths. In this study, a random forest model was developed for the weekly prediction of heat-related damages on the basis of four years (2015-2018) of statistical, meteorological, and floating population data from South Korea. The model was evaluated through comparisons with other traditional regression models in terms of mean absolute error, root mean squared error, root mean squared logarithmic error, and coefficient of determination (R-2). In a comparative analysis with observed values, the proposed model showed an R-2 value of 0.804. The results show that the proposed model outperforms existing models. They also show that the floating population variable collected from mobile global positioning systems contributes more to predictions than the aggregate population variable.

Heatwave-induced human health risk assessment in megacities based on heat stress-social vulnerability-human exposure framework

Assessing heatwave-induced human health risk is of critical importance in order to mitigate hazards caused by extreme environmental events. Air temperature or land surface temperature in previous studies was often used to characterize the severity of heatwaves, and human perception of the thermal environment was neglected as a key component in the heatwave-induced risk assessment. In order to redress this issue, in this study we applied the Universal Thermal Climate Index (UTCI) to represent human thermal comfort perception and embedded the measure within an assessment framework of heat stress-social vulnerability-human exposure. The heatwave-induced human health risk was then evaluated in Wuhan City, China across 177 blocks covering the entire city area and local risk governance measures were also explored based on risk zoning. The results showed that spatial patterns of heatwave-induced human health risk followed a decreasing trend from the city center towards the surrounding areas, with the average risk of the main urban area being 1.6 times that beyond the metropolitan development area. Through the heatwave-induced human health risk zoning, about 73.45% of the 177 blocks in Wuhan City demonstrated a positive relationship between heat stress and human exposure, and both were opposite with social vulnerability. Multiple linear regression between UTCI and the proportion of greenspace, water body and construction land indicated that, more blue or green infrastructure should be integrated within the urban fabric to help mitigate heat stress particularly in the main urban area, while in the metropolitan development area construction land dominating heat stress should be strictly regulated. Furthermore, protecting vulnerable groups such as left-behind children and elderly people should be a priority in rural areas that were generally associated with higher levels of social vulnerability. This study proposed a new heatwave-induced human health risk framework with a local evidence in Wuhan City, and further emphasized that risk zoning could be used as a basic yet important approach to facilitating more effective urban planning guidelines for risk governance.

Heatwave-related mortality risk and the risk-based definition of Heat Wave in South Korea: A nationwide time-series study for 2011-2017

Studies on the pattern of heatwave mortality using nationwide data that include rural areas are limited. This study aimed to assess the risk of heatwave-related mortality and evaluate the health risk-based definition of heatwave. We collected data on daily temperature and mortality from 229 districts in South Korea in 2011-2017. District-specific heatwave-related mortality risks were calculated using a distributed lag model. The estimates were pooled in the total areas and for each urban and rural area using meta-regression. In the total areas, the threshold point of heatwave mortality risk was estimated at the 93rd percentile of temperature, and it was lower in urban areas than in rural areas (92nd percentile vs. 95th percentile). The maximum risk of heatwave-related mortality in the total area was 1.11 (95% CI: 1.01-1.22), and it was slightly greater in rural areas than in the urban areas (RR: 1.23, 95% CI: 0.99-1.53 vs. RR: 1.10, 95% CI: 1.01-1.20). The results differ by age- and cause-specific deaths. In conclusion, the patterns of heatwave-related mortality risk vary by area and sub-population in Korea. Thus, more target-specific heatwave definitions and action plans should be established according to different areas and populations.

Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning

BACKGROUND: Many studies have shown associations between rising temperatures, El Niño events and dengue incidence, but the effect of sustained periods of extreme high temperatures (i.e., heatwaves) on dengue outbreaks has not yet been investigated. This study aimed to compare the short-term temperature-dengue associations during different dengue outbreak periods, estimate the dengue cases attributable to temperature, and ascertain if there was an association between heatwaves and dengue outbreaks in Hanoi, Vietnam. METHODOLOGY/PRINCIPAL FINDINGS: Dengue outbreaks were assigned to one of three categories (small, medium and large) based on the 50th, 75th, and 90th percentiles of distribution of weekly dengue cases during 2008-2016. Using a generalised linear regression model with a negative binomial link that controlled for temporal trends, temperature variation, rainfall and population size over time, we examined and compared associations between weekly average temperature and weekly dengue incidence for different outbreak categories. The same model using weeks with or without heatwaves as binary variables was applied to examine the potential effects of extreme heatwaves, defined as seven or more days with temperatures above the 95th percentile of daily temperature distribution during the study period. This study included 55,801 dengue cases, with an average of 119 (range: 0 to 1454) cases per week. The exposure-response relationship between temperature and dengue risk was non-linear and differed with dengue category. After considering the delayed effects of temperature (one week lag), we estimated that 4.6%, 11.6%, and 21.9% of incident cases during small, medium, and large outbreaks were attributable to temperature. We found evidence of an association between heatwaves and dengue outbreaks, with longer delayed effects on large outbreaks (around 14 weeks later) than small and medium outbreaks (4 to 9 weeks later). Compared with non-heatwave years, dengue outbreaks (i.e., small, moderate and large outbreaks combined) in heatwave years had higher weekly number of dengue cases (p<0.05). Findings were robust under different sensitivity analyses. CONCLUSIONS: The short-term association between temperature and dengue risk varied by the level of outbreaks and temperature seems more likely affect large outbreaks. Moreover, heatwaves may delay the timing and increase the magnitude of dengue outbreaks.

Heatwaves intensification in Australia: A consistent trajectory across past, present and future

Heatwaves are defined as unusually high temperature events that occur for at least three consecutive days with major impacts to human health, economy, agriculture and ecosystems. This paper investigates: 1) changes in heatwave characteristics such as peak temperature, number of events, frequency and duration over a past 67-year period in Australia; 2) projected changes in heatwave characteristics for this century in Queensland, northeast Australia; and 3) the avoided heatwave impacts of limiting global warming by 1.5 °C, 2.0 °C and 3.0 °C. The results reveal that heatwaves have increased in intensity, frequency and duration across Australia over the past 67 years, such intensification was particularly higher on recent decades. Downscaled future climate projections for Queensland suggest that heatwaves will further intensify over the current century. The projections also highlight that distinct climatic regions within Queensland may have different heatwave responses under global warming, where tropical and equatorial heatwaves appear to be more sensitive to elevated atmospheric CO(2) concentrations than temperate and arid regions. The results offer new insights to support climate adaptation and mitigation at regional scales. These findings are already being used by health and emergency services to inform the development of statewide policies to mitigate heatwave impacts.

Heatwaves, medications, and heat-related hospitalization in older Medicare beneficiaries with chronic conditions

BACKGROUND: Heatwaves kill more people than floods, tornadoes, and earthquakes combined and disproportionally affect older persons and those with chronic conditions. Commonly used medications for chronic conditions, e.g., diuretics, antipsychotics disrupt thermoregulation or fluid/electrolyte balance and may sensitive patients to heat. However, the effect of heat-sensitizing medications and their interactions with heatwaves are not well-quantified. We evaluated effects of potentially heat-sensitizing medications in vulnerable older patients. METHODS: US Medicare data were linked at the zip code level to climate data with surface air temperatures for June-August of 2007-2012. Patients were Medicare beneficiaries aged ?65 years with chronic conditions including diabetes, dementia, and cardiovascular, lung, or kidney disease. Exposures were potentially heat-sensitizing medications including diuretics, anticholinergics, antipsychotics, beta blockers, stimulants, and anti-hypertensives. A heatwave was defined as ?2 days above the 95th percentile of historical zip code-specific surface air temperatures. We estimated associations of heat-sensitizing medications and heatwaves with heat-related hospitalization using self-controlled case series analysis. RESULTS: We identified 9,721 patients with at least one chronic condition and heat-related hospitalization; 42.1% of these patients experienced a heatwave. Heatwaves were associated with an increase in heat-related hospitalizations ranging from 21% (95% CI: 7% to 38%) to 33% (95% CI: 14% to 55%) across medication classes. Several drug classes were associated with moderately elevated risk of heat-related hospitalization in the absence of heatwaves, with rate ratios ranging from 1.16 (95% CI: 1.00 to 1.35) to 1.37 (95% CI: 1.14 to 1.66). We did not observe meaningful synergistic interactions between heatwaves and medications. CONCLUSIONS: Older patients with chronic conditions may be at heightened risk for heat-related hospitalization due to the use of heat-sensitizing medications throughout the summer months, even in the absence of heatwaves. Further studies are needed to confirm these findings and also to understand the effect of milder and shorter heat exposure.

Health risk for older adults in Madrid, by outdoor thermal and acoustic comfort

Cities must adapt to aging populations and mitigate the effects of climate change and urbanization on health. This study analyses the outdoor thermal and acoustic comfort of older adults in public spaces in Madrid. We compared the subjective perception with real environmental conditions measured in-situ and two thermal comfort indices Physiological Equivalent Temperature (PET) and Universal Thermal Index (UTCI). Additionally, use and stay of older people in those public spaces was assessed. Results showed that older adults represent 26.35% of the users, environmental variables such as mean radiant temperature, air temperature, and noise levels are the most relevant variables for them to decide to stay in these places. Although most of the 413 interviewees perceived the environment as comfortable, this research shows that in dense urban areas there is a significant health risk due to noise pollution and extreme temperatures. Average noise levels measured exceed the maximum threshold recommended by the World Health Organization and according to PET and UTCI indices around 73% of the interviewees would be in risk of thermal stress in winter and 98.2% in summer. The need for further research to find strategies to mitigate the environmental risks of older people in public spaces is evident.

Health-relevant ground-level ozone and temperature events under future climate change using the example of Bavaria, Southern Germany

Relationships of larger scale meteorological predictors with ground-level daily maximum ozone (O-3max) and daily maximum air temperature (T-max) for stations in Bavaria were analysed. O-3max and T-max as well as threshold exceedances of these variables were assessed under the constraints of ongoing climate change until the end of the twenty-first century. Under RCP8.5 scenario conditions, a substantial increase of T-max in the months from April to September arose, with a mean value of 5 K in the period 2081-2100 compared with the historical period 1986-2005. Statistical downscaling projections pointed to a mean O-3max rise of 17 mu g/m(3). The frequency of threshold exceedances showed also large changes. Hot days may occur in the future at about 30% of all days. Exceedances of O-3max > 100 mu g/m(3) were projected to increase to about 40% of all days at urban traffic sites and up to about 70% in the rural regional background. Days with O-3max > 120 mu g/m(3) occurred still at about 20% of all days at urban traffic sites and at about 45% in rural regional background locations. With respect to combined T-max > 30 degrees C and O-3max > 100 mu g/m(3) events in the future, an occurrence of such events at about 27-29% of all days in the summer months from April to September was assessed. The increases were mainly associated with the strong temperature rise until the end of the century. In summary, the projected T-max and O-3max changes point to a considerable increased health burden in Bavaria until the end of the century, resulting from strong changes of both variables and their associated individual and combined impact on human health.

Heart rate variability in older men on the day following prolonged work in the heat

Susceptibility to heat illness during physically demanding work in hot environments is greater on the second of two consecutive workdays. While it has been demonstrated that heat storage is exacerbated on the second compared to first workday in older workers (50-65?yr), the effects on heart rate variability (HRV), an established surrogate of cardiac autonomic modulation, remain unclear. This study evaluated HRV in older workers on the day following prolonged work in the heat. Electrocardiogram was recorded in nine older (53-64?yr) males at rest, during three 30-min bouts of semi-recumbent cycling at fixed rates of metabolic heat production (150, 200, 250?W/m(2)), each separated by 15-min recovery. Experiments were conducted in hot-dry conditions (40?°C, 20% relative humidity), immediately prior to (Day 1), and on the day following (Day 2), a prolonged work simulation (?7.5?hr) involving moderate intensity intermittent exercise in hot-dry conditions (38?°C, 34% relative humidity). Core temperature, as well as time, frequency, and nonlinear HRV indices were derived for analysis during rest, the final 5-min of exercise at the highest heat production and recovery. The change in core temperature at the end of work (mean?±SD) was significantly greater on Day 2 (1.0?°C?±0.3) relative to Day 1 (0.8?°C?±0.2; p??0.05). Prolonged work in the heat did not modulate next-day heart rhythms, as reflected by HRV, despite augmented core temperature. While HRV can reflect physiological aspects of cardiac autonomic stressors, these findings indicate it does not provide a means to identify exacerbated heat strain in older workers over consecutive work shifts in the heat.

Heart rate variability in older workers during work under the Threshold Limit Values for heat exposure

BACKGROUND: The Threshold Limit Values (TLV) of the American Conference of Governmental and Industrial Hygienists indicate the levels of heat stress that all workers may be repeatedly exposed to without adverse health effects. In this study, we evaluated heart rate variability (HRV) during moderate-to-heavy work performed continuously or according to different TLV work-rest (WR) allocations in healthy physically active older workers. METHODS: Nine healthy older (58?±?5?years) males performed three different 120-minute conditions in accordance with TLV guidelines for moderate-to-heavy intensity work (360?W fixed rate of heat production) in different wet-bulb globe temperatures (WBGT): continuous cycling at 28°C WBGT (CON), as well as intermitted work performed at WR of 3:1 in 29°C WBGT (WR3:1), and at WR of 1:1 at 30°C (WR1:1). Rectal temperature and HRV (3-lead electrocardiogram [ECG]) were assessed throughout. RESULTS: Coefficient of Variation, Poincaré SD2, and Shannon Entropy were decreased during the CON compared with the WR3:1 when core temperature exceeded 38°C and after 1?hour of continuous work (P?

Heat and ozone pollution waves in Central and South Europe – Characteristics, weather types, and association with mortality

Air pollution and hot temperatures present two major health risks, especially for vulnerable groups such as children, the elderly, and people with pre-existing conditions. Episodes of high ozone concentrations and heat waves have been registered throughout Europe and are expected to continue to grow due to climate change. Here, several different heat and ozone wave definitions were applied to characterize the wave-type extremes for two climatically different regions, i.e., Portugal (South Europe) and Bavaria (Central Europe), and their impacts were evaluated considering each type of hazard independently but also when they occur simultaneously. Heat and ozone waves were analyzed with respect to the underlying atmospheric circulation patterns and in terms of their association with human mortality. Heat waves were identified as the most frequent wave type and, despite different climate settings, a comparable exposure to heat and ozone waves was found in Central and South Europe. Waves were associated with in-situ built-up as well as with advection of air masses. However, in Bavaria waves showed the strongest connection with autochthonous weather conditions, while for Portugal, the strongest relationship appeared for eastern and north-eastern inflow. The most severe events, as measured by excess mortality, were always associated to compound heat-ozone waves.

Heat exposure from tropical deforestation decreases cognitive performance of rural workers: An experimental study

The effect of tropical deforestation on heat exposure and subsequent human health outcomes remains understudied, especially among an increasingly vulnerable population-healthy, adult subsistence workers in rural industrializing tropical countries. We report on a field experiment that estimated the short-term effects of heat exposure from deforestation on cognitive performance. We randomly assigned rural, adult subsistence workers in East Kalimantan, Indonesia to deforested or forested settings, and standard or high incentive piece rate payments. Participants worked in forested or deforested settings for up to 90 min, where ambient and black globe temperatures in deforested areas were, on average, 2.1 degrees C and 10 degrees C higher. After completing the experimental task, participants were asked to take a validated general cognitive assessment test (CAT) and episodic memory test (EMT). We found participants in deforested settings had statistically significant lower scores on both CAT and EMT. Effects were largely driven by heat effects on male participants and those working after noon. Our results highlight how heat exposure from tropical deforestation may lead to declines in cognitive performance even in favorable work settings. Policymakers should consider how land use planning that takes into account the cooling services of trees can play a significant role in increasing resilience to heat from climate and land use change in the tropics.

Heat extremes, public health impacts, and adaptation policy in Germany

Global warming with increasing weather extremes, like heat events, is enhancing impacts to public health. This essay focuses on unusual extreme summer heat extremes occurring in Germany at higher frequency, longer duration, and with new temperature records. Large areas of the country are affected, particularly urban settlements, where about 77% of the population lives, which are exposed to multiple inner-city threats, such as urban heat islands. Because harm to public health is directly released by high ambient air temperatures, local and national studies on heat-related morbidity and mortality indicate that vulnerable groups such as the elderly population are predominantly threatened with heat-related health problems. After the severe mortality impacts of the extreme summer heat 2003 in Europe, in 2008, Germany took up the National Adaptation Strategy on Climate Change to tackle and manage the impacts of weather extremes, for example to protect people’s health against heat. Public health systems and services need to be better prepared to improve resilience to the effects of extreme heat events, e.g., by implementing heat health action plans. Both climate protection as well as adaptation are necessary in order to be able to respond as adequate as possible to the challenges posed by climate change.

Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators

More than half of the world’s population currently live in urban areas and are particularly at risk from the combined effects of the urban heat island phenomenon and heat increases due to climate change. Here, by using remotely sensed surface temperature data and social-ecological indicators, focusing on the hot dry season, and applying the risk framework of the Intergovernmental Panel on Climate Change, we assessed the current heat health risk in 139 Philippine cities, which account for about 40% of the country’s total population. The cities at high or very high risk are found in Metro Manila, where levels of heat hazard and exposure are high. The most vulnerable cities are, however, found mainly outside the national capital region, where sensitivity is higher and capacity to cope and adapt is lower. Cities with high levels of heat vulnerability and exposure must be prioritized for adaptation. Our results will contribute to risk profiling in the Philippines and to the understanding of city-level heat health risks in developing regions of the Asia-Pacific.

Heat related illness among workers in Washington State: A descriptive study using workers’ compensation claims, 2006-2017

BACKGROUND: Heat related illness (HRI) places a significant burden on the health and safety of working populations and its impacts will likely increase with climate change. The aim of this study was to characterize the demographic and occupational characteristics of Washington workers who suffered from HRI from 2006 to 2017 using workers’ compensation claims data. METHODS: We used Washington workers’ compensation data linked to weather station data to identify cases of work-related HRI. We utilized Occupational Injury and Illness Classification System codes, International Classification of Diseases 9/10 codes, and medical review to identify accepted and rejected Washington State (WA) workers’ compensation claims for HRI from 2006 to 2017. We estimated rates of HRI by industry and evaluated patterns by ambient temperature. RESULTS: We detected 918 confirmed Washington workers’ compensation HRI claims from 2006 to 2017, 654 were accepted and 264 were rejected. Public Administration had the highest third quarter rate (131.3 per 100?000 full time employees [FTE]), followed by Agriculture, Forestry, Fishing, and Hunting (102.6 per 100?000 FTE). The median maximum daytime temperature was below the Washington heat rule threshold for 45% of the accepted HRI claims. Latinos were estimated to be overrepresented in HRI cases. CONCLUSION: The WA heat rule threshold may not be adequately protecting workers and racial disparities are present in occupational HRI. Employers should take additional precautions to prevent HRI depending on the intensity of heat exposure. States without heat rules and with large industry sectors disproportionately affected by HRI should consider regulations to protect outdoor workers in the face of more frequent and extreme heat waves.

Heat related mortality in the two largest Belgian urban areas: A time series analysis

BACKGROUND: Summer temperatures are expected to increase and heat waves will occur more frequently, be longer, and be more intense as a result of global warming. A growing body of evidence indicates that increasing temperature and heatwaves are associated with excess mortality and therefore global heating may become a major public health threat. However, the heat-mortality relationship has been shown to be location-specific and differences could largely be explained by the most frequent temperature. So far, in Belgium there is little known regarding the heat-mortality relationship in the different urban areas. OBJECTIVES: The objective of this study is to assess the heat-mortality relationship in the two largest urban areas in Belgium, i.e. Antwerp and Brussels for the warm seasons from 2002 until 2011 taking into account the effect of air pollution. METHODS: The threshold in temperature above which mortality increases was determined using segmented regressions for both urban areas. The relationship between daily temperature and mortality above the threshold was investigated using a generalized estimated equation with Poisson distribution to finally determine the percentage of deaths attributable to the effect of heat. RESULTS: Although only 50 km apart, the heat-mortality curves for the two urban areas are different. More specifically, an increase in mortality occurs above a maximum temperature of 25.2 °C in Antwerp and 22.8 °C in Brussels. We estimated that above these thresholds, there is an increase in mortality of 4.9% per 1 °C in Antwerp and of 3.1% in Brussels. During the study period, 1.5% of the deaths in Antwerp and 3.5% of the deaths in Brussels can be attributed to the effect of heat. The thresholds differed considerably from the most frequent temperature, particularly in Antwerp. Adjustment for air pollution attenuated the effect of temperature on mortality and this attenuation was more pronounced when adjusting for ambient ozone. CONCLUSION: Our results show a significant effect of temperature on mortality above a city-specific threshold, both in Antwerp and in Brussels. These findings are important given the ongoing global warming. Recurrent, intense and longer episodes of high temperature and expected changes in air pollutant levels will have an important impact on health in urban areas.

Heat strain in children during unstructured outdoor physical activity in a continental summer climate

The purpose of this study was to assess the heat strain experienced by children during unstructured physical activity outdoors in a temperate continental summer climate. Eighteen children (7 girls, 12.1 ± 1.7 years) performed up to 4 h of outdoor free-play (duration: 218 ± 33 min; air temperature of 24.5 ± 3.9°C and relative humidity of 66.2 ± 9.2%). Urine specific gravity (USG) was measured pre- and post-free-play, while body core temperature (T(co), ingestible pill) and heart rate (HR) were measured continuously. Physiological strain index (PSI) was calculated from T(co) and HR (scale: 0 (none) to 10 (very high)). Activity levels were categorized as rest, light, moderate, and vigorous based on the metabolic equivalent of task, estimated from video analysis. Most children were euhydrated pre (78%, USG ? 1.020), but not post-free-play (28%, USG ? 1.020). Mean and peak T(co), HR, and PSI responses were 37.8 ± 0.3°C and 38.4 ± 0.3°C, 133 ± 14 bpm and 180 ± 12 bpm, and 4.7 ± 1.1 (low) and 7.4 ± 1.0 (high), respectively. All children reached peak T(co)?38.0°C, with seven ?38.5°C, and the highest at 38.9°C. The children spent 58 ± 15% of free-play engaged in moderate-to-vigorous intensity physical activity. During free-play, all of the children performed moderate-to-vigorous intensity physical activity, which was associated with pronounced elevations in heat strain.

Heat stress and thermal perception amongst healthcare workers during the COVID-19 pandemic in India and Singapore

The need for healthcare workers (HCWs) to wear personal protective equipment (PPE) during the coronavirus disease 2019 (COVID-19) pandemic heightens their risk of thermal stress. We assessed the knowledge, attitudes, and practices of HCWs from India and Singapore regarding PPE usage and heat stress when performing treatment and care activities. One hundred sixty-five HCWs from India (n = 110) and Singapore (n = 55) participated in a survey. Thirty-seven HCWs from Singapore provided thermal comfort ratings before and after ice slurry ingestion. Differences in responses between India and Singapore HCWs were compared. A p-value cut-off of 0.05 depicted statistical significance. Median wet-bulb globe temperature was higher in India (30.2 °C (interquartile range [IQR] 29.1-31.8 °C)) than in Singapore (22.0 °C (IQR 18.8-24.8 °C)) (p < 0.001). Respondents from both countries reported thirst (n = 144, 87%), excessive sweating (n = 145, 88%), exhaustion (n = 128, 78%), and desire to go to comfort zones (n = 136, 84%). In Singapore, reports of air-conditioning at worksites (n = 34, 62%), dedicated rest area availability (n = 55, 100%), and PPE removal during breaks (n = 54, 98.2%) were higher than in India (n = 27, 25%; n = 46, 42%; and n = 66, 60%, respectively) (p < 0.001). Median thermal comfort rating improved from 2 (IQR 1-2) to 0 (IQR 0-1) after ice slurry ingestion in Singapore (p < 0.001). HCWs are cognizant of the effects of heat stress but might not adopt best practices due to various constraints. Thermal stress management is better in Singapore than in India. Ice slurry ingestion is shown to be practical and effective in promoting thermal comfort. Adverse effects of heat stress on productivity and judgment of HCWs warrant further investigation.

Heat stress monitoring based on heart rate measurements

Currently, occupational heat exposure is usually measured using environmental variables such as the wet bulb globe temperature index. The costs of heat stress monitoring include the acquisition of specialized equipment and the recruitment of trained personnel. In rapidly changing environments, such as outdoor settings, these assessments must be conducted on a daily basis. The wet bulb globe temperature index has been criticized as a measure of heat stress for its failure to account for individual differences in susceptibility to heat stress, age, body mass index, physical fitness, clothing, illnesses and use of alcohol or drugs. The objective of this study was to assess the relationship between heart rate and body temperature in heat-exposed workers to determine whether heart rate can be used to monitor and prevent heat stress and physiological strain. This study was based on previous literature as well as physiological and environmental data collected from 10 individuals engaged in heavy physical labor. Heart rate, which has been recommended by the American Conference of Governmental Industrial Hygienists (ACGIH) as a possible measure of heat stress, follows a similar trend to body temperature with a slight temporal delay. Heart rate monitors with alarm systems could be developed to notify workers when to slow down their activities or take a break for thermal recovery, thereby contributing to the prevention of heat-related illness.

Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa – Identifying urban planning priorities for adaptation

There is an urgent need to map the geographic location of climate change risks and vulnerability, especially for cities in sub-Saharan Africa, which are experiencing the greatest urban development challenges and vulnerability to climate change impacts. The aim of this study is to investigate current and projected future heat risk, expressed as a heat stress exposure index using high-resolution climate change projections, and a social vulnerability index, to identify areas of potential future heat stress risk in the Durban (eThekwini) metropolitan area, South Africa. Additionally, this is the first study to use high-resolution downscaled climate change projections under Representative Concentration (RCP) 8.5, to construct the heat exposure index using apparent temperature and increases in minimum temperature and a social vulnerability index, using demographic and socio-economic census and land use data to, derived from principal component analysis (PCA) to spatially characterize heat stress within a South African city. Results show that while heat stress is not a current concern, it is projected to increase and become a future concern, mainly as a function of social vulnerability due to household demographic and infrastructural characteristics, and will be experienced in both the rural and inner-city areas of the metro. This study contributes a heat risk framework to identify locations for specific research and adaptation activities on heat stress risk and for urban planning in sub-Saharan African cities, which are characterized by both rural and urban contexts, to address climate change adaptation targeting and priority setting.

Heat stress, a hidden cause of accidents in construction

Extreme heat stress has a deep impact on physiological reactions, which results in occupational injuries and deaths. In this paper, an attempt is made to understand the impact of heat stress on construction accidents in Oman. A literature review on heat stress is discussed in the first section followed by an analysis of 623 accidents that occurred in a highway project. The analysis of these accidents reveals that more severe accidents on this project took place from 11:00 to 17:00. The semi-structured interview held with some of the workers involved in these accidents confirmed excessive heat as one of the main reason behind these accidents. The health profile of the same workers is measured in terms of their body mass index and blood pressure. The results show that 80% of the workers from the selected sample were found to be overweight or obese and 40% of the participants were hypertensive. The safety performance of such workers is particularly discussed in relation to heat stress. The effective implementations of day time break in summer, a healthy diet, appropriate sleeping habit, scheduling physically demanding tasks during early morning and evening and adopting light colour and loose fitting uniform could reduce the impact of heat stress.

Heat stress, physiological response, and heat-related symptoms among Thai Sugarcane workers

Prolonged or intense exposure to heat can lead to a range of health effects. This study investigated heat exposure and heat-related symptoms which sugarcane workers (90 sugarcane cutters and 93 factory workers) experienced during a harvesting season in Thailand. During the hottest month of harvesting season, wet bulb globe temperature was collected in the work environment, and workloads observed, to assess heat stress. Urine samples for dehydration test, blood pressure, heart rate, and body temperature were measured pre- and post-shift to measure heat strain. Fluid intake and heat-related symptoms which subjects had experienced during the harvesting season were gathered via interviews at the end of the season. From the results, sugarcane cutters showed high risk for heat stress and strain, unlike factory workers who had low risk based on the American Conference of Governmental Industrial Hygiene (ACGIH) threshold limit values (TLVs) for heat stress. Dehydration was observed among sugarcane cutters and significant physiological changes including heart rate, body temperature, and systolic blood pressure occurred across the work shift. Significantly more sugarcane cutters reported experiencing heat-related symptoms including weakness/fatigue, heavy sweating, headache, rash, muscle cramp, dry mouth, dizziness, fever, dry/cracking skin, and swelling, compared to sugarcane factory workers. We conclude that the heat stress experienced by sugarcane cutters working in extremely hot environments, with high workloads, is associated with acute health effects. Preventive and control measures for heat stress are needed to reduce the risk of heat strain.

Heat vulnerability and Heat Island mitigation in the United States

Heat waves are the deadliest type of natural hazard among all weather extremes in the United States. Given the observed and anticipated increase in heat risks associated with ongoing climate change, this study examines community vulnerability to extreme heat and the degree to which heat island mitigation (HIM) actions by state/local governments reduce heat-induced fatalities. The analysis uses all heat events that occurred over the 1996-2011 period for all United States counties to model heat vulnerability. Results show that: (1) Higher income reduces extreme heat vulnerability, while poverty intensifies it; (2) living in mobile homes or rental homes heightens susceptibility to extreme heat; (3) increased heat vulnerability due to the growth of the elderly population is predicted to result in a two-fold increase in heat-related fatalities by 2030; and (4) community heat island mitigation measures reduce heat intensities and thus heat-related fatalities. Findings also show that an additional locally implemented measure reduces the annual death rate by 15%. A falsification test rules out the possibility of spurious inference on the life-saving role of heat island mitigation measures. Overall, these findings inform efforts to protect the most vulnerable population subgroups and guide future policies to counteract the growing risk of deadly heat waves.

Heat wave and elderly mortality: Historical analysis and future projection for metropolitan region of Sao Paulo, Brazil

The Metropolitan Region of Sao Paulo (MRSP) is one of the main regions of Brazil that in recent years has shown an increase in the number of days with heat waves, mainly affecting the health of the most sensitive populations, such as the elderly. In this study, we identified the heat waves in the MRSP using three different definitions regarding the maximum daily temperature threshold. To analyze the impact of heat waves on elderly mortality, we used distributed lag nonlinear models (dlnm) and we quantified the heat wave-related excess mortality of elderly people from 1985 to 2005 and made projections for the near future (2030 to 2050) and the distant future (2079-2099) under the climate change scenarios RCP4.5 and RCP8.5 (RCP: Representative Concentration Paths). An important aspect of this research is that for the projections we take into account two assumptions: non-adaptation and adaptation to the future climate. Our projections show that the heat wave-related excess of elderly mortality will increase in the future, being highest when we consider no adaptation, mainly from cardiovascular diseases in women (up to 587 deaths per 100,000 inhabitants per year). This study can be used for public policies to implement preventive and adaptive measures in the MRSP.

Extreme heat kills even in very hot cities: Evidence from Nagpur, India

BACKGROUND: Although many studies have provided evidence for all-cause mortality attributed to extreme temperature across India, few studies have provided a systematic analysis of the association between all-cause mortality and temperature. OBJECTIVE: To estimate the risk associated with heat waves during two major heat waves of Nagpur occurred in 2010 and 2014. METHODS: The association between temperature and mortality was measured using a distributed lag non-linear model (DLNM) and the attributable deaths associated with the heat waves with forward perspective in the DLNM framework. RESULTS: From the ecological analysis, we found 580 and 306 additional deaths in 2010 and 2014, respectively. Moving average results also gave similar findings. DLNM results showed that the relative risk was 1.5 for the temperature above 45 °C; forward perspective analysis revealed that the attributable deaths during 2010 and 2014 were 505 and 376, respectively. Results from different methods showed that heat waves in different years had variable impacts for various reasons. However, all the results were consistent during 2010 and 2014; there were 30% and 14% extra-mortalities due to heat comparing to non-heat wave years. CONCLUSION: We strongly recommend the city Government to implement the action plans based on this research outcome to reduce the risk from the heat wave in future.

From theory to practice: Operationalizing a climate vulnerability for sport organizations framework for heat hazards among US high schools

BACKGROUND: Sport organizations must comprehensively assess the degree to which their athletes are susceptible to exertional heat illnesses (i.e. vulnerable) to appropriately plan and adapt for heat-related hazards. Yet, no heat vulnerability framework has been applied in practice to guide decision making. OBJECTIVES: We quantify heat vulnerability of state-level requirements for health and safety standards affecting United States (US) high school athletes as a case study. DESIGN: Observational. METHODS: We utilize a newly developed climate vulnerability to sports organizations framework (CVSO), which considers the heat hazard of each state using summer maximum wet bulb globe temperature (WBGT) in combination with an 18-point heat safety scoring system (18 = best policy). Heat vulnerability is categorized as “problem” [higher heat (>27.9°C) and lower policy score (?9)], “fortified” [higher heat (>27.9°C) and higher policy score (>9)], “responsive” [lower heat (<27.9°C) and lower policy score (?9)], and “proactive” [lower heat (<27.9°C) and higher policy score (>9)]. RESULTS: Across the US, the mean WBGT was 28.4±2.4°C and policy score was 6.9±4.7. In combination, we observed organizations within each of the four vulnerability categories with 16% (n=8) in fortified, 16% (n=8) in proactive, 29% (n=15) in problem, and 39% (n=20) in responsive. CONCLUSIONS: The CSVO framework allowed us to identify different degrees of vulnerability among the state’s and to highlight the 29% (n=15) of states with immediate needs for policy revisions. We found the CSVO framework to be highly adaptable in our application, suggesting feasibility for use with other sports governing bodies.

Future risks of unprecedented compound heat waves over three vast urban agglomerations in China

Accounting for only a limited fraction of Earth’s land surface, urban areas accommodate more than half the global population. The projected increasing severe heat waves with global warming exert a profound threat to the dense urban population and infrastructure. Despite abundant past studies on heat waves, there was a lack of attention to the daytime-nighttime compound heat waves. Here, we categorize summertime heat waves into three distinct types, that is, independent daytime or nighttime heat waves and compound heat waves. Using a universal heat wave metric, we identify the strongest compound heat waves on record (1961-2015) in three vast urban agglomerations in China. We demonstrate substantial increase of the land areas affected by severe compound heat waves over the past three decades. We further quantify the changes in areal and population exposures to future unprecedented compound heat waves. Our results show that under a high-end emission scenario, 50% (100%) of the land area in the Beijing-Tianjin-Hebei region, the Yangtze River Delta, and the Pearl River Delta will be exposed to historically unprecedented compound heat waves on a regular basis by 2050 (2090), 2050 (2070), and 2030 (2050), respectively. Such enhancing heat hazard will induce increasing population exposure of nearly 70, 90, and 60 million to unprecedented compound heat waves by the end of this century (relative to the 2010s). Our findings call for effective mitigation and adaptation strategies to alleviate the risks of unprecedented compound heat waves in rapidly developing populous urban areas. Plain Language Summary Extreme heat waves impose devastating impacts on human health, economy, and the environment. The risk of extreme heat stress tends to be higher in urban areas than in surroundings, due to greater population exposure and added heat stress from urban heat island. Compared to daytime- or nighttime-only heat waves, the risk of compound heat waves that combine scorching days and sweltering nights sequentially tends to be higher. Focusing on top three populous urban agglomerations in China, this study dissects summertime heat waves into three nonoverlapping types and identifies the strongest heat waves on record based on a universal metric of heat wave magnitude. Projections show that unprecedented compound heat waves will become the norm since around 2045 (2060), 2045 (2065), and 2030 (2040) in the Beijing-Tianjin-Hebei region, the Yangtze River Delta, and the Pearl River Delta, respectively, under RCP8.5 (RCP4.5) emission scenario. Enhancing heat hazards will translate into increasing population exposure of about 70, 90, and 60 million to unprecedented compound heat waves by the end of this century, which are concentrated on the highly urbanized areas, such as Beijing, Shanghai, Guangzhou, and Shenzhen. This study highlights the urgent adaptation and mitigation efforts for cities against compound heat waves in particular.

Global socioeconomic exposure of heat extremes under climate change

Growing evidence indicates that the risk of heat extremes will increase as climate change progresses and create a significant threat to public health and the economy. Socioeconomic exposure is the key component for assessing the risk of such events. To quantify socioeconomic exposure to heat extremes for 2016-2035 and 2046-2065, we use the projections of five global climate models forced by using three representative concentration pathways (RCPs) and projections of population and gross domestic product (GDP), and we take into account the geographic change in the distribution in shared socioeconomic pathways (SSPs). The exposure of the global population for 2046-2065 is the greatest under the RCP8.5-SSP3 scenario, up to 1037(+/- 164) x 10(9) person-days, and the global GDP exposure for 2046-2065 is greatest under the RCP2.6-SSP1 scenario, up to 18(+/- 2) x 10(15) dollar-days. Asia has the highest exposure among all continents for both population and GDP, accounting for over half of the global exposure. Africa has the largest increase in exposure, with the annual population and GDP exposures increasing by over 9- and 29-fold, respectively, compared with the base period (1986-2005). The effect of climate makes the dominant contribution (47%-53%) globally for the change in population exposure. Changes in the geographic distribution of GDP cause nearly 50% of the total change in GDP exposure for 2016-2035. Mitigating emissions of greenhouse gases, either at the level of the RCP2.6 scenario or at a more ambitious target, is essential for reducing socioeconomic exposure to heat extremes. In addition, designing and implementing effective measures of adaptation are urgently needed in Asia and Africa to aid socioeconomic systems suffering from heat extremes due to climate change. (C) 2020 Elsevier Ltd. All rights reserved.

Greater thermoregulatory strain in the morning than late afternoon during judo training in the heat of summer

PURPOSE: The time-of-day variations in environmental heat stress have been known to affect thermoregulatory responses and the risk of exertional heat-related illness during outdoor exercise in the heat. However, such effect and risk are still needed to be examined during indoor sports/exercises. The current study investigated the diurnal relationships between thermoregulatory strain and environmental heat stress during regular judo training in a judo training facility without air conditioning on a clear day in the heat of summer. METHODS: Eight male high school judokas completed two 2.5-h indoor judo training sessions. The sessions were commenced at 09:00 h (AM) and 16:00 h (PM) on separate days. RESULTS: During the sessions, indoor and outdoor heat stress progressively increased in AM but decreased in PM, and indoor heat stress was less in AM than PM (mean ambient temperature: AM 32.7±0.4°C; PM 34.4±1.0°C, P<0.01). Mean skin temperature was higher in AM than PM (P<0.05), despite greater dry and evaporative heat losses in AM than PM (P<0.001). Infrared tympanic temperature, heart rate and thermal sensation demonstrated a trial by time interaction (P<0.001) with no differences at any time point between trials, showing relatively higher responses in these variables in PM compared to AM during the early stages of training and in AM compared to PM during the later stages of training. There were no differences between trials in body mass loss and rating of perceived exertion. CONCLUSIONS: This study indicates a greater thermoregulatory strain in the morning from 09:00 h than the late afternoon from 16:00 h during 2.5-h regular judo training in no air conditioning facility on a clear day in the heat of summer. This observation is associated with a progressive increase in indoor and outdoor heat stress in the morning, despite a less indoor heat stress in the morning than the afternoon.

Hantavirus pulmonary syndrome outbreaks associated with climate variability in northwestern Argentina, 1997-2017

BACKGROUND: Rodent-borne hantaviruses (genus Orthohantavirus) are the etiologic agents causing two human diseases: hemorrhagic fever with renal syndrome (HFRS) in Euroasia; and hantavirus pulmonary syndrome (HPS) in North and South America. In South America fatality rates of HPS can reach up to 35%-50%. The transmission of pathogenic hantaviruses to humans occurs mainly via inhalation of aerosolized excreta from infected rodents. Thus, the epidemiology of HPS is necessarily linked to the ecology of their rodent hosts and the contact with a human, which in turn may be influenced by climatic variability. Here we examined the relationship between climatic variables and hantavirus transmission aim to develop an early warning system of potential hantavirus outbreaks based on ecologically relevant climatic factors. METHODOLOGY AND MAIN FINDINGS: We compiled reported HPS cases in northwestern Argentina during the 1997-2017 period and divided our data into biannual, quarterly, and bimestrial time periods to allow annual and shorter time delays to be observed. To evaluate the relationship of hantavirus transmission with mean temperature and precipitation we used dynamic regression analysis. We found a significant association between HPS incidence and lagged rainfall and temperature with a delay of 2 to 6 months. For the biannual and quarterly models, hantavirus transmission was positively associated with lagged rainfall and temperature; whereas the bimestrial models indicate a direct relationship with the rainfall but inverse for temperature in the second lagged period. CONCLUSIONS/SIGNIFICANCE: This work demonstrates that climate variability plays a significant role in the transmission of hantavirus in northwestern Argentina. The model developed in this study provides a basis for the forecast of potential HPS outbreaks based on climatic parameters. Our findings are valuable for the development of public health policies and prevention strategies to mitigate possible outbreaks. Nonetheless, a surveillance program on rodent population dynamics would lead to a more accurate forecast of HPS outbreaks.

Health effects of heat vulnerability in Rio de Janeiro: A validation model for policy applications

Extreme heat events can lead to increased risk of heat-related deaths. Furthermore, urban areas are often hotter than their rural surroundings, exacerbating heat waves. Unfortunately, validation is difficult; to our knowledge, most validations, even if they control for temperatures, really only validate a social vulnerability index instead of a heat vulnerability index. Here we investigate how to construct and validate a heat vulnerability index given uncertainty ranges in data for the city of Rio de Janeiro. First, we compare excess deaths of certain types of circulatory diseases during heat waves. Second, we use demographic and environmental data and factor analysis to construct a set of unobserved factors and respective weightings related to heat vulnerability, including a Monte Carlo analysis to represent the uncertainty ranges assigned to the input data. Finally, we use distance to hospital and clinics and their health record data as an instrumental variable to validate our factors. We find that we can validate the Rio de Janeiro heat vulnerability index against excess deaths during heat waves; specifically, we use three types of regressions coupled with difference in difference calculations to show this is indeed a heat vulnerability index as opposed to a social vulnerability index. The factor analysis identifies two factors that contribute to >70% of the variability in the data; one socio-economic factor and one urban form factor. This suggests it is necessary to add a step to existing methods for validation of heat vulnerability indices, that of the difference-in-difference calculation.

Energy-efficient mitigation measures for improving indoor thermal comfort during heat waves

Urban areas are increasingly impacted by the urban heat island effect, especially during heat waves. In the context of improving energy efficiency in buildings, passive and energy-efficient cooling methods are needed for reducing indoor heat stress and lowering building energy consumption during heat waves. In this study, a whole building simulation model that includes both moisture and heat transport in wall envelopes and indoor environment is developed. An analytical solution and two test cases are used to validate the developed model. The developed model is applied to study indoor thermal conditions in urban areas in Zurich, Switzerland in a hot summer. The results show that indoor temperature could not be accurately simulated when moisture transport in the wall envelopes is neglected. Due to the urban heat island effect, night ventilation is not sufficient to cool down the indoor environment during the heat wave in the urban area. The potential of precooling before the heat wave and moisture-desorption cooling from hygroscopic materials have been studied to reduce indoor heat stress in the urban area. The average operative temperature during the heat wave can be reduced by 0.43 degrees C by precooling before the start of the heat wave, whereas desorption cooling from hygroscopic materials could reduce the average operative temperature during heat waves by 1.31 degrees C. A combination of these two mitigation measures could lead to enhanced passive cooling effect. There is a large potential of using desorption of hygroscopic material to reduce heat stress during heatwaves, while minimizing energy consumption of buildings.

Enhancing fine-grained intra-urban dengue forecasting by integrating spatial interactions of human movements between urban regions

BACKGROUND: As a mosquito-borne infectious disease, dengue fever (DF) has spread through tropical and subtropical regions worldwide in recent decades. Dengue forecasting is essential for enhancing the effectiveness of preventive measures. Current studies have been primarily conducted at national, sub-national, and city levels, while an intra-urban dengue forecasting at a fine spatial resolution still remains a challenging feat. As viruses spread rapidly because of a highly dynamic population flow, integrating spatial interactions of human movements between regions would be potentially beneficial for intra-urban dengue forecasting. METHODOLOGY: In this study, a new framework for enhancing intra-urban dengue forecasting was developed by integrating the spatial interactions between urban regions. First, a graph-embedding technique called Node2Vec was employed to learn the embeddings (in the form of an N-dimensional real-valued vector) of the regions from their population flow network. As strongly interacting regions would have more similar embeddings, the embeddings can serve as “interaction features.” Then, the interaction features were combined with those commonly used features (e.g., temperature, rainfall, and population) to enhance the supervised learning-based dengue forecasting models at a fine-grained intra-urban scale. RESULTS: The performance of forecasting models (i.e., SVM, LASSO, and ANN) integrated with and without interaction features was tested and compared on township-level dengue forecasting in Guangzhou, the most threatened sub-tropical city in China. Results showed that models using both common and interaction features can achieve better performance than that using common features alone. CONCLUSIONS: The proposed approach for incorporating spatial interactions of human movements using graph-embedding technique is effective, which can help enhance fine-grained intra-urban dengue forecasting.

Environmental factors associated with general practitioner consultations for allergic rhinitis in London, England: A retrospective time series analysis

OBJECTIVES: To identify key predictors of general practitioner (GP) consultations for allergic rhinitis (AR) using meteorological and environmental data. DESIGN: A retrospective, time series analysis of GP consultations for AR. SETTING: A large GP surveillance network of GP practices in the London area. PARTICIPANTS: The study population was all persons who presented to general practices in London that report to the Public Health England GP in-hours syndromic surveillance system during the study period (3 April 2012 to 11 August 2014). PRIMARY MEASURE: Consultations for AR (numbers of consultations). RESULTS: During the study period there were 186?401 GP consultations for AR. High grass and nettle pollen counts (combined) were associated with the highest increases in consultations (for the category 216-270 grains/m(3), relative risk (RR) 3.33, 95%?CI 2.69 to 4.12) followed by high tree (oak, birch and plane combined) pollen counts (for the category 260-325 grains/m(3), RR 1.69, 95%?CI 1.32 to 2.15) and average daily temperatures between 15°C and 20°C (RR 1.47, 95%?CI 1.20 to 1.81). Higher levels of nitrogen dioxide (NO(2)) appeared to be associated with increased consultations (for the category 70-85?µg/m(3), RR 1.33, 95%?CI 1.03 to 1.71), but a significant effect was not found with ozone. Higher daily rainfall was associated with fewer consultations (15-20?mm/day; RR 0.812, 95% CI 0.674 to 0.980). CONCLUSIONS: Changes in grass, nettle or tree pollen counts, temperatures between 15°C and 20°C, and (to a lesser extent) NO(2) concentrations were found to be associated with increased consultations for AR. Rainfall has a negative effect. In the context of climate change and continued exposures to environmental air pollution, intelligent use of these data will aid targeting public health messages and plan healthcare demand.

Estimating the climate change consequences on the potential distribution of Culex pipiens L. 1758, to assess the risk of West Nile virus establishment in Chile

Climate change affects the dynamics of vector-borne diseases. Culex pipiens Linnaeus is the main vector of West Nile fever, a widely distributed arbovirus, it is continuously increasing its distribution. Using a species distribution model, maps of suitable habitats of Cx. pipiens were generated for Chile in the current climate and three climate change scenarios, using global and regional georeferenced vector presence records as input, plus bioclimatic variables. Since this virus has not yet arrived in Chile, the purpose of this study is to anticipate potential risk areas and to prevent the establishment and spread of the virus. Cx. pipiens is widely distributed in Chile. The suitable habitats in Chile were concentrated mostly from 32 degrees to 35 degrees S, increasing in future scenarios up to 113 % in the northern zone and moving towards the mountains. This species conserves around 90 % of its niche in the future, and shows a reduction of 11.4 % in the severe climate change scenario. It is anticipated that Chile will experience an increase in the environmental suitability for Cx. pipiens moving from the Andes to the coastal zone throughout the country, mainly in the center-south. This will raise the risk of local virus transmission if the virus is introduced to the country via diverse routes.

Estimating the mortality burden attributable to temperature and PM2.5 from the perspective of atmospheric flow

The flow of the Earth’s atmosphere not only largely determines its temperature status, but also profoundly affects aerosol concentrations. Therefore, exploring how to evaluate the synthetical effects of temperature and aerosol pollution on human health is an important topic. Regarding the atmosphere as a whole, we quantified the mortality burden attributable to short-term exposure to abnormal temperatures and PM2.5 in Beijing from the perspective of atmospheric flow. We first divided the atmospheric stability into three levels (including disturbed, normal, and stable conditions) according to the variations in meteorological conditions and PM2.5 concentrations across the stable weather index levels. We then applied a generalized additive model to separately evaluate the short-term effects of temperature and PM2.5 on mortality under each level of atmospheric stability. We further estimate the associated mortality burden using two indicators, namely attributable fraction and attributable number of deaths. Abnormal temperatures were responsible for most of the mortality burden. Cold temperatures accounted for a substantially higher mortality burden than hot temperatures. The synthetical mortality effects of temperature and PM2.5 varied for different atmospheric stabilities. A stable atmosphere poses the strongest synthetical effects of temperature and PM2.5, while a normal atmosphere provides comparatively beneficial conditions for human health. Our results indicated that the synthetical health impacts of temperature and PM2.5 driven by atmospheric flow need to be considered in the further promulgation of public health policies and air pollution abatement strategies, particularly in the context of climate change.

Evaluating mortality response associated with two different Nordic heat warning systems in Riga, Latvia

Background and objectives: Progressing climate change is accompanied by a worldwide increase in the intensity, frequency, and duration of heat wave events. Research has shown that heat waves are an emerging public health problem, as they have a significant impact on mortality. As studies exploring this relationship are scarce for Latvia, this study aims to investigate the short-term associations between heat waves and all-cause mortality as well as cause-specific mortality, during the summer months (May-September) in Riga. Materials and Methods: An ecological time series study using daily reported mortality and temperature data from Riga between 2009 and 2015 was employed. Heat waves were defined based on the categories of the Latvian and Swedish heat warning system. Using a Quasi-Poisson regression, the relationships between heat waves and all-cause as well as cause-specific mortality were investigated. Results: Heat waves in Riga were associated with a 10% to 20% increase in the risk of all-cause mortality, depending on the applied heat wave definition, compared to days with normal temperature. In addition, heat-related mortality was found to increase significantly in the ?65 age group between 12% and 22% during heat waves. In terms of cause-specific mortality, a significant increase of approximately 15% to 26% was observed for cardiovascular mortality. No significant associations were found between heat waves and respiratory or external causes of mortality. Conclusion: These results indicate that there are short-term associations between heat waves and all-cause as well as cardiovascular mortality in Riga and that heat waves therefore represent a public health problem in this Baltic city.

Evaluation of outdoor thermal comfort conditions in northern Russia over 30-year period (Arkhangelsk region)

The aim of the current paper is to evaluate spatial and temporal characteristics of the distribution of bioclimatic comfort within the Arkhangelsk region (Russian Federation) with two modern indices of thermal comfort: PET and UTCI. Its average values calculated for the modern climatic period (1981-2010) in the monthly mean give a clear picture of spatial heterogeneity for the warmest month (July) and for the coldest one (January). The spatial picture of both indices in July allows us to distinguish three large internal regions: the Arkhangelsk province, the continental part of the Nenets Autonomous Okrug (NAO) and Novaya Zemlya islands (NZ). Winter distribution of thermal discomfort is fundamentally different: the coldest regions (with extreme cold stress) are equally NZ and the eastern half of NAO; intermediate position is occupied by the west of the NAO and the extreme north-east of the Arkhangelsk region, the highest winter UTCI values are observed in the rest of the region. In Archangelsk-city extreme cold stress in January has repeatability 6.7%, in February 4%, in December 2.2%, respectively. The average number of time points during the year at which thermal stress is not observed is only 19%. Obtained results will be the basis for planning relevant health measures and providing reliable forecasts of the effects of climate change in the Arctic region.

Evaluation of the impact of the envelope system on thermal energy demand in hospital buildings

Construction materials and systems for the thermal building envelope have played a key role in the improvement of energy efficiency in buildings. Urban heat islands together with the upcoming rising global temperature demand construction solutions that are adapted to the specific microclimate conditions. These circumstances are even more dramatic in the case of healthcare buildings where the need to preserve constant indoor temperatures is a priority for the proper recovery of patients. A new neonatal hospital, located in Madrid (Spain), has been monitored, and building energy simulations were performed to evaluate the effect of the building envelope on the energy demand. Based on the simulation results, the design of the building envelope was found to be insufficiently optimised to properly protect the building from the external heat flow. This is supported by the monitored results of the indoor temperatures, which went over the standard limit for about 50% of the hours, achieving up to 27 degrees C in June and July, and 28 degrees C in August. The results showed, on one hand, that solar radiation gains transmitted through the facade have an important impact on the indoor temperature in the analysed rooms. Heat gains through the opaque envelope showed an average of 8.37 kWh/day, followed by heat gains through the glazing with an average value of 5.29 kWh/day; while heat gains from lighting and occupancy were 5.21 kWh/day and 4.47 kWh/day, respectively. Moreover, it was shown that a design of the envelope characterised by large glass surfaces and without solar protection systems, resulted in excessive internal thermal loads that the conditioning system was not able to overcome.

Evaporative misters for urban cooling and comfort: Effectiveness and motivations for use

Thermal comfort is an important determinant of quality of life and economic vitality in cities. Strategies to improve thermal comfort may become a more critical part of urban sustainability efforts with projections of continued urban growth and climate change. A case study was performed in the hot, dry summertime climate of Tempe, Arizona to quantify the influence of evaporative misters on the thermal environment in outdoor restaurants and to understand business managers’ motivations to use misters. Microclimate measurements (air temperature (T(a)), wind speed, relative humidity, globe temperature) were taken at five restaurants midday within four exposures: misted sun, misted shade, sun only, and shade only. We assessed T(a), mean radiant temperature (MRT), universal thermal climate index (UTCI), and physiological equivalent temperature (PET) between these four conditions within each location. Misters improved thermal comfort across all days, sites, and exposure conditions. MRT was on average 7.6 °C lower in misted locations, which significantly lowered average PET (- 6.5 °C) and UTCI (- 4.4 °C) (p < 0.05). Thermal comfort was most improved using mist in combination with shade. Under such conditions, PET and UTCI were reduced by 15.5 °C and 9.7 °C (p < 0.05), respectively. Business managers identified customer comfort and increased seating capacity as the principal factors for mister use. Esthetics of misters further encouraged use, while cost and environmental concerns were perceived to be less important. While this case study demonstrates value in outdoor misting in a hot, dry climate, additional work is needed to more fully evaluate tradeoffs between cost, water use, and comfort with continuing urban growth.

Evidence for the range expansion of ciguatera in French Polynesia: A revisit of the 2009 mass-poisoning outbreak in Rapa Island (Australes Archipelago)

Ciguatera poisoning (CP) results from the consumption of seafood contaminated with ciguatoxins (CTXs). This disease is highly prevalent in French Polynesia with several well-identified hotspots. Rapa Island, the southernmost inhabited island in the country, was reportedly free of CP until 2007. This study describes the integrated approach used to investigate the etiology of a fatal mass-poisoning outbreak that occurred in Rapa in 2009. Symptoms reported in patients were evocative of ciguatera. Several Gambierdiscus field samples collected from benthic assemblages tested positive by the receptor binding assay (RBA). Additionally, the toxicity screening of ?250 fish by RBA indicated ?78% of fish could contain CTXs. The presence of CTXs in fish was confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The potential link between climate change and this range expansion of ciguatera to a subtropical locale of French Polynesia was also examined based on the analysis of temperature time-series data. Results are indicative of a global warming trend in Rapa area. A five-fold reduction in incidence rates was observed between 2009 and 2012, which was due in part to self-regulating behavior among individuals (avoidance of particular fish species and areas). Such observations underscore the prominent role played by community outreach in ciguatera risk management.

Examining the joint effects of heatwaves, air pollution, and green space on the risk of preterm birth in California

Background.Exposure to high air temperature in late pregnancy is increasingly recognized as a risk factor for preterm birth (PTB). However, the combined effects of heatwaves with air pollution and green space are still unexplored. In the context of climate change, investigating the interaction between environmental factors and identifying communities at higher risk is important to better understand the etiological mechanisms and design targeted interventions towards certain women during pregnancy.Objectives.To examine the combined effects of heatwaves, air pollution and green space exposure on the risk of PTB.Methods.California birth certificate records for singleton births (2005-2013) were obtained. Residential zip code-specific daily temperature during the last week of gestation was used to create 12 definitions of heatwave with varying temperature thresholds and durations. We fit multi-level Cox proportional hazard models with time to PTB as the outcome and gestational week as the temporal unit. Relative risk due to interaction (RERI) was applied to estimate the additive interactive effect of air pollution and green space on the effect of heatwaves on PTB.Results.In total, 1 967 300 births were included in this study. For PM2.5, PM(10)and O-3, we found positive additive interactions (RERIs >0) between heatwaves and higher air pollution levels. Combined effects of heatwaves and green space indicated negative interactions (RERIs <0) for less intense heatwaves (i.e. shorter duration or relatively low temperature), whereas there were potential positive interactions (RERIs >0) for more intense heatwaves.Conclusion.This study found synergistic harmful effects for heatwaves with air pollution, and potential positive interactions with lack of green space on PTB. Implementing interventions, such as heat warning systems and behavioral changes, targeted toward pregnant women at risk for high air pollution and low green space exposures may optimize the benefits of reducing acute exposure to extreme heat before delivery.

Exercise intensity regulates the effect of heat stress on substrate oxidation rates during exercise

Hyperthermia stimulates endogenous carbohydrate metabolism during exercise; however, it is not known if exercise intensity impacts the metabolic effect of heat stress. In the first study of this two-part investigation, endurance-trained male cyclists performed incremental exercise assessments in 18 and 35 degrees C (60% rH). The stimulatory effect of heat stress on carbohydrate oxidation rates was greater at high vs. moderate vs. low relative intensity (P < 0.05). In agreement, no effects of heat stress on carbohydrate oxidation rates were observed during 60-min of subsequent low-intensity cycling. In study two, endurance-trained male cyclists performed 20-min of moderate-intensity (power at the first ventilatory threshold) and 5-min of high-intensity (power at the second ventilatory threshold) cycling in 18, 28, 34, and 40 degrees C (60% rH). At moderate-intensity, carbohydrate oxidation rates were significantly elevated by heat stress in 40 degrees C (P < 0.05), whereas at high-intensity carbohydrate oxidation rates were significantly elevated by heat stress in 34 and 40 degrees C (P < 0.05). This exercise intensity-mediated regulation of the effect of heat stress on carbohydrate oxidation may be partially attributable to observed plasma adrenaline responses. Our data suggest that under moderate environmental heat stress (34-35 degrees C, 60% rH), heat stress-induced changes in CHO oxidation rates are unlikely to occur unless the relative exercise intensity is high (81 +/- 8%(V)over dotO(2max)), whereas under more extreme environmental heat stress (40 degrees C, 60% rH), these changes occur at lower relative intensities (69 +/- 8%(V)over dotO(2max)). This provides indication of when heat stress-induced metabolic changes during exercise are likely to occur.

Exploratory data analysis and artificial neural network for prediction of leptospirosis occurrence in Seremban, Malaysia based on meteorological data

Leptospirosis outbreaks in various parts of the world have been linked to changes in the weather. Furthermore, the effects have been shown to occur at different lags of up to 10 months, affecting the performance of simulation models that predict leptospirosis occurrence. In Malaysia, the link between different weather parameters, at different time lags, has yet to be established despite an increasing number of cases in recent years. In this study, a combination of data mining and machine learning is used to analyze, capture, and predict the relation between leptospirosis occurrence and temperature, rainfall, and relative humidity using the Seremban district in Malaysia as a case study. First, the optimal time lags for rainfall were determined using graphical exploratory data analysis (EDA) while non-graphical EDA was used for temperature. Then, an artificial neural network (ANN) model is developed to classify the combination of selected features into disease occurrence and non-occurrence using back-propagation training, optimizing the number of hidden layers and hidden nodes. The success is measured using accuracy, sensitivity, and specificity of each model. EDA has shown that leptospirosis occurrence in Seremban is highly correlated with weekly average temperature at lag 16 weeks and weekly rainfall amount at lag 12-20 weeks. Using these selected features, the ANN model achieved the highest accuracy, sensitivity, and specificity at 84.00, 86.44, and 79.33%, respectively. Overall, the EDA approach has increased the accuracy of the predictive model by 13.30-31.26% from the baseline models.

Exploring public awareness of the current and future malaria risk zones in South Africa under climate change: A pilot study

Although only a small proportion of the landmass of South Africa is classified as high risk for malaria, the country experiences on-going challenges relating to malaria outbreaks. Climate change poses a growing threat to this already dire situation. While considerable effort has been placed in public health campaigns in the highest-risk regions, and national malaria maps are updated to account for changing climate, malaria cases have increased. This pilot study considers the sub-population of South Africans who reside outside of the malaria area, yet have the means to travel into this high-risk region for vacation. Through the lens of the governmental “ABC of malaria prevention”, we explore this sub-population’s awareness of the current boundaries to the malaria area, perceptions of the future boundary under climate change, and their risk-taking behaviours relating to malaria transmission. Findings reveal that although respondents self-report a high level of awareness regarding malaria, and their boundary maps reveal the broad pattern of risk distribution, their specifics on details are lacking. This includes over-estimating both the current and future boundaries, beyond the realms of climate-topographic possibility. Despite over-estimating the region of malaria risk, the respondents reveal an alarming lack of caution when travelling to malaria areas. Despite being indicated for high-risk malaria areas, the majority of respondents did not use chemoprophylaxis, and many relied on far less-effective measures. This may in part be due to respondents relying on information from friends and family, rather than medical or governmental advice.

Developing a geospatial measure of change in core temperature for migrating persons in the Mexico-U.S. border region

Although heat exposure is the leading cause of mortality for undocumented immigrants attempting to traverse the Mexico-U.S. border, there has been little work in quantifying risk. Therefore, our study aims to develop a methodology projecting increase in core temperature over time and space for migrants in Southern Arizona using spatial analysis and remote sensing in combination with the heat balance equation-adapting physiological formulae to a multi-step geospatial model using local climate conditions, terrain, and body specifics. We sought to quantitatively compare the results by demographic categories of age and sex and qualitatively compare them to known terrestrial conditions and prior studies of those conditions. We demonstrated a more detailed measure of risk for migrants than those used most recently: energy expenditure and terrain ruggedness. Our study not only gives a better understanding of the ‘funnel effect’ mechanisms, but also provides an opportunity for relief and rescue operations.

Disparities in risks of malaria associated with climatic variability among women, children and elderly in the Chittagong Hill Tracts of Bangladesh

Malaria occurrence in the Chittagong Hill Tracts in Bangladesh varies by season and year, but this pattern is not well characterized. The role of environmental conditions on the occurrence of this vector-borne parasitic disease in the region is not fully understood. We extracted information on malaria patients recorded in the Upazila (sub-district) Health Complex patient registers of Rajasthali in Rangamati district of Bangladesh from February 2000 to November 2009. Weather data for the study area and period were obtained from the Bangladesh Meteorological Department. Non-linear and delayed effects of meteorological drivers, including temperature, relative humidity, and rainfall on the incidence of malaria, were investigated. We observed significant positive association between temperature and rainfall and malaria occurrence, revealing two peaks at 19 °C (logarithms of relative risks (logRR) = 4.3, 95% CI: 1.1-7.5) and 24.5 °C (logRR = 4.7, 95% CI: 1.8-7.6) for temperature and at 86 mm (logRR = 19.5, 95% CI: 11.7-27.3) and 284 mm (logRR = 17.6, 95% CI: 9.9-25.2) for rainfall. In sub-group analysis, women were at a much higher risk of developing malaria at increased temperatures. People over 50 years and children under 15 years were more susceptible to malaria at increased rainfall. The observed associations have policy implications. Further research is needed to expand these findings and direct resources to the vulnerable populations for malaria prevention and control in the Chittagong Hill Tracts of Bangladesh and the region with similar settings.

Disparities of indoor temperature in winter: A cross-sectional analysis of the Nationwide Smart Wellness Housing Survey in Japan

The WHO Housing and health guidelines recommend a minimum indoor temperature of 18°C to prevent cold-related diseases. In Japan, indoor temperatures appear lower than in Euro-American countries because of low insulation standards and use of partial intermittent heating. This study investigated the actual status of indoor temperatures in Japan and the common characteristics of residents who live in cold homes. We conducted a nationwide real-world survey on indoor temperature for 2 weeks in winter. Cross-sectional analyses involving 2190 houses showed that average living room, changing room, and bedroom temperatures were 16.8°C, 13.0°C, and 12.8°C, respectively. Comparison of average living room temperature between prefectures revealed a maximum difference of 6.7°C (Hokkaido: 19.8°C, Kagawa: 13.1°C). Compared to the high-income group, the odds ratio for living room temperature falling below 18°C was 1.38 (95% CI: 1.04-1.84) and 2.07 (95% CI: 1.28-3.33) for the middle- and low-income groups. The odds ratio was 1.96 (95% CI: 1.19-3.22) for single-person households, compared to households living with housemates. Furthermore, lower room temperature was correlated with local heating device use and a larger amount of clothes. These results will be useful in the development of prevention strategies for residents who live in cold homes.

Ecological relationships of Haemagogus spegazzinii (Diptera: Culicidae) in a semiarid area of Brazil

INTRODUCTION: Haemagogus are mosquitoes with diurnal habits that live preferentially in forest areas. In Brazil, they are considered the primary vectors of wild yellow fever. METHODS: The ecological relationships between Haemagogus spegazzinii, the environment, and some of its activities in the semiarid region of Rio Grande do Norte were analyzed by collecting eggs with ovitraps, actively searching in tree holes, capturing adults in Shannon traps, and conducting an investigation for viral infections. RESULTS: A total of 2420 eggs, 271 immature specimens (larvae and pupae), and 206 adults were collected. Egg collection depended on rainfall and relative humidity, with oviposition occurring between January and May. Larvae were found in five plant species, including Tabebuia aurea (craibeira), with 160 larvae collected. We observed shared breeding sites between Hg. spegazzinii and the following species: Aedes albopictus, Aedes terrens, Culex spp., and Toxorhynchites theobaldi. Adults exhibited greater activity between 5 pm and 6 pm, when 191 (92.7%) specimens were captured, while only 1 (0.5%) was collected between 7 pm and 8 pm. The relationship between Hg. spegazzinii and rainfall was significant, with positive correlations with accumulated rainfall 5, 10, 15, 20, and 30 days before mosquito collection. We found that the species was infected with the DENV-2 virus. CONCLUSIONS: This work contributes new information on the bioecology of Hg. spegazzinii, with data on the main reproduction periods, oviposition, breeding sites, activity times, and the relationship between the species and meteorological variables in the Caatinga of northeastern Brazil.

Effect of climate change on spatial distribution of scorpions of significant public health importance in Iran

Objective: To establish a spatial geo-database for scorpions in Iran, and to identify the suitable ecological niches for the most dangerous scorpion species under different climate change scenarios. Methods: The spatial distribution of six poisonous scorpion species of Iran were modeled: Hemiscorpius lepturus, Androctonus crassicauda, Mesobuthus eupeus, Hottentotta saulcyi, Hottentotta zagrosensis, and Odontobuthus (O.) doriae, under RCP2.6 and RCP8.5 climate change scenarios. The MaxEnt ecological niche model was used to predict climate suitability for these scorpion species in the 2030s and 2050s, and the data were compared with environmental suitability under the current bioclimatic data. Results: A total of 73 species and subspecies of scorpions belonging to 19 genera in Iran were recorded. Khuzestan Province has the highest species diversity with 34 species and subspecies. The most poisonous scorpion species of Iran are scattered in the semi-arid climates, at an altitudinal range between 11 m and 2 954 m above sea level. It is projected that O. doriae, Androctonus crassicauda and Mesobuthus eupeus species would be widely distributed in most parts of the country, whereas the most suitable ecological niches for the other species would be limited to the west and/or southwestern part of Iran. Conclusions: Although the environmental suitability for all the species would change under the two climate change scenarios, the change would be more significant for O. doriae under RCP8.5 in the 2050s. These findings can be used as basis for future studies in the areas with the highest environmental suitability for the most dangerous scorpion species to fill the gaps in the ecology of scorpion species in these areas.

Effectiveness of urban hydrological processes in mitigating urban heat island and human thermal stress during a heat wave event in Nanjing, China

The effectiveness of urban hydrological processes in mitigating the urban heat island (UHI) effect and human thermal stress in the megacity of Nanjing during an extreme heat wave event (6th-10th August 2013) was assessed using Weather Research and Forecasting Single-Layer Urban Canopy Models. The inclusion of urban hydrological processes improved model performance, with more reasonable diurnal cycles and smaller mean errors, root mean square errors, and normalized root mean square errors for meteorological variables. Through evaporative cooling, urban hydrological processes can greatly increase specific and relative humidity, while reducing near-surface and surface temperatures, wind speed, and planetary boundary layer (PBL) height, and the cooling and wetting effects could affect the entire PBL, especially in low-intensity residential areas. Urban hydrological processes can effectively mitigate both the near-surface and surface UHI effect. The city-wide mitigation effectiveness of near-surface UHI ranged between 0.9 degrees C and 1.1 degrees C throughout the day, while the city-wide mitigation effectiveness of surface UHI at noon reached similar to 5 degrees C. The maximum reduction of near-surface and surface UHI in low-intensity residential areas reached 1.3 degrees C and 10.0 degrees C, respectively. Changes in heat stress indices indicate that the cooling effect improves human thermal comfort at night, while the increased humidity outweighs the cooling effect and exacerbates human thermal discomfort during daytime. The city-wide thermal stress increased by up to 0.4 degrees C, 0.2 degrees C, and 0.5 degrees C during daytime and decreased by up to 0.4 degrees C, 0.3 degrees C, and 0.6 degrees C at night for wet-bulb globe temperature, apparent temperature, and humidity index, respectively.

Effects of diurnal temperature range on first-ever strokes in different seasons: A time-series study in Shenzhen, China

OBJECTIVE: Diurnal temperature range (DTR) is an important meteorological indicator of global climate change; high values of DTR may induce stroke morbidity, while the related high-risk periods and sensitive populations are not clear. This study aims to evaluate the effects of DTR on first-ever strokes in different seasons and in relation to sensitive populations. METHODS: We collected data on 142?569 first-ever strokes during 2005-2016 in Shenzhen. We fitted a time-series Poisson model in our study, estimating the associations between DTR and first-ever strokes, with a distributed lag non-linear model. Then, we calculated strokes attributable to high DTR in different genders, age groups, education levels and stroke subtypes. RESULTS: High DTR had a significant association with first-ever strokes, and the risk of stroke increased with the rise of DTR in the summer and winter. In total, 3.65% (95% empirical CI (eCI) 1.81% to 5.53%) of first-ever strokes were attributable to high DTR (5.5°C and higher) in the summer, while 2.42% (95% eCI 0.05% to 4.42%) were attributable to high DTR (8°C and higher) in the winter. In the summer, attributable fraction (AF) was significant in both genders, middle-aged and old patients, patients with different levels of education, as well as patients with cerebral infarction (CBI); in the winter, AF was significant in middle-aged patients, patients with primary and lower education level, as well as patients with CBI. CONCLUSIONS: High DTR may trigger first-ever strokes in the summer and winter, and CBI is more sensitive than intracerebral haemorrhage to DTR. Most people are sensitive to high DTR in the summer, while middle-aged and low-education populations are sensitive in the winter. It is recommended that the DTR values be reported and emphasised in weather forecast services, together with the forecasts of heat and cold.

Effects of mosquito biology on modeled Chikungunya virus invasion potential in Florida

Arboviruses transmitted by Aedes aegypti and Aedes albopictus have been introduced to Florida on many occasions. Infrequently, these introductions lead to sporadic local transmission and, more rarely, sustained local transmission. Both mosquito species are present in Florida, with spatio-temporal variation in population composition. We developed a two-vector compartmental, deterministic model to investigate factors influencing Chikungunya virus (CHIKV) establishment. The model includes a nonlinear, temperature-dependent mosquito mortality function based on minimum mortality in a central temperature region. Latin Hypercube sampling was used to generate parameter sets used to simulate transmission dynamics, following the introduction of one infected human. The analysis was repeated for three values of the mortality function central temperature. Mean annual temperature was consistently important in the likelihood of epidemics, and epidemics increased as the central temperature increased. Ae. albopictus recruitment was influential at the lowest central temperature while Ae. aegypti recruitment was influential at higher central temperatures. Our results indicate that the likelihood of CHIKV establishment may vary, but overall Florida is permissive for introductions. Model outcomes were sensitive to the specifics of mosquito mortality. Mosquito biology parameters are variable, and improved understanding of this variation will improve our ability to predict the outcome of introductions.

Effects of solar radiation on thermal sensation and physical fatigue of the human body under heavy-load exercise

Solar radiation intensity affects both subjective reactions and physiological functions, especially for people who exercise heavily. Field experiments including a questionnaire survey at various ambient temperatures were performed; outdoor activities under shading (irradiance I = 50 +/- 20 W/m(2)) and non-shading (I = 700 +/- 50 W/m(2)) conditions during summer in Xi’an were recorded. The results of questionnaires indicated that when the human body reached an extremely hot state, the corresponding environmental temperature was 3.7 degrees C lower under the non-shading condition, and the range of actual acceptable temperatures was narrower. In terms of thermal sensation, there was a significant difference for people who exercise heavily and those who do not. The results also showed that the curve of fatigue sensation exhibited an inverse Gaussian distribution. Namely, fatigue was promoted under both colder and hotter conditions. Moreover, under non-shading condition, the lowest fatigue incidence was higher, and the corresponding ambient temperature was lower. Changes in objective physiological responses indicated that the solar radiation might cause heat stress. Therefore, when the ambient temperature was higher than 32 degrees C, physiological stress was higher. Under the same exercise load, the blood pressure was higher under the non-shading condition and systolic blood pressure increased with ambient temperature.

Effects of the 2018 heat wave on health in the elderly: Implications for adaptation strategies to climate change

There has been growing concern over the effects of heat waves on health. However, the effects of heat waves on the health of individuals in vulnerable groups have rarely been examined. We aimed to investigate the acute health effects of heat waves in elderly individuals living in rural areas and to survey their adaptation capacity. Repeated measurements of body temperature (BT), blood pressure, sleep disturbance, and indoor temperature were conducted up to six times for each of 104 elderly individuals living in rural areas of South Korea during the 2018 heat wave. Changes in BT, systolic blood pressure (SBP), and diastolic blood pressure (DBP) according to variations in indoor and outdoor temperature were analyzed using linear mixed effect models controlling for age, sex, smoking, and drug use. We also surveyed heat wave adaptation capacity, heat wave shelters, and self-reported health problems. The average indoor temperature measured during the study period was 30.5°C (range: 22.9-38.3°C) and that of ambient temperature was 30.6°C (range: 24.6-36.3°C). BT significantly increased with indoor and outdoor temperatures. The effect on BT was greater in elderly women and the elderly with hypertension. DBP generally decreased with increasing indoor temperature, though the correlation was only statistically significant among the elderly with hypertension. Only 22 (21.2%) individuals used air conditioners during the heat wave. Most did not use an air conditioner mainly to avoid high electricity costs. Of the participants, 58.7% reported experiencing sleep disturbance, which was the most frequent self-reported health problem. Elderly individuals living in rural areas are directly exposed to high temperatures during heat waves, and their vital signs are sensitive to increases in indoor temperature due to poor adaptation capacity. Well-designed strategies for alleviating health-related stress during heat waves are necessary.

Climate change impact on water availability in the olifants catchment (South Africa) with potential adaptation strategies

Increasing population and economic growth has intensified water supply pressure on the Olifants River Basin causing it to become water-stressed. Climate change is expected to aggravate existing water supply challenges in the basin if urgent interventions are not implemented. This study evaluates the impacts of climate change on water availability and demand in the Olifants River Basin of South Africa, and assesses to what extent a combination of management strategies can mitigate current and longer term impacts using the Water Evaluation and Planning (WEAP) model. The results demonstrated by the two projected climate change scenarios (RCP4.5 and RCP8.5) showed a rise in temperature of approximately 1 degrees C-4 degrees C, and a decrease in precipitation of 5%-30%, as compared to the baseline climate of 1976-2005. Results also showed that pressure on water supply due to increased economic activities and a decline in streamflow will increase unmet water demand by 58% and 80% for the mid and end century periods respectively. Results further revealed that the combination of management measures proposed by decision makers is expected to decrease future unmet water demand from 1006MCM to 398MCM, 1205MCM to 872MCM and 1251MCM to 940MCM for reference, RCP4.5 and RCP 8.5 scenario respectively. The study therefore concludes that the combination of management strategies provides a much better and more efficient solution to water scarcity issues in the basin, compared to a reliance on a single strategy.

Climate change impacts on heat stress in Brazil – Past, present, and future implications for occupational heat exposure

Climate change has caused an increased occurrence of heat waves. As a result of rising temperatures, implications for health and the environment have been more frequently reported. Outdoor labour activities deserve special attention, as is the case with agricultural and construction workers exposed to extreme weather conditions, including intense heat. This paper presents an overview of heat stress conditions in Brazil from 1961 to 2010. It also presents computer-simulated projections of heat stress conditions up to the late 21st century. The proposed climate analysis drew on historical weather data obtained from national weather stations and on reanalysis data, in addition to future projections with the ETA (regarding the model’s unique vertical coordinate) regional forecast model. The projections took into consideration two Representative Concentration Pathways (RCP)-the 4.5 and 8.5 climate scenarios, namely, moderate and high emissions scenarios, respectively. Heat stress was inferred based on the wet-bulb globe temperature (WBGT) index. The results of this climate analysis show that Brazilian outdoor workers have been exposed to an increasing level of heat stress. These results suggest that future changes in the regional climate may increase the probability of heat stress situations in the next decades, with expectations of WBGT values greater than those observed in the baseline period (1961-1990). In terms of spatial distribution, the Brazilian western and northern regions experienced more critical heat stress conditions with higher WBGT values. As a response to the increased frequency trends of hot periods in tropical areas, urgent measures should be taken to review public policies in Brazil. Such policies should include actions towards better working conditions, technological development to improve outdoor labour activities, and employment legislation reviews to mitigate heat impacts on occupational health.

Climate change risk assessment for Kurunegala, Sri Lanka: Water and heat waves

Sri Lanka is experiencing various social and environmental challenges, including drought, storms, floods, and landslides, due to climate change. One of Sri Lanka’s biggest cities, Kurunegala, is a densely populated city that is gradually turning into an economic revitalization area. This fast-growing city needs to establish an integrated urban plan that takes into account the risks of climate change. Thus, a climate change risk assessment was conducted for both the water and heat wave risks via discussions with key stakeholders. The risk assessment was conducted as a survey based on expert assessment of local conditions, with awareness surveys taken by residents, especially women. The assessment determined that the lack of drinking water was the biggest issue, a problem that has become more serious due to recent droughts caused by climate change and insufficient water management. In addition, the outbreak of diseases caused by heat waves was identified as a serious concern. Risk assessment is integral to developing an action plan for minimizing the damage from climate change. It is necessary to support education and awareness in developing countries so that they can perform risk assessment well and develop both problem-solving and policy-making abilities to adapt to a changing climate.

Climate variability and child nutrition: Findings from sub-Saharan Africa

Climatic variability affects many underlying determinants of child malnutrition, including food availability, access, and utilization. Evidence of the effects of changing temperatures and precipitation on children’s nutritional status nonetheless remains limited. Research addressing this knowledge gap is merited given the shortand long-run consequences of malnutrition. We address this issue by estimating the effects of temperature and precipitation anomalies on the weight and wasting status of children ages 0-59 months across 18 countries in sub-Saharan Africa. Linear regression models show that high temperatures and low precipitation are associated with reductions in child weight, and that high temperatures also lead to increased risk of wasting. We find little evidence of substantively meaningful differences in these effects across sub-populations of interest. Our results underscore the vulnerability of young children to climatic variability and its second-order economic and epidemiological effects. The study also highlights the corresponding need to design and assess interventions to effectively mitigate these impacts.

Climatic parameters and rotavirus diarrhea among hospitalized children: A study of eastern India

Background: Rotavirus diarrhea is often referred as “winter diarrheal disease” as it causes nearly 50% of the pediatric hospitalizations during winter season. This study was done with the objective of bringing out the epidemiological nexus of rotavirus cases with different seasonal parameters like maximum, minimum temperature, humidity, and average rainfall. Methods: This prospective observational study was conducted in a tertiary care teaching hospital of Eastern India from February 2016 to December 2018. Data on daily maximum and minimum temperature, relative humidity, and rainfall were collected. Result: Of 964 children admitted, 768 stool samples were collected for rotavirus assay. A total of 222 children (29%) were positive. The maximum, minimum temperature, average rainfall, and average humidity of 83.4 mm, 79.2%, 28.1, and 21.9, respectively, were significantly associated with positive rotaviral cases. Conclusions: The incidence of rotavirus positivity cases was found to be inversely associated with average temperature, humidity, and rainfall. The knowledge about the seasonal pattern in a particular geographical area would help in the reallocation of hospital services (staff and bed) to tackle the epidemic or emergency situations resulting from clustering of cases.

Comparison of heat-illness associations estimated with different temperature metrics in the Australian Capital Territory, 2006-2016

While the associations of heat with health outcomes is well researched, there is less consensus on the measures used to define heat exposure and the short-term and delayed impacts of different temperature metrics on health outcomes. We investigate the nonlinear and short-term relationship of three temperature metrics and reported incidence of three gastrointestinal illnesses: salmonellosis, campylobacteriosis and cryptosporidiosis in the Australian Capital Territory (ACT). We also examine the nonlinear association of these illnesses with extreme heat (5th, 75th, 90th percentile of all heat measures). Generalized linear models with Poisson regression accounting for overdispersion, seasonal and long-term trend, weekly number of outbreaks and rainfall were developed for mean and maximum weekly temperature and the heat stress index (EHI(accl)). Bacterial illnesses (salmonellosis and campylobacteriosis) showed an overall positive association with extreme heat (75th and 90th percentile of all three heat measures) and an inverse association with low temperature (5th percentile). The shape of the exposure-response curve across a range of temperatures and the lagged effects varied for each disease. Modelling the short-term and delayed effects of heat using different metrics across a range of illnesses can help identify the most appropriate measure to inform local public health intervention planning for heat-related emergencies.

Consistency in vulnerability assessments of wheat to climate change – A district-level analysis in India

In India, a reduction in wheat crop yield would lead to a widespread impact on food security. In particular, the most vulnerable people are severely exposed to food insecurity. This study estimates the climate change vulnerability of wheat crops with respect to heterogeneities in time, space, and weighting methods. The study uses the Intergovernmental Panel on Climate Change (IPCC) framework of vulnerability while using composite indices of 27 indicators to explain exposure, sensitivity, and adaptive capacity. We used climate projections under current (1975-2005) conditions and two future (2021-2050) Representation Concentration Pathways (RCPs), 4.5 and 8.5, to estimate exposure to climatic risks. Consistency across three weighting methods (Analytical Hierarchy Process (AHP), Principal Component Analysis (PCA), and Equal Weights (EWs)) was evaluated. Results of the vulnerability profile suggest high vulnerability of the wheat crop in northern and central India. In particular, the districts Unnao, Sirsa, Hardoi, and Bathinda show high vulnerability and high consistency across current and future climate scenarios. In total, 84% of the districts show more than 75% consistency in the current climate, and 83% and 68% of the districts show more than 75% consistency for RCP 4.5 and RCP 8.5 climate scenario for the three weighting methods, respectively. By using different weighting methods, it was possible to quantify “method uncertainty” in vulnerability assessment and enhance robustness in identifying most vulnerable regions. Finally, we emphasize the importance of communicating uncertainties, both in data and methods in vulnerability research, to effectively guide adaptation planning. The results of this study would serve as the basis for designing climate impacts adjusted adaptation measures for policy interventions.

Cooling interventions among agricultural workers: A pilot study

BACKGROUND: Adverse health effects among agricultural workers due to chronic heat exposure have been characterized in the literature as not only due to high ambient temperatures but also due to intensive manual labor in hot and humid conditions. The aim of this study was to use biomonitoring equipment to examine the effectiveness of selected cooling devices at preventing agricultural workers from exceeding the core body temperature threshold of 38.0°C (Tc38) and attenuating heat-related illness symptoms. METHODS: A convenience sample of 84 agricultural workers in Florida was randomized to one of four groups: (a) no intervention, clothing as usual; (b) cooling bandana; (c) cooling vest; and (d) both the cooling bandana and cooling vest. Biomonitoring equipment worn by the participants included core body temperature monitor and an accelerometer to capture physical activity. FINDINGS: A total of 78 agricultural workers completed one intervention workday trial. Compared with the control group, the bandana group had lower odds of exceeding Tc38 (odds ratio [OR] = 0.7, 90% confidence interval [CI] = [0.2, 3.2]) and the vest group had higher odds of exceeding Tc38 (OR = 1.8, 90% CI = [0.4, 7.9]). The simultaneous use of cooling vest and bandana showed an effect little different from the control group (OR = 1.3, 90% CI = [0.3, 5.6]). CONCLUSION/APPLICATION TO PRACTICE: This is the first field-based study to examine cooling intervention among agricultural workers in the United States using biomonitoring equipment. This study found that using a bandana while working in a hot agricultural environment has the potential to be protective against exceeding the recommended Tc38 threshold.

Cross-modal effects of thermal and visual conditions on outdoor thermal and visual comfort perception

People are exposed to multiple stimuli in urban environments, but most studies have investigated the unimodal effect of thermal and visual conditions on human comfort perception. It remains unclear whether the cross-modal effect found in indoor multisensory studies applies to outdoor environments. To understand the cross-modal effect of thermal and visual conditions on outdoor comfort perception, we conducted a thermal comfort survey (n = 4304) in Guangzhou and Zhuhai (September 2018). We used the Universal Thermal Climate Index (UTCI) heat stress classification and sky conditions to stratify our results. The thermal sensation vote was positively correlated with sun sensation vote. There was a significant interaction between UTCI heat stress conditions and sunlight preference vote on thermal comfort vote. The sun sensation (brightness) and sunlight preference vote had a cross-modal effect on thermal sensation and thermal comfort vote under various UTCI heat stress conditions. Under extreme heat stress, respondents’ thermal sensation did not differ significantly between different sun sensation and sunlight preference groups. Thermal sensation, preference and comfort vote had a cross-modal effect on sun sensation and sunlight preference under different sky conditions. Under partly cloudy conditions, sun sensation did not differ significantly between certain thermal sensation and preference groups. A theoretical framework is provided to explain the cross-modal effect between thermal and visual perception. Our findings suggest outdoor thermal discomfort can be alleviated by improving visual comfort and vice versa. Therefore, urban design should consider the combined effect of visual-thermal stimulants in optimizing overall pedestrian comfort and promoting urban liveability.

Description and attribution analysis of the 2017 spring anomalous high temperature causing floods in Kazakhstan

It is speculated that floods in many areas of the world have become more severe with global warming. This study describes the 2017 spring floods in Kazakhstan, which, with about six people dead or missing, prompted the government to call for more than 7,000 people to leave their homes. Then, based on the Climatic Research Unit (CRU), the NCEP/NCAR Reanalysis 1, and the Coupled Model Intercomparison Project 5 (CMIP5) simulations, the seasonal trends of temperature were calculated using the linear least-squares regression and the Mann-Kendall trend test. The correlation between the surface air temperature and atmospheric circulation was explored, and the attributable risk of the 2017 spring floods was evaluated using the conventional fraction of the attributable risk (FAR) method. The results indicate that the north plains of Kazakhstan had a higher (March-April) mean temperature anomaly compared to the south plains, up to 3 degrees C, relative to the 1901 – 2017 average temperature. This was the primary cause of flooding in Kazakhstan. March and April were the months with a higher increasing trend in temperature from 1901 to 2017 compared with other months. In addition, a positive anomaly of the geopotential height and air temperature for the March-April 2017 period (based on the reference period 1961 – 1990) was the reason for a warmer abnormal temperature in the northwest region of Kazakhstan. Finally, the FAR value was approximately equal to 1, which supported the claim of a strong anthropogenic influence on the risk of the 2017 March-April floods in Kazakhstan. The results presented provide essential information for a comprehensive understanding of the 2017 spring floods in Kazakhstan and will help government officials identify flooding situations and mitigate damage in future.

Beclin1 haploinsufficiency rescues low ambient temperature-induced cardiac remodeling and contractile dysfunction through inhibition of ferroptosis and mitochondrial injury

OBJECTIVE: Cold exposure provokes cardiac remodeling and cardiac dysfunction. Autophagy participates in cold stress-induced cardiovascular dysfunction. This study was designed to examine the impact of Beclin1 haploinsufficiency (BECN(+/-)) in cold stress-induced cardiac geometric and contractile responses. METHODS AND MATERIALS: Wild-type (WT) and BECN(+/-) mice were assigned to normal or cold exposure (4?°C) environment for 4?weeks prior to evaluation of cardiac geometry, contractile and mitochondrial properties. Autophagy, apoptosis and ferroptosis were evaluated. RESULTS: Our data revealed that cold stress triggered cardiac remodeling, compromised myocardial contractile capacity including ejection fraction, fractional shortening, peak shortening and maximal velocity of shortening/relengthening, duration of shortening and relengthening, intracellular Ca(2+) release, intracellular Ca(2+) decay, mitochondrial ultrastructural disarray, superoxide production, unchecked autophagy, apoptosis and ferroptosis, the effects of which were negated by Beclin1 haploinsufficiency. Circulating levels of corticosterone were elevated in both WT and BECN(+/-) mice. Treatment of corticosterone synthesis inhibitor metyrapone or ferroptosis inhibitor liproxstatins-1 rescued cold stress-induced cardiac dysfunction and mitochondrial injury. In vitro study noted that corticosterone challenge compromised cardiomyocyte function, provoked lipid peroxidation and mitochondrial injury, the effects of which were nullified by Beclin1 haploinsufficiency, inhibitors of lipoxygenase, ferroptosis and autophagy. In addition, ferroptosis inducer erastin abrogated Beclin1 deficiency-offered cardioprotection. CONCLUSION: These data suggest that Beclin1 haploinsufficiency protects against cold exposure-induced cardiac dysfunction possibly through corticosterone- and ferroptosis-mediated mechanisms.

Cardioprotective effect of Rosa canina L. methanolic extract on heat shock induced cardiomyocyte injury: An experimental study

Introduction: Overexposure to heat conditions can affect the functioning of the cardiovascular system and may promote cardiovascular disorders. Heat shock induced myocardial injury via increasing endoplasmic reticulum response-mediated apoptosis. This study investigated the impact of pretreatment with Rosa canina (RC), a natural antioxidant, on myocardial damage induced by heat stress exposure and underlying mechanisms in cardiomyocytes in rats. Methods: Sixty adult male Wistar rats were allocated into five groups, including Control: received normal saline (NS), Heat Stress (HS), and HS+RC groups. Animals in the HS groups were subjected to heat stress (43 degrees C) for 15 minutes once a day for two weeks. Animals in the HS+RC groups received three doses of RC (250, 500, and 1000 mg/mL) one hour before being subjected to heat shock. The endoplasmic reticulum (ER) transmembrane kinases, including PKR-like endoplasmic reticulum kinase (PERK), immunoreactivity of CCAAT/enhancer-binding protein homologous protein (CHOP), and eukaryotic translation initiation factor 2-alpha (eIF2 alpha) as well as caspase 8 were detected by Western blot. The levels of reactive oxygen species (ROS) were assessed. Moreover, histopathological changes and apoptosis were also assayed in the heart tissue by using histopathological and TUNEL assays. Results: Heat exposure increased the level of ROS and induced oxidative damage in the heart tissue. The results demonstrated that RC administration decreased the overproduction of ROS induced by heat stress in cardiomyocytes. Moreover, heat stress upregulated the expression of p-PERK, p-eIF2 alpha, and CHOP protein while pretreatment with RC decreased expression of ER stress-related markers in cardiomyocytes. Besides, RC diminished heat stress-induced cellular damage and apoptosis associated with inhibition of caspase 8 activation, a pro-apoptotic protein in cardiomyocytes. Conclusion: These findings indicate that RC exerts a protective effect on heart tissue, at least in part, through inactivation of PERK/eIF2 alpha/CHOP pathway or inhibition of ER stress and oxidative stresstriggered apoptosis in cardiomyocytes induced by heat stress.

Cerebral venous thrombosis, seasonal trends, and climatic influence: A region-specific study

BACKGROUND AND PURPOSE: Studies looking at seasonal variation on cerebral venous thrombosis (CVT) are few with conflicting conclusions. In this region-specific study, we looked for climatic influence and seasonal trends on the incidence of CVT. METHODS: Imaging proven adult CVT cases treated over a period of 18 years from a specific geographical location with similar seasons and climatic conditions were studied. Metrological parameters prepared using 30 years of data was used. Quantum geographical information system (QGIS software) and SPSS v 22 were used for patient plotting and analysis. RESULTS: Total of 970 cases were studied. The incidence was significantly higher in summer 411 (42.3%) compared with autumn 317 (32.7%) and winter 242 (25.05); P = 0.038. This trend was consistent across all the 18 years in time series analysis. Mean age was 33.5 years (range 18-88 years). A significant majority 673 (69.4%) were below 40 years of age; P = 0.012. Females constituted 394 (40.6%) of cases. Postpartum CVT cases constituted 237 (30%). Interaction analysis showed younger age (<40 years) were more vulnerable for CVT in summer; P = 0.009. There was no seasonal influence on postpartum CVT. Apart for a weak positive correlation between rain fall (r = 0.18, P < 0.01); humidity and cloud cover was not influencing the incidence. CONCLUSIONS: Higher ambient temperatures were consistently associated with higher incidence of CVT. This is the largest region-specific study on CVT in the world. These results may be applicable to other regions with similar climatic conditions.

Changes in global and regional characteristics of heat stress waves in the 21st century

Wet bulb globe temperature (WBGT), a combined measure of temperature and humidity effects on thermal comfort, is used to define heat stress waves (HSWs). While emerging research has raised concerns on future changes in heat stress, for the first time, this study examines spatiotemporal changes in multiple HSW characteristics (intensity, duration, frequency, and cumulative mean intensity) in the 21st century under three emissions scenarios. It is the sustained nature of HSWs that impose more adverse impacts than extreme heat on a single day. HSWs are expected to be more intense, persistent, frequent, and influential due to anthropogenic influence. Models project the largest increases in multiple HSW characteristics will occur over the tropics and subtropics. The exception is maximum intensity, which displays a relative uniform increase over most global land areas. Analysis of regional population exposure to HSWs under different climate and socioeconomic scenarios emphasizes the importance of aggressive mitigation to minimize the potential impacts of HSWs. We further investigate how different regional HSW characteristics are projected to change relative to increasing global mean surface temperature (GMST). Our results confirm the varying rates and different trajectories at which regional HSWs change, independent of forcing pathway, strongly related to GMST. On both globally aggregated and regional scales, the maximum intensity and GMST are highly linearly associated, with an approximately 1:1 increase. However, the other three HSW characteristics are projected to change at a nonlinear rate per degree of GMST increase in general and display large regional variation in the rates of their changes. Plain Language Summary Besides air temperature, air humidity is another important factor in determining the impact of heat waves on humans. High humidity will reduce the efficiency of evaporative cooling and, when combined with high temperature, could pose a serious threat to human health or even life safety. Heat stress indices, taking into account both temperature and humidity effects, are considered to be better indicators of environmental conditions conducive to heat stress on human health. We here employ a widely used heat stress index, wet bulb globe temperature, to define heat waves, namely, heat stress waves (HSWs). Heat waves can be considered through a number of characteristics, and it is their distinctive characteristics that result in the vast array of adverse impacts. This also applies to HSWs. Our results show that more intense, longer-lasting, frequent, and influential HSWs are anticipated during the 21st century, and anthropogenic warming substantially increases the occurrence of HSWs. Except intensity, tropical regions will generally witness the largest increases in multiple HSW characteristics and the number of people that may be exposed to HSWs. Changes in HSW characteristics are confirmed not to depend on whether a particular warming is reached sooner or later; they are strongly related to global mean surface temperature.

Characterizing the contribution of high temperatures to child undernourishment in Sub-Saharan Africa

Despite improvements to global economic conditions, child undernourishment has increased in recent years, with approximately 7.5% of children suffering from wasting. Climate change is expected to worsen food insecurity and increase potential threats to nutrition, particularly in low-income and lower-middle income countries where the majority of undernourished children live. We combine anthropometric data for 192,000 children from 30 countries in Sub-Saharan Africa with historical climate data to directly estimate the effect of temperature on key malnutrition outcomes. We first document a strong negative relationship between child weight and average temperature across regions. We then exploit variation in weather conditions to statistically identify the effects of increased temperatures over multiple time scales on child nutrition. Increased temperatures in the month of survey, year leading up to survey and child lifetime lead to meaningful declines in acute measures of child nutrition. We find that the lifetime-scale effects explain most of the region-level negative relationship between weight and temperature, indicating that high temperatures may be a constraint on child nutrition. We use CMIP5 local temperature projections to project the impact of future warming, and find substantial increases in malnutrition depending on location: western Africa would see a 37% increase in the prevalence of wasting by 2100, and central and eastern Africa 25%.

Climate change and social unrest: A 6,000-year chronicle from the Eastern Mediterranean

The history of the Eastern Mediterranean is punctuated by major crises that have influenced many of the region’s established socioeconomic models. Recent studies have underscored the role of drought and temperature oscillations in driving changes but attempts to quantify their magnitude remain equivocal, hindering long-term assessments of the potential interplay between climate and society. Here, we fill this knowledge gap using a 6,000-year pollen-based reconstruction of temperature and precipitation from Hala Sultan Tekke, Cyprus. We find that major social changes and plague outbreaks often occurred in tandem with cooler climate conditions, with anomalies ranging from -3 +/- 0.4 degrees C to -1 +/- 0.5 degrees C, coupled with changing precipitation patterns. We suggest that major climate changes may weaken societies by affecting primary livelihood systems. This long-term view highlights recurrent cold periods in the Eastern Mediterranean’s climate history and advocates that, despite frequent adversity and pandemics, Near Eastern populations adapted and were ultimately resilient to major climate changes.

Climate change causes changes in biochemical markers of kidney disease

BACKGROUND: Climate change is a significant threat to the health of the Ghanaian people. Evidence abounds in Ghana that temperatures in all the ecological zones are rising, whereas rainfall levels have been generally reducing and patterns are increasingly becoming erratic. The study estimated the impact of climate variation between seasons on biochemical markers of kidney disease. METHODS: This study conveniently recruited 50 apparently healthy peasant farmers and hawkers at Wa in the Upper West Region of Ghana. A pre-study screening for hepatitis A and C, Diabetes mellitus, hypertension was done. Serum creatinine and urea levels were analyzed to rule out kidney preexisting kidney disease. Baseline data was collected by estimating urea, creatinine, sodium, potassium, eGFR (estimated glomerular filtration rate) as well as for hemoglobin (Hb) and hematocrit (Hct) concentrations. Anthropometric data such as height, weight and blood pressure were measured by trained personnel. The study participants were closely followed and alerted deep in the dry season for the second sampling (urea, creatinine, hemoglobin, hematocrit, blood pressure, anthropometry). RESULTS: This study recruited more males (58.82%) than females (41.15%), majority (52.92%) of which were aged 25-29?years with the youngest being 22?years and the eldest being 35?years. The study found body mass index (p?<?0.001), systolic blood pressure (p?=?0.019), creatinine (p?<?0.001), urea (p?=?0.013) and eGFR (p?<?0.001) to be significantly influenced by climate change. Stage 1 hypertension was predominant among the study participants during the dry season, 8 (15.69%) than was observed during the rainy season, 4 (7.84%) nonetheless the number of participants with normal BMI rose from 49.02% in the rainy season to 62.75% during the dry reason. Additionally, the study observed that the impact of climate change on systolic blood pressure and urea varied based on age and sex. CONCLUSION: This study revealed that climatic changes cause variations in various biochemical parameters used to assess kidney function. Public health education on climatic changes and its implication including precautionary measures should be done among inhabitants of Wa and its environs to reduce its effect. Additionally, appropriate dietary patterns should also be advised to avoid the development of non-communicable diseases such as hypertension and obesity that are known principal causes of Chronic Kidney Disease (CKD).

Climate change effects on Belgian households: A case study of a nearly zero energy building

Overheating in residential building is a challenging problem that causes thermal discomfort, productivity reduction, and health problems. This paper aims to assess the climate change impact on thermal comfort in a Belgian reference case. The case study represents a nearly zero energy building that operates without active cooling during summer. The study quantifies the impact of climate change on overheating risks using three representative concentration pathway (RCP) trajectories for greenhouse gas concentration adopted by the Intergovernmental Panel on Climate Change (IPCC). Building performance analysis is carried out using a multizone dynamic simulation program EnergyPlus. The results show that bioclimatic and thermal adaptation strategies, including adaptive thermal comfort models, cannot suppress the effect of global warming. By 2050, zero energy buildings will be vulnerable to overheating.

An empirical analysis of association between socioeconomic factors and communities’ exposure to natural hazards

In today’s urban environments with complex design and configurations, heterogeneous spatial clusters of communities with different socioeconomic characteristics may result in disproportionate exposure of some groups of citizens to natural hazards. The objective of this study was to compare the associations between communities’ socioeconomic characteristics and exposure to different types of natural hazards in New York City (NYC) to examine whether commonly accepted indicators of social vulnerability are associated with similar levels of exposure across various natural hazards. First, we collected socioeconomic data (e.g., population, median income, unemployment rate) at a zip code level of granularity provided by the United States Census Bureau. Next, we identified and gathered spatial data for coastal storms, flooding, extreme heat, and pandemic disease in NYC. We then conducted a pairwise Kendall’s tau-b test to compare the associations. The outcomes showed that the significance and direction of the associations depend on the type of natural hazard. Particularly, the results indicated that zip codes with lower socioeconomic factors and greater percentage of minority ethnicities are exposed disproportionately to extreme heat and COVID-19. On the other hand, zip codes with higher percentage of areas prone to flooding have relatively higher socioeconomic factors. Furthermore, the results did not show any statistically significant association between socioeconomic factors and exposure to coastal storm inundations. The outcomes of this study will help decision makers design and implement better optimized and effective emergency preparedness plans by prioritizing their target areas based on socioeconomic factors in order to enhance social justice.

Analysis of the transcription of genes encoding heat shock proteins (hsp) in Aedes aegypti Linnaeus, 1762 (Diptera: Culicidae), maintained under climatic conditions provided by the IPCC (Intergovernmental Panel On Climate Change) for the year 2100

Human actions intensify the greenhouse effect, aggravating climate changes in the Amazon and elsewhere in the world. The Intergovernmental Panel on Climate Change (IPCC) foresees a global increase of up to 4.5 °C and 850 ppm CO(2) (above current levels) by 2100. This will impact the biology of the Aedes aegypti mosquito, vector of Dengue, Zika, urban Yellow Fever and Chikungunya. Heat shock proteins are associated with adaptations to anthropic environments and the interaction of some viruses with the vector. The transcription of the hsp26, hsp83 and hsc70 genes of an A. aegypti population, maintained for more than forty-eight generations, in the Current, Intermediate and Extreme climatic scenario predicted by the IPCC was evaluated with qPCR. In females, highest levels of hsp26, hsp83 and hsc70 expression occurred in the Intermediate scenario, while in males, levels were high only for hsp26 gene in Current and Extreme scenarios. Expression of hsp83 and hsc70 genes in males was low under all climatic scenarios, while in the Extreme scenario females had lower expression than in the Current scenario. The data suggest compensatory or adaptive processes acting on heat shock proteins, which can lead to changes in the mosquito’s biology, altering vectorial competence.

Applying species distribution models in public health research by predicting snakebite risk using venomous snakes’ habitat suitability as an indicating factor

Snakebite envenoming is an important public health problem in Iran, despite its risk not being quantified. This study aims to use venomous snakes’ habitat suitability as an indicator of snakebite risk, to identify high-priority areas for snakebite management across the country. Thus, an ensemble approach using five distribution modelling methods: Generalized Boosted Models, Generalized Additive Models, Maximum Entropy Modelling, Generalized Linear Models, and Random Forest was applied to produce a spatial snakebite risk model for Iran. To achieve this, four venomous snakes’ habitat suitability (Macrovipera lebetinus, Echis carinatus, Pseudocerastes persicus and Naja oxiana) were modelled and then multiplied. These medically important snakes are responsible for the most snakebite incidents in Iran. Multiplying habitat suitability models of the four snakes showed that the northeast of Iran (west of Khorasan-e-Razavi province) has the highest snakebite risk in the country. In addition, villages that were at risk of envenoming from the four snakes were identified. Results revealed that 51,112 villages are at risk of envenoming from M. lebetinus, 30,339 from E. carinatus, 51,657 from P. persicus and 12,124 from N. oxiana. Precipitation seasonality was identified as the most important variable influencing distribution of the P. persicus, E. carinatus and M. lebetinus in Iran. Precipitation of the driest quarter was the most important predictor of suitable habitats of the N. oxiana. Since climatic variables play an important role in shaping the distribution of the four venomous snakes in Iran, thus their distribution may alter with changing climate. This paper demonstrates application of species distribution modelling in public health research and identified potential snakebite risk areas in Iran by using venomous snakes’ habitat suitability models as an indicating factor. Results of this study can be used in snakebite and human-snake conflict management in Iran. We recommend increasing public awareness of snakebite envenoming and education of local people in areas which identified with the highest snakebite risk.

Asian megacity heat stress under future climate scenarios: Impact of air-conditioning feedback

Future heat stress under six future global warming (Delta T-GW) scenarios (IPCCRCP8.5) in an Asian megacity (Osaka) is estimated using a regional climate model with an urban canopy and air-conditioning (AC). An urban heat ‘stress’ island is projected in all six scenarios (Delta T-GW = +0.5 to +3.0 degrees C in 0.5 degrees C steps). Under. TGW = +3.0 degrees C conditions, people outdoors experience ‘extreme’ heat stress, which could result in dangerously high increases in human body core temperature. AC-induced feedback increases heat stress roughly linearly as Delta T-GW increases, reaching 0.6 degrees C(or 12% of the heat stress increase). As this increase is similar to current possible heat island mitigation techniques, this feedback needs to be considered in urban climate projections, especially where AC use is large.

Assessing inequitable urban heat islands and air pollution disparities with low-cost sensors in Richmond, Virginia

Air pollution and the urban heat island effect are consistently linked to numerous respiratory and heat-related illnesses. Additionally, these stressors disproportionately impact low-income and historically marginalized communities due to their proximity to emissions sources, lack of access to green space, and exposure to other adverse environmental conditions. Here, we use relatively low-cost stationary sensors to analyze PM2.5 and temperature data throughout the city of Richmond, Virginia, on the ten hottest days of 2019. For both hourly means within the ten hottest days of 2019 and daily means for the entire record for the year, the temperature was found to exhibit a positive correlation with PM2.5. Analysis of hourly means on the ten hottest days yielded a diurnal pattern in which PM2.5 levels peaked in the early morning and reached their minima in the mid-afternoon. Spatially, sites exhibiting higher temperatures consistently had higher PM2.5 readings, with vulnerable communities in the east end and more intensely developed parts of the city experiencing significantly higher temperatures and PM2.5 concentrations than the suburban neighborhoods in the west end. These findings suggest an uneven distribution of air pollution in Richmond during extreme heat events that are similar in pattern but less pronounced than the temperature differences during these events, although further investigation is required to verify the extent of this relationship. As other studies have found both of these environmental stressors to correlate with the distribution of green space and other land-use factors in cities, innovative and sustainable planning decisions are crucial to the mitigation of these issues of inequity going forward.

Assessing the role of two populations of Aedes japonicus japonicus for Zika virus transmission under a constant and a fluctuating temperature regime

BACKGROUND: Since the huge epidemic of Zika virus (ZIKV) in Brazil in 2015, questions were raised to understand which mosquito species could transmit the virus. Aedes aegypti has been described as the main vector. However, other Aedes species (e.g. Ae. albopictus and Ae. japonicus) proven to be competent for other flaviviruses (e.g. West Nile, dengue and yellow fever), have been described as potential vectors for ZIKV under laboratory conditions. One of these, the Asian bush mosquito, Ae. japonicus, is widely distributed with high abundances in central-western Europe. In the present study, infection, dissemination and transmission rates of ZIKV (Dak84 strain) in two populations of Ae. japonicus from Switzerland (Zürich) and France (Steinbach, Haut-Rhin) were investigated under constant (27 °C) and fluctuating (14-27 °C, mean 23 °C) temperature regimes. RESULTS: The two populations were each able to transmit ZIKV under both temperature regimes. Infectious virus particles were detected in the saliva of females from both populations, regardless of the incubation temperature regime, from 7 days post-exposure to infectious rabbit blood. The highest amount of plaque forming units (PFU) (400/ml) were recorded 14 days post-oral infection in the Swiss population incubated at a constant temperature. No difference in terms of infection, dissemination and transmission rate were found between mosquito populations. Temperature had no effect on infection rate but the fluctuating temperature regime resulted in higher dissemination rates compared to constant temperature, regardless of the population. Finally, transmission efficiency ranged between 7-23% and 7-10% for the constant temperature and 0-10% and 3-27% under fluctuating temperatures for the Swiss and the French populations, respectively. CONCLUSIONS: To the best of our knowledge, this is the first study confirming vector competence for ZIKV of Ae. japonicus originating from Switzerland and France at realistic summer temperatures under laboratory conditions. Considering the continuous spread of this species in the northern part of Europe and its adaptation at cooler temperatures, preventative control measures should be adopted to prevent possible ZIKV epidemics.

Association of meteorological factors and atmospheric particulate matter with the incidence of pneumonia: An ecological study

Objectives: Inconsistent results have been found between pneumonia and meteorological factors. We aimed to identify principal meteorological factors associated with pneumonia, and to estimate the effect size and lag time. Methods: This was nationwide population-based study used a healthcare claims database merged with a weather database in eight metropolitan cities in Korea. We applied a stepwise approach using the Granger causality test and generalized additive model to elucidate the association between weekly pneumonia incidence (WPI) and meteorological factors/air pollutants (MFAP). Impulse response function was used to examine the time lag. Results: In total, 2 011 424 cases of pneumonia were identified from 2007 to 2017. Among MFAP, diurnal temperature range (DTR), humidity and particulate matter <= 2.5 mm in diameter (PM2.5) showed statistically significant associations with WPI (p < 0.001 for all 3 MFAPs). The association of DTR and WPI showed an inverted U pattern for bacterial and unspecified pneumonia, whereas for viral pneumonia, WPI increased gradually in a more linear manner with DTR and no substantial decline. Humidity showed a consistent pattern in all three pneumonia categories. WPI steeply increased up to 10 to 20 mu g/m(3) of PM2.5 but did not show a further increase in higher concentrations. On the basis of the result, we examined the effect of MFAP in different lag times up to 3 weeks. Conclusions: DTR, humidity and PM2.5 were identified as MFAP most closely associated with WPI. With the model, we were able to visualize the effectetime association of MFAP and WPI. (C) 2020 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

Associations between daily ambient temperature and sedentary time among children 4-6 years old in Mexico City

BACKGROUND: Sedentary behavior is a worldwide public health concern. There is consistent and growing evidence linking sedentary behavior to mortality and morbidity. Early monitoring and assessment of environmental factors associated with sedentary behaviors at a young age are important initial steps for understanding children’s sedentary time and identifying pertinent interventions. OBJECTIVE: This study examines the association between daily temperature (maximum, mean, minimum, and diurnal variation) and all-day sedentary time among 4-6 year old children in Mexico City (n = 559) from the year 2013 to 2015. METHODS: We developed a spatiotemporally resolved hybrid satellite-based land use regression temperature model and calculated percent daily sedentary time from aggregating 10-second epoch vertical counts captured by accelerometers that participants wore for one week. We modeled generalized additive models (GAMs), one for each temperature type as a covariate (maximum, mean, minimum, and diurnal variation). All GAMs included percent all-day sedentary time as the outcome and participant-level random intercepts to account for repeated measures of sedentary time. Our models were adjusted for demographic factors and environmental exposures. RESULTS: Daily maximum temperature, mean temperature, and diurnal variation have significant negative linear relationships with all-day sedentary time (p<0.01). There is no significant association between daily minimum temperature and all-day sedentary time. Children have on average 0.26% less daily sedentary time (approximately 2.2 minutes) for each 1°C increase in ambient maximum temperature (range 7.1-30.2°C), 0.27% less daily sedentary time (approximately 2.3 minutes) for each 1°C increase in ambient mean temperature (range 4.3-22.2°C), and 0.23% less daily sedentary time (approximately 2.0 minutes) for each 1°C increase in diurnal variation (range 3.0-21.6°C). CONCLUSIONS: These results are contrary to our hypothesis in which we expected a curvilinear relationship between temperature (maximum, mean, minimum, and diurnal variation) and sedentary time. Our findings suggest that temperature is an important environmental factor that influences children’s sedentary behavior.

Associations between outdoor temperature and bright sunlight with metabolites in two population-based European cohorts

BACKGROUND AND AIMS: Outdoor temperature and bright sunlight may directly and/or indirectly modulate systemic metabolism. We assessed the associations between outdoor temperature and bright sunlight duration with metabolomics. METHODS AND RESULTS: Cross-sectional analyses were undertaken in non-diabetic individuals from the Oxford BioBank (OBB; N = 6368; mean age 47.0 years, males 44%) and the Netherlands Epidemiology of Obesity (NEO; N = 5916; mean age 55.6 years, males 43%) study. Data on mean outdoor bright sunlight and temperature were collected from local weather stations in the week prior to blood sampling. Fasting serum levels of 148 metabolites, including 14 lipoprotein subclasses, were measured using NMR spectroscopy. Linear regression analyses were performed to assess the associations between mean outdoor temperature and bright sunlight duration with metabolomics adjusted for age, sex, body mass index, season and either outdoor temperature or bright sunlight. A higher mean outdoor temperature was associated with increased serum concentrations of lipoprotein (sub)particles (? (SE) = 0.064 (0.018) SD per 5 °C, p = 5.03e(-4)) and certain amino acids such as phenylalanine (0.066 (0.016) SD, p = 6.44e(-05)) and leucine (0.111 (0.018) SD, p = 1.25e(-09)). In contrast, longer duration of bright sunlight was specifically associated with lower concentrations of very low-density lipoprotein (sub)particles (e.g., VLDL cholesterol (-0.024 (0.005) SD per 1-h bright sunlight, p = 8.06e(-6))). The direction of effects was generally consistent between the OBB and NEO, although effect sizes were generally larger in the OBB. CONCLUSIONS: Increased bright sunlight duration is associated with an improved metabolic profile whilst higher outdoor temperature may adversely impact cardiometabolic health.

Associations of daily weather and ambient air pollution with objectively assessed sleep duration and fragmentation: A prospective cohort study

Objective: Given the lack of studies examining the associations between daily weather and air pollution with nightly objective sleep over multiple weeks, we quantified these associations in a prospective cohort of healthy participants with episodic migraine. Methods: Ninety-eight participants completed daily electronic diaries and wore an actigraph for an average of 45 ds, and a total 4406 nights of data were collected. Nightly sleep characteristics including duration, wake after sleep onset (WASO), and efficiency were assessed using wrist actigraphy. Daily weather parameters and air pollution levels were collected from local weather station and ground-level air quality monitors. We used linear fixed effects models adjusting for participant, day of the week, and day of the year (for weather analysis), and additionally adjusted for temperature and relative humidity (for air pollution analysis). Results: The participants were 35 +/- 12 yrs old and 86 were women. A 10 degrees F higher daily average temper-ature was associated with 0.88 (95% CI: 0.06, 1.70) minutes longer WASO and 0.14% (95% CI:-0.01%, 0.30%) lower sleep efficiency on that night. A 14 parts per billion (ppb) (interquartile range) higher daily maximum eight-h ozone was associated with 7.51 (95% CI: 3.23, 11.79) minutes longer sleep duration on that night. Associations did not differ between cold (October-March) and warm (April-September) seasons. Conclusions: Higher daily ozone was associated with longer sleep duration and modest associations were observed between higher temperature and lower WASO and lower efficiency. (c) 2020 Elsevier B.V. All rights reserved.

Autochthonous West Nile virus infection outbreak in humans, Leipzig, Germany, August to September 2020

Following a distinct summer heat wave, nine autochthonous cases of West Nile fever and West Nile neuroinvasive disease, including one fatality, were observed in Leipzig, Germany, in August and September 2020. Phylogenetic analysis demonstrated close relationships in viruses from humans, animals and mosquitos in eastern Germany, obtained during the preceding 2 years. The described large cluster of autochthonous West Nile virus infections in Germany indicates endemic seasonal circulation of lineage 2 viruses in the area.

A case-crossover analysis of indoor heat exposure on mortality and hospitalizations among the elderly in Houston, Texas

BACKGROUND: Despite the substantial role indoor exposure has played in heat wave-related mortality, few epidemiological studies have examined the health effects of exposure to indoor heat. As a result, knowledge gaps regarding indoor heat-health thresholds, vulnerability, and adaptive capacity persist. OBJECTIVE: We evaluated the role of indoor heat exposure on mortality and morbidity among the elderly ( ? 65?years of age) in Houston, Texas. METHODS: Mortality and emergency hospital admission data were obtained through the Texas Department of State Health Services. Summer indoor heat exposure was modeled at the U.S. Census block group (CBG) level using building energy models, outdoor weather data, and building characteristic data. Indoor heat-health associations were examined using time-stratified case-crossover models, controlling for temporal trends and meteorology, and matching on CBG of residence, year, month, and weekday of the adverse health event. Separate models were fitted for three indoor exposure metrics, for individual lag days 0-6, and for 3-d moving averages (lag 0-2). Effect measure modification was explored via stratification on individual- and area-level vulnerability factors. RESULTS: We estimated positive associations between short-term changes in indoor heat exposure and cause-specific mortality and morbidity [e.g., circulatory deaths, odds ratio per?5°C?increase = 1.16 (95% CI: 1.03, 1.30)]. Associations were generally positive for earlier lag periods and weaker across later lag periods. Stratified analyses suggest stronger associations between indoor heat and emergency hospital admissions among African Americans compared with Whites. DISCUSSION: Findings suggest excess mortality among certain elderly populations in Houston who are likely exposed to high indoor heat. We developed a novel methodology to estimate indoor heat exposure that can be adapted to other U.S. LOCATIONS: In locations with high air conditioning prevalence, simplified modeling approaches may adequately account for indoor heat exposure in vulnerable neighborhoods. Accounting for indoor heat exposure may improve the estimation of the total impact of heat on health. https://doi.org/10.1289/EHP6340.

A comparison of the effect of weather and climate on emergency department visitation in Roanoke and Charlottesville, Virginia

Compared with mortality, the impact of weather and climate on human morbidity is less well understood, especially in the cold season. We examined the relationships between weather and emergency department (ED) visitation at hospitals in Roanoke and Charlottesville, Virginia, two locations with similar climates and population demographic profiles. Using patient-level data obtained from electronic medical records, each patient who visited the ED was linked to that day’s weather from one of 8 weather stations in the region based on each patient’s ZIP code of residence. The resulting 2010-2017 daily ED visit time series were examined using a distributed lag non-linear model to account for the concurrent and lagged effects of weather. Total ED visits were modeled separately for each location along with subsets based on gender, race, and age. The relationship between the relative risk of ED visitation and temperature or apparent temperature over lags of one week was positive and approximately linear at both locations. The relative risk increased about 5% on warm, humid days in both cities (lag 0 or lag 1). Cold conditions had a protective effect, with up to a 15% decline on cold days, but ED visits increased by 4% from 2 to 5 days after the cold event. The effect of thermal extremes tended to be larger for non-whites and the elderly, and there was some evidence of a greater lagged response for non-whites in Roanoke. Females in Roanoke were more impacted by winter cold conditions than males, who were more likely to show a lagged response at high temperatures. In Charlottesville, males sought ED attention at lower temperatures than did females. The similarities in the ED response patterns between these two hospitals suggest that certain aspects of the response may be generalizable to other locations that have similar climates and demographic profiles.

A cost-benefit analysis of implementing urban heat island adaptation measures in small- and medium-sized cities in Austria

Urban heat islands are an increasing concern even in small- to medium-sized cities, although these areas are still understudied especially in terms of the economic feasibility of adaptation options. This paper uses adaptation scenarios produced by an urban climate model as inputs to a social cost-benefit analysis in three small- to medium-sized cities in Austria: Modling, Klagenfurt, and Salzburg. The adaptation scenarios, which consider measures such as increasing the reflectivity of different sealed surfaces (referred to as the White City scenario) as well as greening measures (i.e. the Green City scenario), show decreases in the number of hot days (T-max >= 30 degrees C) when implemented. Benefits include reductions in heat-related mortality, which are modeled based on trends of daily mortality and climate data, reduced morbidity, productivity loss, and numerous urban ecosystem services. The results demonstrate favorable benefit-cost ratios of a combination of measures (White and Green City) of 1.27, 1.36, and 2.68 for Modling, Klagenfurt, and Salzburg, respectively, indicating positive economic grounds for supporting policies in line with the adaptation scenarios. Furthermore, results of the Green City vs. White City showed higher benefits for the combined and Green City scenarios despite higher costs for each of the cities.

A database for characteristics and variations of global compound dry and hot events

Compound dry and hot events (CDHEs) are commonly defined as occurrences of dry and hot events at the same time or in close succession. These events have occurred frequently in past decades and caused great losses to multiple sectors including water security, food security, and human health. This calls for an improved understanding of their characteristics and variations. This study provides a database for different characteristics, including frequency, severity, duration, and magnitude, and their variations of CDHEs for the period 1951-2012 over global land areas. We first demonstrate different characteristics of CDHEs during the summers of 2003 and 2010 in Europe to compare these two events from different perspectives. We then evaluate changes in different characteristics of CDHEs over global land areas for the past 62 years. The frequency, severity, duration, and magnitude of CDHEs during 1951-2012 show temporal increases over global land areas with the slope of 0.15 days/decade, 0.25%/decade, 0.06 days/decade, and 0.52%/decade, respectively. Besides, remarkable increases in these characteristics are observed in regions such as central Africa, Europe, Mediterranean regions, and northern parts of East Asia. The results of this study could shed light on ways to improve the documentation and understanding of CDHEs to mitigate their negative impacts.

A mass mortality event in bats caused by extreme heat: Surprising public health challenges

OBJECTIVES: We examine the public health response to an unprecedented multiple mortality event in bats following an extreme heat event. The main public health risk associated with the event and the environmental clean-up was potential human infection with Australian bat lyssavirus. We also consider the public health implications as we enter an age of climate change, vulnerability and unexpected events. Type of service: The Tropical Public Health Service of Far North Queensland worked collaboratively with the local council to coordinate a practical public health and health protection response to a mass mortality event in bats in late 2018. METHODS: A coordinated response was instigated to remove thousands of decaying bat corpses from residential areas. This occurred alongside a health education campaign advising the public to avoid handling bats. RESULTS: The combined efforts were successful; those requiring vaccination and post-exposure prophylaxis were treated appropriately and owing to a successful campaign, exposures were minimised. However, significant issues with misinformation and social media messaging were noted, alongside amateur bat carers handling sick and injured bats inappropriately, compounding the challenge for public health services. This mass mortality event has implications regarding the preparation for and management of other unexpected public health crises related to climate change. LESSONS LEARNT: It is vital that areas populated with bats be prepared for extreme heat events (EHEs). Public health units need to be prepared for the unexpected events of climate change, advocate for a ‘one health’ approach to public health, and work with local and national governments to become ‘climate ready’.

A numerical analysis of the cooling performance of a hybrid personal cooling system (HPCS): Effects of ambient temperature and relative humidity

Hybrid personal cooling systems (HPCS) incorporated with ventilation fans and phase change materials (PCMs) have shown its superior capability for mitigating workers’ heat strain while performing heavy labor work in hot environments. In a previous study, the effects of thermal resistance of insulation pads, and latent heat and melting temperature of PCMs on the HPCS’s thermal performance have been investigated. In addition to the aforementioned factors, environmental conditions, i.e., ambient temperature and relative humidity, also significantly affect the thermal performance of the HPCS. In this paper, a numerical parametric study was performed to investigate the effects of the environmental temperature and relative humidity (RH) on the thermal management of the HPCS. Five levels of air temperature under RH = 50% (i.e., 32, 34, 36, 38 and 40 °C) and four levels of environmental RH at two ambient temperatures of 36 and 40 °C were selected (i.e., RH = 30, 50, 70 and 90%) for the numerical analysis. Results show that high environmental temperatures could accelerate the PCM melting process and thereby weaken the cooling performance of HPCS. In the moderately hot environment (36 °C), HPCS presented good cooling performance with the maximum core temperature at around 37.5 °C during excise when the ambient RH ? 70%, whereas good cooling performance could be only seen under RH ? 50% in the extremely hot environment (40 °C). Thus, it may be concluded that the maximum environmental RH under which the HPCS exhibiting good cooling performance decreases with an increase in the environmental temperature.

A quantitative estimation of the effects of measures to counter climate change on well-being: Focus on non-use of air conditioners as a mitigation measure in Japan

Measures to mitigate climate change are being considered all over the world. Reducing the use of air conditioners is one such measure. While it seems to be effective in mitigating climate change, it may also reduce individuals’ well-being and increase the risk of heatstroke. To compare the impact of reducing air conditioner use and the mortality risks, the indicator Loss of Happy Life Expectancy (LHpLE), which measures the reduction in the length of life that individuals can spend happily, was used. The reduction in well-being due to non-use of air conditioners was obtained by applying the propensity score matching method to the results of a questionnaire. We evaluated the impact of reducing air conditioner use in both the current and future situation in comparison to the mortality risk from flood and heatstroke, respectively. The increase in mortality risk due to flooding was estimated based on numerical simulation, and the increase in the risk of mortality due to heatstroke was estimated based on existing reports in Japan. Using these results, the magnitude of the impacts on LHpLE caused by the reduction in well-being due to the non-use of an air conditioner and the increase in the mortality risks were compared, both for the current situation and the future. The results show that LHpLE due to non-use of air conditioners was much greater than that due to the risk of mortality due to flood and heatstroke, and implied that reducing air conditioner use is not necessarily a good way as a mitigation measure. This result would be useful for creating and implementing measures to counter climate change and could also be applied in many other fields.

A retrospective analysis of influence of environmental/air temperature and relative humidity on SARS-CoV-2 outbreak

Coronaviruses are a family of viruses causing mild to severe upper respiratory tract syndrome. Recent pandemic threat caused by SARS-CoV-2 first appeared in Wuhan, China in December 2019. Whether the COVID-19 might be affected by warming global temperatures like some of previous pandemic flues. Therefore, the current study aims to analyze the effect of temperature and relative humidity (RH) on the spreading of the SARS-CoV-2 infection. The confirmed cases of COVID-19 in 31 different provinces in China and 274 provinces and/or countries were obtained from an online database. The real time temperature and humidity of the respective regions were taken from another online weather reporting data source. Spearman [R(s)] rank correlation was performed to identify the relationship between the variables (e.g., temperature, number of confirmed cases etc.). The overall spreading of SARS-CoV-2 in relations to temperature was inversely correlated. Among 29 of 31 provinces of China the overall correlation coeffient of the relationship between temperature and viral spread was negative [-R(s)] where in 15 provinces the correlation was at significant level (p<0.05). Furthermore, there was a significant negative relationship observed between the SARS-CoV-2 spreading and air temperature throughout the 274 provinces and/or countries of the world. However, there was no significant corelationship between humidity and COVID-19 spreading either in China or among countries and/or various regions of the world. The SARS-CoV-2 infection seems to be spread in a wide range of temperature throughout the world. Thus, several factors including temperature, may influnce the SARS-CoV-2 spreading. As a results, relatively elevated air temperature could not completely prevent viral spread but it might be one of the important detrimental factors for SARS-CoV-2 rapid spread.

A statistical study to evaluate the performance of liquid cooling garments considering thermal comfort

Liquid cooling garments (LCGs) are considered feasible cooling equipment to protect individuals from hyperthermia and heat-related illness when working in extremely hot and stressful environments. So far, the goals for the optimization design of LCGs are mostly from the perspective of enhancing its efficiency and working time. However, thermal comfort is the key factor that is often not considered. In fact, many situations may cause discomfort. For example, the inlet temperature of the liquid-cooling vest changes constantly resulting in the change of thermal states of the human body. So, it is very significative to develop a method to evaluate the performance of LCGs considering thermal comfort. In this paper, an uncomfortable time ratio was proposed to evaluate the performance of LCGs considering thermal comfort. A series of tests were conducted by a modified thermal manikin method to evaluate the thermal properties. According to the analyses, the duration working time was 82.77 min, while the uncomfortable time ratio was too large, up to 57.6%. It showed that the thermal comfort should be considered when optimizing the performance of LCGs. The influences of different parameters such as volume of ice, flowrate, inlet temperature on the performance of LCGs were investigated through orthogonal experimental design. The statistical analysis illustrated that the influence of the volume of ice on the uncomfortable time ratio is greater than that of flowrate and ambient temperature. It is concluded that this method is useful for the control and design of LCGs considering thermal comfort.

A tool for assessing the climate change mitigation and health impacts of environmental policies: The Cities Rapid Assessment Framework for Transformation (CRAFT)

Background: A growing number of cities, including Greater London, have set ambitious targets, including detailed policies and implementation plans, to reach global goals on sustainability, health, and climate change. Here we present a tool for a rapid assessment of the magnitude of impact of specific policy initiatives to reach these targets. The decision-support tool simultaneously quantifies the environmental and health impacts of specified selected policies. Methods: The ‘Cities Rapid Assessment Framework for Transformation (CRAFT)’ tool was applied to Greater London. CRAFT quantifies the effects of ten environmental policies on changes in (1) greenhouse gas (GHG) emissions, (2) exposures to environmental hazards, (3) travel-related physical activity, and (4) mortality (the number of attributable deaths avoided in one typical year). Publicly available data and epidemiological evidence were used to make rapid quantitative estimates of these effects based on proportional reductions in GHG emissions and environmental exposures from current baseline levels and to compute the mortality impacts. Results: The CRAFT tool estimates that, of roughly 50,000 annual deaths in Greater London, the modelled hazards (PM (2.5) (from indoor and outdoor sources), outdoor NO (2), indoor radon, cold, overheating) and low travel-related physical activity are responsible for approximately 10,000 premature environment-related deaths. Implementing the selected polices could reduce the annual mortality number by about 20% (~1,900 deaths) by 2050. The majority of these deaths (1,700) may be avoided through increased uptake in active travel. Thus, out of ten environmental policies, the ‘active travel’ policy provides the greatest health benefit. Also, implementing the ten policies results in a GHG reduction of around 90%. Conclusions: The CRAFT tool quantifies the effects of city policies on reducing GHG emissions, decreasing environmental health hazards, and improving public health. The tool has potential value for policy makers through providing quantitative estimates of health impacts to support and prioritise policy options.

Air conditioning and heat-related mortality: A multi-country longitudinal study

BACKGROUND: Air conditioning has been proposed as one of the key factors explaining reductions of heat-related mortality risks observed in the last decades. However, direct evidence is still limited. METHODS: We used a multi-country, multi-city, longitudinal design to quantify the independent role of air conditioning in reported attenuation in risk. We collected daily time series of mortality, mean temperature, and yearly air conditioning prevalence for 311 locations in Canada, Japan, Spain, and the USA between 1972 and 2009. For each city and sub-period, we fitted a quasi-Poisson regression combined with distributed lag non-linear models to estimate summer-only temperature-mortality associations. At the second stage, we used a novel multilevel, multivariate spatio-temporal meta-regression model to evaluate effect modification of air conditioning on heat-mortality associations. We computed relative risks and fractions of heat-attributable excess deaths under observed and fixed air conditioning prevalences. RESULTS: Results show an independent association between increased air conditioning prevalence and lower heat-related mortality risk. Excess deaths due to heat decreased during the study periods from 1.40% to 0.80% in Canada, 3.57% to 1.10% in Japan, 3.54% to 2.78% in Spain, and 1.70% to 0.53% in the USA. However, increased air conditioning explains only part of the observed attenuation, corresponding to 16.7% in Canada, 20.0% in Japan, 14.3% in Spain, and 16.7% in the USA. CONCLUSIONS: Our findings are consistent with the hypothesis that air conditioning represents an effective heat adaptation strategy, but suggests that other factors have played an equal or more important role in increasing the resilience of populations.

Mumbai Climate Action Plan 2022

Health checks during extreme heat events

European Climate Data Explorer

Heat Action Platform

Caribbean Action Plan on Health and Climate Change

WHO global strategy on health, environment and climate change

Climate Change for Health Professionals: A Pocket Book

Nota Técnica: Sistema de Alerta Temprana por Olas de Calor y Salud (SAT-OCS) – Argentina

SMN Avisos a Corto Plazo

Monitoreo de Olas de Calor

Extreme weather warnings and forecasts

Vigilance Meteo et Marine

Seasonal Regional Differentiation of Human Thermal Comfort Conditions in Algeria

AirRater

Slovakia: Health and Climate Change Country Profile 2021

Identificación de Eventos de “Olas de Calor” en la Amazonía Peruana

Protection Resilience Efficiency and Prevention for Workers in Industrial Agriculture in a Changing Climate: The Adelante Initiative (Nicaragua)

MEDMI Mortality and Temperature Application

UNDRR Hazard Information Profile: Heatwave

Health of Canadians in a Changing Climate: Advancing our Knowledge for Action

Public Weather Alerts for Canada

Hello Weather Canada: Automated Telephone Service

WeatherCAN | Canada’s Weather App

ClimateData.ca

Canadian Centre for Climate Services Support Desk and Resource Hub

How to reach vulnerable populations? Evaluation of UV index, heat warning system, air-borne pollen and ozone forecasts in Germany

Iterative development and testing of a heat warning and information system in Alberta, Canada

Adapting to the impacts of heatwaves in a changing climate in Botkyrka, Sweden

Evaluating the effectiveness of labor protection policy on occupational injuries caused by extreme heat in a large subtropical city of China

Care provider assessment of thermal state of children in day-care centers

Public health vulnerability to heat-related impacts of climate change in Cyprus

Spatiotemporal assessment of extreme heat risk for high-density cities: A case study of Hong Kong from 2006 to 2016

The burden of heat-related mortality attributable to recent human-induced climate change

Heat Stress and Thermal Perception amongst Healthcare Workers during the COVID-19 Pandemic in India and Singapore

City design for health and resilience in hot and dry climates

Review of Biometeorology of Heatwaves and Warm Extremes in Europe

A Note on the Assessment of the Effect of Atmospheric Factors and Components on Humans

Accuracy of Mean Radiant Temperature Derived from Active and Passive Radiometry

Balancing conflicting mitigation and adaptation behaviours of urban residents under climate change and the urban heat island effect

COVID-19 and thermoregulation-related problems: Practical recommendations

Simplicity lacks robustness when projecting heat-health outcomes in a changing climate

Air Conditioning and Heat-related Mortality: A Multi-country Longitudinal Study

Heatwaves: An invisible risk in UK policy and research

Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation

Associations between high temperatures in pregnancy and risk of preterm birth, low birth weight, and stillbirths: systematic review and meta-analysis

Message Sent, Now What? A Critical Analysis of the Heat Action Plan in Ahmedabad, India

Statistical Modelling of Temperature-Attributable Deaths in Portuguese Metropolitan Areas under Climate Change: Who Is at Risk?

Projections of Temperature-Attributable Deaths in Portuguese Metropolitan Areas: A Time-Series Modelling Approach

Extreme Heat Kills Even in Very Hot Cities: Evidence from Nagpur, India

Heat Extremes, Public Health Impacts, and Adaptation Policy in Germany

Persistent heat waves projected for Middle East and North Africa by the end of the 21st century

Global and cross-country analysis of exposure of vulnerable populations to heatwaves from 1980 to 2018

Canopy Urban Heat Island and Its Association with Climate Conditions in Dubai, UAE

On the Efficiency of Using Transpiration Cooling to Mitigate Urban Heat

Probability Risk of Heat- and Cold-Related Mortality to Temperature, Gender, and Age Using GAM Regression Analysis

The Effects of Historical Housing Policies on Resident Exposure to Intra-Urban Heat: A Study of 108 US Urban Areas

A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes

The heat is on: Acute liver failure caused by exertional heatstroke

A spatially explicit surface urban heat island database for the United States: Characterization, uncertainties, and possible applications

Cooling for sustainable development

Heat wave trends in Southeast Asia during 1979–2018: The impact of humidity

Characteristics and thermodynamics of Sahelian heatwaves analysed using various thermal indices

Heat adaptation in humans: the significance of controlled and regulated variables for experimental design and interpretation

Extreme heat and health at Tokyo-2020ne: The need for scientific coalition across sectors

Examining the joint effects of heatwaves, air pollution, and green space on the risk of preterm birth in California

The heat-health nexus in the urban context: A systematic literature review exploring the socio-economic vulnerabilities and built environment characteristics

Protecting rural Canadians from extreme heat

Considerations for the development of extreme heat policies in sport and exercise

Electric fans: A potential stay-at-home cooling strategy during the COVID-19 pandemic this summer?

The evolution of minimum mortality temperatures as an indicator of heat adaptation: The cases of Madrid and Seville (Spain)

Modelling climate change impacts on attributable-related deaths and demographic changes in the largest metropolitan area in Portugal: A time-series analysis

Barriers to occupational heat stress risk adaptation of mining workers in Ghana

Defining heat waves and extreme heat events using sub-regional meteorological data to maximize benefits of early warning systems to population health

Keeping older individuals cool in hot and moderately humid conditions: wetted clothing with and without an electric fan

Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning

Thermal comfort and cooling strategies in the Brazilian Amazon. An assessment of the concept of fuel poverty in tropical climates

Anomalously warm temperatures are associated with increased injury deaths

Heat and risk of acute kidney injury: An hourly-level case-crossover study in queensland, Australia

Heat wave intensity and daily mortality in four of the largest cities of Spain

Wind direction and cool surface strategies on microscale urban heat island

Air Temperatures and Occupational Injuries in the Construction Industries: A Report From Northern Italy (2000-2013)

The Heat Health Warning System in Germany-Application and Warnings for 2005 to 2019

A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions

Asian megacity heat stress under future climate scenarios: impact of air-conditioning feedback

Fluid Balance and Hydration Considerations for Women: Review and Future Directions

Spatial changes in work capacity for occupations vulnerable to heat stress: Potential regional impacts from global climate change

Economic valuation of climate change-induced mortality: Age dependent cold and heat mortality in the Netherlands

Chronic kidney disease of non-traditional origin in Mesoamerica: A disease primarily driven by occupational heat stress

Cause-specific mortality attributable to cold and hot ambient temperatures in Hong Kong: A time-series study, 2006-2016

An occupational heat stress and hydration assessment of agricultural workers in north Mexico

Impact of the warm summer 2015 on emergency hospital admissions in Switzerland

Bootstrap approach to validate the performance of models for predicting mortality risk temperature in Portuguese Metropolitan Areas

Effects of extreme temperatures on cerebrovascular mortality in Lisbon: a distributed lag non-linear model

Twenty-First Century Projected Changes in Extreme Temperature over Côte d’Ivoire (West Africa)

Hitzeaktionspläne zur Prävention von hitzebedingten Todesfällen – Erfahrungen aus der Schweiz

Retrospective Analysis of Summer Temperature Anomalies with the Use of Precipitation and Evapotranspiration Rates

Heat-related knowledge, perceptions, and barriers among oil spill cleanup responders

The Role of Humidity in Associations of High Temperature with Mortality: A Multicountry, Multicity Study

Workplace Heat: An Increasing Threat to Occupational Health and Productivity

Physiological Responses to Heat Acclimation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Ambient Conditions Prior to Tokyo 2020 Olympic and Paralympic Games: Considerations for Acclimation or Acclimatization Strategies

Advancing our Understanding of Heat Wave Criteria and Associated Health Impacts to Improve Heat Wave Alerts in Developing Country Settings

The impact of extremely hot weather events on all-cause mortality in a highly urbanized and densely populated subtropical city: A 10-year time-series study (2006–2015)

Characterization of Heat Waves: A Case Study for Peninsular Malaysia

Efficacy of Heat Mitigation Strategies on Core Temperature and Endurance Exercise: A Meta-Analysis

Heatstroke (Review Article)

Assessing spatial variability of extreme hot weather conditions in Hong Kong: A land use regression approach

The nexus between social impacts and adaptation strategies of workers to occupational heat stress: A conceptual framework

The impact of perceived heat stress symptoms on work-related tasks and social factors: A cross-sectional survey of Australia’s Monsoonal North

The impact of heat exposure on reduced gestational age in pregnant women in North Carolina, 2011-2015

The impact of heat waves on mortality and years of life lost in a dry region of Iran (Kerman) during 2005-2017

The impact of heat waves on mortality in Northwest India

The impact of heating season factors on eight PM2.5-bound polycyclic aromatic hydrocarbon (PAH) concentrations and cancer risk in Beijing

The impact of cold and heat on years of life lost in a northwestern Chinese city with temperate continental climate

The impact of extreme heat events on hospital admissions to the Royal Hobart Hospital

The impact of climate change and urban growth on urban climate and heat stress in a subtropical city

The growing threat of heat disasters

The heat exposure risk to outdoor workers in Brazil

The heat penalty of walkable neighbourhoods

The effects of high-temperature weather on human sleep quality and appetite

The effect of heat exposure on physical workload and maximum acceptable work duration (MAWD) in a hot and dry climate

The effect characteristics of temperature on stroke mortality in inner Mongolia and globally

The challenge of urban heat exposure under climate change: An analysis of cities in the sustainable healthy urban environments (SHUE) database

The climatology of cold and heat waves in Brazil from 1961 to 2016

The asymmetric impact of abundant preceding rainfall on heat stress in low latitudes

The association between heat exposure and hospitalization for undernutrition in Brazil during 2000-2015: A nationwide case-crossover study

The association between heat stroke and subsequent cardiovascular diseases

The association between heatwaves and risk of hospitalization in Brazil: A nationwide time series study between 2000 and 2015

The association between mandated preseason heat acclimatization guidelines and exertional heat illness during preseason high school American football practices

Temporally compound heat wave events and global warming: An emerging hazard

Synoptic features responsible for heat waves in central Africa, a region with strong multidecadal trends

Solar energy industry workers under climate change: A risk assessment of the level of heat stress experienced by a worker based on measured data

Solar radiation exposure has diurnal effects on thermoregulatory responses during high-intensity exercise in the heat outdoors

Socio-economic, infrastructural and health-related risk factors associated with adverse heat-health effects reportedly experienced during hot weather in South Africa

Socio-Economic impact of and adaptation to extreme heat and cold of farmers in the food bowl of Nepal

Simulating micro-scale thermal interactions in different building environments for mitigating urban heat islands

Short-term changes in thermal perception associated with heatwave conditions in Melbourne, Australia

Shifting from “community-placed” to “community-based” research to advance health equity: A case study of the heatwaves, housing, and health: Increasing climate resiliency in Detroit (HHH) Partnership

Response of urban heat stress to heat waves in Athens (1960-2017)

Quantifying the impact of changing the threshold of New York City heat emergency plan in reducing heat-related illnesses

Quantifying the risk of heat waves using extreme value theory and spatio-temporal functional data

Projection of temperatures and heat and cold waves for Aragon (Spain) using a two-step statistical downscaling of CMIP5 model outputs

Nationwide epidemiological study for estimating the effect of extreme outdoor temperature on occupational injuries in Italy

Interaction between indoor occupational heat stress and environmental temperature elevations during heat waves

Impacts of cold and hot temperatures on mortality rate in Isfahan, Iran

How urban characteristics affect vulnerability to heat and cold: A multi-country analysis

Fanning as an alternative to air conditioning – A sustainable solution for reducing indoor occupational heat stress

Evaluation of the impact of heat stress on the occurrence of occupational injuries: Meta-analysis of observational studies

Estimating occupational heat exposure from personal sampling of public works employees in Birmingham, Alabama

An occupational heat-health warning system for Europe: The HEAT-SHIELD platform

An emerging tropical cyclone-deadly heat compound hazard

A conceptual framework for climate change, health and wellbeing in NSW, Australia

An analysis of the prevalence of heat waves in the United States between 1948 and 2015

Assessment of the Australian Bureau of Meteorology wet bulb globe temperature model using weather station data

Heat-related Training and Educational Material Needs among Oil Spill Cleanup Responders

Implications for workability and survivability in populations exposed to extreme heat under climate change: a modelling study

Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time series modelling study

Spatiotemporal influence of temperature, air quality, and urban environment on cause-specific mortality during hazy days

Two-way effect modifications of air pollution and air temperature on total natural and cardiovascular mortality in eight European urban areas

Temporal changes in mortality attributed to heat extremes for 57 cities in Northeast Asia

Heat Acclimation Decay and Re-Induction: A Systematic Review and Meta-Analysis

Ergogenic effects of precooling with cold water immersion and ice ingestion: A meta-analysis

Heat: a primer for public health researchers

Co-occurrence of extreme ozone and heat waves in two cities from Morocco

Heat wave and the risk of intimate partner violence

Workers’ health and productivity under occupational heat strain: a systematic review and meta-analysis

Urban-focused weather and climate services in Hong Kong

The impact of heat and impaired kidney function on productivity of Guatemalan sugarcane workers

The impact of heat waves and cold spells on respiratory emergency department visits in Beijing, China

The impact of heat waves on emergency department admissions in Charlottesville, Virginia, U.S.A

The heterogeneity of vulnerability in public health: A heat wave action plan as a case study

The impact of a heat wave on mortality in the emergency department

The effects of increasing surface reflectivity on heat-related mortality in Greater Montreal Area, Canada

The effect of an automated phone warning and health advisory system on adaptation to high heat episodes and health services use in vulnerable groups-evidence from a randomized controlled study

The effect of hot days on occupational heat stress in the manufacturing industry: Implications for workers’ well-being and productivity

The Montreal heat response plan: Evaluation of its implementation towards healthcare professionals and vulnerable populations

The added effects of heatwaves on cause-specific mortality: A nationwide analysis in 272 Chinese cities

The association between heat waves and other meteorological parameters and snakebites: Israel national study

Temporal changes in morality attributed to heat extremes for 57 cities in Northeast Asia

Temporal changes in mortality impacts of heat wave and cold spell in Korea and Japan

Temporal changes in temperature-related mortality in Spain and effect of the implementation of a Heat Health Prevention Plan

Temporal variation in the effect of heat and the role of the Italian heat prevention plan

Synergies and trade-offs between energy efficiency and resiliency to extreme heat – A case study

Temperature and air pollution relationship during heatwaves in Birmingham, UK

Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century

Strategic locating of refuges for extreme heat events (or heat waves)

Stronger contributions of urbanization to heat wave trends in wet climates

Substantial increase in heat wave risks in China in a future warmer world

Surveying of heat waves impact on the urban heat islands: Case study, the Karaj City in Iran

Spatiotemporal analysis of regional socio-economic vulnerability change associated with heat risks in Canada

Spatial variation of heat-related morbidity: A hierarchical Bayesian analysis in multiple districts of the Mekong delta region

Spatially explicit assessment of heat health risk by using multi-sensor remote sensing images and socioeconomic data in Yangtze River Delta, China

Spatial and temporal analysis of outdoor human thermal comfort during heat and cold waves in Iran

Social interventions to prevent heat-related mortality in the older adult in Rome, Italy: A quasi-experimental study

Social participation and heat-related behavior in older adults during heat waves and on other days

Short-term effect of heat waves on hospital admissions in Madrid: Analysis by gender and comparision with previous findings

Short-term effects of heat on mortality and effect modification by air pollution in 25 Italian cities

Risk perception of heat waves and its spatial variation in Nanjing, China

Role of green roofs in reducing heat stress in vulnerable urban communities-a multidisciplinary approach

Screening criteria for increased susceptibility to heat stress during work or leisure in hot environments in healthy individuals aged 31-70 years

Risk factors for heat-related illness in U.S. workers: An OSHA case series

Risk management of heatstroke based on fast computation of temperature and water loss using weather data for exposure to ambient heat and solar radiation

Regional morbidity and mortality during heatwaves in South Australia

Reasons to adapt to urban heat (in the Netherlands)

Recurrent heat shock impairs the proliferation and differentiation of C2C12 myoblasts

Reduced cognitive function during a heat wave among residents of non-air-conditioned buildings: An observational study of young adults in the summer of 2016

Reframing future risks of extreme heat in the United States

Quantification and evaluation of intra-urban heat-stress variability in Seoul, Korea

Perceptions of climate change and occupational heat stress risks and adaptation strategies of mining workers in Ghana

Occupational heat exposure among municipal workers

Limited role of working time shift in offsetting the increasing occupational-health cost of heat exposure

Impacts of heat, cold, and temperature variability on mortality in Australia, 2000-2009

Evaluation of occupational exposure limits for heat stress in outdoor workers – United States, 2011-2016

Evaluation of the impact of ambient temperatures on occupational injuries in Spain

Effects of occupational heat exposure on traffic police workers in Ahmedabad, Gujarat

Climate change and occupational heat stress risks and adaptation strategies of mining workers: Perspectives of supervisors and other stakeholders in Ghana

Assessment of occupational exposure to heat stress and solar ultraviolet radiation among groundskeepers in an eastern North Carolina university setting

Air temperature exposure and agricultural occupational injuries in the autonomous province of Trento (2000-2013, north-eastern Italy)

Actual and simulated weather data to evaluate wet bulb globe temperature and heat index as alerts for occupational heat-related illness

A multi-country analysis on potential adaptive mechanisms to cold and heat in a changing climate

Heatwave and risk of hospitalization: A multi-province study in Vietnam

Comparing Spatial Interpolation Techniques of Local Urban Temperature for Heat-related Health Risk Estimation in a Subtropical City

A comparison and appraisal of a comprehensive range of human thermal climate indices

Humid heat waves at different warming levels

Urban Climate Vulnerability in Cambodia: A Case Study in Koh Kong Province

Twenty-Seven Ways a Heat Wave Can Kill You:Deadly Heat in the Era of Climate Change

The Inter-Association Task Force Document on Emergency Health and Safety: Best-Practice Recommendations for Youth Sports Leagues

The impact of heat waves on occurrence and severity of construction accidents

The impact of high apparent temperature on spontaneous preterm delivery: A case-crossover study

The impact of maternal factors on the association between temperature and preterm delivery

The impact of climate change on the overheating risk in dwellings-a Dutch case study

The effects of ambient temperature and heatwaves on daily campylobacter cases in Adelaide, Australia, 1990-2012

The effects of hot nights on mortality in Barcelona, Spain

The concomitant use of diuretics, non-steroidal anti-inflammatory drugs, and angiotensin-converting enzyme inhibitors or angiotensin receptor blockers (triple whammy), extreme heat, and in-hospital acute kidney injury in older medical patients

The effect of climate change on heat-related excess mortality in Hungary at different area levels

The Heat Exposure Integrated Deprivation Index (HEIDI): A data-driven approach to quantifying neighborhood risk during extreme hot weather

The association between consecutive days’ heat wave and cardiovascular disease mortality in Beijing, China

The biophysical and physiological basis for mitigated elevations in heart rate with electric fan use in extreme heat and humidity

Temporal changes in mortality related to extreme temperatures for 15 cities in Northeast Asia: Adaptation to heat and maladaptation to cold

Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012)

Temperature and heat-related mortality trends in the Sonoran and Mojave desert region

Surface heat assessment for developed environments: Probabilistic urban temperature modeling

Symptomatic response of the elderly with cardiovascular disease during the heat wave in Slovenia

Summer temperature variability across four urban neighborhoods in Knoxville, Tennessee, USA

Summertime extreme heat events and increased risk of acute myocardial infarction hospitalizations

Spatiotemporal trends in human vulnerability and adaptation to heat across the United States

Spatiotemporal variation in heat-related out-of-hospital cardiac arrest during the summer in Japan

Spatial variability in threshold temperatures of heat wave mortality: Impact assessment on prevention plans

Spatially distinct effects of preceding precipitation on heat stress over eastern China

Spatially explicit mapping of heat health risk utilizing environmental and socioeconomic data

Socioenvironmental factors associated with heat and cold-related mortality in Vadu HDSS, western India: A population-based case-crossover study

Social media responses to heat waves

Short-and long-term acclimatization in outdoor spaces: Exposure time, seasonal and heatwave adaptation effects

Small-area spatiotemporal analysis of heatwave impacts on elderly mortality in Paris: A cluster analysis approach

Risk characterization of hospitalizations for mental illness and/or behavioral disorders with concurrent heat-related illness

Risk factors for deaths during the 2009 heat wave in Adelaide, Australia: A matched case-control study

Risk factors for heat related deaths during the June 2015 heat wave in Karachi, Pakistan

Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment

Real-time surveillance of heat-related morbidity: Relation to excess mortality associated with extreme heat

Recruitment, methods, and descriptive results of a physiologic assessment of Latino farmworkers: The California heat illness prevention study

Quercetin protects against heat stroke-induced myocardial injury in male rats: Antioxidative and antiinflammatory mechanisms

Quantifying projected heat mortality impacts under 21st-century warming conditions for selected European countries

Occupational heat stress and kidney health: From farms to factories

Modeling the effects of urban design on emergency medical response calls during extreme heat events in Toronto, Canada

Communicating the deadly consequences of global warming for human heat stress

Beyond frozen ground: Climate change and health

Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK

Evaluation of a heat warning system in Adelaide, South Australia, using case-series analysis

Biophysical aspects of human thermoregulation during heat stress

Responses to hyperthermia. Optimizing heat dissipation by convection and evaporation: Neural control of skin blood flow and sweating in humans

National Athletic Trainers’ Association Position Statement: Exertional Heat Illnesses

An Overview of Occupational Risks From Climate Change

An effective public health program to reduce urban heat islands in Quebec, Canada

The development of the Hong Kong Heat Index for enhancing the heat stress information service of the Hong Kong Observatory

Mortalidad durante las olas de calor de 2013-2014 en el Noreste Argentina

The impact of rainfall and temperature on the spatial progression of cases during the chikungunya re-emergence in Thailand in 2008-2009

The influence of occupational heat exposure on cognitive performance and blood level of stress hormones: A field study report

The hypophagic response to heat stress is not mediated by GPR109A or peripheral beta-OH butyrate

The impact of albedo increase to mitigate the urban heat island in Terni (Italy) using the WRF model

The effects of heat stress on a number of hematological parameters and levels of thyroid hormones in foundry workers

The burden of extreme heat and heatwave on emergency ambulance dispatches: A time-series study in Huainan, China

The effect of climate-change-related heat waves on mortality in Spain: Uncertainties in health on a local scale

The application of the European heat wave of 2003 to Korean cities to analyze impacts on heat-related mortality

Temperature distribution and thermal damage of peripheral tissue in human limbs duringÊtheÊheat stress: A mathematical model

Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities

The acute effects of passive heat exposure on arterial stiffness, oxidative stress, and inflammation

Susceptibility to heat-related fluid and electrolyte imbalance emergency department visits in Atlanta, Georgia, USA

Temperature and heat wave trends in northwest Mexico

Students’ Perceived Heat-Health Symptoms Increased with Warmer Classroom Temperatures

Summer indoor heat exposure and respiratory and cardiovascular distress calls in New York City, NY, U.S

Spatiotemporal analysis of heat and heat wave effects on elderly mortality in Texas, 2006-2011

Spatial and temporal variation in emergency transport during periods of extreme heat in Japan: A nationwide study

Spatial patterns of heat-related cardiovascular mortality in the Czech Republic

Secondary effects of urban heat island mitigation measures on air quality

Short term effect of air pollution, noise and heat waves on preterm births in Madrid (Spain)

Risk and protective factors for heat-related events among older adults of Southern Quebec (Canada): The NuAge study

Respiratory effects of indoor heat and the interaction with air pollution in chronic obstructive pulmonary disease

Responding to the effects of extreme heat: Baltimore City’s Code Red program

Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia

Quantifying the adverse effect of excessive heat on children: An elevated risk of hand, foot and mouth disease in hot days

Mortality related to cold and heat. What do we learn from dairy cattle?

Impact of climate conditions on occupational health and related economic losses: A new feature of global and urban health in the context of climate change

Heat or cold: which one exerts greater deleterious effects on health in a basin climate city? Impact of ambient temperature on mortality in Chengdu, China

Heat stress and inadequate sanitary facilities at workplaces – an occupational health concern for women?

Determination of air enthalpy based on meteorological data as an indicator for heat stress assessment in occupational outdoor environments, a field study in Iran

Assessment of the effect of cold and hot temperatures on mortality in Ontario, Canada: A population-based study

Precooling and percooling (cooling during exercise) both improve performance in the heat: a meta-analytical review

Consensus Recommendations on Training and Competing in the Heat

Between extremes: Health effects of heat and cold

Should Electric Fans Be Used During a Heat Wave?

The influence of weather on health-related help-seeking behavior of senior citizens in Hong Kong

Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions

The Role of Fluid Temperature and Form on Endurance Performance in the Heat

Exertional heat illness: emerging concepts and advances in prehospital care

The impact of heat on an emergency department in Italy: Attributable visits among children, adults, and the elderly during the warm season

The effect of heat waves on mortality in susceptible groups: A cohort study of a Mediterranean and a northern European City

The effects of horizontal advection on the urban heat island in Birmingham and the West Midlands, United Kingdom during a heatwave

The effects of the 1996-2012 summer heat events on human mortality in Slovakia

Temporal changes in extreme high temperature, heat waves and relevant disasters in Nanjing metropolitan region, China

Temporal variation in heat-mortality associations: A multicountry study

Sympathetic activity during passive heat stress in healthy aged humans

Temperature variation and heat wave and cold spell impacts on years of life lost among the urban poor population of Nairobi, Kenya

Spatial analysis of the effect of the 2010 heat wave on stroke mortality in Nanjing, China

Spatial analysis of the sensitivity of wheat yields to temperature in India

Sao Paulo urban heat islands have a higher incidence of dengue than other urban areas

Review article: Vulnerability to heat-related mortality: A systematic review, meta-analysis, and meta-regression analysis

Rising heat wave trends in large US cities

Risk factors for heat-related illness in Washington crop workers

Quantifying vulnerability to extreme heat in time series analyses: A novel approach applied to neighborhood social disparities under climate change

Occupational heat-related illness emergency department visits and inpatient hospitalizations in the southeast region, 2007-2011

Outdoor occupational environments and heat stress in Iran

Impact of heat and cold on total and cause-specific mortality in Vadu HDSS-a rural setting in western India

Heat index and adjusted temperature as surrogates for wet bulb globe temperature to screen for occupational heat stress

Extreme heat and occupational heat illnesses in South Australia, 2001-2010

Characterizing occupational heat-related mortality in the United States, 2000-2010: An analysis using the Census of Fatal Occupational Injuries database

Clarifying life lost due to cold and heat: A new approach using annual time series

Changes in cause-specific mortality during heat waves in central Spain, 1975-2008

Assessing the impacts of climatic change on mountain water resources

The use of Bayesian inference to inform the surveillance of temperature-related occupational morbidity in Ontario, Canada, 2004-2010

The impact of heatwaves on workers’ health and safety in Adelaide, South Australia

The impact of recent heat waves on human health in California

The impact of heat, cold, and heat waves on hospital admissions in eight cities in Korea

The effects of heat stress and its effect modifiers on stroke hospitalizations in Allegheny County, Pennsylvania

The effects of summer temperature and heat waves on heat-related illness in a coastal city of China, 2011-2013

The effect of heat waves on mortality and effect modifiers in four communities of Guangdong Province, China

The effect of pre-existing medical conditions on heat stroke during hot weather in South Korea

The combined impact of urban heat island, thermal brudge effect of buildings and future climate change on the potential overwintering of Phlebotomus species in a central European metropolis

Summertime acute heat illness in U.S. emergency departments from 2006 through 2010: Analysis of a nationally representative sample

Survey of county-level heat preparedness and response to the 2011 summer heat in 30 U.S. States

Spatiotemporal variations in heat-related health risk in three Midwestern US cities between 1990 and 2010

Summer outdoor temperature and occupational heat-related illnesses in Quebec (Canada)

Spatio-temporal modelling of heat stress and climate change implications for the Murray dairy region, Australia

Socio-demographic vulnerability to heatwave impacts in Brisbane, Australia: A time series analysis

Sociogeographic variation in the effects of heat and cold on daily mortality in Japan

Role of climate variability in the heatstroke death rates of Kanto region in Japan

Residential proximity to major roads and term low birth weight: The roles of air pollution, heat, noise, and road-adjacent trees

Predicting indoor heat exposure risk during extreme heat events

Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933): A case study from workplaces in Chennai, India

Incorporating occupational risk in heat stress vulnerability mapping

Extremely cold and hot temperatures increase the risk of diabetes mortality in metropolitan areas of two Chinese cities

Effects of occupational heat exposure on female brick workers in West Bengal, India

Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic

The impact of heat on mortality and morbidity in the Greater Metropolitan Sydney Region: A case crossover analysis

Relationship between heat index and mortality of 6 major cities in Taiwan

Extremely cold and hot temperatures increase the risk of ischaemic heart disease mortality: Epidemiological evidence from China

The impact of heat waves on mortality in seven major cities in Korea

The impact of housing type on temperature-related mortality in South Africa, 1996-2015

The impact of extreme heat on morbidity in Milwaukee, Wisconsin

The impact of heat islands on mortality in Paris during the August 2003 heatwave

Socio-cultural reflections on heat in Australia with implications for health and climate change adaptation

Quantification of the heat wave effect on mortality in nine French cities during summer 2006

Regional Characteristics of Heat-related Deaths and the Application of a Heat-health Warning System in Korea

Climate change, workplace heat exposure, and occupational health and productivity in Central America

The impact of heat waves on mortality

Housing, heat stress and health in a changing climate: Promoting the adaptive capacity of vulnerable households, a suggested way forward

The impact of heat waves on mortality in 9 European cities: Results from the EuroHEAT project

The health impacts of heat waves in five regions of New South Wales, Australia: A case-only analysis

The association between overall health, psychological distress, and occupational heat stress among a large national cohort of 40,913 Thai workers

Symptoms of heat illness among Latino farm workers in North Carolina

Temperature, comfort and pollution levels during heat waves and the role of sea breeze

The 2003 heat wave in France: Hydratation status changes in older inpatients

Summer climate and mortality in Vienna – A human-biometeorological approach of heat-related mortality during the heat waves in 2003

Summer heat and mortality in New York City: How hot is too hot?

Social capital, individual responses to heat waves and climate change adaptation: An empirical study of two UK cities

Spatial analysis of heat-related mortality among the elderly between 1993 and 2004 in Sydney, Australia

Seasonal variability in heat-related mortality across the United States

Short term effects of temperature on risk of myocardial infarction in England and Wales: Time series regression analysis of the Myocardial Ischaemia National Audit Project (MINAP) registry

Record heat waves in Moldova in 2007: Identification, description, and health consequences

Heat waves and cold spells: An analysis of policy response and perceptions of vulnerable populations in the UK

Climate change and occupational heat stress: Methods for assessment

The impact of cold and hot weather on senior citizens in Hong Kong

Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States

The impact of heat waves on the elderly living in Australia: How should a heat health warning system be developed to protect them? (Poster)

The 2006 California heat wave: Impacts on hospitalizations and emergency department visits

Temporal and spatial variation of heat-related illness using 911 medical dispatch data

Susceptibility to heat wave-related mortality: A follow-up study of a cohort of elderly in Rome

Syndromic surveillance and heat wave morbidity: A pilot study based on emergency departments in France

Taking the heat out of the population and climate debate

Socioeconomic indicators of heat-related health risk supplemented with remotely sensed data

Risk of death related to psychotropic drug use in older people during the European 2003 heatwave: A population-based case-control study

Quantification of the heat wave effect on cause-specific mortality in Essen, Germany

To Cool, But Not Too Cool: That Is the Question-Immersion Cooling for Hyperthermia

The impact of excess heat events in Maricopa County, Arizona: 2000–2005

Temperature, air pollution and total mortality during summers in Sydney, 1994-2004

The effect of heat waves on hospital admissions for renal disease in a temperate city of Australia

The effect of heat waves on mental health in a temperate Australian city

The effect of temperature on mortality in Stockholm 1998-2003: A study of lag structures and heatwave effects

Study of heat exposure during Hajj (pilgrimage)

Summer heatwaves promote blooms of harmful cyanobacteria

Synoptic analysis of heat-related mortality in Sydney, Australia, 1993-2001

Potential impacts of climate change on cold- vs. heat-related mortality

Exertional Heat Illness during Training and Competition

The 2003 heat wave

The effect of the 1995 heat wave in Chicago on all-cause and cause-specific mortality

The health impacts of heat waves in nine European cities

The impact of major heat waves on all-cause and cause-specific mortality in France from 1971 to 2003

Short- and long-term outcomes of heatstroke following the 2003 heat wave in Lyon, France

Review of July 2006 heat wave related fatalities in California

Heatwave lesson plan

Inter-Association Task Force on Exertional Heat Illnesses Consensus Statement

Regional Toolkit for Heatwave Management in Asian Cities

Hazard Information Profiles: Supplement to UNDRR-ISC Hazard Definition & Classification Review – Technical Report

A Harmonized Heat Warning and Information System for Ontario (HWIS)

Assessing the Health Impacts of Urban Heat Island Reduction Strategies in the Cities of Baltimore, Los Angeles, and New York

City Resilience Toolkit: Response to deadly heat waves and preparing for rising temperatures

Climate Change and Extreme Heat Events

Heat Action Planning Guide for the Neighborhoods of Greater Phoenix

Heat Health in Hong Kong

Workplace Safety and Health Guidelines: Managing Heatstress in the Workplace

Heat and Health in the WHO European Region: Updated evidence for effective prevention

The Costs of Inaction: The Economic Burden of Fossil Fuels and Climate Change on Health in the United States

Farmworkers at Risk: The Growing Dangers of Pesticides and Heat

WHO Guidance on Research Methods for Health and Disaster Risk Management

WHO Technical Guidance Notes on Sendai Framework Reporting for Ministries of Health

World Disasters Report 2020: Come Heat or High Water – Tackling the Humanitarian Impacts of the Climate Crisis Together

Olas de Calor y Salud: Medidas a tomar

Seniors at Risk: Heat and Climate Change

High-Rise urban Form and Microclimate: Climate-Responsive Design for Asian Mega-Cities

Illustrated Standard Operating Procedure For Cooling Centers

Illustrated Standard Operating Procedure For Slum visits

Managing Heat Risk During the Covid-19 Pandemic

Manual de Procedimientos Estandarizados para la Vigilancia Epidemiológica de Daños a la Salud por Temperaturas Naturales Extrema

NYC extreme-heat Policy Agenda 2020

On the Frontlines: Climate Change Threatens the Health of America’s Workers

Primer for Cool Cities: Reducing excessive urban heat with a focus on passive measures

Primer for Space Cooling

Progress Report 2017-2020: global Heat Health Information Network

Reducing urban heat islands to protect health in canada: An introduction for public health professionals

Report on the Symposium on Challenges in Applied Human Biometeorology

Research Summary: HEAT (Heat Emergency Awareness and Treatment Bundle) Trial

Rx for Hot Cities: Climate Resilience Through urban Greening and Cooling in Los Angeles

State of Climate Services 2020 Report: Move from Early Warnings to Early Action

Technical Brief: Protecting Health from Hot Weather during the covid-19 Pandemic

The human cost of disasters: an overview of the last 20 years (2000-2019)

UV Exposure and heat illness guide helping to keep organised sport and physical activity safe, healthy and fun for all

An initial estimate of costs and benefits of a water, rest and shade intervention

Bulletin de santé publique canicule : Bilan été 2020

City Heatwave Guide For Red Cross Red Crescent Branches

Communicating Heat Risk: Experiences from C40’s Cool Cities Network

Compendium to the Primer for Space Cooling

Critical analysis of heat plans and interviews

Effets de la chaleur sur la santé en Suisse et importance des mesures de prévention: Décès dus à la chaleur pendant l’été caniculaire 2019 et comparaison avec les étés 2003, 2015 et 2018

Enhancing Nationally Determined Contributions (NDCs) through urban climate action

Exertional Heat Illness: A Clinical and Evidence-Based Guide

Forecast Demonstration Project for Improving Heat Wave Warning over india

Global Seasonal Climate Update: Target Season October, November, December 2020

Heat and air-pollution

Heat and Solid Waste Management

Heat and Water Quality

Heat in the City: Dialogue Outcome Brief

Heat in the Workplace: Dialogue Outcome Brief

HEAT: A provider manual for healthcare professionals on assessment and management of patients with heat exhaustion and heat stroke

National Guidelines for Preparation of Action Plan – Prevention and Management of Heat Wave

Queensland State Heatwave Risk Assessment 2019

Scorched: Extreme Heat and Real Estate

The Cooling Imperative: Forecasting the size and source of future cooling demand

Working on a Warmer Planet: The effect of heat stress on productivity and decent work

Representing the urban Heat Island Effect in Future Climates

Climate Change and urban Health: The case of Hong Kong as a Subtropical City

Dangerous Summer: Escalating Bushfire, Heat and drought Risk

Extreme Heat: When outdoor sports become risky

Forecast-based Financing: kyrgyzstan

Forecast-based Financing: tajikistan

Guía para la gestión de la prevención de riesgos laborales por exposición al calor

Guidance on Integrated urban Hydrometeorological, Climate and Environment Services Volume II: Demonstration Cities

Guidance on Integrated urban Hydrometeorological, Climate and Environmental Services Volume I: Concept and Methodology

Health Emergency and Disaster Risk Management Framework

Heat waves and human health: Emerging evidence and experience to inform risk management in a warming world.

Heatwave Guide for Cities

Heatwave Issue Brief

Impacts of heat on health (Excerpt from the 2018 WMO Statement on the State of the global Climate)

Killer Heat in the United States: Climate Choices and the Futureof Dangerously Hot Days

Linee di Indirizzo per la Prevenzione: Ondate di calore e inquinamento atmosferico

Monitoring Health Impacts from Extreme Heat Events in North America: Workshop Summary Report

Updating the evidence related to heat–health action planning

1st Global Forum on Heat and Health Summary Report

1st Meeting of ICOH SCTF (2018-2021) Meeting on the occupational-health and Productivity Impacts of Workplace Heat in Relation to global and Local Climate Change

2019 Report of the Lancet Countdown on Health and Climate Change

Assessment of Occupational Heat Strain and Mitigation Strategies in Qatar

Call to Action from the 1st global Forum on Heat and Health

Chilling Prospects: Tracking sustainable cooling for all

Climate Change and Heat-Induced Mortality in india

Press release: Climate and Health Experts Commit to Tackle the Deadly Consequences of Heat, Hong Kong, china, 17-20 December 2018

Heatwaves: Adapting to climate change

The 1.5 Health Report: Synthesis on Health and Climate Science in the IPCC AR5 Report

WHO Housing and Health Guidelines

Adaptation Gap report

Chilling Prospects: Providing Sustainable Cooling for All

Climate and Health Experts Commit to Tackle the Deadly Consequences of Heat, Hong Kong, China, 17-20 December 2018

Factsheet: Heat and Cold Wave Index (HCWI)

Heat Health Plans: Guidelines

A Guide for Syndromic Surveillance for Heat-Related Health Outcomes in north-america

Estate sicura – Caldo e lavoro: Guida per i lavoratori

Estate Sicura – Come vincere il caldo: Informazioni e raccomandazioni per il Medico di medicina generale

Meteorological risk: extreme temperatures

Strategies for Cooling singapore

Hitzewelle-Massnahmen-Toolbox

Occupational Exposure to Heat and Hot Environments: Criteria for a Recommended Standard

Recomendaciones para la Prevención, Diagnóstico y Tratamiento de Golpe de Calor

Roadmap for Planning Heatwave Management in India

Climate Change and Labour: Impacts of Heat in the Workplace

Adaptation in action: Grantee success stories from CDCÕs climate and health program

A Brief Guidance For The Protection Of Employees Against The Effects Of Heat Stress For Outdoor Works

California Heat & Health Project: A Decision Support Tool

Clinical Guidelines on Management of Heat Related Illness at Health Clinic and Emergency and Trauma Department

Good Practice Guide: Cool Cities

Guide to identifying alert thresholds for heat waves in canada based on evidence

Evaluation of Information Systems Relevant to Climate Change and Health

Heatwaves and Health: Guidance on Warning-System Development

Technical Report on Karachi Heat wave June 2015

WMO Guidelines on Multi-hazard Impact-based Forecast and Warning Services

Assessing Health Vulnerability to Climate Change: A guide for health departments

A Practical Guide to Cool Roofs and Cool Pavements

Atlas of Health and Climate

Cool Roofs and Cool Pavements Toolkit

Heat Alert and Response Systems to Protect Health: Best Practices Guidebook

Defining Heatwaves: Heatwave defined as a heat impact event servicing all community and business sectors in Australia

Heat-Ready: Heatwave awareness, preparedness and adaptive capacity in aged care facilities in three australian states: New South Wales, Queensland and South australia (Final Report)

Early detection, assessment and response to acute public health events: Implementation of Early Warning and Response with a focus on Event-Based Surveillance

Guide for the evaluation of a warning system for people vulnerable to heat and smog

Reducing Urban Heat Islands: Compendium of Strategies urban Heat Island Basics

Heatwave Planning Guide: Development of heatwave plans in local councils in Victoria

Technical summary: Improving public health responses to extreme weather/heat-waves – EuroHEAT

Communicating the Health Risks of Extreme Heat Events

Public Health Advice on Preventing Health Effects of Heat

Guidelines on biometeorology and air-quality forecasts

Heat-waves: Risks and responses

Excessive Heat Events Guidebook

First aid for excessive heat victims

Guidelines for treating and preventing hot weather health impacts

Heat-health action plans: Guidance

Nationaal Hitteplan

Heat-Health Action Plan of the former Yugoslav Republic of Macedonia

Karachi Heatwave Management Plan: A Guide to Planning and Response

Plano de contingência temperaturas extremas adversas

Portugal Plano de Contingência para Temperaturas Extremas Adversas – Módulo Calor

Vigilancia y Control de los Efectos de las Olas de Calor 2017 – Madrid

Plan nacional de actuaciones preventivas de los efectos del exceso de temperaturas sobre la salud – España

Plan de vigilancia y prevención de los efectos del exceso de temperaturas sobre la salud – Extremadura

Genève: Plan canicule pour les aîné-e-s

Plan Vaudois de Prévention et d’Intervention Sanitaire en cas de Canicule

Heatwave Plan for England

City of Philadelphia Natural Hazard Mitigation Plan

California Contingency Plan for Excessive Heat Emergencies

Arizona’s Climate and Health Adaptation Plan

New Hampshire Excessive Heat Emergency Response Plan

Brasilia DF Plano de Contingência para Emergência em Saúde Pública por Seca e Estiagem

La Plata Plan de Contingencia Hidrometeorológica

New South Wales State Heatwave Subplan

South Australia Extreme Heat Strategy

Heatwave plan for Victoria: Protecting health and reducing harm from heatwaves

Turn Down the Heat: Strategy and action plan

Gesamtstaatlicher Hitzeschutzplan

Plan Vague de Chaleur et Pics d’Ozone

Municipal Heat Response Planning in British Columbia, Canada

Plan National Canicule – France

Ahmedabad Heat Action Plan 2019

Heat Action Plan for Odisha, 2020

Rajasthan Draft Heat Action Plan

Tamil Nadu Heat Wave Action Plan 2019

Telangana State Heatwave Action Plan

Prevention and Management of Heat Wave in Uttar Pradesh 2018-19

Piano operativo nazionale di prevenzione degli effetti del caldo sulla salute – Italia

Luxembourg Extreme Weather Plan

Plan de Contingencia Fenómeno Hidrometeorologico 2013 – Quintana Roo

Valle de Guadalupe Plan de Contingencia Fenómeno Perturbador Hidrometeorológico

From Climate Science to Action

Weather and Climate Services for Resilient Development: A Guide for Practitioners and Policy Makers

Satellite Remote Sensing for Urban Heat Islands

Recognizing, Preventing, and Treating Heat-Related Illness

Setting operational thresholds for Heat Early Warning Systems

Innovating in urban planning and governance for heat health

Economic valuation of heat-health impacts and

Developing an effective Heat Health Action Plan for your city

Heat in the City

Heat in the Workplace

Heat and Health Forecasting and Warning Training Center

Scaling up Sustainable Cooling for All

Protecting Public Health in a Changing Climate: A Primer for City, Local, and Regional Action

Operation of the Portuguese Contingency Heatwaves Plan

Berlin Biotope Area Factor – Implementation of guidelines helping to control temperature and runoff

Combating the heat island effect and poor air quality with green ventilation corridors

Heat acclimatization and vulnerabilities of people living in the Sahel: The case of Senegal

Too hot to handle? Heat resilience in urban South Sudan

Emerging climate change-related public health challenges in Africa: A case study of the heat-health vulnerability of informal settlement residents in Dar es Salaam, Tanzania

Social vulnerability to heatwaves – from assessment to implementation of adaptation measures in Košice and Trnava, Slovakia

Heat Hotline Parasol – Kassel region

Operation of the Austrian Heat Protection Plan

Tatabánya, Hungary, addressing the impacts of urban heat waves and forest fires with alert measures

Protecting The Elderly From Heat And Cold Stress In Hong Kong: Using Climate Information And Client-Friendly Communication Technology

Supreme: An Integrated Heat Health Warning System For Quebec

The Heat Health Warning System of DWD – Concept and Lessons Learned

Vulnerability to heat stress: A case study of Yavatmal, Maharashtra, India

Where Do We Need Shade? Mapping Urban Heat Islands in Richmond, Virginia

Heatwave Early Actions Test in Hanoi

Islas de calor, impactos y respuestas: El caso del cantón de Curridabat

How Windsor-Essex Communicates Heat-Health Risks to the Public

How Fredericton Developed a Heat Alert and Response System from the Ground Up

Community Response to extreme-heat Events in the City of Ottawa

How a Rural Community in Manitoba Reduces Impacts on Health from extreme-heat

Evaluation of the Montréal Heat Plan Communication Program

Climate Adapted People Shelters (CAPS)

Cincinnati’s Urban Canopy Policy

Cool Neighborhoods NYC

Cool surfaces: roofs and roads

Creating a Model Climate Resilient City

Deadly Chicago Heat Wave of 1995

Developing an Early Warning System to Prevent Heat Illness

Enhancing Syndromic Surveillance for Heat-Related Illness in Michigan with Improved Heat Syndrome Definition

Expanding Heat Resilience Across India

Expanding heat resilience across India: Heat Action Plan highlights

Finding The Right Thresholds To Trigger Action In Heat Wave Early Warning Systems In Spain

Green Roof Bylaw and Eco-roof incentive in Toronto

Heat Wave And Health Risk Early Warning Systems In China

Hermosillo, Mexico, Captures Heat-Related Illnesses at Medical Facilities Using New Database

How hot will it be? Translating climate model outputs for public health practice in the United States

Implementation of the Heat-Health Action Plan of North Macedonia (2014)

Innovative Heat Wave Early Warning System And Action Plan In Ahmedabad, India

Knowing When Cold Winters And Warm Summers Can Reduce Ambulatory Care Performance In London

Managing health impacts of heat in South East Queensland, Australia

Protecting People from Sweltering City Summers

Heatwave plan for England

Stuttgart: combating the heat island effect and poor air quality with green ventilation corridors

Implementation of the Heat-Health Action Plan of North Macedonia

Heat Health in Hong Kong: Lessons from the 1st Global Forum on Heat and Health

Addressing heat-related health risks in urban India: Ahmedabad’s Heat Action Plan

Augmenting Syndromic Surveillance for Real-time Situational Awareness During extreme-heat Events in Ottawa, Canada

Bracing for Heat in Minnesota

Building Evidence That Effective Heat Alert Systems Save Lives In Southeast Australia

Catalyzing Investment and Building Capacity in Las Cruces

Cctalk! Communicating Effectively With High-Risk Populations In Austria: A Five-Step Methodology

Charting Colorado’s Vulnerability to Climate Change

Posters on Heat Waves 2020

Beat the Heat Advice – India

Keep children cool! Protect your child from extreme heat

It’s much too hot! Protect yourself from extreme heat

You’re active in the heat. You’re at risk! Protect yourself from extreme heat

Climate Change and Extreme Heat: What you can do to prepare

Beat the Heat: How to keep someone healthy during hot weather

Beat the Heat, Health Tips for a Safe Season

Factsheet: Heat-related illness including heat stroke

Media resources: The Inequality of City Heat

Regional Toolkit for Heatwave Management in Asian Cities: A Visual Guide

Home cooling, Heat, and COVID-19 Fact Sheet

Home Cooling Tips

Media Talking Points: Heat Risks in Cities

FactSheet: Increasing Temperatures Because of the Climate Change Crisis is a Reproductive Justice Issue in the United States

Seniors at Risk: Heat and Climate Change

Beat the Heat: Heat Illness in sports

Harmed By Heat Series

Sweltering Cities Series

Rising Heat

CODE RED: Baltimore’s Climate Divide

What a Heatwave Looks Like

Protecting Workers from Heat Stress in a Warming Climate

Cooked: Survival by Zip Code

Infographics: Heat in Cities: Impacts of Heatwaves and Measures to Mitigate Risk

Infographic: Working in the Heat

Infographic: Preserving Productivity in Hot Environments

Heat Affects your Health and Productivity

Heat Injuries are Occupational Injuries

Strengthening the capacities of the health sector and meteorological services to address heatwaves

Heat Waves & Health

Tips to Stay Health in the Summer (Petua Kekal Sihat Di Musim Panas)

Infografia Sistema de Alerta Temprana por Olas de Calor y Salud

GHHIN Heat Health Resource Library

Avisos Meteorológicos a nivel nacional (Peru)

Environmental Health Intelligence New Zealand

Multi-hazard early warning system for India

Vigilance Maroc Météo

TMA Map Room

Tanzania Weather Bulletins

Swiss Natural Hazards Portal

The Future of Extreme Heat by Congressional District

US SUHI Disparity Explorer

World Urban Database

Extreme Heat Vulnerability Map Tool: Future Heat Events and Social Vulnerability

Protecting Outdoor Workers from Heat Illness

Week-2 Global Probabilistic Extremes Forecast Tool

Experimental Heat Outlooks – Caribbean

Heat and Cold Waves – Long-term records

Harmonized Heat Warning and Information System for Ontario (HWIS)

Caldo e Salute

Extreme Heat Days & Warm Nights (California)

Thermal comfort indices derived from ERA5 reanalysis

Surface air temperature maps

How Much Hotter Is Your Hometown Than When You Were Born?

Microclimate and Urban Heat Island Mitigation Decision-Support Tool (UHI-DS)

Multi-country survey of heat-health during COVID-19

KNMI Climate Explorer

KMA Impact-based Heat Health Warning System (South Korea)

ClimApp: Personalized heat and cold stress warning and advice

Lancet Countdown on Health and Climate Change data explorer

Meteoalarm

EuroHEAT

EM-DAT: The International Disaster Database

Heat-Health Watch (UK)

Heat Health Watch Warning System (France)

Heatwave Service for Australia

National Weather Service (US)

Extreme Heat Risk Map

NOAA Climate Prediction Center

Heat Safety Tool

Cool Roofs and Cool Pavements Toolkit

California Heat Assessment Tool (CHAT)

Predicted Heat Strain Mobile Application

Climate-ADAPT: sharing adaptation information across Europe (EC and EEA):

EXTREMA Global

Data and figures: Number of extreme heat waves in future climates under two different climate forcing scenarios

Heat Resilient Cities Benefits Tool

South-East European Multi-Hazard Early Warning Advisory System

Croatia 3-day Thermal Comfort Forecast

Climate Watch (Climate Atlas – Germany)

European heat and cold waves map

Heat warning map

WarnWetter App

DWD GesundheitsWetter-App

Biometeorological Models: RayMan and SkyHelios

European Climate and Health Observatory Resource catalog

Data and Products of the Global Deterministic Prediction System

Hong Kong Heat Index

Cold and Very Hot Weather Warnings

US Future Heat Events and Social Vulnerability

UK Heat-Health Watch Service

PREPdata

Sistema de alerta temprana por ola de calor y salud (SAT-OCS) – Argentina

Catálogo de Datos Abiertos del SMN

Caribbean Regional Climate Centre (CariCOF) Temperature Outlooks

The Caribbean Regional Climate Centre (CariCOF) Heat Outlooks