Diamond et al. recently identified malaria and dengue as high-priority diseases in wastewater surveillance for climate-change-driven shifts in pathogen dynamics. When employing wastewater surveillance for vector-borne pathogens it is essential to take into account the geographical context, pathogen biology, and the availability of sewage networks for meaningful interventions.
The adverse effects of climate change on human health are unfolding in real time. Environmental fragmentation is amplifying spillover of viruses from wildlife to humans. Increasing temperatures are expanding mosquito and tick habitats, introducing vector-borne viruses into immunologically susceptible populations. More frequent flooding is spreading water-borne viral pathogens, while prolonged droughts reduce regional capacity to prevent and respond to disease outbreaks with adequate water, sanitation, and hygiene resources. Worsening air quality and altered transmission seasons due to an increasingly volatile climate may exacerbate the impacts of respiratory viruses. Furthermore, both extreme weather events and long-term climate variation are causing the destruction of health systems and large-scale migrations, reshaping health care delivery in the face of an evolving global burden of viral disease. Because of their immunological immaturity, differences in physiology (e.g., size), dependence on caregivers, and behavioral traits, children are particularly vulnerable to climate change. This investigation into the unique pediatric viral threats posed by an increasingly inhospitable world elucidates potential avenues of targeted programming and uncovers future research questions to effect equitable, actionable change. IMPACT: A review of the effects of climate change on viral threats to pediatric health, including zoonotic, vector-borne, water-borne, and respiratory viruses, as well as distal threats related to climate-induced migration and health systems. A unique focus on viruses offers a more in-depth look at the effect of climate change on vector competence, viral particle survival, co-morbidities, and host behavior. An examination of children as a particularly vulnerable population provokes programming tailored to their unique set of vulnerabilities and encourages reflection on equitable climate adaptation frameworks.
Globally, there has been a significant rise in cholera cases and deaths, with an increase in the number of low- and middle-income countries (LMICs) reporting outbreaks. In parallel, plastic pollution in LMICs is increasing, and has become a major constituent of urban dump sites. The surfaces of environmental plastic pollution can provide a habitat for complex microbial biofilm communities; this so-called ‘plastisphere’ can also include human pathogens. Under conditions simulating a peri-urban environmental waste pile, we determine whether toxigenic Vibrio cholerae (O1 classical; O1 El Tor; O139) can colonise and persist on plastic following a simulated flooding event. Toxigenic V. cholerae colonized and persisted on plastic and organic waste for at least 14 days before subsequent transfer to either fresh or brackish floodwater, where they can further persist at concentrations sufficient to cause human infection. Taken together, this study suggests that plastics in the environment can act as significant reservoirs for V. cholerae, whilst subsequent transfer to floodwaters demonstrates the potential for the wider dissemination of cholera. Further understanding of how diseases interact with plastic waste will be central for combating infection, educating communities, and diminishing the public health risk of plastics in the environment.
Schistosomiasis, a neglected tropical disease caused by parasitic worms, poses a major public health challenge in economically disadvantaged regions, especially in Sub-Saharan Africa. Climate factors, such as temperature and rainfall patterns, play a crucial role in the transmission dynamics of the disease. This study presents a deterministic model that aims to evaluate the temporal and seasonal transmission dynamics of schistosomiasis by examining the influence of temperature and rainfall over time. Equilibrium states are examined to ascertain their existence and stability employing the center manifold theory, while the basic reproduction number is calculated using the next-generation technique. To validate the model’s applicability, demographic and climatological data from Uganda, Kenya, and Tanzania, which are endemic East African countries situated in the tropical region, are utilized as a case study region. The findings of this study provide evidence that the transmission of schistosomiasis in human populations is significantly influenced by seasonal and monthly variations, with incidence rates varying across countries depending on the frequency of temperature and rainfall. Consequently, the region is marked by both schistosomiasis emergencies and re-emergences. Specifically, it is observed that monthly mean temperatures within the range of 22-27 °C create favorable conditions for the development of schistosomiasis and have a positive impact on the reproduction numbers. On the other hand, monthly maximum temperatures ranging from 27 to 33 °C have an adverse effect on transmission. Furthermore, through sensitivity analysis, it is projected that by the year 2050, factors such as the recruitment rate of snails, the presence of parasite egg-containing stools, and the rate of miracidia shedding per parasite egg will contribute significantly to the occurrence and control of schistosomiasis infections. This study highlights the significant influence of seasonal and monthly variations, driven by temperature and rainfall patterns, on the transmission dynamics of schistosomiasis. These findings underscore the importance of considering climate factors in the control and prevention strategies of schistosomiasis. Additionally, the projected impact of various factors on schistosomiasis infections by 2050 emphasizes the need for proactive measures to mitigate the disease’s impact on vulnerable populations. Overall, this research provides valuable insights to anticipate future challenges and devise adaptive measures to address schistosomiasis transmission patterns.
Frequent floods can contribute to the spread of various diseases and complications, some of which may result in diarrhea, especially among children. The current study aimed to find the determinants of diarrhea among children aged 1-6 years in flood-affected areas in Khyber Pakhtunkhwa, Pakistan. A cross-sectional study was conducted in flood-affected districts. Data regarding sociodemographic information related to diarrhea and anthropometric data were collected through a validated questionnaire. Logistic regression was used to find the determinants of diarrhea. In the presence of diarrhea, the prevalences found of stunting, wasting, and being underweight were 75.2%, 76.5%, and 74.1%, respectively, which is higher than those in children without diarrhea (stunting, 24.8%; wasting, 23.5%; and being underweight, 25.9%). In bivariate regression, children aged 2-4 years (odds ratio [OR] = 1.65, P < 0.05), large family size (OR = 7.46, P < 0.01), low income (OR = 2.55, < 0.001), bathing in ponds (OR = 3.05, P < 0.05), drinking of untreated water (OR = 3, P < 0.05), flooding (OR = 1.8, P < 0.05), children living in mud houses (OR = 1.5, P < 0.05), and usage of utensils without lids (OR = 1.96, P < 0.001) were significantly associated with occurrence of diarrhea. In multivariate regression, the identified risk factors (P < 0.05) for diarrhea in flood-affected areas included illiterate mothers, flooding, large family size, households without livestock, poor water quality, untreated water, and lack of toilet facilities. In conclusion, addressing the determinants of diarrhea identified in this study is crucial for mitigating the impact of frequent floods on children in flood-affected areas. Moreover, the higher prevalence of malnutrition underscores the urgent need for comprehensive strategies and proper water, sanitation, and hygiene programs to reduce the occurrence and determinants of diarrhea.
Burkholderia pseudomallei, the causative agent of melioidosis, is found in soil and water of tropical and subtropical regions globally. Modelled estimates of the global burden predict that melioidosis remains vastly under-reported, and a call has been made for it to be recognized as a neglected tropical disease by the World Health Organization. Severe weather events and environmental disturbance are associated with increased case numbers, and it is anticipated that, in some regions, cases will increase in association with climate change. Genomic epidemiological investigations have confirmed B. pseudomallei endemicity in newly recognized regions, including the southern United States. Melioidosis follows environmental exposure to B. pseudomallei and is associated with comorbidities that affect the immune response, such as diabetes, and with socioeconomic disadvantage. Several vaccine candidates are ready for phase I clinical trials. In this Review, we explore the global burden, epidemiology and pathophysiology of B. pseudomallei as well as current diagnostics, treatment recommendations and preventive measures, highlighting research needs and priorities.
Water-related climatic disasters pose a significant threat to human health due to the potential of disease outbreaks, which are exacerbated by climate change. Therefore, it is crucial to predict their occurrence with sufficient lead time to allow for contingency plans to reduce risks to the population. Opportunities to address this challenge can be found in the rapid evolution of digital technologies. This study conducted a critical analysis of recent publications investigating advanced technologies and digital innovations for forecasting, alerting, and responding to waterrelated extreme events, particularly flooding, which is often linked to disaster-related disease outbreaks. The results indicate that certain digital innovations, such as portable and local sensors integrated with web-based platforms are new era for predicting events, developing control strategies and establishing early warning systems. Other technologies, such as augmented reality, virtual reality, and social media, can be more effective for monitoring flood spread, disseminating before/during the event information, and issuing warnings or directing emergency responses. The study also identified that the collection and translation of reliable data into information can be a major challenge for effective early warning systems and the adoption of digital innovations in disaster management. Augmented reality, and digital twin technologies should be further explored as valuable tools for better providing of communicating complex information on disaster development and response strategies to a wider range of audiences, particularly non-experts. This can help to increase community engagement in designing and operating effective early warning systems that can reduce the health impact of climatic disasters.
OBJECTIVES: Flooding is the most frequent extreme-weather disaster and disproportionately burdens marginalized populations. This article examines how food and water insecurity, blood pressure (BP), nutritional status, and diarrheal and respiratory illnesses changed during the 2 months following a historic flood in lowland Bolivia. METHODS: Drawing on longitudinal data from Tsimane’ forager-horticulturalist (n = 118 household heads; n = 129 children) directly after a historic 2014 flood and ~2 months later, we use fixed effects linear regression and random effects logistic regression models to test changes in the markers of well-being and health over the recovery process. RESULTS: Results demonstrated that water insecurity scores decreased significantly 2 month’s postflood, while food insecurity scores remained high. Adults’ systolic and diastolic BP significantly declined 2 months after the flood’s conclusion. Adults experienced losses in measures of adiposity (BMI, sum of four skinfolds, waist circumference). Children gained weight and BMI-for-age Z-scores indicating buffering of children by adults from food stress that mainly occurred in the community closer to the main market town with greater access to food aid. Odds of diarrhea showed a nonsignificant decline, while cough increased significantly for both children and adults 2 months postflood. CONCLUSIONS: Water insecurity and BP improved during the recovery process, while high levels of food insecurity persisted, and nutritional stress and respiratory illness worsened. Not all indicators of well-being and health recover at the same rate after historic flooding events. Planning for multiphase recovery is critical to improve health of marginalized populations after flooding.
Due to climate change, 2/3 of the world’s population will face water shortage problems by 2025, while a 50% increase in food production is required in 2050 to feed nine billion people. In addition, the intensified anthropogenic activities have significantly increased water resource pollution. In this condition, wastewater reuse for crop irrigation to reduce water scarcity is currently becoming global, while it often causes soil pollution and heavy metal accumulation in agricultural areas. This situation has increased public concern over its environmental impact. Thus, an integrated framework was conducted to discuss the status of water availability in China, wastewater treatment and reuse in irrigation systems, and the potential health risks. Avenues for new research toward sustainable agriculture were discussed. We emphasize that wastewater reuse reduces the freshwater deficit and increases food productivity. However, adequate treatment should be applied before use to reduce its adverse impacts on human health risks and environmental pollution. Facilities and policies should support more accessible access to reclaimed water used in industries and urban facilities from secondary municipal wastewater treatment plants. This could be a long-term solution to eradicate water scarcity and inefficient water resources in agricultural systems.
In the United States, tropical cyclones cause destructive flooding that can lead to adverse health outcomes. Storm-driven flooding contaminates environmental, recreational, and drinking water sources, but few studies have examined effects on specific infections over time. We used 23 years of exposure and case data to assess the effects of tropical cyclones on 6 waterborne diseases in a conditional quasi-Poisson model. We separately defined storm exposure for windspeed, rainfall, and proximity to the storm track. Exposure to storm-related rainfall was associated with a 48% (95% CI 27%-69%) increase in Shiga toxin-producing Escherichia coli infections 1 week after storms and a 42% (95% CI 22%-62%) in increase Legionnaires’ disease 2 weeks after storms. Cryptosporidiosis cases increased 52% (95% CI 42%-62%) during storm weeks but declined over ensuing weeks. Cyclones are a risk to public health that will likely become more serious with climate change and aging water infrastructure systems.
Vibrio cholerae, an important human pathogen, is naturally occurring in specific aquatic ecosystems. With very few exceptions, only the cholera-toxigenic strains belonging to the serogroups O1 and O139 are responsible for severe cholera outbreaks with epidemic or pandemic potential. All other nontoxigenic, non-O1/non-O139 V. cholerae (NTVC) strains may cause various other diseases, such as mild to severe infections of the ears, of the gastrointestinal and urinary tracts as well as wound and bloodstream infections. Older, immunocompromised people and patients with specific preconditions have an elevated risk. In recent years, worldwide reports demonstrated that NTVC infections are on the rise, caused amongst others by elevated water temperatures due to global warming.The aim of this review is to summarize the knowledge gained during the past two decades on V. cholerae infections and its occurrence in bathing waters in Austria, with a special focus on the lake Neusiedler See. We investigated whether NTVC infections have increased and which specific environmental conditions favor the occurrence of NTVC. We present an overview of state of the art methods that are currently available for clinical and environmental diagnostics. A preliminary public health risk assessment concerning NTVC infections related to the Neusiedler See was established. In order to raise awareness of healthcare professionals for NTVC infections, typical symptoms, possible treatment options and the antibiotic resistance status of Austrian NTVC isolates are discussed.
BACKGROUND: Vibrio species bloodstream infections have been associated with significant mortality and morbidity. Limited information is available regarding the epidemiology of bloodstream infections because of Vibrio species in the Australian context. AIMS: The objective of this study was to define the incidence and risk factors for developing Vibrio species bloodstream infections and compare differences between different species. METHODS: All patients with Vibrio spp. isolated from positive blood cultures between 1 January 2000 and 31 December 2019 were identified by the state-wide Pathology Queensland laboratory. Demographics, clinical foci of infections and comorbid conditions were collected in addition to antimicrobial susceptibility results. RESULTS: About 100 cases were identified between 2000 and 2019 with an incidence of 1.2 cases/1 million person-years. Seasonal and geographical variation occurred with the highest incidence in the summer months and in the tropical north. Increasing age, male sex and multiple comorbidities were identified as risk factors. Vibrio vulnificus was isolated most frequently and associated with the most severe disease. Overall case fatality was 19%. CONCLUSIONS: There is potential for increasing cases of Vibrio species infections globally with ageing populations and climate change. Ongoing clinical awareness is required to ensure optimal patient outcomes.
V. vulnificus, continues being an underestimated yet lethal zoonotic pathogen. In this chapter, we provide a comprehensive review of numerous aspects of the biology, epidemiology, and virulence mechanisms of this poorly understood pathogen. We will emphasize the widespread role of horizontal gene transfer in V. vulnificus specifically virulence plasmids and draw parallels from aquaculture farms to human health. By placing current findings in the context of climate change, we will also contend that fish farms act as evolutionary drivers that accelerate species evolution and the emergence of new virulent groups. Overall, we suggest that on-farm control measures should be adopted both to protect animals from Vibriosis, and also as a public health measure to prevent the emergence of new zoonotic groups.
Leptospirosis is an overlooked zoonotic and waterborne disease that is emerging as a global public threat due to morbidity and mortality observed in both animals and humans. The outbreaks are typically related to floods and hurricanes following monsoon rains, during which Leptospiras are washed off in contaminated soil and often settle in water bodies. Wildlife trapping for scientific purposes, industrial animal employment, water-intensive crop farming, sewage work, and open-water swimming are one of the major risk factors contributing to the rapid spread of disease. Occasionally, outbreaks are linked to higher-than-average precipitation and exposure to contaminated floodwaters that may have contributed to a sudden spike in leptospirosis cases in New Caledonia, Fiji, Vanuatu, and Tanzania. This amplifies the risk of leptospirosis in Pakistan and other nations with urban floods. Therefore, it is of paramount importance to address this health emergency considering the recent surge in leptospirosis cases.
Climate-sensitive infectious diseases are an issue of growing concern due to global warming and the related increase in the incidence of extreme weather and climate events. Diarrhea, which is strongly associated with climatic factors, remains among the leading causes of child death globally, disproportionately affecting populations in low- and middle-income countries (LMICs). We use survey data for 51 LMICs between 2000 and 2019 in combination with gridded climate data to estimate the association between precipitation shocks and reported symptoms of diarrheal illness in young children. We account for differences in exposure risk by climate type and explore the modifying role of various social factors. We find that droughts are positively associated with diarrhea in the tropical savanna regions, particularly during the dry season and dry-to-wet and wet-to-dry transition seasons. In the humid subtropical regions, we find that heavy precipitation events are associated with increased risk of diarrhea during the dry season and the transition from dry-to-wet season. Our analysis of effect modifiers highlights certain social vulnerabilities that exacerbate these associations in the two climate zones and present opportunities for public health intervention. For example, we show that stool disposal practices, child feeding practices, and immunizing against the rotavirus modify the association between drought and diarrhea in the tropical savanna regions. In the humid subtropical regions, household’s source of water and water disinfection practices modify the association between heavy precipitation and diarrhea. The evidence of effect modification varies depending on the type and duration of the precipitation shock.
Drought and limited sufficient water resources will be the main challenges for humankind during the coming years. The lack of water resources for washing, bathing, and drinking increases the use of contaminated water and the risk of waterborne diseases. A considerable number of waterborne outbreaks are due to protozoan parasites that may remain active/alive in harsh environmental conditions. Therefore, a regular monitoring program of water resources using sensitive techniques is needed to decrease the risk of waterborne outbreaks. Wellorganized point-of-care (POC) systems with enough sensitivity and specificity is the holy grail of research for monitoring platforms. In this review, we comprehensively gathered and discussed rapid, selective, and easy-to-use biosensor and nanobiosensor technologies, developed for the early detection of common waterborne protozoa.
Leptospirosis is a zoonotic disease with a high burden in Latin America, including northeastern Argentina, where flooding events linked to El Niño are associated with leptospirosis outbreaks. The aim of this study was to evaluate the value of using hydrometeorological indicators to predict leptospirosis outbreaks in this region. We quantified the effects of El Niño, precipitation, and river height on leptospirosis risk in Santa Fe and Entre Ríos provinces between 2009 and 2020, using a Bayesian modelling framework. Based on several goodness of fit statistics, we selected candidate models using a long-lead El Niño 3.4 index and shorter lead local climate variables. We then tested predictive performance to detect leptospirosis outbreaks using a two-stage early warning approach. Three-month lagged Niño 3.4 index and one-month lagged precipitation and river height were positively associated with an increase in leptospirosis cases in both provinces. El Niño models correctly detected 89% of outbreaks, while short-lead local models gave similar detection rates with a lower number of false positives. Our results show that climatic events are strong drivers of leptospirosis incidence in northeastern Argentina. Therefore, a leptospirosis outbreak prediction tool driven by hydrometeorological indicators could form part of an early warning and response system in the region.
Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are water- and foodborne bacteria that can cause several distinct human diseases, collectively called vibriosis. The success of oyster aquaculture is negatively impacted by high Vibrio abundances. Myriad environmental factors affect the distribution of pathogenic Vibrio, including temperature, salinity, eutrophication, extreme weather events, and plankton loads, including harmful algal blooms. In this paper, we synthesize the current understanding of ecological drivers of Vv and Vp and provide a summary of various tools used to enumerate Vv and Vp in a variety of environments and environmental samples. We also highlight the limitations and benefits of each of the measurement tools and propose example alternative tools for more specific enumeration of pathogenic Vv and Vp. Improvement of molecular methods can tighten better predictive models that are potentially important for mitigation in more controlled environments such as aquaculture.
Many infectious diseases display strong seasonal dynamics. When both hosts and parasites are influenced by seasonal variables, it is unclear if the start of an epidemic is limited by host or parasite factors or both. The Daphnia-Pasteuria host-parasite system exhibits seasonal epidemics. We aimed to ascertain how temperature contributes to the timing of P. ramosa epidemics in early spring. To this aim, we experimentally disentangled this effect from the effects of temperature on host development and phenology and from that of host traits on parasite time to visible infection. We hypothesized that the parasite is additionally directly limited by low temperatures beyond its need for available hosts. We found that parasite time to visible infection decreased with increasing temperature at a faster rate than host time to hatching and maturity did, consistent with this hypothesis. We also found that hosts hatched from sexual resting stages are less likely to become infected than those produced clonally, and that hosts resistant to many known parasite strains are slower to show signs of visible infection compared to those susceptible to many. Together, these results imply that climate change could lead to earlier seasonal epidemics for this host-parasite system, which may also impact longer-term population dynamics.
OBJECTIVES: At present, some studies have pointed out several possible climate drivers of bacillary dysentery. However, there is a complex nonlinear interaction between climate drivers and susceptible population in the spread of diseases, which makes it challenging to detect climate drivers at the size of susceptible population. METHODS: By using empirical dynamic modeling (EDM), the climate drivers of bacillary dysentery dynamic were explored in China’s five temperature zones. RESULTS: We verified the availability of climate drivers and susceptible population size on bacillary dysentery, and used this information for bacillary dysentery dynamic prediction. Moreover, we found that their respective effects increased with the increase of temperature and relative humidity, and their states (temperature and relative humidity) were different when they reached their maximum effects, and the negative effect between the effect of temperature and disease incidence increased with the change of temperature zone (from temperate zone to warm temperate zone to subtropical zone) and the climate driving effect of the temperate zone (warm temperate zone) was greater than that of the colder (temperate zone) and warmer (subtropics) zones. When we viewed from single temperature zone, the climatic effect arose only when the size of the susceptible pool was large. CONCLUSIONS: These results provide empirical evidence that the climate factors on bacillary dysentery are nonlinear, complex but dependent on the size of susceptible populations and different climate scenarios.
INTRODUCTION: According to data from the World Health Organization (WHO), in the last year cholera has re-emerged in various areas of the planet, particularly in Africa. The resurgence of this disease is closely linked to poor hygiene, which is sometimes the result of wars or environmental disasters, as in Lebanon and Syria since autumn 2022 and today in Libya. DISCUSSION: The spread of cholera is chiefly caused by the presence of contaminated water, in environments with inadequate hygiene and sanitation. Another cause, however, is the lack of access to adequate vaccination and treatment campaigns. METHOD: In this short paper, the authors highlight the possibility of a resurgence of epidemic cholera in Libya, especially in light of the consequences of the devastating cyclone Daniel and the simultaneous collapse of two dams upstream of the city of Derna. They also highlight the concern that cholera and other infectious diseases may also spread in Morocco, which was hit by a severe earthquake on 8 September last. The focus of the paper is the awareness that the spread of epidemic diseases is very often linked to human actions, which may trigger or exacerbate the effects of natural disasters. CONCLUSIONS: Since these events have devastating effects both on the environment and on people and their psychophysical balance, it is evident that we need to devote greater attention to the health of the planet, to which the health and survival of the human species is strictly and inextricably linked. Indeed, disasters related to phenomena of anthropization facilitate the spread of infectious diseases, placing a heavy burden on local and global health organizations and the health of entire populations. A change of course is therefore essential, in that human actions must be aimed at limiting rather than aggravating the spread of diseases.
The decrease in low-water flows and the increase in water temperature and other parameters as observed in the rivers over the last 50 years suggest that a concentration of compounds and pollutants is taking place, in connection with climate change and/or anthropisation (without discerning their respective contributions). These effects occur in a context where the rivers are already impacted by the presence of many pollutant cocktails (pesticides, drugs, and others). The authors now show that these pollutant cocktails – at the environmental concentrations currently found – constitute a threat to human health through their possible effects on the virulence of pathogenic bacteria. While certain genes of Salmonella Typhimurium may not experience an increased risk, the exposure to more concentrated cocktails (at a five-fold concentration) could potentially amplify certain virulent factors such as the motility of Pseudomonas aeruginosa H103. The findings indicate that pollution mixtures have an effect on the virulence potential of certain waterborne pathogenic bacteria, even at concentrations currently observed in rivers.
BACKGROUND: Legionnaires’ disease is caused by inhalation or aspiration of small water droplets contaminated with Legionella, commonly found in natural and man-made water systems and in moist soil. Over the past 5 years, notification rates of this disease have almost doubled in the European Union (EU) / European Environmental Agency (EEA), from 1.4 in 2015 to 2.2 cases per 100,000 population in 2019. Some studies show that the greater presence of the microorganism in the water network and the increase in cases of legionellosis could be related to the variations in some environmental factors, such as air temperature, which may influence the water temperature. STUDY DESIGN: Climate change is currently a prominent topic worldwide because of its significant impact on the natural environment. It is responsible for the increase in numerous waterborne pathologies. The purpose of this study was to correlate the air temperature recorded in Apulia region from January 2018 to April 2023 with the presence of Legionella in the water networks of public and private facilities and the incidence rates of legionellosis during the same period. METHODS: During the period from January 2018 to April 2023, water samples were collected from facilities involved in legionellosis cases and analyzed for Legionella. During the same period, all the cases notified to the regional epidemiological observatory (OER-Apulia) were included in this study. Statistical analyses were conducted using the Shapiro-Wilk test to determine whether the Legionella load was distributed normally, the Wilcoxon rank sum test to compare the air temperatures (average and range) of the negative and positive samples for Legionella detection, and the multivariate analysis (Poisson regression) to compare the Legionella load with the water sample temperature, average air temperature, and temperature range on the day of sampling. The Wilcoxon test for paired samples was used to compare legionellosis cases between the warmer and colder months. RESULTS: Overall, 13,044 water samples were analyzed for Legionella and 460 cases of legionellosis were notified. Legionella was isolated in 20.1% of the samples examined. The difference in the air temperature between negative samples and positive samples was statistically significant (p-value < 0.0001): on days when water samples tested positive for Legionella a higher temperature range was observed than on days when water samples tested negative (p-value = 0.004). Poisson regression showed a direct correlation between Legionella load, water temperature, and average air temperature. The incidence of legionellosis cases in warmer months was higher than in colder months (p-value = 0.03). CONCLUSIONS: Our study highlights a significant increase in the load of Legionella in the Apulian water network, and an association between warmer temperatures and legionellosis incidence. In our opinion, further investigations are needed in different contexts and territories to characterize the epidemiology of legionellosis, and to explain its extreme variability in different geographical areas and how these data may be influenced by different risk factors.
BACKGROUND: The ongoing climate change will elevate the incidence of diarrheal in 2030-2050 in Asia, including Taiwan. This study investigated associations between meteorological factors (temperature, precipitation) and burden of age-cause-specific diarrheal diseases in six regions of Taiwan using 13 years of (2004-2016) population-based data. METHODS: Weekly cause-specific diarrheal and meteorological data were obtained from 2004 to 2016. We used distributed lag non-linear model to assess age (under five, all age) and cause-specific (viral, bacterial) diarrheal disease burden associated with extreme high (99th percentile) and low (5th percentile) of climate variables up to lag 8 weeks in six regions of Taiwan. Random-effects meta-analysis was used to pool these region-specific estimates. RESULTS: Extreme low temperature (15.30 °C) was associated with risks of all-infectious and viral diarrhea, with the highest risk for all-infectious diarrheal found at lag 8 weeks among all age [Relative Risk (RR): 1.44; 95 % Confidence Interval (95 % CI): 1.24-1.67]. The highest risk of viral diarrheal infection was observed at lag 2 weeks regardless the age. Extreme high temperature (30.18 °C) was associated with risk of bacterial diarrheal among all age (RR: 1.07; 95 % CI: 1.02-1.13) at lag 8 weeks. Likewise, extreme high precipitation (290 mm) was associated with all infectious diarrheal, with the highest risk observed for bacterial diarrheal among population under five years (RR: 2.77; 95 % CI: 1.60-4.79) at lag 8 weeks. Extreme low precipitation (0 mm) was associated with viral diarrheal in all age at lag 1 week (RR: 1.08; 95 % CI: 1.01-1.15)]. CONCLUSION: In Taiwan, extreme low temperature is associated with an increased burden of viral diarrheal, while extreme high temperature and precipitation elevated burden of bacterial diarrheal. This distinction in cause-specific and climate-hazard specific diarrheal disease burden underscore the importance of incorporating differences in public health preparedness measures designed to enhance community resilience against climate change.
In this study, Vibrio parahaemolyticus strains were collected from a large number of aquatic products globally and found that temperature has an impact on the virulence of these bacteria. As global temperatures rise, mutations in a gene marker called thermolabile hemolysin (tlh) also increase. This suggests that environmental isolates adapt to the warming environment and become more pathogenic. The findings can help in developing tools to analyze and monitor these bacteria as well as assess any link between climate change and vibrio-associated diseases, which could be used for forecasting outbreaks associated with them.
Townsville is in the dry tropics in Northern Australia and an endemic region for melioidosis. Melioidosis is an infectious disease caused by Burkholderia pseudomallei, a soil dwelling organism. The incidence of melioidosis is associated with high levels of rainfall and has been linked to multiple weather variables in other melioidosis endemic regions such as in Darwin. In contrast to Townsville, Darwin is in the wet-dry tropics in Northern Australia and receives 40% more rainfall. We assessed the relationship between melioidosis incidence and weather conditions in Townsville and compared the patterns to the findings in Darwin and other melioidosis endemic regions. METHOD: Performing a time series analysis from 1996 to 2020, we applied a negative binomial regression model to evaluate the link between the incidence of melioidosis in Townsville and various weather variables. Akaike’s information criterion was used to assess the most parsimonious model with best predictive performance. Fourier terms and lagged deviance residuals were included to control long term seasonal trends and temporal autocorrelation. RESULTS: Humidity is the strongest predictor for melioidosis incidence in Townsville. Furthermore, the incidence of melioidosis showed a three-times rise in the Townsville region when >200 mm of rain fell within the fortnight. Prolonged rainfall had more impact than a heavy downpour on the overall melioidosis incident rate. There was no statistically significant increase in incidence with cloud cover in the multivariable model. CONCLUSION: Consistent with other reports, melioidosis incidence can be attributed to humidity and rainfall in Townsville. In contrast to Darwin, there was no strong link between melioidosis cases and cloud cover and nor single large rainfall events.
Aquatic ecosystems of tropical countries are vulnerable to fecal contamination that could cause spikes in the incidences of acute diarrheal disease (ADD) and challenge public health management systems. Vembanad lake, situated along the southwest coast of India, was monitored for one year (2018-2019). Escherichia coli, an indicator of fecal contamination, was prevalent in the lake throughout the year. Multiple antibiotic resistance among more than 50% of the E. coli isolates adds urgency to the need to control this contamination. The high abundance of E. coli and incidence of ADD were recorded during the early phase of the southwest monsoon (June-July), prior to the once-in-a-century floods that affected the region in the later phase (August). The extent of inundation in the low-lying areas peaked in August, but E. coli in the water peaked in July, suggesting that contamination occurred even prior to extreme flooding. During the COVID-19-related lockdown in March-May 2021, fecal contamination in the lake and incidence of ADD reached minimum values. These results indicate the need for improving sewage treatment facilities and city planning in flood-prone areas to avoid the mixing of septic sewage with natural waters during extreme climate events or even during the normal monsoon.
This study focuses on investigating the impact of climate change on the availability of safe drinking water and human health in the Southwest Coastal Region of Bangladesh (SWCRB). Additionally, it explores local adaptation approaches aimed at addressing these challenges. The research employed a combination of qualitative and quantitative methods to gather data. Qualitative data were collected through various means such as case studies, workshops, focus group discussions (FGDs), interviews, and key informant interviews (KIIs). The study specifically collected qualitative data from 12 unions in the Shyamnagar Upazila. On the other hand, through the quantitative method, we collected respondents’ answers through a closed-ended questionnaire survey from 320 respondents from nine unions in the first phase of this study. In the next phase, we also collected data from the three most vulnerable unions of Shyamnagar Upazila, namely Poddo Pukur, Gabura, and Burigoalini, where 1579 respondents answered questions regarding safe drinking water and health conditions due to climate change. The findings of the study indicate that local communities in the region acknowledge the significant impact of sea-level rise (SLR) on freshwater sources and overall well-being, primarily due to increased salinity. Over 70% of the respondents identified gastrointestinal issues, hypertension, diarrhea, malnutrition, and skin diseases as major waterborne health risks arising from salinity and lack of access to safe water. Among the vulnerable groups, women and children were found to be particularly susceptible to waterborne diseases related to salinity. While the study highlights the presence of certain adaptation measures against health-related problems, such as community clinics and health centers at the upazila level, as well as seeking healthcare from local and paramedical doctors, it notes that these measures are insufficient. In terms of safe drinking water, communities have adopted various adaptation strategies, including pond excavation to remove saline water (partially making it potable), implementing pond sand filters, rainwater harvesting, and obtaining potable water from alternative sources. However, these efforts alone do not fully address the challenges associated with ensuring safe drinking water.
The ongoing cholera outbreak in Syria poses a significant public health threat that requires immediate and comprehensive attention. The spread of the outbreak is attributed to a combination of factors, including displacement due to armed conflict, chronic water insecurity, inadequate water, sanitation, and hygiene infrastructure, climate change-induced droughts, weakened health system capacity, and political instability. The recent earthquake in the region has further complicated the situation, potentially leading to a surge in cholera cases. The limited capacity of the Syrian health system to handle the cholera outbreak, especially after the earthquake, highlights the urgent need for external support. The political instability in the country has hampered effective responses to the outbreak, contributing to the spread of the disease beyond Syria’s borders. It is imperative to prioritize aid to address the fragmented response and provide the necessary resources for comprehensive and effective cholera prevention and control measures. The situation calls for an integrated, multi-sectoral approach that prioritizes economic development, universal access to sustainable safe drinking water, and adequate sanitation. Additionally, community engagement and education are essential for effective disease prevention and control. In conclusion, the ongoing cholera outbreak in Syria is a complex issue that requires urgent attention and action. The combination of armed conflict, water insecurity, climate change, and political instability have contributed to the spread of the disease, further compounded by the recent earthquake. To effectively address the outbreak and prevent its further spread, a comprehensive and integrated approach is needed, with support from the international community.
Private wells are susceptible to contamination from flooding and are exempt from the federal requirements of the Safe Drinking Water Act. Consequently, well users must manage (e.g., disinfect) and maintain (e.g., regularly test) their own wells to ensure safe drinking water. However, well user practices and perceptions of well water quality in the years following a natural disaster are poorly characterized. An online follow-up survey was administered in October 2020 to private well users who had previously experienced Hurricane Harvey in 2017. The survey was successfully sent to 436 participants, and 69 surveys were returned (15.8% return rate). The survey results indicate that well users who had previously experienced wellhead submersion or a positive bacteria test were more likely to implement well stewardship practices (testing and disinfection) and to report the feeling that their well water was safe. While the majority of well users believed that their water was safe (77.6%), there was a significant decrease in well water being used for drinking, cooking, and for their pets after Hurricane Harvey. Generally, these well users tend to maintain their wells at higher rates than those reported in other communities, but there continues to be a critical need to provide outreach regarding well maintenance practices, especially before natural disaster events occur.
Many studies have detected a relationship between diarrhea morbidity rates with the changes in precipitation, temperature, floods, droughts, water shortage, etc. But, most of the authors were cautious in their studies, because of the lack of empirical climate-health data and there were large uncertainties in the future projections. The study aimed to refine the link between the morbidity rates of diarrhea in some Egyptian governorates representative of the three Egyptian geographical divisions with the meteorological changes that occurred in the 2006-2016 period for which the medical data are available, as a case study. Medical raw data was collected from the Information Centre Department of the Egyptian Ministry of Health and Population. The meteorological data of temperature and precipitation extremes were defined as data outside the 10th-90th percentile range of values of the period of study, and their analysis was done using a methodology similar to the one recommended by the WMO and integrated in the CLIMDEX software. Relationships between the morbidity rates of diarrhea in seven Egyptian governorates and the meteorological changes that occurred in the period 2006 to 2016 were analyzed using multiple linear regression analysis to identify the most effective meteorological factor that affects the trend of morbidity rate of diarrhea in each governorate. Statistical analysis revealed that some meteorological parameters can be used as predictors for morbidity rates of diarrhea in Cairo, Alexandria, and Gharbia, but not in Aswan, Behaira, and Dakahlia where the temporal evolution cannot be related with meteorology. In Red Sea, there was no temporal trend and no significant relationships between the diarrhea morbidity rate and meteorological parameters. The predictor meteorological parameters for morbidity rates of diarrhea were found to be depending on the geographic locations and infrastructures in these governorates. It was concluded that the meteorological data that can be used as predictors for the morbidity rate of diarrhea is depending on the geographical location and infrastructures of the target location. The socioeconomic levels as well as the infrastructures in the governorate must be considered confounders in future studies.
BACKGROUND: Leptospirosis is considered a neglected zoonotic disease in temperate regions but an endemic disease in countries with tropical climates such as South America, Southern Asia, and Southeast Asia. There has been an increase in leptospirosis incidence in Malaysia from 1.45 to 25.94 cases per 100,000 population between 2005 and 2014. With increasing incidence in Selangor, Malaysia, and frequent climate change dynamics, a study on the disease hotspot areas and their association with the hydroclimatic factors would further enhance disease surveillance and public health interventions. OBJECTIVE: This study aims to examine the association between the spatio-temporal distribution of leptospirosis hotspot areas from 2011 to 2019 with the hydroclimatic factors in Selangor using the geographical information system and remote sensing techniques to develop a leptospirosis hotspot predictive model. METHODS: This will be an ecological cross-sectional study with geographical information system and remote sensing mapping and analysis concerning leptospirosis using secondary data. Leptospirosis cases in Selangor from January 2011 to December 2019 shall be obtained from the Selangor State Health Department. Laboratory-confirmed cases with data on the possible source of infection would be identified and georeferenced according to their longitude and latitudes. Topographic data consisting of subdistrict boundaries and the distribution of rivers in Selangor will be obtained from the Department of Survey and Mapping. The ArcGIS Pro software will be used to evaluate the clustering of the cases and mapped using the Getis-Ord Gi* tool. The satellite images for rainfall and land surface temperature will be acquired from the Giovanni National Aeronautics and Space Administration EarthData website and processed to obtain the average monthly values in millimeters and degrees Celsius. Meanwhile, the average monthly river hydrometric levels will be obtained from the Department of Drainage and Irrigation. Data are then inputted as thematic layers and in the ArcGIS software for further analysis. The artificial neural network analysis in artificial intelligence Phyton software will then be used to obtain the leptospirosis hotspot predictive model. RESULTS: This research was funded as of November 2022. Data collection, processing, and analysis commenced in December 2022, and the results of the study are expected to be published by the end of 2024. The leptospirosis distribution and clusters may be significantly associated with the hydroclimatic factors of rainfall, land surface temperature, and the river hydrometric level. CONCLUSIONS: This study will explore the associations of leptospirosis hotspot areas with the hydroclimatic factors in Selangor and subsequently the development of a leptospirosis predictive model. The constructed predictive model could potentially be used to design and enhance public health initiatives for disease prevention. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/43712.
The spatial and seasonal distribution, abundance, and infection rates of human schistosomiasis intermediate host snails and interactions with other freshwater snails, water physicochemical parameters, and climatic factors was determined in this study. A longitudinal malacology survey was conducted at seventy-nine sites in seven districts in KwaZulu-Natal province between September 2020 and August 2021. Snail sampling was done simultaneously by two trained personnel for fifteen minutes, once in three months. A total of 15,756 snails were collected during the study period. Eight freshwater snails were found: Bulinus globosus (n = 1396), Biomphalaria pfeifferi (n = 1130), Lymnaea natalensis (n = 1195), Bulinus tropicus (n = 1722), Bulinus forskalii (n = 195), Tarebia granifera (n = 8078), Physa acuta (n = 1579), and Bivalves (n = 461). The infection rates of B. globosus and B. pfeifferi are 3.5% and 0.9%, respectively. In our study, rainfall, pH, type of habitats, other freshwater snails and seasons influenced the distribution, abundance, and infection rates of human schistosomiasis intermediate host snails (p-value < 0.05). Our findings provide useful information which can be adopted in designing and implementing snail control strategies as part of schistosomiasis control in the study area.
INTRODUCTION: Leptospirosis is a globally distributed zoonotic and environmentally mediated disease that has emerged as a major health problem in urban slums in developing countries. Its aetiological agent is bacteria of the genus Leptospira, which are mainly spread in the urine of infected rodents, especially in an environment where adequate sanitation facilities are lacking, and it is known that open sewers are key transmission sources of the disease. Therefore, we aim to evaluate the effectiveness of a simplified sewerage intervention in reducing the risk of exposure to contaminated environments and Leptospira infection and to characterise the transmission mechanisms involved. METHODS AND ANALYSIS: This matched quasi-experimental study design using non-randomised intervention and control clusters was designed to assess the effectiveness of an urban simplified sewerage intervention in the low-income communities of Salvador, Brazil. The intervention consists of household-level piped sewerage connections and community engagement and public involvement activities. A cohort of 1400 adult participants will be recruited and grouped into eight clusters consisting of four matched intervention-control pairs with approximately 175 individuals in each cluster in baseline. The primary outcome is the seroincidence of Leptospira infection assessed through five serological measurements: one preintervention (baseline) and four postintervention. As a secondary outcome, we will assess Leptospira load in soil, before and after the intervention. We will also assess Leptospira exposures before and after the intervention, through transmission modelling, accounting for residents’ movement, contact with flooding, contaminated soil and water, and rat infestation, to examine whether and how routes of exposure for Leptospira change following the introduction of sanitation. ETHICS AND DISSEMINATION: This study protocol has been reviewed and approved by the ethics boards at the Federal University of Bahia and the Brazilian National Research Ethics Committee. Results will be disseminated through peer-reviewed publications and presentations to implementers, researchers and participating communities. TRIAL REGISTRATION NUMBER: Brazilian Clinical Trials Registry (RBR-8cjjpgm).
The aim of this study was to estimate the effects of climate on childhood diarrhoea hospitalisations across six administrative divisions in Bangladesh and to provide scientific evidence for local health authorities for disease control and prevention. Fortnightly hospital admissions (August/2013-June/2017) for diarrhoea in children under five years of age, and fortnightly average maximum temperature, relative humidity and rainfall recordings for six administrative divisions were modelled using negative binomial regression with distributed lag linear terms. Flexible spline functions were used to adjust models for seasonality and long-term trends. During the study period, 25,385 diarrhoea cases were hospitalised. Overall, each 1 °C rise in maximum temperature increased diarrhoea hospitalisations by 4.6% (IRR = 1.046; 95% CI, 1.007-1.088) after adjusting for seasonality and long-term trends in the unlagged model. Using lagged effects of maximum temperature, and adjusting for relative humidity and rainfall for each of the six administrative divisions, the relationship between maximum temperature and diarrhoea hospitalisations varied between divisions, with positive and negative effect estimates. The temperature-diarrhoea association may be confounded by seasonality and long-term trends. Our findings are a reminder that the effects of climate change may be heterogeneous across regions, and that tailored diarrhoea prevention strategies need to consider region-specific recommendations rather than relying on generic guidelines.
Large Brazilian cities, such as Rio de Janeiro, suffer serious environmental problems caused by informal settlements (IS), such as advances in the degradation of surface waters involving anthropic pressures resulting from uncontrolled urban growth, lack of sanitation or disasters related to climate events, creating a gap in relevant information about environmental health in urban IS. Therefore, it is essential to assess the health conditions of IS and the local population’s perception of their living conditions. This study aimed to evaluate, by online form and public data, the sanitary conditions of the third largest IS in Brazil, the Rio das Pedras community, which was located on the banks of the Jacarepagua Lagoon complex. The analysis revealed that 35% of respondents reported releasing domestic sewage directly into the river near their homes. In addition, 83% of the participants reported that they disposed of urban solid waste inappropriately. About 21% of residents reported falling ill due to direct contact with unsafe water after flood events. Public managers, concerned with advancing sustainability agendas and mitigating the risks to environmental health related to the lack of adequate sanitation services, should invest in actions that reflect the perception of the local population, proposing more appropriate socio-environmental solutions.
Population growth and changing climate are expected to increase human exposure to pathogens in tropical coastal waters. We examined microbiological water quality in three rivers within 2.3 km of each other that impact a Costa Rican beach and in the ocean outside their plumes during the rainy and dry seasons. We performed quantitative microbial risk assessment (QMRA) to predict the risk of gastroenteritis associated with swimming and the amount of pathogen reduction needed to achieve safe conditions. Recreational water quality criteria based on enterococci were exceeded in >90% of river samples but in only 13% of ocean samples. Multivariate analysis grouped microbial observations by subwatershed and season in river samples but only by subwatershed in the ocean. The modeled median risk from all pathogens in river samples was between 0.345 and 0.577, 10-fold above the U.S. Environmental Protection Agency (U.S. EPA) benchmark of 0.036 (36 illnesses/1,000 swimmers). Norovirus genogroup I (NoVGI) contributed most to risk, but adenoviruses raised risk above the threshold in the two most urban subwatersheds. The risk was greater in the dry compared to the rainy season, due largely to the greater frequency of NoVGI detection (100% versus 41%). Viral log(10) reduction needed to ensure safe swimming conditions varied by subwatershed and season and was greatest in the dry season (3.8 to 4.1 dry; 2.7 to 3.2 rainy). QMRA that accounts for seasonal and local variability of water quality contributes to understanding the complex influences of hydrology, land use, and environment on human health risk in tropical coastal areas and can contribute to improved beach management.IMPORTANCE This holistic investigation of sanitary water quality at a Costa Rican beach assessed microbial source tracking (MST) marker genes, pathogens, and indicators of sewage. Such studies are still rare in tropical climates. Quantitative microbial risk assessment (QMRA) found that rivers impacting the beach consistently exceeded the U.S. EPA risk threshold for gastroenteritis of 36/1,000 swimmers. The study improves upon many QMRA studies by measuring specific pathogens, rather than relying on surrogates (indicator organisms or MST markers) or estimating pathogen concentrations from the literature. By analyzing microbial levels and estimating the risk of gastrointestinal illness in each river, we were able to discern differences in pathogen levels and human health risks even though all rivers were highly polluted by wastewater and were located less than 2.5 km from one another. This variability on a localized scale has not, to our knowledge, previously been demonstrated. This holistic investigation of sanitary water quality at a Costa Rican beach assessed microbial source tracking (MST) marker genes, pathogens, and indicators of sewage. Such studies are still rare in tropical climates.
Climate-related phenomena in Peru have been slowly but continuously changing in recent years beyond historical variability. These include sea surface temperature increases, irregular precipitation patterns and reduction of glacier-covered areas. In addition, climate scenarios show amplification in rainfall variability related to the warmer conditions associated with El Niño events. Extreme weather can affect human health, increase shocks and stresses to the health systems, and cause large economic losses. In this article, we study the characteristics of El Niño events in Peru, its health and economic impacts and we discuss government preparedness for this kind of event, identify gaps in response, and provide evidence to inform adequate planning for future events and mitigating impacts on highly vulnerable regions and populations. This is the first case study to review the impact of a Coastal El Niño event on Peru’s economy, public health, and governance. The 2017 event was the third strongest El Niño event according to literature, in terms of precipitation and river flooding and caused important economic losses and health impacts. At a national level, these findings expose a need for careful consideration of the potential limitations of policies linked to disaster prevention and preparedness when dealing with El Niño events. El Niño-related policies should be based on local-level risk analysis and efficient preparedness measures in the face of emergencies.
OBJECTIVES: Diarrheal disease continues to be a significant cause of morbidity and mortality. We investigated how anomalies in monthly average temperature, precipitation, and surface water storage (SWS) impacted bacterial, and viral diarrhea morbidity in Taiwan between 2004 and 2015. METHODS: A multivariate analysis using negative binomial generalized estimating equations was employed to quantify age-specific and cause-specific cases of diarrhea associated with anomalies in temperature, precipitation, and SWS. RESULTS: Temperature anomalies were associated with an elevated rate of all-cause infectious diarrhea at a lag of 2 months, with the highest risk observed in the under-5 age group (incidence rate ratio [IRR], 1.03, 95% confidence interval [CI], 1.01 to 1.07). Anomalies in SWS were associated with increased viral diarrhea rates, with the highest risk observed in the under-5 age group at a 2-month lag (IRR, 1.27; 95% CI, 1.14 to 1.42) and a lesser effect at a 1-month lag (IRR, 1.18; 95% CI, 1.06 to 1.31). Furthermore, cause-specific diarrheal diseases were significantly affected by extreme weather events in Taiwan. Both extremely cold and hot conditions were associated with an increased risk of all-cause infectious diarrhea regardless of age, with IRRs ranging from 1.03 (95% CI, 1.02 to 1.12) to 1.18 (95% CI, 1.16 to 1.40). CONCLUSIONS: The risk of all-cause infectious diarrhea was significantly associated with average temperature anomalies in the population aged under 5 years. Viral diarrhea was significantly associated with anomalies in SWS. Therefore, we recommend strategic planning and early warning systems as major solutions to improve resilience against climate change.
Leptospirosis, a global zoonotic disease, is prevalent in tropical and subtropical regions, including Fiji where it’s endemic with year-round cases and sporadic outbreaks coinciding with heavy rainfall. However, the relationship between climate and leptospirosis has not yet been well characterised in the South Pacific. In this study, we quantify the effects of different climatic indicators on leptospirosis incidence in Fiji, using a time series of weekly case data between 2006 and 2017. We used a Bayesian hierarchical mixed-model framework to explore the impact of different precipitation, temperature, and El Niño Southern Oscillation (ENSO) indicators on leptospirosis cases over a 12-year period. We found that total precipitation from the previous six weeks (lagged by one week) was the best precipitation indicator, with increased total precipitation leading to increased leptospirosis incidence (0.24 [95% CrI 0.15-0.33]). Negative values of the Niño 3.4 index (indicative of La Niña conditions) lagged by four weeks were associated with increased leptospirosis risk (-0.2 [95% CrI -0.29 –0.11]). Finally, minimum temperature (lagged by one week) when included with the other variables was positively associated with leptospirosis risk (0.15 [95% CrI 0.01-0.30]). We found that the final model was better able to capture the outbreak peaks compared with the baseline model (which included seasonal and inter-annual random effects), particularly in the Western and Northern division, with climate indicators improving predictions 58.1% of the time. This study identified key climatic factors influencing leptospirosis risk in Fiji. Combining these results with demographic and spatial factors can support a precision public health framework allowing for more effective public health preparedness and response which targets interventions to the right population, place, and time. This study further highlights the need for enhanced surveillance data and is a necessary first step towards the development of a climate-based early warning system.
Between January 2015 and October 2022, 38 patients with culture-confirmed melioidosis were identified in the Kowloon West (KW) Region, Hong Kong. Notably, 30 of them were clustered in the Sham Shui Po (SSP) district, which covers an estimated area of 2.5 km(2). Between August and October 2022, 18 patients were identified in this district after heavy rainfall and typhoons. The sudden upsurge in cases prompted an environmental investigation, which involved collecting 20 air samples and 72 soil samples from residential areas near the patients. A viable isolate of Burkholderia pseudomallei was obtained from an air sample collected at a building site five days after a typhoon. B. pseudomallei DNA was also detected in 21 soil samples collected from the building site and adjacent gardening areas using full-length 16S rRNA gene sequencing, suggesting that B. psuedomallei is widely distributed in the soil environment surrounding the district. Core genome-multilocus sequence typing showed that the air sample isolate was phylogenetically clustered with the outbreak isolates in KW Region. Multispectral satellite imagery revealed a continuous reduction in vegetation region in SSP district by 162,255 m(2) from 2016 to 2022, supporting the hypothesis of inhalation of aerosols from the contaminated soil as the transmission route of melioidosis during extreme weather events. This is because the bacteria in unvegetated soil are more easily spread by winds. In consistent with inhalational melioidosis, 24 (63.2%) patients had pneumonia. Clinicians should be aware of melioidosis during typhoon season and initiate appropriate investigation and treatment for patients with compatible symptoms.
Knowledge about the life cycle and survival mechanisms of leptospires in the environment is scarce, particularly regarding the environmental factors associated with their presence in ecosystems subject to livestock farming, where precipitation, seasonal floods, and river overflows could act as facilitators of leptospire dispersion. This study aimed to identify and study the presence of Leptospira spp. in the Lower Delta of the Paraná River and describe the physical, chemical, and hydrometeorological conditions associated with their presence in wetland ecosystems impaired by livestock raising intensification. Here, we show that the presence of Leptospira was determined mainly by water availability. We detected the species Leptospira kmetyi, L. mayottensis, and L. fainei and successfully cultured the saprophytic species L. meyeri from bottom sediment, suggesting the association of leptospires with microbial communities of the sediment’s biofilm to enhance its survival and persistence in aquatic environments and adapt to changing environmental conditions. Knowledge of Leptospira sp. diversity in wetlands and the impact of climate variability on the transmission of these organisms is crucial for predicting and preventing leptospirosis outbreaks in the context of human health. IMPORTANCE Wetlands are environments that are often conducive to the survival and transmission of Leptospira because they provide a suitable habitat for the bacteria and are often home to many animal species that can act as reservoirs for leptospirosis. Bringing humans and animals into closer contact with contaminated water and soil and increased frequency and intensity of extreme weather events may further exacerbate the risk of leptospirosis outbreaks, which is mostly relevant in the context of climate change and a widespread intensification of productive activities, particularly in the Lower Delta of the Paraná River. The detection of leptospiral species in wetland ecosystems impaired by livestock raising intensification can help to identify propitious environmental factors and potential sources of infection, develop preventive measures, and plan for appropriate responses to outbreaks, ultimately improving public health outcomes.
BACKGROUND: Diarrheal illnesses are a long-standing public health problem in developing countries due to numerous sanitation issues and a lack of safe drinking water. Floods exacerbate public health issues by spreading water-borne infectious diseases such as diarrhea through the destruction of sanitation facilities and contamination of drinking water. There has been a shortage of studies regarding the magnitude of diarrheal disease in flood-prone areas. Therefore, this research aimed to evaluate the prevalence of diarrheal disease and its predictors among under-five children living in flood-prone localities in the south Gondar zone of Northwest Ethiopia. METHOD: A community-based cross-sectional research was carried out in flood-prone villages of the Fogera and Libokemkem districts from March 17 to March 30, 2021. Purposive and systematic sampling techniques were used to select six kebeles and 717 study units, respectively. Structured and pretested questionnaires were used to collect the data. A multivariable analysis was performed to determine the predictors of diarrheal disease, with P-value <0.05 used as the cut-off point to declare the association. RESULT: The prevalence of a diarrheal disease among under-five children was 29.0%. The regular cleaning of the compound [AOR: 2.13; 95% CI (1.25, 3.62)], source of drinking water [AOR: 2.36; 95% CI: (1.26, 4.41)], animal access to water storage site [AOR: 3.04; 95% CI: (1.76, 5.24)], vector around food storage sites [AOR: 9.13; 95% CI: (4.06, 20.52)], use of leftover food [AOR: 4.31; 95% CI: (2.64, 7.04)], and fecal contamination of water [AOR: 12.56; 95% CI: (6.83, 23.20)] remained to have a significant association with diarrheal diseases. CONCLUSION: The present study found that the prevalence of the diarrheal disease among under-five children was high. Routine compound cleaning, the source of drinking water, animal access to a water storage site, vectors near food storage sites, consumption of leftover food, and fecal contamination of water were significant predictors of diarrheal disease. Therefore, it is advised to provide improved water sources, encourage routine cleaning of the living area, and offer health education about water, hygiene, and sanitation.
Introduction: Climate change alters environmental and climatic conditions, leading to expansion or contraction and possible shifts in the geographical distribution of vectors that transmit diseases. Bulinus globosus and Biomphalaria pfeifferi are the intermediate host snails for human schistosomiasis in KwaZulu-Natal (KZN) province, South Africa.Methods: Using the Maximum entropy (MaxEnt) model, we modelled the current and future distribution of human schistosomiasis intermediate host snails in KZN using two representation concentration pathways (RCP4.5 and RCP8.5) for the year 2085. Thirteen and ten bioclimatic variables from AFRICLIM were used to model the habitat suitability for B. globosus and B. pfeifferi, respectively. The Jack-knife test was used to evaluate the importance of each bioclimatic variable.Results: Mean temperature warmest quarter (BIO10, 37.6%), the number of dry months (dm, 32.6%), mean diurnal range in temperature (BIO2, 10.8%), isothermality (BIO3, 6.7%) were identified as the top four bioclimatic variables with significant contribution to the model for predicting the habitat suitability for B. globosus. Annual moisture index (mi, 34%), mean temperature warmest quarter (BIO10, 21.5%), isothermality (BIO3, 20.5%), and number of dry months (dm, 7%) were identified as the four important variables for the habitat suitability of B. pfeifferi. Area under the curve for the receiving operating characteristics was used to evaluate the performance of the model. The MaxEnt model obtained high AUC values of 0.791 and 0.896 for B. globosus and B. pfeifferi, respectively. Possible changes in the habitat suitability for B. globosus and B. pfeifferi were observed in the maps developed, indicating shrinkage and shifts in the habitat suitability of B. pfeifferi as 65.1% and 59.7% of the current suitable habitats may become unsuitable in the future under RCP4.5 and RCP8.5 climate scenarios. Conversely, an expansion in suitable habitats for B. globosus was predicted to be 32.4% and 69.3% under RCP4.5 and RCP8.5 climate scenarios, with some currently unsuitable habitats becoming suitable in the future.Discussion: These habitat suitability predictions for human schistosomiasis intermediate host snails in KZN can be used as a reference for implementing long-term effective preventive and control strategies for schistosomiasis.
BACKGROUND: Oncomelania hupensis is the sole intermediate host of Schistosoma japonicum. Its emergence and recurrence pose a constant challenge to the elimination of schistosomiasis in China. It is important to accurately predict the snail distribution for schistosomiasis prevention and control. METHODS: Data describing the distribution of O. hupensis in 2016 was obtained from the Yunnan Institute of Endemic Disease Control and Prevention. Eight machine learning algorithms, including eXtreme Gradient Boosting (XGB), support vector machine (SVM), random forest (RF), generalized boosting model (GBM), neural network (NN), classification and regression trees (CART), k-nearest neighbors (KNN), and generalized additive model (GAM), were employed to explore the impacts of climatic, geographical, and socioeconomic variables on the distribution of suitable areas for O. hupensis. Predictions of the distribution of suitable areas for O. hupensis were made for various periods (2030s, 2050s, and 2070s) under different climate scenarios (SSP126, SSP245, SSP370, and SSP585). RESULTS: The RF model exhibited the best performance (AUC: 0.991, sensitivity: 0.982, specificity: 0.995, kappa: 0.942) and the CART model performed the worst (AUC: 0.884, sensitivity: 0.922, specificity: 0.943, kappa: 0.829). Based on the RF model, the top six important variables were as follows: Bio15 (precipitation seasonality) (33.6%), average annual precipitation (25.2%), Bio2 (mean diurnal temperature range) (21.7%), Bio19 (precipitation of the coldest quarter) (14.5%), population density (13.5%), and night light index (11.1%). The results demonstrated that the overall suitable habitats for O. hupensis were predominantly distributed in the schistosomiasis-endemic areas located in northwestern Yunnan Province under the current climate situation and were predicted to expand north- and westward due to climate change. CONCLUSIONS: This study showed that the prediction of the current distribution of O. hupensis corresponded well with the actual records. Furthermore, our study provided compelling evidence that the geographical distribution of snails was projected to expand toward the north and west of Yunnan Province in the coming decades, indicating that the distribution of snails is driven by climate factors. Our findings will be of great significance for formulating effective strategies for snail control.
US small islands are at increased risk ofwater insecurity due to climate change compared to mainland communities. Utilizing multiple water sources can provide improved climate change resilience but may increase a household’s water management burden and risk of exposure to poorer quality water. In the US Virgin Islands, the majority of households rely on roof-harvested rainwater while supplementing with desalinated water provided by trucks or the municipal system. Given this potential managerial burden, Love City Strong conducted a 2.5-year water management pilot program to provide participants with an ultraviolet (UV) water treatment system, replacement parts, operational training, and water testing for one year. Preliminary data were reported previously; however, the program was completed in October 2021 having served 66 households and provided n = 697 post-treatment water tests. The final data suggested 7.7% of post-treatment tap samples (5.8% without outliers) and 66% of cistern samples had detectable levels of E. coli. This data provides further evidence of the success of this watermanagement pilot program and, along with previously published program component data, can be used to craft an island- or territory-wide water treatment and management program to support household access to potable water. DOI: 10.1061/JOEEDU.EEENG-7372. (c) 2023 American Society of Civil Engineers.
This literature review presents major environmental indicators and their optimum variation ranges for the prevalence of Vibrio parahaemolyticus in the marine environment by critically reviewing and statistically analyzing more than one hundred studies from countries around the world. Results of this review indicated that the prevalence of Vibrio parahaemolyticus in the marine environment is primarily responsive to favorable environmental conditions that are described with environmental indicators. The importance of environmental indicators to the prevalence of Vibrio parahaemolyticus can be ranked from the highest to lowest as Sea Surface Temperature (SST), salinity, pH, chlorophyll a, and turbidity, respectively. It was also found in this study that each environmental indicator has an optimum variation range favoring the prevalence of Vibrio parahaemolyticus. Specifically, the SST range of 25.67 ± 2 °C, salinity range of 27.87 ± 3 ppt, and pH range of 7.96 ± 0.1 were found to be the optimum conditions for the prevalence of Vibrio parahaemolyticus. High vibrio concentrations were also observed in water samples with the chlorophyll a range of 16-25 μg/L. The findings provide new insights into the importance of environmental indicators and their optimum ranges, explaining not only the existence of both positive and negative associations reported in the literature but also the dynamic associations between the Vibrio presence and its environmental drivers.
Despite being considered a neglected, re-emerging and the most widespread zoonotic disease worldwide, human-dog leptospirosis has not been subjected to One Health approach, and neither were its socioeconomic and environmental risk factors, as well as concomitant spatial analysis over time. Accordingly, notified human leptospirosis cases, incidence rate and urban hotspot areas, in addition to a systematic review of dog leptospirosis cases, were performed nationwide from 2001 to 2020 in Brazil. Data on Gross Domestic Product (GDP), flooding and study areas were also assessed and tabulated. Human-dog leptospirosis cases were simultaneously mapped with overlapping flooding areas, along with the main circulant serovars. Comparative outcome has shown that dogs may be exposed similarly to humans, becoming important sentinels and/or reservoirs for human leptospirosis in larger geographic areas. Moreover, the study herein can help in the decision and implementation of public policies in Brazil and may serve as a model for other tropical countries worldwide.
Climate change represents an unprecedented threat to humanity and will be the ultimate challenge of the 21st century. As a public health consequence, the World Health Organization estimates an additional 250,000 deaths annually by 2030, with resource-poor countries being predominantly affected. Although climate change’s direct and indirect consequences on human health are manifold and far from fully explored, a growing body of evidence demonstrates its potential to exacerbate the frequency and spread of transmissible infectious diseases. Effective, high-impact mitigation measures are critical in combating this global crisis. While vaccines and vaccination are among the most cost-effective public health interventions, they have yet to be established as a major strategy in climate change-related health effect mitigation. In this narrative review, we synthesize the available evidence on the effect of climate change on vaccine-preventable diseases. This review examines the direct effect of climate change on water-related diseases such as cholera and other enteropathogens, helminthic infections and leptospirosis. It also explores the effects of rising temperatures on vector-borne diseases like dengue, chikungunya, and malaria, as well as the impact of temperature and humidity on airborne diseases like influenza and respiratory syncytial virus infection. Recent advances in global vaccine development facilitate the use of vaccines and vaccination as a mitigation strategy in the agenda against climate change consequences. A focused evaluation of vaccine research and development, funding, and distribution related to climate change is required.
Given water’s vital role in supporting life and ecosystems, global climate change and human activities have significantly diminished its availability and quality. This study explores the health risks of drinking water consumption in the shiraz county water resources and distribution system. The result showed that the water was slightly alkaline. However, the average pH values during the study were within the permissible range. The area’s abundance of total hardness and calcium was due to the high concentration of minerals in rocks and soils. The nitrate and fluoride concentrations in drinking groundwater varied from 0.02 to 116.70 mg/L and 0.10-1.85 mg/L, respectively. Although the water quality index indicated that 52.63, 45.03, and 20.3 percent of samples were of excellent, good, and poor quality in 2020, those percentages obtained 46.05, 52.09, and 14.0 percent in 2021. The regression values of training, testing, validation, and the proposed artificial neural network model were 0.93, 0.92, 0.85, and 0.92. The maximum levels of hazard quotient of nitrate and fluoride (except for adults) were higher than 1 in all age groups, indicating a high non-carcinogenic risk by exposure to nitrate. Furthermore, according to the Monte Carlo simulation, the 95th percentile hazard index in all groups was more than 1. Children and infants were more inclined towards risk than teens and adults based on the intake of nitrate and fluoride from drinking water. The Sobol sensitivity reflected that the nitrate concentration and ingestion rate are vital parameters that influence the outcome of the oral exposure model for all age groups. The interaction of ingestion rate with a concentration of nitrate and fluoride is an important parameter affecting the health risk assessment. In conclusion, these findings suggest that precise measures can reduce health risks and guarantee safe drinking water for residents of Shiraz County.
A rising outbreak of waterborne diseases caused by global warming requires higher microbial stability in the drinking water distribution system (DWDS). Chloramine disinfection is gaining popularity in this context due to its good persistent stability and fewer disinfection byproducts. However, the microbiological risks may be significantly magnified by ammonia-oxidizing bacteria (AOB) in distribution systems during global warming, which is rarely noticed. Hence, this work mainly focuses on AOB to explore its impact on water quality biosafety in the context of global warming. Research indicates that global warming-induced high temperatures can directly or indirectly promote the growth of AOB, thus leading to nitrification. Further, its metabolites or cellular residues can be used as substrates for the growth of heterotrophic bacteria (e.g., waterborne pathogens). Thus, biofilm may be more persistent in the pipelines due to the presence of AOB. Breakpoint chlorination is usually applied to control such situations. However, switching between this strategy and chloramine disinfection would result in even more severe nitrification and other adverse effects. Based on the elevated microbiological risks in DWDS, the following aspects should be paid attention to in future research: (1) to understand the response of nitrifying bacteria to high temperatures and the possible association between AOB and pathogenic growth, (2) to reveal the mechanisms of AOB-mediated biofilm formation under high-temperature stress, and (3) to develop new technologies to prevent and control the occurrence of nitrification in drinking water distribution system.
Global warming and climate change are important worldwide issues which are a major human health threat. Climate change can affect the gastrointestinal (GI) system in many ways. Increased rainfall events and flooding may be associated with increased GI infections and hepatitis. Climate change could cause changes in gut microbiota, which may impact the pattern of GI diseases. The stress of access to essential needs such as clean water and food, the effects of forced migration, and natural disasters could increase brain-gut axis disorders. The association between air pollution and GI disorders is another challenging issue. There is a lot to do personally and professionally as gastroenterologists regarding climate change.
Centralized water infrastructure has, over the last century, brought safe and reliable drinking water to much of the world. But climate change, combined with aging and underfunded infrastructure, is increasingly testing the limits of-and reversing gains made by-this approach. To address these growing strains and gaps, we must assess and advance alternatives to centralized water provision and sanitation. The water literature is rife with examples of systems that are neither centralized nor networked, yet meet water needs of local communities in important ways, including: informal and hybrid water systems, decentralized water provision, community-based water management, small drinking water systems, point-of-use treatment, small-scale water vendors, and packaged water. Our work builds on these literatures by proposing a convergence approach that can integrate and explore the benefits and challenges of modular, adaptive, and decentralized (“MAD”) water provision and sanitation, often foregrounding important advances in engineering technology. We further provide frameworks to evaluate justice, economic feasibility, governance, human health, and environmental sustainability as key parameters of MAD water system performance.This article is categorized under:Engineering Water > Water, Health, and SanitationHuman Water > Water GovernanceEngineering Water > Sustainable Engineering of Water
Over the past two decades, the incidence of legionellosis has been steadily increasing in the United States though there is noclear explanation for the main factors driving the increase. While legionellosis is the leading cause of waterborne outbreaks in the US, most cases are sporadic and acquired in community settings where the environmental source is never identified. This scoping review aimed to summarise the drivers of infections in the USA and determine the magnitude of impact each potential driver may have. A total of 1,738 titles were screened, and 18 articles were identified that met the inclusion criteria. Strong evidence was found for precipitation as a major driver, and both temperature and relative humidity were found to be moderate drivers of incidence. Increased testing and improved diagnostic methods were classified as moderate drivers, and the ageing U.S. population was a minor driver of increasing incidence. Racial and socioeconomic inequities and water and housing infrastructure were found to be potential factors explaining the increasing incidence though they were largely understudied in the context of non-outbreak cases. Understanding the complex relationships between environmental, infrastructure, and population factors driving legionellosis incidence is important to optimise mitigation strategies and public policy.
Leptospirosis is a zoonosis that has been linked to hydrometeorological variability. Hydrometeorological averages and extremes have been used before as drivers in the statistical prediction of disease. However, their importance and predictive capacity are still little known. In this study, the use of a random forest classifier was explored to analyze the relative importance of hydrometeorological indices in developing the leptospirosis model and to evaluate the performance of models based on the type of indices used, using case data from three districts in Kelantan, Malaysia, that experience annual monsoonal rainfall and flooding. First, hydrometeorological data including rainfall, streamflow, water level, relative humidity, and temperature were transformed into 164 weekly average and extreme indices in accordance with the Expert Team on Climate Change Detection and Indices (ETCCDI). Then, weekly case occurrences were classified into binary classes “high” and “low” based on an average threshold. Seventeen models based on “average,” “extreme,” and “mixed” indices were trained by optimizing the feature subsets based on the model computed mean decrease Gini (MDG) scores. The variable importance was assessed through cross-correlation analysis and the MDG score. The average and extreme models showed similar prediction accuracy ranges (61.5-76.1% and 72.3-77.0%) while the mixed models showed an improvement (71.7-82.6% prediction accuracy). An extreme model was the most sensitive while an average model was the most specific. The time lag associated with the driving indices agreed with the seasonality of the monsoon. The rainfall variable (extreme) was the most important in classifying the leptospirosis occurrence while streamflow was the least important despite showing higher correlations with leptospirosis.
Naegleria fowleri causes primary amoebic meningoencephalitis, a deadly infection that occurs when free-living amoebae enter the nose via freshwater and travel to the brain. N. fowleri naturally thrives in freshwater and soil and is thought to be associated with elevated water temperatures. While environmental and laboratory studies have sought to identify what environmental factors influence its presence, many questions remain. This study investigated the interactive effects of temperature, pH, and salinity on N. fowleri in deionized and environmental waters. Three temperatures (15, 25, 35°C), pH values (6.5, 7.5, 8.5), and salinity concentrations (0.5%, 1.5%, 2.5% NaCl) were used to evaluate the growth of N. fowleri via ATP luminescent assays. Results indicated N. fowleri grew best at 25°C, and multiple interactive effects occurred between abiotic factors. Interactions varied slightly by water type but were largely driven by temperature and salinity. Lower temperature increased N. fowleri persistence at higher salinity levels, while low salinity (0.5% NaCl) supported N. fowleri growth at all temperatures. This research provided an experimental approach to assess interactive effects influencing the persistence of N. fowleri. As climate change impacts water temperatures and conditions, understanding the microbial ecology of N. fowleri will be needed minimize pathogen exposure.
Infectious diseases are emerging at an unprecedented rate while food production intensifies to keep pace with population growth. Large-scale irrigation schemes have the potential to permanently transform the landscape with health, nutritional and socio-economic benefits; yet, this also leads to a shift in land-use patterns that can promote endemic and invasive insect vectors and pathogens. The balance between ensuring food security and preventing emerging infectious disease is a necessity; yet the impact of irrigation on vector-borne diseases at the epidemiological, entomological and economic level is uncertain and depends on the geographical and climatological context. Here, we highlight the risk factors and challenges facing vector-borne disease surveillance and control in an emerging agricultural ecosystem in the lower Shire Valley region of southern Malawi. A phased large scale irrigation programme (The Shire Valley Transformation Project, SVTP) promises to transform over 40,000 ha into viable and resilient farmland, yet the valley is endemic for malaria and schistosomiasis and experiences frequent extreme flooding events following tropical cyclones. The latter exacerbate vector-borne disease risk while simultaneously making any empirical assessment of that risk a significant hurdle. We propose that the SVTP provides a unique opportunity to take a One Health approach at mitigating vector-borne disease risk while maintaining agricultural output. A long-term and multi-disciplinary approach with buy-in from multiple stakeholders will be needed to achieve this goal.
Climate sensitivity of infectious diseases is discussed in many studies. A quantitative basis for distinguishing and predicting the disease impacts of climate and other environmental and anthropogenic driver-pressure changes, however, is often lacking. To assess research effort and identify possible key gaps that can guide further research, we here apply a scoping review approach to two widespread infectious diseases: Lyme disease (LD) as a vector-borne and cryptosporidiosis as a water-borne disease. Based on the emerging publication data, we further structure and quantitatively assess the driver-pressure foci and interlinkages considered in the published research so far. This shows important research gaps for the roles of rarely investigated water-related and socioeconomic factors for LD, and land-related factors for cryptosporidiosis. For both diseases, the interactions of host and parasite communities with climate and other driver-pressure factors are understudied, as are also important world regions relative to the disease geographies; in particular, Asia and Africa emerge as main geographic gaps for LD and cryptosporidiosis research, respectively. The scoping approach developed and gaps identified in this study should be useful for further assessment and guidance of research on infectious disease sensitivity to climate and other environmental and anthropogenic changes around the world.
High drinking water temperatures occur due to climate change and could enhance the growth of opportunistic pathogens in drinking water systems. We investigated the influence of drinking water temperatures on the growth of Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Mycobacterium kansasii and Aspergillus fumigatus in drinking water biofilms with an autochthonous microflora. Our results reveal that the growth of P. aeruginosa and S. maltophilia in the biofilm already occurred at 15.0 °C, whereas M. kansasii and A. fumigatus were able to grow when temperatures were above 20.0 °C and 25.0 °C, respectively. Moreover, the maximum growth yield of P. aeruginosa, M. kansasii and A. fumigatus increased with increasing temperatures up to 30 °C, whereas an effect of temperature on the yield of S. maltophilia could not be established. In contrast, the maximum ATP concentration of the biofilm decreased with increasing temperatures. We conclude from these results that high drinking water temperatures caused by, e.g., climate change can result in high numbers of P. aeruginosa, M. kansasii and A. fumigatus in drinking water systems, which poses a possible risk to public health. Consequently, it is recommended for countries with a more moderate climate to use or maintain a drinking water maximum standard temperature of 25 °C.
The growing population, intensified anthropogenic pressures and climate variability have increased the demands on available water resources, and water reuse has become a high priority, particularly in areas of the world suffering from water stress. The main objectives of this review paper are to consider and identify the potential opportunities and challenges in the implementation of water reuse schemes worldwide by considering and analyzing different fields of interest in water reuse, the current and future global drivers of water reuse policies, the existing advances in treatment and reuse technologies promising elimination of environmental footprint and human health risk, an analysis of the trends in potable and non-potable reuse, and the development of quality criteria and issues related to transition circular economy. Moreover, the major knowledge gaps in critical issues on different domains of water reuse schemes are discussed. For this study, a thorough analysis of the current literature was conducted, using research and review articles, technical reports, specific national (and EU) proposals, guidance documents, and legislative initiatives and actions, as well as any validly disseminated findings by scientists around the world in the wider scientific area of (alternative) water resources, water supply, water management, sustainable development, and protection of public health. Water reuse practices are expected to increase in the future, mainly in developed countries and climate-vulnerable areas of the planet. Current advances in wastewater treatment and water reuse technologies can provide the opportunity for the foul exploitation of alternative water resources, increasing the potential of potable and non-potable water reuse systems worldwide, relying on pollutant/contaminant elimination, and improving economic and energy performances. Moreover, paradigmatic and technological switches based on an improved understanding of the relationships between the water cycle and the Water-Energy-Food (WEF) Nexus will increase the perspective of water reuse schemes. The benefits of the recovery of nutrients through sewage wastewater treatment are also highlighted, arising from reduced costs associated with their sheer removal and the supplement of fertilizers to the WEF Nexus. On the other hand, reduced nutrient removal may promote agricultural or landscape reuse practices, contributing to less energy consumption and reducing GHGs emissions. Regarding the management of water use schemes, a holistic approach (integrated management) is proposed, incorporating regulatory actions, actions increasing public awareness, interconnection among actors/stakeholders, and efficient control and monitoring. The establishment of quality criteria is paramount to preventing undesirable impacts on humans and the environment. The study considers the “one water” concept, which means equal water quality criteria independent of the origin of water, and instead differentiates among different types of water reuse as a means to facilitate implementation and management of potable and non-potable water reuse. Finally, it highlights the need to understand the impacts of water reuse systems on ecosystem services (ESs) and the consequences of achieving the global sustainable development goals (SDGs).
The climate change and increasing anthropogenic pressures are expected to limit the availability of water resources. Hence, active measures must be planned in vulnerable regions to ensure a sustainable water supply and minimize environmental impacts. A pilot test was carried out in the Llobregat River (NE Spain) aiming to provide a useful procedure to cope with severe droughts through indirect water reuse. Reclaimed water was used to restore the minimum flow of the lower Llobregat River, ensuring a suitable water supply downstream for Barcelona. A monitoring was performed to assess chemical and microbiological threats throughout the water treatment train, the river and the final drinking water, including 376 micropollutants and common microbiological indicators. The effects of water disinfection were studied by chlorinating reclaimed water prior to its discharge into the river. Data showed that 10 micropollutants (bromodichloromethane, dibromochloromethane, chloroform, EDDP, diclofenac, iopamidol, ioprimid, lamotrigine, ofloxacin and valsartan) posed a potential risk to aquatic life, whereas one solvent (1,4-dioxane) could affect human health. The chlorination of reclaimed water mitigated the occurrence of pharmaceuticals but, conversely, the concentration of halogenated disinfection by-products increased. From a microbiological perspective, the microbial load decreased along wastewater treatments and, later, along drinking water treatment, ultimately reaching undetectable values in final potable water. Non-chlorinated reclaimed water showed a lower log reduction of E. coli and coliphages than chlorinated water. However, the effect of disinfection vanished once reclaimed water was discharged into the river, as the basal concentration of microorganisms in the Llobregat River was comparable to that of non-chlorinated reclaimed water. Overall, our study indicates that indirect water reuse can be a valid alternative source of drinking water in densely populated areas such as Barcelona (Catalonia – NE Spain). A suitable monitoring procedure is presented to assess the related risks to human health and the aquatic ecosystem.
The survival of life on earth depends on equilibrium between the organisms and the environment. The monsoon is a seasonal variation prevailing in the Indian sub-continent. Monsoon has two seasons which are separated by a transition. The infectious diseases epidemiology is affected by both climatic and societal influences. An interaction of climatic and societal influence favours the infectious disease exposure in a population. The infectious diseases affecting the population can be broadly classified as vector borne diseases, food borne diseases, water borne diseases, and respiratory diseases. The rainfall associated change in temperature and floods favours the survival of infectious diseases and their transmitting vectors. The changing global climatic trends including the EL nino Southern oscillation bring undue rainfall during other seasons. The drastic events associated with these climatic changes affect the heath and sanitation infrastructure. India being a developing country has more vulnerability to such infections. A better strengthening of the infrastructure and health policies is the need of the hour to curb the infections.
Increasing attention is being given to the effect of climate change on schistosomiasis, but the impact is currently unknown. As the intermediate snail host (Neotricula aperta) of Schistosoma mekongi inhabits the Mekong River, it is thought that environmental factors affecting the area of water will have an impact on the occurrence of schistosomiasis mekongi. The aim of the present study was to assess the impact of precipitation on the prevalence of human schistosomiasis mekongi using epidemiological data and Earth observation satellite data in Khong district, Champasak province, Lao PDR. Structural equation modelling (SEM) using epidemiological data and Earth observation satellite data was conducted to determine the factors associated with the number of schistosomiasis mekongi patients. As a result, SEM identified 3 significant factors independently associated with schistosomiasis mekongi: (1) a negative association with mass drug administration (MDA); (2) negative association with total precipitation per year; and (3) positive association with precipitation during the dry season. Precisely, regardless of MDA, the increase in total yearly precipitation was suggested to decrease the number of schistosomiasis patients, whereas an increase in precipitation in the dry season increased the number of schistosomiasis patients. This is probably because when total precipitation increases, the water level of the Mekong River rises, thus decreasing the density of infected larvae, cercaria, in the water, and the frequency of humans entering the river would also decrease. In contrast, when precipitation in the dry season is higher, the water level of the Mekong River also rises, which expands the snail habitant, and thus water contact between humans and the snails would also increase. The present study results suggest that increasing precipitation would impact the prevalence of schistosomiasis both positively and negatively, and precipitation should also be considered in the policy to eliminate schistosomiasis mekongi in Lao PDR.
The impact of hurricane-related flooding on infectious diseases in the US is not well understood. Using geocoded electronic health records for 62,762 veterans living in North Carolina counties impacted by Hurricane Matthew coupled with flood maps, we explore the impact of hurricane and flood exposure on infectious outcomes in outpatient settings and emergency departments as well as antimicrobial prescribing. Declines in outpatient visits and antimicrobial prescribing are observed in weeks 0-2 following the hurricane as compared with the baseline period and the year prior, while increases in antimicrobial prescribing are observed 3+ weeks following the hurricane. Taken together, hurricane and flood exposure appear to have had minor impacts on infectious outcomes in North Carolina veterans, not resulting in large increases in infections or antimicrobial prescribing.
Climate change has significantly influenced the spread of waterborne diseases (WBDs), which affect environmental quality and human life. The impact of climate change is greatest in developing countries, especially in the Association of Southeast Asian Nations (ASEAN) countries. Vibrio cholerae, a waterborne pathogen, is most susceptible to and most prevalent during severe climatic changes. The Philippines is regularly exposed to tropical cyclones, such as Bopha in 2012 and Haiyan in 2013, because of its geographical location, while Cyclone Nargis in 2008 caused over 95% of the damage and casualties seen in the preceding two decades in Myanmar. Therefore, implementing policies to adjust to these climate changes and to safeguard their citizens from the effects of WBDs is imperative for ASEAN countries. This study aimed to (1) investigate the effects of climate change on health and to understand the policy requirements to prevent or minimize its negative impact and (2) explore the link between the Sustainable Development Goals (SDGs) and the effects of climate change on WBDs to determine perspectives for global sustainability. The framework of the SDGs should be adapted to ASEAN countries to improve legislation, laws, and regulations on climate-related health issues. Efficient collaboration among scientists, researchers, health professionals, and policymakers will assist in addressing the problems associated with the impact of climate change on WBDs in ASEAN countries.
BACKGROUND: Recently, attention has focused on the impact of global climate change on infectious diseases. Storm flooding is an extreme weather phenomenon that not only impacts the health of the environment but also worsens the spread of pathogens. This poses a significant challenge to public health security. However, there is still a lack of research on how different levels of storm flooding affect susceptible enteric infectious diseases over time. METHODS: Data on enteric infectious diseases, storm flooding events, and meteorology were collected for Changsha, Hunan Province, between 2016 and 2020. The Wilcoxon Rank Sum Test was used to identify the enteric infectious diseases that are susceptible to storm flooding. Then, the lagged effects of different levels of storm flooding on susceptible enteric infectious diseases were analyzed using a distributed lag nonlinear model. RESULTS: There were eleven storm flooding events in Changsha from 2016 to 2020, concentrated in June and July. 37,882 cases of enteric infectious diseases were reported. During non-flooding days, the daily incidence rates of typhoid/paratyphoid and bacillary dysentery were 0.3/100,000 and 0.1/100,000, respectively. During flooding days, the corresponding rates increased to 2.0/100,000 and 0.8/100,000, respectively. The incidence rates of both diseases showed statistically significant differences between non-flooding and flooding days. Correlation analysis shows that the best lags for typhoid/paratyphoid and bacillary dysentery relative to storm flooding events may be 1 and 3 days. The results of the distributed lag nonlinear model showed that typhoid/paratyphoid had the highest cumulative RR values of 2.86 (95% CI: 1.71-4.76) and 8.16 (95% CI: 2.93-22.67) after 4 days of general flooding and heavy flooding, respectively; and bacillary dysentery had the highest cumulative RR values of 1.82 (95% CI: 1.40-2.35) and 3.31 (95% CI: 1.97-5.55) after 5 days of general flooding and heavy flooding, respectively. CONCLUSIONS: Typhoid/paratyphoid and bacillary dysentery are sensitive enteric infectious diseases related to storm flooding in Changsha. There is a lagging effect of storm flooding on the onset of typhoid/paratyphoid and bacillary dysentery, with the best lagging periods being days 1 and 3, respectively. The cumulative risk of typhoid/paratyphoid and bacillary dysentery was highest at 4/5 days lag, respectively. The higher of storm flooding, the higher the risk of disease, which suggests that the authorities should take appropriate preventive and control measures before and after storm flooding.
Changing climatic conditions influence parameters associated with the growth of pathogenic Vibrio spp. in the environment and, hence, are linked to increased incidence of vibriosis. Between 1992 and 2022, a long-term increase in Vibrio spp. infections was reported in Florida, USA. Furthermore, a spike in Vibrio spp. infections was reported post Hurricane Ian, a category five storm that made landfall in Florida on 28 September 2022. During October 2022, water and oyster samples were collected from three stations in Lee County in an area significantly impacted by Ian. Vibrio spp. were isolated, and whole-genome sequencing and phylogenetic analysis were done, with a focus on Vibrio parahaemolyticus and Vibrio vulnificus to provide genetic insight into pathogenic strains circulating in the environment. Metagenomic analysis of water samples provided insight with respect to human health-related factors, notably the detection of approximately 12 pathogenic Vibrio spp., virulence and antibiotic resistance genes, and mobile genetic elements, including the SXT/R391 family of integrative conjugative elements. Environmental parameters were monitored as part of a long-term time series analysis done using satellite remote sensing. In addition to anomalous rainfall and storm surge, changes in sea surface temperature and chlorophyll concentration during and after Ian favored the growth of Vibrio spp. In conclusion, genetic analysis coupled with environmental data and remote sensing provides useful public health information and, hence, constitute a valuable tool to proactively detect and characterize environmental pathogens, notably vibrios. These data can aid the development of early warning systems by yielding a larger source of information for public health during climate change. Evidence suggests warming temperatures are associated with the spread of potentially pathogenic Vibrio spp. and the emergence of human disease globally. Following Hurricane Ian, the State of Florida reported a sharp increase in the number of reported Vibrio spp. infections and deaths. Hence, monitoring of pathogens, including vibrios, and environmental parameters influencing their occurrence is critical to public health. Here, DNA sequencing was used to investigate the genomic diversity of Vibrio parahaemolyticus and Vibrio vulnificus, both potential human pathogens, in Florida coastal waters post Hurricane Ian, in October 2022. Additionally, the microbial community of water samples was profiled to detect the presence of Vibrio spp. and other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Long-term environmental data analysis showed changes in environmental parameters during and after Ian were optimal for the growth of Vibrio spp. and related pathogens. Collectively, results will be used to develop predictive risk models during climate change.
Little is known regarding the temporal and spatial functional variation of freshwater bacterial community (BC) under non-bloom conditions, especially in winter. To address this, we used metatranscriptomics to assess bacterial gene transcription variation among three sites across three seasons. Our metatranscriptome data for freshwater BCs at three public beaches (Ontario, Canada) sampled in the winter (no ice), summer and fall (2019) showed relatively little spatial, but a strong temporal variation. Our data showed high transcriptional activity in summer and fall but surprisingly, 89% of the KEGG pathway genes and 60% of the selected candidate genes (52 genes) associated with physiological and ecological activity were still active in freezing temperatures (winter). Our data also supported the possibility of an adaptively flexible gene expression response of the freshwater BC to low temperature conditions (winter). Only 32% of the bacterial genera detected in the samples were active, indicating that the majority of detected taxa were non-active (dormant). We also identified high seasonal variation in the abundance and activity of taxa associated with health risks (i.e., Cyanobacteria and waterborne bacterial pathogens). This study provides a baseline for further characterization of freshwater BCs, health-related microbial activity/dormancy and the main drivers of their functional variation (such as rapid human-induced environmental change and climate change).
Vibrio cholerae are natural inhabitants of specific aquatic environments. Strains not belonging to serogroups O1 and O139 are usually unable to produce cholera toxin and cause cholera. However, non-toxigenic V. cholerae (NTVC) are able to cause a variety of mild-to-severe human infections (via seafood consumption or recreational activities). The number of unreported cases is considered substantial, as NTVC infections are not notifiable and physicians are mostly unaware of this pathogen. In the northern hemisphere, NTVC infections have been reported to increase due to global warming. In Eastern Europe, climatic and geological conditions favour the existence of inland water-bodies harbouring NTVC. We thus investigated the occurrence of NTVC in nine Serbian natural and artificial lakes and ponds, many of them used for fishing and bathing. With the exception of one highly saline lake, all investigated water-bodies harboured NTVC, ranging from 5.4 × 10(1) to 1.86 × 10(4) CFU and 4.5 × 10(2) to 5.6 × 10(6) genomic units per 100 ml. The maximum values observed were in the range of bathing waters in other countries, where infections have been reported. Interestingly, 7 out of 39 fully sequenced presumptive V. cholerae isolates were assigned as V. paracholerae, a recently described sister species of V. cholerae. Some clones and sublineages of both V. cholerae and V. paracholerae were shared by different environments indicating an exchange of strains over long distances. Important pathogenicity factors such as hlyA, toxR, and ompU were present in both species. Seasonal monitoring of ponds/lakes used for recreation in Serbia is thus recommended to be prepared for potential occurrence of infections promoted by climate change-induced rise in water temperatures.
Over the last two decades, Vibrio vulnificus infections have emerged as an increasingly serious public health threat along the German Baltic coast. To manage related risks, near real-time (NRT) modelling of V. vulnificus quantities has often been proposed. Such models require spatially explicit input data, for example, from remote sensing or numerical model products. We tested if data from a hydrodynamic, a meteorological, and a biogeochemical model are suitable as input for an NRT model system by coupling it with field samples and assessing the models’ ability to capture known ecological parameters of V. vulnificus. We also identify the most important predictors for V. vulnificus in the Baltic Sea by leveraging the St. Nicolas House Analysis. Using a 27-year time series of sea surface temperature, we have investigated trends of V. vulnificus season length, which pinpoint hotspots mainly in the east of our study region. Our results underline the importance of water temperature and salinity on V. vulnificus abundance but also highlight the potential of air temperature, oxygen, and precipitation to serve as predictors in a statistical model, albeit their relationship with V. vulnificus may not be causal. The evaluated models cannot be used in an NRT model system due to data availability constraints, but promising alternatives are presented. The results provide a valuable basis for a future NRT model for V. vulnificus in the Baltic Sea.
Due to sea level rise, tidal flooding is now common in low-lying coastal systems around the world. Yet, the contribution of tidal flooding to non-point source nutrient loads and their impact on the quality of adjacent waters remains poorly constrained. Here, we quantified dissolved nutrient loading and Enterococcus abundance during annual autumnal king tides (i.e., perigean spring tides), between 2017 and 2021, in a sub-watershed of the lower Chesapeake Bay. To calculate nutrient loading from tidal flooding, we used geospatial inundation depths from a street-level hydrodynamic model to estimate floodwater volumes during each of the five sampling events and the difference between nutrient concentrations in floodwater and pre-flood measurements. Results showed that dissolved nutrient concentrations were higher in floodwaters than in estuarine waters and resulted in dissolved nitrogen and phosphorus loads that reached 58.4 x 10(3) kg and 14.4 x 10(3) kg, respectively. We compared our load estimates to the tributary-specific total and land-based federal allocations (i.e., total maximum daily loads (TMDL)) for total nitrogen (TN) and total phosphorus (TP). Even the more conservative calculations indicate that inputs of dissolved nutrients during a single tidal flooding event can exceed 100% of the annual load allocation. Additionally, more than 80% of the floodwater samples collected each year showed Enterococcus abundance that exceeded the threshold for recreational water use in Virginia (104 MPN 100 ml(-1)). Failing to account for non-point source loading of nutrients and contaminants from tidal flooding as sea level rises could result in worsening eutrophication and deterioration of coastal economies and the health of coastal communities around the world.
IMPORTANCE: Climate change is associated with more frequent and intense floods. Current research on the association between flood exposure and diarrhea risk is limited mainly to short-term and event-specific analyses. Moreover, how prior drought or water, sanitation, and hygiene (WaSH) practices influence this association remains largely unknown. OBJECTIVE: To examine the association between flood exposure and diarrhea risk among children younger than 5 years and to evaluate the compounding influence of prior drought and effect modification by WaSH. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study included multicluster surveys conducted by the Demographic and Health Surveys Program in 43 low- and middle-income countries during 2009 through 2019. This study included children younger than 5 years in all households from each survey cluster. Collected data were analyzed between September 1 and December 31, 2022. EXPOSURES: Historical flood events during 2009 through 2019 were obtained from the Dartmouth Flood Observatory. MAIN OUTCOME AND MEASURES: The main outcome was diarrhea prevalence among children younger than 5 years in the 2 weeks before the survey was conducted. Results were analyzed by binomial generalized linear mixed-effects logistic regression models with nested random intercepts for country and survey cluster. RESULTS: Among 639 250 children making up the complete data series (excluding 274 847 children with missing values for diarrhea or baseline characteristics), 6365 (mean [SD] age, 28.9 [17.2] months; 3214 boys [50.5%]; 3151 girls [49.5%]) were exposed to floods during the 8 weeks after a flood started. The prevalence of diarrhea was 13.2% (n = 839) among exposed children and 12.7% (n = 80 337) among unexposed children. Exposure to floods was associated with increased diarrhea risk, with the highest odds ratio (OR) observed during the second to fourth weeks after floods started (OR, 1.35; 95% CI, 1.05-1.73). When floods were stratified by severity and duration, significant associations were observed only for extreme floods (OR during the third to fifth weeks, 2.07; 95% CI, 1.37-3.11) or floods lasting more than 2 weeks (OR during the second to fourth weeks, 1.47; 95% CI, 1.13-1.92), with significantly stronger associations than for less extreme floods or shorter-duration floods, respectively. The OR during the first 4 weeks after the start of floods was significantly higher for floods preceded by a 6-month or longer drought (12-month drought OR, 1.96; 95% CI, 1.53-2.52) than for floods not preceded by a 6-month or longer drought (12-month drought OR, 1.00; 95% CI, 0.79-1.27). CONCLUSIONS: These findings suggest that floods, especially severe floods, long-duration floods, and floods preceded by drought, are associated with an increased risk of diarrhea among children younger than 5 years living in low- and middle-income countries. With the projected increasing frequency and intensity of floods and drought under climate change, greater collective efforts are needed to protect children’s health from these compounding events.
Background: Melioidosis is a fatal, but preventable communicable disease that is endemic in several parts of the world, including the state of Sabah, Malaysia, which is located in the northern part of Borneo Island. Flooding is one of the most regular natural disasters affecting some parts of Malaysia, including Sabah. The main aim of this study was to determine if rainfall and floods were significant risk factors contributing to the substantial burden of melioidosis in the Penampang district from 2015 to 2020. Method: We analyzed 64 culture-confirmed cases of melioidosis in the Penampang district, Sabah, between 2015 and 2020 to determine if rainfall and floods were significant risk factors that contributed to the substantial burden of melioidosis. Fisher’s exact test was used to examine for associations between risk factors and melioidosis mortality. We used Poisson regression to calculate the incidence rate ratio for melioidosis cases based on different risk factors. Results: There was a linear association between rainfall and floods with cases of melioidosis. Our Poisson regression results indicated that the number of melioidosis cases was 1.002 times greater with every 1 mm increase of rainfall and 2.203 times greater with every flood event. There was a linear association between cases of melioidosis with rainfall and floods, with most patients having comorbidities. Conclusion: Prevention of melioidosis in the Penampang district should primarily focus on avoiding direct contact with soil or contaminated water, especially during or after extreme weather events. Continuous and community-empowered health education targeting the high-risk group is essential, as flash floods in certain parts of the state and districts are seasonal and unpredictable.
Melioidosis is an infectious disease caused by the bacterium Burkholderia pseudomallei. Although this environmental organism is endemic in certain regions of Australia, it is not considered endemic in Southern Queensland, where the last case was reported 21 years ago. We report a climate change-associated outbreak of melioidosis occurring during two La Niña events in a region previously considered nonendemic for B. pseudomallei. During a 15-month period, 14 cases of locally acquired melioidosis were identified. Twelve patients were adults (> 50 years), with diabetes mellitus the most common risk factor in 6 of 12 patients (50%). Eleven patients (79%) had direct exposure to floodwaters or the flooded environment. This study suggests an association between climate change and an increased incidence of melioidosis. In addition, this is the first report of environmental sampling and whole-genome analysis to prove endemicity and local acquisition in this region.
In 2021, Nigeria witnessed a severe cholera outbreak that affected Borno state, in which more than 1,600,000 internally displaced persons (IDPs) resided at the time. This rapid appraisal explored factors that facilitate the recurrence of cholera outbreaks in sites hosting IDPs in Northeast Nigeria. Semi-structured interviews were conducted with water, sanitation, and hygiene (WASH), management, and healthcare personnel working in 10 displacement camps in Borno state. The interviews were complemented by transect walks and field observations, measurements of free residual chlorine levels, and publicly available data published by the International Organization for Migration Displacement Tracking Matrix. The recurrence of cholera outbreaks appears to be facilitated by substantial interactions between IDPs and host communities, and suboptimal WASH services in camps. Of particular concern, IDP camps are exposed to extreme weather-related events that damage facilities and subsequently affect WASH practices. WASH services in camps may likewise be severely hindered by an influx of new arrivals. In conclusion, we emphasize the importance of expanding WASH activities to host communities and developing site-specific WASH interventions and chlorination targets. Practical recommendations are needed for the prevention and control of outbreaks following extreme weather-related events and population influxes.
During this age of climate change, the incidence of tropical diseases may change. This study compared the epidemiological characteristics and trends of leptospirosis in Japan between the endemic region, Okinawa, and the rest of the country. Infectious Diseases Weekly Reports were used to determine the numbers and crude incidence rates of leptospirosis. Data were stratified by sex, age, the estimated location of the infection, the notified regions, and the reporting month. A joinpoint regression analysis was performed to estimate the annual percentage change (APC). During the 16-year study period (2006-2021), 543 leptospirosis cases were reported, with male dominance (86.2%). Approximately half of these cases were reported from Okinawa (47.1%). The patients were relatively younger in Okinawa (20-29 years, 23.4%; 30-39 years, 20.7%) than outside Okinawa. The frequency of imported cases was significantly higher outside Okinawa (0.4% versus 14.3%). The incidences of leptospirosis in and outside Okinawa were apparently higher during the summer and typhoon seasons. The annual crude incidence ratios were 20-200 times higher in Okinawa than in the rest of the country. The average APCs for the entire study period in Okinawa and the rest of Japan were 1.6% (95% CI: -5.9 to 9.6) and -1.8% (95% CI: -7.8 to 4.6), respectively, without any particular trends. Collectively, the patient profile of leptospirosis differed between Okinawa (younger men) and outside Okinawa (middle- or older-aged men with a history of traveling abroad). The disease remains a neglected tropical disease; continuous surveillance with close monitoring is required.
Incidence of vibriosis is rising globally, with evidence that changing climatic conditions are influencing environmental factors that enhance growth of pathogenic Vibrio spp. in aquatic ecosystems. To determine the impact of environmental factors on occurrence of pathogenic Vibrio spp., samples were collected in the Chesapeake Bay, Maryland, during 2009 to 2012 and 2019 to 2022. Genetic markers for Vibrio vulnificus (vvhA) and Vibrio parahaemolyticus (tlh, tdh, and trh) were enumerated by direct plating and DNA colony hybridization. Results confirmed seasonality and environmental parameters as predictors. Water temperature showed a linear correlation with vvhA and tlh, and two critical thresholds were observed, an initial increase in detectable numbers (>15°C) and a second increase when maximum counts were recorded (>25°C). Temperature and pathogenic V. parahaemolyticus (tdh and trh) were not strongly correlated; however, the evidence showed that these organisms persist in oyster and sediment at colder temperatures. Salinity (10 to 15 ppt), total chlorophyll a (5 to 25 μg/L), dissolved oxygen (5 to 10 mg/L), and pH (8) were associated with increased abundance of vvhA and tlh. Importantly, a long-term increase in Vibrio spp. numbers was observed in water samples between the two collection periods, specifically at Tangier Sound (lower bay), with the evidence suggesting an extended seasonality for these bacteria in the area. Notably, tlh showed a mean positive increase that was ca. 3-fold overall, with the most significant increase observed during the fall. In conclusion, vibriosis continues to be a risk in the Chesapeake Bay region. A predictive intelligence system to assist decision makers, with respect to climate and human health, is warranted. IMPORTANCE The genus Vibrio includes pathogenic species that are naturally occurring in marine and estuarine environments globally. Routine monitoring for Vibrio species and environmental parameters influencing their incidence is critical to provide a warning system for the public when the risk of infection is high. In this study, occurrence of Vibrio parahaemolyticus and Vibrio vulnificus, both potential human pathogens, in Chesapeake Bay water, oysters, and sediment samples collected over a 13-year period was analyzed. The results provide a confirmation of environmental predictors for these bacteria, notably temperature, salinity, and total chlorophyll a, and their seasonality of occurrence. New findings refine environmental parameter thresholds of culturable Vibrio species and document a long-term increase in Vibrio populations in the Chesapeake Bay. This study provides a valuable foundation for development of predicative risk intelligence models for Vibrio incidence during climate change.
Climate change may impact human health through the influence of weather on environmental transmission of diarrhea. Previous studies have found that high temperatures and heavy precipitation are associated with increased diarrhea prevalence, but the underlying causal mechanisms have not been tested and validated. We linked measurements of Escherichia coli in source water (n = 1673), stored drinking water (n = 9692), and hand rinses from children <2 years old (n = 2634) with publicly available gridded temperature and precipitation data (at ≤0.2 degree spatial resolution and daily temporal resolution) by the GPS coordinates and date of sample collection. Measurements were collected over a 3-year period across a 2500 km(2) area in rural Kenya. In drinking water sources, high 7-day temperature was associated with a 0.16 increase in log(10) E. coli levels (p < 0.001, 95% CI: 0.07, 0.24), while heavy 7-day total precipitation was associated with a 0.29 increase in log(10) E. coli levels (p < 0.001, 95% CI: 0.13, 0.44). In household stored drinking water, heavy 7-day precipitation was associated with a 0.079 increase in log(10) E. coli levels (p = 0.042, 95% CI: 0.07, 0.24). Heavy precipitation did not increase E. coli levels among respondents who treated their water, suggesting that water treatment can mitigate effects on water quality. On child hands, high 7-day temperature was associated with a 0.39 decrease in log(10) E. coli levels (p < 0.001, 95% CI: -0.52, -0.27). Our findings provide insight on how climate change could impact environmental transmission of bacterial pathogens in Kenya. We suggest water treatment is especially important after heavy precipitation (particularly when preceded by dry periods) and high temperatures.
The effect of ambient temperature on health continues to draw more and more attention with the global warming. Bacillary dysentery (BD) is a major global environmental health issue and affected by temperature and other environmental variables. In the current study, we evaluated the effect of temperature on the incidence of BD from January 1st, 2008 to December 31st, 2011 in Jiayuguan, a temperate continental arid climate city in the Hexi Corridor of northwest China. A distributed lag non-linear model (DLNM) was performed to evaluate the lag effect of temperature on BD up to 30 days. Results showed the risk of BD increased with temperature significantly, especially after 8 °C. The maximum risk of BD was observed at extreme high temperature (29 °C). The effect of temperature on BD risk was significantly divided into short-term effect at lag 5 days and long-term effect at lag 30 days. Age ≤ 15 years were most affected by high temperature. The maximum cumulative risk for lag 30 days (25.8, 95% CIs: 11.8-50.1) was observed at 29 °C. Age ≤ 15 years and females showed short-term effect at lag 5 days and long-term effect at lag 30 days, while age > 15 years and males showed acute short-term effect at lag 0 and light long-term effect at lag 16 days.
Diarrhea remains a common infectious disease caused by various risk factors in developing countries. This study investigated the incidence rate and temporal associations between diarrhea and meteorological determinants in five regions of Surabaya, Indonesia. METHOD: Monthly diarrhea records from local governmental health facilities in Surabaya and monthly means of weather variables, including average temperature, precipitation, and relative humidity from Meteorology, Climatology, and Geophysical Agency were collected from January 2018 to September 2020. The generalized additive model was employed to quantify the time lag association between diarrhea risk and extremely low (5th percentile) and high (95th percentile) monthly weather variations in the north, central, west, south, and east regions of Surabaya (lag of 0-2 months). RESULT: The average incidence rate for diarrhea was 11.4 per 100,000 during the study period, with a higher incidence during rainy season (November to March) and in East Surabaya. This study showed that the weather condition with the lowest diarrhea risks varied with the region. The diarrhea risks were associated with extremely low and high temperatures, with the highest RR of 5.39 (95% CI 4.61, 6.17) in the east region, with 1 month of lag time following the extreme temperatures. Extremely low relative humidity increased the diarrhea risks in some regions of Surabaya, with the highest risk in the west region at lag 0 (RR = 2.13 (95% CI 1.79, 2.47)). Extremely high precipitation significantly affects the risk of diarrhea in the central region, at 0 months of lag time, with an RR of 3.05 (95% CI 2.09, 4.01). CONCLUSION: This study identified a high incidence of diarrhea in the rainy season and in the deficient developed regions of Surabaya, providing evidence that weather magnifies the adverse effects of inadequate environmental sanitation. This study suggests the local environmental and health sectors codevelop a weather-based early warning system and improve local sanitation practices as prevention measures in response to increasing risks of infectious diseases.
In this study, climate change and human impacts on water quality in five major urban areas of Pakistan, including Karachi, Lahore, Peshawar, Abbottabad, and Gilgit, were determined. Secondary data on various physical, chemical, and bacteriological water quality parameters were taken from published papers, reports, and theses. Surface and groundwater were the major sources of drinking water in these cities. The physicochemical parameters were total turbidity, pH, dissolved solids (TDS), sulphates, chlorides, calcium, sodium, HCO3, potassium, magnesium, nitrates, fluorides, arsenic, and hardness. The bacteriological parameters were total coliform, total faecal coliform, and total plate counts. The data revealed that pH, TDS, fluoride, chloride, HCO3, sodium, and hardness were above the limits in Karachi. MCB Market, Goth Ibrahim, and Malir Town were the main contaminated areas in Karachi. In Lahore, arsenic was found above the limits in all sampling locations. Turbidity, pH, HCO3, calcium, magnesium, and hardness were found above the limits in Peshawar. In Gilgit city, all physicochemical parameters were found within the limits except turbidity, which was 10 NTU in Nomal valley. Nitrates were higher in the water sources in Abbottabad. Bacterial contamination was found in the water of all five cities. Most of the studies revealed that this contamination could be human-induced. The improper disposal of solid waste, sewage, and animal waste and the excessive use of fertilisers deteriorate the quality of the water. Precipitation, a rise in temperature, and seasonal variation are climate variables that affect water quality and are responsible for major outbreaks of waterborne diseases. There is an urgent need for regular analysis, proper management, and proper treatment of drinking water before it is supplied to the local community in these cities.
Among the diverse Vibrio spp. autochthonous to coastal ecosystems, V. cholerae, V. fluvialis, V. vulnificus and V. parahaemolyticus are pathogenic to humans. Increasing sea-surface temperature, sea-level rise and water-related disasters associated with climate change have been shown to influence the proliferation of these bacteria and change their geographic distribution. We investigated the spatio-temporal distribution of Vibrio spp. in a tropical lake for 1 year at a 20-day interval. The abundance of Vibrio spp. was much higher during the south-west monsoon in 2018, when the lake experienced a once-in-a-century flood. The distribution of Vibrio spp. was influenced by salinity (r = 0.3, p < 0.001), phosphate (r = 0.18, p < 0.01) and nitrite (r = 0.16, p < 0.02) in the water. We isolated 470 colonies of Vibrio-like organisms and 341 could be revived further and identified using 16S rRNA gene sequencing. Functional annotations showed that all the 16 Vibrio spp. found in the lake could grow in association with animals. More than 60% of the isolates had multiple antibiotic resistance (MAR) index greater than 0.5. All isolates were resistant to erythromycin and cefepime. The proliferation of multiple antibiotic-resistant Vibrio spp. is a threat to human health. Our observations suggest that the presence of a diverse range of Vibrio spp. is favoured by the low-saline conditions brought about by heavy precipitation. Furthermore, infections caused by contact with Vibrio-contaminated waters may be difficult to cure due to their multiple antibiotic resistances. Therefore, continuous monitoring of bacterial pollution in the lakes is essential, as is the generation of risk maps of vibrio-infested waters to avoid public contact with contaminated waters and associated disease outbreaks.
During 2010-2018 in Denmark, 638 patients had Vibrio infections diagnosed and 521 patients had Shewanella infections diagnosed. Most cases occurred in years with high seawater temperatures. The substantial increase in those infections, with some causing septicemia, calls for clinical awareness and mandatory notification policies.
Cryptosporidiosis is a zoonotic intestinal infectious disease caused by Cryptosporidium spp., and its transmission is highly influenced by climate factors. In the present study, the potential spatial distribution of Cryptosporidium in China was predicted based on ecological niche models for cryptosporidiosis epidemic risk warning and prevention and control. METHODS: The applicability of existing Cryptosporidium presence points in ENM analysis was investigated based on data from monitoring sites in 2011-2019. Cryptosporidium occurrence data for China and neighboring countries were extracted and used to construct the ENMs, namely Maxent, Bioclim, Domain, and Garp. Models were evaluated based on Receiver Operating Characteristic curve, Kappa, and True Skill Statistic coefficients. The best model was constructed using Cryptosporidium data and climate variables during 1986‒2010, and used to analyze the effects of climate factors on Cryptosporidium distribution. The climate variables for the period 2011‒2100 were projected to the simulation results to predict the ecological adaptability and potential distribution of Cryptosporidium in future in China. RESULTS: The Maxent model (AUC = 0.95, maximum Kappa = 0.91, maximum TSS = 1.00) fit better than the other three models and was thus considered the best ENM for predicting Cryptosporidium habitat suitability. The major suitable habitats for human-derived Cryptosporidium in China were located in some high-population density areas, especially in the middle and lower reaches of the Yangtze River, the lower reaches of the Yellow River, and the Huai and the Pearl River Basins (cloglog value of habitat suitability > 0.9). Under future climate change, non-suitable habitats for Cryptosporidium will shrink, while highly suitable habitats will expand significantly (χ(2) = 76.641, P < 0.01; χ(2) = 86.836, P < 0.01), and the main changes will likely be concentrated in the northeastern, southwestern, and northwestern regions. CONCLUSIONS: The Maxent model is applicable in prediction of Cryptosporidium habitat suitability and can achieve excellent simulation results. These results suggest a current high risk of transmission and significant pressure for cryptosporidiosis prevention and control in China. Against a future climate change background, Cryptosporidium may gain more suitable habitats within China. Constructing a national surveillance network could facilitate further elucidation of the epidemiological trends and transmission patterns of cryptosporidiosis, and mitigate the associated epidemic and outbreak risks.
The effects of global warming are not limited to rising global temperatures and have set in motion a complex chain of events contributing to climate change. A consequence of global warming and the resultant climate change is the rise in cyanobacterial harmful algal blooms (cyano-HABs) across the world, which pose a threat to public health, aquatic biodiversity, and the livelihood of communities that depend on these water systems, such as farmers and fishers. An increase in cyano-HABs and their intensity is associated with an increase in the leakage of cyanotoxins. Microcystins (MCs) are hepatotoxins produced by some cyanobacterial species, and their organ toxicology has been extensively studied. Recent mouse studies suggest that MCs can induce gut resistome changes. Opportunistic pathogens such as Vibrios are abundantly found in the same habitat as phytoplankton, such as cyanobacteria. Further, MCs can complicate human disorders such as heat stress, cardiovascular diseases, type II diabetes, and non-alcoholic fatty liver disease. Firstly, this review describes how climate change mediates the rise in cyanobacterial harmful algal blooms in freshwater, causing increased levels of MCs. In the later sections, we aim to untangle the ways in which MCs can impact various public health concerns, either solely or in combination with other factors resulting from climate change. In conclusion, this review helps researchers understand the multiple challenges brought forth by a changing climate and the complex relationships between microcystin, Vibrios, and various environmental factors and their effect on human health and disease.
Vibrio vulnificus is an opportunistic bacterial pathogen, occurring in warm low-salinity waters. V. vulnificus wound infections due to seawater exposure are infrequent but mortality rates are high (~ 18%). Seawater bacterial concentrations are increasing but changing disease pattern assessments or climate change projections are rare. Here, using a 30-year database of V. vulnificus cases for the Eastern USA, changing disease distribution was assessed. An ecological niche model was developed, trained and validated to identify links to oceanographic and climate data. This model was used to predict future disease distribution using data simulated by seven Global Climate Models (GCMs) which belong to the newest Coupled Model Intercomparison Project (CMIP6). Risk was estimated by calculating the total population within 200 km of the disease distribution. Predictions were generated for different “pathways” of global socioeconomic development which incorporate projections of greenhouse gas emissions and demographic change. In Eastern USA between 1988 and 2018, V. vulnificus wound infections increased eightfold (10-80 cases p.a.) and the northern case limit shifted northwards 48 km p.a. By 2041-2060, V. vulnificus infections may expand their current range to encompass major population centres around New York (40.7°N). Combined with a growing and increasingly elderly population, annual case numbers may double. By 2081-2100 V. vulnificus infections may be present in every Eastern USA State under medium-to-high future emissions and warming. The projected expansion of V. vulnificus wound infections stresses the need for increased individual and public health awareness in these areas.
The present study examined the influence of improvements to Water, Sanitation, and Hygiene (WASH) infrastructure on rates of under-five mortality specifically from diarrheal disease amongst children in fragile states. The World Bank’s Millennium Development Goals and Sustainable Development Goals both include a specific target of reduction in preventable disease amongst children, as well as goal to improve WASH. Although gains have been made, children under the age of five remain particularly vulnerable to diarrheal mortality in states identified as fragile. Increasingly, climate change is placing undue pressure on states labeled fragile due to their inability to properly prepare for, or respond to, natural disasters that further compromise WASH development and water safety. The impact of climate change upon child health outcomes is neither direct nor linear and necessitates a linkage framework that can account for complex pathways between environmental pressures and public health outcomes. The World Health Organization’s Drive Force-Pressure-State-Exposure-Effect-Action conceptual framework was used to draw the connections between seemingly disparate, and highly nuanced, environmental, and social measures. Using a multilevel hierarchical model, this analysis used a publicly available UNICEF data set that reported rates of mortality specifically from diarrheal disease amongst children age five and younger. All 171 formally recognized countries were included, which showed a decline in diarrheal disease over time when investments in WASH infrastructure are compared. As states experience increased pressure because of climate change, this area of intervention is key for immediate health and safety of children under-five, as well as assisting fragile states long-term as the move toward stability.
Based on a desk review and three rounds of the Delphi method, this study examines the impacts of climate change-induced water-related threats on food security in the Indian Sundarbans, and develops management strategies to address the issues. Results show climate change, through its impacts on water, has lowered agricultural output, endangered traditional livelihoods, reduced access to food, and affected food utilization by impacting freshwater availability and creating health hazards. In addition, intensified weather extremes are likely to threaten food security further. A combination of local-level adaptation measures and global-level mitigation initiatives is necessary to ensure food security in this region.
Cholera is an acute type of diarrheal disease caused by intestinal infection with the toxin-producing bacteria Vibrio cholerae. The disease is still endemic in almost 69 countries, accounting for around 2.86 million cases and 95,000 deaths annually. Cholera is associated with poor infrastructure, and lack of access to sanitation and clean drinking water. The current cholera outbreak in Syria is associated with more than 10 years of conflict, which has devastated infrastructures and health services. There were 132,782 suspected cases reported between August 25, 2022 and May 20, 2023 in all 14 governorates, including 104 associated deaths. The recent earthquake in the region has complicated the situation, with an increase in cholera cases, and hindrance to a response to the disease. Climate change has driven a number of large cholera outbreaks around the world this year. The World Health Organization prequalifies three oral cholera vaccines. Cholera treatment mainly depends on rehydration, with the use of antibiotics in more severe infections. This review gives an overview of cholera bacteriology, pathogenesis, epidemiology, clinical manifestations, diagnosis, management, and prevention in light of global climate change and the ongoing outbreak in Syria, which poses a significant public health threat that requires urgent attention.
Diarrheal diseases are one of the main health problems worldwide, especially in developing countries with poor health systems, high rates of poverty, and poor nutrition. The main causative agents of diarrheal disease are bacteria, viruses, and parasites; among the latter, the intestinal protozoa Giardia and Entamoeba stand out. In the present work, a observational analysis of the national surveillance data of amebiasis, giardiasis, and other protozoan intestinal infections was carried out. The data issued by the Directorate General of Epidemiology was analyzed to establish its relationship with geography, socioeconomic, and environmental conditions in Mexico during the 2015-2019 period. New cases of amebiasis decreased by 25.03% between 2015 and 2019, while giardiasis and other protozoan intestinal infections remained constant; in all cases, incidence was higher in females than in males, and children under 5 years of age were the most affected. The contribution of environmental conditions (seasonality, temperature, and humidity) and socioeconomic factors in the number of protozoan intestinal infection cases was assessed by a multivariable regression model using a backward selection procedure. Peaks in cases were observed in spring and summer, which are characterized by warm and humid climates. Additionally, states with high humidity and annual average temperature contribute to a notably higher incidence of these parasites, especially annual average temperature, as demonstrated through multivariable linear regression models. Moreover, the majority of these states have the largest population living in poverty with inadequate measures for the distribution, dispensing, and sanitation of water. These data are essential to incidence rate monitoring and focus efforts on eliminating risk factors and improving health programs in Mexico.
Leptospirosis is a zoonotic disease that primarily affects people in tropical and subtropical areas worldwide. Owing to the temperate climate of Japan, leptospirosis is not endemic across the country. Domestic cases of leptospirosis have been mainly reported in Okinawa and the southwestern subtropical islands, but not in the other regions. Here, we describe a case of leptospirosis that developed and was diagnosed outside the domestically endemic region. Notably, disease onset occurred shortly after the patient experienced a flood after a typhoon disaster. With global warming, the international prevalence of leptospirosis may change. Physicians outside currently endemic areas must be aware of this tropical disease.
Waterborne disease is a global health threat contributing to a high burden of diarrhoeal disease, and growing evidence indicates a prospective increase in incidence coinciding with the profound effects of climate change. A major causative agent of gastrointestinal disease is Cryptosporidium, a protozoan waterborne parasite identified in over 70 countries. Cryptosporidium is a cause of high disease morbidity in children and the immunocompromised with limited treatment options for patients at risk of severe illness. The hardy nature of the organism leads to its persistence in various water sources, with certain water treatment procedures proving inefficient for its complete removal. While diagnostic methods for Cryptosporidium are well-defined in the clinical sphere, detection of Cryptosporidium in water sources remains suboptimal due to low dispersion of organisms in large sample volumes, lengthy processing times and high costs of equipment and reagents. A need for improvement exists to identify the organism as an emerging threat in domestic water systems, and the technological advantages that biosensors offer over current analytical methods may provide a preventative approach to outbreaks of Cryptosporidium. Biosensors are innovative, versatile and adaptable analytical tools that could provide highly sensitive, rapid, on-site analysis needed for Cryptosporidium detection in low-resource settings.
Testing for bacteria in water is done based on intended purposes, such as drinking, producing ice, utilizing it in the house, producing water taps, and processing water. Bacterial growth and survival in water are influenced by environmental factors, which may have consequences for human health. The purpose of this study was to identify factors influencing the failing standard of water quality for consumption. Water quality data from the annual report of Regional Medical Sciences Center and meteorological data from the National Statistical Office of Thailand were obtained for the fiscal years 2002-2021. A logistic regression model was used to identify factors associated with the failing standard of water quality for consumption. The findings revealed that 16.6% of the total sample did not meet the consumption standard, with Public Health Area (PHA) 11 and 12, failing at rates of 49.6% and 38.3%, respectively. Overall, water produced in PHA 11 was statistically (p-value < 0.05) substantially associated with bacterial contamination, which increased with production year, air temperature, and precipitation. In conclusion, environmental factors and other water quality were influential on biological water quality in Southern Thailand. Therefore, necessary measures must be taken to improve water quality standards in this area to safeguard the protection of consumers.
Flood risk has increased distressingly, and the incidence of waterborne diseases, such as diarrhoeal diseases from bacteria, has been reported to be high in flood-prone areas. This study aimed to evaluate the flood risk patterns and the plausible application of flow cytometry (FCM) as a method of assessment to understand the relationship between flooding and waterborne diseases in Malaysia. Thirty years of secondary hydrological data were analysed using chemometrics to determine the flood risk patterns. Water samples collected at Kuantan River were analysed using FCM for bacterial detection and live/dead discrimination. The water level variable had the strongest factor loading (0.98) and was selected for the Flood Risk Index (FRI) model, which revealed that 29.23% of the plotted data were high-risk, and 70.77% were moderate-risk. The viability pattern of live bacterial cells was more prominent during the monsoon season compared to the non-monsoon season. The live bacterial population concentration was significantly higher in the midstream (p < 0.05) during the monsoon season (p < 0.01). The flood risk patterns were successfully established based on the water level control limit. The viability of waterborne bacteria associated with the monsoon season was precisely determined using FCM. Effective flood risk management is mandatory to prevent outbreaks of waterborne diseases.
The severity of hurricanes, and thus the associated impacts, is changing over time. One of the understudied threats from damage caused by hurricanes is the potential for cross-contamination of water bodies with pathogens in coastal agricultural regions. Using microbiological data collected after hurricanes Florence and Michael, this study shows a dichotomy in the presence of pathogens in coastal North Carolina and Florida. Salmonella typhimurium was abundant in water samples collected in the regions dominated by swine farms. A drastic decrease in Enterococcus spp. in Carolinas is indicative of pathogen removal with flooding waters. Except for the abundance presence of Salmonella typhimurium, no significant changes in pathogens were observed after Hurricane Michael in the Florida panhandle. We argue that a comprehensive assessment of pathogens must be included in decision-making activities in the immediate aftermath of hurricanes to build resilience against risks of pathogenic exposure in rural agricultural and human populations in vulnerable locations.
Urban cloudburst management may include the intentional temporary storage of flood water in green recreational areas. In cities with combined sewers, this will expose the population visiting the area to sewage and increase the risk of diarrhoeal disease. We present a unique approach to estimate the risk of diarrhoeal disease after urban flooding. The exposure scenario was: rainwater mixed with sewage flows into a park; sewage with pathogens deposit on the grass; after discharge, a baby plays on the grass and is exposed to the pathogens in the deposited sewage by hand-to-mouth transfer. The work included modelling the transport of sewage into four parks intended to be flooded during future cloudbursts. A flood simulation experiment was conducted to estimate the deposition of pathogens from sewage to grass and transfer from grass to hand. Hand-to-mouth transfer, based on literature values, was used to estimate the ingested dose of pathogens. The probability of illness was estimated by QMRA. The estimated average probability of illness varied between 0.03 and 17%. If the probability of illness is considered unacceptable, the cloudburst plans should be changed, or interventions, e.g. informing the public about the risk or restricting access to the flooded area, should be implemented.
Communities around the world living in either urban or rural areas continue to experience serious WASH problems during flood episodes. Communities and individual households are affected differently depending on their coping capacities and their resource base. Flooding causes extensive damage to water and sanitation infrastructure, leaving communities vulnerable to WASH-related illnesses. This paper aimed to analyze factors influencing the community WASH experiences during flood incidences in Tsholotsho District using a Seemingly Unrelated Regression (SUR) model. The quantitative approach was used in this study. A questionnaire was used to collect data from household heads in Tsholotsho District. A total of 218 Questionnaires were administered in four wards that were purposively selected for this study. Gathered data were analyzed using the Statistical Package for Social Sciences (SPSS Version 22) and principal component analysis was done, which culminated in a SUR model. The key findings of the study were that outbreaks of water and hygiene-related diseases, ponding of water which provides a breeding ground for mosquitoes, and contamination of surface water were the major WASH problems experienced in Tsholotsho District among other problems. The study also found that access to Non-Governmental Organisations (NGOs) programs, access to treated water, and level of education were positive and statistically significant in influencing some of the problems experienced during flooding. To increase the coping capacities of Tsholotsho communities, it is pertinent for governments and NGOs to consider implementing more WASH programs, increasing access to safe and clean drinking water, and increasing the level of education of communities.
Norovirus is a major cause of acute diarrheal disease (ADD) outbreaks worldwide. In the present study, we investigated an ADD outbreak caused by norovirus in several municipalities of Santa Catarina state during the summer season, southern Brazil in 2023. As of the 10th epidemiological week of 2023, approximately 87 000 ADD cases were reported, with the capital, Florianópolis, recording the highest number of cases throughout the weeks. By using RT-qPCR and sequencing, we detected 10 different genotypes, from both genogroups (G) I and II. Some rare genotypes were also identified. Additionally, rotavirus and human adenovirus were sporadically detected among the ADD cases. Several features of the outbreak suggest that sewage-contaminated water could played a role in the surge of ADD cases. Storm events in Santa Catarina state that preceded the outbreak likely increased the discharge of contaminated wastewater and stormwater into water bodies, such as rivers and beaches during a high touristic season in the state. Climate change-induced extreme weather events, including intensified rainfall and frequent floods, can disturb healthcare and sanitation systems. Implementing public policies for effective sanitation, particularly during peak times, is crucial to maintain environmental equilibrium and counter marine pollution.
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms’ problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models’ health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
The discharge of pathogens into urban recreational water bodies during combined sewer overflows (CSOs) pose a potential threat for public health which may increase in the future due to climate change. Improved methods are needed for predicting the impact of these effects on the microbiological urban river water quality and infection risks during recreational use. The aim of this study was to develop a novel probabilistic-deterministic modelling approach for this purpose building on physically plausible generated future rainfall time series. The approach consists of disaggregation and validation of daily precipitation time series from 21 regional climate models for a reference period (1971-2000, C20), a near-term future period (2021-2050, NTF) and a long-term future period (2071-2100, LTF) into sub-daily scale, and predicting the concentrations of enterococci and Giardia and Cryptosporidium, and infection risks during recreational use in the river downstream of the sewage emissions from CSOs. The approach was tested for an urban river catchment in Austria which is used for recreational activities (i.e. swimming, playing, wading, hand-to-mouth contact). According to a worst-case scenario (i.e. children bathing in the river), the 95th percentile infection risks for Giardia and Cryptosporidium range from 0.08 % in winter to 8 % per person and exposure event in summer for C20. The infection risk increase in the future is up to 0.8 log(10) for individual scenarios. The results imply that measures to prevent CSOs may be needed to ensure sustainable water safety. The approach is promising for predicting the effect of climate change on urban water safety requirements and for supporting the selection of sustainable mitigation measures. Future studies should focus on reducing the uncertainty of the predictions at local scale.
Vibrio species are waterborne ubiquitous organisms capable of causing diseases in humans and animals and the occurrence of infections caused by pathogenic Vibrio species among humans have increased globally. This reemergence is attributed to environmental impacts such as global warming and pollution. Africa is most vulnerable to waterborne infections caused by these pathogens because of lack of good water stewardship and management. This study was carried out to provide an in-depth inquiry into the occurrence of pathogenic Vibrio species in water sources and wastewater across Africa. In this regard, a systematic review and meta-analysis was conducted by searching five databases: PubMed, ScienceDirect, Google Scholar, Springer Search and African Journals Online (AJOL). The search yielded 70 articles on pathogenic Vibrio species presence in African aquatic environments that fit our inclusion criteria. Based on the random effects model, the pooled prevalence of pathogenic Vibrio species in various water sources in Africa was 37.6 % (95 % CI: 27.7-48.0). Eighteen countries were represented by the systematically assessed studies and their nationwide prevalence in descending order was: Nigeria (79.82 %), Egypt (47.5 %), Tanzania (45.8 %), Morocco (44.8), South Africa (40.6 %), Uganda (32.1 %), Cameroon (24.5 %), Burkina Faso (18.9 %) and Ghana (5.9 %). Furthermore, 8 pathogenic Vibrio species were identified across water bodies in Africa with the highest detection for V. cholerae (59.5 %), followed by V. parahaemolyticus (10.4 %), V.alginolyticus (9.8 %), V. vulnificus (8.5 %), V. fluvialis (6.6 %), V. mimicus (4.6 %), V. harveyi (0.5 %) and V. metschnikovii (0.1 %). Evidently, pathogenic Vibrio species occurrence in these water sources especially freshwater corroborates the continuous outbreaks observed in Africa. Therefore, there is an urgent need for proactive measures and continuous monitoring of water sources used for various purposes across Africa and proper treatment of wastewater before discharge into water bodies.
Leptospirosis is a worldwide zoonotic waterborne disease endemic in tropical and subtropical climates. Outbreaks have been observed in the Northern Territory (NT) of Australia. We briefly described the epidemiology of leptospirosis in the NT between 2012 and 2022, and undertook an investigation of a cluster of three leptospirosis cases observed in crocodile workers between January and December 2022 in the Top End of the NT. A descriptive case series was conducted to investigate the cluster; all three cases were male and non-Aboriginal with a median age of 46.5 years; none took chemoprophylaxis; only one of the three cases reported wearing appropriate protective attire; all reported receiving limited to no education about personal protective measures from their associated workplaces. Higher than average rainfall in both February and December 2022 likely contributed to the increased risk of infection in those months. Changing climate patterns are likely to result in more frequent periods of heavy rain, and risk of contracting leptospirosis in the NT may increase, particularly for those who work in wet and muddy conditions. Promoting the use of protective workplace clothing and equipment, the use of waterproof dressings for skin abrasions, regular hand hygiene, and the consideration of chemoprophylaxis in certain circumstances may prevent future cases.
Naegleria fowleri and Balamuthia mandrillaris are opportunistic protists, responsible for fatal central nervous system infections such as primary amoebic meningoencephalitis (PAM) and granulomatous amoebic encephalitis (GAE) with mortality rates higher than 90%. Threatening a rise in cases is the increase in temperature due to global warming. No effective treatment is currently available. Herein, nanotechnology was used to conjugate Zinc oxide with Ampicillin, Ceftrixon, Naringin, Amphotericin B, and Quericitin, and the amoebicidal activity and host cell cytotoxicity of these resulting compounds were investigated. The compounds ZnO-CD-AMPi, ZnO-CD-CFT, ZnO-CD-Nar, ZnO-CD-AMB, and ZnO-CD-QT were found to reduce N. fowleri viability to 35.5%, 39.6%, 52.0%, 50.8%, 35.9%, and 69.9%, respectively, and B. mandrillaris viability to 40.9%, 48.2%, 51.6%, 43.8%, and 62.4%, respectively, when compared with their corresponding controls. Furthermore, the compounds reduced N. fowleri-mediated and B. mandrillaris-mediated host cell death significantly. Additionally, the compounds showed limited cytotoxicity against human cells; cell toxicity was 35.5%, 36.4%, 30.9%, 36.6%, and 35.6%, respectively, for the compounds ZnO-CD-AMPi, ZnO-CD-CFT, ZnO-CD-Nar, ZnO-CD-AMB, and ZnO-CD-QT. Furthermore, the minimum inhibitory concentrations to inhibit amoeba growth by 50% were determined for N. fowleri and B. mandrillaris. The MIC(50) for N. fowleri were determined to be 69.52 µg/mL, 82.05 µg/mL, 88.16 µg/mL, 95.61 µg/mL, and 85.69 µg/mL, respectively; the MIC(50) of the compounds for B. mandrillaris were determined to be 113.9 µg/mL, 102.3 µg/mL, 106.9 µg/mL, 146.4 µg/mL, and 129.6 µg/mL, respectively. Translational research to further develop therapies based on these compounds is urgently warranted, given the lack of effective therapies currently available against these devastating infections.
Water pollution is a major issue in Ghana with direct impacts on human health. However, the underlying drivers of exposure and risks are not comprehensively explored and understood, while the diseases continue posing huge burdens. The key question addressed is: what are the key drivers influencing the water-health nexus, particularly water-borne disease risks in the Odaw River basin, Ghana? Multiple approaches were integrated: qualitative system dynamic modeling and urban land-use change assessment. Multi-level stakeholder participation, including household surveys, focus group discussions, and workshops were employed in developing and identifying indicators and feedback loops. The results revealed that communities have access to water and sanitation, but water-borne diseases are still prevalent. Flooding influenced by poor land use planning and solid waste disposal are key risk factors, contributing to water pollution and disease outbreaks. The major land-use change is the conversion of natural to built-up areas, resulting in decreased urban vegetation cover and increased soil sealing, partly contributing to flood risk. Complex linkages and multiple feedback loops between land use, flooding, water pollution, and water-borne disease risks were identified. In addition to supplying safe drinking water and sanitation, multi-sectoral collaborations are required to co-design and implement integrated interventions, including flood risk reduction, urban land use plans, and improved waste management to reduce disease risks and promote health.
Water quality is a fundamental issue for the survival of a city, especially on dry land. In ancient times, water availability determined the location and size of villages and cities. Water supply and treatment methods were developed and perfected along with the evolution of urbanization. In Europe, after the fall of the Roman Empire, water supply and sewage systems went through fundamental changes. However, in medieval times, the lack of proper sanitation and low water quality increased the spreading and effects of epidemics. The importance of potable water quality was established during modern times. In Greece, the significance of water filtration and disinfection was not understood until the beginning of the 20th century. Moreover, the beneficial effects of water quality and sanitation on human health and especially on life expectancy are considered. In Greece and other countries, a dramatic increase in life expectancy mainly after the 2nd World War is probably due to the improvement of potable water quality and hygiene conditions. However, since the mid-20th century, new water quality issues have emerged, such as eutrophication, the improvement of water treatment technologies, as well as chemical and microbiological water pollution problems. This study, in addition to the historical evolution of water quality, highlights and discusses the current issues and challenges with regard to the management and protection of water quality, including global changes in population and urbanization, lack of infrastructure, use of nonconventional water resources, spreading of emerging pollutants and contaminants (e.g., antibiotics and microplastics), and climatic variability impacts. Against these, a review of the main proposed strategies and measures is presented and discussed to protect water quality and maintain water supplies for the future. Understanding the practices and solutions of the past provides a lens with which to view the present and future.
Bacterial and viral diseases in aquaculture result in severe production and economic losses. Among pathogenic bacteria, species belonging to the Vibrio genus are one of the most common and widespread disease-causing agents. Vibrio infections play a leading role in constraining the sustainable growth of the aquaculture sector worldwide and, consequently, are the target of manifold disease prevention strategies. During the early, larval stages of development, Vibrio species are a common cause of high mortality rates in reared fish and shellfish, circumstances under which the host organisms might be highly susceptible to disease preventive or treatment strategies such as vaccines and antibiotics use, respectively. Regardless of host developmental stage, Vibrio infections may occur suddenly and can lead to the loss of the entire population reared in a given aquaculture system. Furthermore, the frequency of Vibrio-associated diseases in humans is increasing globally and has been linked to anthropic activities, in particular human-driven climate change and intensive livestock production. In this context, here we cover the current knowledge of Vibrio infections in fish aquaculture, with a focus on the model species gilthead seabream (Sparus aurata), a highly valuable reared fish in the Mediterranean climatic zone. Molecular methods currently used for fast detection and identification of Vibrio pathogens and their antibiotic resistance profiles are addressed. Targeted therapeutic approaches are critically examined. They include vaccination, phage therapy and probiotics supplementation, which bear promise in supressing vibriosis in land-based fish rearing and in mitigating possible threats to human health and the environment. This literature review suggests that antibiotic resistance is increasing among Vibrio species, with the use of probiotics constituting a promising, sustainable approach to prevent Vibrio infections in aquaculture.
Considering the global climate changes that have disrupted the availability of fresh water and led to the emergence of drought, an effective management strategy for water quality must be implemented. In this work, we analyzed the possibility of used and treated water being reused and the effect of its use on soil on the development of plants. In the case of irrigation with treated wastewater, the following parameters increased: calcium carbonate equivalent, organic matter, content of phosphorus, calcium, potassium, sodium, nitrogen, biochemical oxygen consumption; chemical oxygen demand (COD), decreased sodium absorption rate, soil electrical conductivity, pH, magnesium content, and soil bulk density. Due to the micronutrients it contains, the use of treated wastewater in irrigation can be an organic fertilizer for the soil. Wastewater is a source of soil water supply. Untreated wastewater may contain, depending on the source (industry, pharmacies, medicine, households), toxic compounds, bacteria, viruses, and helminths, which, if used for long periods of time in irrigation, can have a negative impact on health and the environment, reaching the soil, the roots of the crops, and then the underground water. Therefore, these waters must be used after adequate treatment. Global climate change disrupts the availability of fresh water and negatively influences the occurrence of floods, droughts, and water quality, which is why any water source must be managed correctly.
BACKGROUND: Leptospirosis infection can lead to serious renal and cardiopulmonary complications and can be fatal. Following heavy rainfall and localised flooding in early 2021, Tropical Public Health Services in Cairns were alerted to an increase in leptospirosis cases in the region, with notifications almost three times higher than usual by mid-February. An epidemiological investigation was undertaken. METHODS: Leptospirosis notification data were obtained from the Queensland Notifiable Conditions System. Confirmed and probable cases residing in the Cairns region, with an onset date between 1 January and 31 May 2021, were included in the investigation. Case demographics, pathology results, symptoms, hospital stay information and presumed exposure sources were obtained from Queensland Health records; local rainfall data was obtained from the Australian Bureau of Meteorology. Case characteristics and rainfall were compared to the prior ten-year period and the distribution of cases by week of onset, address, exposure source and infecting serovar analysed. RESULTS: A total of 43 leptospirosis cases were notified between January and May 2021, the highest number recorded for the region since 2011. Presumed exposure sources were available for 40 cases (93.0%), with 33 cases (82.5%) exposed occupationally, including 25 cases working on banana farms. Infecting Leptospira serovars were identified for five cases (11.6%), with four infected with serovar Australis and one with serovar Zanoni. Limited information about the specific exposure sites for each case and a low serovar detection rate hampered the ability to confirm the presence or absence of a leptospirosis outbreak. While heavy rainfall is likely to have contributed to the spike in cases, no factors were identified as clearly associated with the increase. CONCLUSIONS: A number of pathways are proposed to improve the collection of exposure site data and the identification of infecting serovars, in order to strengthen local leptospirosis surveillance and the ability to detect outbreaks in the Cairns region.
Leptospirosis is a neglected waterborne zoonosis of growing concern in tropical and low-income regions. Endemic in Southeast Asia, its distribution and environmental factors such as climate controlling its dynamics remain poorly documented. In this paper, we investigate for the first time the current and future leptospirosis burden at a local scale in mainland Southeast Asia. We adjusted machine-learning models on incidence reports from the Thai surveillance system to identify environmental determinants of leptospirosis. The explanatory variables tested in our models included climate, topographic, land cover and soil variables. The model performing the best in cross-validation was used to estimate the current incidence regionally in Thailand, Myanmar, Cambodia, Vietnam and Laos. It then allowed to predict the spatial distribution of leptospirosis future burden from 2021 to 2100 based on an ensemble of CMIP6 climate model projections and 4 Shared Socio-economics Pathways ranging from the most optimistic to the no-climate policy outcomes (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). Leptospirosis incidence was best estimated by 10 environmental variables: four landscape-, four rainfall-, two temperature-related variables. Of all tested scenario, the worst-case scenario of climate change (SSP5-8.5) surprisingly appeared as the best-case scenario for the future of leptospirosis since it would induce a significant global decline in disease incidence in Southeast Asia mainly driven by the increasing temperatures. These global patterns are however contrasted regionally with some regions showing increased incidence in the future. Our work highlights climate and the environment as major drivers of leptospirosis incidence in Southeast Asia. Applying our model to regions where leptospirosis is not routinely monitored suggests an overlooked burden in the region. As our model focuses on leptospirosis responses to environmental drivers only, some other factors, such as poverty, lifestyle or behavioral changes, could further influence these estimated future patterns.
Three water, sanitation and hygiene (WASH) support tools were applied to Kampala city, Uganda, to evaluate areas with the highest health hazard due to poor wastewater and faecal sludge management and to develop interventions to improve sanitation and reduce exposure. The Pathogen Flow and Mapping Tool (PFMT) assessed how different sanitation management interventions influence pathogen emissions to surface water using rotavirus as the indicator pathogen, while the HyCRISTAL health hazard tool evaluated how flooding and drainage infrastructure influence the presence of human excreta in the environment. The SaniPath tool identified common high-risk pathways of exposure to faecal contamination in food, open drains and floodwater. An overlap in high health hazard hotspot areas was identified by the PFMT and the HyCRISTAL tools. Across the city, the most important hazard sources were the indiscriminate disposal of faecal waste into open stormwater drains from onsite sanitation technologies, open defecation and the insufficient treatment of wastewater. The SaniPath tool identified drain water, floodwater, street food and uncooked produce as the dominant faecal exposure pathways for selected parishes in the city, demonstrating the presence of excreta in the environment. Together, the tools provide collective evidence guiding household, community, and city-wide sanitation, hygiene and infrastructure management interventions from a richer assessment than when a single tool is applied. For areas with high spatial risks, those practising open defecation, and for low-lying areas, these interventions include the provision of watertight pit latrines or septic tanks that are safely managed and regularly emptied. Faecal sludge should be emptied before flood events, direct connections of latrines to open storm drains should be prevented, and the safe handling of food and water promoted. The tools enhance decision making for local authorities, and the assessments can be replicated in other cities.
BACKGROUND: Cholera remains a major threat in sub-Saharan Africa (SSA), where some of the highest case-fatality rates are reported. Knowing in what months and where cholera tends to occur across the continent could aid in improving efforts to eliminate cholera as a public health concern. However, largely due to the absence of unified large-scale datasets, no continent-wide estimates exist. In this study, we aimed to estimate cholera seasonality across SSA and explore the correlation between hydroclimatic variables and cholera seasonality. METHODS: Using the global cholera database of the Global Task Force on Cholera Control, we developed statistical models to synthesise data across spatial and temporal scales to infer the seasonality of excess (defined as incidence higher than the 2010-16 mean incidence rate) suspected cholera occurrence in SSA. We developed a Bayesian statistical model to infer the monthly risk of excess cholera at the first and second administrative levels. Seasonality patterns were then grouped into spatial clusters. Finally, we studied the association between seasonality estimates and hydroclimatic variables (mean monthly fraction of area flooded, mean monthly air temperature, and cumulative monthly precipitation). FINDINGS: 24 (71%) of the 34 countries studied had seasonal patterns of excess cholera risk, corresponding to approximately 86% of the SSA population. 12 (50%) of these 24 countries also had subnational differences in seasonality patterns, with strong differences in seasonality strength between regions. Seasonality patterns clustered into two macroregions (west Africa and the Sahel vs eastern and southern Africa), which were composed of subregional clusters with varying degrees of seasonality. Exploratory association analysis found most consistent and positive correlations between cholera seasonality and precipitation and, to a lesser extent, between cholera seasonality and temperature and flooding. INTERPRETATION: Widespread cholera seasonality in SSA offers opportunities for intervention planning. Further studies are needed to study the association between cholera and climate. FUNDING: US National Aeronautics and Space Administration Applied Sciences Program and the Bill & Melinda Gates Foundation.
An increase in the annual daily temperature is documented and predicted to occur in the coming decades. Climate change has a direct effect and adverse impact on human health, as well as on multiple ecosystems and their species. The purpose of this paper is to review the effect of climate change on neglected tropical diseases including leishmaniasis, schistosomiasis, and lymphatic filariasis in the Eastern Mediterranean Region (EMR). A list of engine web searches was done; 280 full-text records were assessed for eligibility. Only 48 original records were included within the final selection for the review study. Most research results show an alteration of neglected diseases related to climate change influencing specifically the Eastern Mediterranean Region, in addition to the expectation of more effects at the level of vectors and reservoir whether its vector transmission route or its egg hatching and replication or even the survival of adult worms in the coming years. At the same time, not all articles related to the region interpret the direct or indirect effect of climate variations on these specific diseases. Although few studies were found describing some of climate change effects on neglected tropical diseases in the region, still, the region lacks research funding, technical, and mathematical model expertise regarding the direct effect of climate change on the ecosystems of these neglected tropical diseases.
Because of climate change, heavy precipitation is likely to become frequent and intense, thereby increasing the risk of shigellosis occurrence. However, few studies examined the impact of heavy precipitation on shigellosis and its impact modifiers in developed countries. This study aims to analyze the association between heavy precipitation and shigellosis in Taiwan, and to identify the vulnerable population and impact modifiers. We adopted a case-crossover design, and used conditional logistic regression to estimate odds ratios (ORs) for shigellosis occurrence. Information were collected on the daily shigellosis cases, precipitation, temperature, and typhoons from 1994 to 2015, and yearly data of medical resources and environmental factors were obtained at the city level from 1998 to 2015. Stratification analyses were performed by age, sex, medical resource, and environmental factors. We discovered that heavy precipitation ≥80 mm/day considerably increased the risk of shigellosis occurrence. The ORs of heavy rain (80 to <200 mm/day) were 2.08-2.26 at lags 0-1. The ORs of extremely heavy rain (≥200 mm/day) increased to 2.17-4.73 at lags 5-8. Moreover, the effect of heavy precipitation was greater under high temperature condition (≥23.6 °C). Adults were more susceptible to heavy-precipitation-associated shigellosis, especially the elderly. Males experienced marginally higher effects than females did. Moreover, cities with more medical resources and forest cover and higher percentage of completed storm sewers had lower effects; however, dense population and higher pig density were the risk factors. Although the high water-supply penetration rate did not decrease Shigella infection after heavy precipitation, it did lower the risk of typhoon-related shigellosis. In conclusion, hot temperature could enhance the impact of heavy precipitation on shigellosis. Public health interventions should be introduced according to the lag period after heavy precipitation, particularly in areas with high population density, proportion of elderly people, and pig density. The improvement of medical resources and tree cover as well as the construction of storm sewers and piped water systems might be mitigation measures that can be considered.
To quantify the potential impact of rotavirus vaccines and identify strategies to improve vaccine performance in Bangladesh, a better understanding of the drivers of pre-vaccination rotavirus patterns is required. We developed and fitted mathematical models to 23 years (1990-2012) of weekly rotavirus surveillance data from Dhaka with and without incorporating long-term and seasonal variation in the birth rate and meteorological factors. We performed external model validation using data between 2013 and 2019 from the regions of Dhaka and Matlab. The models showed good agreement with the observed age distribution of rotavirus cases and captured the observed shift in seasonal patterns of rotavirus hospitalizations from biannual to annual peaks. The declining long-term trend in the birth rate in Bangladesh was the key driver of the observed shift from biannual to annual winter rotavirus patterns. Meteorological indices were also important: a 1°C, 1% and 1 mm increase in diurnal temperature range, surface water presence and degree of wetness were associated with a 19%, 3.9% and 0.6% increase in the transmission rate, respectively. The model demonstrated reasonable predictions for both Dhaka and Matlab, and can be used to evaluate the impact of rotavirus vaccination in Bangladesh against changing patterns of disease incidence.
This review paper aimed to summarize the climate change impacts on water sources and their relation with human and ecosystem health and evaluate better management strategies. In aquatic environments, climate change causes alteration of biodiversity and species distribution, changes in the duration of biological functions, decreasing productivities, alteration in food web structures, as well as triggering the invasion of various species, and variation in the presence, abundance, and concentrations of various co-stressors. Since the beginning of the 20th century, the surface water temperature in the oceans has risen by about 1 degrees C. Consequently, human well-being is directly and indirectly affected by these alterations. The World Health Organization (WHO) estimates 3.5 million people die from water-related diseases each year. It is projected that the number of water-related diseases will increase due to the effects of climate change. To cope with these problems, alternative water management strategies should be developed to have resilient water systems in terms of both ecological and technological perspectives. Thus, water management requires the cooperation of many sectors including citizens, institutions, public and private sectors, etc. within a multi-stakeholder approach.
Background Household water security encompasses water-related factors that pose threats to public health at the household level. It presents a reliable access to water in sufficient quantity and quality towards meeting basic human needs. This study assessed the dynamics of seasonal variations in household water security and the association between household water security and diarrheal disease across dry and wet seasons in an urban settlement in Southwest Nigeria. Methods A panel study design was employed to study 180 households selected using a multistage sampling technique. The selected households were studied during dry and rainy seasons. Household water security was assessed through the application of the all or none principle to 9 indicators associated with household water security. The intensity of water insecurity was also assessed using the nine indicators. The higher the number of indicators a household failed, the higher the intensity of household water insecurity. The association between the intensity of household water insecurity and the burden of diarrheal disease across the seasons was assessed using the Mantel-Haenszel test. Results No household was water-secure in both dry and rainy seasons; however, the intensity of insecurity was more pronounced during the dry season compared with the rainy season. Ninety households (52.0%), had water insecurity intensity scores above fifty percentiles during the dry season while 21 (12.1%) households had a water insecurity score above the 50th percentile during raining season, p < 0.001. The burden of diarrheal disease was significantly higher among households with a water insecurity intensity score above the 50th percentile, 9 (8.1%) compared to households with a water insecurity intensity score below the 50th percentile 7 (3.0%), p = 0.034. There was no statistically significant association between the intensity of water insecurity and diarrheal disease burden across the dry and rainy seasons, p = 0.218. Conclusion The high burden of household water insecurity deserves concerted efforts from all concerned stakeholders, a panacea to an important health threat in the developing world.
BACKGROUND: An increasing severity of extreme storms and more intense seasonal flooding are projected consequences of climate change in the United States. In addition to the immediate destruction caused by storm surges and catastrophic flooding, these events may also increase the risk of infectious disease transmission. We aimed to determine the association between extreme and seasonal floods and hospitalizations for Legionnaires’ disease in 25 US states during 2000-2011. METHODS: We used a nonparametric bootstrap approach to examine the association between Legionnaires’ disease hospitalizations and extreme floods, defined by multiple hydrometeorological variables. We also assessed the effect of extreme flooding associated with named cyclonic storms on hospitalizations in a generalized linear mixed model (GLMM) framework. To quantify the effect of seasonal floods, we used multi-model inference to identify the most highly weighted flood-indicator variables and evaluated their effects on hospitalizations in a GLMM. RESULTS: We found a 32% increase in monthly hospitalizations at sites that experienced cyclonic storms, compared to sites in months without storms. Hospitalizations in months with extreme precipitation were in the 89(th) percentile of the bootstrapped distribution of monthly hospitalizations. Soil moisture and precipitation were the most highly weighted variables identified by multi-model inference and were included in the final model. A 1-standard deviation (SD) increase in average monthly soil moisture was associated with a 49% increase in hospitalizations; in the same model, a 1-SD increase in precipitation was associated with a 26% increase in hospitalizations. CONCLUSIONS: This analysis is the first to examine the effects of flooding on hospitalizations for Legionnaires’ disease in the United States using a range of flood-indicator variables and flood definitions. We found evidence that extreme and seasonal flooding is associated with increased hospitalizations; further research is required to mechanistically establish whether floodwaters contaminated with Legionella bacteria drive transmission.
We assess the effects of temperature on the risk of diarrhoea, one of the leading causes of mortality and morbidity among children under 5. Our analysis focuses on Sub-Saharan Africa, the continent where tem-peratures have been rising at twice the global rate and diarrhoea prevalence rates are highest. Drawing on child-level survey data and exploiting quasi-random variation in temperature realisations around the date of interview, we show that temperature strongly influences diarrhoea incidence as well as preva-lence of wasting (low weight-for-height ratios). Using binned regressions, we document that the effects are particularly strong in the temperature range 30-37.5 degrees C. We further find that access to improved san-itation and drinking water facilities mitigates these temperature-induces risks. This implies that building up such capacities is a particularly pressing issue in regions that will experience strong increases in tem-peratures and lack adequate access to sanitation and safe water. We use our estimates together with cli-mate projections to identify these areas.(c) 2022 The Author(s). Published by Elsevier Ltd.
In many suburban municipalities of developing countries, the household drinking water comes mainly from groundwater including, wells, streams and springs. These sources are vulnerable because poor hygienic conditions and sanitation prevail causing persistence and recurrent waterborne diseases. In this research, a survey study on water resource use and an epidemiological survey of waterborne diseases were conducted among users of water points and medical institutions in suburban communes of Selembao and Kimbanseke (Kinshasa, the Democratic Republic of the Congo). In addition, physicochemical (temperature, pH, O-2, electrical conductivity, and soluble ions: Na+, K+, PO43-, SO42-, NO3-, NO2-) and bacteriological (FIB: faecal indicator bacteria) analyses of water from 21 wells and springs were performed according to the seasonal variations. FIB included Escherichia coli (E. coli), Enterococcus and Total Coliforms. The survey results indicate that more than 75% of the patients admitted to local medical institutions between 2016 and 2019 are affected by waterborne diseases, including typhoid fever, amoebic dysentery, diarrhoea, gastroenteritis disorders and cholera. Except for NO3- in some sites, the water physicochemical parameter values are within WHO permissible limits for drinking/domestic water quality. On the contrary, the results revealed high FIB levels in water from unmanaged wells and springs during rainy and dry seasons. The microbiological pollution was significantly higher in the rainy season compared to the dry season. Interestingly, no FIB contamination was observed in water samples from managed/developed wells. The results from this study will guide local government decisions on improving water quality to prevent recurrent waterborne diseases.
Leptospirosis is a serious public health problem in Brazil, which can be observed after flooding events. Using an exploratory mixed clustering method, this ecological study analyzes whether spatial-temporal clustering patterns of leptospirosis occur in Brazil. Data from the Brazilian Unified Health System (SUS) were used to calculate the prevalence of leptospirosis between 2007 and 2017 in all counties of the country. Clustering techniques, including spatial association indicators, were used for analysis and evaluation of disease yearly spatial distribution. Based on Local Indicators of Spatial Association (LISA) with Empirical Bayesian rates detected spatial patterns of leptospirosis ranging from 0.137 (p = 0.001 in 2009) to 0.293 (p = 0.001 in 2008). Over the whole period, the rate was 0.388 (p = 0.001). The main pattern showed permanence of leptospirosis clusters in the South and emergence and permanence of such clusters in northern Brazil. The municipalities with leptospirosis cases and at least one flood occurrence registered in the Brazilian Integrated Disaster Information System were incorporated into the LISA cluster map with Empirical Bayesian rates. These counties were expected to exhibit clustering, not all did. The results of the cluster analysis suggest allocation of health resources in areas with leptospirosis clustering.
Groundwater is a vital drinking water resource and its protection from microbiological contamination is paramount to safeguard public health. The Republic of Ireland (RoI) is characterised by the highest incidence of verocytotoxigenic Escherichia coli (VTEC) enteritis in the European Union (EU), linked to high reliance on unregulated groundwater sources (~16% of the population). Yet, the spatio-temporal factors influencing the frequency and magnitude of microbial contamination remain largely unknown, with past studies typically constrained to spatio-temporally ‘limited’ sampling campaigns. Accordingly, the current investigation sought to analyse an extensive spatially distributed time-series (2011-2020) of groundwater monitoring data in the RoI. The dataset, compiled by the Environmental Protection Agency (EPA), showed ‘high’ contamination rates, with 66.7% (88/132) of supplies testing positive for E. coli, and 29.5% (39/132) exceeding concentrations of 10MPN/100 ml (i.e. gross contamination) at least once during the 10-year monitoring period. Seasonal decomposition analyses indicate that E. coli detection rates peak during late autumn/early winter, coinciding with increases in annual rainfall, while gross contamination peaks in spring (May) and late-summer (August), likely reflecting seasonal shifts in agricultural practices. Mixed effects logistic regression modelling indicates that monitoring sources located in karst limestone are statistically associated with E. coli presence (OR = 2.76, p = 0.03) and gross contamination (OR = 2.54, p = 0.037) when compared to poorly productive aquifers (i.e., transmissivity below 10m(2)/d). Moreover, 5-day and 30-day antecedent rainfall increased the likelihood of E. coli contamination (OR = 1.027, p < 0.001 and OR = 1.005, p = 0.016, respectively), with the former also being associated with gross contamination (OR = 1.042, p < 0.001). As such, it is inferred that preferential flow and direct ingress of surface runoff are the most likely ingress mechanisms associated with E. coli groundwater supply contamination. The results presented are expected to inform policy change around groundwater source protection and provide insight for the development of groundwater monitoring programmes in geologically heterogeneous regions.
BACKGROUND: Diarrhea remains a significant public health problem and poses a considerable financial burden on Ghana’s health insurance scheme. In order to prioritize district-level hotspots of diarrhea incidence for effective targeted interventions, it is important to understand the potential drivers of spatiotemporal patterns of diarrhea. We aimed to identify the spatiotemporal heterogeneity of diarrhea incidence in Ghana and explore how meteorological and socio-demographic factors influence the patterns. METHODS: We used monthly district-level clinically diagnosed diarrhea data between 2012 and 2018 obtained from the Centre for Health Information and Management of the Ghana Health Services. We utilized a hierarchical Bayesian spatiotemporal modeling framework to evaluate potential associations between district-level monthly diarrhea incidence and meteorological variables (mean temperature, diurnal temperature range, surface water presence) and socio-demographic factors (population density, Gini index, District League Table score) in Ghana. In addition, we investigated whether these associations were consistent across the four agro-ecological zones. RESULTS: There was considerable spatial heterogeneity in diarrhea patterns across the districts, with clusters of high diarrhea risk areas mostly found in the transition and savannah zones. The average monthly temporal patterns of diarrhea revealed a weak biannual seasonality with major and minor peaks in June and October, respectively, coinciding with the major and minor rainy seasons. We found a significant association between both meteorological and socio-demographic factors and diarrhea risk, but the strength and direction of associations differed across the four agro-ecological zones. Surface water presence demonstrated consistently positive, while diurnal temperature range and population density demonstrated consistently negative associations with diarrhea both overall and across the agro-ecological zones. CONCLUSIONS: Although overall diarrhea incidence is declining in Ghana, our results revealed high-risk districts that could benefit from district-specific tailored intervention strategies to improve control efforts. Ghana health sector policy-makers can use these results to assess the effectiveness of ongoing interventions at the district level and prioritize resource allocation for diarrhea control.
Leptospirosis is a globally important zoonotic disease. The disease is particularly important in tropical and subtropical countries. Infections in humans can be caused by exposure to infected animals or contaminated soil or water, which are suitable for Leptospira. To explore the cluster area, the Global Moran’s I index was calculated for incidences per 100,000 population at the province level during 2012-2018, using the monthly and annual data. The high-risk and low-risk provinces were identified using the local indicators of spatial association (LISA). The risk factors for leptospirosis were evaluated using a generalized linear mixed model (GLMM) with zero-inflation. We also added spatial and temporal correlation terms to take into account the spatial and temporal structures. The Global Moran’s I index showed significant positive values. It did not demonstrate a random distribution throughout the period of study. The high-risk provinces were almost all in the lower north-east and south parts of Thailand. For yearly reported cases, the significant risk factors from the final best-fitted model were population density, elevation, and primary rice crop arable areas. Interestingly, our study showed that leptospirosis cases were associated with large areas of rice production but were less prevalent in areas of high rice productivity. For monthly reported cases, the model using temperature range was found to be a better fit than using percentage of flooded area. The significant risk factors from the model using temperature range were temporal correlation, average soil moisture, normalized difference vegetation index, and temperature range. Temperature range, which has strongly negative correlation to percentage of flooded area was a significant risk factor for monthly data. Flood exposure controls should be used to reduce the risk of leptospirosis infection. These results could be used to develop a leptospirosis warning system to support public health organizations in Thailand.
BACKGROUND: The health effects of climate change have been found to be a global concern for the last 2 centuries. However, the effect of climate variability on diarrhoea among under-five-year-old children is perhaps undocumented or otherwise unknown. The aim of the present study was to determine the effect of climate variability on diarrhoea among children under 5 years of age. METHODS: A community-based longitudinal study was conducted over 8 repeated visits from June 2016 to May 2018 at the Kersa Demographic Surveillance and Health Research Center. A total of 500 randomly selected households and their 48 improved water sources were included in the survey from 3 agro-ecological zones, the rural and urban areas of the study area. Data was collected on household characteristics, diarrhoea, WASH practices, water quality and quantity in households, and improved water sources. A structured pre-tested questionnaire, an observational check list and laboratory tests were used for data collection. The data was entered into Epi Data Version 3.01 and transferred to Stata Version 12 for analysis. Multilevel mixed-effect Poisson regression was used to determine the relationship between predictors and outcome variables. A P-value of less than .05 was the cut-off point for statistically significant. RESULTS: The prevalence of diarrhoea in 2 weeks among children under 5 years of age was 17.2% (95% CI: 15.8-19.71). Rainfall, E. coli contamination of drinking water at the source and in the home, 20 L of water consumption per capita per day, sharing water sources with animals and home water treatment by residents of the mid- and lowlands were all predictors of diarrhoea. The space-time scan statistic confirmed that child diarrhoea had random variation in both space and time. CONCLUSION: Climate variability has influenced the prevalence of diarrhoea among under-five-year-old children. Climate-resilient measures should be taken to reduce the burden of diarrhoea in the community.
Leptospirosis is considered a neglected tropical disease despite its considerable mortality and morbidity. Lack of prediction remains a major reason for underestimating the disease. Although many models have been developed, most of them focused on the districts situated in the wet zone due to higher case numbers in that region. However, leptospirosis remains a major disease even in the dry zone of Sri Lanka. The objective of this study is to develop a time series model to predict leptospirosis in the Anuradhapura district situated in the dry zone of Sri Lanka. Time series data on monthly leptospirosis incidences from January 2008 to December 2018 and monthly rainfall, rainy days, temperature, and relative humidity were considered in model fitting. The first 72 months (55%) were used to fit the model, and the subsequent 60 months(45%) were used to validate the model. The log-transformed dependent variable was employed for fitting the Univariate seasonal ARIMA model. Based on the stationarity of the mean of the five variables, the ARDL model was selected as the multivariate time series technique. Residuals analysis was performed on normality, heteroskedasticity, and serial correlation to validate the model. The lowest AIC and MAPE were used to select the best model. Univariate models could not be fitted without adjusting the outliers. Adjusting seasonal outliers yielded better results than the models without adjustments. Best fitted Univariate model was ARIMA(1,0,0)(0,1,1)12,(AIC-1.08, MAPE-19.8). Best fitted ARDL model was ARDL(1, 3, 2, 1, 0),(AIC-2.04,MAPE-30.4). The number of patients reported in the previous month, rainfall, rainy days, and temperature showed a positive association, while relative humidity was negatively associated with leptospirosis. Multivariate models fitted better than univariate models for the original data. Best-fitted models indicate the necessity of including other explanatory variables such as patient, host, and epidemiological factors to yield better results.
This study highlights the profile of rural workers with schistosomiasis mansoni, an endemic disease acquired during their work activities in flooded areas in the Baixada Maranhense. In order to analyze the social security and labor legislation used to grant benefits and the causal link that establishes the relationship between the work situation and the onset of the disease, we performed a bibliographical research on the topic and a documentary research on the formal legal plan of social security. This study addresses the need to recognize this relationship in endemic regions in order to improve what is proposed by the List of Work-Related Diseases.
Although most studies of digenetic trematodes of the family Schistosomatidae dwell on representatives causing human schistosomiasis, the majority of the 130 identified species of schistosomes infect birds or non-human mammals. The cercariae of many of these species can cause swimmer’s itch when they penetrate human skin. Recent years have witnessed a dramatic increase in our understanding of schistosome diversity, now encompassing 17 genera with eight more lineages awaiting description. Collectively, schistosomes exploit 16 families of caenogastropod or heterobranch gastropod intermediate hosts. Basal lineages today are found in marine gastropods and birds, but subsequent diversification has largely taken place in freshwater, with some reversions to marine habitats. It seems increasingly likely that schistosomes have on two separate occasions colonized mammals. Swimmer’s itch is a complex zoonotic disease manifested through several different routes of transmission involving a diversity of different host species. Swimmer’s itch also exemplifies the value of adopting the One Health perspective in understanding disease transmission and abundance because the schistosomes involved have complex life cycles that interface with numerous species and abiotic components of their aquatic environments. Given the progress made in revealing their diversity and biology, and the wealth of questions posed by itch-causing schistosomes, they provide excellent models for implementation of long-term interdisciplinary studies focused on issues pertinent to disease ecology, the One Health paradigm, and the impacts of climate change, biological invasions and other environmental perturbations.
The deprived area of the Metzinger Valley in the city of Mahajanga has many healthcare concerns due to repeated flooding during the rainy season. Improving this health situation requires a better knowledge of the pathogens present in this area and of the risk factors favoring their propagation. The aim of this study was to analyze the relationship between the household socioeconomic status and the presence of parasites in the faeces of children between 1 and 10 years of age in order to determine the risk factors for intestinal parasitosis. The study included 746 children, of whom 30% were infected with parasites. Entamoeba coli, a good indicator of environmental fecal contamination, was the most prevalent parasite with an observation frequency of 16.7% followed by Giardia lamblia with a prevalence of 10%. For helminths, Trichuris and Ascaris were the most prevalent respectively 5.4% and 1.8%. A large heterogeneity in the prevalence of parasites was observed from one neighborhood to another. However, multivariate analysis showed that these differences were not related to environmental factors or household structure, but rather to the economic level of the family, the education level of the mother as well as the age of the child. For example, the prevalence of Giardia decreased from 23.5% to 8% for children of mothers with little education to those with higher education, respectively. For E. coli, the prevalence is higher among poor households and school-aged children. In the frame of IRCOD project, mothers are being sensitized to hygiene and risk factors for transmission by intestinal parasites and the present study proposes a multidimensional approach as an assessment tool.
The conservation of freshwater is of both global and national importance, and in the United States, agriculture is one of the largest consumers of this resource. Reduction of the strain farming puts on local surface or groundwater is vital for ensuring resilience in the face of climate change, and one possible option is to irrigate with a combination of freshwater and reclaimed water from municipal wastewater treatment facilities. However, this wastewater can contain pathogens that are harmful to human health, such as Legionella pneumophila, which is a bacterium that can survive aerosolization and airborne transportation and cause severe pneumonia when inhaled. To assess an individual adult’s risk of infection with L. pneumophila from a single exposure to agricultural spray irrigation, a quantitative microbial risk assessment was conducted for a scenario of spray irrigation in central Illinois, for the growing seasons in 2017, 2018, and 2019. The assessment found that the mean risk of infection for a single exposure exceeded the safety threshold of 10(-6) infections/exposure up to 1 km from a low-pressure irrigator and up to 2 km from a high-pressure irrigator, although no median risk exceeded the threshold for any distance or irrigator pressure. These findings suggest that spray irrigation with treated municipal wastewater could be a viable option for reducing freshwater consumption in Midwest farming, as long as irrigation on windy days is avoided and close proximity to the active irrigator is limited.
Climate change and natural disasters caused by hydrological, meteorological, and climatic causes have a significant and increasing direct and indirect impact on human health, leading to increased mortality and morbidity. Russia is a country that suffers from frequent climatic and weather disasters. This is mainly due to its vast territory, complex geographical and ecological environment, and widely varying climatic conditions. This review provides information on climatological and hydrological extremes in Russia in 2010-2020, floods and droughts, and their impact on the health and well-being of the country’s population. A literature search was conducted using electronic databases Web of Science, Pubmed, Science Direct, Scopus, and e-Library, focusing on peer-reviewed journal articles published in English and in Russian from 2010 to 2021. Four conceptual categories were used: “floods”, “droughts”, “human health”, and “Russia”. It is concluded that while most hazardous weather events cannot be completely avoided, many health impacts can potentially be prevented. The recommended measures include early warning systems and public health preparedness and response measures, building climate resilient health systems and other management structures.
The development of effective disinfection treatment processes is crucial to help the water industry cope with the inevitable challenges resulting from the increase in human population and climate change. Climate change leads to heavy rainfall, flooding and hot weather events that are associated with waterborne diseases. Developing effective treatment technologies will improve our resilience to cope with these events and our capacity to safeguard public health. A submerged hybrid reactor was used to test the efficiency of membrane filtration, direct photolysis (using ultraviolet-C low-pressure mercury lamps, as well as ultraviolet-C and ultraviolet-A light-emitting diodes panels) and the combination of both treatment processes (membrane filtration and photolysis) to retain and inactivate water quality indicator bacteria. The developed photocatalytic membranes effectively retained the target microorganisms that were then successfully inactivated by photolysis and advanced oxidation processes. The new hybrid reactor could be a promising approach to treat drinking water, recreational water and wastewater produced by different industries in small-scale systems. Furthermore, the results obtained with membranes coated with titanium dioxide and copper combined with ultraviolet-A light sources show that the process may be a promising approach to guarantee water disinfection using natural sunlight.
Inland recreational swimming sites provide significant social value globally. This study focused on public recreational swimming sites across the Murrumbidgee River and its tributaries in the Australian Capital Territory (ACT) throughout the swimming season (September-April) from 2009 to 2020 to determine whether high intestinal enterococci concentrations could be predicted with flow exceedance and routinely monitored physical and chemical parameters of water quality. Enterococci concentrations were positively correlated with the turbidity associated with high-flow conditions. The predictive accuracy of high enterococci levels during high-flow conditions was good (mean percentage correctly classified, 60%). The prediction of high enterococci levels at low flows was significantly less reliable (mean percentage correctly classified, 12-15%). As the ACT is expected to experience decreases in rainfall overall but increases in extreme rainfall events due to climate change, understanding the drivers of elevated intestinal enterococci under extreme flow conditions remains important from a public health perspective.
Swimming and other recreational water activities at public beaches are popular outdoor leisure activities among Canadians. However, these activities can lead to increased risks of acquiring acute gastrointestinal illness and other illnesses among beachgoers. Young children have much higher rates of exposure and illness than other age groups. These illnesses have a significant health and economic burden on society. Climate change is expected to influence both the risk of exposure and illness. A warming climate in Canada, including more severe summer heatwave events, will likely lead to increased recreational water use. Warmer temperatures will also contribute to the growth and increased range of harmful algal blooms and other climate-sensitive pathogens. Increased precipitation and heavy rainfall events will contribute to fecal and nutrient contamination of beach waters, increasing risks of gastrointestinal illness and harmful algal bloom events. There is a need to enhance recreational water research and surveillance in Canada to prepare for and adapt to these changing risks. Key research and policy needs are suggested and discussed, including evaluating and monitoring risks of recreational water illness in Canadian contexts, improving timely reporting of recreational water quality conditions, and enhancing approaches for routine beach water surveillance.
The south shore of O’ahu, Hawai’i is one of the most visited coastal tourism areas in the United States with some of the highest instances of recreational waterborne disease. A population of the pathogenic bacterium Vibrio vulnificus lives in the estuarine Ala Wai Canal in Honolulu which surrounds the heavily populated tourism center of Waikīkī. We developed a statistical model to predict V. vulnificus dynamics in this system using environmental measurements from moored oceanographic and atmospheric sensors in real time. During a year-long investigation, we analyzed water from 9 sampling events at 3 depths and 8 sites along the canal (n = 213) for 36 biogeochemical variables and V. vulnificus concentration using quantitative polymerase chain reaction (qPCR) of the hemolysin A gene (vvhA). The best multiple linear regression model of V. vulnificus concentration, explaining 80% of variation, included only six predictors: 5-day average rainfall preceding water sampling, daily maximum air temperature, water temperature, nitrate plus nitrite, and two metrics of humic dissolved organic matter (DOM). We show how real-time predictions of V. vulnificus concentration can be made using these models applied to the time series of water quality measurements from the Pacific Islands Ocean Observing System (PacIOOS) as well as the PacIOOS plume model based on the Waikīkī Regional Ocean Modeling System (ROMS) products. These applications highlight the importance of including DOM variables in predictive modeling of V. vulnificus and the influence of rain events in elevating nearshore concentrations of V. vulnificus. Long-term climate model projections of locally downscaled monthly rainfall and air temperature were used to predict an overall increase in V. vulnificus concentration of approximately 2- to 3-fold by 2100. Improving these predictive models of microbial populations is critical for management of waterborne pathogen risk exposure, particularly in the wake of a changing global climate.
BACKGROUND: Leptospirosis is an important public health problem affecting vulnerable urban slum populations in developing country settings. However, the complex interaction of meteorological factors driving the temporal trends of leptospirosis remain incompletely understood. METHODS AND FINDINGS: From March 1996-March 2010, we investigated the association between the weekly incidence of leptospirosis and meteorological anomalies in the city of Salvador, Brazil by using a dynamic generalized linear model that accounted for time lags, overall trend, and seasonal variation. Our model showed an increase of leptospirosis cases associated with higher than expected rainfall, lower than expected temperature and higher than expected humidity. There was a lag of one-to-two weeks between weekly values for significant meteorological variables and leptospirosis incidence. Independent of the season, a weekly cumulative rainfall anomaly of 20 mm increased the risk of leptospirosis by 12% compared to a week following the expected seasonal pattern. Finally, over the 14-year study period, the annual incidence of leptospirosis decreased significantly by a factor of 2.7 (8.3 versus 3.0 per 100,000 people), independently of variations in climate. CONCLUSIONS: Strategies to control leptospirosis should focus on avoiding contact with contaminated sources of Leptospira as well as on increasing awareness in the population and health professionals within the short time window after low-level or extreme high-level rainfall events. Increased leptospirosis incidence was restricted to one-to-two weeks after those events suggesting that infectious Leptospira survival may be limited to short time intervals.
Typhoid fever is a major cause of illness and mortality in low- and middle-income settings. We investigated the association of typhoid fever and rainfall in Blantyre, Malawi, where multi-drug-resistant typhoid has been transmitting since 2011. Peak rainfall preceded the peak in typhoid fever by approximately 15 weeks [95% confidence interval (CI) 13.3, 17.7], indicating no direct biological link. A quasi-Poisson generalised linear modelling framework was used to explore the relationship between rainfall and typhoid incidence at biologically plausible lags of 1-4 weeks. We found a protective effect of rainfall anomalies on typhoid fever, at a two-week lag (P = 0.006), where a 10 mm lower-than-expected rainfall anomaly was associated with up to a 16% reduction in cases (95% CI 7.6, 26.5). Extreme flooding events may cleanse the environment of S. Typhi, while unusually low rainfall may reduce exposure from sewage overflow. These results add to evidence that rainfall anomalies may play a role in the transmission of enteric pathogens, and can help direct future water and sanitation intervention strategies for the control of typhoid fever.
Dissolved organic matter (DOM) and microbes are key in the planetary carbon cycle, and research on them can lead to a better understanding of the global carbon cycle and an improved ability to cope with environmental challenges. Several papers have reviewed one or several aspects of the interaction of DOM and microbes, but no overall review has been performed. Here, we bibliometrically analyzed all publications from the Web of Science on DOM and microbes (1991-2020). The results showed that studies on DOM and microbes grew exponentially during this period; the USA contributed the most to the total publications, and China has had the fastest increasing rate since 2010. Moreover, we used the Latent Dirichlet Allocation model to identify topics and determine their (cold or hot) trends by analyzing the abstracts of 9851 publications related to DOM and microbes. A total of 96 topics were extracted, and these topics that are related to the source, composition, and removal path of DOM and the temporal-spatial patterns of DOM and microbes consistently rose from 1991 to 2020. Most studies have used accurate and rapid methods combined with microbiological genetic approaches to study the interaction of DOM and microbes in terrestrial and aquatic ecosystems. The results also showed that the impacts of climate change and land use on the interaction of DOM and microbes, and topics related to human health have received considerable attention. In the future, the interaction mechanism of DOM and microbes and its response to environmental change should be further elucidated.
Toxin-producing microalgae present a significant environmental risk for ecosystems and human societies when they reach concentrations that affect other aquatic organisms or human health. Harmful algal blooms (HAB) have been linked to mass wildlife die-offs and human food poisoning episodes, and climate change has the potential to alter the frequency, magnitude, and geographical extent of such events. Thus, a framework of species distribution models (SDMs), employing MaxEnt modeling, was used to project changes in habitat suitability and distribution of three key paralytic shellfish toxin (PST)-producing dinoflagellate species (i.e., Alexandrium catenella, A. minutum, and Gymnodinium catenatum), up to 2050 and 2100, across four representative concentration pathway scenarios (RCP-2.6, 4.5, 6.0, and 8.5; CMIP5). Despite slightly different responses at the regional level, the global habitat suitability has decreased for all the species, leading to an overall contraction in their tropical and sub-tropical ranges, while considerable expansions are projected in higher latitudes, particularly in the Northern Hemisphere, suggesting poleward distributional shifts. Such trends were exacerbated with increasing RCP severity. Yet, further research is required, with a greater assemblage of environmental predictors and improved occurrence datasets, to gain a more holistic understanding of the potential impacts of climate change on PST-producing species.
BACKGROUND: Enteric infections cause significant deaths, and global projection studies suggest that mortality from enteric infections will increase in the future with warmer climate. However, a major limitation of these projection studies is the use of risk estimates derived from nonmortality data to project excess enteric infection mortality associated with temperature because of the lack of studies that used actual deaths. OBJECTIVE: We quantified the associations of daily temperature with both mortality and hospital admissions due to enteric infections in the Philippines. These associations were applied to projections under various climate and population change scenarios. METHODS: We modeled nonlinear temperature associations of mortality and hospital admissions due to enteric infections in 17 administrative regions of the Philippines using a two-stage time-series approach. First, we quantified nonlinear temperature associations of enteric infections by fitting generalized linear models with distributed lag nonlinear models. Second, we combined regional estimates using a meta-regression model. We projected the excess future enteric infections due to nonoptimal temperatures using regional temperature-enteric infection associations under various combinations of climate change scenarios according to representative concentration pathways (RCPs) and population change scenarios according to shared socioeconomic pathways (SSPs) for 2010-2099. RESULTS: Regional estimates for mortality and hospital admissions were significantly heterogeneous and had varying shapes in association with temperature. Generally, mortality risks were greater in high temperatures, whereas hospital admission risks were greater in low temperatures. Temperature-attributable excess deaths in 2090-2099 were projected to increase over 2010-2019 by as little as 1.3% [95% empirical confidence intervals (eCI): – 3.1%, 6.5%] under a low greenhouse gas emission scenario (RCP 2.6) or as much as 25.5% (95% eCI: – 3.5%, 48.2%) under a high greenhouse gas emission scenario (RCP 8.5). A moderate increase was projected for temperature-attributable excess hospital admissions, from 0.02% (95% eCI: – 2.0%, 1.9%) under RCP 2.6 to 5.2% (95% eCI: – 12.7%, 21.8%) under RCP 8.5 in the same period. High temperature-attributable deaths and hospital admissions due to enteric infections may occur under scenarios with high population growth in 2090-2099. DISCUSSION: In the Philippines, futures with hotter temperatures and high population growth may lead to a greater increase in temperature-related excess deaths than hospital admissions due to enteric infections. Our results highlight the need to strengthen existing primary health care interventions for diarrhea and support health adaptation policies to help reduce future enteric infections. https://doi.org/10.1289/EHP9324.
Global ocean warming results in an increase of infectious diseases including an elevated emergence of Vibrio spp. in Northern Europe. The European Centre for Disease Prevention and Control reported annual periods of high to very high risks of infection with Vibrio spp. during summer months along the North Sea and Baltic Sea coasts. Based on those facts, the risk of Vibrio infections associated with recreational bathing in European coastal waters increases. To obtain an overview of the seasonal and spatial distribution of potentially human pathogenic Vibrio spp. at German coasts, this study monitored V. cholerae, V. parahaemolyticus, and V. vulnificus at seven recreational bathing areas from 2017 to 2018, including the heat wave event in summer 2018. The study shows that all three Vibrio species occurred in water and sediment samples at all sampling sites. Temperature was shown to be the main driving factor of Vibrio abundance, whereas Vibrio community composition was mainly modulated by salinity. A species-specific rapid increase was observed at water temperatures above 10°C, reaching the highest detection numbers during the heat wave event with abundances of 4.5 log10 CFU+1/100 ml of seawater and 6.5 log10 CFU+1/100 g of sediment. Due to salinity, the dominant Vibrio species found in North Sea samples was V. parahaemolyticus, whereas V. vulnificus was predominantly detected in Baltic Sea samples. Most detections of V. cholerae were associated with estuarine samples from both seas. Vibrio spp. concentrations in sediments were up to three log higher compared to water samples, indicating that sediments are an important habitat for Vibrio spp. to persist in the environment. Antibiotic resistances were found against beta-lactam antibiotics (ampicillin 31%, cefazolin 36%, and oxacillin and penicillin 100%) and trimethoprim-sulfamethoxazole (45%). Moreover, isolates harboring pathogenicity-associated genes such as trh for V. parahaemolyticus as well as vcg, cap/wcv, and the 16S rRNA-type B variant for V. vulnificus were detected. All sampled V. cholerae isolates were identified as non-toxigenic non-O1/non-O139 serotypes. To sum up, increasing water temperatures at German North Sea and Baltic Sea coasts provoke elevated Vibrio numbers and encourage human recreational water activities, resulting in increased exposure rates. Owing to a moderate Baltic Sea salinity, the risk of V. vulnificus infections is of particular concern.
BACKGROUND: Climate change is expected to exacerbate diarrhoea outbreaks across the developing world, most notably in Sub-Saharan countries such as South Africa. In South Africa, diseases related to diarrhoea outbreak is a leading cause of morbidity and mortality. In this study, we modelled the impacts of climate change on diarrhoea with various machine learning (ML) methods to predict daily outbreak of diarrhoea cases in nine South African provinces. METHODS: We applied two deep Learning DL techniques, Convolutional Neural Networks (CNNs) and Long-Short term Memory Networks (LSTMs); and a Support Vector Machine (SVM) to predict daily diarrhoea cases over the different South African provinces by incorporating climate information. Generative Adversarial Networks (GANs) was used to generate synthetic data which was used to augment the available data-set. Furthermore, Relevance Estimation and Value Calibration (REVAC) was used to tune the parameters of the ML methods to optimize the accuracy of their predictions. Sensitivity analysis was also performed to investigate the contribution of the different climate factors to the diarrhoea prediction method. RESULTS: Our results showed that all three ML methods were appropriate for predicting daily diarrhoea cases with respect to the selected climate variables in each South African province. However, the level of accuracy for each method varied across different experiments, with the deep learning methods outperforming the SVM method. Among the deep learning techniques, the CNN method performed best when only real-world data-set was used, while the LSTM method outperformed the other methods when the real-world data-set was augmented with synthetic data. Across the provinces, the accuracy of all three ML methods improved by at least 30 percent when data augmentation was implemented. In addition, REVAC improved the accuracy of the CNN method by about 2.5% in each province. Our parameter sensitivity analysis revealed that the most influential climate variables to be considered when predicting outbreak of diarrhoea in South Africa were precipitation, humidity, evaporation and temperature conditions. CONCLUSIONS: Overall, experiments indicated that the prediction capacity of our DL methods (Convolutional Neural Networks) was found to be superior (with statistical significance) in terms of prediction accuracy across most provinces. This study’s results have important implications for the development of automated early warning systems for diarrhoea (and related disease) outbreaks across the globe.
Leptospirosis, the infectious disease caused by a spirochete bacteria, is a major public health problem worldwide. In Argentina, some regions have climatic and geographical characteristics that favor the habitat of bacteria of the Leptospira genus, whose survival strongly depends on climatic factors, enhanced by climate change, which increase the problems associated with people’s health. In order to have a method to predict leptospirosis cases, in this paper, five time series forecasting methods are compared: two parametric (autoregressive integrated moving average and an alternative one that allows covariates, ARIMA and ARIMAX, respectively), two nonparametric (Nadaraya-Watson Kernel estimator, one and two kernels versions, NW-1 K and NW-2 K), and one semiparametric (semi-functional partial linear regression, SFPLR) method. For this, the number of cases of leptospirosis registered from 2009 to 2020 in three important cities of northeastern Argentina is used, as well as hydroclimatic covariates related to the presence of cases. According to the obtained results, there is no method that improves considerably the rest and can be recommended as a unique tool for leptospirosis prediction. However, in general, the NW-2 K method gets a better performance. This work, in addition to using a long-term high-quality time series, enriches the area of applications of statistical models to epidemiological leptospirosis data by the incorporation of hydroclimatic variables, and it is recommended directing further efforts in this line of research, under the context of current climate change.
Dysentery is a water- and food-borne infectious disease and its incidence is sensitive to climate change. Although the impact of climate change on dysentery is being studied in specific areas, a study in Iran is lacking. In this study, RCP 4.5 and RCP 8.5 scenarios were used to predict the prevalence of dysentery in Iran between 2050 and 2070. This study is a secondary analysis using Geographically Weighted Regression, and 273 cities of Iran were analyzed between March 2011 and March 2017. Bioclimate variables were used as independent variables. Ecological data about the prevalence and incidence of dysentery, which were collected between 2011 and 2017, were used as the dependent variables. The result shows the incidence of dysentery is significantly associated with bioclimate change exposure, in 2050 and 2070, based on RCP 4.5 and RCP 8.5. Our findings showed that in the absence of adaptation of the population, an increase in the risk of bioclimate-related diseases is expected by around 95.6% in the mid-century compared with the beginning of the century with regional variations. Based on these findings, the geographical distribution of the disease will also change. In 2050, the pattern of disease distribution would be changed, and the north of Iran will be included in the vulnerable regions. In 2070, the southeastern and northern parts of Iran will have the most vulnerability to climate change. Our study contributes important knowledge to this perspective by providing insightful findings and pieces of evidence for climate change adaptation and mitigation.
Feco-orally transmitted infectious diseases are common in Nigeria where the potable water access is poor. In the south-western Nigerian Ibadan metropolis, supply of municipal water is meagre as residents depend on household wells and boreholes. The likelihood of fecal contamination of household water sources in Ibadan was examined longitudinally to quantify and understand its impact. Well and borehole water samples aseptically collected from 96 households in Ibadan were assessed for total heterotrophic counts (THCs), total coliform counts (TCCs) and total Escherichia coli counts (TECs) using a pour plate technique. E. coli were identified by uidA and whole-genome sequencing using Illumina technology, whereas virulence factors were predicted using VirulenceFinder. There was season-independent abundance of THC and TCC in the well and borehole with a significant recovery of E. coli in the wells during the wet season compared to the dry season (P = 0.0001). Virulence genes associated with pathogenic E. coli were identified in 13 (52%) strains with one E. coli each classified as extra-intestinal E. coli, avian pathogenic E. coli and enteroaggregative E. coli. High heterotrophic and coliform counts, with rainfall-driven E. coli contamination revealed that the water sources evaluated in this study are unfit for consumption.
Poor rural water quality is a health challenge in Fiji. A mixed-methods study in six iTaukei (Indigenous Fijian) villages was conducted to understand local perceptions of drinking water access and quality, how this changes drinking water source choices, and impacts of age and gender. Seventy-two household surveys, 30 key informant interviews (KIIs) and 12 focus group discussions (FGDs) were conducted. Household surveys revealed 41.7% of community members perceived their water as dirty and 76.4% perceived their water as clean. Two-thirds of households reported that they always or usually had enough water. FGDs and KIIs revealed water access and quality was influenced by population size, seasonality, and rainfall. Perceptions of water quality caused villages to shift to alternative water sources. Alignment of the qualitative and quantitative data identified four themes: sources and infrastructure, access, quality and contamination. There was mixed alignment of perceptions between access and quality between the household surveys, and KIIs and FGDs with partial agreement sources and infrastructure, and quality. Gender was found to influence perceptions of dirty water, contamination, and supply and demand. Perceptions of water quality and access shape decisions and choices for water sources and can be used to inform resilience and inclusive water strategies.
INTRODUCTION: Cholera remains a significant public health threat for many countries, and the severity largely varies by the population and local conditions that drive disease spread, especially in endemic areas prone to natural disasters and flooding. Epidemiological models can provide useful information to military planners for understanding disease spread within populations and the effectiveness of response options for preventing the transmission among deployed and stationed personnel. This study demonstrates the use of epidemiological modeling to understand the dynamics of cholera transmission to inform emergency planning and military preparedness in areas with highly communicable diseases. MATERIALS AND METHODS: Areas with higher probability for a potential cholera outbreak in Haiti followed by a natural disaster were identified. The hotspots were then used to seed an extended compartmental model, EpiGrid, to simulate notional spread scenarios of cholera originating in three distinct areas in Haiti. Disease parameters were derived from the 2010 cholera outbreak in Haiti, and disease spread was simulated over a 12-week period under uncontrolled and controlled spread. RESULTS: For each model location, scenarios of mitigated (intervention with 30% transmission reduction via international aid) and unmitigated (without intervention) are simulated. The results depict the geographical spread and estimate the cumulative cholera infection for each notional scenario over the course of 3 months. Disease transmission differs considerably across origin site with an outbreak originating in the department of Nippes spanning the largest geographic area and resulting in the largest number of cumulative cases after 12 weeks under unmitigated (79,518 cases) and mitigated (35,667 cases) spread scenarios. CONCLUSIONS: We modeled the notional re-emergence and spread of cholera following the August 2021 earthquake in Haiti while in the midst of the global COVID-19 pandemic. This information can help guide military and emergency response decision-making during an infectious disease outbreak and considerations for protecting military personnel in the midst of a humanitarian response. Military planners should consider the use of epidemiological models to assess the health risk posed to deployed and stationed personnel in high-risk areas.
Private wells can become contaminated with waterborne pathogens during flooding events; however, testing efforts focus almost exclusively on fecal indicator bacteria. Opportunistic pathogens (OPs), which are the leading cause of identified waterborne disease in the United States, are understudied in private wells. We conducted a quantitative polymerase chain reaction survey of Legionella spp., L. pneumophila, Mycobacterium spp., M. avium, Naegleria fowleri, and shiga toxin-producing Escherichia coli gene markers and total coliform and E. coli in drinking water supplied by private wells following the Louisiana Floods (2016), Hurricane Harvey (2017), Hurricane Irma (2017), and Hurricane Florence (2018). Self-reported well characteristics and recovery status were collected via questionnaires. Of the 211 water samples collected, 40.3% and 5.2% were positive for total coliform and E. coli, which were slightly elevated positivity rates compared to prior work in coastal aquifers. DNA markers for Legionella and Mycobacterium were detected in 54.5% and 36.5% of samples, with L. pneumophila and M. avium detected in 15.6% and 17.1%, which was a similar positivity rate relative to municipal system surveys. Total bacterial 16S rRNA gene copies were positively associated with Legionella and Mycobacterium, indicating that conditions that favor occurrence of general bacteria can also favor OPs. N. fowleri DNA was detected in 6.6% of samples and was the only OP that was more prevalent in submerged wells compared to non-submerged wells. Self-reported well characteristics were not associated with OP occurrence. This study exposes the value of routine baseline monitoring and timely sampling after flooding events in order to effectively assess well water contamination risks.
BACKGROUND: Temperature and precipitation are known to affect Vibrio cholerae outbreaks. Despite this, the impact of drought on outbreaks has been largely understudied. Africa is both drought and cholera prone and more research is needed in Africa to understand cholera dynamics in relation to drought. METHODS: Here, we analyse a range of environmental and socioeconomic covariates and fit generalised linear models to publicly available national data, to test for associations with several indices of drought and make cholera outbreak projections to 2070 under three scenarios of global change, reflecting varying trajectories of CO(2) emissions, socio-economic development, and population growth. RESULTS: The best-fit model implies that drought is a significant risk factor for African cholera outbreaks, alongside positive effects of population, temperature and poverty and a negative effect of freshwater withdrawal. The projections show that following stringent emissions pathways and expanding sustainable development may reduce cholera outbreak occurrence in Africa, although these changes were spatially heterogeneous. CONCLUSIONS: Despite an effect of drought in explaining recent cholera outbreaks, future projections highlighted the potential for sustainable development gains to offset drought-related impacts on cholera risk. Future work should build on this research investigating the impacts of drought on cholera on a finer spatial scale and potential non-linear relationships, especially in high-burden countries which saw little cholera change in the scenario analysis.
Chronic seasonal crop and livestock loss due to heat stress and rainfall shortages can pose a serious threat to human health, especially in Sub-Saharan Africa where subsistence and small-scale farming dominate. Young children are particularly susceptible to undernutrition when households experience food insecurity because nutritional deficiencies affect their growth and development. The increase in the frequency of extreme climate events, including droughts, can potentially pose serious health impacts on children. However, the evidence is inconclusive and rather limited to small-scale local contexts. Furthermore, little is known about the differential impacts of droughts on the health of population subgroups. This study contributes to the literature by using data from three nationwide Demographic and Health Surveys (DHS) for Ethiopia conducted in 2005, 2011 and 2016 (n = 21,551). Undernutrition, measured as stunting and wasting among children under five, is used as a health indicator. Droughts are identified using the Standardized Precipitation Evapotranspiration Index (SPEI), a multi-scalar drought index. This study found that drought exposure during the main agricultural season (meher) increased the risk of both chronic undernutrition (stunting) and acute undernutrition (wasting) among under-five children in Ethiopia, however, the impacts vary with population subgroups. Boys, children born to uneducated mothers, and those living in the rural area and whose households are engaged in agricultural activities were more likely to be affected. This suggests that nutritional intervention should target these particularly vulnerable groups of the population. (C) 2021 Elsevier Ltd. All rights reserved.
A healthy and a dignified life experience requires adequate water, sanitation, and hygiene (WaSH) coverage. However, inadequate WaSH resources remain a significant public health challenge in many communities in Southern Africa. A systematic search of peer-reviewed Researchs from 2010 -May 2022 was undertaken on Medline, PubMed, EbscoHost and Google Scholar from 2010 to May 2022 was searched using combinations of predefined search terms with Boolean operators. Eighteen peer-reviewed articles from Southern Africa satisfied the inclusion criteria for this review. The general themes that emerged for both barriers and facilitators included geographical inequalities, climate change, investment in WaSH resources, low levels of knowledge on water borne-diseases and ineffective local community engagement. Key facilitators to improved WaSH practices included improved WaSH infrastructure, effective local community engagement, increased latrine ownership by individual households and the development of social capital. Water and sanitation are critical to ensuring a healthy lifestyle. However, many people and communities in Southern Africa still lack access to safe water and improved sanitation facilities. Rural areas are the most affected by barriers to improved WaSH facilities due to lack of WaSH infrastructure compared to urban settings. Our review has shown that, the current WaSH conditions in Southern Africa do not equate to the improved WaSH standards described in SDG 6 on ensuring access to water and sanitation for all. Key barriers to improved WaSH practices identified include rurality, climate change, low investments in WaSH infrastructure, inadequate knowledge on water-borne illnesses and lack of community engagement.
Flooding is the most frequent natural hazard globally, but evidence of its impact on domestic water point contamination remains limited. This study aimed to assess dam-related flooding’s impact on microbiological contamination of rural water points and to evaluate agreement of satellite-derived flood maps with ground-based observations of water point flooding. Fieldwork took place in two Ghanaian districts frequently flooded following dam overspill. Fifty-seven water points were tested for bacterial parameters during and immediately after flooding. Forty water points were resampled in the dry season, with the remainder having run dry. Ground-based observations of flooding were compared with three satellite-derived flood maps. Boreholes were less contaminated than wells or surface waters (geometric mean E. coli = 20.2, 175.6, and 590.7 cfu/100 ml, respectively). Among groundwater points, a Wilcoxon signed-rank test indicated significantly greater median E. coli and thermotolerant coliform contamination during flooding (p = 0.025 and p < 0.001, respectively), but Shigella, salmonella, and intestinal enterococci counts were not significantly different between seasons. In contrast, among surface water points, E. coli, Shigella, and Salmonella counts were significantly greater in dry season samples (p < 0.005 for all parameters), possibly reflecting a "concentration" effect. Satellite-derived flood maps had no or low agreement with ground-based observations of water point flooding. Although groundwater quality deteriorated during and after flooding, surface waters were the most microbiologically contaminated in both seasons. The greatest public health risk thus occurred where households switched to surface water collection during or following flood season. Flood risk should be assessed before borehole installation and existing flood-prone boreholes remediated to mitigate population exposure to contaminated water.
Floods affect the human security conditions of floodplain residents. The aim of this paper is to explore how residents of the Tana River Delta in Kenya become flood insecure. This paper utilises assemblage theory, particularly the principles of rhizomatic multiplicity to explain the concept of becoming flood insecure. It combines these rhizomatic multiplicity principles with disruptions to the pillars of human security which are becoming afraid, becoming wanting and becoming undignified and their composite conditions of human insecurity to create an analytical framework with which to understand becoming flood insecure. The study sources its data from Focus Group Discussions in 10 sampled villages in the Tana River Delta. The results reveal that becoming flood insecure is a rhizomatic multiplicity and that the pillars and conditions of human security that comprise it are heterogenous and interconnected. The results reveal the conditions of human insecurity in the Tana River Delta as personal, food, water, fuel, housing, health, environment, and political. They also reveal that while children become more flood insecure, they are also the most adaptive. Additionally, the results show that there are transitory conditions of human insecurity, food, housing health, to which people attempt to find local solutions and redundant conditions of human insecurity, political, health, water, personal and environment, to which people cannot find local solutions and public action is required.
Leptospirosis is a waterborne zoonosis (60,000 infections and 1 million deaths annually). Knowledge about the disease in the urban context is surprisingly rare, especially in Africa. Here, we provide the first study of leptospires in waters within an African city. A simple centrifugation-based method was developed to screen waterborne leptospires from remote or poorly areas. Major ions, trace elements, stable isotopes and pathogenic Leptospira were then seasonally investigated in 193 water samples from three neighborhoods of Cotonou (Benin) with different socio-environmental and hydrographic characteristics. Firstly, no leptospire was detected in tap waters. Secondly, although surface contamination cannot be excluded, one groundwater well was found leptospire positive. Thirdly, pathogenic Leptospira mainly contaminated surface waters of temporary and permanent ponds (9.5% and 27.3% of total prevalence, respectively). Isotopic signatures suggest that leptospires occurred in pond waters formed at the beginning of the rainy season following low to moderate rainfall events. Nevertheless, Leptospira-containing waters possess physico-chemical characteristics that are similar to the spectrum of waters sampled throughout the three sites, thus suggesting that Cotonou waters are widely compatible with Leptospira survival. The frequent contact with water exposes Cotonou inhabitants to the risk of leptospirosis which deserves more attention from public health authorities.
BACKGROUND: Floods are the most frequently occurring natural disaster and constitute a significant public health risk. Several operational satellite-based flood detection systems quantify flooding extent, but it is unclear how far the choice of satellite-based flood product affects the findings of epidemiological studies of associated public health risks. Few studies of flooding’s health impacts have used mixed methods to enrich understanding of these impacts. This study therefore aims to evaluate the relationship between two satellite-derived flood products with outpatient attendance and diarrhoeal disease in northern Ghana, identifying plausible reasons for observed relationships via qualitative interviews. METHODS: A convergent parallel mixed methods design combined an ecological time series with focus group discussions and key informant interviews. Through an ecological time series component, monthly outpatient attendance and diarrhoea case counts from health facilities in two flood-prone districts for 2016-2020 were integrated with monthly flooding map layers classified via the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite sensors. The relationship between reported diarrhoea and outpatient attendance with flooding was examined using Poisson regression, controlling for seasonality and facility catchment population. Four focus group discussions with affected community members and four key informant interviews with health professionals explored flooding’s impact on healthcare delivery and access. RESULTS: Flooding detected via Landsat better predicted outpatient attendance and diarrhoea than flooding via MODIS. Outpatient attendance significantly reduced as LandSat-derived flood area per facility catchment increased (adjusted Incidence Rate Ratio = 0.78, 95% CI: 0.61-0.99, p < 0.05), whilst reported diarrhoea significantly increased with flood area per facility catchment (adjusted Incidence Rate Ratio = 4.27, 95% CI: 2.74-6.63, p < 0.001). Key informants noted how flooding affected access to health services as patients and health professionals could not reach the health facility and emergency referrals were unable to travel. CONCLUSIONS: The significant reduction in outpatient attendance during flooding suggests that flooding impairs healthcare delivery. The relationship is sensitive to the choice of satellite-derived flood product, so future studies should consider integrating multiple sources of satellite imagery for more robust exposure assessment. Health teams and communities should plan spatially targeted flood mitigation and health system adaptation strategies that explicitly address population and workforce mobility issues.
Climate change threatens the health and well-being of populations. We conducted a risk assessment of two climate-related variables (i.e., temperature and rainfall) and associated water, sanitation and hygiene (WASH)-related exposures and vulnerabilities for people living in Mopani District, Limpopo province, South Africa. Primary and secondary data were applied in a qualitative and quantitative assessment to generate classifications of risk (i.e., low, medium, or high) for components of hazard/threat, human exposure, and human vulnerability. Climate-related threats were likely to impact human health due to the relatively high risk of waterborne diseases and WASH-associated pathogens. Vulnerabilities that increased the susceptibility of the population to these adverse outcomes included environmental, human, physical infrastructure, and political and institutional elements. People of low socio-economic status were found to be least likely to cope with changes in these hazards. By identifying and assessing the risk to sanitation services and water supply, evidence exists to inform actions of government and WASH sector partners. This evidence should also be used to guide disaster risk reduction, and climate change and human health adaptation planning.
This longitudinal flood-relief study assessed the impact of the March 2019 Cyclone Idai flood event on E. coli contamination of hand-pumped boreholes in Mulanje District, Malawi. It established the microbiological water-quality safety of 279 community supplies over three phases, each comprising water-quality survey, rehabilitation and treatment verification monitoring. Phase 1 contamination three months after Idai was moderate, but likely underestimated. Increased contamination in Phase 2 at 9 months and even greater in Phase 3, a year after Idai was surprising and concerning, with 40% of supplies then registering E. coli contamination and 20% of supplies deemed ‘unsafe’. Without donor support for follow-up interventions, this would have been missed by a typical single-phase flood-relief activity. Contamination rebound at boreholes successfully treated months earlier signifies a systemic problem from persistent sources intensified by groundwater levels likely at a decade high. Problem extent in normal, or drier years is unknown due to absence of routine monitoring of water point E. coli in Malawi. Statistical analysis was not conclusive, but was indicative of damaged borehole infrastructure and increased near-borehole pit-latrine numbers being influential. Spatial analysis including groundwater flow-field definition (an overlooked sector opportunity) revealed ‘hit-and-miss’ contamination of safe and unsafe boreholes in proximity. Hydrogeological control was shown by increased contamination near flood-affected area and in more recent recharge groundwater otherwise of good quality. Pit latrines are presented as credible e-coli sources in a conceptual model accounting for heterogeneous borehole contamination, wet season influence and rebound behavior. Critical to establish are groundwater level – flow direction, hand-pump plume draw, multiple footprint latrine sources – ‘skinny’ plumes, borehole short-circuiting and fast natural pathway (e.g. fracture flow) and other source influences. Concerted WASH (Water, Sanitation and Hygiene) sector investment in research and policy driving national water point based E. coli monitoring programs are advocated.
BACKGROUND: Malaria epidemics are a well-described phenomenon after extreme precipitation and flooding, which account for nearly half of global disasters over the past two decades. Yet few studies have examined mitigation measures to prevent post-flood malaria epidemics. METHODS: We conducted an evaluation of a malaria chemoprevention program implemented in response to severe flooding in western Uganda. Children ≤12 years of age from one village were eligible to receive 3 monthly rounds of dihydroartemisinin-piperaquine (DP). Two neighboring villages served as controls. Malaria cases were defined as individuals with a positive rapid diagnostic test result as recorded in health center registers. We performed a difference-in-differences analysis to estimate changes in the incidence and test positivity of malaria between intervention and control villages. RESULTS: A total of 554 children received at least one round of chemoprevention with 75% participating in at least two rounds. Compared to control villages, we estimated a 53.4% reduction (aRR 0.47, 95% CI 0.34 – 0.62, p<.01) in malaria incidence and a 30% decrease in the test positivity rate (aRR=0.70, CI 0.50 - 0.97, p=0.03) in the intervention village in the six months post-intervention. The impact was greatest among children receiving the intervention, but decreased incidence was also observed in older children and adults (aRR=0.57, CI 0.38-0.84, p<.01). CONCLUSIONS: Three rounds of chemoprevention with DP delivered under pragmatic conditions reduced the incidence of malaria after severe flooding in western Uganda. These findings provide a proof-of-concept for the use of malaria chemoprevention to reduce excess disease burden associated with severe flooding.
Climate changes in the eastern part of Sahelian regions will induce an increase in rainfalls and extreme climate events. In this area, due to the intense events and floods, malaria transmission, a climate sensitive disease, is thus slowly extending in time to the drought season and in areas close to the border of the desert. Vectors can as well modify their area of breeding. Control programs must be aware of these changes to adapt their strategies.
In this article we draw on an interdisciplinary study on drinking water quality in Maputo, the capital of Mozambique, to examine the nature, scale, and politics of waterborne diseases. We show how water contamination and related diseases are discursively framed as household risks, thereby concealing the politics of uneven exposure to contaminated water and placing the burden of being healthy on individuals. In contrast, we propose that uneven geographies of waterborne diseases are best understood as the product of Maputo’s urban metabolism, in which attempts at being sanitary and healthy are caught up in relations of power, class, and variegated citizenship. Waterborne diseases are the result of complex and fragmented circulations and intersections of (waste)waters, generated by uneven urban development, heterogeneous infrastructure configurations, and everyday practices to cope with basic service deficits, in conjunction with increasing climatic variability. The latrine-from which ultimately contamination and diseases spread-is an outcome of these processes, rather than the site to be blamed. This article also advances an interdisciplinary framework for analyzing urban metabolism and deepening its explanatory potential. It serves as a demonstration of how interdisciplinary approaches might be taken forward to generate new readings of more-than-human metabolic processes at distinct temporal and spatial scales.
Africa has historically seen several periods of prolonged and extreme droughts across the continent, causing food insecurity, exacerbating social inequity and frequent mortality. A known consequence of droughts and their associated risk factors are infectious disease outbreaks, which are worsened by malnutrition, poor access to water, sanitation and hygiene and population displacement. Cholera is a potential causative agent of such outbreaks. Africa has the highest global cholera burden, several drought-prone regions and high levels of inequity. Despite this, research on cholera and drought in Africa is lacking. Here, we review available research on drought-related cholera outbreaks in Africa and identify a variety of potential mechanisms through which these outbreaks occurred, including poor access to water, marginalization of refugees and nomadic populations, expansion of informal urban settlements and demographic risks. Future climate change may alter precipitation, temperature and drought patterns, resulting in more extremes, although these changes are likely to be spatially heterogeneous. Despite high uncertainty in future drought projections, increases in drought frequency and/or durations have the potential to alter these related outbreaks into the future, potentially increasing cholera burden in the absence of countermeasures (e.g. improved sanitation infrastructure). To enable effective planning for a potentially more drought-prone Africa, inequity must be addressed, research on the health implications of drought should be enhanced, and better drought diplomacy is required to improve drought resilience under climate change.
In 2017, diarrheal diseases were responsible for 606 024 deaths in Sub-Saharan Africa. This situation is due to domestic and recreational use of polluted surface waters, deficits in hygiene, access to healthcare and drinking water, and to weak environmental and health monitoring infrastructures. Escherichia coli (E. coli) is an indicator for the enteric pathogens that cause many diarrheal diseases. The links between E. coli, diarrheal diseases and environmental parameters have not received much attention in West Africa, and few studies have assessed health risks by taking into account hazards and socio-health vulnerabilities. This case study, carried out in Burkina Faso (Bagre Reservoir), aims at filling this knowledge gap by analyzing the environmental variables that play a role in the dynamics of E. coli, cases of diarrhea, and by identifying initial vulnerability criteria. A particular focus is given to satellite-derived parameters to assess whether remote sensing can provide a useful tool to assess the health hazard. Samples of surface water were routinely collected to measure E. coli, enterococci and suspended particulate matter (SPM) at a monitoring point (Kapore) during one year. In addition, satellite data were used to estimate precipitation, water level, Normalized Difference Vegetation Index (NDVI) and SPM. Monthly epidemiological data for cases of diarrhea from three health centers were also collected and compared with microbiological and environmental data. Finally, semi-structured interviews were carried out to document the use of water resources, contact with elements of the hydrographic network, health behavior and condition, and water and health policy and prevention, in order to identify the initial vulnerability criteria. A positive correlation between E. coli and enterococci in surface waters was found indicating that E. coli is an acceptable indicator of fecal contamination in this region. E. coli and diarrheal diseases were strongly correlated with monsoonal precipitation, in situ SPM, and Near Infra-Red (NIR) band between March and November. Partial least squares regression showed that E. coli concentration was strongly associated with precipitation, Sentinel-2 reflectance in the NIR and SPM, and that the cases of diarrhea were strongly associated with precipitation, NIR, E. coli, SPM, and to a lesser extent with NDVI. Moreover, E. coli dynamics were reproduced using satellite data alone, particularly from February to mid-December (R2 = 0.60) as were cases of diarrhea throughout the year (R2 = 0.76). This implies that satellite data could provide an important contribution to water quality monitoring. Finally, the vulnerability of the population was found to increase during the rainy season due to reduced accessibility to healthcare and drinking water sources and increased use of water of poor quality. During this period, surface water is used because it is close to habitations, easy to use and free from monetary or political constraints. This vulnerability is aggravated by marginality and particularly affects the Fulani, whose concessions are often close to surface water (river, lake) and far from health centers.
Non-typhoidal Salmonella (NTS) ranks first among causes of bloodstream infection in children under five years old in the Democratic Republic of Congo and has a case fatality rate of 15%. Main host-associated risk factors are Plasmodium falciparum malaria, anemia and malnutrition. NTS transmission in sub-Saharan Africa is poorly understood. NTS bloodstream infections mostly occur during the rainy season, which may reflect seasonal variation in either environmental transmission or host susceptibility. We hypothesized that environment- and host-associated factors contribute independently to the seasonal variation in NTS bloodstream infections in children under five years old admitted to Kisantu referral hospital in 2013-2019. We used remotely sensed rainfall and temperature data as proxies for environmental factors and hospital data for host-associated factors. We used principal component analysis to disentangle the interrelated environment- and host-associated factors. With timeseries regression, we demonstrated a direct association between rainfall and NTS variation, independent of host-associated factors. While the latter explained 17.5% of NTS variation, rainfall explained an additional 9%. The direct association with rainfall points to environmental NTS transmission, which should be explored by environmental sampling studies. Environmental and climate change may increase NTS transmission directly or via host susceptibility, which highlights the importance of preventive public health interventions.
BACKGROUND: Internally displaced persons fleeing their homes due to conflict and drought are particularly at risk of morbidity and mortality from diarrhoeal diseases. Regular handwashing with soap (HWWS) could substantially reduce the risk of these infections, but the behaviour is challenging to practice while living in resource-poor, informal settlements. To mitigate these challenges, humanitarian aid organisations distribute hygiene kits, including soap and handwashing infrastructure. Our study aimed to assess the effect of modified hygiene kits on handwashing behaviours among internally displaced persons in Moyale, Ethiopia. METHODS: The pilot study evaluated three interventions: providing liquid soap; scented soap bar; and the inclusion of a mirror in addition to the standard hygiene kit. The hygiene kits were distributed to four study arms. Three of the arms received one of the interventions in addition to the standard hygiene kit. Three to six weeks after distribution the change in behaviour and perceptions of the interventions were assessed through structured observations, surveys and focus group discussions. RESULTS: HWWS was rare at critical times for all study arms. In the liquid soap arm, HWWS was observed for only 20% of critical times. This result was not indicated significantly different from the control arm which had a prevalence of 17% (p-value = 0.348). In the mirror and scented soap bar intervention arms, HWWS prevalence was 11 and 10%, respectively. This was indicated to be significantly different from the control arm. Participants in the focus group discussions indicated that liquid soap, scented soap bar and the mirror made handwashing more desirable. In contrast, participants did not consider the soap bar normally distributed in hygiene kits as nice to use. CONCLUSION: We found no evidence of an increased prevalence of handwashing with soap following distribution of the three modified hygiene kits. However, our study indicates the value in better understanding hygiene product preferences as this may contribute to increased acceptability and use among crisis-affected populations. The challenges of doing research in a conflict-affected region had considerable implications on this study’s design and implementation. TRIAL REGISTRATION: The trial was registered at www.ClinicalTrials.gov 6 September 2019 (reg no: NCT04078633 ).
BACKGROUND: Environmental Enteric Dysfunction (EED) is a chronic intestinal inflammatory disorder of unclear aetiology prevalent amongst children in low-income settings and associated with stunting. We aimed to characterise development of EED and its putative risk factors amongst rural Kenyan infants. METHODS: In a birth cohort study in Junju, rural coastal Kenya, between August 2015 and January 2017, 100 infants were each followed for nine months. Breastfeeding status was recorded weekly and anthropometry monthly. Acute illnesses and antibiotics were captured by active and passive surveillance. Intestinal function and small intestinal bacterial overgrowth (SIBO) were assessed by monthly urinary lactulose mannitol (LM) and breath hydrogen tests. Faecal alpha-1-antitrypsin, myeloperoxidase and neopterin were measured as EED biomarkers, and microbiota composition assessed by 16S sequencing. FINDINGS: Twenty nine of the 88 participants (33%) that underwent length measurement at nine months of age were stunted (length-for-age Z score <-2). During the rainy season, linear growth was slower and LM ratio was higher. In multivariable models, LM ratio, myeloperoxidase and neopterin increased after cessation of continuous-since-birth exclusive breastfeeding. For LM ratio this only occurred during the rainy season. EED markers were not associated with antibiotics, acute illnesses, SIBO, or gut microbiota diversity. Microbiota diversified with age and was not strongly associated with complementary food introduction or linear growth impairment. INTERPRETATION: Our data suggest that intensified promotion of uninterrupted exclusive breastfeeding amongst infants under six months during the rainy season, where rainfall is seasonal, may help prevent EED. Our findings also suggest that therapeutic strategies directed towards SIBO are unlikely to impact on EED in this setting. However, further development of non-invasive diagnostic methods for SIBO is required. FUNDING: This research was funded in part by the Wellcome Trust (Research Training Fellowship to RJC (103376/Z/13/Z)). EPKP was supported by the MRC/DfID Newton Fund (MR/N006259/1). JAB was supported by the MRC/DFiD/Wellcome Trust Joint Global Health Trials scheme (MR/M007367/1) and the Bill & Melinda Gates Foundation (OPP1131320). HHU was supported by the NIHR Oxford Biomedical Research Centre (IS-BRC-1215-20008).
Precision health mapping is a technique that uses spatial relationships between socio-ecological variables and disease to map the spatial distribution of disease, particularly for diseases with strong environmental signatures, such as diarrhoeal disease (DD). While some studies use GPS-tagged location data, other precision health mapping efforts rely heavily on data collected at coarse-spatial scales and may not produce operationally relevant predictions at fine enough spatio-temporal scales to inform local health programmes. We use two fine-scale health datasets collected in a rural district of Madagascar to identify socio-ecological covariates associated with childhood DD. We constructed generalized linear mixed models including socio-demographic, climatic and landcover variables and estimated variable importance via multi-model inference. We find that socio-demographic variables, and not environmental variables, are strong predictors of the spatial distribution of disease risk at both individual and commune-level (cluster of villages) spatial scales. Climatic variables predicted strong seasonality in DD, with the highest incidence in colder, drier months, but did not explain spatial patterns. Interestingly, the occurrence of a national holiday was highly predictive of increased DD incidence, highlighting the need for including cultural factors in modelling efforts. Our findings suggest that precision health mapping efforts that do not include socio-demographic covariates may have reduced explanatory power at the local scale. More research is needed to better define the set of conditions under which the application of precision health mapping can be operationally useful to local public health professionals.
Faecal pathogens can be introduced into surface water through open defecation, illegal disposal and inadequate treatment of faecal sludge and wastewater. Despite sanitation improvements, poor countries are progressing slowly towards the United Nation’s Sustainable Development Goal 6 by 2030. Sanitation-associated pathogenic contamination of surface waters impacted by future population growth, urbanization and climate change receive limited attention. Therefore, a model simulating human rotavirus river inputs and concentrations was developed combining population density, sanitation coverage, rotavirus incidence, wastewater treatment and environmental survival data, and applied to Uganda. Complementary surface runoff and river discharge data were used to produce spatially explicit rotavirus outputs for the year 2015 and for two scenarios in 2050. Urban open defecation contributed 87%, sewers 9% and illegal faecal sludge disposal 3% to the annual 15.6 log(10) rotavirus river inputs in 2015. Monthly concentrations fell between -3.7 (Q5) and 2.6 (Q95) log(10) particles per litre, with 1.0 and 2.0 median and mean log(10) particles per litre, respectively. Spatially explicit outputs on 0.0833 × 0.0833° grids revealed hotspots as densely populated urban areas. Future population growth, urbanization and poor sanitation were stronger drivers of rotavirus concentrations in rivers than climate change. The model and scenario analysis can be applied to other locations.
Climate variability is expected to increase the risk of diarrhea diseases, a leading cause of child mortality and morbidity in Sub-Saharan Africa (SSA). The risk of diarrhea is more acute when populations have poor access to improved water and sanitation. This study seeks to determine individual and joint effects of climate variation, water supply and sanitation on the occurrence of diarrhea among children under five in SSA using multilevel mixed-effect Poisson regression including cross-level interaction. We merged 57 Demographic and Health Surveys (DHS) from 25 SSA countries covering the period 2000-2019 with climatic data from the DHS geolocation databases. The results of the research indicate that 77.7% of the variation in the occurrence of diarrhea in Sub-Saharan households is due to climatic differences between clusters. Also, a household residing in a cluster with a high incidence of diarrhea is 1.567 times more likely to have diarrhea cases than a household from a cluster with a low incidence. In addition, when average temperature and rainfall increase, households using unimproved sanitation or unimproved water have more cases of diarrhea. For SSA, the results of the multilevel analysis suggest the adoption at both levels; macro (national) and micro (household), of climate change adaption measures in the water sector to reduce the prevalence of diarrhea.
Temperature constrains the transmission of many pathogens. Interventions that target temperature-sensitive life stages, such as vector control measures that kill intermediate hosts, could shift the thermal optimum of transmission, thereby altering seasonal disease dynamics and rendering interventions less effective at certain times of the year and with global climate change. To test these hypotheses, we integrated an epidemiological model of schistosomiasis with empirically determined temperature-dependent traits of the human parasite Schistosoma mansoni and its intermediate snail host (Biomphalaria spp.). We show that transmission risk peaks at 21.7 °C (T (opt) ), and simulated interventions targeting snails and free-living parasite larvae increased T (opt) by up to 1.3 °C because intervention-related mortality overrode thermal constraints on transmission. This T (opt) shift suggests that snail control is more effective at lower temperatures, and global climate change will increase schistosomiasis risk in regions that move closer to T (opt) Considering regional transmission phenologies and timing of interventions when local conditions approach T (opt) will maximize human health outcomes.
The incidence of most diseases varies greatly with seasons, and global climate change is expected to increase its risk. Predictive models that automatically capture trends between climate and diseases are likely to be beneficial in minimizing disease outbreaks. Machine learning (ML) predictive analytic tools have been popularized across many health-care applications, however the optimal task performance of such ML tools largely depends on manual parameter tuning and calibration. Such manual tuning significantly limits the full potential of ML methods, especially for high-dimensional and complex task domains, as typified by real-world health-care application data-sets. Additionally, the inaccessibility of many health-care data-sets compounds innate problems of method comparison, predictive accuracy and the overall advancement of ML based health-care applications. In this study we investigate the impact of Relevance Estimation and Value Calibration, an evolutionary parameter optimization method applied to automate parameter tuning for comparative ML methods (Deep learning and Support Vector Machines) applied to predict daily diarrhoea cases across various geographic regions. Data-augmentation is also used to complement real-world noisy, sparse and incomplete data-sets with synthetic data-sets for training, validation and testing. Results support the efficacy of evolutionary parameter optimization and data synthesis to boost predictive accuracy in the given task, indicating a significant prediction accuracy boost for the deep-learning models across all data-sets.
Water pollution had become a major problem due to its negative impact on the human health. Effects of humaninduced actions on groundwater quality were examined in this study. The physicochemical, heavy metals and microbial parameters of groundwater, sampled during the two major climatic periods in Nigeria, were measured according to APHA approved procedures. Results obtaned from laboratory tests revealed that anthropogenic IP: 14.98.160.66 On: Fri, 01 Jul 2022 12:43:29 activities had substantial effect on the groundwater quality. The groundwater TDS, nitrate, BOD, chloride and phosphate concentrations varied from 23.93 to 42.32 mg/L, 0.54 to 2.16 mg/L, 2.23 to 4.72 mg/L, 10.78 to Delivered by Ingenta 19.15 mg/L, and 0.22 to 0.36 mg/L respectively. Likewise, Cd concentration fluctuated between 0 and 0.001 mg/L, Cu varied between 0 and 0.149 mg/L, Fe varied between 0 and 0.293 mg/L, Pb varied between 0 to 0.105 mg/mL, Zn varied between from 0 and 0.768 mg/L, while Ni fluctuated between 0 and 0.001 mg/L. The findings revealed that areas with poor sanitary situations had poor groundwater quality, compared to the areas with improved sanitary situations. Regarding the microbial population, the highest Total Bacteria and Fungi Counts recorded in the groundwater were 1.11 x 102 cfu/mL and 1.23 x 102 cfu/mL respectively. Similarly, the highest recorded Enterobacterial spp., Staphylococus arurius, E. coli, Proteus spp. and Shegeela spp. populations were 26.22 x 102 cfu/mL, 1.23 x 102 cfu/mL, 0.41 MPN/100 mL, 0.12 cfu/ml and 0.30 x 102 cfu/mL respectively. Although, the groundwater physicochemical parameters and heavy metals concentrations were within safe drinking water limits; the groundwater was largely contaminated with pathogenic microorganisms, mostly during the rainy season.
This work reports control strategies of the water quality in the city of Souk-Ahras (east Algeria). With the recent development, rapid population growth, and the consequences of climate change, the capacity of water supply reserves becomes more unpredictable in the long term. This has drastically affected the distributed water quantity. A correlation between bacteriological water analysis and the analysis of pollution indicative physicochemical parameters is developed to replace the slow bacteriological analysis, which takes more than two days, by directly accessible physicochemical analysis to anticipate the case-onset of waterborne diseases. A good correlation is found between different combinations of physicochemical pollution parameters: (Turbidity, Nitrates); (Turbidity, Active chlorine) (nitrates, active chlorine); (Ammonium, Chlorine) and (Turbidity, Ammonium) with Spearman rank coefficients of 0.8657, -0.8602 and -0.8531 -0.8227 et 0.7957 respectively. Besides, long term analysis (over several years) revealed a high correlation of more than 0.92 between the analysis of pollution indicative physicochemical parameters and bacteriological analysis. The EPANET software is used to simulate the hydraulic behaviour of the network system over an extended period within pressurized and pressure-deficient conditions. The simulation results of several supply scenarios of daily drinking water pressure in the city center area show that 62% of drinking water distribution system is supplied with a steep slope (80 m), 10% with unsatisfactory pressure and only 23% with acceptable pressure (1-80 m). Therefore, the high working pressure at the mesh, and the interruptions of the water supply are factors that can lead to the occurrence of cross-connection cases. This diagnosis of the defects in the water supply system is combined with a statistical data analysis of physicochemical parameters to set up an effective sampling strategy that takes into account the frequency of analysis and the areas at risk to prevent the risk of waterborne diseases.
Human vulnerability to disasters poses a significant concern to water resources management. The present study examined the factors influencing the occurrence of flooding, risk and management strategies in Lagos, Nigeria. A set of questionnaires was administered to 400 respondents in four randomly selected settlements in Lagos State based on perception and observation methods. Descriptive and multivariate statistics and cartographic mapping techniques were employed for data analysis. The result indicates that the majority of the respondents live in a rented room and parlor. The significant flood risks include poor sanitation, a breeding site for mosquitoes, water contamination/waterborne diseases, and mental stress. Factors analysis explains 74.62% of the variance, indicating anthropogenic, natural, and institutional factors influencing flooding in the study area. The dominant flood management measures are clearance of drains, environmental sanitation, public awareness, training/education, while the significant steps taken by the government to ameliorate flooding challenges in the area include awareness, early warning, and education. The study concluded that there exists a significant difference in the factors influencing flooding across the settlements based on the ANOVA result given as: (DWSD F = 19.661, p < 0.05; RI = 41.104, p < 0.05; WIC = 18.123, p < 0.05; HWL = 37.481, p < 0.05; SD = 10.294, p < 0.05). The study contributes to knowledge using cartographic techniques to map the risks of flooding for easy understanding. The study has potential policy implications for planning and interventions in areas vulnerable areas. The study recommended monitoring of construction activities, enforcement of building codes, awareness campaigns, and early warning flood technology for sustainable flood management in the area.
Despite the long-lasting and widespread drought in the Sahel, flood events did punctuate in the past. The concern about floods remains dwarf on the international research and policy agenda compared to droughts. In this paper, we elucidate that floods in the Sahel are now becoming more frequent, widespread, and more devastating. We analyzed gridded daily rainfall data over the period 1981-2020, used photographs and satellite images to depict flood areas and threats, compiled and studied flood-related statistics over the past two decades, and supported the results with peer-reviewed literature. Our analysis revealed that the timing of the maximum daily rainfall occurs from the last week of July to mid-August in the Eastern Sahel, but from the last week of July to the end of August in the Western Sahel. In 2019 and 2020, flash and riverine floods took their toll in Sudan and elsewhere in the region in terms of the number of affected people, direct deaths, destroyed and damaged houses and croplands, contaminated water resources, and disease outbreaks and deaths. Changes in rainfall intensity, human interventions in the physical environment, and poor urban planning play a major role in driving catastrophic floods. Emphasis should be put on understanding flood causes and impacts on vulnerable societies, controlling water-borne diseases, and recognizing the importance of compiling relevant and reliable flood information. Extreme rainfall in this dry region could be an asset for attenuating the regional water scarcity status if well harvested and managed. We hope this paper will induce the hydroclimate scholars to carry out more flood studies for the Sahel. It is only then encumbered meaningful opportunities for flood risk management can start to unveil.
Cholera is a water-borne infectious disease that affects 1.3 to 4 million people, with 21,000 to 143,000 reported fatalities each year worldwide. Outbreaks are devastating to affected communities and their prospects for development. The key to support preparedness and public health response is the ability to forecast cholera outbreaks with sufficient lead time. How Vibrio cholerae survives in the environment outside a human host is an important route of disease transmission. Thus, identifying the environmental and climate drivers of these pathogens is highly desirable. Here, we elucidate for the first time a mechanistic link between climate variability and cholera (Satellite Water Marker; SWM) index in the Bengal Delta, which allows us to predict cholera outbreaks up to two seasons earlier. High values of the SWM index in fall were associated with above-normal summer monsoon rainfalls over northern India. In turn, these correlated with the La Niña climate pattern that was traced back to the summer monsoon and previous spring seasons. We present a new multi-linear regression model that can explain 50% of the SWM variability over the Bengal Delta based on the relationship with climatic indices of the El Niño Southern Oscillation, Indian Ocean Dipole, and summer monsoon rainfall during the decades 1997-2016. Interestingly, we further found that these relationships were non-stationary over the multi-decadal period 1948-2018. These results bear novel implications for developing outbreak-risk forecasts, demonstrating a crucial need to account for multi-decadal variations in climate interactions and underscoring to better understand how the south Asian summer monsoon responds to climate variability.
BACKGROUND: Pakistan has been experiencing intervals of sporadic cases and localized outbreaks in the last two decades. No proper study has been carried out in order to find out the environmental burden of toxigenic V. cholerae as well as how temporal and environmental factors associated in driving cholera across the country. METHODS: We tested waste water samples from designated national environment surveillance sites in Pakistan with RT-PCR assay. Multistage sampling technique were utilized for samples collection and for effective sample processing Bag-Mediated Filtration system, were employed. Results were analysed by district and month wise to understand the geographic distribution and identify the seasonal pattern of V. cholera detection in Pakistan. RESULTS: Between May 2019, and February 2020, we obtained and screened 160 samples in 12 districts across Pakistan. Out of 16 sentinel environmental surveillance sites, 15 sites showed positive results against cholera toxigenic gene with mostly lower CT value (mean, 34??2) and have significant difference (p < 0.05). The highest number of positive samples were collected from Sindh in month of November, then in June it is circulating in different districts of Pakistan including four Provinces respectively. CONCLUSION: V. cholera detection do not follow a clear seasonal pattern. However, the poor sanitation problems or temperature and rainfall may potentially influence the frequency and duration of cholera across the country. Occurrence of toxigenic V. cholerae in the environment samples showed that cholera is endemic, which is an alarming for a potential future cholera outbreaks in the country.
BACKGROUND: Diarrhea and typhoid, ancient water-borne diseases which are highly connected to rainfall are serious public health challenges in the blocks of Kalahandi district of Odisha, India. OBJECTIVES: Corroboration of rainfall and waterborne diseases are available in abundance; therefore, the objective of this article is to calculate the climate and disease vulnerability index (CDVI) value for each block of Kalahandi. METHODS: We have applied the livelihood vulnerability index with some modifications and classify the three major categories, i.e., exposure, sensitivity, and adaptive capacity into six subcategories. These six subcategories are further divided into 26 vulnerability indicators based on a detailed literature review. RESULTS: The result indicated that the Thuamul Rampur block, the southernmost part of the district is highly exposed to the annual and seasonal mean rainfall, and the Madanpur Rampur block lies in the northernmost part of the district is highly exposed to diarrhea and typhoid. Based on the calculation of the final CDVI value, nearly 50% of blocks of the Kalahandi district fall in the category of very high to high vulnerable zones. Furthermore, it has been observed that factors such as rainfall and disease distribution, vulnerable population and infrastructure, and education and health-care capacities had a notable influence on vulnerability. CONCLUSION: It is rare to find a health vulnerability-related study in India at this microlevel based on the suitable indicators selected for a tribal and backward region.
Melioidosis is a seasonal infectious disease in tropical and subtropical areas caused by the soil bacterium Burkholderia pseudomallei. In many parts of the world, including South West India, most cases of human infections are reported during times of heavy rainfall, but the underlying causes of this phenomenon are not fully understood. India is among the countries with the highest predicted melioidosis burden globally, but there is very little information on the environmental distribution of B. pseudomallei and its determining factors. The present study aimed (i) to investigate the prevalence of B. pseudomallei in soil in South West India, (ii) determine geochemical factors associated with B. pseudomallei presence and (iii) look for potential seasonal patterns of B. pseudomallei soil abundance. Environmental samplings were performed in two regions during the monsoon and post-monsoon season and summer from July 2016 to November 2018. We applied direct quantitative real time PCR (qPCR) together with culture protocols to overcome the insufficient sensitivity of solely culture-based B. pseudomallei detection from soil. A total of 1,704 soil samples from 20 different agricultural sites were screened for the presence of B. pseudomallei. Direct qPCR detected B. pseudomallei in all 20 sites and in 30.2% (517/1,704) of all soil samples, whereas only two samples from two sites were culture-positive. B. pseudomallei DNA-positive samples were negatively associated with the concentration of iron, manganese and nitrogen in a binomial logistic regression model. The highest number of B. pseudomallei-positive samples (42.6%, p < 0.0001) and the highest B. pseudomallei loads in positive samples [median 4.45 × 10(3) genome equivalents (GE)/g, p < 0.0001] were observed during the monsoon season and eventually declined to 18.9% and a median of 1.47 × 10(3) GE/g in summer. In conclusion, our study from South West India shows a wide environmental distribution of B. pseudomallei, but also considerable differences in the abundance between sites and within single sites. Our results support the hypothesis that nutrient-depleted habitats promote the presence of B. pseudomallei. Most importantly, the highest B. pseudomallei abundance in soil is seen during the rainy season, when melioidosis cases occur.
Climate change is adversely impacting the burden of diarrheal diseases. Despite significant reduction in global prevalence, diarrheal disease remains a leading cause of morbidity and mortality among young children in low- and middle-income countries. Previous studies have shown that diarrheal disease is associated with meteorological conditions but the role of large-scale climate phenomena such as El Niño-Southern Oscillation (ENSO) and monsoon anomaly is less understood. We obtained 13 years (2002-2014) of diarrheal disease data from Nepal and investigated how the disease rate is associated with phases of ENSO (El Niño, La Niña, vs. ENSO neutral) monsoon rainfall anomaly (below normal, above normal, vs. normal), and changes in timing of monsoon onset, and withdrawal (early, late, vs. normal). Monsoon season was associated with a 21% increase in diarrheal disease rates (Incident Rate Ratios [IRR]: 1.21; 95% CI: 1.16-1.27). El Niño was associated with an 8% reduction in risk while the La Niña was associated with a 32% increase in under-5 diarrheal disease rates. Likewise, higher-than-normal monsoon rainfall was associated with increased rates of diarrheal disease, with considerably higher rates observed in the mountain region (IRR 1.51, 95% CI: 1.19-1.92). Our findings suggest that under-5 diarrheal disease burden in Nepal is significantly influenced by ENSO and changes in seasonal monsoon dynamics. Since both ENSO phases and monsoon can be predicted with considerably longer lead time compared to weather, our findings will pave the way for the development of more effective early warning systems for climate sensitive infectious diseases.
Introduction: The incidence of diarrhea, a leading cause of morbidity and mortality in low-income countries such as Nepal, is temperature-sensitive, suggesting it could be associated with climate change. With climate change fueled increases in the mean and variability of temperature and precipitation, the incidence of water and food-borne diseases are increasing, particularly in sub-Saharan Africa and South Asia. This national-level ecological study was undertaken to provide evidence linking weather and climate with diarrhea incidence in Nepal. Method: We analyzed monthly diarrheal disease count and meteorological data from all districts, spanning 15 eco-development regions of Nepal. Meteorological data and monthly data on diarrheal disease were sourced, respectively, from the Department of Hydrology and Meteorology and Health Management Information System (HMIS) of the Government of Nepal for the period from 2002 to 2014. Time-series log-linear regression models assessed the relationship between maximum temperature, minimum temperature, rainfall, relative humidity, and diarrhea burden. Predictors with p-values < 0.25 were retained in the fitted models. Results: Overall, diarrheal disease incidence in Nepal significantly increased with 1 °C increase in mean temperature (4.4%; 95% CI: 3.95, 4.85) and 1 cm increase in rainfall (0.28%; 95% CI: 0.15, 0.41). Seasonal variation of diarrheal incidence was prominent at the national level (11.63% rise in diarrheal cases in summer (95% CI: 4.17, 19.61) and 14.5% decrease in spring (95% CI: −18.81, −10.02) compared to winter season). Moreover, the effects of temperature and rainfall were highest in the mountain region compared to other ecological regions of Nepal. Conclusion: Our study provides empirical evidence linking weather factors and diarrheal disease burden in Nepal. This evidence suggests that additional climate change could increase diarrheal disease incidence across the nation. Mountainous regions are more sensitive to climate variability and consequently the burden of diarrheal diseases. These findings can be utilized to allocate necessary resources and envision a weather-based early warning system for the prevention and control of diarrheal diseases in Nepal.
Surface water quality is among the significant challenges in the Sutlej River basin, passing through Pakistan’s most densely populated province. Currently, the overall surface water quality is grossly polluted, mainly due to the direct discharge of wastewater from the urban areas to the Sutlej River directly or through stream networks. Escherichia coli concentrations vary under extreme weather events like floods and droughts and socioeconomic circumstances like urbanization, population growth, and treatment options. This paper assesses the future E. coli load and concentrations using the Soil and Water Assessment Tool (SWAT) along with scenarios based on Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs) developed by the Intergovernmental Panel on Climate Change (IPCC). E. coli concentrations according to a more polluted scenario disclose a near and mid future increase by 108% and 173%, and far future increases up to 251% compared to the reference period (baseline) concentrations. The E. coli concentration is reduced by - 54%, - 68%, and - 81% for all the projected time steps compared to the baseline concentrations. While highly improved sewerage and manure management options are adapted, the concentration is further reduced by - 96%, - 101%, and - 105%, respectively, compared to the baseline. Our modeling and scenario matrix study shows that reducing microbiological concentrations in the surface water is possible. Still, it requires rigorous sanitation and treatment options, and socioeconomic variables play an essential role besides climate change to determine the microbiological concentration of water resources and be included in future studies whenever water quality and health risks are considered.
In tropical countries such as Sri Lanka, where leptospirosis-a deadly disease with a high mortality rate-is endemic, prediction is required for public health planning and resource allocation. Routinely collected meteorological data may offer an effective means of making such predictions. This study included monthly leptospirosis and meteorological data from January 2007 to April 2019 from Sri Lanka. Factor analysis was first used with rainfall data to classify districts into meteorological zones. We used a seasonal autoregressive integrated moving average (SARIMA) model for univariate predictions and an autoregressive distributed lag (ARDL) model for multivariable analysis of leptospirosis with monthly average rainfall, temperature, relative humidity (RH), solar radiation (SR), and the number of rainy days/month (RD). Districts were classified into wet (WZ) and dry (DZ) zones, and highlands (HL) based on the factor analysis of rainfall data. The WZ had the highest leptospirosis incidence; there was no difference in the incidence between the DZ and HL. Leptospirosis was fluctuated positively with rainfall, RH and RD, whereas temperature and SR were fluctuated negatively. The best-fitted SARIMA models in the three zones were different from each other. Despite its known association, rainfall was positively significant in the WZ only at lag 5 (P = 0.03) but was negatively associated at lag 2 and 3 (P = 0.04). RD was positively associated for all three zones. Temperature was positively associated at lag 0 for the WZ and HL (P < 0.009) and was negatively associated at lag 1 for the WZ (P = 0.01). There was no association with RH in contrast to previous studies. Based on altitude and rainfall data, meteorological variables could effectively predict the incidence of leptospirosis with different models for different climatic zones. These predictive models could be effectively used in public health planning purposes.
We examine the impact of flooding in Pakistan on child health using satellite data and two household datasets. Flooding may influence child health, as measured by weight-for-height z-score, through two key channels. First, excessive flood waters can catalyze the spread of diarrheal disease, negatively impacting child health. Second, excessive flood waters – even when damaging in some areas – provide water to rice paddies and other agriculture, increasing food availability in the post-flood period. This may positively influence child health. In Pakistan, we find evidence of both channels: floods increase incidence of morbidity (diarrhea and fever) as well as meal frequency in the post flood season. We also find that floods increase dietary diversity, but only in districts with high rice harvesting intensity where flooding may predict favorable growing conditions. Because these mechanisms (disease incidence and dietary adequacy) act against one another, we find weak overall impact of floods on child health. (c) 2021 Elsevier Ltd. All rights reserved.
BACKGROUND: Chengannur, a town in the south Indian state of Kerala, was 1 of the worst affected towns during the floods of 2018. Post-flood, Kerala state was under the threat of many infectious diseases including leptospirosis, but did not report any leptospirosis infections. OBJECTIVES: This study was conducted with the following objectives: (1) Assess the knowledge, attitude and practices regarding the prevention of leptospirosis among the flood affected population and Accredited Social Health Activists (ASHAs) of Chengannur; and (2) Analyze the factors responsible for and contributing to leptospirosis control in the area post flood. METHODOLOGY: A cross-sectional questionnaire based observational study was conducted among 2 groups: the flood affected population, and ASHA. The questionnaire was divided into 3 parts. Part A contained the socio-demographic information. Part B contained questions on assessment of knowledge, attitude, and practices regarding the prevention, and control of leptospirosis. Part C was only for the ASHA involved. RESULTS: The final sample size was 331 (244 from the general population and 87 ASHAs). With respect to knowledge, attitude, and practice, the responses were dichotomized into correct and wrong responses. The mean knowledge score was 9.01 ± 1.08 (maximum score of 10), mean attitude score was of 3.61 ± 0.55 (maximum score of 4) and the mean practice score was 4.12 ± 1.05 (maximum score of 5). CONCLUSION: Knowledge and attitude scores did not significantly differ between the general population and ASHA, but the practice score showed a higher score among the ASHA, all of which could have probably contributed to the prevention of a leptospirosis outbreak in the region.
Neonates and children are more vulnerable to the negative impact of flood-related changes and may have a variety of detrimental negative impacts on their health. They are more prone to get various infectious diseases. They are also more vulnerable to malnutrition during floods. Flooding limits access to clean water as sewage overflows and contaminates nearby water sources. The polluted setting in the flood-affected area makes it difficult to ensure the hygiene of feeding equipment used to prepare infant formula. Breastfeeding may also become less effective due to the lack of privacy for women to breastfeed their kids while living in temporary shelters with other flood victims. In addition, milk production decreases and might even cease due to mothers’ reduced food intake and increased stress levels. Flooding may also cause supplemental feeding to deteriorate. The mothers and other primary caregivers usually lack the resources in affected areas to prepare supplemental diets for their kids, which further harm the babies. There is mounting evidence that children are more likely to develop clogged noses, itchy eyes, hoarseness, skin complications, and sneezing while living in humid areas.
The recent monsoon rains in Pakistan were unprecedented and caused flooding all over Pakistan, especially in Sindh and Balochistan. Following this national disaster, various water-borne and contagious diseases started erupting all over the country. In such a calamity-struck city of Jacobabad, we started receiving cases with a peculiar set of ocular complaints mimicking viral keratoconjunctivitis. Failure to respond to traditional treatment and the unique appearance of these corneal opacities led to a rare diagnosis of Microsporidial Keratoconjunctivitis, which was later confirmed by microscopy and staining of corneal scrapings of the most affected case. In line with published literature, all cases were treated with topical fluoroquinolone and topical anti-fungal therapy, following which the disease was cleared within a week. The disease has seen an upward trend the world over, especially among Asia. To the best of our knowledge, no such cases have been reported in Pakistan as yet. In this case series, we highlight the strong correlation of emergence of microsporidial keratitis in patients following exposure to pooled water bodies after the monsoon rainy season and floods. Moreover, this report will help create awareness in eye professionals regarding the prevention, timely diagnosis and treatment of these rare and emerging cases. Key Words: Keratitis, Spores, Water-borne diseases, Microsporidia.
BACKGROUND: Current literatures seem devoted only on relating climate change with malaria. Overarching all possible environmental determinants of malaria prevalence addressed by scanty literature in Nepal is found apposite research at this moment. This study aims to explore the environmental determinants of malaria prevalence in western Nepal. METHODS: Cross-sectional data collected from community people were used to identify the environmental determinants of malaria prevalence in western Nepal. Probit and logistic regressions are used for identifying determinants. RESULTS: The results reveal that environmental variables: winter temperature (aOR: 2.14 [95% CI: 1.00-4.56]), flooding (aOR: 2.45 [CI: 1.28-4.69]), heat waves (aOR: 3.14 [CI: 1.16-8.46]) and decreasing river water level (aOR: 0.25 [CI: 0.13-0.47]) are found major factors to influence malaria prevalence in western Nepal. Besides, pipeline drinking water (aOR: 0.37 [0.17-0.81]), transportation facility (aOR: 1.18 [1.07-1.32]) and awareness programs (aOR: 2.62 [0.03-6.65]) are exigent social issues to influence malaria prevalence in Nepal. To be protected from disease induced by environmental problems, households have used extra season specific clothes, iron nets and mosquito nets, use of insecticide in cleaning toilet and so on. CONCLUSIONS: Adaptation mechanism against these environmental issues together with promoting pipeline drinking water, transportation facility and awareness programs are the important in malaria control in Nepal. Government initiation with incentivized adaptation mechanism for the protection of environment with caring household attributes possibly help control malaria in western Nepal.
Maria made a landfall in Puerto Rico on September 20, 2017 as a category 4 hurricane, causing severe flooding, widespread electricity outages, damage to infrastructure, and interruptions in water and wastewater treatment. Small rural community water systems face unique challenges in providing drinking water, which intensify after natural disasters. The purpose of this study was to evaluate the functionality of six very small rural public water systems and one large regulated system in Puerto Rico six months after Maria and survey a broad sweep of fecal, zoonotic, and opportunistic pathogens from the source to tap. Samples were collected from surface and groundwater sources, after water treatment and after distribution to households. Genes indicative of pathogenic Leptospira spp. were detected by polymerase chain reaction (PCR) in all systems reliant on surface water sources. Salmonella spp. was detected in surface and groundwater sources and some distribution system water both by culture and PCR. Legionella spp. and Mycobacteria spp. gene numbers measured by quantitative PCR were similar to nonoutbreak conditions in the continental U.S. Amplicon sequencing provided a nontarget screen for other potential pathogens of concern. This study aids in improving future preparedness, assessment, and recovery operations for small rural water systems after natural disasters.
Hurricanes often flood homes and industries, spreading pathogens. Contact with pathogen-contaminated water can result in diarrhea, vomiting, and/or nausea, known collectively as acute gastrointestinal illness (AGI). Hurricanes Matthew and Florence caused record-breaking flooding in North Carolina (NC) in October 2016 and September 2018, respectively. To examine the relationship between hurricane flooding and AGI in NC, we first calculated the percent of each ZIP code flooded after Hurricanes Matthew and Florence. Rates of all-cause AGI emergency department (ED) visits were calculated from NC’s ED surveillance system data. Using controlled interrupted time series, we compared AGI ED visit rates during the three weeks after each hurricane in ZIP codes with a third or more of their area flooded to the predicted rates had these hurricanes not occurred, based on AGI 2016-2019 ED trends, and controlling for AGI ED visit rates in unflooded areas. We examined alternative case definitions (bacterial AGI) and effect measure modification by race and age. We observed an 11% increase (rate ratio (RR): 1.11, 95% CI: 1.00, 1.23) in AGI ED visit rates after Hurricanes Matthew and Florence. This effect was particularly strong among American Indian patients and patients aged 65 years and older after Florence and elevated among Black patients for both hurricanes. Florence’s effect was more consistent than Matthew’s effect, possibly because little rain preceded Florence and heavy rain preceded Matthew. When restricted to bacterial AGI, we found an 85% (RR: 1.85, 95% CI: 1.37, 2.34) increase in AGI ED visit rate after Florence, but no increase after Matthew. Hurricane flooding is associated with an increase in AGI ED visit rate, although the strength of effect may depend on total storm rainfall or antecedent rainfall. American Indians and Black people-historically pushed to less desirable, flood-prone land-may be at higher risk for AGI after storms.
BACKGROUND: While most prior research has focused on extreme heat, few assessed the immediate health effects of winter storms and associated power outages (PO), although severe storms have become more frequent. This study evaluates the joint and independent health effects of winter storms and PO, snow versus ice-storm, effects by time window (peak timing, winter/transitional months) and the impacts on critical care indicators including numbers of comorbidity, procedure, length of stay and cost. METHODS: We use distributed lag nonlinear models to assess the impacts of winter storm/PO on hospitalizations due to cardiovascular, lower respiratory diseases (LRD), respiratory infections, food/water-borne diseases (FWBD) and injuries in New York State on 0-6 lag days following storm/PO compared with non-storm/non-PO periods (references), while controlling for time-varying factors and PM(2.5). The storm-related hospitalizations are described by time window. We also calculate changes in critical care indicators between the storm/PO and control periods. RESULTS: We found the joint effects of storm/PO are the strongest (risk ratios (RR) range: 1.01-1.90), followed by that of storm alone (1.02-1.39), but not during PO alone. Ice storms have stronger impacts (RRs: 1.04-3.15) than snowstorms (RRs: 1.03-2.21). The storm/PO-health associations, which occur immediately, and some last a whole week, are stronger in FWBD, October/November, and peak between 3:00-8:00 p.m. Comorbidity and medical costs significantly increase after storm/PO. CONCLUSION: Winter storms increase multiple diseases, comorbidity and medical costs, especially when accompanied by PO or ice storms. Early warnings and prevention may be critical in the transitional months and afternoon rush hours.
Rodents can transmit infectious diseases directly to humans and other animals via bites and exposure to infectious salivary aerosols and excreta. Arthropods infected while blood-feeding on rodents can also transmit rodent-borne pathogens indirectly to humans and animals. Environmental events, such as wet winters, cooler summers, heavy rains, and flooding, have precipitated regional rodent-borne infectious disease outbreaks; these outbreaks are now increasing with climate change. The objectives of this review are to inform wilderness medicine providers about the environmental conditions that can precipitate rodent-borne infectious disease outbreaks; to describe the regional geographic distributions of rodent-borne infectious diseases in North America; and to recommend prophylactic treatments and effective prevention and control strategies for rodent-borne infectious diseases. To meet these objectives, Internet search engines were queried with keywords to identify scientific articles on outbreaks of the most common regional rodent-borne infectious diseases in North America. Wilderness medicine providers should maintain high levels of suspicion for regional rodent-borne diseases in patients who develop febrile illnesses after exposure to contaminated freshwater after heavy rains or floods and after swimming, rafting, or paddling in endemic areas. Public health education strategies should encourage limiting human contact with rodents; avoiding contact with or safely disposing of rodent excreta; avoiding contact with contaminated floodwaters, especially contact with open wounds; securely containing outdoor food stores; and modifying wilderness cabins and campsites to deter rodent colonization.
Climate change is already impacting the North American Great Lakes ecosystem and understanding the relationship between climate events and public health, such as waterborne acute gastrointestinal illnesses (AGIs), can help inform needed adaptive capacity for drinking water systems (DWSs). In this study, we assessed a harmonized binational dataset for the effects of extreme precipitation events (≥90th percentile) and preceding dry periods, source water turbidity, total coliforms, and protozoan AGIs – cryptosporidiosis and giardiasis – in the populations served by four DWSs that source surface water from Lake Ontario (Hamilton and Toronto, Ontario, Canada) and Lake Michigan (Green Bay and Milwaukee, Wisconsin, USA) from January 2009 through August 2014. We used distributed lag non-linear Poisson regression models adjusted for seasonality and found extreme precipitation weeks preceded by dry periods increased the relative risk of protozoan AGI after 1 and 3-5 weeks in three of the four cities, although only statistically significant in two. Our results suggest that the risk of protozoan AGI increases with extreme precipitation preceded by a dry period. As extreme precipitation patterns become more frequent with climate change, the ability to detect changes in water quality and effectively treat source water of varying quality is increasingly important for adaptive capacity and protection of public health.
With a focus on five sites in an impaired, densely populated area in the New Orleans area, we investigated the temporal and spatial variability of standard FIB and a marker of human-associated pollution (Bacteroides HF183). With all sites combined, only a weak positive correlation (r = 0.345; p = 0.001) was observed between E. coli and HF183. Also, specific conductivity (r = - 0.374; p < 0.0001) and dissolved oxygen (r = - 0.390; p < 0.0001) were observed to show a weak moderate correlation with E. coli. These correlations increased to moderately negative when HF183 was correlated with specific conductivity (r = - 0.448; p < 0.0001) and dissolved oxygen (r = - 0.455; p < 0.0001). E. coli contamination was generally highest at the sites in the canal that are situated in the most densely populated part of the watershed while HF183 was frequently detected across all sites. E. coli concentrations were significantly higher (p < 0.05) when HF183 was present. HF183 was detected at significantly higher concentrations in samples that exceeded the EPA water quality standard (WQS) than those that did not (p < 0.05). Dissolved oxygen and specific conductivity were significantly lower when E. coli WQS was exceeded or when HF183 was present (p < 0.05). Rainfall impacted E. coli concentrations and HF183 differently at the study sites. While HF183 and E. coli concentrations levels were significantly higher (p < 0.05) if the days prior to sampling had been wet, the frequency of detection of HF183 was unimpacted, as comparable detection rates were recorded during wet and dry weather conditions. Without testing for HF183, it would have been assumed, based on testing for E. coli alone, that human fecal pollution was only associated with densely populated areas and rainfall events. E. coli alone may not be an effective indicator of sewage pollution at the study sites across all weather conditions and may need to be complemented with HF183 enumeration to optimize human fecal pollution identification and management at the watershed level.
Despite the widely acknowledged public health impacts of surface water fecal contamination, there is limited understanding of seasonal effects on (i) fate and transport processes and (ii) the mechanisms by which they contribute to water quality impairment. Quantifying relationships between land use, chemical parameters, and fecal bacterial concentrations in watersheds can help guide the monitoring and control of microbial water quality and explain seasonal differences. The goals of this study were to (i) identify seasonal differences in Escherichia coli and Bacteroides thetaiotaomicron concentrations, (ii) evaluate environmental drivers influencing microbial contamination during baseflow, snowmelt, and summer rain seasons, and (iii) relate seasonal changes in B. thetaiotaomicron to anticipated gastrointestinal infection risks. Water chemistry data collected during three hydroclimatic seasons from 64 Michigan watersheds were analyzed using seasonal linear regression models with candidate variables including crop and land use proportions, prior precipitation, chemical parameters, and variables related to both wastewater treatment and septic usage. Adaptive least absolute shrinkage and selection operator (LASSO) linear regression with bootstrapping was used to select explanatory variables and estimate coefficients. Regardless of season, wastewater treatment plant and septic system usage were consistently selected in all primary models for B. thetaiotaomicron and E. coli. Chemistry and precipitation-related variable selection depended upon season and organism. These results suggest a link between human pollution (e.g., septic systems) and microbial water quality that is dependent on flow regime. IMPORTANCE In this study, a data set of 64 Michigan watersheds was utilized to gain insights into fecal contamination sources, drivers, and chemical correlates across seasons for general E. coli and human-specific fecal indicators. Results reaffirmed a link between human-specific sources (e.g., septic systems) and microbial water quality. While the importance of human sources of fecal contamination and fate and transport variables (e.g., precipitation) remain important across seasons, this study provides evidence that fate and transport mechanisms vary with seasonal hydrologic condition and microorganism source. This study contributes to a body of research that informs prioritization of fecal contamination source control and surveillance strategy development to reduce the public health burden of surface water fecal contamination.
Vibrio vulnificus is an opportunistic pathogen indigenous to estuarine and marine environments and associated with aquatic organisms. Vibrio vulnificus is of utmost importance because it causes 95% of the seafood-related deaths in the United States due to rapid progression of septicemia. Changes in environmental parameters associated with climate change and coastal population expansion are altering geographical constraints, resulting in increased Vibrio spread, exposure, and rates of infection. In addition, coastal population expansion is resulting in increased input of treated municipal sewage into areas that are also experiencing increased Vibrio proliferation. This study aimed to better understand the influence of treated sewage effluent on effluent-receiving microbial communities using Vibrio as a model of an opportunistic pathogen. Integrated transcriptomic approaches were used to analyze the changes in overall gene expression of V. vulnificus NBRC 15645 exposed to wastewater treatment plant (WWTP) effluent for a period of 6h using a modified seawater yeast extract media that contained 0, 50, and 100% filtered WWTP effluent. RNA-seq reads were mapped, annotated, and analyzed to identify differentially expressed genes using the Pathosystems Resource Integration Center analysis tool. The study revealed that V. vulnificus responds to wastewater effluent exposure by activating cyclic-di-GMP-influenced biofilm development. Also, genes involved in crucial functions, such as nitrogen metabolism and bacterial attachment, were upregulated depending on the presence of treated municipal sewage. This altered gene expression increased V. vulnificus growth and proliferation and enhanced genes and pathways involved in bacterial survival during the early stages of infection in a host. These factors represent a potential public health risk due to exposure to environmental reservoirs of potentially Vibrio strains with enhanced virulence profiles in coastal areas.
Dynamic recharge events related to extreme rainfall or snowmelt are becoming more common due to climate change. The vulnerability of public supply wells to water quality degradation may temporarily increase during these types of events. The Walkerton, ON, Canada, tragedy (2000) highlighted the threat to human health associated with the rapid transport of microbial pathogens to public supply wells during dynamic recharge events. Field research at the Thornton (Woodstock, ON, Canada) and Mannheim West (Kitchener, ON, Canada) well fields, situated in glacial overburden aquifers, identified a potential increase in vulnerability due to event-based recharge phenomena. Ephemeral surface water flow and local ponding containing microbial pathogen indicator species were observed and monitored within the capture zones of public supply wells following heavy rain and/or snowmelt. Elevated recharge rates beneath these temporary surface water features were estimated to range between 40 and 710 mm over two-week periods using analytical and numerical modelling based on the water level, soil moisture, and temperature data. Modelling also suggested that such events could reduce contaminant travel times to a supply well, increasing vulnerability to water quality degradation. These studies suggest that event-based recharge processes occurring close to public supply wells may enhance the vulnerability of the wells to surface-sourced contaminants.
Urban floods can be contaminated with fecal material and pathogens. Evidence on infection risks associated with exposure to waterborne pathogens in urban floods is lacking. We address this gap by assessing the risk of infection from exposure to Giardia lamblia in urban flood water samples in Mexico City using a QMRA. Historical flood data was used to build severity indices and to test for correlations with risk of infection estimates. Results indicate similar maximal pathogen densities in urban flood water samples to those from wastewater treatment plants. Significant positive correlations between risk of G. lamblia infection and severity indices suggest that floods could act as an important source of pathogen transmission in Mexico City. Risk of infection to G. lamblia is greater in the city’s periphery, which is characterized by high marginalization levels. We argue that these risks should be managed by engaging citizens, water, and health authorities in decision making.
Low elevation coastal zones (LECZ) are extensive throughout the southeastern United States. LECZ communities are threatened by inundation from sea level rise, storm surge, wetland degradation, land subsidence, and hydrological flooding. Communication among scientists, stakeholders, policy makers and minority and poor residents must improve. We must predict processes spanning the ecological, physical, social, and health sciences. Communities need to address linkages of (1) human and socioeconomic vulnerabilities; (2) public health and safety; (3) economic concerns; (4) land loss; (5) wetland threats; and (6) coastal inundation. Essential capabilities must include a network to assemble and distribute data and model code to assess risk and its causes, support adaptive management, and improve the resiliency of communities. Better communication of information and understanding among residents and officials is essential. Here we review recent background literature on these matters and offer recommendations for integrating natural and social sciences. We advocate for a cyber-network of scientists, modelers, engineers, educators, and stakeholders from academia, federal state and local agencies, non-governmental organizations, residents, and the private sector. Our vision is to enhance future resilience of LECZ communities by offering approaches to mitigate hazards to human health, safety and welfare and reduce impacts to coastal residents and industries.
Sea level rise has increased the frequency of tidal flooding even without accompanying precipitation in many coastal areas worldwide. As the tide rises, inundates the landscape, and then recedes, it can transport organic and inorganic matter between terrestrial systems and adjacent aquatic environments. However, the chemical and biological effects of tidal flooding on urban estuarine systems remain poorly constrained. Here, we provide the first extensive quantification of floodwater nutrient concentrations during a tidal flooding event and estimate the nitrogen (N) loading to the Lafayette River, an urban tidal sub-tributary of the lower Chesapeake Bay (USA). To enable the scale of synoptic sampling necessary to accomplish this, we trained citizen-scientist volunteers to collect 190 flood water samples during a perigean spring tide to measure total dissolved N (TDN), dissolved inorganic N (DIN) and phosphate concentrations, and Enterococcus abundance from the retreating ebb tide while using a phone application to measure the extent of tidal inundation. Almost 95% of Enterococcus results had concentrations that exceeded the standard established for recreational waters (104 MPN 100 mL(-1)). Floodwater dissolved nutrient concentrations were higher than concentrations measured in natural estuarine waters, suggesting floodwater as a source of dissolved nutrients to the estuary. However, only DIN concentrations were statistically higher in floodwater samples than in the estuary. Using a hydrodynamic model to calculate the volume of water inundating the landscape, and the differences between the median DIN concentrations in floodwaters and the estuary, we estimate that 1,145 kg of DIN entered the Lafayette River during this single, blue sky, tidal flooding event. This amount exceeds the annual N load allocation for overland flow established by federal regulations for this segment of the Chesapeake Bay by 30%. Because tidal flooding is projected to increase in the future as sea levels continue to rise, it is crucial we quantify nutrient loading from tidal flooding in order to set realistic water quality restoration targets for tidally influenced water bodies.
Urban floodwater could lead to significant risk for public and environmental health from mobilization of microbial pathogens and overflow of wastewater treatment systems. Here, we attempted to assess this risk by obtaining metagenomic profiles of antibiotic resistance genes (ARGs), virulence factors (VFs) and pathogens present in floodwater samples collected in urban Atlanta, GA that were categorized in two distinct groups: floods that occurred after periods of drought and those after regular (seasonal) rain events. Even though no major (known) pathogens were present at the limit of detection of our sequencing effort (~3 Gbp/sample), we observed that floodwaters after drought showed a 2.5-fold higher abundance of both ARGs and VFs compared to floodwater after rainy days. These differences were mainly derived by several novel species of the Pseudomonas genus, which were more dominant in the former versus the latter samples and carried several genes to cope with osmotic stress in addition to ARGs and VFs. These results revealed that there are previously undescribed species that become mobilized after flooding events in the Southeast US urban settings and could represent an increased public health risk, especially after periods of drought, which warrants further attention.
Wastewater treatment plants (WWTPs) are among the most important infrastructures, especially in coastal cities with a risk of flooding. During intense floods, runoff volume may exceed the capacity of a WWTP causing plant failures. This paper investigates the impacts of flooding on combined sewer overflows (CSOs) in a WWTP in New York City. The impacts of CSOs after flooding are classified into four terms of health, economic, social, and environmental factors. Different factors are defined to evaluate impacts of CSOs using multi-criteria decision-making of Preference Ranking Organization Method For Enrichment Evaluation and fuzzy technique for order performance by similarity to ideal solution. Since volume and depth were found the most significant factors for the CSO impact assessment, the Gridded Surface Subsurface Hydrologic Analysis model was run to compute flood depth and CSO volume under three treatment plant failure scenarios considering the hurricane Sandy information. Sensitivity analysis revealed that the TSS, BOD, and dissolved oxygen have the highest impacts on CSO. Uncertainty analysis was applied to investigate CSO impact variation. Results show that evaluating the impacts of CSOs in different aspects can give a good idea for flood planning and management with higher efficiency during storms.
Hurricanes and associated stormwater runoff events are expected to greatly impact coastal marine water quality, yet little is known about their immediate effects on microbiological quality of near-shore water. This study sampled Hilo Bay immediately after the impact of Hurricane Lane to understand the spatial and temporal variations of the abundance and diversity of fecal indicator enterococci, common fecal pathogens, and antibiotic resistance genes (ARGs). Water samples from seven sampling sites over 7 days were collected and analyzed, which showed that the overall microbiological water quality parameters [enterococci geometric mean (GM): 6-22 cfu/100 mL] fell within water quality standards and that the temporal dynamics indicated continuing water quality recovery. However, considerable spatial variation was observed, with the most contaminated site exhibiting impaired water quality (GM = 144 cfu/100 mL). The Enterococcus population also showed distinct genotypic composition at the most contaminated site. Although marker genes for typical fecal pathogens (invA for Salmonella, hipO for Campylobacter, mip for Legionella pneumophila, and eaeA for enteropathogenic Escherichia coli) were not detected, various ARGs (ermB, qurS, tetM, blaTEM, and sul1) and integron-associated integrase intI1 were detected at high levels. Understanding the temporal and spatial variation of microbiological water quality at fine granularity is important for balancing economic and recreational uses of coastal water and the protection of public health post the impact of major hurricane events.
Densely populated, low-lying coastal areas are most at-risk for negative impacts from increasing intensity of storm-induced flooding. Due to the effects of global warming and subsequent climate change, coastal temperatures and the magnitude of storm-induced flooding are projected to increase, creating a hospitable environment for the aquatic Vibrio spp. bacteria. A relative risk model analysis was used to determine which census block groups in coastal South Carolina have the highest risk of Vibrio spp. exposure using storm surge flooding as a proxy. Coastal block groups with dense vulnerable sub-populations exposed to storm surge have the highest relative risk, while inland block groups away from riverine-mediated storm surge have the lowest relative risk. As Vibriosis infections may be extremely severe or even deadly, the best methods of infection control will be regular standardized coastal and estuarine water monitoring for Vibrio spp. to enable more informed and timely public health advisories and help prevent future exposure.
The Canadian Arctic has a long history with diarrheal disease, including outbreaks of campylobacteriosis, giardiasis, and salmonellosis. Due to climate change, the Canadian Arctic is experiencing rapid environmental transformation, which not only threatens the livelihood of local Indigenous Peoples, but also supports the spread, frequency, and intensity of enteric pathogen outbreaks. Advances in diagnostic testing and detection have brought to attention the current burden of disease due to Cryptosporidium, Campylobacter, and Helicobacter pylori. As climate change is known to influence pathogen transmission (e.g., food and water), Arctic communities need support in developing prevention and surveillance strategies that are culturally appropriate. This review aims to provide an overview of how climate change is currently and is expected to impact enteric pathogens in the Canadian Arctic.
Freshwater can support the survival of the enteric pathogen Salmonella, though temporal Salmonella diversity in a large watershed has not been assessed. At 28 locations within the Susquehanna River basin, 10-liter samples were assessed in spring and summer over 2 years. Salmonella prevalence was 49%, and increased river discharge was the main driver of Salmonella presence. The amplicon-based sequencing tool, CRISPR-SeroSeq, was used to determine serovar population diversity and detected 25 different Salmonella serovars, including up to 10 serovars from a single water sample. On average, there were three serovars per sample, and 80% of Salmonella-positive samples contained more than one serovar. Serovars Give, Typhimurium, Thompson, and Infantis were identified throughout the watershed and over multiple collections. Seasonal differences were evident: serovar Give was abundant in the spring, whereas serovar Infantis was more frequently identified in the summer. Eight of the ten serovars most commonly associated with human illness were detected in this study. Crucially, six of these serovars often existed in the background, where they were masked by a more abundant serovar(s) in a sample. Serovars Enteritidis and Typhimurium, especially, were masked in 71 and 78% of samples where they were detected, respectively. Whole-genome sequencing-based phylogeny demonstrated that strains within the same serovar collected throughout the watershed were also very diverse. The Susquehanna River basin is the largest system where Salmonella prevalence and serovar diversity have been temporally and spatially investigated, and this study reveals an extraordinary level of inter- and intraserovar diversity.IMPORTANCE Salmonella is a leading cause of bacterial foodborne illness in the United States, and outbreaks linked to fresh produce are increasing. Understanding Salmonella ecology in freshwater is of importance, especially where irrigation practices or recreational use occur. As the third largest river in the United States east of the Mississippi, the Susquehanna River is the largest freshwater contributor to the Chesapeake Bay, and it is the largest river system where Salmonella diversity has been studied. Rainfall and subsequent high river discharge rates were the greatest indicators of Salmonella presence in the Susquehanna and its tributaries. Several Salmonella serovars were identified, including eight commonly associated with foodborne illness. Many clinically important serovars were present at a low frequency within individual samples and so could not be detected by conventional culture methods. The technologies employed here reveal an average of three serovars in a 10-liter sample of water and up to 10 serovars in a single sample.
Currently, Salmonella spp. is the bacterium causing the highest number of food-borne diseases (FADs) in the world. It is primarily associated with contaminated water used to that irrigates crops from intensive livestock farming. However, literature emphasizes that the reservoirs for Salmonella spp. remain in wildlife and there are unconventional sources or secondary reservoirs, such as soil. Human soil-borne diseases have not been modeled in spatial scenarios, and therefore it is necessary to consider soil and other climatic factors to anticipate the emergence of new strains or serotypes with potential threat to public and animal health. The objective of this research was to investigate whether edaphic and climatic factors are associated with the occurrence and prevalence of Salmonella spp. in Northwestern Mexico. We estimated the potential distribution of Salmonella spp. with an interpolation method of unsampled kriging areas for 15 environmental variables, considering that these factors have a seasonal dynamic of change during the year and modifications in longer periods. Subsequently, a database was generated with human salmonellosis cases reported in the epidemiological bulletins of the National System of Epidemiological Surveillance (SIVE). For the Northwest region, there were 30,595 human cases of paratyphoid and other salmonellosis reported have been reported in Baja California state, 71,462 in Chihuahua, and 16,247 in Sonora from 2002 to 2019. The highest prevalence was identified in areas with higher temperatures between 35 and 37 °C, and precipitation greater than 1000 mm. The edaphic variables limited the prevalence and geographical distribution of Salmonella spp., because the region is characterized by presenting a low percentage of organic matter (≤4.3), and most of the territory is classified as aridic and xeric, which implies that the humidity comprises ≤ 180 days a year. Finally, the seasonal time series indicated that in the states of Baja California and Chihuahua the rainy quarter of the year is 18.7% and 17.01% above a typical quarter respectively, while for Sonora the warmest quarter is 23.3%. It is necessary to deepen the relationship between different soil characteristics and climate elements such as temperature and precipitation, which influence the distribution of different soil-transmitted diseases.
The anthropogenic activities if not sensibly managed put enormous pressure on water resources of any country. Water quality of Kabul River has severely been polluted by rapid urbanization and industrialization. The sub lethal organic pollution is caused by discharge of effluents and other wastes into the river. The effluents from multiple leather processing units, and various other industries along with human feces and livestock manure are polluting the river ecology at an alarming rate. Climate is further impacting the quality of river and diminutive work has been done on climate change impacts on water quality. Integrated efforts are required to improve the water quality to reduce the morbidity and mortality rate in Pakistan and Afghanistan. In this review, water quality situation of Kabul River in Pakistan and Afghanistan along with potential impacts on health, agriculture and aquatic life under the changing climate scenario are presented. Water quality indices and modelling approaches for different parameters are suggested under the changing climate scenario which is expected to increase in the region to find the fate and transport of pollutants in the Kabul Rivers basin. Finally, recommendations were made to improve water quality of Kabul River and to decrease its adverse impacts.
The purpose of this research is to evaluate the hygienic quality of spring and well water used mainly for drinking and domestic activities for some districts in the municipality of Al-Hoceima city. In the rainy season of November to April 2018-2019, a total of fifty-two groundwater samples were collected under appropriate conditions and analyzed according to Moroccan standards, for coliform bacteria (BC), Escherichia coli (E. Coli), and intestinal Enterococcus (IE). The sample locations were identified from the physiochemical details and the nature of nearby pollution. The physical parameters of temperature, pH, dissolved oxygen O-2, oxygen saturation, electrical conductivity (EC), total dissolved solids (TDS) and salinity were measured on site. The results revealed that quality of water from all springs and wells, in the area of study, did not meet the World Health Organization guideline as well as Morocco standard for drinking water of zero (0) coliform forming unit (CFU) per 100 mL for CB, E. Coli and IE, respectively. Furthermore, fecal contamination of groundwater is indicated, the high bacteria count in samples could be attributed to their closeness septic effluent, the infiltration of wastewater into groundwater, and to the inadequate treatment of sewage. It is recommended that the water should be treated properly before consumption.
The Gaza Strip is one of the world’s most fragile states and faces substantial public health and development challenges. Climate change is intensifying existing environmental problems, including increased water stress. We provide the first published assessment of climate impacts on diarrhoeal disease in Gaza and project future health burdens under climate change scenarios. Over 1 million acute diarrhoea cases presenting to health facilities during 2009−2020 were linked to weekly temperature and rainfall data and associations assessed using time-series regression analysis employing distributed lag non-linear models (DLNMs). Models were applied to climate projections to estimate future burdens of diarrhoeal disease under 2 °C and 1.5 °C global warming scenarios. There was a significantly raised risk of diarrhoeal disease associated with both mean weekly temperature above 19 °C and total weekly rainfall below 6 mm in children 0−3 years. A heat effect was also present in subjects aged > 3 years. Annual diarrhoea cases attributable to heat and low rainfall was 2209.0 and 4070.3, respectively, in 0−3-year-olds. In both age-groups, heat-related cases could rise by over 10% under a 2 °C global warming level compared to baseline, but would be limited to below 2% under a 1.5 °C scenario. Mean rises of 0.9% and 2.7% in diarrhoea cases associated with reduced rainfall are projected for the 1.5 °C and 2 °C scenarios, respectively, in 0−3-year-olds. Climate change impacts will add to the considerable development challenges already faced by the people of Gaza. Substantial health gains could be achieved if global warming is limited to 1.5 °C.
BACKGROUND: Human leptospirosis is responsible for great losses and deaths, especially in developing countries, which can be mitigated by knowing the correct health indicators and climate influence on the disease. METHODS: Leptospirosis cases and deaths, population and precipitation were recovered from different databases (2007-2019). Annual incidence, mortality and case fatality rates (CFRs) of human leptospirosis and average precipitation were calculated for Brazil and its regions. Time series analysis using an moving average with external variable (ARMAX) model was used to analyse the monthly contribution and precipitation influence over leptospirosis cases for each Brazilian region and for the whole country. A forecast model to predict cases for 2020 was created for Brazil. RESULTS: Human leptospirosis exhibited heterogeneous distribution among Brazilian regions, with most cases occurring during the rainy season and precipitation influenced the disease occurrence in all regions but the South. The forecast model predicted 3276.99 cases for 2020 (mean absolute percentage error 14.680 and root mean square error 53.013). Considering the annual average for the period, the leptospirosis incidence was 1913 cases per 100 000 inhabitants, mortality was 0.168 deaths per 100 000 inhabitants and the CFR was 8.83%. CONCLUSIONS: The models built can be useful for planning leptospirosis surveillance and control actions for the whole country and its regions and, together with the health indicators, revealed no uniform epidemiological situation of leptospirosis in Brazil.
Leptospirosis is a zoonosis with epidemic potential, especially after heavy rainfall causing river, urban and flash floods. Certain features of Santa Catarina’s coastal region influence these processes. Using negative binomial regression, we investigated trends in the incidence of leptospirosis in the six municipalities with the highest epidemic peaks between 2000 and 2015 and the climatic and environmental variables associated with the occurrence of the disease. Incidence was highest in 2008 and 2011, and peaks occurred in the same month or month after disasters. Incidence showed a strong seasonal trend, being higher in summer months. There was a decrease trend in incidence across the six municipalities (3.21% per year). The climatic and environmental factors that showed the strongest associations were number of rainy days, maximum temperature, presence of flash floods, and river flooding. The impact of these variables varied across the municipalities. Significant interactions were found, indicating that the effect of river flooding on incidence is not the same across all municipalities and differences in incidence between municipalities depend on the occurrence of river flooding.
Leptospirosis is an acute febrile disease that mainly affects developing countries with tropical climates. The complexity and magnitude of this disease is attributed to socioeconomic, climatic, and environmental conditions. In this study, in a 10-year period from 2008 to 2017, the relationship between human leptospirosis cases and climatic factors in Cartagena de Indias, Colombia were evaluated. Monthly leptospirosis cases, climatic variables, and macroclimatic phenomena (El Nino and La Nina) were obtained from public datasets. Local climatic factors included temperature (maximum, average, and minimum), relative humidity, precipitation, and the number of precipitation days. Time series graphs were drawn and correlations between cases of leptospirosis and climatic variables considering lags from 0 to 10 months were examined. A total of 360 cases of leptospirosis were reported in Cartagena during the study period, of which 192 (53.3%) were systematically notified between October and December. Several correlations were detected between the number of cases, local climatic variables, and macroclimatic phenomena. Mainly, the increase of cases correlated with increased precipitation and humidity during the La Nina periods. Herein, seasonal patterns and correlations suggest that the climate in Cartagena could favor the incidence of leptospirosis. Our findings suggest that prevention and control of human leptospirosis in Cartagena should be promoted and strengthened, especially in the last quarter of the year.
The way newspapers frame infectious disease outbreaks and their connection to the environmental determinants of disease transmission matter because they shape how we understand and respond to these major events. In 2017, following an unexpected climatic event named “El Niño Costero,” a dengue epidemic in Peru affected over seventy-five thousand people. This paper examines how the Peruvian news media presented dengue, a climate-sensitive disease, as a public health problem by analyzing a sample of 265 news stories on dengue from two major newspapers published between January 1st and December 31st of 2017. In analyzing the construction of responsibility for the epidemic, I find frames that blamed El Niño Costero’s flooding and Peru’s poorly prepared cities and public health infrastructure as the causes of the dengue outbreak. However, when analyzing frames that offer solutions to the epidemic, I find that news articles call for government-led, short-term interventions (e.g., fogging) that fail to address the decaying public health infrastructure and lack of climate-resilient health systems. Overall, news media tended to over-emphasize dengue as requiring technical solutions that ignore the root causes of health inequality and environmental injustice that allow dengue to spread in the first place. This case speaks to the medicalization of public health and to a long history of disease-control programs in the Global South that prioritized top-down technical approaches, turning attention away from the social and environmental determinants of health, which are particularly important in an era of climate change.
The 2030 Agenda for Sustainable Development is a plan of action for people, planet and prosperity. Thousands of years and centuries of colonisation have passed the precarious housing conditions, food insecurity, lack of sanitation, the limitation of surveillance, health care programs and climate change. Chagas disease continues to be a public health problem. The control programs have been successful in many countries in reducing transmission by T. cruzi; but the results have been variable. WHO makes recommendations for prevention and control with the aim of eliminating Chagas disease as a public health problem. Climate change, deforestation, migration, urbanisation, sylvatic vectors and oral transmission require integrating the economic, social, and environmental dimensions of sustainable development, as well as the links within and between objectives and sectors. While the environment scenarios change around the world, native vector species pose a significant public health threat. The man-made atmosphere change is related to the increase of triatomines’ dispersal range, or an increase of the mobility of the vectors from their sylvatic environment to man-made constructions, or humans getting into sylvatic scenarios, leading to an increase of Chagas disease infection. Innovations with the communities and collaborations among municipalities, International cooperation agencies, local governmental agencies, academic partners, developmental agencies, or environmental institutions may present promising solutions, but sustained partnerships, long-term commitment, and strong regional leadership are required. A new world has just opened up for the renewal of surveillance practices, but the lessons learned in the past should be the basis for solutions in the future.
The transmission of leptospirosis is conditioned by climatic variables. In northeastern Argentina leptospirosis outbreaks occur mainly in coincidence with periods of abundant precipitation and high hydrometric level. A Susceptible-Infectious-Recovered Epidemiological Model (SIR) is proposed, which incorporates hydroclimatic variables for the three most populated cities in the area (Santa Fe, Paraná and Rosario), during the 2009-2018 period. Results obtained by solving the proposed SIR model for the 2010 outbreak are in good agreement with the actual data, capturing the dynamics of the leptospirosis outbreak wave. However, the model does not perform very well in the last months of the year when isolated cases appear outside the outbreak periods, probably due to non- climatic factors not explicitly considered in the present version of the model. Nevertheless, the dynamic modeling of infectious diseases considering hydroclimatic variables constitutes a climatic service for the public health system, not yet available in Argentina.
The relationship between hydrometeorological disasters and the health of affected populations is still hardly discussed in Rio Grande do Sul (RS), Brazil. Hepatitis A is a disease that involves health and urban environment issue and is an avoidable disease. This study aims to analyze the relationship between flood areas and waterborne diseases, in this case, Hepatitis A. A database of confirmed cases of Hepatitis A and flood events in the municipality of Encantado-RS, Brazil between 2012 and 2014 was structured. These data were analyzed spatially from the kernel estimator of the occurrence points of Hepatitis A cases and correlated to the urban perimeter. It was verified that 44 cases were registered in the three months following the occurrence of flood, an increase of almost 300% in the records of Hepatitis A. The results identified that all the confirmed cases are in the urban area located in the floodplain. This reaffirms the importance of encouraging the formulation and implementation of policies to prevent outbreaks of waterborne diseases post hydrometeorological disaster.
BACKGROUND: The burden of gastrointestinal infections related to hot ambient temperature remains largely unexplored in low-to-middle income countries which have most of the cases globally and are experiencing the greatest impact from climate change. The situation is particularly true in Brazil. OBJECTIVES: Using medical records covering over 78 % of population, we quantify the association between high temperature and risk of hospitalization for gastrointestinal infection in Brazil between 2000 and 2015. METHODS: Data on hospitalization for gastrointestinal infection and weather conditions were collected from 1814 Brazilian cities during the 2000-2015 hot seasons. A time-stratified case-crossover design was used to estimate the association. Stratified analyses were performed by region, sex, age-group, type of infection and early/late study period. RESULTS: For every 5 °C increase in mean daily temperature, the cumulative odds ratio (OR) of hospitalization over 0-9 days was 1.22 [95 % confidence interval (CI): 1.21, 1.23] at the national level, reaching its maximum in the south and its minimum in the north. The strength of association tended to decline across successive age-groups, with infants < 1 year most susceptible. The effect estimates were similar for men and women. Waterborne and foodborne infections were more associated with high temperature than the 'others' and 'idiopathic' groups. There was no substantial change in the association over the 16-year study period. DISCUSSION: Our findings indicate that exposure to high temperature is associated with increased risk of hospitalization for gastrointestinal infection in the hot season, with the strength varying by region, population subgroup and infection type. There was no evidence to indicate adaptation to heat over the study duration.
Climate change is projected to intensify drought conditions, which may increase the risk of diarrheal diseases in children. We constructed log-binomial generalized linear mixed models to examine the association between diarrhea risk, ascertained from global-scale nationally representative Demographic and Health Surveys, and drought, represented by the standardized precipitation evapotranspiration index, among children under five in 51 low- and middle-income countries (LMICs). Exposure to 6-month mild or severe drought was associated with an increased diarrhea risk of 5% (95% confidence interval 3-7%) or 8% (5-11%), respectively. The association was stronger among children living in a household that needed longer time to collect water or had no access to water or soap/detergent for handwashing. The association for 24-month drought was strong in dry zones but weak or null in tropical or temperate zones, whereas that for 6-month drought was only observed in tropical or temperate zones. In this work we quantify the associations between exposure to long-term drought and elevated diarrhea risk among children under five in LMICs and suggest that the risk could be reduced through improved water, sanitation, and hygiene practices, made more urgent by the likely increase in drought due to climate change.
Naegleria fowleri (N. fowleri) is a free-living, unicellular, opportunistic protist responsible for the fatal central nervous system infection, primary amoebic meningoencephalitis (PAM). Given the increase in temperatures due to global warming and climate change, it is estimated that the cases of PAM are on the rise. However, there is a current lack of awareness and effective drugs, meaning there is an urgent need to develop new therapeutic drugs. In this study, the target compounds were synthesized and tested for their anti-amoebic properties against N. fowleri. Most compounds exhibited significant amoebicidal effects against N. fowleri; for example, 1h, 1j, and 1q reduced N. fowleri’s viability to 15.14%, 17.45% and 28.78%, respectively. Furthermore, the majority of the compounds showed reductions in amoeba-mediated host death. Of interest are the compounds 1f, 1k, and 1v, as they were capable of reducing the amoeba-mediated host cell death to 52.3%, 51%, and 56.9% from 100%, respectively. Additionally, these compounds exhibit amoebicidal properties as well; they were found to decrease N. fowleri’s viability to 26.41%, 27.39%, and 24.13% from 100%, respectively. Moreover, the MIC(50) values for 1e, 1f, and 1h were determined to be 48.45 µM, 60.87 µM, and 50.96 µM, respectively. Additionally, the majority of compounds were found to exhibit limited cytotoxicity, except for 1l, 1o, 1p, 1m, 1c, 1b, 1zb, 1z, 1y, and 1x, which exhibited negligible toxicity. It is anticipated that these compounds may be developed further as effective treatments against these devastating infections due to brain-eating amoebae.
Harmful algal blooms (HABs) in freshwater lakes and oceans date back to as early as the 19th century, which can cause the death of aquatic and terrestrial organisms. However, it was not until the end of the 20th century that researchers had started to pay attention to the hazards and causes of HABs. In this study, we analyzed 5720 published literatures on HABs studies in the past 30 years. Our review presents the emerging trends in the past 30 years on HABs studies, the environmental and human health risks, prevention and control strategies and future developments. Therefore, this review provides a global perspective of HABs and calls for immediate responses.
Water supply and wastewater systems are essential infrastructure affected by floods. Additional risk is posed in developing countries, where access to sanitation is not universal. Few studies assess the flood risk to the sanitation-health nexus. Therefore, this study aims to present a theoretical and general framework for assessing the resilience of flood-sanitation-public health nexus in urban environments, composed by risk estimation and risk management assessment. The framework was developed from a system analysis approach focusing on central supply systems. Regarding risk assessment, the main vulnerability and exposure factors identified were land use, social vulnerability, coverage of sanitation systems, occurrence of waterborne diseases, number of people affected by floods and intersection with the flood map. From the risk management assessment stage three main typologies of trade-offs and synergies were identified: urban territorial planning versus runoff control, water quality versus sanitation infrastructure and flood management policy versus social behavior.
Modelling urban inundation and its associated health implications is numerous in its many applications. Flood modelling research contains a broad wealth of material, and microbial risk assessment has gained more popularity over the last decade. However, there is still a relative lack of understanding of how the microbial risk can be quantified from urban sewer flooding. This article intends to review the literature encompassing contemporary urban flood modelling approaches. Hydrodynamic and microbial models that can be applied for quantitative microbial risk assessment will be discussed. Consequently, urban sewer flooding will be the focus. This review found that the literature contains a variety of different hazards posed by urban flooding. Yet, far fewer examples encompass microbial risk from sewer system exceedance. To date, there is no evidence of a perfect model or technique, to carry out a quantitative microbial risk assessment from hydrodynamic simulations. The literature details many different methods. We intend to detail the advantages and limitations of each method. Along similar lines, hydraulic data constitutes a large part of the uncertainty which is inherent to this research field. Many studies in the literature detail data paucity and uncertainty in input data. As such, any advancement in this discipline will very likely aid future research.
Leptospirosis is a quintessential one health disease of humans and animals caused by pathogenic spirochetes of the genus Leptospira. Intra- and interspecies transmission is dependent on 1) reservoir host animals in which organisms replicate and are shed in urine over long periods of time, 2) the persistence of spirochetes in the environment, and 3) subsequent human-animal-environmental interactions. The combination of increased flooding events due to climate change, changes in human-animal-environmental interactions as a result of the pandemic that favor a rise in the incidence of leptospirosis, and under-recognition of leptospirosis because of nonspecific clinical signs and severe signs that resemble COVID-19 represents a “perfect storm” for resurgence of leptospirosis in people and domestic animals. Although often considered a disease that occurs in warm, humid climates with high annual rainfall, pathogenic Leptospira spp have recently been associated with disease in animals and humans that reside in semiarid regions like the southwestern US and have impacted humans that have a wide spectrum of socioeconomic backgrounds. Therefore, it is critical that physicians, veterinarians, and public health experts maintain a high index of suspicion for the disease regardless of geographic and socioeconomic circumstances and work together to understand outbreaks and implement appropriate control measures. Over the last decade, major strides have been made in our understanding of the disease because of improvements in diagnostic tests, molecular epidemiologic tools, educational efforts on preventive measures, and vaccines. These novel approaches are highlighted in the companion Currents in One Health by Sykes et al, AJVR, September 2022.
No abstract available.
BACKGROUND: Climate change is expected to increase the frequency of flooding events. Although rainfall is highly correlated with mosquito-borne diseases (MBD) in humans, less research focuses on understanding the impact of flooding events on disease incidence. This lack of research presents a significant gap in climate change-driven disease forecasting. OBJECTIVES: We conducted a scoping review to assess the strength of evidence regarding the potential relationship between flooding and MBD and to determine knowledge gaps. METHODS: PubMed, Embase, and Web of Science were searched through 31 December 2020 and supplemented with review of citations in relevant publications. Studies on rainfall were included only if the operationalization allowed for distinction of unusually heavy rainfall events. Data were abstracted by disease (dengue, malaria, or other) and stratified by post-event timing of disease assessment. Studies that conducted statistical testing were summarized in detail. RESULTS: From 3,008 initial results, we included 131 relevant studies (dengue n = 45, malaria n = 61, other MBD n = 49). Dengue studies indicated short-term ( < 1 month) decreases and subsequent (1-4 month) increases in incidence. Malaria studies indicated post-event incidence increases, but the results were mixed, and the temporal pattern was less clear. Statistical evidence was limited for other MBD, though findings suggest that human outbreaks of Murray Valley encephalitis, Ross River virus, Barmah Forest virus, Rift Valley fever, and Japanese encephalitis may follow flooding. DISCUSSION: Flooding is generally associated with increased incidence of MBD, potentially following a brief decrease in incidence for some diseases. Methodological inconsistencies significantly limit direct comparison and generalizability of study results. Regions with established MBD and weather surveillance should be leveraged to conduct multisite research to a) standardize the quantification of relevant flooding, b) study nonlinear relationships between rainfall and disease, c) report outcomes at multiple lag periods, and d) investigate interacting factors that modify the likelihood and severity of outbreaks across different settings. https://doi.org/10.1289/EHP8887.
In recent years, natural disasters such as hurricanes and floods have become more frequent, which usually leads to the pollution of drinking water. Drinking contaminated water may cause public health emergencies. The demand for healthy drinking water in disaster-affected areas is huge and urgent. Therefore, it is necessary to develop a simple water treatment technology suitable for emergencies. Inspired by nature, a fractional spray method was used to prepare graded purification material under mild conditions. The material consists of a calcium alginate isolation layer and a functional layer composed of calcium alginate, polyethylenimine, and water-based polyurethane, which can purify complex pollutants in water such as heavy metals, oils, pathogens, and micro/nano plastics through percolation. It does not require additional energy and can purify polluted water only under gravity. A disposable paper cup model was also designed, which can be used to obtain purified water by immersing in polluted water directly without other filtering devices. The test report shows that the water obtained from the paper cup was deeply purified. This design makes the material user-friendly and has the potential as a strategic material. This discovery can effectively improve the safety of drinking water after disasters and improve people’s quality of life.
BACKGROUND: Infections caused by non-cholera Vibrio species have undergone a global expansion over the past few decades reaching new areas of the world that were previously considered adverse for these organisms. The geographical extent of the expansion has not been uniform, and some areas have shown a rapid increase in infections. METHODS: We applied a new generation of models combining climate, population, and socioeconomic projections to map future scenarios of distribution and season suitability for pathogenic Vibrio. We used the Coupled Model Intercomparison Project 6 framework. Three datasets were used: Geophysical Fluid Dynamics Laboratory’s CM4.0 sea surface temperature and sea surface salinity; the coastline length dataset from the World Resources Institute; and Inter-Sectoral Impact Model Intercomparison Project 2b annual global population data. Future projections were used up to the year 2100 and historical simulations from 1850 to 2014. We also project human population at risk under different shared socioeconomic pathways worldwide. FINDINGS: Projections showed that coastal areas suitable for Vibrio could cover 38000 km of new coastal areas by 2100 under the most unfavourable scenario with an expansion rate of season suitability in these regions of around 1 month every 30 years. Population at risk in suitable regions almost doubled from 1980 to 2020 (from 610 million to 1100 million under the scenario of medium challenges to mitigation and adaptation, shared socioeconomic pathway 2-4.5), although the increment will be more moderate in the future and stabilises after 2050 at 1300 million. Finally, we provide the first global estimate for Vibrio infections, with values around half a million of cases worldwide in 2020. INTERPRETATION: Our projections anticipated an expansion of both the temporal and spatial disease burden for Vibrio infections, in particular at high latitudes of the northern hemisphere. However, the largest extent occurred from 1980 to 2020 and a more moderate increase is expected for the future. The most positive outcome is that the projections showed that Vibrio morbidity will remain relatively stable over the coming decades.
Responding to infrastructural damage in the aftermath of natural disasters at a national, regional, and local level poses a significant challenge. Damage to road networks, clean water supply, and sanitation infrastructures, as well as social amenities like schools and hospitals, exacerbates the circumstances. As safe water sources are destroyed or mixed with contaminated water during a disaster, the risk of a waterborne disease outbreak is elevated in those disaster-affected locations. A country such as Haiti, where a large quantity of the population is deprived of safe water and basic sanitation facilities, would suffer more in post-disaster scenarios. Early warning of waterborne diseases like cholera would be of great help for humanitarian aid, and the management of disease outbreak perspectives. The challenging task in disease forecasting is to identify the suitable variables that would better predict a potential outbreak. In this study, we developed five (5) models including a machine learning approach, to identify and determine the impact of the environmental and social variables that play a significant role in post-disaster cholera outbreaks. We implemented the model setup with cholera outbreak data in Haiti after the landfall of Hurricane Matthew in October 2016. Our results demonstrate that adding high-resolution data in combination with appropriate social and environmental variables is helpful for better cholera forecasting in a post-disaster scenario. In addition, using a machine learning approach in combination with existing statistical or mechanistic models provides important insights into the selection of variables and identification of cholera risk hotspots, which can address the shortcomings of existing approaches.
Beach sand and water have both shown relevance for human health and their microbiology have been the subjects of study for decades. Recently, the World Health Organization recommended that recreational beach sands be added to the matrices monitored for enterococci and Fungi. Global climate change is affecting beach microbial contamination, via changes to conditions like water temperature, sea level, precipitation, and waves. In addition, the world is changing, and humans travel and relocate, often carrying endemic allochthonous microbiota. Coastal areas are amongst the most frequent relocation choices, especially in regions where desertification is taking place. A warmer future will likely require looking beyond the use of traditional water quality indicators to protect human health, in order to guarantee that waterways are safe to use for bathing and recreation. Finally, since sand is a complex matrix, an alternative set of microbial standards is necessary to guarantee that the health of beach users is protected from both sand and water contaminants. We need to plan for the future safer use of beaches by adapting regulations to a climate-changing world.
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Nontuberculous mycobacterial (NTM) infections are costly, difficult to treat, and increasing in prevalence. Given this, there is a desire to understand the potential relationships between NTM in water sources and climate change stressors. To address this need, a critical literature review was performed. Connections were made between NTM fate and transport, climate change, engineering decisions, and societal changes, and uncertainties highlighted. Environmental conditions discussed with respect to NTM risk included changing temperature, humidity, salinity, rainfall, and extreme weather events. NTM risk was then considered under climate/societal scenarios described by Intergovernmental Panel on Climate Change (IPCC) scientists. Findings indicate that the resilience of NTM under a variety of environmental conditions (e.g., warm temperatures, eutrophication) may increase their net prevalence in water environments under climate change, increasing exposure. Water management decisions may also influence exposure to NTM as water scarcity is expected to result in increased reliance on reclaimed water. Water managers may control risk of exposure through innovative water treatment processes and equitable water management decisions, turning towards an integrated One Water approach to reduce and/or mitigate the impacts of de facto reuse. Future research recommendations are provided including studies into potential changes to NTM fate and transport in uniquely impacted climates (e.g., boreal regions), and investigations into the relative risk of managed aquifer recharge as compared to no action.
PURPOSE OF REVIEW: Melioidosis, caused by the soil-dwelling bacterium Burkholderia pseudomallei, is a tropical infection associated with high morbidity and mortality. This review summarizes current insights into melioidosis’ endemicity, focusing on epidemiological transitions, zoonosis, and climate change. RECENT FINDINGS: Estimates of the global burden of melioidosis affirm the significance of hot-spots in Australia and Thailand. However, it also highlights the paucity of systematic data from South Asia, The Americas, and Africa. Globally, the growing incidence of diabetes, chronic renal and (alcoholic) liver diseases further increase the susceptibility of individuals to B. pseudomallei infection. Recent outbreaks in nonendemic regions have further exposed the hazard from the trade of animals and products as potential reservoirs for B. pseudomallei. Lastly, global warming will increase precipitation, severe weather events, soil salinity and anthrosol, all associated with the occurrence of B. pseudomallei. SUMMARY: Epidemiological transitions, zoonotic hazards, and climate change are all contributing to the emergence of novel melioidosis-endemic areas. The adoption of the One Health approach involving multidisciplinary collaboration is important in unraveling the real incidence of B. pseudomallei, as well as reducing the spread and associated mortality.
Intermittent water supply systems (IWSSs) are prevalent in most developing countries and some developed ones. Their usage is driven by necessity rather than as a principal objective, mostly due to technical and economic deficiencies. Major health risks and socio-economic inequities are associated with such systems. Their impacts are aggravated by climate changes and the COVID-19 crisis. These are likely to have profound implications on progress toward advancing sustainable development goals (SDGs). Motivated by providing a comprehensive overview of global knowledge on IWSSs, the present work proposed to track and analyze research works on IWSSs utilizing bibliometric techniques and visual mapping tools. This includes investigating the trends and growth trajectories of research works on IWSSs and analyzing the various approaches proposed to expand our understanding with respect to the management, modeling, optimization, and impacts of IWSSs. The national and international contributions and collaboration figures are further analyzed at country, institution, author, and source levels. This analysis indicates that research works conducted on IWSSs have certain expectations in terms of productivity (total global productivity; 197 documents). The United States was the best country in terms of productivity (58 documents; 29.4%), while the Water Switzerland journal was the most productive journal (19 documents; 9.6%). The impacts of IWSSs on health and well-being have attracted considerable attention. The outcomes showed deep and justified worries in relation to the transition from intermittent to continuous supply, equity, and mitigating the health risks associated with IWSSs in the foreseen future. The utilization of artificial intelligence techniques and expert systems will drive and shape future IWSS-related research activities. Therefore, investments in this regard are crucial.
The quality of global water resources is increasingly strained by socio-economic developments and climate change, threatening both human livelihoods and ecosystem health. With inadequately managed wastewater being a key driver of deterioration, Sustainable Development Goal (SDG) 6.3 was established to halve the proportion of untreated wastewater discharged to the environment by 2030. Yet, the impact of achieving SDG6.3 on global ambient water quality is unknown. Addressing this knowledge gap, we develop a high-resolution surface water quality model for salinity as indicated by total dissolved solids, organic pollution as indicated by biological oxygen demand and pathogen pollution as indicated by fecal coliform. Our model includes a novel spatially-explicit approach to incorporate wastewater treatment practices, a key determinant of in-stream pollution. We show that achieving SDG6.3 reduces water pollution, but is still insufficient to improve ambient water quality to below key concentration thresholds in several world regions. Particularly in the developing world, reductions in pollutant loadings are locally effective but transmission of pollution from upstream areas still leads to water quality issues downstream. Our results highlight the need to go beyond the SDG-target for wastewater treatment in order to achieve the overarching goal of clean water for all. SGD 6.3 targets to half the proportion of untreated wastewater discharged to the environment by 2030 will substantially improve water quality globally, but a high-resolution surface water quality model suggests key thresholds will still not be met in regions with limited existing wastewater treatment.
Climate change is altering the habits of the population. Extensive drought periods and overuse of potable water led to significant water shortages in many different places. Therefore, new water sources are necessary for usage in applications where the microbiological and chemical water quality demands are less stringent, as for agriculture. In this study, we planted, germinated, and grew vegetables/fruits (cherry tomato, lettuce, and carrot) using three types of potential waters for irrigation: secondary-treated wastewater, chlorine-treated wastewater, and green wall-treated greywater, to observe potential health risks of foodstuff consumption. In this study the waters and crops were analyzed for three taxonomic groups: bacteria, enteric viruses, and protozoa. Enteric viruses, human Norovirus I (hNoVGI) and Enterovirus (EntV), were detected in tomato and carrots irrigated with secondary-treated and chlorine-treated wastewater, in concentrations as high as 2.63 log genome units (GU)/g. On the other hand, Aichi viruses were detected in lettuce. Bacteria and protozoa remained undetected in all fresh produce although being detected in both types of wastewaters. Fresh produce irrigated with green wall-treated greywater were free from the chosen pathogens. This suggests that green wall-treated greywater may be a valuable option for crop irrigation, directly impacting the cities of the future vision, and the circular and green economy concepts. On the other hand, this work demonstrates that further advancement is still necessary to improve reclaimed water to the point where it no longer constitutes risk of foodborne diseases and to human health.
Due to the growing and diverse demands on water supply, exploitation of non-conventional sources of water has received much attention. Since water consumption for irrigation is the major contributor to total water withdrawal, the utilization of non-conventional sources of water for the purpose of irrigation is critical to assuring the sustainability of water resources. Although numerous studies have been conducted to evaluate and manage non-conventional water sources, little research has reviewed the suitability of available water technologies for improving water quality, so that water reclaimed from non-conventional supplies could be an alternative water resource for irrigation. This article provides a systematic overview of all aspects of regulation, technology and management to enable the innovative technology, thereby promoting and facilitating the reuse of non-conventional water. The study first reviews the requirements for water quantity and quality (i.e., physical, chemical, and biological parameters) for agricultural irrigation. Five candidate sources of non-conventional water were evaluated in terms of quantity and quality, namely rainfall/stormwater runoff, industrial cooling water, hydraulic fracturing wastewater, process wastewater, and domestic sewage. Water quality issues, such as suspended solids, biochemical/chemical oxygen demand, total dissolved solids, total nitrogen, bacteria, and emerging contaminates, were assessed. Available technologies for improving the quality of non-conventional water were comprehensively investigated. The potential risks to plants, human health, and the environment posed by non-conventional water reuse for irrigation are also discussed. Lastly, three priority research directions, including efficient collection of non-conventional water, design of fit-for-purpose treatment, and deployment of energy-efficient processes, were proposed to provide guidance on the potential for future research.
Monitoring of fecal indicator bacteria at recreational waters is an important public health measure to minimize water-borne disease, however traditional culture methods for quantifying bacteria can take 18-24 hours to obtain a result. To support real-time notifications of water quality, models using environmental variables have been created to predict indicator bacteria levels on the day of sampling. We conducted a systematic review of predictive models of fecal indicator bacteria at freshwater recreational sites in temperate climates to identify and describe the existing approaches, trends, and their performance to inform beach water management policies. We conducted a comprehensive search strategy, including five databases and grey literature, screened abstracts for relevance, and extracted data using structured forms. Data were descriptively summarized. A total of 53 relevant studies were identified. Most studies (n = 44, 83%) were conducted in the United States and evaluated water quality using E. coli as fecal indicator bacteria (n = 46, 87%). Studies were primarily conducted in lakes (n = 40, 75%) compared to rivers (n = 13, 25%). The most commonly reported predictive model-building method was multiple linear regression (n = 37, 70%). Frequently used predictors in best-fitting models included rainfall (n = 39, 74%), turbidity (n = 31, 58%), wave height (n = 24, 45%), and wind speed and direction (n = 25, 47%, and n = 23, 43%, respectively). Of the 19 (36%) studies that measured accuracy, predictive models averaged an 81.0% accuracy, and all but one were more accurate than traditional methods. Limitations identifed by risk-of-bias assessment included not validating models (n = 21, 40%), limited reporting of whether modelling assumptions were met (n = 40, 75%), and lack of reporting on handling of missing data (n = 37, 70%). Additional research is warranted on the utility and accuracy of more advanced predictive modelling methods, such as Bayesian networks and artificial neural networks, which were investigated in comparatively fewer studies and creating risk of bias tools for non-medical predictive modelling.
Globally, waterborne gastroenteritis attributable to rotaviruses is on the increase due to the rapid increase in population growth, poor socioeconomic conditions, and drastic changes in climatic conditions. The burden of diarrhea is quite alarming in developing nations where the majority of the populations still rely on untreated surface water that is usually polluted for their immediate water needs. Humans and animals of all ages are affected by rotaviruses. In humans, the preponderance of cases occurs in children under 5 years. Global efforts in advancing water/wastewater treatment technologies have not yet realized the objective of complete viral removal from wastewater. Most times, surface waters are impacted heavily by inadequately treated wastewater run-offs thereby exposing people or animals to preventable health risks. The relative stability of rotaviruses in aquatic matrices during wastewater treatment, poor correlation of bacteriological indicators with the presence of rotaviruses, and their infectiousness at a low dose informed the proposal for inclusion in the routine microbiological water screening panel. Environmental monitoring data have been shown to provide early warnings that can complement clinical data used to monitor the impact of current rotavirus vaccination in a community. This review was therefore undertaken to critically appraise rotavirus excretion and emission pathways, and the existence, viability and persistence in the receiving aquatic milieu. The efficiency of the current wastewater treatment modality for rotavirus removal, correlation of the current bacteriological water quality assessment strategy, public health risks and current laboratory methods for an epidemiological study were also discussed.
Climate change driven seawater temperature (SWT) increases results in greater abundance and geographical expansion of marine pathogens, among which Vibrio parahaemolyticus (Vp) causes serious economic and health issues. In addition, plastic pollution in the ocean constitutes a vector for harmful pathogens dissemination. We investigate the effect of elevated SWT on the expression of genes implicated in adhesion and biofilm formation on abiotic surfaces in the clinical Vp strain RIMD2210633, which expresses hemolysins. Among the genes studied, the multivalent adhesion molecule-7 and the GlcNAc-binding protein A were involved in the adhesion of Vp to abiotic and biotic surfaces, whereas the type IV pili, the mannose-sensitive hemagglutinin, and the chitin-regulated pilins facilitate attachment and biofilm formation. Data presented here show that at 21°C, Vp is still viable but does not either proliferate or express the virulence factors studied. Interestingly, at 27°C and as early as 1 h of incubation, all factors are transiently expressed in free-living bacteria only and even more upregulated at 31°C. These results clearly show that increased SWT has an important impact on the adhesion properties of free-living Vp to plastic support and thus emphasize the role of climate change in the spread of this pathogenic bacteria.
Water-related diseases such as diarrhoeal diseases from viral, bacterial and parasitic organisms and Aedes-borne arboviral diseases are major global health problems. We believe that these two disease groups share common risk factors, namely inadequate household water management, poor sanitation and solid waste management. Where water provision is inadequate, water storage is essential. Aedes mosquitoes commonly breed in household water storage containers, which can hold water contaminated with enteric disease-causing organisms. Microbiological contamination of water between source and point-of-use is a major cause of reduced drinking-water quality. Inadequate sanitation and solid waste management increase not only risk of water contamination, but also the availability of mosquito larval habitats. In this article we discuss integrated interventions that interrupt mosquito breeding while also providing sanitary environments and clean water. Specific interventions include improving storage container design, placement and maintenance and scaling up access to piped water. Vector control can be integrated into sanitation projects that target sewers and drains to avoid accumulation of stagnant water. Better management of garbage and solid waste can reduce the availability of mosquito habitats while improving human living conditions. Our proposed integration of disease interventions is consistent with strategies promoted in several global health frameworks, such as the sustainable development goals, the global vector control response, behavioural change, and water, sanitation and hygiene initiatives. Future research should address how interventions targeting water, sanitation, hygiene and community waste disposal also benefit Aedes-borne disease control. The projected effects of climate change mean that integrated management and control strategies will become increasingly important.
Human health is threatened by antibiotic-resistant bacteria and their related infections, which cause thousands of human deaths every year worldwide. Surface waters are vulnerable to human activities and natural processes that facilitate the emergence and spread of antibiotic-resistant bacteria in the environment. This study evaluated the pathways and drivers of antimicrobial resistance (AR) in surface waters. We analyzed antibiotic resistance healthcare-associated infection (HAI) data reported to the CDC’s National Healthcare Safety Network to determine the number of antimicrobial-resistant pathogens and their isolates detected in healthcare facilities. Ten pathogens and their isolates associated with HAIs tested resistant to the selected antibiotics, indicating the role of healthcare facilities in antimicrobial resistance in the environment. The analyzed data and literature research revealed that healthcare facilities, wastewater, agricultural settings, food, and wildlife populations serve as the major vehicles for AR in surface waters. Antibiotic residues, heavy metals, natural processes, and climate change were identified as the drivers of antimicrobial resistance in the aquatic environment. Food and animal handlers have a higher risk of exposure to resistant pathogens through ingestion and direct contact compared with the general population. The AR threat to public health may grow as pathogens in aquatic systems adjust to antibiotic residues, contaminants, and climate change effects. The unnecessary use of antibiotics increases the risk of AR, and the public should be encouraged to practice antibiotic stewardship to decrease the risk.
The reality of climate change and biodiversity collapse is irrefutable in the 21st century, with urgent action required not only to conserve threatened species but also to protect human life and wellbeing. This existential threat forces us to recognise that our existence is completely dependent upon well-functioning ecosystems that sustain the diversity of life on our planet, including that required for human health. By synthesising data on the ecology, epidemiology and evolutionary biology of various pathogens, we are gaining a better understanding of factors that underlie disease emergence and spread. However, our knowledge remains rudimentary with limited insight into the complex feedback loops that underlie ecological stability, which are at risk of rapidly unravelling once certain tipping points are breached. In this paper, we consider the impact of climate change and biodiversity collapse on the ever-present risk of infectious disease emergence and spread. We review historical and contemporaneous infectious diseases that have been influenced by human environmental manipulation, including zoonoses and vector- and water-borne diseases, alongside an evaluation of the impact of migration, urbanisation and human density on transmissible diseases. The current lack of urgency in political commitment to address climate change warrants enhanced understanding and action from paediatricians – to ensure that we safeguard the health and wellbeing of children in our care today, as well as those of future generations.
BACKGROUND: Numerous studies have quantified the associations between ambient temperature and enteric infections, particularly all-cause enteric infections. However, the temperature sensitivity of enteric infections might be pathogen dependent. Here, we sought to identify pathogen-specific associations between ambient temperature and enteric infections. METHODS: We did a systematic review and meta-analysis by searching PubMed, Web of Science, and Scopus for peer-reviewed research articles published from Jan 1, 2000, to Dec 31, 2019, and also hand searched reference lists of included articles and excluded reviews. We included studies that quantified the effects of ambient temperature increases on common pathogen-specific enteric infections in humans. We excluded studies that expressed ambient temperature as a categorical or diurnal range, or in a standardised format. Two authors screened the search results, one author extracted data from eligible studies, and four authors verified the data. We obtained the overall risks by pooling the relative risks of enteric infection by pathogen for each 1°C temperature rise using random-effects modelling and robust variance estimation for the correlated effect estimates. Between-study heterogeneity was measured using I(2), τ(2), and Q-statistic. Publication bias was determined using funnel plot asymmetry and the trim-and-fill method. Differences among pathogen-specific pooled estimates were determined using subgroup analysis of taxa-specific meta-analysis. The study protocol was not registered but followed the PRISMA guidelines. FINDINGS: We identified 2981 articles via database searches and 57 articles from scanning reference lists of excluded reviews and included articles, of which 40 were eligible for pathogen-specific meta-analyses. The overall increased risks of incidence per 1°C temperature rise, expressed as relative risks, were 1·05 (95% CI 1·04-1·07; I(2) 97%) for salmonellosis, 1·07 (1·04-1·10; I(2) 99%) for shigellosis, 1·02 (1·01-1·04; I(2) 98%) for campylobacteriosis, 1·05 (1·04-1·07; I(2) 36%) for cholera, 1·04 (1·01-1·07; I(2) 98%) for Escherichia coli enteritis, and 1·15 (1·07-1·24; I(2) 0%) for typhoid. Reduced risks per 1°C temperature increase were 0·96 (95% CI 0·90-1·02; I(2) 97%) for rotaviral enteritis and 0·89 (0·81-0·99; I(2) 96%) for noroviral enteritis. There was evidence of between-pathogen differences in risk for bacterial infections but not for viral infections. INTERPRETATION: Temperature sensitivity of enteric infections can vary according to the enteropathogen causing the infection, particularly for bacteria. Thus, we encourage a pathogen-specific health adaptation approach, such as vaccination, given the possibility of increasingly warm temperatures in the future. FUNDING: Japan Society for the Promotion of Science (Kakenhi) Grant-in-Aid for Scientific Research.
BACKGROUND: Climate change based on temperature, humidity and wind can improve many characteristics of the arthropod carrier life cycle, including survival, arthropod population, pathogen communication, and the spread of infectious agents from vectors. This study aimed to find association between content of disease followed climate change we demonstrate in humans. METHODS: All the articles from 2016 to 2021 associated with global climate change and the effect of vector-borne disease were selected form databases including PubMed and the Global Biodiversity information facility database. All the articles selected for this short review were English. RESULTS: Due to the high burden of infectious diseases and the growing evidence of the possible effects of climate change on the incidence of these diseases, these climate changes can potentially be involved with the COVID-19 epidemic. We highlighted the evidence of vector-borne diseases and the possible effects of climate change on these communicable diseases. CONCLUSION: Climate change, specifically in rising temperature system is one of the world’s greatest concerns already affected pathogen-vector and host relation. Lice parasitic, fleas, mites, ticks, and mosquitos are the prime public health importance in the transmission of virus to human hosts.
Climate change is causing weather conditions to abruptly change and is directly impacting the health of humans. Due to climate change, there is an upsurge in conditions suitable for infectious pathogens and their carriers to survive and multiply. Infections that were eliminated decades ago are regaining their grounds among humans. Climate change is increasing the possibility of new outbreaks for these vector-borne, airborne, or waterborne infections. While adverse impacts of these outbreaks are only subject to the predictions, nevertheless, it is certain that these outbreaks will affect health status, mortality status and economy at local and international levels. However, these threats may be minimized if national and international public health departments would be willing to implement research- and evidence-based advanced preparedness strategies. This scientific review aims to explore how climate change is facilitating the spread of vector-borne (tick-borne encephalitis, dengue, West Nile virus, leishmaniasis), airborne (by weather conditions like storms), and waterborne infectious diseases (due to floods and droughts) and is triggering new outbreaks among humans.
BackgroundWaterborne disease outbreaks (WBDO) associated with tap water consumption are probably underestimated in France.AimIn order to improve their detection, Santé publique France launched a surveillance system in 2019, based on the periodical analysis of health insurance data for medicalised acute gastroenteritis (mAGE).MethodsSpatio-temporal cluster detection methods were applied to mAGE cases to prioritise clusters for further investigation. These investigations determined the plausibility that infection is of waterborne origin and the strength of association.ResultsBetween January 2010 and December 2019, 3,323 priority clusters were detected (53,878 excess mAGE cases). They involved 3,717 drinking water supply zones (WSZ), 15.4% of all French WSZ. One third of these WSZ (33.4%; n = 1,242 WSZ) were linked to repeated clusters. Moreover, our system detected 79% of WBDO voluntarily notified to health authorities.ConclusionEnvironmental investigations of detected clusters are necessary to determine the plausibility that infection is of waterborne origin. Consequently, they contribute to identifying which WSZ are linked to clusters and for which specific actions are needed to avoid future outbreaks. The surveillance system incorporates three priority elements: linking environmental investigations with water safety plan management, promoting the systematic use of rainfall data to assess waterborne origin, and focusing on repeat clusters. In the absence of an alternative clear hypothesis, the occurrence of a mAGE cluster in a territory completely matching a distribution zone indicates a high plausibility of water origin.
Despite the relative prosperity of Scandinavian countries, contamination of the drinking water supply with parasites has occurred on various occasions in the last few decades. These events have resulted in outbreaks of disease involving several thousand cases and/or the necessity for implementation of boil-water advisories. Against this background, in 2008, and again in 2019, the Norwegian Food Safety Authority requested a risk assessment from an independent scientific body regarding parasites in Norwegian drinking water. On each occasion, it was requested that specific questions were addressed. For the first assessment, data, both of general relevance and specific for Norway, were collected from appropriate sources, as available. Based on some of this information, a quantitative probability model was established and run to estimate the number of cases of waterborne cryptosporidiosis and giardiasis that may be expected in Norway, both in the general public and the immunocompromised, and under conditions where water treatment should be optimal, and also when water treatment efficacy may be compromised by weather conditions. For the second assessment, approximately a decade after the first, an update on the previous assessment was requested. Differences in information availability and other changes between the two assessments were described; although more data were available at the second assessment, considerable gaps still remained. For both assessments, data on the occurrence of these parasites in the Norwegian population, particularly those infected in Norway, were considered a challenge. However, due to changes in reporting requirements in 2020, the situation was improved for the second assessment. In addition, data were lacking for both assessments on whether animals or humans are most likely to contaminate water sources, and the species and genotypes of these parasites in Norwegian animals. It was also noted that some of the newer data on parasite numbers detected in water samples should be treated with caution. Due to this, further modelling was not conducted. The relevance of risk-based sampling rather than ad hoc sampling of water sources was also addressed. Despite the data gaps, this article provides an overview of the opportunities provided by conducting such assessments. In addition, some of the challenges encountered in attempting to estimate the risk posed from parasite contamination of water sources in Norway, particularly under predicted conditions of climate change, are described.
Complex, multihazard risks such as private groundwater contamination necessitate multiannual risk reduction actions including seasonal, weather-based hazard evaluations. In the Republic of Ireland (ROI), high rural reliance on unregulated private wells renders behavior promotion a vital instrument toward safeguarding household health from waterborne infection. However, to date, pathways between behavioral predictors remain unknown while latent constructs such as extreme weather event (EWE) risk perception and self-efficacy (perceived behavioral competency) have yet to be sufficiently explored. Accordingly, a nationwide survey of 560 Irish private well owners was conducted, with structural equation modeling (SEM) employed to identify underlying relationships determining key supply management behaviors. The pathway analysis (SEM) approach was used to model three binary outcomes: information seeking, post-EWE action, and well testing behavior. Upon development of optimal models, perceived self-efficacy emerged as a significant direct and/or indirect driver of all three behavior types-demonstrating the greatest indirect effect (beta = -0.057) on adoption of post-EWE actions and greatest direct (beta = 0.222) and total effect (beta = 0.245) on supply testing. Perceived self-efficacy inversely influenced EWE risk perception in all three models but positively influenced supply awareness (where present). Notably, the presence of a vulnerable (infant and/or elderly) household member negatively influenced adoption of post-EWE actions (beta = -0.131, p = 0.016). Results suggest that residential and age-related factors constitute key demographic variables influencing risk mitigation and are strongly mediated by cognitive variables-particularly self-efficacy. Study findings may help contextualize predictors of private water supply management, providing a basis for future risk-based water interventions.
Background Wastewater reuse represents a promising alternative source of water supply considering the water scarcity related to climate change. However, if not adequately treated, wastewater represents a source of microbiological health risk. The purpose of this work was to investigate the role of wastewater treatment on microbiological contamination by evaluating the possible risks associated with wastewater effluent reuse, taking into account new EU legislation (2020/741) on minimum requirements for water reuse. E. coli that produce Shiga toxins (STEC) and thermotolerant Campylobacter were monitored using an enrichment step associated with specific PCR, while Salmonella spp. and Legionella were detected with both cultural and molecular methods (PCR and q-PCR, respectively). Culture method was also used for the enumeration of different microbial indicators. The bacteria detection was compared in different wastewater plants with membrane bioreactor (MBR) system or with disinfection step with chlorine dioxide (ClO2). Moreover a comparison between molecular and culture methods was discussed. Results The results obtained showed good abatement performance for WWTPs equipped with MBR. The high concentrations of E. coli (range between 0.88 and 5.21 Log MPN/100 mL) and contamination by Salmonella spp. in effluent disinfected with ClO2 (17% of samples) showed the need to control the quality of this effluent. In addition, despite the absence of Legionella spp. with the culture method required by EU regulation, high concentrations of Legionella spp. (range between 2 and 7 log GU/L) and the presence of Leg. pneumophila with qPCR (15% of samples) highlight the need to carry out further investigations for reuse associated with aerosol formation (e.g. spray irrigation in agriculture). Conclusions The results obtained underline that the MBR technology can be suitable for wastewater reuse applications allowing to achieve the requirement proposed by the new European legislation. More attention should be given to wastewater reuse of effluents treated with ClO2. The use of the molecular methods for pathogens detection in wastewater could allow a more precautionary risks estimation associated with reuse. The overall results highlight that an evaluation of the effectiveness of the wastewater treatments is required for the prevention of a possible risk to public health.
Reuse of reclaimed wastewater for agricultural irrigation is an expanding practice worldwide. This practice needs to be monitored, partly because of pathogens that the water may contain after treatments. More particularly, sprinkler irrigation is known to generate aerosols which may lead to severe health risks to the population close to irrigated areas in case of the presence of Legionella bacteria in the water. A pilot experiment was conducted on two corn fields in South-Western France, irrigated with wastewater undergoing two different water treatments (ultra-filtration and UV). Water analyses have shown high levels of Legionella in the water even after a standard wastewater treatment plant (WWTP) cleaning process followed by the UV treatment (up to 10(6) GC per L in 2019). In this context, an updated general Bayesian network (GBN), using discrete and continuous random variables, in quantitative microbial risk assessment (QMRA) is proposed to monitor the risk of Legionella infection in the vicinity of the irrigated plots. The model’s originality is based on i) a graphical probabilistic model that describes the exposure pathway of Legionella from the WWTP to the population using observed and non-observed variables and ii) the model inference updating at each new available measurement. Different scenarios are simulated according to the exposure time of the persons, taking into account various distances from the emission source and a large dataset of climatic data. From the learning process included in the Bayesian principle, quantities of interest (contaminations before and after water treatments, inhaled dose, probabilities of infection) can be quantified with their uncertainty before and after the inclusion of each new data collected in situ. This approach gives a rigorous tool that allows monitoring the risks, facilitates discussions with reuse experts and progressively reduces uncertainty quantification through field data accumulation. For the two pilot treatments analyzed in this study, the median annual risk of Legionella infection did not exceed the US EPA annual infection benchmark of 10(-4) for any of the population at risk during the past few months of the pilot experiment (DALYs are estimated up to 10(-5)). The risk still bears watching with support from the method shown in this work.
Extreme weather events (EWEs) may significantly increase pathogenic contamination of private (unregulated) groundwater supplies. However, due to the paucity of protective guidance, private well users may be ill-equipped to undertake adaptive actions. With rising instances of waterborne illness documented in groundwater-dependent, developed regions such as the Republic of Ireland, a better understanding of well user risk perceptions pertaining to EWEs is required to establish appropriate educational interventions. To this end, the current study employed an online and physical questionnaire to identify current risk perceptions and correspondent predictors among Irish private well users concerning extreme weather. Respondents were elicited via purposive sampling, with 515 private well users elucidating perceived supply contamination risk in the wake of five EWEs between the years 2013-2018 including drought and pluvial flooding. A novel scoring protocol was devised to quantify overall risk perception (i.e. perceived likelihood, severity and consequences) of extreme weather impacts. Overall risk perception of EWEs was found to demonstrate a significant relationship with gender (p = 0.017) and event experience (p < 0.001), with female respondents and those reporting prior event experience exhibiting higher median risk perception scores. Risk perception was additionally mediated by perceived self-efficacy in undertaking supply maintenance (p = 0.001), as well users citing confidence in ability scored significantly lower than those citing no confidence. Two-step cluster analysis identified three distinct respondent subsets based on risk perception of EWEs (high, moderate and low perception), with female respondents and those with a third-level education significantly more likely to fall within the high perception cluster. Study findings affirm that certain demographic, experiential and cognitive factors exert a significant influence on private well user risk perceptions of EWE impacts and highlight potential focal points for future educational interventions seeking to reduce the risk of human infection associated with groundwater and extreme weather.
BackgroundVibrio spp. are aquatic bacteria that prefer warm seawater with moderate salinity. In humans, they can cause gastroenteritis, wound infections, and ear infections. During the summers of 2018 and 2019, unprecedented high sea surface temperatures were recorded in the German Baltic Sea.AimWe aimed to describe the clinical course and microbiological characteristics of Vibrio infections in Germany in 2018 and 2019.MethodsWe performed an observational retrospective multi-centre cohort study of patients diagnosed with domestically-acquired Vibrio infections in Germany in 2018 and 2019. Demographic, clinical, and microbiological data were assessed, and isolates were subjected to whole genome sequencing and antimicrobial susceptibility testing.ResultsOf the 63 patients with Vibrio infections, most contracted the virus between June and September, primarily in the Baltic Sea: 44 (70%) were male and the median age was 65 years (range: 2-93 years). Thirty-eight patients presented with wound infections, 16 with ear infections, six with gastroenteritis, two with pneumonia (after seawater aspiration) and one with primary septicaemia. The majority of infections were attributed to V. cholerae (non-O1/non-O139) (n = 30; 48%) or V. vulnificus (n = 22; 38%). Phylogenetic analyses of 12 available isolates showed clusters of three identical strains of V. vulnificus, which caused wound infections, suggesting that some clonal lines can spread across the Baltic Sea.ConclusionsDuring the summers of 2018 and 2019, severe heatwaves facilitated increased numbers of Vibrio infections in Germany. Since climate change is likely to favour the proliferation of these bacteria, a further increase in Vibrio-associated diseases is expected.
Climate change will lead to more extreme weather events in Europe. In Norway, little is known about how this will affect drinking water quality and population’s health due to waterborne diseases. The aim of our work was to generate new knowledge on the effect of extreme weather conditions and climate change on drinking water and waterborne disease. In this respect we studied the relationship between temperature, precipitation and runoff events, raw and treated water quality, and gastroenteritis consultations in Norway in 2006-2014 to anticipate the risk with changing climate conditions. The main findings are positive associations between extreme weather events and raw water quality, but only few with treated drinking water. Increase in maximum temperature was associated with an increase in risk of disease among all ages and 15-64 years olds for the whole year. Heavy rain and high runoff were associated with a decrease in risk of gastroenteritis for different age groups and time periods throughout the year. No evidence was found that increase in precipitation and runoff trigger increased gastroenteritis outbreaks. Large waterworks in Norway currently seem to manage extreme weather events in preventing waterborne disease. However, with more extreme weather in the future, this may change. Therefore, modelling future climate scenarios is necessary to assess the need for improved water treatment capacity in a future climate.
This paper provides a summary of the knowledge of drinking-water temperature increases and present daily, seasonal, and yearly temperature data of drinking-water distribution systems (DWDS). The increasing water temperatures lead to challenges in DWDS management, and we must assume a promotion of invertebrates as pipe inhabitants. Macro-, meio-, and microinvertebrates were found in nearly all DWDS. Data in relation to diversity and abundance clearly point out a high probability of mass development, and invertebrate monitoring must be the focus of any DWDS management. The water temperature of DWDS is increasing due to climate change effects, and as a consequence, the growth and reproduction of invertebrates is increasing. The seasonal development of a chironomid (Paratanytarus grimmii) and longtime development of water lice (Asellus aquaticus) are given. Due to increased water temperatures, a third generation of water lice per year has been observed, which is one reason for the observed mass development. This leads to an impact on drinking-water quality and an increased health risk, as invertebrates can serve as a host or vehicle for potential harmful microbes. More research is needed especially on (i) water temperature monitoring in drinking-water distribution systems, (ii) invertebrate development, and (iii) health risks.
BACKGROUND: Vibrio infections are becoming more frequent in the Baltic Sea region, which is caused by an increase in the sea surface temperature. Climate change creates the conditions for the emergence of new environmental niches that are beneficial for Vibrio spp., especially in the summer months. Vibrio vulnificus, which causes wound infections and septicaemia, represents a particularly dangerous species of Vibrio spp. There are numerous publications on the prevalence of V. vulnificus in various regions of the Baltic Sea, but there is a lack of such data for the Polish coast. This prompted us to conduct a pilot study into the prevalence of the bacteria in the Gulf of Gdansk. The study aimed to detect Vibrio spp. in the coastal waters and the wet sand at the beaches and bathing areas in the Gulf of Gdansk. MATERIALS AND METHODS: During the period from June 16th to September 23rd 2020, 112 samples of seawater and 105 samples of wet sand were collected at 16 locations along the coast of the Gulf of Gdansk and Hel peninsula. Isolation of Vibrio spp. was conducted by filtering method and the isolated bacteria was cultured on CHROM agar Vibrio and TCBS agar. Final genus identification was performed by the MALDI TOF technique. RESULTS: In the present study, 10 isolates of Vibrio spp. were obtained from seawater and wet sand samples collected in the Gulf of Gdansk and Hel peninsula coast. Three of the isolates were identified as V. vulnificus; the presence of the species was confirmed in the seawater samples which had been collected in Hel (1 isolate), Jastarnia (1 isolate), and Chalupy (1 isolate). One strain of Vibrio alginolyticus was isolated from the seawater sample collected in Hel. Moreover, identification was incomplete for 6 of the isolated strains, these were identified as Vibrio cholerae/mimicus These strains were collected in Jastarnia (1 isolate), Kuznica (1 isolate), Gdansk-Brzezno (1 isolate), Puck (2 isolates), Chalupy (1 isolate). CONCLUSIONS: Our preliminary research study confirmed the presence of potentially pathogenic V. vulnificus in the Gulf of Gdansk in the summer months. Therefore, further monitoring of the presence of Vibrio spp. in the Baltic coast area is necessary.
BACKGROUND: Leptospirosis is the most common zoonotic disease in Tuzla Canton. Objective: Determine the influence of environmental and precipitation factors on the incidence of leptospirosis. METHODS: A retrospective study included 80 patients with leptospirosis. Data on precipitation were obtained from the online database of Federal Hydrometeorological Institute of BiH. OpenStreetMap (OSM) was used for spatial analysis; patients were geolocated and put on a map. Statistical data processing included basic tests of descriptive statistics. RESULTS: In the period between 01.01.2014 and 31.12.2014, 80 patients with leptospirosis confirmed by clinical and serological testing were hospitalized in the Clinic for Infectious Diseases of the University Clinical Center Tuzla. Gender wise, out of 80 patients, 54 were male (67.5% of the total), and 26 were female (32.5%). More patients lived in the countryside: 64/80 (or 89%). The largest number of patients was engaged in agriculture and animal husbandry: 48/80 (or 60%), mostly cows 32/80 (40%), chickens 12/80 (15%), sheep 4/80 (5%) and pigs 3/80 (3.8%). Of the total number of patients, 50 (or 62.5%) had contact with domestic animals: dogs 10/80 (or 12.5%) and cats 5/80 (or 6.3%). Half of 53/80 (66.3%) patients had contact with flooded areas in the study period. The increase in leptospirosis diagnosed patients in the City of Srebrenik was statistically significant for 2014 (p<0.01). CONCLUSION: Leptospirosis in one of the neglected infectious diseases in our area, but the proven increase in the number of infected people after heavy rainfall obliges us to control the risks associated with this disease.
The frequency and severity of flooding events will increase over the coming decades due to global climate change. While close attention has typically been paid to infrastructural and environmental outcomes of flood events, the potential adverse human health consequences associated with post-event consumption from private groundwater sources have received minimal attention, leading to a poor understanding of private well users’ preparedness and the drivers of positive behavioural adoption. The current study sought to quantify the capacity of private well users to cope with flood-triggered contamination risks and identify the social psychological determinants of proactive attitudes in the Republic of Ireland, using a cross-sectional questionnaire incorporating two distinct models of health behaviour, the Health Belief Model and Risk-Attitude-Norms-Ability-Self Regulation model. Adoption of healthy behaviours prior to flooding was evaluated with respect to respondents’ risk exposure, risk experience and risk perception, in addition to systematic supply stewardship under normal conditions. Associations between adoption of protective behaviours and perception, experience and socio-demographic factors were evaluated through multinomial and multiple logistic regressions, while a multi-model inferential approach was employed with the predictors of health behaviour models. Findings suggest that floods are not considered likely to occur, nor were respondents worried about their occurrence, with 72.5% of respondents who reported previous flooding experience failing to adopt protective actions. Prior experience of well water contamination increased adoption of proactive attitudes when flooding occurred (+47%), with a failure to adopt healthy behaviours higher among rural non-agricultural residents (136%). Low levels of preparedness to deal with flood-related contamination risks are a side-effect of the general lack of appropriate well stewardship under normal conditions; just 10.1% of respondents adopted both water treatment and frequent testing, in concurrence with limited risk perception and poor awareness of the nexus between risk factors (e.g. floods, contamination sources) and groundwater quality. Perceived risk, personal norms and social norms were the best predictors of protective behaviour adoption and should be considered when developing future awareness campaigns.
During a 6-week period in November and December 2015, a series of Atlantic Storms swept across the Republic of Ireland (ROI) causing widespread pluvial and fluvial flooding. Flooding was particularly severe in the west and midlands, with rainfall up to 200% above normal in many regions, making it the wettest winter ever recorded. While the infrastructural damage and subsequent costs associated with flood events have, and continue to receive widespread attention, far less coverage is given to the associated adverse human health effects. This is particularly significant in the ROI, which is characterised by the highest crude incidence rates of verotoxigenic E. coli (VTEC) enteritis and cryptosporidiosis in Europe. Accordingly, weekly spatially-referenced infection incidence from July 2015 to June 2016 were employed in concurrence with weekly time-series of cumulative antecedent rainfall, surface water discharge and groundwater level, and high-resolution flood risk mapping. An ensemble of statistical and time-series analyses were used to quantify the influence of flood hydrometeorology on the incidence of confirmed infections. Seasonal decomposition (excluding seasonal patterns and long-term trends) identified a high residual infection peak during April 2016, with space-timing scanning used to identify the location, size and temporal extent of clustering. Excess cases of VTEC enteritis were geographically associated with the midlands, while cryptosporidiosis clusters were widespread. Generalised linear modelling of infection locations show that areas with a surface water body exhibited significantly higher incidence rates for both VTEC (OR: 1.225; p < 0.001) and cryptosporidiosis (OR: 1.363; p < 0.001). ARIMA models show a clear association between rainfall, surface water discharge, groundwater levels and infection incidence, with lagged associations from 16 to 20 weeks particularly strong, thus indicating a link between infection peaks (April 2016) and the flood event which began approximately 18 weeks earlier. All three hydrometeorological variables were associated with the increase in cryptosporidiosis during April 2016, while only surface water discharge was associated with VTEC enteritis. Study findings may be employed for improved risk communication, risk management and surveillance to safeguard public health after large hydrometeorological events.
BACKGROUND: Universal mass vaccination (UMV) against rotavirus has been implemented in many but not all European countries. This study investigated the impact of UMV on rotavirus incidence trends by comparing European countries with UMV: Belgium, England/Wales and Germany versus countries without UMV: Denmark and the Netherlands. METHODS: For this observational retrospective cohort study, time series data (2001-2016) on rotavirus detections, meteorological factors and population demographics were collected. For each country, several meteorological and population factors were investigated as possible predictors of rotavirus incidence. The final set of predictors were incorporated in negative binomial models accounting for seasonality and serial autocorrelation, and time-varying incidence rate ratios (IRR) were calculated for each age group and country separately. The overall vaccination impact two years after vaccine implementation was estimated by pooling the results using a random effects meta-analyses. Independent t-tests were used to compare annual epidemics in the pre-vaccination and post-vaccination era to explore any changes in the timing of rotavirus epidemics. RESULTS: The population size and several meteorological factors were predictors for the rotavirus epidemiology. Overall, we estimated a 42% (95%-CI 23;56%) reduction in rotavirus incidence attributable to UMV. Strongest reductions were observed for age-groups 0-, 1- and 2-years (IRR 0.47, 0.48 and 0.63, respectively). No herd effect induced by UMV in neighbouring countries was observed. In all UMV countries, the start and/or stop and corresponding peak of the rotavirus season was delayed by 4-7 weeks. CONCLUSIONS: The introduction of rotavirus UMV resulted in an overall reduction of 42% in rotavirus incidence in Western European countries two years after vaccine introduction and caused a change in seasonal pattern. No herd effect induced by UMV neighbouring countries was observed for Denmark and the Netherlands.
Under-five years old acute watery diarrhea (U5AWD) accounts for most diarrheal diseases’ burden, but little is known about the adjusted effect of meteorological and socioeconomic determinants. A dataset containing the seasonal numbers of U5AWD cases at the district level of Iran is collected through MOHME. Accordingly, the district-level standardized incidence ratio and Moran’s I values are calculated to detect the significant clusters of U5AWD over sixteen seasons from 2014 to 2018. Additionally, the author tested twelve Bayesian hierarchical models in order to determine which one was the most accurate at forecasting seasonal number of incidents. Iran features a number of U5AWD hotspots, particularly in the southeast. An extended spatiotemporal model with seasonally varying coefficients and space-time interaction outperformed other models, and so became the paper’s proposal in modeling U5AWD. Temperature demonstrated a global positive connection with seasonal U5AWD in districts (IRR: 1.0497; 95% CrI: 1.0254-1.0748), owing to its varying effects during the winter ((IRR: 1.0877; 95% CrI: 1.0408-1.1375) and fall (IRR: 1.0866; 95% CrI: 1.0405-1.1357) seasons. Also, elevation (IRR: 0.9997; 95% CrI: 0.9996-0.9998), piped drinking water (IRR: 0.9948; 95% CrI: 0.9933-0.9964), public sewerage network (IRR: 0.9965; 95% CrI: 0.9938-0.9992), years of schooling (IRR: 0.9649; 95% CrI: 0.944-0.9862), infrastructure-to-household size ratio (IRR: 0.9903; 95% CrI: 0.986-0.9946), wealth index (IRR: 0.9502; 95% CrI: 0.9231-0.9781), and urbanization (IRR: 0.9919; 95% CrI: 0.9893-0.9944) of districts were negatively associated with seasonal U5AWD incidence. Strategically, developing geoinformation alarm systems based on meteorological data might help predict U5AWD high-risk areas. The study also anticipates increased rates of U5AWD in districts with poor sanitation and socioeconomic level. Therefore, governments should take appropriate preventative actions in these sectors.
Understanding the geographical distribution in the association of temperature with childhood diarrhea can assist in formulating effective localized diarrhea prevention practices. This study aimed to identify the geographical variation in terms of temperature thresholds, lag effects, and attributable fraction (AF) in the effects of ambient temperature on Class C Other Infectious Diarrhea (OID) among children <5 years in Jiangsu Province, China. Daily data of OID cases and meteorological variables from 2015 to 2019 were collected. City-specific minimum morbidity temperature (MMT), increasing risk temperature (IRT), maximum risk temperature (MRT), maximum risk lag day (MRD), and lag day duration (LDD) were identified as risk indicators for the temperature-OID relationship using distributed lag non-linear models. The AF of OID incidence due to temperature was evaluated. Multivariable regression was also applied to explore the underlying modifiers of the AF. The geographical distributions of MMT, IRT, and MRT generally decreased with the latitude increment varying between 22.3-34.7 °C, -2.9-18.1 °C, and -6.8-23.2 °C. Considerable variation was shown in the AF ranging from 0.2 to 8.5%, and the AF significantly increased with latitude (95% confidence interval (CI): -3.458, -0.987) and economic status decrement (95% CI: -0.161, -0.019). Our study demonstrated between-city variations in the association of temperature with OID, which should be considered in the localized clinical and public health practices to decrease the incidence of childhood diarrhea.
Nowadays the World is facing a scarcity of safe drinking water and the water sector encounters great challenges. The impact of a growing population and the change of climate on water availability and quality; public health and environmental issues related to emerging pollutants are the major challenges that need to be addressed. In drinking water, there may be a chance of having water-related diseases and health issues due to the occurrence of some pathogens. In the present study, we synthesized nanosilica from rice husk and it was encapsulated with sodium alginate beads and tested its efficiency for removal of bacteria from drinking water. These beads are novel since it is fully bio-origin, biodegradable and cost-effective. The isolated nanosilica were characterized spectroscopically and morphologically (FT-IR, XRD, FESEM, and HRTEM). The synthesized beads were characterized by FT-IR, FESEM, and EDX and antibacterial analysis. Using the Petrifilm method and column disinfection experiment, different filler loadings were optimized and found that higher content (1.25 g) of nanosilica reduced bacterial contamination of drinking water. The alginate-nanosilica beads are cost-effective compared to alginate beads incorporated with other nanomaterials. The antibacterial evaluation verified superior antibacterial efficacy against E.coli. The prepared alginate-nanosilica beads can be used in the wastewater treatment industry, as an effective antibacterial agent.
This study explored the environmental determinants of different months on snail density measured in April at different types of snail habitats (marshlands, inner embankments, and hills) by considering spatial effects. Data were gathered from surveys on snails that were conducted in Hunan Province in April 2016, and information was collected on environmental variables. To investigate the environmental factors influencing snail density in various types of snail habitats, the ordinary least square model, spatial lag model, and spatial error model were all used. The environmental determinants for snail density showed different effects in the three types of snail habitats. In marshlands, snail density measured in April was associated positively with the normalized difference vegetation index (NDVI) and was associated negatively with flooding duration and annual hours of sunshine. Extreme temperatures correlated strongly to snail density measured in April (P < 0.05). In areas inside embankments, snail density measured in April increased with a decreased distance between snail habitat and the nearest river (P < 0.05). In hills, extreme heat, annual hours of sunshine, NDVI in September, and annual average land surface temperature (LST) were associated negatively with snail density measured in April, whereas index of moisture (IM) was associated positively with snail density measured in April (P < 0.05). The effects of LST and hours of sunshine on snail density measured in April varied with months of the year in the three different types of snail habitats (P < 0.05). Our study might provide a theoretical foundation for preventing snail transmission and subsequent spread of schistosomiasis.
4
BACKGROUND: Dengue is an endemic vector-borne disease influenced by environmental factors such as landscape and climate. Previous studies separately assessed the effects of landscape and climate factors on mosquito occurrence and dengue incidence. However, both factors concurrently coexist in time and space and can interact, affecting mosquito development and dengue disease transmission. For example, eggs laid in a suitable environment can hatch after being submerged in rain water. It has been difficult for conventional statistical modeling approaches to demonstrate these combined influences due to mathematical constraints. OBJECTIVES: To investigate the combined influences of landscape and climate factors on mosquito occurrence and dengue incidence. METHODS: Entomological, epidemiological, and landscape data from the rainy season (July-December) were obtained from respective government agencies in Metropolitan Manila, Philippines, from 2012 to 2014. Temperature, precipitation and vegetation data were obtained through remote sensing. A random forest algorithm was used to select the landscape and climate variables. Afterward, using the identified key variables, a model-based (MOB) recursive partitioning was implemented to test the combined influences of landscape and climate factors on ovitrap index (vector mosquito occurrence) and dengue incidence. RESULTS: The MOB recursive partitioning for ovitrap index indicated a high sensitivity of vector mosquito occurrence on environmental conditions generated by a combination of high residential density areas with low precipitation. Moreover, the MOB recursive partitioning indicated high sensitivity of dengue incidence to the effects of precipitation in areas with high proportions of residential density and commercial areas. CONCLUSIONS: Dengue dynamics are not solely influenced by individual effects of either climate or landscape, but rather by their synergistic or combined effects. The presented findings have the potential to target vector surveillance in areas identified as suitable for mosquito occurrence under specific climatic conditions and may be relevant as part of urban planning strategies to control dengue.
Dengue is a mosquito-borne viral infection, found in tropical and sub-tropical climates worldwide, mostly in urban and semi-urban areas. Countries like Pakistan receive heavy rains annually resulting in floods in urban cities due to poor drainage systems. Currently, different cities of Pakistan are at high risk of dengue outbreaks, as multiple dengue cases have been reported due to poor flood control and drainage systems. After heavy rain in urban areas, mosquitoes are provided with a favorable environment for their breeding and transmission through stagnant water due to poor maintenance of the drainage system. The history of the dengue virus in Pakistan shows that there is a closed relationship between dengue outbreaks and a rainfall. There is no specific treatment for dengue; however, the outbreak can be controlled through internet of medical things (IoMT). In this paper, we propose a novel privacy-preserved IoMT model to control dengue virus outbreaks by tracking dengue virus-infected patients based on bedding location extracted using call data record analysis (CDRA). Once the bedding location of the patient is identified, then the actual infected spot can be easily located by using geographic information system mapping. Once the targeted spots are identified, then it is very easy to eliminate the dengue by spraying the affected areas with the help of unmanned aerial vehicles (UAVs). The proposed model identifies the targeted spots up to 100%, based on the bedding location of the patient using CDRA.
Melioidosis is endemic in the remote Katherine region of northern Australia. In a population with high rates of chronic disease, social inequities, and extreme remoteness, the impact of melioidosis is exacerbated by severe weather events and disproportionately affects First Nations Australians. All culture-confirmed melioidosis cases in the Katherine region of the Australian Top End between 1989-2021 were included in the study, and the clinical features and epidemiology were described. The diversity of Burkholderia pseudomallei strains in the region was investigated using genomic sequencing. From 1989-2021 there were 128 patients with melioidosis in the Katherine region. 96/128 (75%) patients were First Nations Australians, 72/128 (56%) were from a very remote region, 68/128 (53%) had diabetes, 57/128 (44%) had a history of hazardous alcohol consumption, and 11/128 (9%) died from melioidosis. There were 9 melioidosis cases attributable to the flooding of the Katherine River in January 1998; 7/9 flood-associated cases had cutaneous melioidosis, five of whom recalled an inoculating event injury sustained wading through flood waters or cleaning up after the flood. The 126 first-episode clinical B. pseudomallei isolates that underwent genomic sequencing belonged to 107 different sequence types and were highly diverse, reflecting the vast geographic area of the study region. In conclusion, melioidosis in the Katherine region disproportionately affects First Nations Australians with risk factors and is exacerbated by severe weather events. Diabetes management, public health intervention for hazardous alcohol consumption, provision of housing to address homelessness, and patient education on melioidosis prevention in First Nations languages should be prioritised.
BACKGROUND: Although studies have provided the estimates of floods-diarrhoea associations, little is known about the lag effect, effect modification, and attributable risk. Based on Sichuan, China, an uneven socio-economic development province with plateau, basin, and mountain terrains spanning different climatic zones, we aimed to systematically examine the impacts of floods on diarrheal morbidity. METHODS: We retrieved information on daily diarrheal cases, floods, meteorological variables, and annual socio-economic characteristics for 21 cities in Sichuan from January 1, 2017 to December 31, 2019. We fitted time-series Poisson models to estimate the city-specific floods-diarrhoea relation over the lags of 0-14 days, and then pooled them using meta-analysis for cumulative and lag effects. We further employed meta-regression to explore potential effect modifiers and identify effect modification. We calculated the attributable diarrheal cases and fraction of attributable morbidity within the framework of the distributed lag model. RESULTS: Floods had a significant cumulative association with diarrhoea at the provincial level, but varied by regions and cities. The effects of the floods appeared on the second day after the floods and lasted for 5 days. Floods-diarrhoea relations were modified by three effect modifiers, with stronger flood effects on diarrhoea found in areas with higher air pressure, lower diurnal temperature range, or warmer temperature. Floods were responsible for advancing a fraction of diarrhoea, corresponding to 0.25% within the study period and 0.48% within the flood season. CONCLUSIONS: The impacts imposed by floods were mainly distributed within the first week. The floods-diarrhoea relations varied by geographic and climatic conditions. The diarrheal burden attributable to floods is currently low in Sichuan, but this figure could increase with the exposure more intensive and the effect modifiers more detrimental in the future. Our findings are expected to provide evidence for the formulation of temporal- and spatial-specific strategies to reduce potential risks of flood-related diarrhoea.
BACKGROUND: Schistosomiasis is a highly recurrent parasitic disease that affects a wide range of areas and a large number of people worldwide. In China, schistosomiasis has seriously affected the life and safety of the people and restricted the economic development. Schistosomiasis is mainly distributed along the Yangtze River and in southern China. Anhui Province is located in the Yangtze River Basin of China, with dense water system, frequent floods and widespread distribution of Oncomelania hupensis that is the only intermediate host of schistosomiasis, a large number of cattle, sheep and other livestock, which makes it difficult to control schistosomiasis. It is of great significance to monitor and analyze spatiotemporal risk of schistosomiasis in Anhui Province, China. We compared and analyzed the optimal spatiotemporal interpolation model based on the data of schistosomiasis in Anhui Province, China and the spatiotemporal pattern of schistosomiasis risk was analyzed. METHODS: In this study, the root-mean-square-error (RMSE) and absolute residual (AR) indicators were used to compare the accuracy of Bayesian maximum entropy (BME), spatiotemporal Kriging (STKriging) and geographical and temporal weighted regression (GTWR) models for predicting the spatiotemporal risk of schistosomiasis in Anhui Province, China. RESULTS: The results showed that (1) daytime land surface temperature, mean minimum temperature, normalized difference vegetation index, soil moisture, soil bulk density and urbanization were significant factors affecting the risk of schistosomiasis; (2) the spatiotemporal distribution trends of schistosomiasis predicted by the three methods were basically consistent with the actual trends, but the prediction accuracy of BME was higher than that of STKriging and GTWR, indicating that BME predicted the prevalence of schistosomiasis more accurately; and (3) schistosomiasis in Anhui Province had a spatial autocorrelation within 20 km and a temporal correlation within 10 years when applying the optimal model BME. CONCLUSIONS: This study suggests that BME exhibited the highest interpolation accuracy among the three spatiotemporal interpolation methods, which could enhance the risk prediction model of infectious diseases thereby providing scientific support for government decision making.
In Jambi province, Sumatra, Indonesia, flooding is a recurrent rainy season phenomenon. Historically considered manageable, recent political economic developments have changed this situation. Today, flooding is an environmental hazard and a threat to people’s livelihoods and health. Based on qualitative research and literature that has developed relational approaches to risk and water, we investigate past and present hydrosocial relations in Jambi province and reconstruct the changing meaning of flooding. We suggest that flooding as a hazard in Jambi was produced through the introduction of the plantation industry to the area and its prioritization of dry land for agm-industrial development. This development altered the materiality of water flows, reconfigured power relations and changed the socio-cultural dimensions of flooding. Together, these changes have led to a separation of flooding from its original social and geographic realm, producing new risks and vulnerabilities. This paper provides insights into the material and symbolic dimensions that influence how environmental processes come to be imagined, controlled and contested. It shows how tracing the socionatural production of hazards may help explain the increasingly systemic nature of risks and provide insights into the wider social meaning of environmental risks.
The epidemic of leptospirosis in humans occurs annually in Thailand. In this study, we have developed mathematical models to investigate transmission dynamics between humans, animals, and a contaminated environment. We compared different leptospire transmission models involving flooding and weather conditions, shedding and multiplication rate in a contaminated environment. We found that the model in which the transmission rate depends on both flooding and temperature, best-fits the reported human data on leptospirosis in Thailand. Our results indicate that flooding strongly contributes to disease transmission, where a high degree of flooding leads to a higher number of infected individuals. Sensitivity analysis showed that the transmission rate of leptospires from a contaminated environment was the most important parameter for the total number of human cases. Our results suggest that public education should target people who work in contaminated environments to prevent Leptospira infections.
Bacterial pathogens in surface waters threaten human health. The health risk is especially high in developing countries where sanitation systems are often lacking or deficient. Considering twelve flash-flood events sampled from 2011 to 2015 at the outlet of a 60-ha tropical montane headwater catchment in Northern Lao PDR, and using Escherichia coli as a fecal indicator bacteria, our objective was to quantify the contributions of both surface runoff and sub-surface flow to the in-stream concentration of E. coli during flood events, by (1) investigating E. coli dynamics during flood events and among flood events and (2) designing and comparing simple statistical and mixing models to predict E. coli concentration in stream flow during flood events. We found that in-stream E. coli concentration is high regardless of the contributions of both surface runoff and sub-surface flow to the flood event. However, we measured the highest concentration of E. coli during the flood events that are predominantly driven by surface runoff. This indicates that surface runoff, and causatively soil surface erosion, are the primary drivers of in-stream E. coli contamination. This was further confirmed by the step-wise regression applied to instantaneous E. coli concentration measured in individual water samples collected during the flood events, and by the three models applied to each flood event (linear model, partial least square model, and mixing model). The three models showed that the percentage of surface runoff in stream flow was the best predictor of the flood event mean E. coli concentration. The mixing model yielded a Nash-Sutcliffe efficiency of 0.65 and showed that on average, 89% of the in-stream concentration of E. coli resulted from surface runoff, while the overall contribution of surface runoff to the stream flow was 41%. We also showed that stream flow turbidity and E. coli concentration were positively correlated, but that turbidity was not a strong predictor of E. coli concentration during flood events. These findings will help building adequate catchment-scale models to predict E. coli fate and transport, and mapping the related risk of fecal contamination in a global changing context.
In this study, the adsorption-elution method was modified to concentrate viral particles in water samples and investigate the contamination of groundwater with norovirus genogroup II (NoV GII), rotavirus A (RVA), and Pepper mild mottle virus (PMMoV). The mean recovery rate of a murine norovirus strain, which was inoculated into groundwater samples collected from a deep well, was the highest (39%) when the viral RNA was directly extracted from the membrane instead of eluting the adsorbed viral particles. This adsorption-direct extraction method was applied to groundwater samples (20 liters) collected from deep wells used for the public drinking water supply (n = 22) and private wells (n = 9). RVA (85 copies/liter) and NoV GII (35 copies/liter) were detected in water samples from a deep well and a private well, respectively. PMMoV was detected in 95% and 89% of water samples from deep wells and private wells, respectively, at concentrations of up to 990 copies/liter. The modified method was also used to extract bacterial DNA from the membrane (recovery rate of inoculated Escherichia coli K-12 was 22%). The Bacteroidales genetic markers specific to ruminants (BacR) and pigs (Pig2Bac) were detected in samples from a deep well and a private well, respectively. The modified virus concentration method has important implications for the management of microbiological safety in the groundwater supply. IMPORTANCE We investigated the presence of enteric viruses and bacterial genetic markers to determine fecal contamination in groundwater samples from deep wells used for the public drinking water supply and private wells in Japan. Groundwater is often subjected to chlorination; malfunctions in chlorine treatment result in waterborne disease outbreaks. The modified method successfully concentrated both viruses and bacteria in 20-liter groundwater samples. Norovirus genogroup II (GII), rotavirus A, Pepper mild mottle virus, and Bacteroidales genetic markers specific to ruminants and pigs were detected. Frequent flooding caused by increased incidences of extreme rainfall events promotes the infiltration of surface runoff containing livestock wastes and untreated wastewater into wells, possibly increasing groundwater contamination risk. The practical and efficient method developed in this study will enable waterworks and the environmental health departments of municipal/prefectural governments to monitor water quality. Additionally, the modified method will contribute to improving the microbiological safety of groundwater.
Schistosomiasis is a water-borne parasitic disease distributed worldwide, while schistosomiasis japonica localizes in the People’s Republic of China, the Philippines, and a few regions of Indonesia. Although significant achievements have been obtained in these endemic countries, great challenges still exist to reach the elimination of schistosomiasis japonica, as the occurrence of flooding can lead to several adverse consequences on the prevalence of schistosomiasis. This review summarizes the influence of flooding on the transmission of schistosomiasis japonica and interventions responding to the adverse impacts from the One Health perspective in human beings, animals, and the environment. For human and animals, behavioral changes and the damage of water conservancy and sanitary facilities will increase the intensity of water contact. For the environment, the density of Oncomelania snails significantly increases from the third year after flooding, and the snail habitats can be enlarged due to active and passive diffusion. With more water contact of human and other reservoir hosts, and larger snail habitats with higher density of living snails, the transmission risk of schistosomiasis increases under the influence of flooding. With the agenda set for global schistosomiasis elimination, interventions from the One Health perspective are put forward to respond to the impacts of increased flooding. For human beings, conducting health education to increase the consciousness of self-protection, preventive chemotherapy for high-risk populations, supply of safe water, early case finding, timely reporting, and treating cases will protect people from infection and prevent the outbreak of schistosomiasis. For animals, culling susceptible domestic animals, herding livestock in snail-free areas, treating livestock with infection or at high risk of infection, harmless treatment of animal feces to avoid water contamination, and monitoring the infection status of wild animals in flooding areas are important to cut off the transmission chain from the resources. For the environment, early warning of flooding, setting up warning signs and killing cercaria in risk areas during and post flooding, reconstructing damaged water conservancy facilities, developing hygiene and sanitary facilities, conducting snail surveys, using molluscicide, and predicting areas with high risk of schistosomiasis transmission after flooding all contribute to reducing the transmission risk of schistosomiasis. These strategies need the cooperation of the ministry of health, meteorological administration, water resources, agriculture, and forestry to achieve the goal of minimizing the impact of flooding on the transmission of schistosomiasis. In conclusion, flooding is one of the important factors affecting the transmission of schistosomiasis japonica. Multi-sectoral cooperation is needed to effectively prevent and control the adverse impacts of flooding on human beings, animals, and the environment.
BACKGROUND: Flooding is considered to be one of the most important factors contributing to the rebound of Oncomelania hupensis, a small tropical freshwater snail and the only intermediate host of Schistosoma japonicum, in endemic foci. The aim of this study was to assess the risk of intestinal schistosomiasis transmission impacted by flooding in the region around Poyang Lake using multi-source remote sensing images. METHODS: Normalized Difference Vegetation Index (NDVI) data collected by the Landsat 8 satellite were used as an ecological and geographical suitability indicator of O. hupensis habitats in the Poyang Lake region. The expansion of the water body due to flooding was estimated using dual-polarized threshold calculations based on dual-polarized synthetic aperture radar (SAR). The image data were captured from the Sentinel-1B satellite in May 2020 before the flood and in July 2020 during the flood. A spatial database of the distribution of snail habitats was created using the 2016 snail survey in Jiangxi Province. The potential spread of O. hupensis snails after the flood was predicted by an overlay analysis of the NDVI maps in the flood-affected areas around Poyang Lake. The risk of schistosomiasis transmission was classified based on O. hupensis snail density data and the related NDVI. RESULTS: The surface area of Poyang Lake was approximately 2207 km(2) in May 2020 before the flood and 4403 km(2) in July 2020 during the period of peak flooding; this was estimated to be a 99.5% expansion of the water body due to flooding. After the flood, potential snail habitats were predicted to be concentrated in areas neighboring existing habitats in the marshlands of Poyang Lake. The areas with high risk of schistosomiasis transmission were predicted to be mainly distributed in Yongxiu, Xinjian, Yugan and Poyang (District) along the shores of Poyang Lake. By comparing the predictive results and actual snail distribution, we estimated the predictive accuracy of the model to be 87%, which meant the 87% of actual snail distribution was correctly identified as snail habitats in the model predictions. CONCLUSIONS: Data on water body expansion due to flooding and environmental factors pertaining to snail breeding may be rapidly extracted from Landsat 8 and Sentinel-1B remote sensing images. Applying multi-source remote sensing data for the timely and effective assessment of potential schistosomiasis transmission risk caused by snail spread during flooding is feasible and will be of great significance for more precision control of schistosomiasis.
INTRODUCTION: Skin and soft tissue infections have the potential to affect every patient admitted to a surgical service. Changes to the microbiota colonizing wounds during natural disasters, such as the Townsville floods of 2019, could impact empiric antibiotic choice and need for return to theatre. METHODS: This retrospective observational cohort study reviews culture data and demographics for patients undergoing surgical debridement of infected wounds over a six-month period starting in November 2018 to May 2019 at the Townsville Hospital. RESULTS: Of the 408 patients requiring operative intervention, only 61 patients met the inclusion criteria. The groups were comparative in terms of age and gender, but a greater proportion of patients (40.5% versus 29.1%, P = 0.368) in the post-flood group were diabetic. Common skin commensals, such as Staphylococcus aureus, were the most common pathogen in both groups, however the post-flood group had a higher proportion of atypical organisms (14 versus 8 patients), and an increased need for repeated debridement for infection control (24 versus 14 patients). CONCLUSION: Wound swabs and tissue culture are imperative during surgical debridement and may guide the use of more broad-spectrum coverage following a significant flooding event.
Surveillance programs are essential for the prevention and control of mosquito-borne arboviruses that cause serious human and animal diseases. Viral metatranscriptomic sequencing can enhance surveillance by enabling untargeted, high-throughput arbovirus detection. We used metatranscriptomic sequencing to screen field-collected mosquitoes for arboviruses to better understand how metatranscriptomics can be utilised in routine surveillance. Following a significant flood event in 2016, more than 56,000 mosquitoes were collected over seven weeks from field traps set up in Victoria, Australia. The traps were split into samples of 1000 mosquitoes or less and sequenced on the Illumina HiSeq. Five arboviruses relevant to public health (Ross River virus, Sindbis virus, Trubanaman virus, Umatilla virus, and Wongorr virus) were detected a total of 33 times in the metatranscriptomic data, with 94% confirmed using reverse transcription quantitative PCR (RT-qPCR). Analysis of metatranscriptomic cytochrome oxidase I (COI) sequences enabled the detection of 12 mosquito and two biting midge species. Screening of the same traps by an established public health arbovirus surveillance program corroborated the metatranscriptomic arbovirus and mosquito species detections. Assembly of genome sequences from the metatranscriptomic data also led to the detection of 51 insect-specific viruses, both known and previously undescribed, and allowed phylogenetic comparison to past strains. We have demonstrated how metatranscriptomics can enhance surveillance by enabling untargeted arbovirus detection, providing genomic epidemiological data, and simultaneously identifying vector species from large, unsorted mosquito traps.
Freshwater reservoirs are a crucial source of urban drinking water worldwide; thus, long-term evaluations of critical water quality determinants are essential. We conducted this study in a large drinking water reservoir for 11 years (2010-2020). The variabilities of ambient nutrients and total suspended solids (TSS) throughout the seasonal monsoon-mediated flow regime influenced algal chlorophyll (Chl-a) levels. The study determined the role of the monsoon-mediated flow regime on reservoir water chemistry. The reservoir conditions were mesotrophic to eutrophic based on nitrogen (N) and phosphorus (P) concentrations. An occasional total coliform bacteria (TCB) count of 16,000 MPN per 100 mL was recorded in the reservoir, presenting a significant risk of waterborne diseases among children. A Mann-Kendall test identified a consistent increase in water temperature, conductivity, and chemical oxygen demand (COD) over the study period, limiting a sustainable water supply. The drought and flood regime mediated by the monsoon resulted in large heterogeneities in Chl-a, TCB, TSS, and nutrients (N, P), indicating its role as a key regulator of the ecological functioning of the reservoir. The ambient N:P ratio is a reliable predictor of sestonic Chl-a productivity, and the reservoir was P-limited. Total phosphorus (TP) had a strong negative correlation (R(2) = 0.59, p < 0.05) with the outflow from the dam, while both the TSS (R(2) = 0.50) and Chl-a (R(2) = 0.32, p < 0.05) had a strong positive correlation with the outflow. A seasonal trophic state index revealed oligo-mesotrophic conditions, indicating a limited risk of eutrophication and a positive outcome for long-term management. In conclusion, the Asian monsoon largely controlled the flood and drought conditions and manipulated the flow regime. Exceedingly intensive crop farming in the basin may lead to oligotrophic nutrient enrichment. Although the reservoir water quality was good, we strongly recommend stringent action to alleviate sewage, nutrient, and pollutant inflows to the reservoir.
Already climate-related hazards are impacting sanitation systems in Indonesia and elsewhere, and climate models indicate these hazards are likely to increase in frequency and intensity. Without due attention, to maintain existing progress on Sustainable Development Goal 6’s target 6.2 and to increase it to meet ambitions for 2030 will be difficult. City governments need new forms of evidence to respond, as well as approaches to enable them to consider sufficient breadth of strategies to adapt effectively. This paper describes a co-production research process which engaged local governments in four cities in Indonesia experiencing different climate hazards. Local government engagement took place across three stages of (i) inception and design, (ii) participation as key informants and (iii) joint analysis and engagement on the findings. We adapted and simplified a risk prioritisation process based on current literature and employed a novel framework of a ‘climate resilient sanitation system’ to prompt articulation of current and proposed climate change adaptation response actions. In contrast to many current framings of climate resilience in sanitation that focus narrowly on technical responses, the results paint a rich picture of efforts needed by city governments across all domains, including planning, institutions, financing, infrastructure and management options, user awareness, water cycle management and monitoring and evaluation. Local government commitment and improved comprehension on the implications of climate change for sanitation service delivery were key outcomes arising from the co-production process. With strengthened policy and capacity building initiatives from national level, this foundation can be supported, and Indonesian city governments will be equipped to move forward with adaptation actions that protect on-going access to sanitation services, public health and the environment.
BACKGROUND: Intensification of land use threatens to increase the emergence and prevalence of zoonotic diseases, with an adverse impact on human wellbeing. Understanding how the interaction between agriculture, natural systems, climate and socioeconomic drivers influence zoonotic disease distribution is crucial to inform policy planning and management to limit the emergence of new infections. OBJECTIVES: Here we assess the relative contribution of environmental, climatic and socioeconomic factors influencing reported cryptosporidiosis across Australia from 2001 to 2018. METHODS: We apply a Bayesian spatio-temporal analysis using Integrated Nested Laplace Approximation (INLA). RESULTS: We find that area-level risk of reported disease are associated with the proportions of the population under 5 and over 65 years of age, socioeconomic disadvantage, annual rainfall anomaly, and the proportion of natural habitat remaining. This combination of multiple factors influencing cryptosporidiosis highlights the benefits of a sophisticated spatio-temporal statistical approach. Two key findings from our model include: an estimated 4.6% increase in the risk of reported cryptosporidiosis associated with 22.8% higher percentage of postal area covered with original habitat; and an estimated 1.8% increase in disease risk associated with a 77.99 mm increase in annual rainfall anomaly at the postal area level. DISCUSSION: These results provide novel insights regarding the predictive effects of extreme rainfall and the proportion of remaining natural habitat, which add unique explanatory power to the model alongside the variance associated with other predictive variables and spatiotemporal variation in reported disease. This demonstrates the importance of including perspectives from land and water management experts for policy making and public health responses to manage environmentally mediated diseases, including cryptosporidiosis.
BACKGROUND: Many studies have reported the interactive effects between relative humidity and temperature on infectious diseases. However, evidence regarding the combined effects of relative humidity and temperature on bacillary dysentery (BD) is limited, especially for large-scale studies. To address this research need, humidex was utilized as a comprehensive index of relative humidity and temperature. We aimed to estimate the effect of humidex on BD across mainland China, evaluate its heterogeneity, and identify potential effect modifiers. METHODS: Daily meteorological and BD surveillance data from 2014 to 2016 were obtained for 316 prefecture-level cities in mainland China. Humidex was calculated on the basis of relative humidity and temperature. A multicity, two-stage time series analysis was then performed. In the first stage, a common distributed lag non-linear model (DLNM) was established to obtain city-specific estimates. In the second stage, a multivariate meta-analysis was conducted to pool these estimates, assess the significance of heterogeneity, and explore potential effect modifiers. RESULTS: The pooled cumulative estimates showed that humidex could promote the transmission of BD. The exposure-response relationship was nearly linear, with a maximum cumulative relative risk (RR) of 1.45 [95% confidence interval (CI): 1.29-1.63] at a humidex value of 40.94. High humidex had an acute adverse effect on BD. The humidex-BD relationship could be modified by latitude, urbanization rate, the natural growth rate of population, and the number of primary school students per thousand persons. CONCLUSIONS: High humidex could increase the risk of BD incidence. Thus, it is suitable to incorporate humidex as a predictor into the early warning system of BD and to inform the general public in advance to be cautious when humidex is high. This is especially true for regions with higher latitude, higher urbanization rates, lower natural growth rates of population, and lower numbers of primary school students per thousand persons.
The construction of spatio-temporal models can be either descriptive or dynamic. In this study we aim to evaluate the differences in model fitting between a descriptive model and a dynamic model of the transmission for intestinal schistosomiasis caused by Schistosoma japonicum in Guichi, Anhui Province, China. The parasitological data at the village level from 1991 to 2014 were obtained by cross-sectional surveys. We used the fixed rank kriging (FRK) model, a descriptive model, and the integro-differential equation (IDE) model, a dynamic model, to explore the space-time changes of schistosomiasis japonica. In both models, the average daily precipitation and the normalized difference vegetation index are significantly positively associated with schistosomiasis japonica prevalence, while the distance to water bodies, the hours of daylight and the land surface temperature at daytime were significantly negatively associated. The overall root mean square prediction error of the IDE and FRK models was 0.0035 and 0.0054, respectively, and the correlation reflected by Pearson’s correlation coefficient between the predicted and observed values for the IDE model (0.71; p<0.01) was larger than that for the FRK model (0.53; p=0.02). The IDE model fits better in capturing the geographic variation of schistosomiasis japonica. Dynamic spatio-temporal models have the advantage of quantifying the process of disease transmission and may provide more accurate predictions.
Meteorological factors and the increase in extreme weather events are closely related to the incidence rate of infectious diarrhea. However, few studies have explored whether the impact of the same meteorological factors on the incidence rate of infectious diarrhea in different climate regions has changed and quantified these changes. In this study, the time series fixed-effect Poisson regression model guided by climate was used to quantify the relationships between the incidence rate of various types of infectious diarrhea and meteorological factors in different climate regions of China from 2004 to 2018, with a lag of 0-2 months. In addition, six social factors, including per capita Gross Domestic Product (GDP), population density, number of doctors per 1000 people, proportion of urbanized population, proportion of children aged 0-14 years old, and proportion of elderly over 65 years old, were included in the model for confounding control. Additionally, the intercept of each province in each model was analyzed by a meta-analysis. Four climate regions were considered in this study: tropical monsoon areas, subtropical monsoon areas, temperate areas and alpine plateau areas. The results indicate that the influence of meteorological factors and extreme weather in different climate regions on diverse infectious diarrhea types is distinct. In general, temperature was positively correlated with all infectious diarrhea cases (0.2 ≤ r ≤ 0.6, p < 0.05). After extreme rainfall, the incidence rate of dysentery in alpine plateau area in one month would be reduced by 18.7% (95% confidence interval (CI): -27.8--9.6%). Two months after the period of extreme sunshine duration happened, the incidence of dysentery in the alpine plateau area would increase by 21.9% (95% CI: 15.4-28.4%) in that month, and the incidence rate of typhoid and paratyphoid in the temperate region would increase by 17.2% (95% CI: 15.5-18.9%) in that month. The meta-analysis showed that there is no consistency between different provinces in the same climate region. Our study indicated that meteorological factors and extreme weather in different climate areas had different effects on various types of infectious diarrhea, particularly extreme rainfall and extreme sunshine duration, which will help the government develop disease-specific and location-specific interventions, especially after the occurrence of extreme weather.
Abnormal climate changes have resulted in over-precipitation in many regions. The occurrence and contamination levels of mycotoxins in crops and cereals have been elevated largely. From 2017 to 2019, we did investigation targeting 15 mycotoxins shown in the wheat samples collected from Shandong, a region suffering over-precipitation in China. We found that deoxynivalenol (DON) was the dominant mycotoxin contaminating wheats, with detection rates 304/340 in 2017 (89.41%), 303/330 in 2018 (91.82%), and 303/340 in 2019 (89.12%). The ranges of DON levels were <4 to 580 mu g/kg in 2017, <4 to 3070 mu g/kg in 2018, and <4 to 1540 mu g/kg in 2019. The exposure levels were highly correlated with local precipitation. Male exposure levels were generally higher than female's, with significant difference found in 2017 (1.89-fold, p = 0.023). Rural exposure levels were higher than that of cities but not statistically significant (1.41-fold, p = 0.13). Estimated daily intake (EDI) and margin of exposure (MoE) approaches revealed that 8 prefecture cities have probabilistically extra adverse health effects (vomiting or diarrhea) cases > 100 patients in 100,000 residents attributable to DON exposure. As a prominent wheat-growing area, Dezhou city reached similar to 300/100,000 extra cases while being considered as a major regional contributor to DON contamination. Our study suggests that more effort should be given to the prevention and control of DON contamination in major wheat-growing areas, particularly during heavy precipitation year. The mechanistic association between DON and chronic intestinal disorder/diseases should be further investigated.
BACKGROUND: Although previous studies have shown that meteorological factors such as temperature are related to the incidence of bacillary dysentery (BD), researches about the non-linear and interaction effect among meteorological variables remain limited. The objective of this study was to analyze the effects of temperature and other meteorological variables on BD in Beijing-Tianjin-Hebei region, which is a high-risk area for BD distribution. METHODS: Our study was based on the daily-scale data of BD cases and meteorological variables from 2014 to 2019, using generalized additive model (GAM) to explore the relationship between meteorological variables and BD cases and distributed lag non-linear model (DLNM) to analyze the lag and cumulative effects. The interaction effects and stratified analysis were developed by the GAM. RESULTS: A total of 147,001 cases were reported from 2014 to 2019. The relationship between temperature and BD was approximately liner above 0 °C, but the turning point of total temperature effect was 10 °C. Results of DLNM indicated that the effect of high temperature was significant on lag 5d and lag 6d, and the lag effect showed that each 5 °C rise caused a 3% [Relative risk (RR) = 1.03, 95% Confidence interval (CI): 1.02-1.05] increase in BD cases. The cumulative BD cases delayed by 7 days increased by 31% for each 5 °C rise in temperature above 10 °C (RR = 1.31, 95% CI: 1.30-1.33). The interaction effects and stratified analysis manifested that the incidence of BD was highest in hot and humid climates. CONCLUSIONS: This study suggests that temperature can significantly affect the incidence of BD, and its effect can be enhanced by humidity and precipitation, which means that the hot and humid environment positively increases the incidence of BD.
Bacterial pathogens in surface waters may threaten human health, especially in developing countries, where untreated surface water is often used for domestic needs. The objective of the long-term multiscale monitoring of Escherichia coli ([E. coli]) concentration in stream water, and that of associated variables (temperature ( T), electrical conductance (EC), dissolved oxygen concentration ([DO]) and saturation (DO%), pH (pH), oxidation-reduction potential (ORP), turbidity (Turb), and total suspended sediment concentration ([TSS])), was to identify the drivers of bacterial dissemination across tropical catchments. This data description paper presents three datasets (see “Data availability” section) collected at 31 sampling stations located within the Mekong River and its tributaries in Lao PDR (0.6-25 946 km(2)) from 2011 to 2021. The 1602 records have been used to describe the hydrological processes driving in-stream E. coli concentration during flood events, to understand the land-use impact on bacterial dissemination on small and large catchment scales, to relate stream water quality and diarrhea outbreaks, and to build numerical models. The database may be further used, e.g., to interpret new variables measured in the monitored catchments, or to map the health risk posed by fecal pathogens.
The spatial distribution of environmental conditions may influence the dynamics of vectorborne diseases like leptospirosis. This study aims to investigate the global and localised relationships between leptospirosis with selected environmental variables. The association between environmental variables and the spatial density of geocoded leptospirosis cases was determined using global Poisson regression (GPR) and geographically weighted Poisson regression (GWPR). A higher prevalence of leptospirosis was detected in areas with higher water vapour pressure (exp(â): 1.12; 95% CI: 1.02 – 1.25) and annual precipitation (exp(â): 1.15; 95% CI: 1.02 – 1.31), with lower precipitation in the driest month (exp(â): 0.85; 95% CI: 0.75 – 0.96) and the wettest quarter (exp(â): 0.88; 95% CI: 0.77 – 1.00). Water vapor pressure (WVP) varied the most in the hotspot regions with a standard deviation of 0.62 (LQ: 0.15; UQ; 0.99) while the least variation was observed in annual precipitation (ANNP) with a standard deviation of 0.14 (LQ: 0.11; UQ; 0.30). The reduction in AICc value from 519.73 to 443.49 indicates that the GWPR model is able to identify the spatially varying correlation between leptospirosis and selected environmental variables. The results of the localised relationships in this study could be used to formulate spatially targeted interventions. This would be particularly useful in localities with a strong environmental or socio-demographical determinants for the transmission of leptospirosis.
Epidemiological studies have quantified the association between ambient temperature and diarrhoea. However, to our knowledge, no study has quantified the temperature association for severe diarrhoea cases. In this study, we quantified the association between mean temperature and two severe diarrhoea outcomes, which were mortality and hospital admissions accompanied with dehydration and/or co-morbidities. Using a 12-year dataset of three urban districts of the National Capital Region, Philippines, we modelled the non-linear association between weekly temperatures and weekly severe diarrhoea cases using a two-stage time series analysis. We computed the relative risks at the 95th (30.4 °C) and 5th percentiles (25.8 °C) of temperatures using minimum risk temperatures (MRTs) as the reference to quantify the association with high- and low-temperatures, respectively. The shapes of the cumulative associations were generally J-shaped with greater associations towards high temperatures. Mortality risks were found to increase by 53.3% [95% confidence interval (CI): 29.4%; 81.7%)] at 95th percentile of weekly mean temperatures compared with the MRT (28.2 °C). Similarly, the risk of hospitalised severe diarrhoea increased by 27.1% (95% CI: 0.7%; 60.4%) at 95th percentile in mean weekly temperatures compared with the MRT (28.6 °C). With the increased risk of severe diarrhoea cases under high ambient temperature, there may be a need to strengthen primary healthcare services and sustain the improvements made in water, sanitation, and hygiene, particularly in poor communities.
Leptospirosis is a zoonotic bacterial disease that remains an important public health problem, especially in tropical developing countries. Many previous studies in Thailand have revealed the outbreak of human leptospirosis after heavy rainfall, but research determining its quantitative risks associated with rainfall, especially at the national level, remains limited. This study aims to examine the association between rainfall and human leptospirosis across 60 provinces of Thailand. A quasi-Poisson regression framework combined with the distributed lag non-linear model was used to estimate province-specific association between rainfall and human leptospirosis, adjusting for potential confounders. Province-specific estimates were then pooled to derive regional and national estimates using random-effect meta-analysis. The highest risk of leptospirosis associated with rainfall at national level was observed at the same month (lag 0). Using 0 cm/month of rainfall as a reference, the relative risks of leptospirosis associated with heavy (90th percentile), very heavy (95th percentile), and extremely heavy (99th percentile) rainfall at the national level were 1.0994 (95% CI 0.9747, 1.2401), 1.1428 (95% CI 1.0154, 1.2862), and 1.1848 (95% CI 1.0494, 1.3378), respectively. The highest risk of human leptospirosis associated with rainfall was observed in the northern and north-eastern regions. Specifically, the relative risks of leptospirosis associated with extremely heavy rainfall in northern and north-eastern regions were 1.2362 (95% CI 0.9110, 1.6775) and 1.2046 (95% CI 0.9728, 1.4918), respectively. Increasing rainfall was associated with increased risks of leptospirosis, especially in the northern and northeastern regions of Thailand. This finding could be used for precautionary warnings against heavy rainfall. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00477-022-02250-x.
Leptospirosis has been recognized as a major public health concern in Thailand following dramatic outbreaks. We analyzed human leptospirosis incidence between 2004 and 2014 in Mahasarakham province, Northeastern Thailand, in order to identify the agronomical and environmental factors likely to explain incidence at the level of 133 sub-districts and 1982 villages of the province. We performed general additive modeling (GAM) in order to take the spatial-temporal epidemiological dynamics into account. The results of GAM analyses showed that the average slope, population size, pig density, cow density and flood cover were significantly associated with leptospirosis occurrence in a district. Our results stress the importance of livestock favoring leptospirosis transmission to humans and suggest that prevention and control of leptospirosis need strong intersectoral collaboration between the public health, the livestock department and local communities. More specifically, such collaboration should integrate leptospirosis surveillance in both public and animal health for a better control of diseases in livestock while promoting public health prevention as encouraged by the One Health approach.
This study evaluated the experience of implementing water safety plans (WSPs) in Vietnam. WSPs were introduced in Vietnam by the World Health Organization (WHO) in collaboration with the Ministry of Construction in 2006 and have been a mandatory requirement for municipal water supplies since 2012. Using a mixed-methods approach, we collected data on the perceived benefits and challenges of WSP implemen-tation from 23 provincial water companies between August and November 2021. Potential public health benefits of improved water quality were a key motivation; 87% of the water utilities were also motivated by the risk of climate change and prepared response plans to climate-related extreme events as part of WSPs. A decrease in E. coli and an improvement in disinfectant residual in treated water were reported by 61 and 83% of the water supplies, respectively. Sixty-five percent of the water supplies also reported improved revenue and cost recovery. Key barriers to WSP implementation were a lack of WSP guidance suitable for the local context (87%) and insufficient funds for WSP implementation (43%). Our study highlights the need for improved support and capacity building along with locally suited guidance on WSP implementation and audit.
The degradation of coastal water quality from fecal pollution poses a health risk to visitors at recreational beaches. Fecal indicator bacteria (FIB) are a proxy for fecal pollution; however the accuracy of their representation of fecal pollution health risks at recreational beaches impacted by non-point sources is disputed due to non-human derivation. This study aimed to investigate the relationship between FIB and a range of culturable and molecular-based microbial source tracking (MST) markers and pathogenic bacteria, and physicochemical parameters and rainfall. Forty-two marine water samples were collected from seven sampling stations during six events at two tourist beaches in Thailand. Both beaches were contaminated with fecal pollution as evident from the GenBac3 marker at 88%-100% detection and up to 8.71 log(10) copies/100 mL. The human-specific MST marker human polyomaviruses JC and BK (HPyVs) at up to 4.33 log(10) copies/100 mL with 92%-94% positive detection indicated that human sewage was likely the main contamination source. CrAssphage showed lower frequencies and concentrations; its correlations with the FIB group (i.e., total coliforms, fecal coliforms, and enterococci) and GenBac3 diminished its use as a human-specific MST marker for coastal water. Human-specific culturable AIM06 and SR14 bacteriophages and general fecal indicator coliphages also showed less sensitivity than the human-specific molecular assays. The applicability of the GenBac3 endpoint PCR assay as a lower-cost prescreening step prior to the GenBac3 qPCR assay was supported by its 100% positive predictive value, but its limited negative predictive values required subsequent qPCR confirmation. Human enteric adenovirus and Vibrio cholerae were not found in any of the samples. The HPyVs related to Vibrio parahaemolyticus, Vibrio vulnificus, and 5-d rainfall records, all of which were more prevalent and concentrated during the wet season. More monitoring is therefore recommended during wet periods. Temporal differences but no spatial differences were observed, suggesting the need for a sentinel site at each beach for routine monitoring. The exceedance of FIB water quality standards did not indicate increased prevalence or concentrations of the HPyVs or Vibrio spp. pathogen group, so the utility of FIB as an indicator of health risks at tropical beaches maybe challenged. Accurate assessment of fecal pollution by incorporating MST markers could lead to developing a more effective water quality monitoring plan to better protect human health risks in tropical recreational beaches.
Drinking water on isolated islands includes treated rainwater, water shipped from the mainland, and desalinated seawater. However, marine transportation and desalination plants are vulnerable to emergencies, such as extreme weather. making self-sustaining stand-by water for emergency response essential. Rainwater is ideal for producing the stand-by water, and rainwater harvesting is sustainable and clean, and prolonged biostability can be ensured by managing biological and chemical parameters. The present study applied a stand-by drinking water purification system (primarily including nanofiltration and low-dose chlorination) to explore the feasibility of producing and storing cleaner drinking water from rainwater and the following conclusions were drawn. First, treatment of rainwaters ensures biosafety for seven days, which is longer than that for untreated rainwater; the proportion of opportunistic pathogens decreased from 23.40-7.77% after nanofiltration, and it was proposed that the microbial community converges after advanced water treatment. Second, chemical qualities were improved. Local resource coral sand prevents pH in rainwater from decreasing below 6.5, and treated rainwater had lower disinfection by-product potential and higher disinfection efficiency, allowing periodical rainwater recycling. Third, harvesting rainwater was extremely cost-effective, with an operation cost of 1.5-2.5 RMB/m(3). From biosafety, chemical safety, and economic cost perspectives, self-sustaining water from rainwater can contributes to the development of sustainable and cost-effective water supply systems on isolated islands. Mixing treated rainwater and desalinated seawater reasonably guarantees sufficiency and safety. (C) 2021 Elsevier B.V. All rights reserved.
Climate change is a global challenge expected to affect water-related diseases (WRDs). The present systematic study tried to review literature examining the relationship between meteorological conditions and WRDs in developing countries located in Western Asia. We searched Scopus, PubMed and Embase for studies describing the relationship between WRDs and climate variables (ambient temperature, rainfall and humidity) plus extreme events, drought and flooding. A total of 27 articles met the inclusion criteria. The key findings presented a positive association between temperature and WRDs in most of the evaluated records. However, rainfall and humidity showed inconsistent relationships with WRDs. No evidence was found reporting the effect of climate variables on water-based or water-washed diseases. Yemen is the only country in the studied region that still has major issues controlling WRDs and might be at greater risk of climate change. It is recommended that future researches evaluate the delayed effects of environmental factors on WRDs and multidimensional interactions of climate variables on each other or on socioeconomic variables affecting WRDs. Increased health risks due to climate change add additional value to the investigations studying the proven adaptation strategies such as improvements in water, sanitation and hygiene (WaSH) and effective early warning systems.
Previous studies have explored the effect between ambient temperature and infectious diarrhea (ID) mostly using relative risk, which provides limited information in practical applications. Few studies have focused on the disease burden of ID caused by temperature, especially for different subgroups and cities in a multi-city setting. This study aims to estimate the effects and attributable risks of temperature on category C ID and explore potential modifiers among various cities in Guangdong. First, distributed lag non-linear models (DLNMs) were used to explore city-specific associations between daily mean temperature and category C ID from 2014 to 2016 in Guangdong and pooled by applying multivariate meta-analysis. Then, multivariate meta-regression was implemented to analyze the potential heterogeneity among various cities. Finally, we assessed the attributable burden of category C ID due to temperature, low (below the 5th percentile of temperature) and high temperature (above the 95th percentile of temperature) for each city and subgroup population. Compared with the 50th percentile of daily mean temperature, adverse effects on category C ID were found when the temperature was lower than 12.27 ℃ in Guangdong Province. Some city-specific factors (longitude, urbanization rate, population density, disposable income per capita, and the number of medical technicians and beds per thousand persons) could modify the relationship of temperature-category C ID. During the study period, there were 60,505 category C ID cases (17.14% of total cases) attributable to the exposure of temperature, with the attributable fraction (AF) of low temperature (4.23%, 95% empirical confidence interval (eCI): 1.79-5.71%) higher than high temperature (1.34%, 95% eCI: 0.86-1.64%). Males, people under 5 years, and workers appeared to be more vulnerable to temperature, with AFs of 29.40%, 19.25%, and 21.49%, respectively. The AF varied substantially at the city level, with the largest AF of low temperature occurring in Shaoguan (9.58%, 95% eCI: 8.36-10.09%), and that of high temperature occurring in Shenzhen (3.16%, 95% eCI: 2.70-3.51%). Low temperature was an important risk factor for category C ID in Guangdong Province, China. The exposure-response relationship could be modified by city-specific characteristics. Considering the whole population, the attributable risk of low temperature was much higher than that of high temperature, and males, people under 5 years, and workers were vulnerable populations.
Infectious diarrhea in China showed a significant pattern. Many researchers have tried to reveal the drivers, yet usually only meteorological factors were taken into consideration. Furthermore, the diarrheal data they analyzed were incomplete and the algorithms they exploited were inefficient of adapting realistic relationships. Here, we investigate the impacts of meteorological and social factors on the number of infectious diarrhea cases in China. A machine learning algorithm called the Random Forest is utilized. Our results demonstrate that nearly half of infectious diarrhea occurred among children under 5 years old. Generally speaking, increasing temperature or relative humidity leads to increased cases of infectious diarrhea in China. Nevertheless, people from different age groups or different regions own different sensitivities to meteorological factors. The weight of feces that are harmfully treated could be a possible reason for infectious diarrhea of the elderly as well as children under 5 years old. These findings indicate that infectious diarrhea prevention for children under 5 years old remains a primary task in China. Personalized prevention countermeasures ought to be provided to different age groups and different regions. It is essential to bring the weight of feces that are harmfully treated to the forefront when considering infectious diarrhea prevention.
No study has ever investigated how ambient temperature and PM(2.5) mediate rotavirus infection (RvI) in children. We used insurance claims data from Taiwan in 2006-2012 to evaluate the RvI characteristics in children aged ≤ 9. The RvI incidence rates were higher in colder months, reaching the highest in March (117.0/100 days), and then declining to the lowest in July (29.2/100 days). The age-sex-specific average incident cases were all higher in boys than in girls. Stratified analysis by temperature (<20, 20-24, and ≥25 °C) and PM(2.5) (<17.5, 17.5-31.4, 31.5-41.9, and ≥42.0 μg/m^3) showed that the highest incidence was 16.4/100 days at average temperatures of <20 °C and PM(2.5) of 31.5–41.9 μg/m^3, with Poisson regression analysis estimating an adjusted relative risk (aRR) of 1.26 (95% confidence interval (CI) = 1.11-1.43), compared to the incidence at the reference condition (<20 °C and PM2.5 < 17.5 μg/m^3). As the temperature increased, the incident RvI cases reduced to 4.84 cases/100 days (aRR = 0.40, 95% CI = 0.35-0.45) when it was >25 °C with PM(2.5) < 17.5 μg/m^3, or to 9.84/100 days (aRR = 0.81, 95% CI = 0.77-0.93) when it was >25 °C with PM2.5 > 42 μg/m^3). The seasonal RvI is associated with frequent indoor personal contact among children in the cold months. The association with PM(2.5) could be an alternative assessment due to temperature inversion.
OBJECTIVE: This research seeks to identify climate-sensitive infectious diseases of concern with a present and future likelihood of increased occurrence in the geographically vulnerable Torres Strait Islands, Australia. The objective is to contribute evidence to the need for adequate climate change responses. METHODS: Case data of infectious diseases with proven, potential and speculative climate sensitivity were compiled. RESULTS: Five climate-sensitive diseases in the Torres Strait and Cape York region were identified as of concern: tuberculosis, dengue, Ross River virus, melioidosis and nontuberculous mycobacterial infection. The region constitutes 0.52% of Queensland’s population but has a disproportionately high proportion of the state’s cases: 20.4% of melioidosis, 2.4% of tuberculosis and 2.1% of dengue. CONCLUSIONS: The Indigenous Torres Strait Islander peoples intend to remain living on their traditional country long-term, yet climate change brings risks of both direct and indirect human health impacts. Implications for public health: Climate-sensitive infections pose a disproportionate burden and ongoing risk to Torres Strait Islander peoples. Addressing the causes of climate change is the responsibility of various agencies in parallel with direct action to minimise or prevent infections. All efforts should privilege Torres Strait Islander peoples’ voices to self-determine response actions.
This study introduces a new approach for the investigation of infections after an accidental ingestion of contaminated floodwater. The concept of Expected Annual Probability of Infection (EAPI) is introduced and implemented in an infection risk-model approach, by combining a Quantitative Microbial Risk Assessment (QMRA) with the four steps in flood risk assessment. Two groups and exposure paths are considered: adults wading in floodwater and small children swimming/playing in floodwater. The study area is located in Ghana, West Africa. Even though Ghana is one of the most urbanized countries in Africa it has significant problems with water resources management and public health. While cholera is classified as endemic in Accra, the natural and human-made characteristics of the capital makes it prone to flooding. The results of the EAPI approach show that on one hand the concentration of pathogens in floodwater, and thus the risk of infection, decreases with the increase of the flood magnitude. On the other hand, larger floods can spread the pathogens further from the point source, threatening populations previously not identified as at risk by small-scale floods. The concept of EAPI is demonstrated for cholera but it can be extended to other waterborne diseases and also different pathways of exposure, requiring minimal adaptations. For future applications, better estimation of EAPI key components and improvement points are discussed and recommendations given for all the assessment steps.
BACKGROUND: Globally, there is increasing scientific evidence of critical links between the oceans and human health, with research into issues such as pollution, harmful algal blooms and nutritional contributions. However, Oceans and Human Health (OHH) remains an emerging discipline. As such these links are poorly recognized in policy efforts such as the Sustainable Development Goals, with OHH not included in either marine (SDG14) or health (SDG3) goals. This is arguably short-sighted given recent development strategies such as the EU Blue Growth Agenda. OBJECTIVES: In this systematic map we aim to build on recent efforts to enhance OHH in Europe by setting a baseline of existing evidence, asking: What links have been researched between marine environments and the positive and negative impacts to human health and wellbeing? METHODS: We searched eight bibliographic databases and queried 57 organizations identified through stakeholder consultation. Results include primary research and systematic reviews which were screened double blind against pre-defined inclusion criteria as per a published protocol. Studies were limited to Europe, US, Australia, New Zealand and Canada. Data was extracted according to a stakeholder-defined code book. A narrative synthesis explores the current evidence for relationships between marine exposures and human health outcomes, trends in knowledge gaps and change over time in the OHH research landscape. The resulting database is available on the website of the Seas, Oceans and Public Health in Europe website (https://sophie2020.eu/). RESULTS: A total of 1,542 unique articles were included in the database, including those examined within 56 systematic reviews. Research was dominated by a US focus representing 50.1% of articles. A high number of articles were found to link: marine biotechnology and cardiovascular or immune conditions, consumption of seafood and cardiovascular health, chemical pollution and neurological conditions, microbial pollution and gastrointestinal or respiratory health, and oil industry occupations with mental health. A lack of evidence relates to direct impacts of plastic pollution and work within a number of industries identified as relevant by stakeholders. Research over time is dominated by marine biotechnology, though this is narrow in focus. Pollution, food and disease/injury research follow similar trajectories. Wellbeing and climate change have emerged more recently as key topics but lag behind other categories in volume of evidence. CONCLUSIONS: The evidence base for OHH of relevance to European policy is growing but remains patchy and poorly co-ordinated. Considerable scope for future evidence synthesis exists to better inform policy-makers, though reviews need to better incorporate complex exposures. Priorities for future research include: proactive assessments of chemical pollutants, measurable impacts arising from climate change, effects of emerging marine industries, and regional and global assessments for OHH interactions. Understanding of synergistic effects across multiple exposures and outcomes using systems approaches is recommended to guide policies within the Blue Growth Strategy. Co-ordination of research across Europe and dedicated centres of research would be effective first steps.
Infectious diarrhea (ID) is an intestinal infectious disease including cholera, typhoid and paratyphoid fever, bacterial and amebic dysentery, and other infectious diarrhea. There are many studies that have explored the relationship between ambient temperature and the spread of infectious diarrhea, but the results are inconsistent. It is necessary to systematically evaluate the impact of temperature on the incidence of ID. This study was based on the PRISMA statement to report this systematic review. We conducted literature searches from CNKI, VIP databases, CBM, PubMed, Web of Science, Cochrane Library, and other databases. The number registered in PROSPERO is CRD42021225472. After searching a total of 4915 articles in the database and references, 27 studies were included. The number of people involved exceeded 7.07 million. The overall result demonstrated when the temperature rises, the risk of infectious diarrhea increases significantly (RR(cumulative)=1.42, 95%CI: 1.07-1.88, RR(single-day)=1.08, 95%CI: 1.03-1.14). Subgroup analysis found the effect of temperature on the bacillary dysentery group (RR(cumulative)=1.85, 95%CI: 1.48-2.30) and unclassified diarrhea groups (RR(cumulative)=1.18, 95%CI: 0.59-2.34). The result of the single-day effect subgroup analysis was similar to the result of the cumulative effect. And the sensitivity analysis proved that the results were robust. This systematic review and meta-analysis support that temperature will increase the risk of ID, which is helpful for ID prediction and early warning in the future.
Climate change impacts the vulnerability of drinking water sources to contamination and water shortages. This review highlights key risk factors along the impact chain of climate change on water supply security, from precipitation and runoff to surface water quality and availability at drinking water intakes. How climate impacts water quantity (hydrology) and quality (fate, transport and loads of contaminants, via soils, forests, and urban water infrastructure) is examined across the scientific literature. An emphasis is placed on high-latitude regions, where the kinetics and intensity of projected changes are high. The province of Quebec, Canada, is used as a study area that covers diverse land and climate conditions, with extended relevance at a broader scale globally. This review aims at guiding researchers and water managers in considering the climate-related evolution of a range of threats when assessing the vulnerability of drinking water systems. It highlights how climate change increases the seasonal risks of water supply insecurity in a northern region, thereby increasing socioeconomic and public health risks. Accounting for multiple feedback effects is a major cause of uncertainty in assessing future risks in drinking water supplies. Under deep uncertainty, a paradigm change in assessing climate impacts on water supplies is needed.
Climate change is driven primarily by humanity’s use of fossil fuels and the resultant greenhouse gases from their combustion. The effects of climate change on human health are myriad and becomingly increasingly severe as the pace of climate change accelerates. One relatively underreported intersection between health and climate change is that of infections, particularly antibiotic-resistant infections. In this perspective review, the aspects of climate change that have already, will, and could possibly impact the proliferation and dissemination of antibiotic resistance are discussed.
Climate variables influence the occurrence, growth, and distribution of Vibrio cholerae in the aquatic environment. Together with socio-economic factors, these variables affect the incidence and intensity of cholera outbreaks. The current pandemic of cholera began in the 1960s, and millions of cholera cases are reported each year globally. Hence, cholera remains a significant health challenge, notably where human vulnerability intersects with changes in hydrological and environmental processes. Cholera outbreaks may be epidemic or endemic, the mode of which is governed by trigger and transmission components that control the outbreak and spread of the disease, respectively. Traditional cholera risk assessment models, namely compartmental susceptible-exposed-infected-recovered (SEIR) type models, have been used to determine the predictive spread of cholera through the fecal-oral route in human populations. However, these models often fail to capture modes of infection via indirect routes, such as pathogen movement in the environment and heterogeneities relevant to disease transmission. Conversely, other models that rely solely on variability of selected environmental factors (i.e., examine only triggers) have accomplished real-time outbreak prediction but fail to capture the transmission of cholera within impacted populations. Since the mode of cholera outbreaks can transition from epidemic to endemic, a comprehensive transmission model is needed to achieve timely and reliable prediction with respect to quantitative environmental risk. Here, we discuss progression of the trigger module associated with both epidemic and endemic cholera, in the context of the autochthonous aquatic nature of the causative agent of cholera, V. cholerae, as well as disease prediction.
This paper highlights the important leadership role of the public health sector, working with other governmental sectors and nongovernmental entities, to advance environmental public health in Latin America and the Caribbean toward the achievement of 2030 Sustainable Development Goal 3: Health and Well-Being. The most pressing current and future environmental public health threats are discussed, followed by a brief review of major historical and current international and regional efforts to address these concerns. The paper concludes with a discussion of three major components of a regional environmental public health agenda that responsible parties can undertake to make significant progress toward ensuring the health and well-being of all people throughout Latin America and the Caribbean.
The association between floods and the risk of dysentery remain controversial. Therefore, we performed a meta-analysis to clarify this relationship. A literature search was performed in PubMed, Web of science, and Embase for relevant articles published up to November 2019. Random-effects model was used to pool relative risks with 95% confidence intervals. The sensitivity analysis was carried out to evaluate the stability of the results. Publication bias was estimated using Egger’s test. Eleven studies from 10 articles evaluated the association between floods and the risk of dysentery in China. The pooled RR (95% CI) of dysentery for the flooded time versus non-flooded period was 1.48 (95% CI: 1.14-1.91). Significant association was found in subgroup analysis stratified by dysentery styles [dysentery: 1.61 (95% CI: 1.34-1.93) and bacillary dysentery: 1.46 (95% CI: 1.06-2.01)]. The pooled RR (95%CI) of sensitivity analysis for dysentery was 1.26 (95% CI: 1.05-1.52). No significant publication bias was found in our meta-analysis. This meta-analysis confirms that floods have significantly increased the risk of dysentery in China. Our findings will provide more evidence to reduce negative health outcomes of floods in China.
Cholera is a severe diarrhoeal disease affecting vulnerable communities. A long-term solution to cholera transmission is improved access to and uptake of water, sanitation and hygiene (WASH). Climate change threatens WASH. A systematic review and meta-analysis determined five overarching WASH factors incorporating 17 specific WASH factors associated with cholera transmission, focussing upon community cases. Eight WASH factors showed lower odds and six showed higher odds for cholera transmission. These results were combined with findings in the climate change and WASH literature, to propose a health impact pathway illustrating potential routes through which climate change dynamics (e.g. drought, flooding) impact on WASH and cholera transmission. A causal process diagram visualising links between climate change dynamics, WASH factors, and cholera transmission was developed. Climate change dynamics can potentially affect multiple WASH factors (e.g. drought-induced reductions in handwashing and rainwater use). Multiple climate change dynamics can influence WASH factors (e.g. flooding and sea-level rise affect piped water usage). The influence of climate change dynamics on WASH factors can be negative or positive for cholera transmission (e.g. drought could increase pathogen desiccation but reduce rainwater harvesting). Identifying risk pathways helps policymakers focus on cholera risk mitigation, now and in the future.
Almost half of the Brazilian population has no access to sewage collection and treatment. Untreated effluents discharged in waters of reservoirs for human supply favor the flowering of cyanobacteria – and these microorganisms produce toxins, such as saxitoxin, which is a very potent neurotoxin present in reservoirs in the Northeast region. A recent study confirmed that chronic ingestion of neurotoxin-infected water associated with Zika virus infection could lead to a microcephaly-like outcome in pregnant mice. Cyanobacteria benefit from hot weather and organic matter in water, a condition that has been intensified by climate change, according to our previous studies. Considering the new findings, we emphasize that zika arbovirus is widespread and worsened when associated with climate change, especially in middle- or low-income countries with low levels of sanitation coverage.
Water ecosystems can be rather sensitive to evolving or sudden changes in weather parameters. These changes can result in alterations in the natural habitat of pathogens, vectors, and human hosts, as well as in the transmission dynamics and geographic distribution of infectious agents. However, the interaction between climate change and infectious disease is rather complicated and not deeply understood. In this narrative review, we discuss climate-driven changes in the epidemiology of Vibrio species-associated diseases with an emphasis on cholera. Changes in environmental parameters do shape the epidemiology of Vibrio cholerae. Outbreaks of cholera cause significant disease burden, especially in developing countries. Improved sanitation systems, access to clean water, educational strategies, and vaccination campaigns can help control vibriosis. In addition, real-time assessment of climatic parameters with remote-sensing technologies in combination with robust surveillance systems could help detect environmental changes in high-risk areas and result in early public health interventions that can mitigate potential outbreaks.
Oncomelania hupensis quadrasi is the snail intermediate host of Schistosoma japonicum in the Philippines. It was discovered by Dr. Marcos Tubangui in 1932 more than two decades after the discovery of the disease in the country in 1906. This review, the first for O. h. quadrasi, presents past and present works on the taxonomy, biology, ecology, control, possible paleogeographic origin of the snail intermediate host and future in research, control and surveillance of the snail. Extensive references are made of other subspecies of O. hupensis such as the subspecies in China for which majority of the advances has been accomplished. Contrasting views on whether the snail is to be considered an independent species of Oncomelania or as one of several subspecies of Oncomelania hupensis are presented. Snail control methods such as chemical methods using synthetic and botanical molluscicides, environmental manipulation and biological control are reviewed. Use of technologies such as Remote Sensing, Geographical Information System and landscape genetics is stressed for snail surveillance. Control and prevention efforts in the Philippines have consistently focused on mass drug administration which has proved inadequate in elimination of the disease. An integrated approach that includes snail control, environmental sanitation and health education has been proposed. Population movement such as migration for employment and economic opportunities and ecotourism and global climate change resulting in heavy rains and flooding challenge the gains of control and elimination efforts. Concern for possible migration of snails to non-endemic areas is expressed given the various changes both natural and mostly man-made favoring habitat expansion.
Leptospirosis is a zoonotic and waterborne disease worldwide. It is a neglected, reemerging disease of global public health importance with respect to morbidity and mortality both in humans and animals. Due to negligence, rapid, unplanned urbanization, and poor sanitation, leptospirosis emerges as a leading cause of acute febrile illness in many of the developing countries. Every individual has a risk of getting infected as domestic and wild animals carry leptospires; the at-risk population varies from the healthcare professionals, animal caretakers, farmers and agricultural workers, fishermen, rodent catchers, water sports people, National Disaster Response Force (NDRF) personnel, people who volunteer rescue operations in flood-affected areas, sanitary workers, sewage workers, etc. The clinical manifestations of leptospirosis range from flu-like illness to acute kidney failure (AKF), pneumonia, jaundice, pulmonary hemorrhages, etc. But many rare and uncommon clinical manifestations are being reported worldwide. This review will cover all possible updates in leptospirosis from occurrence, transmission, rare clinical manifestations, diagnosis, treatment, and prophylactic measures that are currently available, their advantages and the future perspectives, elaborately. There are less or very few reviews on leptospirosis in recent years. Thus, this work will serve as background knowledge for the current understanding of leptospirosis for researchers. This will provide a detailed analysis of leptospirosis and also help in finding research gaps and areas to focus on regarding future research perspectives.
This article explores the development of public health infrastructure in George Town, Penang, before the 1930s. It argues that the extreme weather of the tropical climate led to a unique set of health challenges for George Town’s administrators, as the town grew from a small British base to a multi-cultural and thriving port. Weather and public health were (and still are) integrally connected, although the framing of this relationship has undergone significant shifts in thinking and appearance over time. One lens into this association is the situation and expression of these elements within municipal structures. During the nineteenth century, government departments were fewer and shared roles and responsibilities. The Medical Department, for example, observed the weather. making connections between rain. drought and the incidence of disease. Engineers asked critical questions about mortality rates from disease after floods. As ideas about climate and health developed and changed, the shift became evident in the style, concerns and proliferation of governmental departments. This article thus considers the different ways in which weather, public health, and town planning were understood, managed and enacted by the Straits Settlements’ administration until the 1930s. It will start by exploring the situation facing the settlement’s inhabitants, in terms of specific climate and health challenges. It will then consider how these challenges were understood and addressed, why and by whom, and how these elements were repositioned over the period in question.
Exposure to harmful algal blooms (HABs) can lead to well recognised acute patterns of illness in humans. The objective of this scoping review was to use an established methodology and the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) reporting framework to map the evidence for associations between marine HABs and observed both acute and chronic human health effects. A systematic and reproducible search of publications from 1985 until May 2019 was conducted using diverse electronic databases. Following de-duplication, 5301 records were identified, of which 380 were included in the final qualitative synthesis. The majority of studies (220; 57.9%) related to Ciguatera Poisoning. Anecdotal and case reports made up the vast majority of study types (242; 63.7%), whereas there were fewer formal epidemiological studies (35; 9.2%). Only four studies related to chronic exposure to HABs. A low proportion of studies reported the use of human specimens for confirmation of the cause of illness (32; 8.4%). This study highlighted gaps in the evidence base including a lack of formal surveillance and epidemiological studies, limited use of toxin measurements in human samples, and a scarcity of studies of chronic exposure. Future research and policy should provide a baseline understanding of the burden of human disease to inform the evaluation of the current and future impacts of climate change and HABs on human health.
BACKGROUND: Pollution – unwanted waste released to air, water, and land by human activity – is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood. GOALS: (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health. METHODS: Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention. ENVIRONMENTAL FINDINGS: Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources – coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths. ECOSYSTEM FINDINGS: Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks. HUMAN HEALTH FINDINGS: Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children’s risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals – phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them
BACKGROUND: Outbreaks of infectious diseases are the major concern after flooding. Flood makes people displacement which would be more complicated with inadequate sanitation. Settling in crowded shelters in absence of clean water and inaccessibility to health care services makes people more vulnerable to get infection. This review aimed to discuss about potential undesirable outcomes of flooding occurred in 2019 in Iran. METHODS: A comprehensive search was carried out in databases including PubMed, Google scholar, Scopus, Science Direct, Iran medex, Magiran and SID (Scientific information database) from 2000 to 2019. All original descriptive articles on flood were concerned. Related articles on flood disturbance were considered. Also, publication of red cross society was considered as only reliable reference in evaluation of consequences of flood occurred in 2019 in Iran. RESULTS: Flooding in Iran, was started in March 2019 and lasted to April 2019. Flood affected 31 provinces and 140 rivers burst their banks, and southwestern Iran being hit most severely. According the reports of international federation of red cross society, 3800 cities and villages were affected by the floods with 65,000 destroyed houses and 114,000 houses partially damaged. Also 70 hospitals or health care centers with 1200 schools were damaged along with many infrastructures including 159 main roads and 700 bridges. CONCLUSIONS: Considering 365,000 displaced persons and estimation of mentioned damages, it was one of the greatest natural disaster during the last 20 years. Various risk factors in favor of infectious diseases such as overcrowding, disruption of sewage disposal, poor standards of hygiene, poor nutrition, negligible sanitation and human contact among refugees provide suitable conditions for increased incidence of infectious diseases after flooding and also cause epidemics.More attention is needed to provide hygienic situation for people after natural disasters including flood.
Sea level rise and the anthropogenic warming of the world’s oceans is not only an environmental tragedy, but these changes also result in a significant threat to public health. Along with coastal flooding and the encroachment of saltwater farther inland comes an increased risk of human interaction with pathogenic Vibrio species, such as Vibrio cholerae, V. vulnificus and V. parahaemolyticus. This minireview examines the current literature for updates on the climatic changes and practices that impact the location and duration of the presence of Vibrio spp., as well as the infection routes, trends and virulence factors of these highly successful pathogens. Finally, an overview of current treatments and methods for the mitigation of both oral and cutaneous exposures are presented.
Children’s bodies are in dynamic stages of development that make them more susceptible to harm from exposure to environmental agents. Children’s physical, physiological and behavioral traits can lead to increased exposure to toxic chemicals or pathogens. In addition, the social determinants of health interact with this exposure and create an increasing risk for further disparities among children. In Indonesia, the fourth most populated country in the world, children are under threat of exposure to contaminated water, air, food and soil, which can cause gastrointestinal and respiratory diseases, birth defects and neurodevelopmental disorders. A safe and balanced nutrition is still an unmet need for too many children. At the same time, the prevalence of obesity and the risk of later development of metabolic diseases, including diabetes and cardiovascular diseases, are increasing as a consequence of both unhealthy diets and inadequate physical activity. The risks of potential long-term toxicity, including carcinogenic, neurotoxic, immunotoxic, genotoxic, endocrine-disrupting and allergenic effects of many chemicals, are also close to their lives. This paper provides an overview of common disease risks in Indonesian children, including: acute hepatitis A, diarrheal diseases, dengue and malaria due to lack of water supply and sanitation, vectors, and parasites; asthma, bronchopneumonia, chronic obstructive pulmonary disease (COPD) and acute respiratory infections (ARIs) due to air pollution and climate change; some chronic diseases caused by toxic and hazardous waste; and direct or indirect consequences due to the occurrence of disasters and health emergencies.
Although the number of cholera infection decreased universally, climate change can potentially affect both incidence and prevalence rates of disease in endemic regions. There is considerable consistent evidence, explaining the associations between cholera and climatic variables. However, it is essentially required to compare and interpret these relationships globally. The aim of the present study was to carry out a systematic review in order to identify and appraise the literature concerning the relationship between nonanthropogenic climatic variabilities such as extreme weather- and ocean-related variables and cholera infection rates. The systematic literature review of studies was conducted by using determined search terms via four major electronic databases (PubMed, Web of Science, Embase, and Scopus) according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach. This search focused on published articles in English-language up to December 31, 2018. A total of 43 full-text studies that met our criteria have been identified and included in our analysis. The reviewed studies demonstrated that cholera incidence is highly attributed to climatic variables, especially rainfall, temperature, sea surface temperature (SST) and El Niño Southern Oscillation (ENSO). The association between cholera incidence and climatic variables has been investigated by a variety of data analysis methodologies, most commonly time series analysis, generalized linear model (GLM), regression analysis, and spatial/GIS. The results of this study assist the policy-makers who provide the efforts for planning and prevention actions in the face of changing global climatic variables.
Climate variability is heavily impacting human health all around the globe, in particular, on residents of developing countries. Impacts on surface water and groundwater resources and water-related illnesses are increasing, especially under changing climate scenarios such as diversity in rainfall patterns, increasing temperature, flash floods, severe droughts, heatwaves and heavy precipitation. Emerging water-related diseases such as dengue fever and chikungunya are reappearing and impacting on the life of the deprived; as such, the provision of safe water and health care is in great demand in developing countries to combat the spread of infectious diseases. Government, academia and private water bodies are conducting water quality surveys and providing health care facilities, but there is still a need to improve the present strategies concerning water treatment and management, as well as governance. In this review paper, climate change pattern and risks associated with water-related diseases in developing countries, with particular focus on Pakistan, and novel methods for controlling both waterborne and water-related diseases are discussed. This study is important for public health care, particularly in developing countries, for policy makers, and researchers working in the area of climate change, water quality and risk assessment.
Naegleria fowleri is a free-living protozoan that resides in soil and freshwater. Human intranasal amoebae exposure through water or potentially dust particles can culminate in primary amoebic meningoencephalitis, which generally causes death. While many questions remain regarding pathogenesis, the microbial ecology of N. fowleri is even less understood. This review outlines current knowledge of the environmental abiotic and biotic factors that affect the distribution and abundance of N. fowleri. Although the impacts of some abiotic factors remain poorly investigated or inconclusive, N. fowleri appears to have a wide pH range, low salinity tolerance and thermophilic preference. From what is known about biotic factors, the amoebae preferentially feed upon bacteria and are preyed upon by other free-living amoebae. Additional laboratory and environmental studies are needed to fill in knowledge gaps, which are crucial for surveillance and management of N. fowleri in freshwaters. As surface water temperatures increase with climate change, it is likely that this amoeba will pose a greater threat to human health, suggesting that identifying its abiotic and biotic preferences is critical to mitigating this risk.
Previous studies found non-linear mutual interactions among hydrometeorological factors on diarrheal disease. However, the complex interactions of the hydrometeorological, topographical and human activity factors need to be further explored. This study aimed to reveal how hydrological and other factors jointly influence bacillary dysentery in different geographical regions. Using Anhui Province in China, consisted of Huaibei plain, Jianghuai hilly and Wannan mountainous regions, we integrated multi-source data (6 meteorological, 3 hydrological, 2 topographic, and 9 socioeconomic variables) to explore the direct and interactive relationship between hydrological factors (quick flow, baseflow and local recharge) and other factors by combining the ecosystem model InVEST with spatial statistical analysis. The results showed hydrological factors had significant impact powers (q = 0.444 (Huaibei plain) for local recharge, 0.412 (Jianghuai hilly region) and 0.891 (Wannan mountainous region) for quick flow, respectively) on bacillary dysentery in different regions, but lost powers at provincial level. Land use and soil properties have created significant interactions with hydrological factors across Anhui province. Particularly, percentage of farmland in Anhui province can influence quick flow across Jianghuai, Wannan regions and the whole province, and it also has significant interactions with the baseflow and local recharge across the plain as well as the whole province. Percentage of urban areas had interactions with baseflow and local recharge in Jianghuai and Wannan regions. Additionally, baseflow and local recharge could be interacted with meteorological factors (e.g. temperature and wind speed), while these interactions varied in different regions. In conclusion, it was evident that hydrological factors had significant impacts on bacillary dysentery, and also interacted significantly with meteorological and socioeconomic factors. This study applying ecosystem model and spatial analysis help reveal the complex and nonlinear transmission of bacillary dysentery in different geographical regions, supporting the development of precise public health interventions with consideration of hydrological factors.
The surface water is a significant feature in the hydrological system and is a vital compound for life growth. Assessment of trace elements in the water bodies is essential since it poses huge threats to aquatic organisms and humans if present in high concentrations. This study was carried out to assess the seasonal changes in the dissolved trace elements concentration in Bhavani river, which is one of the major rivers of Tamil Nadu, southern India and also to assess the human health risk due to its consumption. A total of 46 surface water samples were collected along the river during pre-monsoon and post-monsoon of 2018 and were analyzed for various trace elements such as Zn, Cu, Fe, Ni, and Pb. The variation in trace element concentration is observed spatially, where higher concentration is found in samples from agricultural and urban areas than the samples from the undisturbed natural-mountain terrains. The results highlighted that the concentrations of trace elements differ temporally where the concentration is greater during the monsoon due to increased discharge of sewage and agricultural run off to the river. Multivariate statistical analysis indicates stronger relationship between trace elements and other physio-chemical parameters hinting that natural and anthropogenic sources alters the riverine chemistry. Thus, the rainfall-runoff characteristics along with lithology, topography, and landuse of the basin plays a dominant role in the seasonal variation of dissolved trace elements. The water quality index value shows “good/excellent” during pre-monsoon and “marginal/fair” during monsoon season and the Heavy Metal Pollution Index values were also low during both the seasons. The river water samples which defy these indices were found to be either from urban or agricultural lands. The oral and dermal ingestion health risk to adults was assessed, which indicates that the risks posed to humans by consumption of water were minimal. The trace metal concentration of the river was then compared with the other rivers of world and India, where it shows that Zn, Cu, and Ni concentration was higher in Bhavani than in most of the rivers. Thus, the study highlighted that the urban settlements and agricultural lands have a considerable influence on river quality thereby triggering the increase in trace element concentrations. Therefore, the study necessitates on the continuous monitoring of river along with adoption of stringent discharge protocols.
Enteric infections and water-related illnesses are more frequent during times of relative water abundance, especially in regions that experience bimodal rainfall patterns. However, it is unclear how seasonal changes in water availability and drinking water source types affect enteric infections in young children. This study investigated seasonal shifts in primary drinking water source type and the effect of water source type on enteric pathogen prevalence in stool samples from 404 children below age 5 in rural communities in Limpopo Province, South Africa. From wet to dry season, 4.6% (n = 16) of households switched from a source with a higher risk of contamination to a source with lower risk, with the majority switching to municipal water during the dry season. In contrast, 2.6% (n = 9) of households switched from a source with a lower risk of contamination to a source with higher risk. 74.5% (n = 301) of the total households experienced interruptions in their water supply, regardless of source type. There were no significant differences in enteric pathogen prevalence between drinking water sources. Intermittent municipal water distribution and household water use and storage practices may have a larger impact on enteric infections than water source type. The limited differences in enteric pathogen prevalence in children by water source could also be due to other exposure pathways in addition to drinking water, for example through direct contact and food-borne transmission.
Secure potable water is indispensable to life. The presence of salinity in potable water has become a serious problem worldwide and it is essential to ensure secure potable water, particularly in the coastal areas of Bangladesh. In this work, 48 (forty-eight) harvested rainwater samples were assessed from Upazila (sub-district) of Mongla and Sarankhola, Bagerhat district, Bangladesh during the monsoon (May) and post-monsoon (October) periods. The objective was to examine the effect of seasonal variations on the quality of harvested rainwater. The harvested rainwater was analyzed for fecal coliform, total coliform, lead (Pb), zinc (Zn), pH, and turbidity. The mean pH in monsoon and post-monsoon periods was 6.93 and 7.24, respectively, which was within both the WHO guideline and Bangladesh Drinking Standard. In the monsoon season, turbidity levels in samples met the Bangladesh water quality standard but 10% of the harvested rainfall samples had Pb levels that exceeded the WHO drinking water limit. The turbidity of harvested rainwater in post-monsoon exceeded the WHO and Bangladesh Drinking Standard by 21% (10 out of 48) and 6% (3 out of 48), respectively. The fecal coliform of harvested rainwater exceeded both WHO and Bangladesh Drinking Standard by 56% (27 out of 48) and 67% (32 out of 48) in the monsoon and post-monsoon, correspondingly. Conversely, total coliform of harvested rainwater exceeded both the WHO and Bangladesh Drinking Standard by 67% (32 out of 48) and 79% (38 out of 48), accordingly in the monsoon and post-monsoon seasons. The Zn was below the WHO and Bangladesh Drinking Standard but Pb exceeded the WHO guideline in the monsoon and post-monsoon by 15% (7 out of 48) and 17% (8 out of 48), respectively. Pb is toxic to humans and children are especially vulnerable. The harvested rainwater should be treated effectively to reduce the toxicity and danger posed by Pb, fecal coliform, and total coliform before it is fit for drinking purposes.
Climate change is expected to increase the prevalence of water-borne diseases especially in developing countries. Climate-resilient drinking water supplies are critical to protect communities from faecal contamination and thus against increasing disease risks. However, no quantitative assessment exists for the impacts of short-term climate variability on faecal contamination at different drinking water sources in developing countries, while existing understanding remains largely conceptual. This critical gap limits the ability to predict drinking water quality under climate change or to recommend climate-resilient water sources for vulnerable communities. This study aims to provide such quantitative understanding by investigating the relationships between faecal contamination and short-term climate variability across different types of water sources. We collected a novel dataset with over 20 months’ monitoring of weather, Escherichia coli (E. coli) and total coliforms, at 233 different water sources in three climatically different regions in Tanzania. We then took a rigorous statistical analysis with Bayesian hierarchical models, to relate both contamination occurrence and amount to climate variability. The model results explained the temporal variability in drinking water faecal contamination using climate predictors, and also revealed the climate sensitivity of faecal contamination for individual water sources. We found that: a) short-term climate variability and baseline contamination levels can explain about half the observed variability in faecal contamination (R(2) ? 0.44); b) increased contamination was most consistently related to recent heavy rainfall and high temperature across different water sources; c) unimproved water sources such as the unprotected dug wells have substantially higher climate sensitivity. Based on these results, we can expect substantial increases in drinking water contamination risks across tropical Sub-Saharan Africa and South-East Asian developing countries under a warmer climate, which highlight the urgent need of protecting vulnerable communities from the severe climate impacts.
Rivers are important for drinking water supply worldwide. However, they are often impacted by pathogen discharges via wastewater treatment plants (WWTP) and combined sewer overflows (CSO). To date, accurate predictions of the effects of future changes and pollution control measures on the microbiological water quality of rivers considering safe drinking water production are hindered due to the uncertainty of the pathogen source and transport variables. The aim of this study was to test an integrative approach for an improved understanding of these effects, i.e. climate change and population growth as well as enhanced treatment at WWTPs and/or prevention of CSOs. We applied a significantly extended version of QMRAcatch (v1.0 Python), a probabilistic-deterministic model that combines fate and transport modelling with quantitative microbial infection risk assessment. The impact of climatic changes until the period 2035-2049 was investigated by a conceptual semi-distributed hydrological model, based on regional climate model outputs. QMRAcatch was calibrated and validated using site- and source-specific data (human-associated genetic microbial source tracking marker and enterovirus). The study showed that the degree to which future changes affect drinking water safety strongly depends on the type and magnitude of faecal pollution sources and are thus highly site- and scenario-specific. For example, if the load of pathogens from WWTPs is reduced through enhanced treatment, climate-change driven increases in CSOs had a considerable impact. Preventing CSOs and installing enhanced treatment at the WWTPs together had the most significant positive effect. The simultaneous consideration of source apportionment and concentrations of reference pathogens, focusing on human-specific viruses (enterovirus, norovirus) and cross-comparison with bacterial and protozoan pathogens (Campylobacter, Cryptosporidium), was found crucial to quantify these effects. While demonstrated here for a large, wastewater-impacted river, the approach is applicable at other catchments and pollution sources. It allows assessing future changes and selecting suitable pollution control measures for long-term water safety planning.
Cryptosporidium is a water-borne zoonotic parasite worldwide, usually found in lakes and rivers contaminated with sewage and animal wastes, causing outbreaks of cryptosporidiosis. In this study, 300 water samples were collected from four designated places of flood-affected district Nowshera consist of different water sources to find out the prevalence of Cryptosporidium via polymerase chain reaction (PCR). The overall prevalence of Cryptosporidium was 30.33% (91/300) with more prevalent 44% in drain water and low 5% in bore/tube well water. The prevalence in open well and tap water was recorded 33% and 20%, respectively. The highest prevalence was recorded in summer (June-September). The result of this study ensures enormous contamination of drinking water that requires appropriate treatment, cleaning and filtration to provide safe drinking water. Preventing water-borne disease and proper treatment of water supplies is essential to public health.
In early 2019, following the 2015-2016 severe drought, the provinces of Sofala and Cabo Delgado, Mozambique, were hit by Cyclones Idai and Kenneth, respectively. These were the deadliest and most destructive cyclones in the country’s history. Currently, these two provinces host tens of thousands of vulnerable households due to the climatic catastrophes and the massive influx of displaced people associated with violent terrorist attacks plaguing Cabo Delgado. The emergence of the COVID-19 pandemic added a new challenge to this already critical scenario, serving as a real test for Mozambique’s public health preparedness. On the planetary level, Mozambique can be viewed as a ‘canary in the coal mine’, harbingering to the world the synergistic effects of co-occurring anthropogenic and natural disasters. Herein, we discuss how the COVID-19 pandemic has accentuated the need for an effective and comprehensive public health response in a country already deeply impacted by health problems associated with natural disasters and population displacement.
BACKGROUND: Global temperatures are projected to rise by ?2?°C by the end of the century, with expected impacts on infectious disease incidence. Establishing the historic relationship between temperature and childhood diarrhea is important to inform future vulnerability under projected climate change scenarios. METHODS: We compiled a national dataset from Peruvian government data sources, including weekly diarrhea surveillance records, annual administered doses of rotavirus vaccination, annual piped water access estimates, and daily temperature estimates. We used generalized estimating equations to quantify the association between ambient temperature and childhood (5?years) weekly reported clinic visits for diarrhea from 2005 to 2015 in 194 of 195 Peruvian provinces. We estimated the combined effect of the mean daily high temperature lagged 1, 2, and 3 weeks, in the eras before (2005-2009) and after (2010-2015) widespread rotavirus vaccination in Peru and examined the influence of varying levels of piped water access. RESULTS: Nationally, an increase of 1?°C in the temperature across the three prior weeks was associated with a 3.8% higher rate of childhood clinic visits for diarrhea [incidence rate ratio (IRR): 1.04, 95% confidence interval (CI): 1.03-1.04]. Controlling for temperature, there was a significantly higher incidence rate of childhood diarrhea clinic visits during moderate/strong El Niño events (IRR: 1.03, 95% CI: 1.01-1.04) and during the dry season (IRR: 1.01, 95% CI: 1.00-1.03). Nationally, there was no evidence that the association between temperature and the childhood diarrhea rate changed between the pre- and post-rotavirus vaccine eras, or that higher levels of access to piped water mitigated the effects of temperature on the childhood diarrhea rate. CONCLUSIONS: Higher temperatures and intensifying El Niño events that may result from climate change could increase clinic visits for childhood diarrhea in Peru. Findings underscore the importance of considering climate in assessments of childhood diarrhea in Peru and globally, and can inform regional vulnerability assessments and mitigation planning efforts.
Many deltas worldwide have increasingly faced extreme drought and salinity intrusion, which have adversely affected millions of coastal inhabitants in terms of lives and property. The Vietnamese Mekong Delta (VMD) is considered one of the world?s most vulnerable regions to drought and saline water intrusion, especially in the context of climate change. This study aims to assess livelihood vulnerability and adaptation of the coastal people of the VMD under the impacts of drought and saltwater intrusion. A multi-disciplinary approach was applied, including desktop literature reviews, field surveys, interviews, and focus group discussions with 120 farmers and 30 local officials in two representative hamlets of Soc Trang, a coastal province of the VMD. A vulnerability assessment tool in combination with a sustainable livelihood framework was used to evaluate livelihood vulnerability using the five capital resources to indicate the largest effects of drought and salinity intrusion on the migration of local young people to large cities for adaptation. Livelihood Vulnerability Indexes revealed higher vulnerability in terms of the five capitals of coastal communities living in Nam Chanh hamlet compared to Soc Leo. Results of interviews with officials indicated an optimized mechanism between social organizations and local communities before, at the time, and after being impacted by the drought and salinity intrusion. Our findings contribute evidence-based knowledge to decision-makers to enable coastal communities in the VMD and other deltas worldwide to effectively adapt to the impacts of drought and salinity intrusion.
Hydro-meteorological risks are a growing issue for societies, economies and environments around the world. An effective, sustainable response to such risks and their future uncertainty requires a paradigm shift in our research and practical efforts. In this respect, Nature-Based Solutions (NBSs) offer the potential to achieve a more effective and flexible response to hydro-meteorological risks while also enhancing human well-being and biodiversity. The present paper describes a new methodology that incorporates stakeholders’ preferences into a multi-criteria analysis framework, as part of a tool for selecting risk mitigation measures. The methodology has been applied to Tamnava river basin in Serbia and Nangang river basin in Taiwan within the EC-funded RECONECT project. The results highlight the importance of involving stakeholders in the early stages of projects in order to achieve successful implementation of NBSs. The methodology can assist decision-makers in formulating desirable benefits and co-benefits and can enable a systematic and transparent NBSs planning process.
This publication presents a comparison of the content of pollutants in groundwater samples taken at 117 measurement points in four regions of Poland during a drought period and in the reference period without drought. Based on the chemical analyses of water, an assessment of the health risk resulting from the use of underground water for consumption was carried out. The study aimed to determine whether drought affects the increase in health risk exposure of the population. It was found that despite the occurrence of drought, the expected increase in the concentration of pollutants in water does not take place in all locations. This study found that in some cases the occurrence of drought did not cause an increase in the non-cancerogenic threat expressed by the hazard index. There were also no clear changes in excess lifetime cancer risk values except for selected measurement points. On the other hand, the statistical analysis of all data collected in the regions where the research was conducted showed a general trend of increasing environmental health risk caused by changes in groundwater pollution during drought.
Leptospirosis is a disease usually acquired by humans through water contaminated with the urine of rodents that comes into direct contact with the cutaneous lesions, eyes, or mucous membranes. The disease has an important environmental component associated with climatic conditions and natural disasters, such as floods. We analyzed the relationship between rainfall and temperature and the incidence of leptospirosis in the top 30 municipalities with the highest numbers of cases of the disease in the period of 2007 to 2016. It was an ecological study of the time series of cases of leptospirosis, rainfall, and temperature with lags of 0, 1, 2, 3, and 4 weeks. A multilevel negative binomial regression model was implemented to evaluate the relationship between leptospirosis and both meteorological factors. In the 30 evaluated municipalities during the study period, a total of 5136 cases of leptospirosis were reported. According to the implemented statistical model, there was a positive association between the incidence of leptospirosis and rainfall with a lag of 1 week and a negative association with temperature with a lag of 4 weeks. Our results show the importance of short-term lags in rainfall and temperature for the occurrence of new cases of leptospirosis in Colombia.
The floods of 2018 caused havoc in the State of Kerala, situated in the extreme south-west of India, in terms of infrastructure and health. This research provides the first-ever assessment of the bacterial diversity and its antibiotic susceptibility of the inundated areas of Pampa, Periyar and Vembanad waterbodies by comparing the data collected in two different time intervals succeeding the calamitous floods that is, immediately after flood and 5 months post-flood. An elevated total coliform count was detected in the waterbodies after the flood thereby rendering it unsafe for drinking. Variation in bacterial diversity was observed in the river and lake water samples with a distinct increase in that of the river samples immediately after flood indicated by shannon diversity index (>5.5). Resistance to ampicillin and cefotaxime was observed in a major proportion of isolates from the three biotopes thus indicating the influence of antibiotic wastes accumulated from different sources of human interventions. Furthermore, operational taxonomic units clustering to Acinetobacter, Legionella, Pseudomonas and Burkholderia genera were detected by metataxonomic analysis which portray as a potential health risk in the future. The article emphasises the importance of adopting sanitation programmes for effective management of epidemic outbreaks post floods.
Food poisoning is caused by pathogenic bacteria in water and aquatic products, especially bivalves (e.g., oysters, clams), which can bioaccumulate pathogenic bacteria. Polluted water and aquatic products thus pose a serious threat to human health and safety. In this study, the types of pathogenic bacteria in water samples and shellfish collected from the Dadeng offshore area in Xiamen were examined. We also analyzed the relationships between dominant pathogens and major climate and water quality parameters. Our objective was to provide reference data that may be used to help prevent bacterial infections and to improve aquatic food hygiene in Xiamen and its surrounding areas to safe levels, thus ensuring the health of Xiamen residents. We found that the main pathogenic bacteria were Vibrio and Bacillus, with the dominant pathogen being Vibrio parahaemolyticus. Physical and chemical indexes (water temperature, salinity, pH, dissolved oxygen, and turbidity) of water bodies and the 3-day accumulated rainfall were found to be important factors affecting the occurrence and abundance of V. parahaemolyticus.
Urbanization, livestock activities, and rainfall are factors that contribute to the contamination of inland water. This study aimed to determine the spatial and temporal variability of total coliforms (TCs) and fecal coliforms (FCs) in the surface water of San Pedro Lake as well as the gills and skin of Nile tilapia (Oreochromis niloticus) cultivated in the lake. The study consisted of seasonal sampling during an annual cycle. Using the multiple-tube fermentation technique, we quantified the microbial load of TCs in the lake and fish. The median of the TC and FC groups in surface water showed differences during the seasonal cycle, in which a significant correlation was observed between rainfall and bacterial load in the lake surface water. There was a significant seasonal difference between FCs and TCs in the gills as well as in skin FCs. Anthropogenic activities in the watershed combined with rainfall influence the bacterial load of San Pedro Lake. However, the water quality is still classified as excellent and uncontaminated according to Mexican regulations with lower FC values acceptable for higher FC values. In addition, the bacterial load in tilapia from San Pedro Lake does not pose a risk to human health. PRACTITIONER POINTS: Watershed livestock activities combined with rainfall increase fecal matter pollution in specific areas of the lake. San Pedro Lake displays satisfactory quality for aquatic life. The median fecal coliform population in lake fish (gills and skin) differs by season.
The Himalayan rivers are vulnerable to devastating flooding caused by landslides and outbreak of glacial lakes. On 7 February 2021, a deadly disaster occurred near the Rishi Ganga Hydropower Plant in the Rishi Ganga River, killing more than 100 people. During the event, a large volume of debris and broken glacial fragments flooded the Rishi Ganga River and washed away the Rishi Ganga Hydropower plant ongoing project. This study presents the impact of the Chamoli disaster on the water quality of Rishi Ganga River in upstream near Tapovan and Ganga River in downstream near Haridwar through remote sensing data. Five points have been used at different locations across the two study areas and three different indices were used such as Normalized difference water index (NDWI), Normalized difference turbidity Index (NDTI), and Normalized difference chlorophyll index (NDCI), to analyze changes in water quality. Spectral signatures and backscattering coefficients derived from Sentinel-2 Optical and Sentinel-1 Synthetic-aperture radar (SAR) data were also compared to study the changes in water quality. It was evident from the water quality indices and spectral signatures that the flood plains changed significantly. Using spectral signatures and different indices, the water level in the Chilla dam canal near Haridwar was found to decreased after the Chamoli disaster event as the flood gates were closed to stop the deposit of sediments in the canal. Results suggest changes in water quality parameters (turbidity, chlorophyll concentration, NDWI) at the five locations near the deadly site and far away at Haridwar along the Ganga River. This study is a preliminary qualitative analysis showing changes in river flood plain and water quality after the Chamoli disaster.
INTRODUCTION: In 2016-18, the Democratic Republic of São Tomé and Príncipe suffered a necrotic skin infection epidemic. METHODS: A surveillance system was established after increased hospitalisations for this infection. Microbiology results were available for samples analysed in December 2016 and March 2017 using whole genome sequencing and metagenomics. Negative binomial regression was used to study the association of weather conditions with monthly case counts in a time-series analysis. RESULTS: From October 2016 to October 2018, the epidemic cumulative attack rate was 1.5%. The first peak lasted 5 months, accounting for one-third of total cases. We could not conclusively identify the aetiological agent(s) due to the country’s lack of microbiology capacity. Increased relative humidity was associated with increased monthly cases (incidence rate ratio (IRR) 1.05, 95% CI 1.02-1.09), and higher precipitation in the previous month with a higher number of cases in the following month (months with 0-49 mm rainfall compared with months with 50-149 mm and ?150 mm: IRR 1.44, 95 % CI 1.13-1.78 and 1.50, 95% CI 1.12-1.99, respectively). DISCUSSION: This epidemic was favoured by increased relative humidity and precipitation, potentially contributing to community-based transmission of ubiquitous bacterial strains superinfecting skin wounds. FUNDING: World Health Organization Regional Office for Africa, Ministry of Health.
Due to population growth, urbanization and economic development, demand for freshwater in urban areas is increasing throughout Europe. At the same time, climate change, eutrophication and pollution are affecting the availability of water supplies. Sicily, a big island in southern Italy, suffers from an increasing drought and consequently water shortage. In the last decades, in Sicilian freshwater reservoirs several Microcystis aeruginosa and more recently Planktothrix rubescens blooms were reported. The aims of the study were: (1) identify and quantify the occurring species of cyanobacteria (CB), (2) identify which parameters, among those investigated in the waters, could favor their growth, (3) set up a model to identify reservoirs that need continuous monitoring due to the presences, current or prospected, of cyanobacterial blooms and of microcystins, relevant for environmental and, consequentially, for human health. Fifteen artificial reservoirs among the large set of Sicilian artificial water bodies were selected and examined for physicochemical and microbiological characterization. Additional parameters were assessed, including the presence, identification and count of the cyanobacterial occurring species, the measurement of microcystins (MCs) levels and the search for the genes responsible for the toxins production. Principal Component Analysis (PCA) was used to relate environmental condition to cyanobacterial growth. Water quality was poor for very few parameters, suggesting common anthropic pressures, and PCA highlighted clusters of reservoirs vulnerable to hydrological conditions, related to semi-arid Mediterranean climate and to the use of the reservoir. In summer, bloom was detected in only one reservoir and different species was highlighted among the Cyanobacteria community. The only toxins detected were microcystins, although always well below the WHO reference value for drinking waters (1.0 ?g/L). However, molecular analysis could not show the presence of potential cyanotoxins producers since a few numbers of cells among total could be sufficient to produce these low MCs levels but not enough high to be proved by the traditional molecular method applied. A simple environmental risk-based model, which accounts for the high variability of both cyanobacteria growth and cyanotoxins producing, is proposed as a cost-effective tool to evaluate the need for monitoring activities in reservoirs aimed to guarantee supplying waters safety.
Existing efforts to ensure safe water access in coastal Bangladesh are challenged by increasing freshwater salinity. This research explored/explores safe water consumption choices in coastal Bangladesh, which data are scarce to date, using a mixed-methods approach. In 2014, a cross-sectional survey was conducted in southwestern coastal Bangladesh (n=261) and data was generated on water supply and consumption. Data collection also involved 29 in-depth interviews of household care givers and focus group discussions were performed with three community groups. Descriptive statistics were applied to analyse quantitative data and thematic analysis was used for qualitative data. The survey showed that 60% of the study population used tube well water while 40% used pond water for drinking. It was observed that for cooking purposes, the use of pond water was slightly higher than the tube well water. Only 13% of the respondents mentioned that their drinking water tasted salty whereas 6% of the respondents reported health problem (diarrhoea, dysentery, gastric issues and skin problems) after using these water sources. The qualitative data reveals that water available for drinking and cooking is causing a serious threat to this coastal community, particularly during the dry season. In-depth assessments indicated that drinking water choices were less driven by concerns for health than practical issues such as travel distance and time taken and taste. The palatability of water was an important determinant of choice for drinking and other domestic uses. Furthermore, the utility of alternative options for safe drinking water is driven by beliefs and traditions and source maintenance. Given the increasing salinisation of freshwaters in many low-lying countries and likely exacerbation related to climate change-induced sea level rise, therefore, promotion of low saline drinking water along with salt reducing interventions consider that community beliefs and practices must be a made priority.
OBJECTIVES: The objective of this study is to describe an important waterborne outbreak of gastrointestinal illness observed in a rural municipality of Quebec. METHODS: A population-based retrospective cohort study was conducted to identify risk factors associated with acute gastroenteritis. Indirect surveillance data were used to estimate the extent and the resolution of the epidemic. RESULTS: The cohort consisted of 140 randomly selected individuals of whom 22 met the illness case definition (15.7% attack rate). The epidemic curve was similar to the evolution of antidiarrheal products sold by the only pharmacy in town and calls made to the Health Info Line. Bivariate analysis led to identifying five risk factors of gastrointestinal illness: consumption of municipal water, contact with someone with acute gastroenteritis (within and outside of the household), contact with a child in daycare, and being less than 35 years of age. Drinking municipal water had the highest risk ratio (RR?=?24.31; 95% CI?=?1.50-393.4). Drinking water from a private artesian well was a protective factor (RR?=?0.28; 95% CI?=?0.09-0.90). CONCLUSION: This study highlighted that managing the risks associated with the consumption of untreated drinking water remains an important public health challenge, particularly in small rural municipalities vulnerable to climate variability.
Climate change is imposing substantial consequences across physical and social infrastructures. The extent of social disruption and risk to human health are, however, potentially much broader than these general consequences, taken individually, would suggest. To address this gap, we assess the distribution of contaminated sites in the United States (US) and then estimate the impact that flood hazards in urban areas will have on these contaminated sites. Using these measures, we draw inferences about the risk of contamination from climate impacted extreme weather events, climate adaptation at the local level, social risk and how it is distributed, and a broader understanding of the potential global consequences of climate change. In this paper we address three critical points: 1) the role classification of contaminated sites on our understanding of risk due to climate change; 2) the relationship between contaminated sites and flood risk; and 3) the potential for climate adaption strategies to mediate this risk. We estimate that of the roughly one-third of the US population living in urban areas, up to 3,338,518 people, are living in high-risk flood zones near contaminated sites. Our results suggest severe potential implications for estimates of the negative consequences from climate change and contamination and provide critical insights into the relationship between climate change and the built environment for urban planners and environmental policy makers and managers alike.
Harmful algal blooms (HABs) can have dire repercussions on aquatic wildlife and human health, and may negatively affect recreational uses, aesthetics, taste, and odor in drinking water. The factors that influence the occurrence and magnitude of harmful algal blooms and toxin production remain poorly understood and can vary in space and time. It is within this context that we use machine learning (ML) and two 14-year (2005-2018) data sets on water quality and meteorological conditions of China’s lakes and reservoirs to shed light on the magnitude and associated drivers of HAB events. General regression neural network (GRNN) models are developed to predict chlorophyll a concentrations for each lake and reservoir during two study periods (2005-2010 and 2011-2018). The developed models with an acceptable model fit are then analyzed by two indices to determine the areal HAB magnitudes and associated drivers. Our national assessment suggests that HAB magnitudes for China’s lakes and reservoirs displayed a decreasing trend from 2006 (1363.3 km(2)) to 2013 (665.2 km(2)), and a slightly increasing trend from 2013 to 2018 (775.4 km(2)). Among the 142 studied lakes and reservoirs, most severe HABs were found in Lakes Taihu, Dianchi and Chaohu with their contribution to the total HAB magnitude varying from 89.2% (2013) to 62.6% (2018). HABs in Lakes Taihu and Chaohu were strongly associated with both total phosphorus and nitrogen concentrations, while our results were inconclusive with respect to the predominant environmental factors shaping the eutrophication phenomena in Lake Dianchi. The present study provides evidence that effective HAB mitigation may require both nitrogen and phosphorus reductions and longer recovery times; especially in view of the current climate-change projections. ML represents a robust strategy to elucidate water quality patterns in lakes, where the available information is sufficient to train the constructed algorithms. Our mapping of HAB magnitudes and associated environmental/meteorological drivers can help managers to delineate hot-spots at a national scale, and comprehensively design the best management practices for mitigating the eutrophication severity in China’s lakes and reservoirs.
According to the World Health Organization, about 20 million people are infected with Hepatitis E every year. In 2015, there were 44,000 deaths due to HEV infection worldwide. Food, water and climate are key factors that affect the outbreak of Hepatitis E. This paper presents an ensemble learning model for Hepatitis E prediction by studying the correlation between historical epidemic cases of hepatitis E and environmental factors (water quality and meteorological data). Environmental factors include many features, and ones that are most relevant to HEV are selected and input into the ensemble learning model composed by Gradient Boosting Decision Tree (GBDT) and Random Forest for training and prediction. Three indicators, root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE), are used to evaluate the effectiveness of the ensemble learning model against the classical time series prediction model. It is concluded that the ensemble learning model has a better prediction effect than the classical model, and the prediction effectiveness can be improved by exploiting water quality and meteorological factors (radiation, air pressure, precipitation).
Introduction: Altered weather patterns and changes in precipitation, temperature and humidity resulting from climate change could affect the distribution and incidence of cholera. This study is to quantify climate-induced increase in morbidity rates of cholera. Material and Methods: Monthly cholera cases and monthly temperature, precipitation, and relative humidity data from 2004 to 2014 were obtained from the Malaysian Ministry of Health and Malaysian Meteorological Department, respectively. Poisson generalized linear models were developed to quantify the relationship between meteorological parameters and the number of reported cholera cases. Results: The findings revealed that the total number of cholera cases in Malaysia during the 11 year study period was 3841 cases with 32 deaths. Out of these, 45.1% of the cases were among children below 12 years old and 75% of the cases were from Sabah. Temperature and precipitation gave significant impact on the cholera cases in Sabah, (p<0.001) while precipitation were significant in Terengganu (p<0.001), and Sarawak (p=0.013). Monthly lag temperature data at Lag 0, 1, and 2 months were associated with the cholera cases in Sabah (p<0.001). The change in odds of having cholera cases were by the factor of 3.5 for every 1 degrees C increase in temperature. However, the contribution of rainfall was very mild, whereby an increase of 1 mm in precipitation will increase the excess risk of cholera by up to 0.8%. Conclusion: This study concludes that climate does influence the number of cholera cases in Malaysia.
Hurricane Katrina caused unprecedented flood damage to New Orleans, Louisiana, and has been the costliest hurricane in US history. We analyzed the environmental and public health outcomes of Hurricane Katrina by using Internet searches to identify epidemiological, sociodemographic, and toxicological measurements provided by regulatory agencies.Atmospheric scientists have now warned that global warming will increase the proportion of stronger hurricanes (categories 4-5) by 25% to 30% compared with weaker hurricanes (categories 1-2).With the new $14.6 billion Hurricane Storm Damage Risk Reduction System providing a 100-year storm surge-defensive wall across the Southeast Louisiana coast, New Orleans will be ready for stronger storms in the future.
The northeast (NE) region of Brazil commonly goes through drought periods, which favor cyanobacterial blooms, capable of producing neurotoxins with implications for human and animal health. The most severe dry spell in the history of Brazil occurred between 2012 and 2016. Coincidently, the highest incidence of microcephaly associated with the Zika virus (ZIKV) outbreak took place in the NE region of Brazil during the same years. In this work, we tested the hypothesis that saxitoxin (STX), a neurotoxin produced in South America by the freshwater cyanobacteria Raphidiopsis raciborskii, could have contributed to the most severe Congenital Zika Syndrome (CZS) profile described worldwide. Quality surveillance showed higher cyanobacteria amounts and STX occurrence in human drinking water supplies of NE compared to other regions of Brazil. Experimentally, we described that STX doubled the quantity of ZIKV-induced neural cell death in progenitor areas of human brain organoids, while the chronic ingestion of water contaminated with STX before and during gestation caused brain abnormalities in offspring of ZIKV-infected immunocompetent C57BL/6J mice. Our data indicate that saxitoxin-producing cyanobacteria is overspread in water reservoirs of the NE and might have acted as a co-insult to ZIKV infection in Brazil. These results raise a public health concern regarding the consequences of arbovirus outbreaks happening in areas with droughts and/or frequent freshwater cyanobacterial blooms.
BACKGROUND: Cercarial dermatitis (swimmer’s itch) caused by bird schistosome cercariae, released from intermediate host snails, is a common disorder also at higher latitudes. Several cases were observed in the artificial Danish freshwater Ringen Lake frequently used by the public for recreational purposes. The lake may serve as a model system when establishing a risk analysis for this zoonotic disease. In order to explain high risk periods we determined infection levels of intermediate host snails from early spring to late summer (March, June and August) and elucidated the effect of temperature and light on parasite shedding, behavior and life span. RESULTS: Field studies revealed no shedding snails in March and June but in late summer the prevalence of Trichobilharzia szidati infection (in a sample of 226 pulmonate Lymnaea stagnalis snails) reached 10%. When investigated under laboratory conditions the cercarial shedding rate (number of cercariae shed per snail per day) was positively correlated to temperature raising from a mean of 3000 (SD 4000) at 7 °C to a mean of 44,000 (SD 30,000) at 27 °C). The cercarial life span was inversely correlated to temperature but the parasites remained active for up to 60 h at 20 °C indicating accumulation of cercariae in the lake during summer periods. Cercariae exhibited positive phototaxy suggesting a higher pathogen concentration in surface water of the lake during daytime when the public visits the lake. CONCLUSION: The only causative agent of cercarial dermatitis in Ringen Lake detected was T. szidati. The infection risk associated with aquatic activities is low during spring and early summer (March-June). In late summer the risk of infection is high since the release, behavior and life span of the infective parasite larvae have optimal conditions.
BACKGROUND: Between 2014 and 2017, successive cholera epidemics occurred in South Sudan within the context of civil war, population displacement, flooding, and drought. We aim to describe the spatiotemporal and molecular features of the three distinct epidemic waves and explore the role of vaccination campaigns, precipitation, and population movement in shaping cholera spread in this complex setting. METHODS: In this descriptive epidemiological study, we analysed cholera linelist data to describe the spatiotemporal progression of the epidemics. We placed whole-genome sequence data from pandemic Vibrio cholerae collected throughout these epidemics into the global phylogenetic context. Using whole-genome sequence data in combination with other molecular attributes, we characterise the relatedness of strains circulating in each wave and the region. We investigated the association of rainfall and the instantaneous basic reproduction number using distributed lag non-linear models, compared county-level attack rates between those with early and late reactive vaccination campaigns, and explored the consistency of the spatial patterns of displacement and suspected cholera case reports. FINDINGS: The 2014 (6389 cases) and 2015 (1818 cases) cholera epidemics in South Sudan remained spatially limited whereas the 2016-17 epidemic (20?438 cases) spread among settlements along the Nile river. Initial cases of each epidemic were reported in or around Juba soon after the start of the rainy season, but we found no evidence that rainfall modulated transmission during each epidemic. All isolates analysed had similar genotypic and phenotypic characteristics, closely related to sequences from Uganda and Democratic Republic of the Congo. Large-scale population movements between counties of South Sudan with cholera outbreaks were consistent with the spatial distribution of cases. 21 of 26 vaccination campaigns occurred during or after the county-level epidemic peak. Counties vaccinated on or after the peak incidence week had 2·2 times (95% CI 2·1-2·3) higher attack rates than those where vaccination occurred before the peak. INTERPRETATION: Pandemic V cholerae of the same clonal origin was isolated throughout the study period despite interepidemic periods of no reported cases. Although the complex emergency in South Sudan probably shaped some of the observed spatial and temporal patterns of cases, the full scope of transmission determinants remains unclear. Timely and well targeted use of vaccines can reduce the burden of cholera; however, rapid vaccine deployment in complex emergencies remains challenging. FUNDING: The Bill & Melinda Gates Foundation.
Fecal coliform bacteria are a key indicator of human health risks; however, the spatiotemporal variability and key influencing factors of river fecal coliform have yet to be explored in a rural-suburban-urban watershed with multiple land uses. In this study, the fecal coliform concentrations in 21 river sections were monitored for 20 months, and 441 samples were analyzed. Multivariable regressions were used to evaluate the spatiotemporal dynamics of fecal coliform. The results showed that spatial differences were mainly dominated by urbanization level, and environmental factors could explain the temporal dynamics of fecal coliform in different urban patterns except in areas with high urbanization levels. Reducing suspended solids is a direct way to manage fecal coliform in the Beiyun River when the natural factors are difficulty to change, such as temperature and solar radiation. The export of fecal coliform from urban areas showed a quick and sensitive response to rainfall events and increased dozens of times in the short term. Landscape patterns, such as the fragmentation of impervious surfaces and the overall landscape, were identified as key factors influencing urban non-point source bacteria. The results obtained from this study will provide insight into the management of river fecal pollution.
Many of the six million residents of unincorporated communities in the United States depend on well-water to meet their needs. One group of unincorporated communities is the colonias, located primarily in several southwestern U.S. states. Texas is home to the largest number of these self-built communities, of mostly low-income families, lacking basic infrastructure. While some states have regulations that mandate minimum infrastructure for these communities, water and sewage systems are still lacking for many of their residents. Unprotected wells and self-built septic/cesspool systems serve as the primary infrastructure for many such colonias. This research was designed to probe how wells and septic/cesspool systems are influenced by heavy rainfall events. Such events are hypothesized to impact water quality with regard to human health. Inorganic and microbiological water quality of the wells in nine colonias located in Nueces County, Texas, were evaluated during dry and wet periods. Nueces County was selected as an example based on its flooding history and the fact that many colonias there depend entirely on well-water and septic/cesspool systems. The results demonstrate that well-water quality in these communities varies seasonally with respect to arsenic (up to 35 ?g/L) and bacterial contamination (Escherichia coli), dependent on the amount of rainfall, which leaves this population vulnerable to health risks during both wet and dry periods. Microbial community analyses were also conducted on selected samples. To explore similar seasonal contamination of well-water, an analysis of unincorporated communities, flooding frequency, and arsenic contamination in wells was conducted by county throughout the United States. This nationwide analysis indicates that unincorporated communities elsewhere in the United States are likely experiencing comparable challenges for potable water access because of a confluence of socioeconomic, infrastructural, and policy realities.
Non-point stormwater runoff is a major contamination source of receiving waterbodies. Heightened incidence of waterborne disease outbreaks related to recreational use and source water contamination is associated with extreme rainfall events. Such extreme events are predicted to increase in some regions due to climate change. Consequently, municipal separate storm sewer systems (MS4s) conveying pathogens to receiving waters are a growing public health concern. In addition, the spread of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria in various environmental matrices, including urban runoff, is an emerging threat. The resistome and microbiota profile of MS4 discharges has yet to be fully characterized. To address this knowledge gap, we first analyzed the relationship between rainfall depth and intensity and E. coli densities (fecal indicator) in stormwater from four MS4 outflows in Columbus, Ohio, USA during the spring and summer of 2017. Microbial source tracking (MST) was conducted to examine major fecal contamination sources in the study sewersheds. A subset of samples was analyzed for microbial and resistome profiles using a metagenomic approach. The results showed a significant positive relationship between outflow E. coli density and rainfall intensity. MST results indicate prevalent fecal contamination from ruminant populations in the study sites (91% positive among the samples tested). Protobacteria and Actinobacteria were two dominant bacteria at a phylum level. A diverse array of ARGs and potentially pathogenic bacteria (e.g. Salmonella enterica Typhimurium), fungi (e.g. Scedosporium apiospermum), and protists (e.g. Acanthamoeba palestinensis) were found in urban stormwater outflows that discharge into adjacent streams. The most prevalent ARGs among samples were ?-lactam resistance genes and the most predominant virulence genes within bacterial community were related with Staphylococcus aureus. A comprehensive contamination profile indicates a need for sustainable strategies to manage urban stormwater runoff amid increasingly intense rainfall events to protect public and environmental health.
Paralytic shellfish poison toxins (PSTs) produced by the dinoflagellate in the genus Alexandrium are a threat to human health and subsistence lifestyles in Southeast Alaska. It is important to understand the drivers of Alexandrium blooms to inform shellfish management and aquaculture, as well as to predict trends of PST in a changing climate. In this study, we aggregate environmental data sets from multiple agencies and tribal partners to model and predict concentrations of PSTs in Southeast Alaska from 2016 to 2019. We used daily PST concentrations interpolated from regularly sampled blue mussels (Mytilus trossulus) analyzed for total PSTs using a receptor binding assay. We then created random forest models to classify shellfish above and below a threshold of toxicity (80 µg 100 g(-1)) and used two methods to determine variable importance. We obtained a multivariate model with key variables being sea surface temperature, salinity, freshwater discharge, and air temperature. We then used a similar model trained using lagged environmental variables to hindcast out-of-sample (OOS) shellfish toxicities during April-October in 2017, 2018, and 2019. Hindcast OOS accuracies were low (37-50%); however, we found forecasting using environmental variables may be useful in predicting the timing of early summer blooms. This study reinforces the efficacy of machine learning to determine important drivers of harmful algal blooms, although more complex models incorporating other parameters such as toxicokinetics are likely needed for accurate regional forecasts.
Rivers are representative of the overall contamination found in their catchment area. Contaminant concentrations in watercourses depend on numerous factors including land use and rainfall events. Globally, in Mediterranean regions, rainstorms are at the origin of fluvial multipollution phenomena as a result of Combined Sewer Overflows (CSOs) and floods. Large loads of urban-associated microorganisms, including faecal bacteria, are released from CSOs which place public health – as well as ecosystems – at risk. The impacts of freshwater contamination on river ecosystems have not yet been adequately addressed, as is the case for the release of pollutant mixtures linked to extreme weather events. In this context, microbial communities provide critical ecosystem services as they are the only biological compartment capable of degrading or transforming pollutants. Through the use of 16S rRNA gene metabarcoding of environmental DNA at different seasons and during a flood event in a typical Mediterranean coastal river, we show that the impacts of multipollution phenomena on structural shifts in the particle-attached riverine bacteriome were greater than those of seasonality. Key players were identified via multivariate statistical modelling combined with network module eigengene analysis. These included species highly resistant to pollutants as well as pathogens. Their rapid response to contaminant mixtures makes them ideal candidates as potential early biosignatures of multipollution stress. Multiple resistance gene transfer is likely enhanced with drastic consequences for the environment and human-health, particularly in a scenario of intensification of extreme hydrological events.
Water deficit, exacerbated by global population increases and climate change, necessitates the investigation of alternative non-traditional water sources to augment existing supplies. Indirect potable reuse (IPR) represents a promising alternative water source in water-stressed regions. Of high concern is the presence of pathogenic microorganisms in wastewater, such as enteric viruses, protozoa and bacteria. Therefore, a greater understanding of the potential impact to human health is required. The aim of this research was to use a quantitative microbial risk assessment (QMRA) approach to calculate the probability of potential pathogen infection risk to the public in surface waters used for a range of recreational activities under scenarios: 1) existing de facto wastewater reuse conditions; 2) after augmentation with conventionally treated wastewater; and 3) after augmentation with reclaimed wastewater from proposed IPR schemes. Forty-four 31 l samples were collected from river sites and a coastal wastewater treatment works from July 2016-May 2017. Concentrations of faecal indicator organisms (enterococci, faecal coliforms, somatic coliphages and Bacteroides phages) determined using culture-based approaches and selected pathogens (adenovirus, Salmonella and Cryptosporidium) determined using molecular approaches (qPCR) were used to inform QMRA. The mean probability of infection from adenovirus under de facto conditions was high (>0.90) for all recreational activities, per single event. The risk of adenovirus and Cryptosporidium infection increased under augmentation scenario (2) (mean probability 0.95-1.00 and 0.01-0.06 per single event, respectively). Adenovirus and Cryptosporidium infection risk decreased under reclaimed water augmentation scenario (3) (mean probability <0.79, excluding swimming, which remained 1.00 and <0.01 per single event, respectively). Pathogen reduction after reclaimed water augmentation in surface waters impacted by de facto reuse, provides important evidence for alternative water supply option selection. As such, this evidence may inform water managers and the public of the potential benefits of IPR and improve acceptance of such practices in the future.
Extreme floods pose multiple direct and indirect health risks. These risks include contamination of water, food, and the environment, often causing outbreaks of diarrheal disease. Evidence regarding the effects of flooding on individual diarrhea-causing pathogens is limited, but is urgently needed in order to plan and implement interventions and prioritize resources before climate-related disasters strike. This study applied a causal inference approach to data from a multisite study that deployed broadly inclusive diagnostics for numerous high-burden common enteropathogens. Relative risks (RRs) of infection with each pathogen during a flooding disaster that occurred at one of the sites-Loreto, Peru-were calculated from generalized linear models using a comparative interrupted time series framework with the other sites as a comparison group and adjusting for background seasonality. During the early period of the flood, increased risk of heat-stable enterotoxigenic E. coli (ST-ETEC) was identified (RR = 1.73 [1.10, 2.71]) along with a decreased risk of enteric adenovirus (RR = 0.36 [0.23, 0.58]). During the later period of the flood, sharp increases in the risk of rotavirus (RR = 5.30 [2.70, 10.40]) and sapovirus (RR = 2.47 [1.79, 3.41]) were observed, in addition to increases in transmission of Shigella spp. (RR = 2.86 [1.81, 4.52]) and Campylobacter spp. (RR = 1.41 (1.01, 1.07). Genotype-specific exploratory analysis reveals that the rise in rotavirus transmission during the flood was likely due to the introduction of a locally atypical, non-vaccine (G2P[4]) strain of the virus. Policy-makers should target interventions towards these pathogens-including vaccines as they become available-in settings where vulnerability to flooding is high as part of disaster preparedness strategies, while investments in radical, transformative, community-wide, and locally-tailored water and sanitation interventions are also needed.
Rural, natural resource dependent communities are especially vulnerable to climate change, and their input is critical in developing solutions, but the study of risk perception within and among vulnerable communities remains underdeveloped. Our multi-disciplinary research team used a mixed-methods approach to document, analyze, and conceptualize the interacting factors that shape vulnerability and to explore community members’ perceptions of the role and relative importance of climate change compared to other factors in three rural communities in Ecuador. Economic instability, lack of access to basic services, and environmental degradation are perceived as greater threats to community well being than increasing seasonal variability and flooding. Programs and policies directed at climate change adaptation should integrate climate and non-climate related stressors. Our findings also point to a greater need for collaboration across public health, poverty alleviation, and environmental management fields through practical research targeting assistance to vulnerable populations.
Marine biotoxins are naturally existing chemicals produced by toxic algae and can accumulate in marine biota. When consumed with seafood, these phycotoxins can cause human intoxication with symptoms varying from barely-noticed illness to death depending on the type of toxin and its concentration. Recently, the occurrence of marine biotoxins has been given special attention in the Mediterranean as it increased in frequency and severity due to anthropogenic pressures and climate change. Up to our knowledge, no previous study reported the presence of lipophilic toxins (LTs) and cyclic imines (CIs) in marine biota in Lebanon. Hence, this study reports LTs and CIs in marine organisms: one gastropod (Phorcus turbinatus), two bivalves (Spondylus spinosus and Patella rustica complex) and one fish species (Siganus rivulatus), collected from various Lebanese coastal areas. The results show values below the limit of detection (LOD) for okadaic acid, dinophysistoxin-1 and 2, pectenotoxin-1 and 2, yessotoxins, azaspiracids and saxitoxins. The spiny oyster (S. spinosus) showed the highest levels of domoic acid (DA; 3.88 mg kg(-1)), gymnodimine (GYM-B) and spirolide (SPX) (102.9 and 15.07 ?g kg(-1), respectively) in congruence with the occurrence of high abundance of Pseudo-nitzchia spp., Gymnodinium spp., and Alexandrium spp. DA levels were below the European Union (EU) regulatory limit, but higher than the Lowest Observed Adverse Effect Level (0.9 ?g g(-1)) for neurotoxicity in humans and lower than the Acute Reference Dose (30 ?g kg(-1) bw) both set by the European Food Safety Authority (EFSA, 2009). Based on these findings, it is unlikely that a health risk exists due to the exposure to these toxins through seafood consumption in Lebanon. Despite this fact, the chronic toxicity of DA, GYMs and SPXs remains unclear and the effect of the repetitive consumption of contaminated seafood needs to be more investigated.
Environmental water quality issues have dominated global discourse and studies over the past five decades. Significant parameters of environmental water quality include changes in biological and physical parameters. Some of the biological parameters of significance include occurrence of enteric viruses. Enteric viruses can affect both human and animal’s health by causing diseases such as gastrointestinal and respiratory infections. In this study, the relationship between the occurrence of enteric viruses with reference to adenoviruses and enteroviruses and the physical water quality characteristics was assessed from water samples collected from Lake Victoria (LV) in Kenya. In order to understand the dynamics of season driven enteric viruses’ contamination of the lake waters, we additionally analysed seasonal behavior of the lake’s catchment area in terms of rainfall effects. Physical quality parameters were measured on-site while viral analysis was carried out by molecular methods using the nested polymerase chain reaction (nPCR). From 216 samples that were analysed for viral contamination, enteric viral genomes were discovered in 18 (8.3%) of the samples. Out of half of the samples (108) collected during the rainy season, enteric viral genomes were detected in 9.26% (10) while 8 (7.41%) samples tested positive from the other half of the samples (108) collected during the dry season. There was, however, no significant correlation noted between the physical water quality characteristics and the enteric viruses’ occurrence. Neither wet season nor dry season was significantly associated with the prevalence of the viruses. In Lake Victoria waters, most of the samples had an average of physical water quality parameters that were within the range accepted by the World Health Organization (WHO) for surface waters with exemption of turbidity which was above the recommended 5 NTU as recorded from some sampling sites. Continuous and long-term surveillance of the lake water to accurately monitor the contaminants and possible correlation between chemical, physical, and biological characteristics is recommended. This would be important in continuous understanding of the hydrological characteristics changes of the lake for proper management of its quality with reference to the WHO standards. A multiple varied-sampling approach in different geographical regions during different seasons is recommended to establish the geographical distribution and relatedness to seasonal distribution patterns of the viruses. The data generated from this study will be useful in providing a basis for assessment of seasonally driven fecal pollution load of the lake and enteric virus contamination for proper management of the sanitary situation around the lake.
Floods are a prominent risk factor in the world of public health, as there is a risk of dispersal of harmful biological and chemical contaminants in floodwater. As climate change increases, the occurrence of natural disasters and risk of adverse health outcomes due to flash flooding also increases. Fecal indicator bacteria, such as Escherichia coli and Enterococci, are often encountered in contaminated floodwater and can cause gastrointestinal illnesses as well as a variety of infections. In August 2016, East Baton Rouge and surrounding parishes in Louisiana suffered heavy floods due to intense rainfall. No study of water quality during flooding has been conducted previously in Baton Rouge, Louisiana. Twenty-three pre-flush and post-flush water samples were collected immediately from accessible homes that had been affected by the floods in order to quantify concentrations of fecal indicator bacteria. These samples were analyzed for the presence of E. coli and Enterococci through both quantitative polymerase chain reaction (qPCR) and the IDEXX enzyme substrate method. The qPCR results indicated that 30% of the samples contained Enterococci and 61% of the samples contained E. coli, with the highest concentrations found in the pre-flush outdoor hose and the pre-flush kitchen tap. The IDEXX method yielded total coliforms in 65% of the samples, E. coli in 4%, and Enterococci in 35%, with the highest concentrations in the pre-flush outdoor faucet and the pre-flush post-filtration kitchen tap. Physical parameters including temperature, barometer pressure, dissolved oxygen, oxidation reduction potential, pH, conductivity, and salinity of these samples were also recorded. Of these parameters, conductivity and salinity were significant, suggesting they may positively influence E. coli and Enterococci growth.
On 6 June 2019, the Norwegian Institute of Public Health was notified of?more than?50 cases of gastroenteritis in Askøy. A reservoir in a water supply system was suspected as the source of the outbreak because of the acute onset and geographical distribution of cases. We investigated the outbreak to confirm the source, extent of the outbreak and effect of control measures. A case was defined as a person in a household served by Water Supply System A (WSS-A) who had gastroenteritis for more than?24 h between 1 and 19 June 2019. We conducted pilot interviews, a telephone survey and an SMS-based cohort study of residents served by WSS-A. System information of WSS-A was collected. Whole genome sequencing on human and environmental isolates was performed. Among 6,108 individuals, 1,573 fulfilled the case definition. Residents served by the reservoir had a 4.6× higher risk of illness than others. Campylobacter jejuni isolated from cases (n?=?24) and water samples (n?=?4) had identical core genome MLST profiles. Contamination through cracks in the reservoir most probably occurred during heavy rainfall. Water supply systems are susceptible to contamination, particularly to certain weather conditions. This highlights the importance of water safety planning and risk-based surveillance to mitigate risks.
Leptospirosis is one of the most common and neglected tropical waterborne diseases in China, causing serious economic losses, and constituting a significant public health threat. Leptospirosis has recently received increased attention and is considered a re-emerging infectious disease in many countries. The incidence of leptospirosis among people suggests that occupation, age, season, sex and water recreational activities are significant risk factors. The aim of this study was to describe the epidemiological profiles of leptospirosis in China during the 2007-2018 period. The morbidity data of leptospirosis by age, season (month), gender, occupation and geographic location (different provinces) were obtained from the public health science data centre of China for subsequent epidemiological analysis. The results indicate that the incidence of leptospirosis has shown a slow downward trend from 2007 to 2018, but morbidity rates were still relatively high (0.0660-0.0113). The incidence of leptospirosis varied in different provinces of China; cases localized mainly to the Southern and Central provinces, areas with warm weather and ample rainfall. Older people (aged 60-75), males, farmers, students and field workers were high-risk populations. During the 2007-2018 observation period, morbidity rates increased beginning in May, remained at high levels in August and September and decreased after November. The present investigation highlights the re-emergence of leptospirosis in some provinces of China (especially in Yunnan and Fujian) and shows that leptospirosis remains a serious public health threat. The results of this study should enhance measures taken for the prevention, control, and surveillance of leptospirosis in China.
In the freshwater environment of north India, cholera appears seasonally in form of clusters as well as sporadically, accounting for a significant piece of the puzzle of cholera epidemiology. We describe a number of cholera outbreaks with an average attack rate of 96.5/1000 but an overall low case fatality (0.17). Clinical cholera cases coincided with high rainfall and elevated temperatures, whereas isolation of V. cholerae non-O1 non-O139 from water was dependent on temperature (p?0.05) but was independent of rainfall and pH (p?>?0.05). However, isolation from plankton samples correlated with increased temperature and pH (p?0.05). A lag period of almost a month was observed between rising temperature and increased isolation of V. cholerae from the environment, which in succession was followed by an appearance of cholera cases in the community a month later. Our results suggested that the aquatic environment can harbor highly divergent V. cholerae strains and serve as a reservoir for multiple V. cholera virulence-associated genes that may be exchanged via mobile genetic elements. In agreement with PFGE, AFLP data also proved that the V. cholerae O1 population was not clonal but was closely related. Our investigation did not support the concept that seasonal cholera outbreaks occur by movement of a single clonal strain across the region, as the clinical isolates from the same years were clearly different, implying that continuous evolution of V. cholerae O1 strains occurs in the cholera endemic area. Interestingly, the viable but non-culturable (VBNC) V. cholerae O1 cells were demonstrated in 2.21% samples from natural water bodies in addition to 40.69% samples from cholera-affected areas respectively. This suggests that aquatic environs do harbor the pathogenic O1 strain, though the isolation of culturable V. cholerae O1 is a rare event in the presence of relatively abundant non-O1 non-O139 isolates.
It is an overwhelming concern that increases in global average temperature lead to serious consequences on the natural environment in the form of deteriorating water resource quality and damaging healthcare sustainability agenda. The sustainable innovation forum (COP21) shows a high concern on climate changes and suggested to reduce global average temperature less than 2 °C. The study brings an idea from the stated theme and analyzed the relationship between climate change and water resource quality in order to redesign economic and environmental policies to improve water quality and healthcare sustainability in the context of Pakistan. The country has serious issues regarding the provision of safe drinking water, improved water resource quality, and healthcare sustainability, which can be achieved by sustainable policies to handle the extreme temperature in Pakistan. The study employed simultaneous generalized method of moments (GMM) technique in order to estimate parameters of the study during the period of 1980-2016. The results show that energy demand and industry value added substantially decrease water resource quality (WRQ), while agriculture value added and per capita income significantly increase WRQ in a country. The other regression apparatus, where health expenditures serve as the response variable, shows that average temperature, industry value added, population growth, and foreign direct investment (FDI) inflows significantly increase healthcare expenditures while WRQ has a negative impact on healthcare expenditures in a country. The final regression model shows that average temperature and per capita income decrease, while WRQ and industrial value added increase mortality rate in a country. The overall results confirm that WRQ affected by climate change, energy demand, and population growth that need sustainable water resource policies in order to achieve long-term sustained growth. The climate actions required more policy instruments to combat environmental challenges that should support healthcare sustainability agenda across the globe.
Major perturbations in soil and water quality are factors that can negatively impact human health. In soil environments of urban areas, changes in antibiotic-resistance profiles may represent an increased risk of exposure to antibiotic-resistant bacteria via oral, dermal, or inhalation routes. We studied the perturbation of antibiotic-resistance profiles and microbial communities in soils following a major flooding event in Houston, Texas, caused by Hurricane Harvey. The main objective of this study was to examine the presence of targeted antibiotic-resistance genes and changes in the diversity of microbial communities in soils a short time (3-5?months) and a long time (18?months) after the catastrophic flooding event. Using polymerase chain reaction, we surveyed fourteen antibiotic-resistance elements: intI1, intI2, sul1, sul2, tet(A) to (E), tet(M), tet(O), tet(W), tet(X), and bla(CMY-2). The number of antibiotic-resistance genes detected were higher in short-time samples compared to samples taken a long time after flooding. From all the genes surveyed, only tet(E), bla(CMY-2), and intI1 were prevalent in short-time samples but not observed in long-time samples; thus, we propose these genes as indicators of exogenous antibiotic resistance in the soils. Sequencing of the V3-V4 region of the bacterial 16S rRNA gene was used to find that flooding may have affected bacterial community diversity, enhanced differences among bacterial lineages profiles, and affected the relative abundance of Actinobacteria, Verrucomicrobia, and Gemmatimonadetes. A major conclusion of this study is that antibiotic resistance profiles of soil bacteria are impacted by urban flooding events such that they may pose an enhanced risk of exposure for up to three to five months following the hurricane. The occurrence of targeted antibiotic-resistance elements decreased eighteen months after the hurricane indicating a reduction of the risk of exposure long time after Harvey.
Runoff from heavy precipitation events can lead to microbiological contamination of source waters for public drinking water supplies. Philadelphia is a city of interest for a study of waterborne acute gastrointestinal illness (AGI) because of frequent heavy precipitation, extensive impervious landcover, and combined sewer systems that lead to overflows. We conducted a time-series analysis of the association between heavy precipitation and AGI incidence in Philadelphia, served by drinking water from Delaware River and Schuylkill River source waters. AGI cases on each day during the study period (2015-2017) were captured through syndromic surveillance of patients’ chief complaint upon presentation at local emergency departments. Daily precipitation was represented by measurements at the Philadelphia International Airport and by modeled precipitation within the watershed boundaries, and we also evaluated stream flowrate as a proxy of precipitation. We estimated the association using distributed lag nonlinear models, assuming a quasi-Poisson distribution of the outcome variable and with adjustment for potential confounding by seasonal and long-term time trends, ambient temperature, day-of-week, and major holidays. We observed an association between heavy precipitation and AGI incidence in Philadelphia that was primarily limited to the spring season, with significant increases in AGI that peaked from 8 to 16 days following a heavy precipitation event. For example, the increase in AGI incidence related to airport precipitation above the 95th percentile (vs no precipitation) during spring reached statistical significance on lag day 7, peaked on day 16 (102% increase, 95% confidence interval: 16%, 252%), and declined while remaining significantly elevated through day 28. Similar associations were observed in analyses of watershed-specific precipitation in relation to AGI cases within the populations served by drinking water from each river. Our results suggest that heavy precipitation events in Philadelphia result in detectable local increases in waterborne AGI.
Drinking water quality is of vital importance for the healthy life of a community especially if consumer is a teenager. In order to compare groundwater profile of flooded area (FA) and non-flooded area (NFA) of district Sanghar, 120 water samples from public schools were collected and investigated for physico-chemical parameters, essential metals, trace elements and microbiological indicators. Analysis data revealed that 47% samples in FA were contaminated with faecal coliform bacteria as compared to only 8.3% in NFA. On the other hand, chemical indicators like TDS, Ca, Na, K, SO4, Mg and hardness were higher in FA. Comparison of trace elements content with WHO guidelines revealed that concentration of Fe, As and Zn was higher in 66.7%, 31.7% and 13.3% water samples, respectively in FA whereas content of these elements was also on higher side in 3.3%, 23.3% and 1.7% samples in NFA, respectively. Health risk assessment due to high concentration of Fe, As and Zn showed that As HRI>1, for children in 35 and 23% water samples in FA and NFA, respectively.
Aims: Leptospirosis is an infectious disease that is endemic to many tropical regions. Large epidemics usually happen after heavy rainfall and flooding. This potentially fatal zoonosis is caused by pathogenic bacteria belonging to the genus Leptospira. Leptospirosis can be diagnosed using specific biomarkers such as target genes and virulence indicators that are well preserved across various Leptospira spp., including those that are prevalent in clinical samples and in the environment. To date, several pathogenicity-determinant genes, including lipL32 and lipL41, have been described and used for diagnosing leptospirosis. However, prevalence of these genes in leptospiral strains is unclear. Methodology and results: In the present study, we assessed the distribution of eight pathogenicity-determinant genes in reference Leptospira strains and environmental isolates in Malaysia, by polymerase chain reaction (PCR). We found that only lipL32 and ligB were consistently expressed in all pathogenic Leptospira strains compared with the other tested genes. Moreover, our results suggested that the use of lipL41, lipL21, ompL1, lfb1, ligA, and ligC as biomarkers could incorrectly misdetect pathogenic Leptospira strains present in the environment. Conclusion: Thus, our results suggest that the pathogenicity-determinant genes lipL32 and ligB can be used as biomarkers for detection pathogenic Leptospira.
Oceanic and coastal ecosystems have undergone complex environmental changes in recent years, amid a context of climate change. These changes are also reflected in the dynamics of water-borne diseases as some of the causative agents of these illnesses are ubiquitous in the aquatic environment and their survival rates are impacted by changes in climatic conditions. Previous studies have established strong relationships between essential climate variables and the coastal distribution and seasonal dynamics of the bacteria Vibrio cholerae, pathogenic types of which are responsible for human cholera disease. In this study we provide a novel exploration of the potential of a machine learning approach to forecast environmental cholera risk in coastal India, home to more than 200 million inhabitants, utilising atmospheric, terrestrial and oceanic satellite-derived essential climate variables. A Random Forest classifier model is developed, trained and tested on a cholera outbreak dataset over the period 2010-2018 for districts along coastal India. The random forest classifier model has an Accuracy of 0.99, an F1 Score of 0.942 and a Sensitivity score of 0.895, meaning that 89.5% of outbreaks are correctly identified. Spatio-temporal patterns emerged in terms of the model’s performance based on seasons and coastal locations. Further analysis of the specific contribution of each Essential Climate Variable to the model outputs shows that chlorophyll-a concentration, sea surface salinity and land surface temperature are the strongest predictors of the cholera outbreaks in the dataset used. The study reveals promising potential of the use of random forest classifiers and remotely-sensed essential climate variables for the development of environmental cholera-risk applications. Further exploration of the present random forest model and associated essential climate variables is encouraged on cholera surveillance datasets in other coastal areas affected by the disease to determine the model’s transferability potential and applicative value for cholera forecasting systems.
Harris County, Texas, is home to thousands of documented sources of environmental pollution. It is also highly vulnerable to impacts from natural hazards, including floods. Building on the Toxics Mobility Inventory (TMI), this article discusses how the authors developed a Toxics Mobility Vulnerability Index (TMVI) and applied it to Harris County to assess potential exposure risks to residents from the transfer of toxic materials during flood events. The TMI concept was operationalized and standardized by combining multiple spatial data sets to simultaneously evaluate various factors in the weather hazards-extant toxics-social vulnerability nexus (e.g., floodplain area, industrial land use, social vulnerability measures). Findings indicated hot spots of vulnerability to hazard-induced toxics transfer concentrated in Northeast Houston US Census tracts in Harris County. The main drivers of increased risk in these areas include the proportion of the area that is impervious surface, consistently high social vulnerabilities, and poor health. However, the most vulnerable areas also have overlapping exposure to both industrial land use and floodplains. Assessing the contribution of a set of industrial land use, social vulnerability, natural hazard, emergency response, and topography variables in a single index on the same spatial scale (e.g., US Census tract) provides detailed information for policy makers tasked with mitigating risk. Applying tools such as the TMVI to highly vulnerable urban and coastal locations may help identify changes needed for preparedness and mitigation planning and highlight areas where limited resources for investment- and policy-related remediation should be focused, both before and after disasters.