Dengue fever is a tropical disease and a major public health concern, and almost half of the world’s population lives in areas at risk of contracting this disease. Climate change is identified by WHO and other international health authorities as one of the primary factors that contribute to the rapid spread of dengue fever. METHODS: We evaluated the effect of sanitation on the cross-correlation between rainfall and the first symptoms of dengue in the city of Mato Grosso do Sul, which is in a state in the Midwest region of Brazil, and employed the time-lagged detrended cross-correlation analysis (DCCAC) method. RESULTS: Co-movements were obtained through the time-phased DCCAC to analyze the effects of climatic variables on arboviruses. The use of a time-lag analysis was more robust than DCCAC without lag to present the behavior of dengue cases in relation to accumulated precipitation. Our results show that the cross-correlation between rain and dengue increased as the city implemented actions to improve basic sanitation in the city. CONCLUSION: With climate change and the increase in the global average temperature, mosquitoes are advancing beyond the tropics, and our results show that cities with improved sanitation have a high correlation between dengue and annual precipitation. Public prevention and control policies can be targeted according to the period of time and the degree of correlation calculated to structure vector control and prevention work in places where sanitation conditions are adequate.
Although the improvement of sanitation facilities has been a major contributor to improving public health, it is not guaranteed to prevent negative health outcomes. This is especially true in areas affected by severe natural disasters, such as flooding or extreme rainfall. Previous studies have examined the association between catastrophic natural disasters and negative health outcomes. However, studies on disaster-prone areas are limited. This study focused on the impact of flood risks and examined whether the improvement of sanitation facilities would be sufficient to suppress the prevalence of diarrhea in flood-prone areas. Two secondary datasets including geodata on flood-prone areas were used for the analysis: one each was obtained from the Bangladesh Demographic and Health Survey and Bangladesh Agricultural Research Council. Two models with categorizations of sanitation facilities based on containment type and excreta flow were applied for analysis. Results showed that the severe flood-prone areas and “diffused” type of sanitation, where the feces are diffused without any containment, had significant positive associations with diarrhea prevalence; however, the interaction between them was negative. Moderate flood-prone areas had a significant positive association with diarrhea prevalence; however, the interaction with unimproved sanitation, which includes containment without clear partition from feces, was significantly negative. These findings indicate that improved sanitation or containment type of sanitation may not positively contribute to the prevention of diarrhea in these severe- and moderate-flood prone areas. The urgent need for alternative sanitation technologies should be addressed in flood-prone regions.
Communities around the world living in either urban or rural areas continue to experience serious WASH problems during flood episodes. Communities and individual households are affected differently depending on their coping capacities and their resource base. Flooding causes extensive damage to water and sanitation infrastructure, leaving communities vulnerable to WASH-related illnesses. This paper aimed to analyze factors influencing the community WASH experiences during flood incidences in Tsholotsho District using a Seemingly Unrelated Regression (SUR) model. The quantitative approach was used in this study. A questionnaire was used to collect data from household heads in Tsholotsho District. A total of 218 Questionnaires were administered in four wards that were purposively selected for this study. Gathered data were analyzed using the Statistical Package for Social Sciences (SPSS Version 22) and principal component analysis was done, which culminated in a SUR model. The key findings of the study were that outbreaks of water and hygiene-related diseases, ponding of water which provides a breeding ground for mosquitoes, and contamination of surface water were the major WASH problems experienced in Tsholotsho District among other problems. The study also found that access to Non-Governmental Organisations (NGOs) programs, access to treated water, and level of education were positive and statistically significant in influencing some of the problems experienced during flooding. To increase the coping capacities of Tsholotsho communities, it is pertinent for governments and NGOs to consider implementing more WASH programs, increasing access to safe and clean drinking water, and increasing the level of education of communities.
Three water, sanitation and hygiene (WASH) support tools were applied to Kampala city, Uganda, to evaluate areas with the highest health hazard due to poor wastewater and faecal sludge management and to develop interventions to improve sanitation and reduce exposure. The Pathogen Flow and Mapping Tool (PFMT) assessed how different sanitation management interventions influence pathogen emissions to surface water using rotavirus as the indicator pathogen, while the HyCRISTAL health hazard tool evaluated how flooding and drainage infrastructure influence the presence of human excreta in the environment. The SaniPath tool identified common high-risk pathways of exposure to faecal contamination in food, open drains and floodwater. An overlap in high health hazard hotspot areas was identified by the PFMT and the HyCRISTAL tools. Across the city, the most important hazard sources were the indiscriminate disposal of faecal waste into open stormwater drains from onsite sanitation technologies, open defecation and the insufficient treatment of wastewater. The SaniPath tool identified drain water, floodwater, street food and uncooked produce as the dominant faecal exposure pathways for selected parishes in the city, demonstrating the presence of excreta in the environment. Together, the tools provide collective evidence guiding household, community, and city-wide sanitation, hygiene and infrastructure management interventions from a richer assessment than when a single tool is applied. For areas with high spatial risks, those practising open defecation, and for low-lying areas, these interventions include the provision of watertight pit latrines or septic tanks that are safely managed and regularly emptied. Faecal sludge should be emptied before flood events, direct connections of latrines to open storm drains should be prevented, and the safe handling of food and water promoted. The tools enhance decision making for local authorities, and the assessments can be replicated in other cities.