2011

Author(s): Webster PJ, Jian J

The uncertainty associated with predicting extreme weather events has serious implications for the developing world, owing to the greater societal vulnerability to such events. Continual exposure to unanticipated extreme events is a contributing factor for the descent into perpetual and structural rural poverty. We provide two examples of how probabilistic environmental prediction of extreme weather events can support dynamic adaptation. In the current climate era, we describe how short-term flood forecasts have been developed and implemented in Bangladesh. Forecasts of impending floods with horizons of 10 days are used to change agricultural practices and planning, store food and household items and evacuate those in peril. For the first time in Bangladesh, floods were anticipated in 2007 and 2008, with broad actions taking place in advance of the floods, grossing agricultural and household savings measured in units of annual income.We argue that probabilistic environmental forecasts disseminated to an informed user community can reduce poverty caused by exposure to unanticipated extreme events. Second, it is also realized that not all decisions in the future can be made at the village level and that grand plans for water resource management require extensive planning and funding. Based on imperfect models and scenarios of economic and population growth, we further suggest that flood frequency and intensity will increase in the Ganges, Brahmaputra and Yangtze catchments as greenhouse-gas concentrations increase. However, irrespective of the climate-change scenario chosen, the availability of fresh water in the latter half of the twenty-first century seems to be dominated by population increases that far outweigh climate-change effects. Paradoxically, fresh water availability may become more critical if there is no climate change. This journal is © 2011 The Royal Society.

Journal: Philosophical Transactions of The Royal Society A: Mathematical, Physical and Engineering Sciences