2022

Author(s): Duque C, Lubinda M, Matoba J, Sing'anga C, Stevenson J, Shields T, Shiff CJ

BACKGROUND: Seasonal patterns of malaria cases in many parts of Africa are generally associated with rainfall, yet in the dry seasons, malaria transmission declines but does not always cease. It is important to understand what conditions support these periodic cases. Aerial moisture is thought to be important for mosquito survival and ability to forage, but its role during the dry seasons has not been well studied. During the dry season aerial moisture is minimal, but intermittent periods may arise from the transpiration of peri-domestic trees or from some other sources in the environment. These periods may provide conditions to sustain pockets of mosquitoes that become active and forage, thereby transmitting malaria. In this work, humidity along with other ecological variables that may impact malaria transmission have been examined. METHODS: Negative binomial regression models were used to explore the association between peri-domestic tree humidity and local malaria incidence. This was done using sensitive temperature and humidity loggers in the rural Southern Province of Zambia over three consecutive years. Additional variables including rainfall, temperature and elevation were also explored. RESULTS: A negative binomial model with no lag was found to best fit the malaria cases for the full year in the evaluated sites of the Southern Province of Zambia. Local tree and granary night-time humidity and temperature were found to be associated with local health centre-reported incidence of malaria, while rainfall and elevation did not significantly contribute to this model. A no lag and one week lag model for the dry season alone also showed a significant effect of humidity, but not temperature, elevation, or rainfall. CONCLUSION: The study has shown that throughout the dry season, periodic conditions of sustained humidity occur that may permit foraging by resting mosquitoes, and these periods are associated with increased incidence of malaria cases. These results shed a light on conditions that impact the survival of the common malaria vector species, Anopheles arabiensis, in arid seasons and suggests how they emerge to forage when conditions permit.

DOI: https://dx.doi.org/10.1186/s12936-022-04345-w