2022
Author(s): Kalkstein LS, Eisenman DP, De Guzman EB, Sailor DJ
There is a pressing need for strategies to prevent the heat-health impacts of climate change. Cooling urban areas through adding trees and vegetation and increasing solar reflectance of roofs and pavements with higher albedo surface materials are recommended strategies for mitigating the urban heat island. We quantified how various tree cover and albedo scenarios would impact heat-related mortality, temperature, humidity, and oppressive air masses in Los Angeles, California, and quantified the number of years that climate change-induced warming could be delayed in Los Angeles if interventions were implemented. Using synoptic climatology, we used meteorological data for historical summer heat waves, classifying days into discrete air mass types. We analyzed those data against historical mortality data to determine excess heat-related mortality. We then used the Weather Research and Forecasting model to explore the effects that tree cover and albedo scenarios would have, correlating the resultant meteorological data with standardized mortality data algorithms to quantify potential reductions in mortality. We found that roughly one in four lives currently lost during heat waves could be saved. We also found that climate change-induced warming could be delayed approximately 40-70 years under business-as-usual and moderate mitigation scenarios, respectively.
DOI: https://dx.doi.org/10.1007/s00484-022-02248-8