2020
Author(s): Bal S, Sodoudi S
Dengue is one of the most serious vector-borne infectious diseases in India, particularly in Kolkata and its neighbouring districts. Dengue viruses have infected several citizens of Kolkata since 2012 and it is amplifying every year. It has been derived from earlier studies that certain meteorological variables and climate change play a significant role in the spread and amplification of dengue infections in different parts of the globe. In this study, our primary objective is to identify the relative contribution of the putative drivers responsible for dengue occurrences in Kolkata and project dengue incidences with respect to the future climate change. The regression model was developed using maximum temperature, minimum temperature, relative humidity and rainfall as key meteorological factors on the basis of statistically significant cross-correlation coefficient values to predict dengue cases. Finally, climate variables from the Coordinated Regional Climate Downscaling Experiment (CORDEX) for South Asia region were input into the statistical model to project the occurrences of dengue infections under different climate scenarios such as Representative Concentration Pathways (RCP4.5 and RCP8.5). It has been estimated that from 2020 to 2100, dengue cases will be higher from September to November with more cases in RCP8.5 (872 cases per year) than RCP4.5 (531 cases per year). The present research further concludes that from December to February, RCP8.5 leads to suitable warmer weather conditions essential for the survival and multiplication of dengue pathogens resulting more than two times dengue cases in RCP8.5 than in RCP4.5. Furthermore, the results obtained will be useful in developing early warning systems and provide important evidence for dengue control policy-making and public health intervention.
DOI: https://dx.doi.org/10.1007/s00484-020-01918-9