2020

Author(s): Hackbusch S, Wichels A, Gimenez L, Dopke H, Gerdts G

An increase in human Vibrio spp. infections has been linked to climate change related events, in particular to seawater warming and heatwaves. However, there is a distinct lack of research of pathogenic Vibrio spp. occurrences in the temperate North Sea, one of the fastest warming seas globally. Particularly in the German Bight, Vibrio investigations are still scarce. This study focuses on the spatio-temporal quantification and pathogenic characterization of V. parahaemolyticus, V. vulnificus and V. cholerae over the course of 14 months. Species-specific MPN-PCR (Most probable number - polymerase chain reaction) conducted on selectively enriched surface water samples revealed seasonal patterns of all three species with increased abundances during summer months. The extended period of warm seawater coincided with prolonged Vibrio spp. occurrences in the German Bight. Temperature and nitrite were the factors explaining variations in Vibrio spp. abundances after generalized additive mixed models. The specific detection of pathogenic markers via PCR revealed trh-positive V. parahaemolyticus, pathogenic V. vulnificus (nanA, manIIA, PRXII) and V. cholerae serotype O139 presence. Additionally, spatio-temporally varying virulence profiles of V. cholerae with multiple accessory virulence-associated genes, such as the El Tor variant hemolysin (hlyAET), acyltransferase of the repeats-in-toxin cluster (rtxC), Vibrio 7th pandemic island II (VSP-II), Type III Secretion System (TTSS) and the Cholix Toxin (chxA) were detected. Overall, this study highlights that environmental human pathogenic Vibrio spp. comprise a reservoir of virulence-associated genes in the German Bight, especially in estuarine regions. Due to their known vast genetic plasticity, we point to the possible emergence of highly pathogenic V. cholerae strains. Particularly, the presence of V. cholerae serotype O139 is unusual and needs urgent continuous surveillance. Given the predictions of further warming and more frequent heatwave events, human pathogenic Vibrio spp. should be seriously considered as a developing risk to human health in the German Bight.

Journal: Science of the Total Environment