2021
Author(s): Rahman MM, Nahar K, Begum BA, Hopke PK, Thurston GD
RATIONALE: To date, there is no published local epidemiological evidence documenting the respiratory health effects of source specific air pollution in South Asia, where PM2.5 composition is different from past studies. Differences include more biomass and residue crop-burning emissions, which may have differing health implications. OBJECTIVES: We assessed PM2.5 associations with respiratory emergency department (ED) visits in a biomass-burning dominated high pollution region, and evaluated their variability by pollution source and composition. METHODS: Time-series regression modeling was applied to daily ED visits from January 2014 through December 2017. Air pollutant effect sizes were estimated after addressing long-term trends and seasonality, day-of-week, holidays, relative humidity, ambient temperature, and the effect modification by season, age, and sex. RESULTS: PM2.5 yielded a significant association with increased respiratory ED visits [0.84% (95% CI: 0.33%, 1.35%)] per 10 μg/m3 increase. The PM2.5 health effect size varied with season, the highest being during monsoon season, when fossil-fuel combustion sources dominated exposures. Results from a source-specific health effect analysis was also consistent with fossil-fuel PM2.5 having a larger effect size per 10 μg/m3 than PM2.5 from other sources [fossil-fuel PM2.5: 2.79% (0.33% to 5.31%), biomass-burning PM2.5: 1.27% (0% to 2.54%), and other-PM2.5: 0.95% (0.06% to 1.85%)]. Age-specific associations varied, with children and older adults being disproportionately affected by the air pollution, especially by the combustion-related particles. CONCLUSIONS: This study provided novel and important evidence that respiratory health in Dhaka is significantly affected by particle air pollution, with a greater health impact by fossil-fuel combustion derived PM2.5.
DOI: https://dx.doi.org/10.1513/AnnalsATS.202103-252OC