2021
Author(s): Demain JG, Choi YJ, Oh JW
Purpose of reviewThe purpose of this chapter is to review allergic disease and how it is potentially impacted by climate change. It is difficult to measure the direct impact climate change has on allergic disease. This is difficult because there are many variables impacting human health as well as what capacity humans have to adapt to these changes. Asthma is tightly associated with allergies and environmental factors, especially in children. In this review, we will explore evidence of environmental changes associated with climate change and the potential impacts on allergy and associated respiratory disease. Furthermore, this paper is to review the impact of climate change on allergy to atmospheric fungi which are known to cause a common allergic response. In this review, we will explore evidence of environmental changes associated with climate change and the potential impacts on allergy.Recent findingsThe climate has been measurably changing for the past 100 years and has been described as the most significant health threat of the twenty-first century. How climate change impacts human health is varied and coming more into focus. While direct effects, such as heatwaves, severe weather, drought, and flooding, are well reported, effects that are indirect or secondary impacts involving changes in ecosystems are less obvious, though the body of data is growing and becoming more robust. It is these changes in ecosystems that may have the greatest impact on allergic and respiratory diseases. Otherwise, the airborne pollens and spores have also been linked with upper and lower respiratory conditions. Atmospheric pollen and spore concentrations are influenced by a wide array of environmental, meteorological, and biological factors and various interspecies interactions. Pollen and spores underlie seasonal variations. Especially climatic factors and circadian patterns influence the spectrum of their species and their concentrations in the environment. It may have the greatest impact on respiratory allergic diseases.SummaryThis review will explore some of the impacts our changing climate, current and predicted, has which influences upper and lower respiratory allergic diseases. The discussion will focus on changing pollination with altered pollen patterns, as well as alteration of the composition and transformation of atmospheric allergic fungi with increased CO2 air pollution and heat stress. The sporulation of fungi is likely to be amplified as CO2 concentration increases with climate change, potentially contributing to the increasing prevalence and severity of asthma and other respiratory allergies.
DOI: https://dx.doi.org/10.1007/s40521-020-00277-5