2021
Author(s): Wang Q, Zhang Y, Ban J, Zhu H, Xu H, Li T
The purpose of this work was to assess population vulnerability to heat-related health risks and its relationship with urbanization levels to provide essential information for the future development and policy-making for climate change adaptation. We constructed a heat vulnerability index (HVI), quantified the population heat vulnerability in each county across China by a principal component analysis (PCA) of multiple factors, and assessed urbanization levels in each county using multisource data. Then, the HVI was validated using the heat-attributable fraction (heat-AF) of nonaccidental mortality based on death monitoring data and meteorological data from 95 counties across China. The results showed that our HVI was significantly positively associated with the heat AF of nonaccidental mortality. A negative correlation was observed between the urbanization level and the HVI. The HVI was generally higher in less urbanized western China and lower in the more urbanized eastern regions. The baseline mortality occupies the top position in the importance ranking of the heat-vulnerability indicators at all three urbanization levels, but the other indicators, including the aging rate, agricultural population rate, education, ethnic structure, economic status, air conditioner ownership rate, and number of hospitals, ranked differently among different urbanization levels. This finding indicates that to reduce population heat vulnerability, the most important approach is to improve the health status of the whole population and reduce baseline mortality; additionally, regional-specific measures and emphasis should be adjusted reasonably along with the process of urbanization according to the characteristics and key factors of local heat vulnerability.
DOI: https://dx.doi.org/10.1016/j.envint.2021.106742