Explore By

This site uses cookies.

This site uses cookies to improve your online experience. To learn more about how we use cookies, please see our terms of use.

High temperatures trigger suicide mortality in Brussels, Belgium: A case-crossover study (2002-2011)

BACKGROUND: Temperature may trigger the risk of suicide, however, the extent and shape of the associations show geographical variation. Here, we investigate the short-term effects of temperature on suicide deaths occurring in Brussels between January 1st, 2002 and December 31st, 2011. METHODS: We conducted a bidirectional time-stratified case-crossover study with cases being suicide deaths occurring among Brussels residents aged 5 years or older. Cases were matched by day of the week with control days from the same month and year. The exposure was the daily average temperature measured at the Uccle station (Brussels) and obtained from the Belgian Royal Meteorological Institute. We combined conditional logistic regression with distributed lag non-linear models (DLNM) to obtain one week (lag 0-6) cumulative risk ratios (RR) and their 95% confidence intervals (CI) for the effects of moderate and extreme cold (5th and 1st percentiles of temperature, respectively) and moderate and extreme heat (95th and 99th percentiles of temperature, respectively), relative to the median temperature. RESULTS: In total, 1891 suicide deaths were included. The median temperature was 11.6 °C, moderate and extreme cold temperatures were 0 and -3.1 °C, respectively, and moderate and extreme high temperatures were 20.9 and 24.4 °C, respectively. The cumulative risk of suicide mortality was almost twice higher among lags 0 to 6 for both moderate and extreme heat, relative to the period median temperature (e.g. moderate heat RR = 1.80 CI:1.27-2.54). No statistically significant associations were observed for cold temperatures. CONCLUSIONS: In Brussels, a western European city with temperate climate, high temperatures may trigger suicide deaths up to one week later. In the context of climate change, adaptation strategies must take into consideration the effects of temperature on mental health.

How to reduce individuals’ ecological footprint without harming their well-being: An application to Belgium

Human activities are a key driver of many environmental problems the world is facing today, including climate change, the disruption of biogeochemical cycles, and biodiversity loss. Behavioural changes at the individual and household level are needed to reduce humanity’s environmental impact, but people also need the capacity to behave in a sustainable way. If their well-being is negatively impacted or if behaving sustainably is too time consuming or too expensive, people might be less inclined to change their behaviour. In this article, we look at the determinants of different types of pro-environmental behaviour and how these are associated with their experienced levels of well-being. More specifically, we focus on the determinants of behaviours that influence both the ecological footprint (EF) and satisfaction with life. In our analysis we include socio-demographic characteristics and a number of psychological antecedents of pro-environmental behaviour (PEB). The data we use was collected in Flanders (Belgium) and allows us to calculate the EF of each respondent individually. Our main conclusions are threefold. First, even if individuals are provided with opportunities to behave in a more sustainable way, they do not always do so (e.g., richer people on average have a higher EF). Efforts could be put in place at the collective side (e.g., public infrastructure) to stimulate people to reduce their environmental impact. Second, as we distinguish seven EF components, we are able to show differential effects of each of the determinants. Third, the association between PEB and satisfaction with life is not strong: only the type of housing is significantly associated with satisfaction with life. Related to that, the psychological antecedents of PEB are only associated with the EF, not with satisfaction with life.

Don’t blame it on the sunshine! An exploration of the spatial distribution of heat injustice across districts in Antwerp, Belgium

Cities experience temperature differences during heat events, in part modulated by green spaces. In the face of climate change, vegetation and green infrastructure are increasingly important for residents’ thermal comfort. Generally, socio-economically marginalised communities are more likely to live in neighbourhoods with less access to green spaces, which can lead to the experience of hotter temperatures and higher incidences of poor health during heat-waves. Building on three bodies of literature – thermal inequity and green space planning, risk and vulnerability, and critical urban theory – an interdisciplinary approach was employed to understand residents’ perceptions of heat and vulnerability, and disparities in distribution of green space arising due to urban planning in Antwerp, Belgium. Using census data, a high and low-vulnerability district – Borgerhout and Wilrijk – were selected as case studies. Park audits and interviews were carried out to provide insights into parks’ cooling ability and residents’ potential responses to extreme heat. Results demonstrated an unequal distribution, access and quality of green spaces between inner-city Borgerhout and suburban Wilrijk, suggesting that lower-income, vulnerable residents are systematically disadvantaged by municipal green space planning. All Borgerhout interviewees described feeling too hot in summer, whilst the opposite held true for interviewees in Wilrijk. Results were situated within Antwerp planning documents to understand how neoliberalism and social exclusion drive and reproduce patterns of injustice, introducing the term heat injustice to describe entrenched injustice in green space distribution and corresponding resident perceptions, experiences of and vulnerabilities to heat within the city.

Association between temperature and natural mortality in Belgium: Effect modification by individual characteristics and residential environment

BACKGROUND: There is strong evidence of mortality being associated to extreme temperatures but the extent to which individual or residential factors modulate this temperature vulnerability is less clear. METHODS: We conducted a multi-city study with a time-stratified case-crossover design and used conditional logistic regression to examine the association between extreme temperatures and overall natural and cause-specific mortality. City-specific estimates were pooled using a random-effect meta-analysis to describe the global association. Cold and heat effects were assessed by comparing the mortality risks corresponding to the 2.5(th) and 97.5(th) percentiles of the daily temperature, respectively, with the minimum mortality temperature. For cold, we cumulated the risk over lags of 0 to 28 days before death and 0 to 7 days for heat. We carried out stratified analyses and assessed effect modification by individual characteristics, preexisting chronic health conditions and residential environment (population density, built-up area and air pollutants: PM(2.5), NO(2), O(3) and black carbon) to identify more vulnerable population subgroups. RESULTS: Based on 307,859 deaths from natural causes, we found significant cold effect (OR = 1.42, 95%CI: 1.30-1.57) and heat effect (OR = 1.17, 95%CI: 1.12-1.21) for overall natural mortality and for respiratory causes in particular. There were significant effects modifications for some health conditions: people with asthma were at higher risk for cold, and people with psychoses for heat. In addition, people with long or frequent hospital admissions in the year preceding death were at lower risk. Despite large uncertainties, there was suggestion of effect modification by air pollutants: the effect of heat was higher on more polluted days of O(3) and black carbon, and a higher cold effect was observed on more polluted days of PM(2.5) and NO(2) while for O(3), the effect was lower. CONCLUSIONS: These findings allow for targeted planning of public-health measures aiming to prevent the effects of extreme temperatures.

Impact of short-term exposure to extreme temperatures on mortality: A multi-city study in Belgium

In light of climate change, health risks are expected to be exacerbated by more frequent high temperatures and reduced by less frequent cold extremes. To assess the impact of different climate change scenarios, it is necessary to describe the current effects of temperature on health. A time-stratified case-crossover design fitted with conditional quasi-Poisson regressions and distributed lag non-linear models was applied to estimate specific temperature-mortality associations in nine urban agglomerations in Belgium, and a random-effect meta-analysis was conducted to pool the estimates. Based on 307,859 all-cause natural deaths, the mortality risk associated to low temperature was 1.32 (95% CI: 1.21-1.44) and 1.21 (95% CI: 1.08-1.36) for high temperature relative to the minimum mortality temperature (23.1 °C). Both cold and heat were associated with an increased risk of cardiovascular and respiratory mortality. We observed differences in risk by age category, and women were more vulnerable to heat than men. People living in the most built-up municipalities were at higher risk for heat. Air pollutants did not have a confounding effect. Evidence from this study helps to identify specific populations at risk and is important for current and future public health interventions and prevention strategies.

Zero regrets: scaling up action on climate change mitigation and adaptation for health in the WHO European Region, second edition. Key messages from the Working Group on Health in Climate Change

Climate change and health: the national policy overview in Europe

Map viewer: Accessibility of hospitals in Europe

Map viewer: Availability of urban green spaces to vulnerable groups

Map viewer: Exposure of vulnerable groups and social infrastructure to climate-related risks

Climate change as a threat to health and well-being in Europe: focus on heat and infectious diseases

Human Climate Horizons (HCH)

Short-term associations between Legionnaires’ disease incidence and meteorological variables in Belgium, 2011-2019

The number of reported cases with Legionnaires’ disease (LD) is increasing in Belgium. Previous studies have investigated the associations between LD incidence and meteorological factors, but the Belgian data remained unexplored. We investigated data collected between 2011 and 2019. Daily exposure data on temperature, relative humidity, precipitation and wind speed was obtained from the Royal Meteorological Institute for 29 weather stations. Case data were collected from the national reference centre and through mandatory notification. Daily case and exposure data were aggregated by province. We conducted a time-stratified case-crossover study. The ‘at risk’ period was defined as 10 to 2 days prior to disease onset. The corresponding days in the other study years were selected as referents. We fitted separate conditional Poisson models for each day in the ‘at risk’ period and a distributed lag non-linear model (DLNM) which fitted all data in one model. LD incidence showed a yearly peak in August and September. A total of 614 cases were included. Given seasonality, a sequence of precipitation, followed by high relative humidity and low wind speed showed a statistically significant association with the number of cases 6 to 4 days later. We discussed the advantages of DLNM in this context.

Comparative long-term trend analysis of daily weather conditions with daily pollen concentrations in Brussels, Belgium

Satellite derived forest phenology and its relation with nephropathia epidemica in Belgium

Monitoring of all-cause mortality in Belgium (Be-MOMO): A new and automated system for the early detection and quantification of the mortality impact of public health events

Hantavirus disease (nephropathia epidemica) in Belgium: Effects of tree seed production and climate

Plan Vague de Chaleur et Pics d’Ozone