Crimean-Congo haemorrhagic fever (CCHF) is the most widely distributed tick-borne viral disease in humans and is caused by the Crimean-Congo haemorrhagic fever virus (CCHFV). The virus has a broader distribution, expanding from western China and South Asia to the Middle East, southeast Europe, and Africa. The historical known distribution of the CCHFV vector Hyalomma marginatum in Europe includes most of the Mediterranean and the Balkan countries, Ukraine, and southern Russia. Further expansion of its potential distribution may have occurred in and out of the Mediterranean region. This study updated the distributional map of the principal vector of CCHFV, H. marginatum, in the Old World using an ecological niche modeling approach based on occurrence records from the Global Biodiversity Information Facility (GBIF) and a set of covariates. The model predicted higher suitability of H. marginatum occurrences in diverse regions of Africa and Asia. Furthermore, the model estimated the environmental suitability of H. marginatum across Europe. On a continental scale, the model anticipated a widespread potential distribution encompassing the southern, western, central, and eastern parts of Europe, reaching as far north as the southern regions of Scandinavian countries. The distribution of H. marginatum also covered countries across Central Europe where the species is not autochthonous. All models were statistically robust and performed better than random expectations (p < 0.001). Based on the model results, climatic conditions could hamper the successful overwintering of H. marginatum and their survival as adults in many regions of the Old World. Regular updates of the models are still required to continually assess the areas at risk using up-to-date occurrence and climatic data in present-day and future conditions.
Crimean-Congo haemorrhagic fever (CCHF) is a zoonotic disease caused by the Crimean-Congo hemorrhagic fever virus (CCHFV). Ticks of the genus Hyalomma are the main vectors and represent a reservoir for the virus. CCHF is maintained in nature in an endemic vertebrate-tick-vertebrate cycle. The disease is prevalent in wide geographical areas including Asia, Africa, South-Eastern Europe and the Middle East. It is of great importance for the public health given its occasionally high case/fatality ratio of CCHFV in humans. Climate change and the detection of possible CCHFV vectors in Central Europe suggest that the establishment of the transmission in Central Europe may be possible in future. We have developed a compartment-based nonlinear Ordinary Differential Equation (ODE) system to model the disease transmission cycle including blood sucking ticks, livestock and human. Sensitivity analysis of the basic reproduction number R0 shows that decreasing the tick survival time is an efficient method to control the disease. The model supports us in understanding the influence of different model parameters on the spread of CCHFV. Tick-to-tick transmission through co-feeding and the CCHFV circulation through transstadial and transovarial transmission are important factors to sustain the disease cycle. The proposed model dynamics are calibrated through an empirical multi-country analysis and multidimensional plot reveals that the disease-parameter sets of different countries burdened with CCHF are different. This information may help decision makers to select efficient control strategies.
In many suburban municipalities of developing countries, the household drinking water comes mainly from groundwater including, wells, streams and springs. These sources are vulnerable because poor hygienic conditions and sanitation prevail causing persistence and recurrent waterborne diseases. In this research, a survey study on water resource use and an epidemiological survey of waterborne diseases were conducted among users of water points and medical institutions in suburban communes of Selembao and Kimbanseke (Kinshasa, the Democratic Republic of the Congo). In addition, physicochemical (temperature, pH, O-2, electrical conductivity, and soluble ions: Na+, K+, PO43-, SO42-, NO3-, NO2-) and bacteriological (FIB: faecal indicator bacteria) analyses of water from 21 wells and springs were performed according to the seasonal variations. FIB included Escherichia coli (E. coli), Enterococcus and Total Coliforms. The survey results indicate that more than 75% of the patients admitted to local medical institutions between 2016 and 2019 are affected by waterborne diseases, including typhoid fever, amoebic dysentery, diarrhoea, gastroenteritis disorders and cholera. Except for NO3- in some sites, the water physicochemical parameter values are within WHO permissible limits for drinking/domestic water quality. On the contrary, the results revealed high FIB levels in water from unmanaged wells and springs during rainy and dry seasons. The microbiological pollution was significantly higher in the rainy season compared to the dry season. Interestingly, no FIB contamination was observed in water samples from managed/developed wells. The results from this study will guide local government decisions on improving water quality to prevent recurrent waterborne diseases.
BACKGROUND: In the Republic of Congo, hot temperature and seasons distortions observed may impact the development of malaria parasites. We investigate the variation of malaria cases, parasite density and the multiplicity of Plasmodium falciparum infection throughout the year in Brazzaville. METHODS: From May 2015 to May 2016, suspected patients with uncomplicated malaria were enrolled at the Hôpital de Mfilou, CSI « Maman Mboualé», and the Laboratoire National de Santé Publique. For each patient, thick blood was examined and parasite density was calculated. After DNA isolation, MSP1 and MSP2 genes were genotyped. RESULTS: A total of 416, 259 and 131 patients with suspected malaria were enrolled at the CSI «Maman Mboualé», Hôpital de Mfilou and the Laboratoire National de Santé Publique respectively. Proportion of malaria cases and geometric mean parasite density were higher at the CSI «Maman Mboualé» compared to over sites (P-value <0.001). However the multiplicity of infection was higher at the Hôpital de Mfilou (P-value <0.001). At the Laboratoire National de Santé Publique, malaria cases and multiplicity of infection were not influenced by different seasons. However, variation of the mean parasite density was statistically significant (P-value <0.01). Higher proportions of malaria cases were found at the end of main rainy season either the beginning of the main dry season at the Hôpital de Mfilou and the CSI «Maman Mboualé»; while, lowest proportions were observed in September and January and in September and March respectively. Higher mean parasite densities were found at the end of rainy seasons with persistence at the beginning of dry seasons. The lowest mean parasite densities were found during dry seasons, with persistence at the beginning of rainy seasons. Fluctuation of the multiplicity of infection throughout the year was observed without significance between seasons. CONCLUSION: The current study suggests that malaria transmission is still variable between the north and south parts of Brazzaville. Seasonal fluctuations of malaria cases and mean parasite densities were observed with some extension to different seasons. Thus, both meteorological and entomological studies are needed to update the season's periods as well as malaria transmission intensity in Brazzaville.