Explore By

This site uses cookies.

This site uses cookies to improve your online experience. To learn more about how we use cookies, please see our terms of use.

Direct association between rainfall and non-typhoidal Salmonella bloodstream infections in hospital-admitted children in the Democratic Republic of Congo

Non-typhoidal Salmonella (NTS) ranks first among causes of bloodstream infection in children under five years old in the Democratic Republic of Congo and has a case fatality rate of 15%. Main host-associated risk factors are Plasmodium falciparum malaria, anemia and malnutrition. NTS transmission in sub-Saharan Africa is poorly understood. NTS bloodstream infections mostly occur during the rainy season, which may reflect seasonal variation in either environmental transmission or host susceptibility. We hypothesized that environment- and host-associated factors contribute independently to the seasonal variation in NTS bloodstream infections in children under five years old admitted to Kisantu referral hospital in 2013-2019. We used remotely sensed rainfall and temperature data as proxies for environmental factors and hospital data for host-associated factors. We used principal component analysis to disentangle the interrelated environment- and host-associated factors. With timeseries regression, we demonstrated a direct association between rainfall and NTS variation, independent of host-associated factors. While the latter explained 17.5% of NTS variation, rainfall explained an additional 9%. The direct association with rainfall points to environmental NTS transmission, which should be explored by environmental sampling studies. Environmental and climate change may increase NTS transmission directly or via host susceptibility, which highlights the importance of preventive public health interventions.

Forecasting malaria morbidity to 2036 based on geo-climatic factors in the Democratic Republic of Congo

BACKGROUND: Malaria is a global burden in terms of morbidity and mortality. In the Democratic Republic of Congo, malaria prevalence is increasing due to strong climatic variations. Reductions in malaria morbidity and mortality, the fight against climate change, good health and well-being constitute key development aims as set by the United Nations Sustainable Development Goals (SDGs). This study aims to predict malaria morbidity to 2036 in relation to climate variations between 2001 and 2019, which may serve as a basis to develop an early warning system that integrates monitoring of rainfall and temperature trends and early detection of anomalies in weather patterns. METHODS: Meteorological data were collected at the Mettelsat and the database of the Epidemiological Surveillance Directorate including all malaria cases registered in the surveillance system based on positive blood test results, either by microscopy or by a rapid diagnostic test for malaria, was used to estimate malaria morbidity and mortality by province of the DRC from 2001 to 2019. Malaria prevalence and mortality rates by year and province using direct standardization and mean annual percentage change were calculated using DRC mid-year populations. Time series combining several predictive models were used to forecast malaria epidemic episodes to 2036. Finally, the impact of climatic factors on malaria morbidity was modeled using multivariate time series analysis. RESULTS: The geographical distribution of malaria prevalence from 2001 and 2019 shows strong disparities between provinces with the highest of 7700 cases per 100,000 people at risk for South Kivu. In the northwest, malaria prevalence ranges from 4980 to 7700 cases per 100,000 people at risk. Malaria has been most deadly in Sankuru with a case-fatality rate of 0.526%, followed by Kasai (0.430%), Kwango (0.415%), Bas-Uélé, (0.366%) and Kwilu (0.346%), respectively. However, the stochastic trend model predicts an average annual increase of 6024.07 malaria cases per facility with exponential growth in epidemic waves over the next 200 months of the study. This represents an increase of 99.2%. There was overwhelming evidence of associations between geographic location (western, central and northeastern region of the country), total evaporation under shelter, maximum daily temperature at two meters altitude and malaria morbidity (p < 0.0001). CONCLUSIONS: The stochastic trends in our time series observed in this study suggest an exponential increase in epidemic waves over the next 200 months of the study. The increase in new malaria cases is statistically related to population density, average number of rainy days, average wind speed, and unstable and intermediate epidemiological facies. Therefore, the results of this research should provide relevant information for the Congolese government to respond to malaria in real time by setting up a warning system integrating the monitoring of rainfall and temperature trends and early detection of anomalies in weather patterns.

Geo-climatic factors of malaria morbidity in the Democratic Republic of Congo from 2001 to 2019

Background: Environmentally related morbidity and mortality still remain high worldwide, although they have decreased significantly in recent decades. This study aims to forecast malaria epidemics taking into account climatic and spatio-temporal variations and therefore identify geo-climatic factors predictive of malaria prevalence from 2001 to 2019 in the Democratic Republic of Congo. Methods: This is a retrospective longitudinal ecological study. The database of the Directorate of Epidemiological Surveillance including all malaria cases registered in the surveillance system based on positive blood test results, either by microscopy or by a rapid diagnostic test for malaria was used to estimate malaria morbidity and mortality by province of the DRC from 2001 to 2019. The impact of climatic factors on malaria morbidity was modeled using the Generalized Poisson Regression, a predictive model with the dependent variable Y the count of the number of occurrences of malaria cases during a period of time adjusting for risk factors. Results: Our results show that the average prevalence rate of malaria in the last 19 years is 13,246 (1,178,383−1,417,483) cases per 100,000 people at risk. This prevalence increases significantly during the whole study period (p < 0.0001). The year 2002 was the most morbid with 2,913,799 (120,9451−3,830,456) cases per 100,000 persons at risk. Adjusting for other factors, a one-day in rainfall resulted in a 7% statistically significant increase in malaria cases (p < 0.0001). Malaria morbidity was also significantly associated with geographic location (western, central and northeastern region of the country), total evaporation under shelter, maximum daily temperature at a two-meter altitude and malaria morbidity (p < 0.0001). Conclusions: In this study, we have established the association between malaria morbidity and geo-climatic predictors such as geographical location, total evaporation under shelter and maximum daily temperature at a two-meter altitude. We show that the average number of malaria cases increased positively as a function of the average number of rainy days, the total quantity of rainfall and the average daily temperature. These findings are important building blocks to help the government of DRC to set up a warning system integrating the monitoring of rainfall and temperature trends and the early detection of anomalies in weather patterns in order to forecast potential large malaria morbidity events.

Human Climate Horizons (HCH)

Mosquito-borne viral diseases in the Democratic Republic of the Congo: A review

BACKGROUND: Mosquito-borne viral infections have in recent years, become a public health threat globally. This review aimed to provide an overview of the ecological and epidemiological profiles of mosquito-borne viral infections in the Democratic Republic of the Congo (DRC). METHODS: A search of literature was conducted using Google Scholar, PubMed and the WHO website using the following keywords: “Democratic Republic of the Congo”, “Zaire”, “Belgian Congo” and either of the following: “mosquito-borne virus”, “arbovirus”, “yellow fever”, “dengue”, “chikungunya”, “West Nile”, “Rift Valley fever”, “O’nyong’nyong”, “Zika”, “epidemiology”, “ecology”, “morbidity”, “mortality”. Published articles in English or French covering a period between 1912 and October 2018 were reviewed. RESULTS: A total of 37 articles were included in the review. The findings indicate that the burden of mosquito-borne viral infections in DRC is increasing over time and space. The north-western, north-eastern, western and central regions have the highest burden of mosquito-borne viral infections compared to south and eastern highland regions. Yellow fever, chikungunya, dengue, Zika, Rift Valley fever, West Nile and O’nyong’nyong have been reported in the country. These mosquito-borne viruses were found circulating in human, wildlife and domestic animals. Yellow fever and chikungunya outbreaks have been frequently reported. Aedes aegypti and Ae. simpsoni were documented as the main vectors of most of the mosquito-borne viral infections. Heavy rains, human movements, forest encroachment and deforestation were identified as drivers of mosquito-borne viruses occurrence in DRC. CONCLUSIONS: Mosquito-borne viral infections are becoming common and a serious public health problem in DRC. In the current context of climate change, there is urgent need to improve understanding on ecological and epidemiology of the diseases and strengthen surveillance systems for prompt response to epidemics in DRC.

The environmental drivers of bacterial meningitis epidemics in the Democratic Republic of Congo, central Africa

INTRODUCTION: Bacterial meningitis still constitutes an important threat in Africa. In the meningitis belt, a clear seasonal pattern in the incidence of meningococcal disease during the dry season has been previously correlated with several environmental parameters like dust and sand particles as well as the Harmattan winds. In parallel, the evidence of seasonality in meningitis dynamics and its environmental variables remain poorly studied outside the meningitis belt. This study explores several environmental factors associated with meningitis cases in the Democratic Republic of Congo (DRC), central Africa, outside the meningitis belt area. METHODS: Non-parametric Kruskal-Wallis’ tests were used to establish the difference between the different health zones, climate and vegetation types in relation to both the number of cases and attack rates for the period 2000-2018. The relationships between the number of meningitis cases for the different health zones and environmental and socio-economical parameters collected were modeled using different generalized linear (GLMs) and generalized linear mixed models (GLMMs), and different error structure in the different models, i.e., Poisson, binomial negative, zero-inflated binomial negative and more elaborated multi-hierarchical zero-inflated binomial negative models, with randomization of certain parameters or factors (health zones, vegetation and climate types). Comparing the different statistical models, the model with the smallest Akaike’s information criterion (AIC) were selected as the best ones. 515 different health zones from 26 distinct provinces were considered for the construction of the different GLM and GLMM models. RESULTS: Non-parametric bivariate statistics showed that there were more meningitis cases in urban health zones than in rural conditions (?2 = 6.910, p-value = 0.009), in areas dominated by savannah landscape than in areas with dense forest or forest in mountainous areas (?2 = 15.185, p-value = 0.001), and with no significant difference between climate types (?2 = 1.211, p-value = 0,449). Additionally, no significant difference was observed for attack rate between the two types of heath zones (?2 = 0.982, p-value = 0.322). Conversely, strong differences in attack rate values were obtained for vegetation types (?2 = 13.627, p-value = 0,001) and climate types (?2 = 13.627, p-value = 0,001). This work demonstrates that, all other parameters kept constant, an urban health zone located at high latitude and longitude eastwards, located at low-altitude like in valley ecosystems predominantly covered by savannah biome, with a humid tropical climate are at higher risk for the development of meningitis. In addition, the regions with mean range temperature and a population with a low index of economic well-being (IEW) constitute the perfect conditions for the development of meningitis in DRC. CONCLUSION: In a context of global environmental change, particularly climate change, our findings tend to show that an interplay of different environmental and socio-economic drivers are important to consider in the epidemiology of bacterial meningitis epidemics in DRC. This information is important to help improving meningitis control strategies in a large country located outside of the so-called meningitis belt.

Shifting Risks of Malaria in Southern Africa: A Regional Analysis

Ageing, exposure to pollution, and interactions between climate change and local seasons as oxidant conditions predicting incident hematologic malignancy at Kinshasa University clinics, Democratic Republic of Congo (DRC)

Securing well-being with the advent of climate hazards: Case of forest-dependent communities in a landscape in the Congo Basin

Local communities vulnerability to climate change and adaptation strategies in Bukavu in DR Congo