Explore By

This site uses cookies.

This site uses cookies to improve your online experience. To learn more about how we use cookies, please see our terms of use.

Climate change and health in Kuwait: Temperature and mortality projections under different climatic scenarios

It is uncertain what climate change could bring to populations and countries in the hot desert environment of the Arabian Peninsula. Not only because they are already hot, countries in this region also have unique demographic profiles, with migrant populations potentially more vulnerable and constituting a large share of the population. In Kuwait, two-thirds of the population are migrant workers and record-high temperatures are already common. We quantified the temperature-related mortality burdens in Kuwait in the mid- (2050-2059) and end-century (2090-2099) decades under moderate (SSP2-4.5) and extreme (SSP5-8.5) climate change scenarios. We fitted time series distributed lag non-linear models to estimate the baseline temperature-mortality relationship which was then applied to future daily mean temperatures from the latest available climate models to estimate decadal temperature-mortality burdens under the two scenarios. By mid-century, the average temperature in Kuwait is predicted to increase by 1.80 degrees C (SSP2-4.5) to 2.57 degrees C (SSP5-8.5), compared to a 2000-2009 baseline. By the end of the century, we could see an increase of up to 5.54 degrees C. In a moderate scenario, climate change would increase heat-related mortality by 5.1% (95% empirical confidence intervals: 0.8, 9.3) by end-century, whereas an extreme scenario increases heat-related mortality by 11.7% (2.7, 19.0). Heat-related mortality for non-Kuwaiti migrant workers could increase by 15.1% (4.6, 22.8). For every 100 deaths in Kuwait, 13.6 (-3.6, 25.8) could be attributed to heat driven by climate change by the end of the century. Climate change induced warming, even under more optimistic mitigation scenarios, may markedly increase heat-related mortality in Kuwait. Those who are already vulnerable, like migrant workers, could borne a larger impact from climate change.

Impact of sandstorm on environmental pollutants PM2.5, carbon monoxide, nitrogen dioxide, ozone, and SARS-CoV-2 morbidity and mortality in Kuwait

Objectives: Sandstorms are natural climate calamities causing severe weather changes and health prob-lems. The sandstorm allied issues are of significant apprehension worldwide, mainly in the present pan-demic. This study aims to examine the “sandstorm impact on environmental pollution particulate matter (PM2.5), carbon monoxide (CO), ozone (O3), and daily new cases and deaths due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) ” in Kuwait. Methods: The two incidences of sandstorms occurred in Kuwait, dated 13 March 2021 and 13 June 2021. The data on “PM2.5, CO, NO2, and O-3, and SARS-CoV-2 cases and deaths ” were documented three weeks before and after both incidences of the sandstorm. For the first incidence, the data was recorded from 18 February to 12 March 2021; and from 13 March to 2 April 2021. However, for the second incidence of sandstorms, data were documented from 23 May to 12 June 2021; and from 13 June to 3 July 2021. The daily “PM2.5, CO, NO2, and O-3 levels ” were recorded from “Air Quality Index-AQI, metrological web, and data on COVID-19 daily cases and deaths were recorded from the World Health Organization “. Results: After the first and second sandstorm incidence, the air contaminants PM2.5 was increased by 26.62%, CO 22.08%, and O-3 increased 18.10% compared to before the sandstorm. SARS-CoV-2 cases were markedly amplified by (21.25%), and deaths were increased by (61.32%) after the sandstorm. Conclusions: Sandstorm events increase air pollutants PM2.5, CO, and O-3 levels, and these pollutants increase the SARS-COV-2 daily cases and deaths in Kuwait. The findings have a meaningful memorandum to healthcare representatives to advise the public about the health hazards of the sandstorm and its link-age with SARS-CoV-2 cases and deaths. (C) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.

Human Climate Horizons (HCH)

Extreme temperatures and mortality in Kuwait: Who is vulnerable?

The effects of temperature on short-term mortality risk in Kuwait: A time-series analysis

Risks to critical environmental resources and public wellbeing from climate change in the eyes of public opinion in Kuwait

Short-term effect of dust storms on the risk of mortality due to respiratory, cardiovascular and all-causes in Kuwait

Meteorological factors, aeroallergens and asthma-related visits in Kuwait: A 12-month retrospective study

Kuwait: Health and Climate Change Country Profile