Explore By

This site uses cookies.

This site uses cookies to improve your online experience. To learn more about how we use cookies, please see our terms of use.

Enhancing the resilience of food production systems for food and nutritional security under climate change in Nepal

BackgroundClimate change in Nepal has posed a considerable challenge to agricultural productivity and has threatened food and nutritional security at multiple levels. This study aims to assess the impacts of climate change on national food production and food and nutritional security as well as document issue-based prioritized adaptation options for a resilient food production system. MethodsThis study considers temperature, precipitation, and their anomalies as the key factors affecting food production in Nepal. Nationwide precipitation trends along with their association with the annual production of major cereal crops in Nepal were assessed using data from the last three decades (1990-2018). The annual productions of the major cereal crops were summed and normalized to calculate the production index scores in the districts. Scores were plotted and visualized into maps using the Geographical Information System. In three ecological regions, the distribution of flood and extreme rainfall events and cases of malnutrition from 2005 to 2018 were plotted. The effects of climate change and highest priority adaptation options at the district level were documented through a review of national policies and literature studies and qualitative research based on Focus Group Discussions (FGDs). ResultsBetween 1990 and 2018, the overall average production of major cereal crops in Nepal was increased by around 2,245 MT annually. In the district level index analysis, the highest production score was found for Jhapa and Morang while the lowest production score was found for Humla. Cases of malnutrition in some districts coincided with flood and heavy rainfall events, indicating that climate change and extreme climatic events have a role to play in food production and security. Growing drought-tolerant crops, changes in crop cycle, riverbed farming practices, developing short-term strategies, such as contingency crop planning, changing planting dates, planting short duration varieties, schemes evacuation, and long-term strategies, such as encouraging out-migration of population to safer locations, resettlement programs with transformative livelihood options, and sustainable agricultural practices were found to be key prioritized adaptation measures for a resilient food production system. ConclusionIn Nepal, climate change and the increasing frequency and magnitude of extreme climatic events adversely affect the food production system, which has become a serious threat to food and nutritional security. The implementation of evidence-based practices to build a resilient food system specific to climate-vulnerable hotspots at the district and local levels is the nation’s current need.

Do national policies translate into local actions? Analyzing coherence between climate change adaptation policies and implications for local adaptation in Nepal

National climate change policy and strategies set out a framework for planning and undertaking climate change adaptation as well as mitigation activities at the national and local levels. In this article, we examine the coherence and contradictions between national policies and plans, and its impacts on the implementation of adaptation measures at the local level. We undertook a content review of key climate change policy documents (n = 4) of Nepal. In addition, we conducted a field study in the Rajdevi Community Forest User Group (CFUG) located in the mid-hills of Nepal, which has developed and implemented a community level adaptation plan of action (CAPA). The field study involved household interviews, focus group discussions, and an in-depth analysis of CAPA implementation. The paper found that while policies are coherent for targeting highly affected areas and communities, they deviate from discerning an appropriate planning and implanting unit. The local adaptation plan of action (LAPA) considers the local government as an implementing unit, while the national adaptation program of action (NAPA) puts an emphasis on the local community groups. It suggests that the existing LAPA implementation breaches the provision of community-level institutions for the implementation conceived in the central framework. Despite little attention to promoting food security in climate change policy, through the CAPA, local communities have planned and implemented adaptation measures envisioned in the thematic areas identified in the climate change policy of Nepal: agriculture and food security; forests and biodiversity; water resources and energy; climate-induced disasters; public health; and urban settlements and infrastructure. Nevertheless, the CAPA is not institutionalized under government policies and the institutional framework as a local level implementing unit. So, the consensus for a local implementing unit in the policies has remained a key issue. We suggest identifying a suitable and acceptable unit for implementing climate change adaptation at the community level. Only if an appropriate implementing unit is identified can the policies be successful with a broader acceptance and desirable outcomes enshrined in the climate change policy.

Overview of an early warning system for Glacial Lake outburst flood risk mitigation in Dudh-Koshi Basin, Nepal

Natural disasters inflict severe damage on almost the entire spectrum of social and natural habitats. This ranges from housing and shelter, water, food, health, sanitation to information and communication networks, supply of power and energy, transportation infrastructure, and others. Nepal is a risk prone country for Glacial Lake Outburst Flood (GLOF). GLOFs exist as major challenges as they repeatedly cause a heavy toll of life and property. During such a disaster, major challenges are indeed the protection of life, property and vital life-supporting infrastructure. Any delay or laxity in disaster relief can escalate the magnitude of distress for the victims. Thus, rather than trying to take curative measures, it is better to minimize the impacts of GLOF. These measures subsequently help in reducing the magnitude of death and casualties due to a GLOF event. This reduction of impact is often achieved by optimizing preventive measures. For applying necessary deterrent measures, it is essential to disseminate information about the danger beforehand. Early Warning System (EWS) is an important step for such information dissemination for GLOF disaster management and helps to anticipate the risk of disaster and disseminate information to lives at risk. It is impossible and impractical to reduce all GLOF risks, but it is possible to reduce several impacts of a GLOF through the implementation of the EWS. This paper presents the design and implementation of an EWS for monitoring potential outbursts of a glacier lake in the Dudh-Koshi Basin, Nepal.

Food insecurity and compound environmental shocks in Nepal: Implications for a changing climate

Food insecurity is a key global health challenge that is likely to be exacerbated by climate change. Though climate change is associated with an increased frequency of extreme weather events, little is known about how multiple environmental shocks in close succession interact to impact household health and well-being. In this paper, we assess how earthquake exposure followed by monsoon rainfall anomalies affect food insecurity in Nepal. We link food security data from the 2016 Nepal Demographic and Health Survey to data on shaking intensity during the 2015 Gorkha earthquake and rainfall anomalies during the 2015 monsoon season. We then exploit spatial variation in exposure to the earthquake and monsoon rainfall anomalies to isolate their independent and compound effects. We find that earthquake exposure alone was not associated with an increased likelihood of food insecurity, likely due in part to effective food aid distribution. However, the effects of rainfall anomalies differed by severity of earthquake exposure. Among households minimally impacted by the earthquake, low rainfall was associated with increased food insecurity, likely due to lower agricultural productivity in drought conditions. Among households that experienced at least moderate shaking, greater rainfall was positively associated with food insecurity, particularly in steep, mountainous areas. In these locations, rainfall events disproportionately increased landslides, which damaged roads, disrupted distribution of food aid, and destroyed agricultural land and assets. Additional research on the social impacts of compound environmental shocks is needed to inform adaptation strategies that work to improve well-being in the face of climate change.

Vulnerability to heat stress and its health effects among people of Nepalgunj Sub-Metropolitan

BACKGROUND: Record-breaking temperatures have occurred more frequently worldwide under the trend of climate change. It has increased the number of people at heat related medical conditions resulting in both mortality and morbidity from heat stress. This study aimed to assess factors associated with vulnerability to heat stress, its health effects among people of Nepalgunj Sub-metropolitan, and identify various coping strategies adopted. METHODS: Cross-sectional analytical study was conducted among 366 research participants selected through multi-stage random sampling technique in Nepalgunj Sub-metropolitan. Heat Index was assessed using secondary analysis of meteorological data of Nepalgunj (Airport) station. Chi-square test was done to analyze the primary data. RESULTS: Out of 366 participants, 224 (61.2%) participants had heat related symptoms in the past 6 months (April to September) from the date of the interview. Sex, education, income, roof construction, Cross-ventilation, working hour per day, presence of chronic disease, and medications use had a significant association with heat related symptoms among the participants (p<0.05) The most common coping strategies adopted to manage heat stress were the use of cooling methods, wearing light clothing, and bathing by cold water. The average monthly heat index was highest in August (42 °C) and lowest in April (29°C). CONCLUSIONS: The majority of the participants had heat related symptoms in the study area. In order to mitigate the heat stress in the urban town like Nepalgunj, measures such as tree plantation, reducing vehicle smoke emissions, and developing proper housing ventilation can be applied.

Thermal adaptation of buildings and people for energy saving in extreme cold climate of Nepal

The thermal adaptation of buildings and their residents is important in extreme cold climates for energy saving building design. A thermal measurement and a thermal comfort survey were conducted in traditional houses during the winter in the extreme cold climate of the Himalayan region of Nepal. Measurements were taken in 9 houses over 7 days to assess the thermal environment. Thermal comfort surveys were conducted over 4 days, and a total of 1,584 thermal responses were gathered from 36 residents. Passive heating effects were found in houses with thick brick walls and mud roofs. Residents of these houses were highly satisfied with the thermal environment, with 10.7 degrees C being the mean comfort temperature, which was related to the indoor temperature of the investigated indoor spaces. It can be concluded from these findings that people are well adapted to the thermal environment of traditional vernacular houses, as a result of which the comfort temperature is lower than the thermal comfort standards. Consequently, a significant amount of energy can be saved by passive building design and lowering the indoor temperature setting for heating. (C) 2020 The Author. Published by Elsevier B.V.

El Niño southern oscillation, monsoon anomaly, and childhood diarrheal disease morbidity in Nepal

Climate change is adversely impacting the burden of diarrheal diseases. Despite significant reduction in global prevalence, diarrheal disease remains a leading cause of morbidity and mortality among young children in low- and middle-income countries. Previous studies have shown that diarrheal disease is associated with meteorological conditions but the role of large-scale climate phenomena such as El Niño-Southern Oscillation (ENSO) and monsoon anomaly is less understood. We obtained 13 years (2002-2014) of diarrheal disease data from Nepal and investigated how the disease rate is associated with phases of ENSO (El Niño, La Niña, vs. ENSO neutral) monsoon rainfall anomaly (below normal, above normal, vs. normal), and changes in timing of monsoon onset, and withdrawal (early, late, vs. normal). Monsoon season was associated with a 21% increase in diarrheal disease rates (Incident Rate Ratios [IRR]: 1.21; 95% CI: 1.16-1.27). El Niño was associated with an 8% reduction in risk while the La Niña was associated with a 32% increase in under-5 diarrheal disease rates. Likewise, higher-than-normal monsoon rainfall was associated with increased rates of diarrheal disease, with considerably higher rates observed in the mountain region (IRR 1.51, 95% CI: 1.19-1.92). Our findings suggest that under-5 diarrheal disease burden in Nepal is significantly influenced by ENSO and changes in seasonal monsoon dynamics. Since both ENSO phases and monsoon can be predicted with considerably longer lead time compared to weather, our findings will pave the way for the development of more effective early warning systems for climate sensitive infectious diseases.

Effects of climatic factors on diarrheal diseases among children below 5 years of age at national and subnational levels in Nepal: An ecological study

Introduction: The incidence of diarrhea, a leading cause of morbidity and mortality in low-income countries such as Nepal, is temperature-sensitive, suggesting it could be associated with climate change. With climate change fueled increases in the mean and variability of temperature and precipitation, the incidence of water and food-borne diseases are increasing, particularly in sub-Saharan Africa and South Asia. This national-level ecological study was undertaken to provide evidence linking weather and climate with diarrhea incidence in Nepal. Method: We analyzed monthly diarrheal disease count and meteorological data from all districts, spanning 15 eco-development regions of Nepal. Meteorological data and monthly data on diarrheal disease were sourced, respectively, from the Department of Hydrology and Meteorology and Health Management Information System (HMIS) of the Government of Nepal for the period from 2002 to 2014. Time-series log-linear regression models assessed the relationship between maximum temperature, minimum temperature, rainfall, relative humidity, and diarrhea burden. Predictors with p-values < 0.25 were retained in the fitted models. Results: Overall, diarrheal disease incidence in Nepal significantly increased with 1 °C increase in mean temperature (4.4%; 95% CI: 3.95, 4.85) and 1 cm increase in rainfall (0.28%; 95% CI: 0.15, 0.41). Seasonal variation of diarrheal incidence was prominent at the national level (11.63% rise in diarrheal cases in summer (95% CI: 4.17, 19.61) and 14.5% decrease in spring (95% CI: −18.81, −10.02) compared to winter season). Moreover, the effects of temperature and rainfall were highest in the mountain region compared to other ecological regions of Nepal. Conclusion: Our study provides empirical evidence linking weather factors and diarrheal disease burden in Nepal. This evidence suggests that additional climate change could increase diarrheal disease incidence across the nation. Mountainous regions are more sensitive to climate variability and consequently the burden of diarrheal diseases. These findings can be utilized to allocate necessary resources and envision a weather-based early warning system for the prevention and control of diarrheal diseases in Nepal.

Environmental determinants of malaria prevalence and the adaptation strategies in western Nepal

BACKGROUND: Current literatures seem devoted only on relating climate change with malaria. Overarching all possible environmental determinants of malaria prevalence addressed by scanty literature in Nepal is found apposite research at this moment. This study aims to explore the environmental determinants of malaria prevalence in western Nepal. METHODS: Cross-sectional data collected from community people were used to identify the environmental determinants of malaria prevalence in western Nepal. Probit and logistic regressions are used for identifying determinants. RESULTS: The results reveal that environmental variables: winter temperature (aOR: 2.14 [95% CI: 1.00-4.56]), flooding (aOR: 2.45 [CI: 1.28-4.69]), heat waves (aOR: 3.14 [CI: 1.16-8.46]) and decreasing river water level (aOR: 0.25 [CI: 0.13-0.47]) are found major factors to influence malaria prevalence in western Nepal. Besides, pipeline drinking water (aOR: 0.37 [0.17-0.81]), transportation facility (aOR: 1.18 [1.07-1.32]) and awareness programs (aOR: 2.62 [0.03-6.65]) are exigent social issues to influence malaria prevalence in Nepal. To be protected from disease induced by environmental problems, households have used extra season specific clothes, iron nets and mosquito nets, use of insecticide in cleaning toilet and so on. CONCLUSIONS: Adaptation mechanism against these environmental issues together with promoting pipeline drinking water, transportation facility and awareness programs are the important in malaria control in Nepal. Government initiation with incentivized adaptation mechanism for the protection of environment with caring household attributes possibly help control malaria in western Nepal.

Malaria transmission in Nepal under climate change: Anticipated shifts in extent and season, and comparison with risk definitions for intervention

BACKGROUND: Climate and climate change affect the spatial pattern and seasonality of malaria risk. Season lengths and spatial extents of mapped current and future malaria transmission suitability predictions for Nepal were assessed for a combination of malaria vector and parasites: Anopheles stephensi and Plasmodium falciparum (ASPF) and An. stephensi and Plasmodium vivax (ASPV) and compared with observed estimates of malaria risk in Nepal. METHODS: Thermal bounds of malaria transmission suitability for baseline (1960-1990) and future climate projections (RCP 4.5 and RCP 8.5 in 2030 and 2050) were extracted from global climate models and mapped for Nepal. Season length and spatial extent of suitability between baseline and future climate scenarios for ASPF and ASPV were compared using the Warren’s I metric. Official 2010 DoHS risk districts (DRDs) and 2021 DoHS risk wards (DRWs), and spatiotemporal incidence trend clusters (ITCs) were overlaid on suitability season length and extent maps to assess agreement, and potential mismatches. RESULTS: Shifts in season length and extent of malaria transmission suitability in Nepal are anticipated under both RCP 4.5 and RCP 8.5 scenarios in 2030 and 2050, compared to baseline climate. The changes are broadly consistent across both future climate scenarios for ASPF and ASPV. There will be emergence of suitability and increasing length of season for both ASPF and ASPV and decreasing length of season for ASPV by 2050. The emergence of suitability will occur in low and no-risk DRDs and outside of high and moderate-risk DRWs, season length increase will occur across all DRD categories, and outside of high and moderate-risk DRWs. The high and moderate risk DRWs of 2021 fall into ITCs with decreasing trend. CONCLUSIONS: The study identified areas of Nepal where malaria transmission suitability will emerge, disappear, increase, and decrease in the future. However, most of these areas are anticipated outside of the government’s current and previously designated high and moderate-risk areas, and thus outside the focus of vector control interventions. Public health officials could use these anticipated changing areas of malaria risk to inform vector control interventions for eliminating malaria from the country, and to prevent malaria resurgence.

Human Climate Horizons (HCH)

Climate change and health vulnerability in Nepal: A systematic review of the literature since 2010

The Nepali population is among those most vulnerable to the health impacts of climate change. We conducted a systematic literature review to document the health effects of climate change in Nepal and identify knowledge gaps by examining vulnerability categories related to health. Three databases were searched for journal articles that addressed health and vulnerability related to climate change in Nepal from 2010 onwards. Of the 1063 articles identified, 37 were eligible for inclusion. The findings suggested the health of the population was affected mostly by food insecurity, floods, droughts, and reduced water levels. Studies revealed both morbidity and mortality increased due to climate change, with the most impacted populations being women, children, and the elderly. At greatest risk for impacts from climate change were those from poor and marginal populations, especially impoverished women. The public health sector, healthcare, and potable water sources were some of the least mentioned vulnerability subcategories, indicating more research is needed to better understand their adaptation capacities. We propose that identifying vulnerabilities and areas of limited research are critical steps in the prioritization of health policy and interventions for the most vulnerable populations in Nepal.

Nepal: Country report on children’s environmental health

Although Nepal is a country rich in natural beauty, along with an abundance of natural resources, the children of this diverse nation still face several serious health issues arising from their own environment (water pollution, air pollution, chemical pollution, solid waste issues and drainage issues). Nepal also ranks as a highly vulnerable country to the adverse impacts of climate change. Children are more vulnerable to various infections for immunological, physiological and social reasons. Their inherent immunity diminishes within months after birth. There are risk factors for the development of various diseases, e.g. unsafe drinking water and lack of sanitation, which contribute to diarrheal diseases, trachoma, hookworm and amoebic dysentery; another risk factor is indoor air pollution. The infant mortality rate (IMR) is higher in rural areas with 55 per 1000 live births, compared to urban areas with 38 per 1000 live births. Likewise, the under-5-year-old mortality rate (MR) in rural areas is 64 and that in urban areas is 45 per 1000 live births. Around 12% of the population suffer from chronic respiratory diseases, according to a recent study exploring the situation in Kathmandu. Pneumonia is a leading cause of mortality among children under 5 years of age in Nepalese hospitals. Children under 5 are more prone to the ill effects of polluted environments because of their less well-developed immune system. In addition, the school environment is not sufficiently healthy due to the distribution of unsafe drinking water and poor sanitation supply systems. In Nepal, mainly in the 20 Terai districts, arsenic contamination of groundwater is a public health problem. Underground water is used as drinking water in those areas, but without purification – the estimate is that around 0.5 million people live at the risk of arsenic poisoning. Within a span of 200 km from north to south, the climate of Nepal varies from arctic to tropical. The annual average air pollution concentration is 5 times above the World Health Organization (WHO) air quality guidelines, which poses a serious health risk to hundreds of thousands of Nepalese people: 133 out of 1,000,000 deaths each year are related to air pollution. Dramatically, Kathmandu city is a silent killer to walk around due to air pollution, and its air quality is ranked as the worst out of 180 countries, according to the 2018 Environmental Performance Index. However, insufficient studies have been conducted to explore children’s environmental health issues. It is therefore essential to carry out more scientific studies to explore the issues of children’s environmental health as environmental health problems in children are serious in the Nepalese context.

The last mile: Flood risk communication for better preparedness in Nepal

Over the last decade, several flood early warning systems have been established in Nepal, helping reduce the number of people affected and killed by floods. However, there are still challenges in communicating flood warning to the most vulnerable. The unavailability of real-time monitoring in smaller streams and tributaries has created challenges for communicating early warning. The ongoing restructuring process of the multilevel governance system in the country also presents challenges, specifically institutional such as insufficient coordination among relevant agencies, lack of adequate personnel, limited budget, and unclear roles and responsibilities. This study uses the Alexander framework (2015) to identify gaps in flood early warning communication in relation to their technical, institutional and socio-cultural components. Qualitative research methods in the form of key informant interviews and on-site focus group discussions were conducted at the national, district and local levels to collect data, taking Ratu watershed as a case study. Based on our analysis, we conclude that, first, while progress has been made in the monitoring and forecasting of floods, integration of socio-cultural aspects that can make early warning information accessible to the most vulnerable has to be strengthened. Second, warning messages need to be co-designed with communities and tailored to meet their diverse needs for proper dissemination and timely protective action. Finally, for flood risk communication to bridge ‘the last mile’ in terms of reaching the most vulnerable in the community must take account of their distinct social, economic and political experiences in both content and delivery of the information.

Patterns of dengue in Nepal from 2010-2019 in relation to elevation and climate

BACKGROUND: Understanding and describing the regional and climatic patterns associated with increasing dengue epidemics in Nepal is critical to improving vector and disease surveillance and targeting control efforts. METHODS: We investigated the spatial and temporal patterns of annual dengue incidence in Nepal from 2010 to 2019, and the impacts of seasonal meteorological conditions (mean maximum, minimum temperature and precipitation) and elevation on those patterns. RESULTS: More than 25 000 laboratory-confirmed dengue cases were reported from 2010 to 2019. Epidemiological trends suggest that dengue epidemics are cyclical with major outbreaks occurring at 2- to 3-y intervals. A significant negative relationship between dengue incidence and increasing elevation (metres above sea level) driven by temperature was observed (p<0.05) with dengue risk being greatest below 500 m. Risk was moderate between 500 and 1500 m and decreased substantially above 1500 m. Over the last decade, increased nightly temperatures during the monsoon months correlated with increased transmission (p<0.05). No other significant relationship was observed between annual dengue cases or incidence and climatological factors. CONCLUSIONS: The spatial analysis and interpretation of dengue incidence over the last decade in Nepal confirms that dengue is now a well-established public health threat of increasing importance, particularly in low elevation zones and urbanised areas with a tropical or subtropical climate. Seasonal variations in temperature during the monsoon months are associated with increased transmission.

Climate change, risk perception, and protection motivation among high-altitude residents of the Mt. Everest region in Nepal

Mountain ecosystems are considered vulnerable to early impacts of climate change. Whether and how local residents of these areas perceive these changes, however, remain under-studied questions. By conducting a household survey in the Khumbu region of Nepal, this study assessed local residents’ experience-based perception of changes in climate trends and patterns, perceived risk, and attitudes towards climate issues. Multivariate cluster analysis based on residents’ climate change beliefs revealed three segments: “Cautious,” “Disengaged,” and “Alarmed.” A comparison of these segments along key psychosocial constructs of Protection Motivation Theory (PMT) revealed significant inter-segment differences in residents’ perception of severity, vulnerability, response efficacy, self-efficacy, and response cost associated with engaging in mitigating behavior. Results shed light on how residents of high elevation areas that are considered to be exposed to early impacts of climate change perceive the risk and intend to respond. These findings could also assist stakeholders working in other similar mountain ecosystems in understanding vulnerability and in working towards climate readiness.

Understanding households’ livelihood vulnerability to climate change in the Lamjung district of Nepal

Based on spatial variation and time, climate change has various levels of impacts on different communities and sometime with the state of development as well. The rural mountainous households that depend on natural resources for subsistence livelihoods and agriculture are particularly vulnerable with changing climate. Livelihood vulnerability assessment at local level is imperative to formulate appropriate adaptation policy and programs to address their livelihood challenges. This paper explored two vulnerability assessment indices, livelihood vulnerability index and IPCC vulnerability index by surveying 150 households from three village development committees (VDCs) in Lamjung district, Nepal. Data related to climate variables, natural disasters, water and food security, health, socio-demographics, livelihood strategies, and social network were collected and combined into indices. Both indices differed based on well-being status, gender of the household head and location across the households of three VDCs. The analysis was based on indices constructed from selected indicators measuring exposure, sensitivity, and adaptive capacity. Results indicated that very poor and poor households, and female-headed households were more vulnerable than medium, well-off and male-headed households. The availability of livelihood diversified strategies, education, establishment of early warning system to climate extreme will help to reduce vulnerability to climate change in the study areas. The findings help in designing priority areas of intervention for adaptation plan to reduce vulnerability and enhance the resilience of the mountainous households to climate change.

Non-linear effect of temperature variation on childhood rotavirus infection: A time series study from Kathmandu, Nepal

INTRODUCTION: This study aimed to investigate the effects of temperature variability on rotavirus infections among children under 5 years of age in Kathmandu, Nepal. Findings may inform infection control planning, especially in relation to the role of environmental factors in the transmission of rotavirus infection. METHODS: Generalized linear Poisson regression equations with distributed lag non-linear model were fitted to estimate the effect of temperature (maximum, mean and minimum) variation on weekly counts of rotavirus infections among children under 5 years of age living in Kathmandu, Nepal, over the study period (2013 to 2016). Seasonality and long-term effects were adjusted in the model using Fourier terms up to the seventh harmonic and a time function, respectively. We further adjusted the model for the confounding effects of rainfall and relative humidity. RESULTS: During the study period, a total of 733 cases of rotavirus infection were recorded, with a mean of 3 cases per week. We detected an inverse non-linear association between rotavirus infection and average weekly mean temperature, with increased risk (RR: 1.52; 95% CI: 1.08-2.15) at the lower quantile (10th percentile) and decreased risk (RR: 0.64; 95% CI: 0.43-0.95) at the higher quantile (75th percentile). Similarly, we detected an increased risk [(RR: 1.93; 95% CI: 1.40-2.65) and (RR: 1.42; 95% CI: 1.04-1.95)] of rotavirus infection for both maximum and minimum temperature at their lower quantile (10th percentile). We estimated that 344 (47.01%) cases of rotavirus diarrhoea among the children under 5 years of age were attributable to minimum temperature. The significant effect of temperature on rotavirus infection was not observed beyond lag zero week. CONCLUSION: An inverse non-linear association was estimated between rotavirus incidence and all three indices of temperature, indicating a higher risk of infection during the cooler times of the year, and suggesting that transmission of rotavirus in Kathmandu, Nepal may be influenced by temperature.

Mitigating the impacts of air pollutants in Nepal and climate co-benefits: A scenario-based approach

Short-lived climate pollutants (SLCPs) including black carbon (BC), methane (CH4), and tropospheric ozone (O-3) are major climate forcers after carbon dioxide (CO2). These SLCPs also have detrimental impacts on human health and agriculture. Studies show that the Hindu Kush Himalayan (HKH) region, which includes Nepal, has been experiencing the impacts of these pollutants in addition to greenhouse gases. In this study, we derive a national-level emission inventory for SLCPs, CO2, and air pollutants for Nepal and project their impacts under reference (REF) and mitigation policy (POL) scenarios. The impacts on human health, agriculture, and climate were then estimated by applying the following: (1) adjoint coefficients from the Goddard Earth Observing System (GEOS)-chemical transport model that quantify the sensitivity of fine particulate matter (PM2.5) and surface O-3 concentrations in Nepal, and radiative forcing in four latitudinal bands, to emissions in 2 x 2.5 degrees grids, and (2) concentration-response functions to estimate health and crop loss impacts in Nepal. With the mitigating measures undertaken, emission reductions of about 78% each of BC and CH4 and 87% of PM2.5 could be achieved in 2050 compared with the REF scenario. This would lead to an estimated avoidance of 29,000 lives lost and 1.7 million tonnes of crop loss while bringing an economic benefit in present value of 2.7 times more than the total cost incurred in its implementation during the whole period 2010-2050. The results provide useful policy insights and pathways for evidence-based decision-making in the design and effective implementation of SLCP mitigation measures in Nepal.

Estimation of household health cost and climate adaptation cost with its health related determinants: Empirical evidences from western Nepal

Limited evidence is available concerning the household-level costs of prevailing diseases and the potential cost of climate adaptation in Nepal. This study estimates these costs and assesses the relationships between prevalent diseases and climate adaptation at the household level using survey data from 420 households. An ingredients-based approach was used to estimate the cost of health and adaptation, and a Probit regression model was used to analyze the relationship between prevalent diseases and climate adaptation costs. Household direct curative costs are the highest among health cost components. Two-thirds of total health costs are direct costs for households. On average, 15.90% of household income is used for direct cost of health care. The climate hazard cost among afflicted households is estimated to be high. In addition, diseases like malaria, typhoid and jaundice, their costs, climate awareness program, droughts, family size and loss of per capita income are more likely to raise the cost of climate adaptation. The occurrence of gastritis, prevalence of diarrhea and cold waves are less likely to affect the cost. Policymakers should implement health financing schemes and adaptation strategies to prevent the loss of human health in western Nepal.

Beyond smoking: Environmental determinants of asthma prevalence in Western Nepal

Socio-Economic impact of and adaptation to extreme heat and cold of farmers in the food bowl of Nepal

Mapping the need for adaptation: Assessing drought vulnerability using the livelihood vulnerability index approach in a mid-hill region of Nepal

Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal

Effect of meteorological factors on the seasonal prevalence of dengue vectors in upland hilly and lowland Terai regions of Nepal

Climatic factors influencing dengue incidence in an epidemic area of Nepal

Assessing the effect of climate factors on childhood diarrhoea burden in Kathmandu, Nepal

Present and future of dengue fever in Nepal: Mapping climatic suitability by ecological niche model

Human case of Fasciola gigantica-like infection, review of human fascioliasis reports in Nepal, and epidemiological analysis within the South Central Asia

Household and community responses to impacts of climate change in the rural hills of Nepal

Evolving high altitude livelihoods and climate change: A study from Rasuwa District, Nepal

Evaluating participatory techniques for adaptation to climate change: Nepal case study

Defining the requirements of an information system for climate change adaptation in the ountain communities of Dolakha, Nepal

Participation and power in climate change adaptation policies: Vulnerability in food security programs in Nepal

Statistical modeling of health effects on climate-sensitive variables and assessment of environmental burden of diseases attributable to climate change in Nepal

Seasonal migration and livelihood resilience in the face of climate change in Nepal

Linking soil properties to climate change mitigation and food security in Nepal

Infrastructure mitigates the sensitivity of child growth to local agriculture and rainfall in Nepal and Uganda

Household perceptions about the impacts of climate change on food security in the mountainous region of Nepal

Geospatial datasets in support of high-resolution spatial assessment of population vulnerability to climate change in Nepal

A 23-year retrospective investigation of Salmonella Typhi and Salmonella Paratyphi isolated in a tertiary Kathmandu hospital

Impact of disasters on child stunting in Nepal

Climatic conditions and child height: Sex-specific vulnerability and the protective effects of sanitation and food markets in Nepal

Withdrawing from agrarian livelihoods: Environmental migration in Nepal

Social-ecological vulnerability to climate change in the Nepali Himalaya

Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in central Nepal

Impact of prospective climate change on water resources and crop yields in the Indrawati basin, Nepal

Gender, agrobiodiversity, and climate change: A study of adaptation practices in the Nepal Himalayas

Species composition, seasonal occurrence, habitat preference and altitudinal distribution of malaria and other disease vectors in eastern Nepal

Spatio-temporal distribution of malaria and its association with climatic factors and vector-control interventions in two high-risk districts of Nepal

Perceived community-based flood adaptation strategies under climate change in Nepal

Malaria control in Nepal 1963-2012: Challenges on the path towards elimination

Differential impacts of climate change on communities in the middle hills region of Nepal

Climate change and occurrence of diarrheal diseases: Evolving facts from Nepal

Flash Flood Guidance System with Global Coverage (FFGS)