Explore By

This site uses cookies.

This site uses cookies to improve your online experience. To learn more about how we use cookies, please see our terms of use.

Climate change in public health and medical curricula in Australia and New Zealand: A mixed methods study of educator perceptions of barriers and areas for further action

The importance of a safe climate for human health is recognised by healthcare professionals, who need to be equipped to deliver environmentally sustainable healthcare and promote the health of natural systems on which we depend. The inclusion of climate-health in Australian and New Zealand accredited master-level public health training and medical programs is unclear. Educators identified by their coordination, convenorship, or delivery into programs of public health and medicine at universities in Australia and New Zealand were invited to participate in a cross-sectional, exploratory mixed methods study to examine the design and delivery of climate change content in the curricula, and the barriers and opportunities for better integration. Quantitative surveys were analysed using descriptive statistics and qualitative interview content was analysed via a modified grounded theory approach. The quantitative survey had 43.7% (21/48) response rate, with 10 survey respondents completing qualitative interviews. Qualitative interviews highlighted the minimal role of Indigenous-led content in this field, the barriers of time and resources to develop a coherent curriculum and the role of high-level champions to drive the inclusion of climate change and planetary health. Building pedagogical leadership in in the area of climate change and health teaching at universities through stronger partnerships with policymakers, community stakeholders and advocacy organisations will be important for future health workforce training amid increasing climate risks. Supplemental data for this article is available online at https://doi.org/10.1080/13504622.2022.2036325 .

A summertime thermal analysis of new zealand homestar certified apartments for older people

It is recognized that as humans age, their ability to withstand high or low temperatures reduces. Temperature extremes can also worsen chronic conditions, including cardiovascular, respiratory and other health issues. This study analyses 40 apartments in a single building in Auckland, New Zealand to determine whether the newly designed and constructed apartment, specifically for retirees, is delivering a suitable thermal interior environment during the warmest months of the year. Despite holding this green certification and meeting specific requirements to achieve cooling points that are meant to reduce the likelihood of overheating, the building exhibits significant signs of overheating in the two warmest months of the year (January and February) with two-thirds of apartments failing the CIBSE TM59 overheating criteria. The summertime performance of this green-rated building crucial insights for design professionals policymakers and developers of green building rating tools.

Extreme heat and adverse cardiovascular outcomes in Australia and New Zealand: What do we know?

Extreme heat events are a leading natural hazard risk to human health. Under all future climate change models, extreme heat events will continue to increase in frequency, duration, and intensity. Evidence from previous extreme heat events across the globe demonstrates that adverse cardiovascular events are the leading cause of morbidity and mortality, particularly amongst the elderly and those with pre-existing cardiovascular disease. However, less is understood about the adverse effects of extreme heat amongst specific cardiovascular diseases (i.e., heart failure, dysrhythmias) and demographics (sex, ethnicity, age) within Australia and New Zealand. Furthermore, although Australia has implemented regional and state heat warning systems, most personal heat-health protective advice available in public health policy documents is either insufficient, not grounded in scientific evidence, and/or does not consider clinical factors such as age or co-morbidities. Dissemination of evidence-based recommendations and enhancing community resilience to extreme heat disasters within Australia and New Zealand should be an area of critical focus to reduce the burden and negative health effects associated with extreme heat. This narrative review will focus on five key areas in relation to extreme heat events within Australia and New Zealand: 1) the potential physiological mechanisms that cause adverse cardiovascular outcomes during extreme heat events; 2) how big is the problem within Australia and New Zealand?; 3) what the heat-health response plans are; 4) research knowledge and translation; and, 5) knowledge gaps and areas for future research.

Long term exposure to air pollution, mortality and morbidity in New Zealand: Cohort study

OBJECTIVES: To investigate associations between long-term exposure to PM(2.5), NO(2), mortality and morbidity in New Zealand, a country with low levels of exposure. DESIGN: Retrospective cohort study. SETTING: The New Zealand resident population. METHOD: The main analyses included all adults aged 30 years and over with complete data on covariates: N = 2,223,507. People who died, or were admitted to hospital, (2013-2016) were linked anonymously to the 2013 census, and to estimates of ambient PM(2.5), and NO(2) concentration. We fitted Poisson regression models of mortality and morbidity in adults (≥30) for all natural causes of death, and by sub- group of major cause. Person-time of exposure, censored at the time of death, was included as an offset. We adjusted for confounding by age, sex, ethnicity, income, education, smoking status and ambient temperature. Further analyses stratified by ethnic group, and investigated respiratory hospital admissions in children. RESULTS: There were statistically significant positive associations between pollutants and natural causes of death: RR (per 10 μg/m(3)) for PM(2.5) 1.11 (1.07 to 1.15) and for NO(2) 1.10 (1.07 to 1.12). For morbidity, the strongest associations were for PM(2.5) and ischaemic heart disease in adults, RR: 1.29 (1.23 to 1.35) and for NO(2) and asthma in children, RR: 1.18 (1.09 to 1.28). In models restricted to specific ethnic groups, we found no consistent differences in any of the associations. CONCLUSIONS: The results for NO(2) are higher than those published previously. Other studies have reported that the dose-response for PM(2.5) may be higher at low concentrations, but less is known about NO(2). It is possible NO(2) is acting as a proxy for other traffic-related pollutants that are causally related to health impacts. This study underlines the importance of controlling pollution caused by motor vehicles.

Human Climate Horizons (HCH)

Nutrition in New Zealand: Can the past offer lessons for the present and guidance for the future?

Over the last century, nutrition research and public health in New Zealand have been inspired by Dr Muriel Bell, the first and only state nutritionist. Some of her nutritional concerns remain pertinent today. However, the nutritional landscape is transforming with extraordinary changes in the production and consumption of food, increasing demand for sustainable and healthy food to meet the requirements of the growing global population and unprecedented increases in the prevalence of both malnutrition and noncommunicable diseases. New Zealand’s economy is heavily dependent on agrifoods, but there is a need to integrate interactions between nutrition and food-related disciplines to promote national food and nutrition security and to enhance health and well-being. The lack of integration between food product development and health is evident in the lack of investigation into possible pathological effects of food additives. A national coherent food strategy would ensure all components of the food system are optimised and that strategies to address the global syndemic of malnutrition and climate change are prioritised. A state nutritionist or independent national nutrition advocacy organisation would provide the channel to communicate nutrition science and compete with social media, lead education priorities and policy development, engage with the food industry, facilitate collaboration between the extraordinary range of disciplines associated with food production and optimal health and lead development of a national food strategy.

Social vulnerability indicators for flooding in Aotearoa New Zealand

Social vulnerability indicators are a valuable tool for understanding which population groups are more vulnerable to experiencing negative impacts from disasters, and where these groups live, to inform disaster risk management activities. While many approaches have been used to measure social vulnerability to natural hazards, there is no single method or universally agreed approach. This paper proposes a novel approach to developing social vulnerability indicators, using the example of flooding in Aotearoa New Zealand. A conceptual framework was developed to guide selection of the social vulnerability indicators, based on previous frameworks (including the MOVE framework), consideration of climate change, and a holistic view of health and wellbeing. Using this framework, ten dimensions relating to social vulnerability were identified: exposure; children; older adults; health and disability status; money to cope with crises/losses; social connectedness; knowledge, skills and awareness of natural hazards; safe, secure and healthy housing; food and water to cope with shortage; and decision making and participation. For each dimension, key indicators were identified and implemented, mostly using national Census population data. After development, the indicators were assessed by end users using a case study of Porirua City, New Zealand, then implemented for the whole of New Zealand. These indicators will provide useful data about social vulnerability to floods in New Zealand, and these methods could potentially be adapted for other jurisdictions and other natural hazards, including those relating to climate change.

Climate Service Provider Profiles

Multi-level governance and climate change mitigation in New Zealand: Lost opportunities

Influence of weather on incidence of bronchiolitis in Australia and New Zealand

What is ‘social resilience’? Perspectives of disaster researchers, emergency management practitioners, and policymakers in New Zealand

The relationship between temperature and assault in New Zealand

The macroecology of airborne pollen in Australian and New Zealand urban areas

Projected changes in reported campylobacteriosis and cryptosporidiosis rates as a function of climate change: A New Zealand study

Effects of local, synoptic and large-scale climate conditions on daily nitrogen dioxide concentrations in Auckland, New Zealand

Climate change and the right to health for Maori in Aotearoa/New Zealand

Foods and dietary patterns that are healthy, low-cost, and environmentally sustainable: A case study of optimization modeling for New Zealand

Emergency food storage for organisations and citizens in New Zealand: Results of optimisation modelling

Media reporting of global health issues and events in New Zealand daily newspapers

The impact of climate variability and change on cryptosporidiosis and giardiasis rates in New Zealand

Positive association between ambient temperature and salmonellosis notifications in New Zealand, 1965-2006

Climate and respiratory disease in Auckland, New Zealand

The climate’s long-term impact on New Zealand infrastructure (CLINZI) project-A case study of Hamilton City, New Zealand

New Zealand risk management approach for toxic cyanobacteria in drinking water

Adapting to climate change:Information for the New Zealand food system

First National Climate Change Risk Assessment for New Zealand

Arotakenga Huringa Āhuarangi: A Framework for the National Climate Change Risk Assessment for Aotearoa New Zealand

Climate Change and Environmental Health

Heat Health Plans: Guidelines

Human Health Impacts of Climate Change for New Zealand: Evidence Summary

Protecting Your Health in an Emergency

Toolkit Houtrook en gezondheid

Response to Major fires: Guideline for Public Health Units – Revised edition 2014

New Zealand’s changing climate and oceans: The impact of human activity and implications for the future

Consistent messages for CDEM: Volcanoes

Ash Impact Posters

VAAC Wellington Ash Advisories

New Zealand Pollen Advisories

New Zealand Water Contamination Risk Levels

New Zealand UV Warnings

New Zealand Severe Weather Warnings, Watches and Outlooks

Environmental Health Intelligence New Zealand

Air Quality Map (New Zealand)

LAWA Environmental Data Explorer (New Zealand)

New Zealand Drought Monitor

New Zealand River Flood Statistics

New Zealand UV Index

GeoNet Geological hazard information for New Zealand

New Zealand Shellfish biotoxin alerts