Explore By

This site uses cookies.

This site uses cookies to improve your online experience. To learn more about how we use cookies, please see our terms of use.

Climate trends at a hotspot of chronic kidney disease of unknown causes in Nicaragua, 1973-2014

An ongoing epidemic of chronic kidney disease of uncertain etiology (CKDu) afflicts large parts of Central America and is hypothesized to be linked to heat stress at work. Mortality rates from CKDu appear to have increased dramatically since the 1970s. To explore this relationship, we assessed trends in maximum and minimum temperatures during harvest months between 1973 and 2014 as well as in the number of days during the harvest season for which the maximum temperature surpassed 35 °C. Data were collected at a weather station at a Nicaraguan sugar company where large numbers of workers have been affected by CKDu. Monthly averages of the daily maximum temperatures between 1996 and 2014 were also compared to concurrent weather data from eight Automated Surface Observing System Network weather stations across Nicaragua. Our objectives were to assess changes in temperature across harvest seasons, estimate the number of days that workers were at risk of heat-related illness and compare daily maximum temperatures across various sites in Nicaragua. The monthly average daily maximum temperature during the harvest season increased by 0.7 °C per decade between 1973 and 1990. The number of days per harvest season with a maximum temperature over 35 °C increased by approximately five days per year between 1974 and 1990, from 32 days to 114 days. Between 1991 and 2013, the number of harvest days with a maximum temperature over 35 °C decreased by two days per year, and the monthly average daily maximum temperature decreased by 0.3 °C per decade. Comparisons with weather stations across Nicaragua demonstrate that this company is located in one of the consistently hottest regions of the country.

Convergence of climate-driven hurricanes and COVID-19: The impact of 2020 hurricanes Eta and Iota on Nicaragua

The 2020 Atlantic hurricane season was notable for a record-setting 30 named storms while, contemporaneously, the COVID-19 pandemic was circumnavigating the globe. The active spread of COVID-19 complicated disaster preparedness and response actions to safeguard coastal and island populations from hurricane hazards. Major hurricanes Eta and Iota, the most powerful storms of the 2020 Atlantic season, made November landfalls just two weeks apart, both coming ashore along the Miskito Coast in Nicaragua’s North Caribbean Coast Autonomous Region. Eta and Iota bore the hallmarks of climate-driven storms, including rapid intensification, high peak wind speeds, and decelerating forward motion prior to landfall. Hurricane warning systems, combined with timely evacuation and sheltering procedures, minimized loss of life during hurricane impact. Yet these protective actions potentially elevated risks for COVID-19 transmission for citizens sharing congregate shelters during the storms and for survivors who were displaced post-impact due to severe damage to their homes and communities. International border closures and travel restrictions that were in force to slow the spread of COVID-19 diminished the scope, timeliness, and effectiveness of the humanitarian response for survivors of Eta and Iota. Taken together, the extreme impacts from hurricanes Eta and Iota, compounded by the ubiquitous threat of COVID-19 transmission, and the impediments to international humanitarian response associated with movement restrictions during the pandemic, acted to exacerbate harms to population health for the citizens of Nicaragua.

Protecting workers in Nicaragua

Occupational heat stress intervention to prevent Chronic Kidney Disease of undetermined causes (CKDnT) among sugarcane workers in Nicaragua

Human Climate Horizons (HCH)

Agenda for the Americas on Health, Environment, and Climate Change 2021–2030

Protection Resilience Efficiency and Prevention for Workers in Industrial Agriculture in a Changing Climate: The Adelante Initiative (Nicaragua)

Deconstructing homegardens: Food security and sovereignty in northern Nicaragua

Increased replicative fitness of a dengue virus 2 clade in native mosquitoes: Potential contribution to a clade replacement event in Nicaragua

An initial estimate of costs and benefits of a water, rest and shade intervention

Flash Flood Guidance System with Global Coverage (FFGS)