Explore By

This site uses cookies.

This site uses cookies to improve your online experience. To learn more about how we use cookies, please see our terms of use.

Rodent-borne zoonoses in Qatar: A possible one-health framework for the intervention of future epidemic

The increasing frequency of spillover of zoonotic pathogens from animals to humans in recent years highlights a need to develop a more comprehensive framework to investigate and prevent pathogens of animal origin, including rodents. Despite the presence of several species of rodents, there is a certain knowledge gap regarding rodent-borne zoonoses in Qatar. The current review provides an update on rodent-borne zoonoses in Qatar, its possible drivers and transmission dynamics, and proposed a One Health framework for intervention. Following an extensive literature review, we conducted a field investigation. Then the qualitative information and knowledge gaps were addressed with a virtual discussion with national, regional, and international experts in the relevant field. Overall, Rattus norvegicus population was found to be more prevalent, followed by Rattus rattus, and M. musculus, which are mainly found in animal farms, followed by agricultural farms, residential areas, and other facilities. Over 50% of rodents carry at least one pathogen of public health importance. Several pathogens were identified at the human, animal, and ecosystem interface, which can be mediated in transmission by rodents. E. coli, Salmonella spp., and Campylobacter spp. are the frequently reported bacteria. Hymenolepis spp., Cryptosporidium spp., Giardia spp., Entamoeba spp., and Toxoplasma spp. are the major parasites. In addition, many vectors, including Ornithonyssus bacoti and Xenopsylla astia were reported in this country. Based on the changes over the past 70 years in Qatar, seven drivers have been identified, which could be important in rodent-borne disease emergences, such as the Oil and gas revolution, fast population growth, rapid urbanization, importation of food and agricultural products, agricultural and livestock development, farm biosecurity, and stray animals. The experts emphasized that mixed-species animal farming with poor biosecurity and management can be associated to increase the risk of zoonoses. Moreover, rapid urbanization and global climate change together can alter the ecosystem of the country and impact on vectors and vector-borne diseases. Finally, the One Health framework has been proposed for the surveillance, and mitigation of any future spillover or epidemic of rodent-borne zoonoses.

Mapping of trace elements in topsoil of arid areas and assessment of ecological and human health risks in Qatar

Soil is the incubator of human activities. Mapping of soil contaminants needs to be constantly updated. It is fragile in arid regions, especially if it accompanies dramatic and successive industrial and urban activities in addition to the climate change. Contaminants affecting soil are changing due to natural and anthropogenic influences. Sources, transport and impacts of trace elements including toxic heavy metals need continuous investigations. We sampled soil in accessible sites in the State of Qatar. An inductively coupled plasma-optical emission spectrometry (ICP-OES) and an inductively coupled plasma-mass spectrometry (ICP-MS) were used to determine the concentrations of Ag, Al, As, Ba, C, Ca, Ce, Cd, Co, Cr, Cu, Dy, Er, Eu, Fe, Gd, Ho, K, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, Pb, Pr, S, Se, Sm, Sr, Tb, Tm, U, V, Yb and Zn. The study also presents new maps for the spatial distribution of these elements using the World Geodetic System 1984 (projected on UTM Zone 39N) which is based on socio-economic development and land use planning. The study assessed the ecological risks and human health risks of these elements in soil. The calculations showed no ecological risks associated with the tested elements in soil. However, the contamination factor (CF) for Sr (CF > 6) in two sampling locations calls for further investigations. More important, human health risks were not detected for population living in Qatar and the results were within the acceptable range of the international standards (hazard quotient HQ < 1 and Cancer risk between 10(-5) and 10(-6)). Soil remains a critical component with water and food nexus. In Qatar and arid regions, fresh water is absent and soil is very poor. Our findings enhance the establishment of scientific strategies for investigating soil pollution and potential risks to achieve food security.

Human Climate Horizons (HCH)

Heat stress impacts on cardiac mortality in Nepali migrant workers in Qatar

Bacteriuria in pregnancy varies with the ambiance: A retrospective observational study at a tertiary hospital in Doha, Qatar

Assessment of Occupational Heat Strain and Mitigation Strategies in Qatar