As rapid urbanization becomes a key topic within urban studies and planning particularly in the Global South, it needs to be considered what radical implications to urban environment mean. Reviewing literature on urbanization and its implications on urban environment from within the Global South and on sustainable development research and environmental studies, this article discusses eight implications of urbanization-environmental conundrum: pollution, water resource degradation, urban heat island effect, sea level rise and urban flooding, urban sprawl and slum growth, urban agriculture decline, public health deterioration, and urban wetland destruction that question the ontology of urbanization in Global South cities. Drawing on cases from Saudi Arabian cities, findings indicate that sustainable development agenda is skewed towards socio-economic development with limited focus on environmental issues. This situation is threatening the sustainability of rapidly urbanizing cities. The paper proposes a rhizomatic understanding of environmental importance as a roadmap for sustainable and transformative urbanization in Global South. This ontology changes understandings of what sustainable urbanization should be in rapidly growing Global South cities.
This article presents a comprehensive rapid review of the current disaster risk reduction (DRR) efforts in Saudi Arabia, a country exposed to a variety of hazards such as extreme heat, droughts, floods, dust, and sandstorms, along with threats from terrorism and violence. Employing a rapid review approach, our aim was to provide timely insights into DRR strategies, with an emphasis on the unique geographical and socio-political context of Saudi Arabia. This study serves as a valuable reference for similar hazard-prone regions worldwide. Our review encompasses Saudi Arabia’s progress in key areas, such as improving building codes and infrastructure, developing early warning systems, raising public awareness, and strengthening emergency response capabilities. While Saudi Arabia has made commendable strides in implementing international best practices for DRR, our review also identified specific areas where further development and enhancement are needed. These include the need for more sophisticated early warning systems, expanded public awareness campaigns, and continual enhancements in emergency response capabilities. This review offers key insights into the challenges and opportunities within Saudi Arabia’s DRR efforts, highlighting the steps that Saudi Arabia has taken towards resilience. Drawing from specific examples of past disasters, our findings shed light on practical considerations for improving disaster risk management, with the potential to inform policy, enhance public awareness, and contribute to building a safer and more resilient future in Saudi Arabia.
Climate change (CC) is increasingly causing precarious and pervasive disruption to lives, livelihoods, and the environment. The Global South countries are vulnerable to CC impacts due to rapid urbanization, poverty, low resilience, and poor governance. While some countries have implemented measures to mitigate CC impacts, many strive to do so. Saudi Arabia is among the Global South countries with high per capita energy use and carbon emission. However, there is a dearth of studies that assess the impacts of CC for better mitigation efforts and decision-making. The present study is an effort to attend to this research need. This article uses experts-based survey (n = 12) to assess the impacts of CC on the Dammam Metropolitan Area using an Analytic Hierarchy Process (AHP). The findings indicate that the highest ranked CC impacts based on priority weights are sea-level rise then coastal flooding, trailed by the threat to public health and low agricultural productivity. However, groundwater depletion and urban heat islands were deemed having the least impacts. Also, the experts ranked green infrastructure and sustainable transportation as more effective than green buildings in mitigating CC impacts in the study area. The study recommends that green infrastructure (GI), sustainable transportation (ST), and sustainable urban form (SUF) are more appropriate mitigation measures to CC impacts in Saudi Arabia and similar geographical regions. Because CC impacts on humans and the environment are widespread, mitigation and adaptation efforts can assist in lowering their adverse effects and promoting environmental sustainability. (c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/ by-nc-nd/4.0/).
INTRODUCTION: Dengue fever disease is affected by many scoioeconomic and enviromental factors throughout endemic areas globally. These factors contribute to increase the incidence of endemic dengue endemic in Jeddah, Saudi Arabia. OBJECTIVES: This study aimed to investigate the distribution and spatial patterns of dengue fever cases in Jeddah, and to determine if there is an association between dengue fever and the following environmental factors: temperature, humidity, land cover, climate, rainfall, epicenter of reproduction, and socioeconomic factors. METHODS: A descriptive and analytical cross-sectional study was conducted in Jeddah in 2020. The study included all reported suspected and confirmed dengue cases. The sample size was 1458 cases. Data were obtained from the Dengue Active Surveillance System and the confirmed cases were geo-distributed in areas by QGIS. All significant variables were included in the logistic regression table. RESULTS: The majority (61.9 %) were suspected cases and 38.1 % confirmed cases. The majority of the cases were male. The highest spatial distribution was in the middle of Jeddah and the lowest in the south. The highest temporal distribution for confirmed cases was in June, and for suspected cases in December. Age, gender, occupation, and area were all significantly associated with the dengue reported cases. Most all the enviromental factors were not statistically significant. CONCLUSION: The study showed three clusters of dengue fever and infection concentrated in the middle and east of Jeddah. The lack of investigation in the environmental factors regarding the dengue distribution and its impact on the population area has to be taken seriously and dengue intervention programs should be implemented to reduce the endemic dengue in Jeddah.
Biocontaminants are minute particles derived from different biological materials. Indoor biocontaminants are associated with major public health problems. In Gulf countries, it is more precarious due to the harsh climatic conditions, including high ambient temperatures and relative humidity. In addition, due to COVID-19 pandemic, most of the time public is inside their home. Therefore, the aim of the study was to determine the load of biocontaminants in the indoor environment of Hail city. The results showed that most of the bacteria are gram-positive and higher in polymicrobial (87.1%) than monomicrobial (62.7%) association. There was no significant association with sample collection time and types of isolates. The most abundant microbes found in all samples were Staphylococcus aureus followed by Bacillus spp. Among Gram-negative bacterial isolates, E. coli was most common in tested indoor air samples. The study will be useful to find the biocontaminants associated with risk factors and their impact on human health in the indoor environment, especially during the COVID-19 pandemic. These results indicate the need to implement health care awareness programs in the region to improve indoor air quality.
BACKGROUND: Ambient temperature is predicted to rise in Saudi Arabia, and how this will impact the health of its population has not been investigated. Saudi Arabia is one of the top ten countries with the highest prevalence of diabetes. The current study investigates the correlation between ambient temperature and HbA1c levels in a group of Saudis in Riyadh. METHODS: Age, gender, and HbA1c data for six years were obtained from patients’ records. The maximum daily temperature of Riyadh city for the same period was obtained. RESULTS: A total of 168,614 patient records were obtained. There was a statistically significant positive correlation between ambient temperature and HbA1c levels, where for each 1°C increase in average weekly temperature HbA1c increased by 0.007%. Patients were at higher risk of having HbA1c ≥ 7% in high and moderate temperature than in low temperature (P < 0.001, odds ratio (OR): 1.134, and P < 0.001, odds ratio (OR): 1.034; respectively). The mean of HbA1c in females (7.27±1.96) was significantly lower than in males (7.40±1.86), and the probability of males having HbA1c ≥ 7% was about 17.4% higher than females. However, the HbA1c levels in females were significantly more affected by rising temperature compared to males (B = 0.003, P = 0.008). CONCLUSION: Overall, rise in ambient temperature is associated with worsening HbA1c, which could be harmful to the health of Saudis suffering from diabetes. Possible reasons for the increase in HbA1c could include reduced physical activity, reduced sunlight exposure, and dehydration during hot weather. More research on the relationship between climate change and public health in Saudi Arabia is needed.
Heat-related illnesses (HRIs), such as heatstroke (HS) and heat exhaustion (HE), are common complications during Hajj pilgrims. The Saudi Ministry of Health (MoH) developed guidelines on the management of HRIs to ensure the safety of all pilgrims. This study aimed to assess healthcare workers’ (HCWs) adherence to the updated national guidelines regarding pre-hospital and in-hospital management of HRIs. This was a cross-sectional study using a questionnaire based on the updated HRI management interim guidelines for the Hajj season. Overall, compliance with HE guidelines scored 5.5 out of 10 for basic management and 4.7 out of 10 for advanced management. Medical staff showed an average to above average adherence to pre-hospital HS management, including pre-hospital considerations (7.2), recognition of HS (8.1), case assessment (7.7), stabilizing airway, breathing, and circulation (8.7), and cooling (5). The overall compliance to in-hospital guidelines for HS management were all above average, except for special conditions (4.3). In conclusion, this survey may facilitate the evaluation of the adherence to Saudi HRIs guidelines by comparing annual levels of compliance. These survey results may serve as a tool for the Saudi MoH to develop further recommendations and actions.
In this study, the variability and trends of the outdoor thermal discomfort index (DI) in the Kingdom of Saudi Arabia (KSA) were analyzed over the 39-year period of 1980-2018. The hourly DI was estimated based on air temperature and relative humidity data obtained from the next-generation global reanalysis from the European Center for Medium-Range Weather Forecasts and in-house high-resolution regional reanalysis generated using an assimilative Weather Research Forecast (WRF) model. The DI exceeds 28°C, that is, the threshold for human discomfort, in all summer months (June to September) over most parts of the KSA due to a combination of consistently high temperatures and relative humidity. The DI is greater than 28°C for 8-16 h over the western parts of KSA and north of the central Red Sea. A DI of >28°C persistes for 7-9 h over the Red Sea and western KSA for 90% of summer days. The spatial extent and number of days with DI > 30°C, that is, the threshold for severe human discomfort, are significantly lower than those with DI > 28°C. Long-term trends in the number of days with DI > 28°C indicate a reduced rate of increase or even a decrease over some parts of the southwestern KSA in recent decades (1999-2018). Areas with DI > 30°C, in particular the northwestern regions of the Arabian Gulf and its adjoining regions, also showed improved comfort levels during recent decades. Significant increases in population and urbanization have been reported throughout the KSA during the study period. Analysis of five-years clinical data suggests a positive correlation between higher temperatures and humidity with heat-related deaths during the Hajj pilgrimage. The information provided herein is expected to aid national authorities and policymakers in developing necessary strategies to mitigate the exposure of humans to high levels of thermal discomfort in the KSA.
Background: Heat related illness can be avoided; it may also be present in a milder form to a life threatening condition. Objectives: To explore the pattern of KAP towards HRIs among the subjects in Jeddah city. Method: It was a cross-sectional study of 378 subjects, who gave their responses through an online Google form. Data were analyzed using SPSS software version 23. The level of significance was 0.05%. Results: 18.2% of the subjects suffered from HRls, and 49% never received health education about HRIs. Increased KAP score was associated with increased age (b= 0.177, p<0.000), more encountered in the females (b= -2.25, p <0.000), in those who owned air conditioning (b = 5.3, p < 0.024), in the smokers (b= 1.77, p<0.35), and in those who received health education about HRIs (b=2.327, p< 0.000). Conclusions: The subjects' awareness of the prevention of HRIs needs to be strengthened.
We have analyzed the long-term temperature trends and extreme temperature events in Saudi Arabia between 1979 and 2019. Our study relies on high-resolution, consistent, and complete ERA5 reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). We evaluated linear trends in several climate descriptors, including temperature, dewpoint temperature, thermal comfort, and extreme event indices. Previous works on this topic used data from weather station observations over limited time intervals and did not include temperature data for recent years. The years 2010-19 have been the warmest decade ever observed by instrumental temperature monitoring and are the eight warmest years on record. Therefore, the earlier results may be incomplete, and their results may no longer be relevant. Our findings indicate that, over the past four decades, Saudi Arabia has warmed up at a rate that is 50% higher than the rest of the landmass in the Northern Hemisphere. Moreover, moisture content of the air has significantly increased in the region. The increases of temperature and humidity have resulted in the soaring of dewpoint temperature and thermal discomfort across the country. These increases are more substantial during summers, which are already very hot relative to winters. Such changes may be dangerous to people over vast areas of the country. If the current trend persists into the future, human survival in the region will be impossible without continuous access to air conditioning.
OBJECTIVES: To study the epidemiology of dengue incidence and understand the dynamics of dengue transmission in Makkah, Kingdom of Saudi Arabia (KSA), between 2017-2019. METHODS: This is a cross-sectional study. Health and demographic data was obtained for all confirmed dengue cases in Makkah, KSA, in the years 2017-2019 from the Vector-Borne and Zoonotic Diseases Administration (VBZDA) in Makkah and the Makkah Regional Laboratory, KSA. In addition, entomological data about Aedes density was obtained from the VBZDA. Descriptive epidemiological methods were used to determine the occurrence and distribution of dengue cases. RESULTS: Laboratory-confirmed dengue cases were higher in 2019 as compared to 2017 and 2018, suggesting an outbreak of dengue in Makkah, KSA, in 2019. The incidence of confirmed dengue cases was 204 in 2017, 163 in 2018 and 748 in 2019. Dengue mostly affected people in the 25-44 age group, accounting for approximately half of the annual dengue cases each year. Men were at a higher dengue incidence risk when compared to women, and Saudi women had a higher risk rate for dengue cases when compared to non-Saudi women in all 3 years studied. There was no dengue related death in these 3 years. CONCLUSION: The dengue incidence increased in Makkah, KSA, in 2019 as compared to the previous 2 years, owing to heavy rainfall in 2019. Post-rainfall Vector control efforts may help contain the disease in Makkah, KSA.
OBJECTIVE: Increased temperature and humidity across the world and emergence of mosquito-borne diseases, notably dengue both continue to present public health problems, but their relationship is not clear as conflicting evidence abound on the association between climate conditions and risk of dengue fever. This characterization is important as mitigation of climate change-related variables will contribute toward efficient planning of health services. The purpose of this study was to determine whether humidity in addition to high temperatures increase the risk of dengue transmission. METHODS: We have assessed the joint association between temperature and humidity with the incidence of dengue fever at Jeddah City in Saudi Arabia. We obtained weekly data from Jeddah City on temperature and humidity between 2006 and 2009 for 200 weeks starting week 1/2006 and ending week 53/2009. We also collected incident case data on dengue fever in Jeddah City. RESULTS: The cross-tabulated analysis showed an association between temperature or humidity conditions and incident cases of dengue. Our data found that hot and dry conditions were associated with a high risk of dengue incidence in Jeddah City. CONCLUSION: Hot and dry conditions are risk factors for dengue fever.
BACKGROUND: Viral hemorrhagic fevers (VHF) refers to a group of febrile illnesses caused by different viruses that result in high mortality in animals and humans. Many risk factors like increased human-animal interactions, climate change, increased mobility of people and limited diagnostic facility have contributed to the rapid spread of VHF. MATERIALS: The history of VHFs in the Saudi Arabian Peninsula has been documented since the 19(th) century, in which many outbreaks have been reported from the southwestern region of Saudi Arabia. Despite presence of regional network of experts and technical organizations, which expedite support and respond during outbreaks, there are some more challenges that need to be addressed immediately. Gaps in funding, exhaustive and inclusive response plans and improved surveillance systems are some areas of concern in the region which can be dealt productively. This review primarily focusses on the hemorrhagic fevers that are caused by three most common viruses namely, the Alkhurma hemorrhagic fever virus, Rift valley fever virus, and Dengue fever virus. CONCLUSION: In summary, effective vector control, health education, possible use of vaccine and concerted synchronized efforts between different government organizations and private research institutions will help in planning effective outbreak-prevention and response strategies in future.
Saudi Arabia (SA) is one of the hottest countries in the world. This study was conducted to assess the impact of summer heat stress in Southeastern SA on short-term kidney injury (KI) among building construction workers and to identify relevant risk factors. Measurements of urinary albumin-creatinine ratio (ACR), height, weight, hydration, symptoms, daily work and behavioral factors were collected in June and September of 2016 from a cohort of construction workers (n = 65) in Al-Ahsa Province, SA. KI was defined as ACR ?30 mg/g. Multivariate linear regression analysis was used to assess factors related to cross-summer changes in ACR. A significant increase in ACR occurred among most workers over the study period; incidence of KI was 18%. Risk factors associated with an increased ACR included dehydration, short sleep, and obesity. The findings suggest that exposure to summer heat may lead to the development of KI among construction workers in this region. Adequate hydration and promotion of healthy habits among workers may help reduce the risk of KI. A reduction in work hours may be the most effective intervention because this action can reduce heat exposure and improve sleep quality.