Explore By

This site uses cookies.

This site uses cookies to improve your online experience. To learn more about how we use cookies, please see our terms of use.

The assessment of human bioclimate of Vranje health research (Serbia) based on Universal Thermal Climate Index (UTCI) with the focus on extreme biothermal conditions

The study deals with an assessment and interpretation of the bioclimatic conditions in Vranje (southern Serbia). The study aims at temporal distributions of bioclimatic conditions focussing on extreme thermal stress based on the Universal Thermal Climate Index (UTCI). The meteorological data required for the calculation of UTCI concern hourly (7 and 14 CET) weather data collected for the period 2000-2017. The frequency of very strong heat stress (VSHS), very strong cold stress (VSCS) and extreme cold stress (ECS) for both morning and midday hours. Furthermore, the daily difference of the UTCI hourly values (diurnal UTCI change) are specified, giving the daily variance of heat and cold stress. The results revealed the frequency of days in which thermal stress prevails for the studied period. The obtained results show an increase in extreme heat biothermal conditions, while extreme cold biothermal conditions are in decline, especially in the last 10 years. However, the frequency (the number of days) of very strong heat stress (VSHS) increased since 2007. A spectacular increase in heat stress was observed in the month of September, particularly in 2015.

Assessment of outdoor thermal comfort in Serbia’s urban environments during different seasons

The urban microclimate is gradually changing due to climate change, extreme weather conditions, urbanization, and the heat island effect. In such an altered environment, outdoor thermal comfort can have a strong impact on public health and quality of life in urban areas. In this study, three main urban areas in Serbia were selected: Belgrade (Central Serbia), Novi Sad (Northern Serbia), and Nis (Southern Serbia). The focus was on the temporal assessment of OTC, using the UTCI over a period of 20 years (1999-2018) during different seasons. The main aim is the general estimation of the OTC of Belgrade, Novi Sad, and Nis, in order to gain better insight into the bioclimatic condition, current trends and anomalies that have occurred. The analysis was conducted based on an hourly (7 h, 14 h, and 21 h CET) and “day by day” meteorological data set. Findings show the presence of a growing trend in seasonal UTCI anomalies, especially during summer and spring. In addition, there is a notable increase in the number of days above the defined UTCI thresholds for each season. Average annual UTCIs values also show a positive, rising trend, ranging from 0.50 degrees C to 1.33 degrees C. The most significant deviations from the average UTCI values, both seasonal and annual, were recorded in 2000, 2007, 2012, 2015, 2017, and 2018.

Temporal analysis of urban-suburban PET, mPET and UTCI indices in Belgrade (Serbia)

The analysis of the bioclimatic conditions is becoming increasingly relevant in climate interpretations for human needs, particularly in spatial planning, tourism, public health, sports events, bio-prognosis, etc. In this context, our study presents general temporal bioclimatic conditions in Belgrade, defined based on the PET, mPET and UTCI heat budget indices. Monthly, seasonal and annual indices were analyzed for urban and suburban weather stations based on 43 annual sets of meteorological data obtained by hourly observations at 7 h and 14 h CET. This study aims to present the distribution of PET, mPET and UTCI indices to show the pattern of each index in a mild climate location and to examine annual and seasonal differences of each index in the Belgrade urban center and suburban part of the city. The study results indicate higher biothermal stress in the urban area compared to the suburban zone and that the indices are congruent during the summer. At the same time, during the winter, they are more difficult to compare due to their peculiarities becoming more noticeable. The results obtained of all mean monthly and mean annual values of all three indices clearly indicate the difference that follows the definition of the urban heat island (UHI), particularly those from morning observation and winter season. The UTCI index shows the most significant monthly, seasonal and annual difference between urban and suburban areas for both observations. The annual difference of ΔUTCI7h amounts to 1.5 °C is the same as the annual difference of minimum temperatures (Δtmin). In contrast, the annual differences of ΔPET7h ΔmPET7h are °smaller (0.8 °C and 0.7 °C) and closer to the annual differences of maximum temperatures Δtmax amounted of 0.6 °C.

Spatiotemporal analysis of West Nile virus epidemic in South Banat District, Serbia, 2017-2019

West Nile virus (WNV) is an arthropod-born pathogen, which is transmitted from wild birds through mosquitoes to humans and animals. At the end of the 20th century, the first West Nile fever (WNF) outbreaks among humans in urban environments in Eastern Europe and the United States were reported. The disease continued to spread to other parts of the continents. In Serbia, the largest number of WNV-infected people was recorded in 2018. This research used spatial statistics to identify clusters of WNV infection in humans and animals in South Banat County, Serbia. The occurrence of WNV infection and risk factors were analyzed using a negative binomial regression model. Our research indicated that climatic factors were the main determinant of WNV distribution and were predictors of endemicity. Precipitation and water levels of rivers had an important influence on mosquito abundance and affected the habitats of wild birds, which are important for maintaining the virus in nature. We found that the maximum temperature of the warmest part of the year and the annual temperature range; and hydrographic variables, e.g., the presence of rivers and water streams were the best environmental predictors of WNF outbreaks in South Banat County.

Negative trend in seroprevalence of anti-toxoplasma Gondii igg antibodies among the general population of the province of Vojvodina, Serbia, 2008-2021

This study aimed to estimate dynamic changes in seroprevalence of Toxoplasma gondii within the general population living in the northern part of the Republic of Serbia (Province of Vojvodina) during a 14-year period. The differences in prevalence of anti-toxoplasma antibodies were analyzed in correlation with age, gender, residential area (rural/urban) and meteorological factors. In this cohort retrospective study, 24,440 subjects between 1 and 88 years old were enrolled. To determine the presence of T. gondii-specific IgM and IgG antibodies in serum samples, commercially available ELISA kits were used (Euroimmun, Luebeck, Germany). During the study period, the overall T. gondii seroprevalence was 23.5%. The seroprevalence continuously decreased over time from 31.7% in 2008 to 20.4% in 2021 (0.81% per year, p < 0.001). Approximately 2% of patients had a serologic profile positive for both anti-Toxoplasma IgG and IgM antibodies. The seroprevalence was higher (28.87%) among men compared to women (24.28%), while urban residents (24.94%) had lower seroprevalence than the rural population (28.17%). A statistically significant negative correlation (r = -0.559) was found between serologic profile of patients positive for both T. gondii IgG and IgM antibodies and the annual mean air temperature. No significant association was observed between seropositivity to T. gondii infection and examined meteorological factors. These data could be useful to national and regional health authorities to create an optimal health policy to reduce rate of T. gondii infections.

Zero regrets: scaling up action on climate change mitigation and adaptation for health in the WHO European Region, second edition. Key messages from the Working Group on Health in Climate Change

Climate change and health: the national policy overview in Europe

Map viewer: Accessibility of hospitals in Europe

Map viewer: Availability of urban green spaces to vulnerable groups

Map viewer: Exposure of vulnerable groups and social infrastructure to climate-related risks

Human Climate Horizons (HCH)

Pollution status and health risk caused by heavy elements in the flooded soil and vegetables from typical agricultural region in Vojvodina Province, Serbia

The investigation conducted in the Vojvodina Province, as a typical European and one of the biggest agricultural regions in the Balkans, offers the research methodology that could be used for any non/flooded agricultural region. The flood impact on heavy elements (HE) content in the flooded arable soil (n =?16) in relation to the control soil (n =?16) was examined, as well as their accumulation in the most often cultivated vegetables (n =?96) in the studied area. Results revealed that the flood did not significantly change the pseudo total HEs concentration in the soil as well as their amounts accumulated in different soil fractions. In both soils, only the average content of Ni exceeded the maximum permissible values set by Serbian soil quality standard which is in line with the Dutch standard. In comparison with the background values, notable enrichment is found for most of analyzed elements in both soils. Soil pollution status was assessed through several indices indicating that contamination range was in the domain from a moderate to a highly polluted. The principal component analysis demonstrated that soil contamination was probably originated from agricultural/anthropogenic activities (Cd, Cu, As, Pb), apart from Ni, Cr, and Co which came from natural weathering of the parent material. Carcinogenic and non-carcinogenic risks of selected HEs for Serbian population in the investigated region were below the threshold values. The average levels of Pb in investigated potato and carrot samples were higher than the maximum allowable concentrations established by EU/Serbian regulation. The total hazard quotients (THQ) of HEs through intake of analyzed vegetables were below the safe threshold (? 1), suggesting the absence of adverse health effects.

Assessment of climate change impact on the malaria vector Anopheles hyrcanus, West Nile disease, and incidence of melanoma in the Vojvodina Province (Serbia) using data from a regional climate model

Analysis of the Universal Thermal Climate Index during heat waves in Serbia

Impact of climate change on aflatoxin M1 contamination of raw milk with special focus on climate conditions in Serbia

Heat-related mortality as an indicator of population vulnerability in a mid-sized central European city (Novi Sad, Serbia, summer 2015)

Evaluating a primary healthcare centre’s preparedness for disasters using the hospital safety index: Lessons learned from the 2014 floods in Obrenovac, Serbia

Evaluation of the impact of black carbon on the worsening of allergic respiratory diseases in the region of Western Serbia: A time-stratified case-crossover study

Heat wave risk assessment and mapping in urban areas: Case study for a midsized central European city, Novi Sad (Serbia)

Global warming impact on climate change in Serbia for the period 1961-2100

Extreme precipitation events in Serbia: Defining the threshold criteria for emergency preparedness

Aflatoxins in maize harvested in the Republic of Serbia over the period 2012-2016

Key factors determining indoor air PM10 concentrations in naturally ventilated primary schools in Belgrade, Serbia

Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia

Flood risk management analysis for reducing harmful effects on human health, environment, cultural heritage and economic activity in the Republic of Serbia

Reduction of CO2 emission and non-environmental co-benefits of bicycle infrastructure provision: The case of the University of Novi Sad, Serbia

Does Belgrade (Serbia) need heat health warning system?

Freshwater cyanobacterial blooms and primary liver cancer epidemiological studies in Serbia

South-East European Multi-Hazard Early Warning Advisory System

Flash Flood Guidance System with Global Coverage (FFGS)