Explore By

This site uses cookies.

This site uses cookies to improve your online experience. To learn more about how we use cookies, please see our terms of use.

Identifying heat thresholds for South Africa towards the development of a heat-health warning system

Exposure to heatwaves may result in adverse human health impacts. Heat alerts in South Africa are currently based on defined temperature-fixed threshold values for large towns and cities. However, heat-health warning systems (HHWS) should incorporate metrics that have been shown to be effective predictors of negative heat-related health outcomes. This study contributes to the development of a HHWS for South Africa that can potentially minimize heat-related mortality. Distributed lag nonlinear models (DLNM) were used to assess the association between maximum and minimum temperature and diurnal temperature range (DTR) and population-adjusted mortality during summer months, and the effects were presented as incidence rate ratios (IRR). District-level thresholds for the best predictor from these three metrics were estimated with threshold regression. The mortality dataset contained records of daily registered deaths (n = 8,476,532) from 1997 to 2013 and data for the temperature indices were for the same period. Maximum temperature appeared to be the most statistically significant predictor of all-cause mortality with strong associations observed in 40 out of 52 districts. Maximum temperature was associated with increased risk of mortality in all but three of the districts. Our results also found that heat-related mortality was influenced by regional climate because the spatial distribution of the thresholds varied according to the climate zones across the country. On average, districts located in the hot, arid interior provinces of the Northern Cape and North West experienced some of the highest thresholds compared to districts located in temperate interior or coastal provinces. As the effects of climate change become more significant, population exposure to heat is increasing. Therefore, evidence-based HHWS are required to reduce heat-related mortality and morbidity. The exceedance of the maximum temperature thresholds provided in this study could be used to issue heat alerts as part of effective heat health action plans.

Understanding diarrhoeal diseases in response to climate variability and drought in Cape Town, South Africa: A mixed methods approach

The climate of southern Africa is expected to become hotter and drier with more frequent severe droughts and the incidence of diarrhoea to increase. From 2015 to 2018, Cape Town, South Africa, experienced a severe drought which resulted in extreme water conservation efforts. We aimed to gain a more holistic understanding of the relationship between diarrhoea in young children and climate variability in a system stressed by water scarcity. METHODS: Using a mixed-methods approach, we explored diarrhoeal disease incidence in children under 5 years between 2010 to 2019 in Cape Town, primarily in the public health system through routinely collected diarrhoeal incidence and weather station data. We developed a negative binomial regression model to understand the relationship between temperature, precipitation, and relative humidity on incidence of diarrhoea with dehydration. We conducted in-depth interviews with stakeholders in the fields of health, environment, and human development on perceptions around diarrhoea and health-related interventions both prior to and over the drought, and analysed them through the framework method. RESULTS: From diarrhoeal incidence data, the diarrhoea with dehydration incidence decreased over the decade studied, e.g. reduction of 64.7% in 2019 [95% confidence interval (CI): 5.5-7.2%] compared to 2010, with no increase during the severe drought period. Over the hot dry diarrhoeal season (November to May), the monthly diarrhoea with dehydration incidence increased by 7.4% (95% CI: 4.5-10.3%) per 1 °C increase in temperature and 2.6% (95% CI: 1.7-3.5%) per 1% increase in relative humidity in the unlagged model. Stakeholder interviews found that extensive and sustained diarrhoeal interventions were perceived to be responsible for the overall reduction in diarrhoeal incidence and mortality over the prior decade. During the drought, as diarrhoeal interventions were maintained, the expected increase in incidence in the public health sector did not occur. CONCLUSIONS: We found that that diarrhoeal incidence has decreased over the last decade and that incidence is strongly influenced by local temperature and humidity, particularly over the hot dry season. While climate change and extreme weather events especially stress systems supporting vulnerable populations such as young children, maintaining strong and consistent public health interventions helps to reduce negative health impacts.

Transforming a local food system to address food and nutrition insecurity in an urban informal settlement area: A study in Umlazi Township in Durban, South Africa

Informal settlements in South Africa are facing diverse challenges such as land inaccessibility for food produc-tion, poverty, unemployment, malnutrition, and climate change attributing to food insecurity. This paper considered income sources, employment status, household food budget, agricultural production, and anthro-pometrics as indicators in reviewing the status of this study area. Evaluating geographic dimensions of food accessibility and acceptability locally whilst subsequently determining measures that will promote viable land utilisation options as an intervention within this peri-urban township food environment, required a systematic approach. A general household survey measuring factors contributing to food access was used also evaluating production and consumption patterns of adaptable indigenous crops (n = 200 households). Anthropometric data measured body mass index (BMI) kg/m2, waist circumference (WC) and waist to height ratio (WHtR) to determine levels of malnutrition and health risk factors. Supporting data included a survey from local street vendors and spaza shop owners (n = 25) to determine food items that were frequently accessible and consumed, then compared with the national urban food basket. Land ecotope data was collected to determine if the soil type/s, soil texture, and planting depth are appropriate for effective crop yields in the study area. Secondary data were sourced from the Geographic Information System (GIS) utilised by municipal services and national sta-tistical data. The survey indicated that more than 67.0% of informal dwellers were unemployed and survived on a highly restricted household food budget (

The missing links in climate services for health and heat-health services: Examining climate-heat services in peri-urban districts in South Africa

Climate services for health can facilitate health resilience and adaptation to climate change, particularly if they are well-calibrated to promote wellness and save lives. In this study, the status of climate services for health in South Africa’s Agincourt sub-district, Mpumalanga province, was assessed. A qualitative case study methodology encompassing multiple methods of data collection was used. The results show that climate services for health in the Agincourt sub-district, albeit essential, are fragmented and underdeveloped. Scientifically informed heathealth services are non-existent. Notwithsatnding this gap, healthcare and allied professionals are aware of the importance of climate services for health. The main barrier to climate services delivery is the paucity of interagency coordination; for example, coordination to plan and respond to climate-health information between the South African Weather Services and the Departments of Health and Education is lacking. Inclusive climate services for health are essential for positive prevention and treatment outcomes. Future studies must provide an investment case for climate services for health, demonstrating the benefits of acting and the costs of inaction.

The implications of climate change on health among vulnerable populations in South Africa: A systematic review

Climate change poses numerous threats to human life, including physical and mental health, the environment, housing, food security, and economic growth. People who already experience multidimensional poverty with the disparity in social, political, economic, historical, and environmental contexts are more vulnerable to these impacts. The study aims to identify the role of climate change in increasing multidimensional inequalities among vulnerable populations and analyze the strengths and limitations of South Africa’s National Climate Change Adaptation Strategy. A systematic review was applied, and literature from Google, Google Scholar, and PubMed, as well as relevant gray literature from 2014-2022 were reviewed. Out of 854 identified sources, 24 were included in the review. Climate change has exacerbated multidimensional inequalities among vulnerable populations in South Africa. Though the National Climate Change Adaptation Strategy has paid attention to health issues and the needs of vulnerable groups, the adaptation measures appear to focus less on mental and occupational health. Climate change may play a significant role in increasing multidimensional inequalities and exacerbating health consequences among vulnerable populations. For an inclusive and sustainable reduction in inequalities and vulnerabilities to the impact of climate change, community-based health and social services should be enhanced among vulnerable populations.

Tanapox, South Africa, 2022

Spatial and seasonal distribution of human schistosomiasis intermediate host snails and their interactions with other freshwater snails in 7 districts of Kwazulu-Natal province, South Africa

The spatial and seasonal distribution, abundance, and infection rates of human schistosomiasis intermediate host snails and interactions with other freshwater snails, water physicochemical parameters, and climatic factors was determined in this study. A longitudinal malacology survey was conducted at seventy-nine sites in seven districts in KwaZulu-Natal province between September 2020 and August 2021. Snail sampling was done simultaneously by two trained personnel for fifteen minutes, once in three months. A total of 15,756 snails were collected during the study period. Eight freshwater snails were found: Bulinus globosus (n = 1396), Biomphalaria pfeifferi (n = 1130), Lymnaea natalensis (n = 1195), Bulinus tropicus (n = 1722), Bulinus forskalii (n = 195), Tarebia granifera (n = 8078), Physa acuta (n = 1579), and Bivalves (n = 461). The infection rates of B. globosus and B. pfeifferi are 3.5% and 0.9%, respectively. In our study, rainfall, pH, type of habitats, other freshwater snails and seasons influenced the distribution, abundance, and infection rates of human schistosomiasis intermediate host snails (p-value < 0.05). Our findings provide useful information which can be adopted in designing and implementing snail control strategies as part of schistosomiasis control in the study area.

Simulation of the ethekwini heat island in South Africa

The study evaluates the performance of the Conformal Cubic Atmospheric Model (CCAM) when simulat-ing an urban heat island (UHI) over the city of eThekwini, located along the southeast coast of South Africa. The CCAM is applied at a grid length of 1 km on the panel with eThekwini, in a stretched-grid mode. The CCAM is coupled to the urban climate model called the Australian Town Energy Budget (ATEB). The ATEB incorporates measured urban parameters in-cluding building characteristics, emissions, and albedo. The ATEB incorporates the land-cover boundary conditions obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. The CCAM configuration applied realistically captured the orientation of the city and land-cover types. Simulations of meteorological variables such as temperatures and longwave radiation reproduced the spatial distribution and intensity of the UHI. Results show that the UHI is stronger during summer and weaker in all other seasons. The UHI developed because of natural factors (e.g., distribution of longwave radia-tion) and human factors (e.g., urban expansion, an increase in anthropogenic emissions, and additional heating). Because of the city’s location along the coast, the UHI simulation could be weakened by atmospheric circulations resulting from land and sea breezes. Mitigation methods such as applying reflective paints and revegetation of the city may increase albedo and latent heat fluxes but reduce the sensible heat fluxes and weaken the UHI. However, the UHI may not be completely elimi-nated since natural factors and emissions constantly influence its development. SIGNIFICANCE STATEMENT: The outcome of this study could be particularly valuable for municipalities in their disaster management planning since the occurrence of UHIs can cause heat-related diseases such as heatstrokes and even fatalities, especially for the elderly, in cities. Increases in temperatures also lead to higher demand for air condi-tioners, which in the long term lead to higher demand and pressure on the electricity grid system as well as increased costs for the individual. As higher temperatures increase heatwave events, increases in anthropogenic emissions also re-sult in degraded air quality that impacts health. UHIs impact human lives and can cause deterioration in health when individuals experience high temperatures in summer. Warmer temperatures also reduce energy demand (and in the long term assist with global environmental restoration).

Remote sensing-based outdoor thermal comfort assessment in local climate zones in the rural-urban continuum of Ethekwini municipality, South Africa

Due to the need to continuously monitor and understand the thermal environment and its socioeconomic implications, this study used remotely sensed data to analyze thermal comfort variation in LCZs, including along the rural to urban gradient of the eThekwini Municipality in KwaZulu-Natal province of South Africa. LCZs were mapped using multi-temporal and multi-spectral Landsat 8 and Landsat 9 data using the approach by World Urban Database and Access Portal Tools (WUDAPT), while thermal data were used to retrieve land surface temperatures (LSTs). Data for training classification of LCZs and accuracy assessment were digitized from GoogleEarth guided by knowledge gained and data collected during a field survey in March 2022 as well as pre-existing maps. LCZs were mapped using the random forest classifier in SAGA GIS software while a single channel algorithm based on band 10 was used to compute LST for different scenes. The LSTs were adjusted and further used to derive thermal comfort based on the Universal Thermal Comfort Index (UTCI) categories as an indicator for outdoor thermal comfort on the extremely low- and extremely high-temperature periods in the cool and hot seasons, respectively. LCZs were mapped with high accuracy (overall accuracy of 90.1% and kappa of 0.88) while inter-class separability was high (>1.5) for all LCZ pairs. Built-up LCZs dominate the eastern parts of the municipality, signifying the influence of the sea on development within the area. Average LST was coolest in the dense forest, open low-rise and water LCZs in the cool and hot seasons, respectively. The compact high-rise LCZ was the warmest in both the hot (36 degrees C) and the cool (23 degrees C) seasons. The sea sands were among coolest regions in both seasons due to their high water content, attributed to their high water table and close proximity to the ocean. There was no thermal stress during the cool season, while most areas recorded moderate to strong heat stress in the hot season. Some areas in the densely built-up LCZs recorded very strong heat stress in the hot season. The findings suggest that policies and strategies should enhance heat mitigation capacities in strong-heat-stress areas during the hot season. Municipal authorities and citizens must work together to build strategies to minimize temperature extremes and associated socioeconomic pressures. Urban development policies, plans and strategies should consider implications on the thermal environment as well as the value of conservation of LCZs with high-heat mitigation value such as dense forests and expansion of built-up LCZs with low-heat absorption levels such as open low-rise. The study was based mainly on remotely sensed temperatures with some ground data used to validate results, which may limit the assessment. Overall, the study provides insights towards achievement of global sustainable and climate-smart development targets.

Predicted changes in habitat suitability for human schistosomiasis intermediate host snails for modelled future climatic conditions in Kwazulu-Natal, South Africa

Introduction: Climate change alters environmental and climatic conditions, leading to expansion or contraction and possible shifts in the geographical distribution of vectors that transmit diseases. Bulinus globosus and Biomphalaria pfeifferi are the intermediate host snails for human schistosomiasis in KwaZulu-Natal (KZN) province, South Africa.Methods: Using the Maximum entropy (MaxEnt) model, we modelled the current and future distribution of human schistosomiasis intermediate host snails in KZN using two representation concentration pathways (RCP4.5 and RCP8.5) for the year 2085. Thirteen and ten bioclimatic variables from AFRICLIM were used to model the habitat suitability for B. globosus and B. pfeifferi, respectively. The Jack-knife test was used to evaluate the importance of each bioclimatic variable.Results: Mean temperature warmest quarter (BIO10, 37.6%), the number of dry months (dm, 32.6%), mean diurnal range in temperature (BIO2, 10.8%), isothermality (BIO3, 6.7%) were identified as the top four bioclimatic variables with significant contribution to the model for predicting the habitat suitability for B. globosus. Annual moisture index (mi, 34%), mean temperature warmest quarter (BIO10, 21.5%), isothermality (BIO3, 20.5%), and number of dry months (dm, 7%) were identified as the four important variables for the habitat suitability of B. pfeifferi. Area under the curve for the receiving operating characteristics was used to evaluate the performance of the model. The MaxEnt model obtained high AUC values of 0.791 and 0.896 for B. globosus and B. pfeifferi, respectively. Possible changes in the habitat suitability for B. globosus and B. pfeifferi were observed in the maps developed, indicating shrinkage and shifts in the habitat suitability of B. pfeifferi as 65.1% and 59.7% of the current suitable habitats may become unsuitable in the future under RCP4.5 and RCP8.5 climate scenarios. Conversely, an expansion in suitable habitats for B. globosus was predicted to be 32.4% and 69.3% under RCP4.5 and RCP8.5 climate scenarios, with some currently unsuitable habitats becoming suitable in the future.Discussion: These habitat suitability predictions for human schistosomiasis intermediate host snails in KZN can be used as a reference for implementing long-term effective preventive and control strategies for schistosomiasis.

Nexus between summer climate variability and household food security in rural Mpumalanga Province, South Africa

Ongoing climate changes are likely to impact household food security in rural households that depend on rainfed subsistence agriculture. This paper investigates the relationship between summer climate variability and household food security in rural Mpumalanga, South Africa. We used a household panel data set nested in the Agincourt Health and Socio-Demographic Surveillance System, together with rainfall and temperature data for the summer periods 2006-07 to 2018-19 from three weather stations that surround the study area. We quantified the variability of rainfall using coefficient of variation and the standardised rainfall anomaly index, while temperature variability was reflected by the standardised temperature anomaly. In addition, the Mann-Kendall analysis was applied to detect temporal trends in rainfall and temperature. Longitudinal models accounting for socioeconomic and climate factors were used to estimate the relationship between weather and climate. The results reveal significant impact on food security from high inter-annual rainfall variability through fluctuations in food consumption, dietary diversity, and the experience of hunger. This study offers significant insights on how dietary diversity, food availability and overall food security are positively associated with greater average rainfall through subsistence agriculture as a livelihood strategy. These insights have important implications by suggesting seasonal forecasts to predict periods of potential food insecurity in local communities and can guide government policy and interventions to lessen food insecurity in rural areas.

Meteorological influences on airborne pollen and spores in Johannesburg (Gauteng), South Africa

Airborne fungal spores and pollen (aerospora), synergistic with air pollution, are key triggers of allergic respiratory diseases. Effective diagnosis and treatment requires up-to-date location-specific knowledge on the temporal variability of aerospora types and levels. Johannesburg is the largest city in South Africa and has grown substantially in three decades, with changes in ground cover, population density and air pollution, yet until now, no continuous aerospora sampling has occurred. We present a daily two-year (August 2019-July 2021) aerospora assemblage for Johannesburg and explore temporal characteristics of 13 dominant aerospora in relation to daily meteorological variables (pressure, rainfall, relative humidity, temperature and wind characteristics). February-July, July-September and January-July represent high-risk periods for fungal spores [(Alternaria alternata (Fries. ex Keissler), Ascospores, Aspergillus niger (Van Tieghem), Penicillium chrysogenum (Thom), Cladosporium graminum (Corda), Epicoccum nigrum (Link), Helminthosporium solani (Durieu and Montagne) Nigrospora sphaerica (Saccardo ex. Mason), Smuts Ustilago nuda (Jensen ex. Rostrup) and Torula herbarum (Link)], trees (Cupressus, Morus and Platanus) and grass (Poaceae), respectively. Using a generalised additive model, results show that daily meteorological characteristics explained 7-32% of daily aerospora variability, with the largest effect on tree pollen. Rainfall, relative humidity and temperature influenced daily fungal spore and Poaceae counts, with moderate/low rainfall (< 20 mm), higher/mid-ranging relative humidity (similar to 40-60%) and temperatures of similar to 15-20 degrees C associated with higher counts during high-risk periods. Rainfall predominantly influenced tree counts during high-risk periods, with higher counts occurring on low rainfall (<10 mm) days. These results update the aerospora profile of Johannesburg, South Africa, providing important information to inform allergy care.

Ground-level documentation of heat stress exposure and response strategies in informal settlements in Tshwane, South Africa

PurposeThe adverse impacts of climate change coupled with rapid informal urbanization in the Southern African region are increasing the vulnerability of already sensitive population groups. Consequently, these urban regions are highly vulnerable to urban heat island effects and heatwaves due to exogenous and endogenous factors. While the dynamic interplay between the built environment, climate and response strategies is known, this paper highlights the lived experience of informal settlement residents. It presents work from a project undertaken in Melusi, an informal settlement in Tshwane, South Africa, as a multi-disciplinary project focusing on improving the local resilience to climate change associated heat stress.Design/methodology/approachFollowing a mixed method approach, a semi-structured observational analysis of the spatial layout and material articulation of selected dwellings along with the continuous monitoring and recording of their indoor environments were undertaken.FindingsThe paper presents the research results in terms of the dwelling characteristics, as spatial and material-use strategies and documented heat stress exposure in these structures. The findings highlight that informal dwellings perform poorly in all cases due to endogenous factors and that inhabitants experience extreme heat stress conditions for between 6 and 10 h daily during the peak summer period.Originality/valueCurrently, there are little empirical data on the heat stress residents living in informal settlements in Southern Africa are experiencing. This article provides insight into the indoor environments of informal dwellings and hopes to contribute future guidelines or heat health policies.

Global warming and psychotraumatology of natural disasters: The case of the deadly rains and floods of April 2022 in South Africa

Climate change and global warming have led to an increased incidence of flooding across the world. Against the backdrop of the recent devastating floods in the Kwazulu-Natal province of South Africa, this paper explores psychotraumatology of natural disasters. In particular, we explore the impact of internal migration in South Africa, as well as apartheid spatial planning and inequality on the consequences of the flooding. We also focus on the psychotraumatology resulting from flooding, in general, and in particular on the victims of the flooding in the KwaZulu-Natal province of South Africa. We conclude that the psychopathological consequences of such natural disasters are ignored even though they seriously affect the people concerned. The development of specific trainings for psychologists in psychotraumatology and the care of victims should be a priority in the future. (c) 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Exploring black African women’s experiences of vulnerability and adaptation to flood impacts in the Ethekwini Metropolitan Municipality, Kwazulu-natal, South Africa

This article explores the experiences of local Black African women in adapting to flood impacts within the Durban metropolitan area. The article is premised on the realisation that women and men experience climate change differently, as persisting gendered inequities affect women’s adaptive capacity to climate change impacts. The study adopted a qualitative approach to research. Twenty-five local Black African women from four localities in Durban and five key informants from eThekwini municipality participated in the study through semi-structured interviews and focus group discussions. A qualitative content analysis approach was employed to elicit analytical themes and interpretations from the interview manuscripts in light of the research questions and the study’s contexts. Findings from the study show that despite the experiences of poverty, lack of access to information, and persistent gender inequity in the study’s contexts, the women’s situated knowledge and agency have transformed lives and livelihoods and increased climate resilience and overall well-being. We conclude that a much more appropriate and intentional approach to local Black women’s adaptation needs can yield much more effective, successful, equitable, and long-term climate change adaptation.

Developing a healthy environment assessment tool (heat) to address heat-health vulnerability in South African towns in a warming world

Prolonged exposure to high temperatures can cause heat-related illnesses and accelerate death, especially in the elderly. We developed a locally-appropriate Healthy Environment Assessment Tool, or ‘HEAT’ tool, to assess heat-health risks among communities. HEAT was co-developed with stakeholders and practitioners/professionals from the Rustenburg Local Municipality (RLM), a setting in which heat was identified as a risk in an earlier study. Feedback was used to identify vulnerable groups and settings in RLM, consider opportunities and barriers for interventions, and conceptualize a heat-health vulnerability assessment tool for a heat-resilient town. Using information provided by the RLM Integrated Development Plan, the HEAT tool was applied in the form of eight indicators relating to heat-health vulnerability and resilience and areas were evaluated at the ward level. Indicators included population, poverty, education, access to medical facilities, sanitation and basic services, public transport, recreation/community centres, and green spaces. Out of 45 wards situated in the municipality, three were identified as critical risk (red), twenty-eight as medium-high risk (yellow), and six as low risk (green) in relation to heat-health vulnerability. Short-term actions to improve heat health resilience in the community were proposed and partnerships between local government and the community to build heat health resilience were identified.

Change in emotional distress, anxiety, depression and PTSD from pre- to post-flood exposure in women residing in low-income settings in South Africa

Floods are increasing in frequency and may increase the risk for experiencing emotional distress, anxiety, depression and PTSD. The aim of this study was to determine the extent of damage, loss, injury and death resulting from floods that occurred in and around the city of Durban, South Africa, in April 2022, and associated changes in mental health pre- to post-floods in a low-income setting. Seventy-three women between the ages of 18 and 45, residing in flood affected, low-income settings, were interviewed prior to the floods occurring. Mental health measures were repeated with 69 of the 73 women during the post-flood interview along with a questionnaire measuring flood-related exposures. Loss of infrastructure (lacked access to drinking water, electricity, fresh food, could not travel to work, had to stay in a shelter and could not get hold of friends or family) was a predictor of post-flood change in levels of emotional distress and anxiety. Higher levels of prior trauma exposure were associated with higher post-flood levels of emotional distress. Higher pre-flood food insecurity was also associated with higher post-flood anxiety. Women affected by poverty, food insecurity and a history of trauma are vulnerable to the additive adverse mental health effects of floods. Proactive approaches to diminishing the impact of floods on the livelihood of women is needed and post-flood relieve efforts may be more affective if they are enhanced by providing mental health support.

Assessing local government’s response to black women’s vulnerability and adaptation to the impacts of floods in the context of intersectionality: The case of eThekwini metropolitan municipality, South Africa

This article assesses how adaptation governance within the eThekwini (Durban) metropolitan municipality, KwaZulu-Natal Province of South Africa, addresses the vulnerability and adaptation of black African women to flood impacts within the municipality. The article argues that there is an intersectional lens through which black local women’s experiences of vulnerability to the impact of climate change disasters need to be understood and addressed. Qualitative research methodologies were employed to collect data through semi-structured interviews and focus group discussions with local black African women from four areas in Durban who have experienced frequent floods over the past years. Personnel from eThekwini municipality’s Environmental Planning and Climate Protection Department and Disaster Management Department were also interviewed. The feminist political ecology perspective was used to unpack the nuances in power relations that engendered black African women’s vulnerability and adaptation to flood impacts within the municipality. The study’s findings revealed that the overall vulnerability experiences of black African women in Durban are shaped by factors relating to the lack of an ‘intentionally gendered’ approach to adaptation governance in the municipality. Adopting an intentional approach to adaptation governance is essential to inform policies responding to local black Africans’ vulnerability and adaptation experiences within the study’s context.

Urban heat in Johannesburg and Ekurhuleni, South Africa: A meter-scale assessment and vulnerability analysis

Heat stress is an important threat for human health and urban areas are affected at higher rates compared to rural environments. Additionally, climate change will increase the vulnerability towards urban heat stress in the future. Current high-resolution urban heat stress assessments are limited in time and space due to the high computational costs. In this paper, the UrbClim numerical model is used to simulate urban heat accurately at a fast rate and high spatial resolution for the cities of Johannesburg and Ekurhuleni, South Africa. Using detailed terrain information, (future) urban heat stress assessments are provided at 30 m resolution for both city agglomerations, while meter-scale simulations are executed for a selection of neighborhoods. These model simulations are evaluated using an extensive monitoring campaign in which the local community was heavily engaged. Distinct spatial differences in the urban heat island effect are observed, with greatest heat stress in areas with high building densities and low vegetation numbers. These areas are often characterized by lower socio-economic living conditions. The meter-scale analysis further shows the importance of shade provided by vegetation to lower heat stress in both present and future climate. These assessments offer assistance in the design of climate-resilient urban planning strategies.

The self-reported human health effects associated with heat exposure in Agincourt sub-district of South Africa

Exposure to heat and heatwaves are associated with mortality and may amplify morbidities. In a climate change context, projections suggest temperatures will likely rise in the foreseeable future. Our paper assesses the current knowledge on human health effects of heat exposure and gathered local knowledge of heat-health effects in a rural area of the Agincourt sub-district of South Africa. Existing, peer-reviewed published literature on heat effects on human health as well as heat-health indicators was reviewed. Interviews and structured observations to collect data on heat effects on human health in Agincourt sub-district were conducted. The Lancet Countdown heat-related indicators were applied as a framework against which to discuss our findings. A total of 93 participants who lived in Agincourt sub-district for 5 years and more were interviewed. Participants reported that temperatures, especially summertime temperatures, had been rising over the past years. Health effects of heat were deemed more apparent in relation to morbidity. Heatwaves were not easily comprehensible as singular ‘events’, and their effects were poorly understood. The population groups disproportionately affected by heat included infants, the elderly, those living with disability and outdoor workers. High ambient temperatures were deemed to be associated with reduced labour productivity of outdoor workers. Community-level perceptions of heat impacts on health were mainly related to illnesses and diseases, with no understanding of mortality risk. Future health awareness campaigns that encompass the full range of heat-health impacts are essential to reduce vulnerability, morbidity, and mortality. Our study provided location-specific, qualitative, and indicator-aligned data for a geographic area expected to undergo significant heat stress in the future. The study findings have significant research, policy, and practice implications in similar resource-limited settings.

The association between apparent temperature and hospital admissions for cardiovascular disease in Limpopo province, South Africa

Cardiovascular diseases (CVDs) have a high disease burden both globally and in South Africa. They have also been found to be temperature-sensitive globally. The association between temperature and CVD morbidity has previously been demonstrated, but little is known about it in South Africa. It is important to understand how changes in temperature in South Africa will affect CVD morbidity, especially in rural regions, to inform public health interventions and adaptation strategies. This study aimed to determine the short-term effect of apparent temperature (T(app)) on CVD hospital admissions in Mopani District, Limpopo province, South Africa. A total of 3124 CVD hospital admissions records were obtained from two hospitals from 1 June 2009 to 31 December 2016. Daily T(app) was calculated using nearby weather station measurements. The association was modelled using a distributed lag non-linear model with a negative binomial regression over a 21-day lag period. The fraction of morbidity attributable to non-optimal T(app), i.e., cold (6-25 °C) and warm (27-32 °C) T(app) was reported. We found an increase in the proportion of admissions due to CVDs for warm and cold T(app) cumulatively over 21 days. Increasing CVD admissions due to warm T(app) appeared immediately and lasted for two to four days, whereas the lag-structure for the cold effect was inconsistent. A proportion of 8.5% (95% Confidence Interval (CI): 3.1%, 13.7%) and 1.1% (95% CI: -1.4%, 3.5%) of the total CVD admissions was attributable to cold and warm temperatures, respectively. Warm and cold T(app) may increase CVD admissions, suggesting that the healthcare system and community need to be prepared in the context of global temperature changes.

Predicting malaria outbreaks from sea surface temperature variability up to 9 months ahead in Limpopo, South Africa, using machine learning

Malaria is the cause of nearly half a million deaths worldwide each year, posing a great socioeconomic burden. Despite recent progress in understanding the influence of climate on malaria infection rates, climatic sources of predictability remain poorly understood and underexploited. Local weather variability alone provides predictive power at short lead times of 1-2 months, too short to adequately plan intervention measures. Here, we show that tropical climatic variability and associated sea surface temperature over the Pacific and Indian Oceans are valuable for predicting malaria in Limpopo, South Africa, up to three seasons ahead. Climatic precursors of malaria outbreaks are first identified via lag-regression analysis of climate data obtained from reanalysis and observational datasets with respect to the monthly malaria case count data provided from 1998-2020 by the Malaria Institute in Tzaneen, South Africa. Out of 11 sea surface temperature sectors analyzed, two regions, the Indian Ocean and western Pacific Ocean regions, emerge as the most robust precursors. The predictive value of these precursors is demonstrated by training a suite of machine-learning classification models to predict whether malaria case counts are above or below the median historical levels and assessing their skills in providing early warning predictions of malaria incidence with lead times ranging from 1 month to a year. Through the development of this prediction system, we find that past information about SST over the western Pacific Ocean offers impressive prediction skills (~80% accuracy) for up to three seasons (9 months) ahead. SST variability over the tropical Indian Ocean is also found to provide good skills up to two seasons (6 months) ahead. This outcome represents an extension of the effective prediction lead time by about one to two seasons compared to previous prediction systems that were more computationally costly compared to the machine learning techniques used in the current study. It also demonstrates the value of climatic information and the prediction framework developed herein for the early planning of interventions against malaria outbreaks.

Perceptions of thermal comfort and coping mechanisms related to indoor and outdoor temperatures among participants living in rural villages in Limpopo province, South Africa

Global heating is considered one of the greatest threats to human health and well-being. Supporting human resilience to heating threats is imperative, but under-investigated. In response, this article reports a study that drew together results from quantitative data on perceptions of thermal comfort and mechanisms for coping with thermal discomfort among 406 households in a study in Giyani, Limpopo province. Indoor dwelling and outdoor temperatures were also analysed. Most participants perceived their dwellings to be too hot when it was hot outdoors. People relied on recommended heat health actions such as sitting outdoors in the shade or opening windows. While this agency is meaningful, resilience to climate change requires more than personal action. In light of the climate threats and climate-related disaster risks facing South Africa, an all-encompassing approach, including education campaigns, climate-proofed housing, access to basic services, and financial considerations that will help support resilient coping among South Africans, is urgently required.

Water, sanitation, and hygiene vulnerability among rural areas and small towns in South Africa: Exploring the role of climate change, marginalization, and inequality

Access to water, sanitation, and hygiene (WASH)-including drainage-services-is essential for public health and socio-economic development, but access remains inadequate and inequitable in low- to middle-income countries such as South Africa. In South Africa, rural areas and small towns generally depend on a limited and climate-sensitive economic base (e.g., farming), and they have a limited capacity and are located in areas where transport challenges can increase WASH access risks. Climate change shifts hydrological cycles, which can worsen WASH access and increase susceptibility to the interlinked impacts of droughts and flooding in already vulnerable regions. We adopted a transdisciplinary approach to explore the needs, barriers, and vulnerabilities with respect to WASH in rural areas and small towns in South Africa-using two case studies to explore climate risk and vulnerability assessment (CRVA) in one rural village in the northern Limpopo province and a small town in the Western Cape province. This holistic approach considered natural (environment and climate) and socio-economic (economic, social, governance, and political) factors and how they interplay in hampering access to WASH. Extreme weather events characterized by frequent and intense droughts or floods aggravate surface and groundwater availability and damage water infrastructure while threatening agriculture-dependent livelihoods. The lack of reliable transport infrastructure increases risks posed by flooding as roads to vital supplies are prone to damage. High inequality linked to rising unemployment and the Apartheid legacy of a segregated service delivery system result in inequitable access to WASH services. The intertwined ways in which natural elements and historical, social, economic, governance, and policy aspects are changing in South Africa increase WASH vulnerability in rural areas and small towns.

Climate-urban nexus: A study of vulnerable women in urban areas of Kwazulu-Natal Province, South Africa

The changes in climatic conditions and their associated impacts are contributing to a worsening of existing gender inequalities and a heightening of women’s socioeconomic vulnerabilities in South Africa. Using data collected by research methods inspired by the tradition of participatory appraisals, we systematically discuss the impacts of climate change on marginalized women and the ways in which they are actively responding to climate challenges and building their adaptive capacity and resilience in the urban areas of KwaZulu-Natal, South Africa. We argue that changes in climate have both direct and indirect negative impacts on women’s livelihoods and well-being. Less than one-half (37%) of the women reported implementing locally developed coping mechanisms to minimize the impacts of climate-related events, whereas 63% reported lacking any form of formal safety nets to deploy and reduce the impacts of climate-induced shocks and stresses. The lack of proactive and gender-sensitive local climate change policies and strategies creates socioeconomic and political barriers that limit the meaningful participation of women in issues that affect them and marginalize them in the climate change discourses and decision-making processes, thereby hampering their efforts to adapt and reduce existing vulnerabilities. Thus, we advocate for the creation of an enabling environment to develop and adopt progendered, cost-effective, transformative, and sustainable climate change policies and adaptation strategies that are responsive to the needs of vulnerable groups (women) of people in society. This will serve to build their adaptive capacity and resilience to climate variability and climate change-related risks and hazards.

Social vulnerability, parity and food insecurity in urban South African young women: The healthy life trajectories initiative (HeLTI) study

Social vulnerability indices (SVI) can predict communities’ vulnerability and resilience to public health threats such as drought, food insecurity or infectious diseases. Parity has yet to be investigated as an indicator of social vulnerability in young women. We adapted an SVI score, previously used by the US Centre for Disease Control (CDC), and calculated SVI for young urban South African women (n = 1584; median age 21.6, IQR 3.6 years). Social vulnerability was more frequently observed in women with children and increased as parity increased. Furthermore, young women classified as socially vulnerable were 2.84 times (95% CI 2.10-3.70; p < 0.001) more likely to report household food insecurity. We collected this information in 2018-2019, prior to the current global COVID-19 pandemic. With South Africa having declared a National State of Disaster in March 2020, early indicators suggest that this group of women have indeed been disproportionally affected, supporting the utility of such measures to inform disaster relief efforts.

Major climate change-induced risks to human health in South Africa

There are many climatic changes facing South Africa which already have, or are projected to have, a detrimental impact on human health. Here the risks to health due to several alterations in the climate of South Africa are considered in turn. These include an increase in ambient temperature, causing, for example, a significant rise in morbidity and mortality; heavy rainfall leading to changes in the prevalence and occurrence of vector-borne diseases; drought-associated malnutrition; and exposure to dust storms and air pollution leading to the potential exacerbation of respiratory diseases. Existing initiatives and strategies to prevent or reduce these adverse health impacts are outlined, together with suggestions of what might be required in the future to safeguard the health of the nation. Potential roles for the health and non-health sectors as well as preparedness and capacity development with respect to climate change and health adaptation are considered.

Climate change and health within the South African context: A thematic content analysis study of climate change and health expert interviews

BACKGROUND:  Climate change presents an unprecedented and urgent threat to human health and survival. South Africa’s health response will require a strong and effective intersectoral organisational effort. AIM:  Exploratory interview outcomes are used to advance practice and policy recommendations, as well as for broad input in the development of a draft national framework for a health risk and vulnerability assessment (RVA) for national departments. SETTING:  Nationally in South Africa. METHOD:  Twenty key expert interviews were conducted with South African experts in the field of climate change and health. Interview data was analysed by means of thematic content analysis. RESULTS:  Findings suggest that previously poor communities are most at risk to the impacts of climate change on health, as well as those with underlying medical conditions. Climate change may also serve as a catalyst for improving the healthcare system overall and should serve as the conduit to do so. A draft climate change and health RVA should take into account existing frameworks and should be implemented by local government. It is also critical that the health and health system impacts from climate change are well understood, especially in light of the plans to implement the (South African) National Health Insurance (NHI) scheme. CONCLUSION:  Practice and policy initiatives should be holistic in nature. Consideration should be given to forming a South African National Department of Climate Change, or a similar coordinating body between the various national departments in South Africa, as health intercepts with all other domains within the climate change field.

Classroom temperature and learner absenteeism in public primary schools in the Eastern Cape, South Africa

Children spend a significant proportion of their time at school and in school buildings. A healthy learning environment that supports children should be thermally conducive for learning and working. Here, we aimed to study the relations between indoor classroom temperatures and learner absenteeism as a proxy for children’s health and well-being. This one-year prospective study that spanned two calendar years (from June 2017 to May 2018) entailed measurement of indoor classroom temperature and relative humidity, calculated as apparent temperature (Tapp) and collection of daily absenteeism records for each classroom in schools in and around King Williams Town, Eastern Cape province, South Africa. Classroom characteristics were collected using a standardized observation checklist. Mean indoor classroom temperature ranged from 11 to 30 °C, while mean outdoor temperature ranged from 6 °C to 31 °C during the sample period. Indoor classroom temperatures typically exceeded outdoor temperatures by 5 °C for 90% of the study period. While multiple factors may influence absenteeism, we found absenteeism was highest at low indoor classroom Tapp (i.e., below 15 °C). Absenteeism decreased as indoor Tapp increased to about 25 °C before showing another increase in absenteeism. Classroom characteristics differed among schools. Analyses of indoor classroom temperature and absenteeism in relation to classroom characteristics showed few statistically significant relations-although not exceptionally strong ones-likely because of the multiple factors that influence absenteeism. However, given the possible relationship between indoor temperature and absenteeism, there is a learning imperative to consider thermal comfort as a fundamental element of school planning and design. Furthermore, additional research on factors besides temperature that affect learner absenteeism is needed, especially in rural areas.

Lagged association between climate variables and hospital admissions for pneumonia in South Africa

Pneumonia is a leading cause of hospitalization in South Africa. Climate change could potentially affect its incidence via changes in meteorological conditions. We investigated the delayed effects of temperature and relative humidity on pneumonia hospital admissions at two large public hospitals in Limpopo province, South Africa. Using 4062 pneumonia hospital admission records from 2007 to 2015, a time-varying distributed lag non-linear model was used to estimate temperature-lag and relative humidity-lag pneumonia relationships. Mean temperature, relative humidity and diurnal temperature range were all significantly associated with pneumonia admissions. Cumulatively across the 21-day period, higher mean daily temperature (30 °C relative to 21 °C) was most strongly associated with a decreased rate of hospital admissions (relative rate ratios (RR): 0.34, 95% confidence interval (CI): 0.14-0.82), whereas results were suggestive of lower mean daily temperature (12 °C relative to 21 °C) being associated with an increased rate of admissions (RR: 1.27, 95%CI: 0.75-2.16). Higher relative humidity (>80%) was associated with fewer hospital admissions while low relative humidity (<30%) was associated with increased admissions. A proportion of pneumonia admissions were attributable to changes in meteorological variables, and our results indicate that even small shifts in their distributions (e.g., due to climate change) could lead to substantial changes in their burden. These findings can inform a better understanding of the health implications of climate change and the burden of hospital admissions for pneumonia now and in the future.

Climate change knowledge, concerns and experiences in secondary school learners in South Africa

Climate change poses a major threat to the future of today’s youth. Globally, young people are at the forefront of climate change activism. Their ability to engage, however, depends on the level of knowledge of climate change and concern about the topic. We sought to examine levels of knowledge and concerns about climate change among youth in South Africa, and their experiences of heat exposure. Ten questions on climate change knowledge, concerns and experiences were nested within a cross-sectional survey conducted in a cluster randomised trial among 924 secondary school learners in 14 public schools in low-income Western Cape areas. Learners’ mean age was 15.8 years and they were predominately female. While 72.0% of respondents knew that climate change leads to higher temperatures, only 59.7% agreed that human activity is responsible for climate change, and 58.0% believed that climate change affects human health. Two thirds (68.7%) said that climate change is a serious issue and 65.9% indicated action is needed for prevention. Few learners indicated climate change events had affected them, although many reported difficulties concentrating during hot weather (72.9%). Female learners had lower knowledge levels than male learners, but more frequent heat-related symptoms. Learners scoring high on knowledge questions expressed the most concern about climate change and had the highest heat impacts. Many youth seem unaware that climate change threatens their future. Heat-related symptoms are common, likely undermining educational performance, especially as temperatures escalate. More is needed to mainstream climate change into South African school curricula.

Characteristics and long-term trends of heat stress for South Africa

Increasing air temperature coupled with high humidity due to ongoing climate change across most parts of South Africa is likely to induce and intensify heat exposure, particularly in densely populated areas. The adverse health implications, including heatstroke, are expected to be common and more severe during extreme heat and heat wave events. The present study was carried out to examine heat stress conditions and long-term trends in South Africa. The study aimed to identify geographical locations exposed to elevated heat stress based on over two decades of hourly ground-based data. Selected heat stress indicators were calculated based on Steadman’s apparent temperature (AT in degrees C). The trends in AT were assessed based on the non-parametric Mann-Kendall (MK) trend test at 5% significance level. Positive trends were detected in 88% of the selected weather stations except in Welkom-FS, Ficksburg-FS, Langebaanweg-WC, Lambertsbaai Nortier-WC, Skukuza-MP, and Thabazimbi-LP. Approximately 47% of the detected positive trends are statistically significant at 5% significant level. Overall, high climatological annual median (ATmed) values (>32 degrees C) were observed at 42 stations, most of which are in low altitude regions, predominately along the coastlines. The hottest towns with ATmed values in the danger category (i.e., 39-50 degrees C) were found to be Patensie-EC (41 degrees C), Pietermaritzburg-KZN (39 degrees C), Pongola-KZN (39 degrees C), Knysna-WC (39 degrees C), Hoedspruit-LP (39 degrees C), Skukuza-MP (45 degrees C), and Komatidraai-MP (44 degrees C). The results provide insight into heat stress characteristics and pinpoint geographical locations vulnerable to heat stress conditions at the community level in South Africa. Such information can be useful in monitoring hotspots of heat stress and contribute to the development of local heat-health adaptation plans.

Ambient temperature during pregnancy and risk of maternal hypertensive disorders: A time-to-event study in Johannesburg, South Africa

Hypertensive disorders in pregnancy are a leading cause of maternal and perinatal mortality and morbidity. We evaluate the effects of ambient temperature on risk of maternal hypertensive disorders throughout pregnancy. We used birth register data for all singleton births (22-43 weeks’ gestation) recorded at a tertiary-level hospital in Johannesburg, South Africa, between July 2017-June 2018. Time-to-event analysis was combined with distributed lag non-linear models to examine the effects of mean weekly temperature, from conception to birth, on risk of (i) high blood pressure, hypertension, or gestational hypertension, and (ii) pre-eclampsia, eclampsia, or HELLP (hemolysis, elevated liver enzymes, low platelets). Low and high temperatures were defined as the 5th and 95th percentiles of daily mean temperature, respectively. Of 7986 women included, 844 (10.6%) had a hypertensive disorder of which 432 (51.2%) had high blood pressure/hypertension/gestational hypertension and 412 (48.8%) had pre-eclampsia/eclampsia/HELLP. High temperature in early pregnancy was associated with an increased risk of pre-eclampsia/eclampsia/HELLP. High temperature (23 °C vs 18 °C) in the third and fourth weeks of pregnancy posed the greatest risk, with hazard ratios of 1.76 (95% CI 1.12-2.78) and 1.79 (95% CI 1.19-2.71), respectively. Whereas, high temperatures in mid-late pregnancy tended to protect against pre-eclampsia/eclampsia/HELLP. Low temperature (11°) during the third trimester (from 29 weeks’ gestation) was associated with an increased risk of high blood pressure/hypertension/gestational hypertension, however the strength and statistical significance of low temperature effects were reduced with model adjustments. Our findings support the hypothesis that high temperatures in early pregnancy increase risk of severe hypertensive disorders, likely through an effect on placental development. This highlights the need for greater awareness around the impacts of moderately high temperatures in early pregnancy through targeted advice, and for increased monitoring of pregnant women who conceive during periods of hot weather.

Institutional responses to drought in a high HIV prevalence setting in rural South Africa

In 2015, South Africa experienced one of the worst (El Ni??o-induced) droughts in 35 years. This affected economic activities, individual and community livelihoods and wellbeing especially in rural communities in northern KwaZulu-Natal. Drought’s direct and indirect impacts on public health require urgent institutional responses, especially in South Africa’s stride to eliminate HIV as a public health threat by 2030 in line with the UNAIDS goals. This paper draws on qualitative data from interviews and policy documents to discuss how the devastating effect of the 2015 drought experience in the rural Hlabisa sub-district of uMkhanyakude, a high HIV prevalence area, imposes an imperative for more proactive institutional responses to drought and other climate-related events capable of derailing progress made in South Africa’s HIV/AIDS response. We found that drought had a negative impact on individual and community livelihoods and made it more difficult for people living with HIV to consistently engage with care due to economic losses from deaths of livestock, crop failure, food insecurity, time spent in search of appropriate water sources and forced relocations. It also affected government institutions and their interventions. Interviewed participants’ reflections on drought-related challenges, especially those related to institutional and coordination challenges, showed that although current policy frameworks are robust, their implementation has been stalled due to complex reporting systems, and inadequate interdepartmental collaboration and information sharing. We thus argue that to address the gaps in the institutional responses, there is a need for more inclusive systems of drought-relief implementation, in which government departments, especially at the provincial and district levels, work with national institutions to better share data/information about drought-risks in order to improve preparedness and implementation of effective mitigation measures.

Socio-economic determinants of increasing household food insecurity during and after a drought in the District of iLembe, South Africa

In 2015 and 2016, South Africa experienced a severe drought resulting in water restrictions and food price inflation. A year later, while the proportion of food secure households remained constant, the proportion of those experiencing severe food insecurity increased. This paper investigates the socio-economic determinants of increasing food insecurity during and after the drought. Two cross-sectional household surveys were carried out in the district of iLembe in November 2016 and 2017. Household food insecurity was measured using the Coping Strategies Index. The results indicated changes in socio-economic determinants of food insecurity over time, with the poorest households experiencing the worst levels of food insecurity. After the drought, having a child under-five years was positively associated with food insecurity, while being located in a rural area was negatively associated. Policies that limit household vulnerability to price inflation, and interventions that protect poorer households from the effects of drought should be considered.

Economic, social and demographic impacts of drought on treatment adherence among people living with HIV in rural South Africa: A qualitative analysis

The 2015 El Nin & SIM;o-triggered drought in Southern Africa caused widespread economic and livelihood disruption in South Africa, imposing multiple physical and health challenges for rural populations including people living with HIV (PLHIV). We examined the economic, social and demographic impacts of drought drawing on 27 in-depth interviews in two cohorts of PLHIV in Hlabisa, uMkhanyakude district, KwaZulu-Natal. Thematic analysis revealed how drought enforced soil water depletion, dried-up rivers, and dams culminated in a continuum of events such as loss of livestock, reduced agricultural production, and insufficient access to water and food which was understood to indirectly have a negative impact on HIV treatment adherence. This was mediated through disruptions in incomes, livelihoods and food systems, increased risk to general health, forced mobility and exacerbation of contextual vulnerabilities linked to poverty and unemployment. The systems approach, drawn from interview themes, hypothesises the complex pathways of plausible networks of impacts from drought through varying socioeconomic factors, exacerbating longstanding contextual precarity, and ultimately challenging HIV care utilisation. Understanding the multidimensional relationships between climate change, especially drought, and poor HIV care outcomes through the prism of contextual vulnerabilities is vital for shaping policy interventions.

Extreme Temperature Events (ETEs) in South Africa: A review

Extreme Temperature Events (ETEs), including heatwaves, warm spells, cold waves and cold spells, have disastrous impacts on human health and ecosystems. The frequency, intensity, and duration of ETEs is projected to increase due to climate change. However, very little research has been done on ETEs in South Africa, and only a few attempts have been made to identify and examine trends. Currently, ten known publications have examined ETEs across South Africa, the majority of which use the South African Weather Service (SAWS) climate database as the primary source. The general findings indicate that the incidence and duration of extreme warm temperatures are increasing, while cold extremes are decreasing. However, inconstancies exist in the indices used to identify ETEs, selection of meteorological stations, study period, and statistical methods used to examine trends. We review the methodological approaches to define ETEs, the extreme temperature indices adopted, the selection of meteorological stations, study periods, data quality and homogeneity, statistical trend analysis, and results. From these, we propose an approximate number of stations to adequately portray temperature variability on a national and regional level. Finally, we reflect on projections of ETEs under current climate change conditions, and the implications of cold and warm ETEs in a South African context.

Applying a wash risk assessment tool in a rural south African setting to identify risks and opportunities for climate resilient communities

Climate change threatens the health and well-being of populations. We conducted a risk assessment of two climate-related variables (i.e., temperature and rainfall) and associated water, sanitation and hygiene (WASH)-related exposures and vulnerabilities for people living in Mopani District, Limpopo province, South Africa. Primary and secondary data were applied in a qualitative and quantitative assessment to generate classifications of risk (i.e., low, medium, or high) for components of hazard/threat, human exposure, and human vulnerability. Climate-related threats were likely to impact human health due to the relatively high risk of waterborne diseases and WASH-associated pathogens. Vulnerabilities that increased the susceptibility of the population to these adverse outcomes included environmental, human, physical infrastructure, and political and institutional elements. People of low socio-economic status were found to be least likely to cope with changes in these hazards. By identifying and assessing the risk to sanitation services and water supply, evidence exists to inform actions of government and WASH sector partners. This evidence should also be used to guide disaster risk reduction, and climate change and human health adaptation planning.

Exploring meteorological conditions and human health impacts during two dust storm events in Northern Cape Province, South Africa: Findings and lessons learnt

Dust storms are meteorological hazards associated with several adverse health impacts including eye irritations, respiratory and cardiovascular disorders, and vehicular road accidents due to poor visibility. This study investigated relations between admissions from a large, public hospital that serves people living in Northern Cape and Free State provinces, South Africa during 2011 to 2017, and meteorological variables (temperature and air quality) during two dust storms, one in October 2014 (spring) and the second in January 2016 (summer), identified from the media as no repository of such events exists for South Africa. Distributed nonlinear lag analysis and wavelet transform analysis were applied to explore the relationships between hospital admissions for respiratory and cardiovascular diseases, eye irritation, and motor vehicle accidents; maximum temperature, and two air quality ‘proxy measures,’ aerosol optical depth and angstrom ngstrom exponent, were used as ground-based air quality data were unavailable. Eye irritation was the most common dust-related hospital admission after both dust storm events. No statistically significant changes in admissions of interest occurred at the time of the two dust storm events, using either of the statistical methods. Several lessons were learnt. For this type of study, ground-based air quality and local wind data are required; alternative statistical methods of analysis should be considered; and a central dust storm repository would help analyze more than two events. Future studies in South Africa are needed to develop a baseline for comparison of future dust storm events and their impacts on human health.

South Africa Lancet Countdown on Health and Climate Change Data Sheet 2023

Human Climate Horizons (HCH)

From Pollution to Solution in Africa’s Cities: The case for investing in air pollution and climate change together

Air Quality Information System – South Africa

South African Air Quality Information System (SAAQIS) is a web based interactive air quality information system which seeks to provide the state of air quality information to citizens, and it is a research portal for strengthening policy development related to air quality issues.

Fire Danger Index – South Africa

The Fire Danger Index (FDI) uses 5 categories to rate the fire danger represented by colour codes [Blue (insignificant) (0-20), Green (low) (21-45), Yellow (moderate) (46-60), Orange (high) (61-75) and Red (extremely high) (75<)]. Each of the danger rating is accompanied by precaution statement.

Scoping the nexus between climate change and water-security realities in rural South Africa

While the global response to climate change has been scant and uncoordinated, especially with regard to providing adequate water resources for the most improvised, water scarcity has become an increasingly neglected phenomenon in rural areas. The long-term imbalance resulting from the water demand exceeding the available water resources has been identified in the literature, with the majority of rural dwellers negatively affected by water scarcity. Using a scoping review technique to explore the nexus between climate change and water-security realities in view of coping and planning mechanisms in the South African context, 246,443 articles published between 2010 and 2019 were collated and reviewed in a bid to ascertain the state of knowledge, study, and focus on the coping and planning strategies adopted by rural communities in the face of climate change-induced water insecurity in South Africa. The identified gaps in the literature indicate the omission of spatial planning principles in responding to water-scarcity issues. This review concludes that, although policy research that links the impacts of climate change in rural communities exists, stronger focus on the quality and quantity issues in the implementation of water-security matters is critical. Hence, the impact of climate change on climate-sensitive supplies available in these rural areas as well as the consequent coping and planning alternatives for rural communities require a more robust policy and spatial research. Thus, as rural communities deal with the impacts of climate change, implementation cycles of water-security measures need to be ensured along with further integration of spatial planning issues in rural areas. Hence, a deeper engagement with spatial planning issues is needed, in order to further mitigate and address the impacts of climate change on water security in rural areas.

Trend analysis of cold extremes in South Africa: 1960-2016

Extreme cold events (“cold waves”) have disastrous impacts on ecosystem and human health. Evidence shows that these events will still occur under current increasing mean temperatures. Little research has been done on extreme cold events, especially in developing countries such as South Africa. These events pose a significant threat due to the low adaptive capacity, urgent development needs and relatively inadequate infrastructure in South Africa. This study presents annual and seasonal, spatial and temporal trend analyses of extreme cold temperature events for the period 1960-2016. We apply the World Meteorological Organisation Commission for Climatology and Indices Expert Team on Sector-Specific Climate Indices (ET-SCI) to South Africa for the first time, with comparison to the World Meteorological Organisation Expert Team on Climate Change Detection (ETCCDI) indices previously used in South Africa. The extreme cold indices are calculated using the RClimDex and ClimPACT, respectively. Trends were calculated using the non-parametric Mann-Kendall test, Spearman Rank Correlation Coefficient and Sen’s slope estimates. A decreasing trend is found for annual cold spell duration and cold wave frequency, at rates of 0.10 days.day(-1) and 0.02 events.day(-1), respectively. Seasonally, coldest day temperatures increased in autumn, with increases of 0.02 degrees C.day(-1) for the period 1960-2016. Regionally, increasing trends in annual cold spell duration days were evident in stations located in the Western Cape, Eastern Cape, North-West Province, at a rate of 0.03 days.day(-1). Increasing trends in cold waves were observed for stations in Northern Cape, Gauteng, KwaZulu-Natal and the Eastern Cape Province, at a rate of 0.01 events.day(-1). These results contribute to the awareness and recognition of the incidence and duration of cold extreme events in South Africa, seeing that studies suggest that anomalously cold events may persist in a warming world.

Research priorities for control of zoonoses in South Africa

BACKGROUND: Zoonoses pose major threats to the health of humans, domestic animals and wildlife, as seen in the COVID-19 pandemic. Zoonoses are the commonest source of emerging human infections and inter-species transmission is facilitated by anthropogenic factors such as encroachment and destruction of wilderness areas, wildlife trafficking and climate change. South Africa was selected for a ‘One Health’ study to identify research priorities for control of zoonoses due to its complex disease burden and an overstretched health system. METHODS: A multidisciplinary group of 18 experts identified priority zoonotic diseases, knowledge gaps and proposed research priorities for the next 5 y. Each priority was scored using predefined criteria by another group of five experts and then weighted by a reference group (n=28) and the 18 experts. RESULTS: Seventeen diseases were mentioned with the top five being rabies (14/18), TB (13/18), brucellosis (11/18), Rift Valley fever (9/11) and cysticercosis (6/18). In total, 97 specific research priorities were listed, with the majority on basic epidemiological research (n=57), such as measuring the burden of various zoonoses (n=24), followed by 20 on development of new interventions. The highest research priority score was for improving existing interventions (0.77/1.0), followed by health policy and systems research (0.72/1.0). CONCLUSION: Future zoonotic research should improve understanding of zoonotic burden and risk factors and new interventions in public health. People with limited rural services, immunocompromised, in informal settlements and high-risk occupations, should be the highest research priority.

Seasonality of drinking water sources and the impact of drinking water source on enteric infections among children in Limpopo, South Africa

Enteric infections and water-related illnesses are more frequent during times of relative water abundance, especially in regions that experience bimodal rainfall patterns. However, it is unclear how seasonal changes in water availability and drinking water source types affect enteric infections in young children. This study investigated seasonal shifts in primary drinking water source type and the effect of water source type on enteric pathogen prevalence in stool samples from 404 children below age 5 in rural communities in Limpopo Province, South Africa. From wet to dry season, 4.6% (n = 16) of households switched from a source with a higher risk of contamination to a source with lower risk, with the majority switching to municipal water during the dry season. In contrast, 2.6% (n = 9) of households switched from a source with a lower risk of contamination to a source with higher risk. 74.5% (n = 301) of the total households experienced interruptions in their water supply, regardless of source type. There were no significant differences in enteric pathogen prevalence between drinking water sources. Intermittent municipal water distribution and household water use and storage practices may have a larger impact on enteric infections than water source type. The limited differences in enteric pathogen prevalence in children by water source could also be due to other exposure pathways in addition to drinking water, for example through direct contact and food-borne transmission.

Flooding trends and their impacts on coastal communities of Western Cape Province, South Africa

Climate change-induced extreme weather events have been at their worst increase in the past decade (2010-2020) across Africa and globally. This has proved disruptive to global socio-economic activities. One of the challenges that has been faced in this regard is the increased coastal flooding of cities. This study examined the trends and impacts of coastal flooding in the Western Cape province of South Africa. Making use of archival climate data and primary data from key informants and field observations, it emerged that there is a statistically significant increase in the frequency of flooding and consequent human and economic losses from such in the coastal cities of the province. Flooding in urban areas of the Western Cape is a factor of human and natural factors ranging from extreme rainfall, usually caused by persistent cut off-lows, midlatitude cyclones, cold fronts and intense storms. Such floods become compounded by poor drainage caused by vegetative overgrowth on waterways and land pollution that can be traced to poor drainage maintenance. Clogging of waterways and drainage systems enhances the risk of flooding. Increased urbanisation, overpopulation in some areas and non-adherence to environmental laws results in both the affluent and poor settling on vulnerable ecosystems. These include coastal areas, estuaries, and waterways, and this worsens the risk of flooding. The study recommends a comprehensive approach to deal with factors that increase the risk of flooding as informed by the provisions of both the Sustainable Development Goals framework and the Sendai Framework for Disaster Risk Reduction 2015-2030 in a bid to de-risking human settlement in South Africa.

Youth resilience to drought: Learning from a group of South African adolescents

Exposure to drought is on the increase, also in sub-Saharan Africa. Even so, little attention has been paid to what supports youth resilience to the stressors associated with drought. In response, this article reports a secondary analysis of qualitative data generated in a phenomenological study with 25 South African adolescents (average age 15.6; majority Sepedi-speaking) from a drought-impacted and structurally disadvantaged community. The thematic findings show the importance of personal, relational, and structural resources that fit with youths’ sociocultural context. Essentially, proactive collaboration between adolescents and their social ecologies is necessary to co-advance socially just responses to the challenges associated with drought.

The three little houses: A comparative study of indoor and ambient temperatures in three low-cost housing types in Gauteng and Mpumalanga, South Africa

Low-cost houses make up the majority of the homes in townships (racially segregated areas which are usually underdeveloped) in South Africa and there has been limited research on the indoor temperatures experienced by residents of these homes. As a developing nation the price and availability of construction materials, often takes precedence over the potential thermal efficiency of the house. Occupants of low-cost houses are particularly vulnerable to climatic changes which may increase the likelihood of exposure to extreme temperatures in South Africa. This study focused on the relationship between indoor and ambient temperature in two study areas namely; Kathorus in Gauteng and Wakkerstroom in Mpumalanga. Three housing types were included in the study (government funded apartheid era houses, government funded post-apartheid houses and informal houses (shacks)). Temperature data loggers were installed in each home, in each area, from June 2017 to July 2018. Ambient temperature data were collected for the period June 2017 to July 2018. The houses studied were built with different materials which affect their thermal efficiency. The study also included semi-structured interviews where occupant’s perspectives on housing could be surveyed. Household temperatures in Kathorus and Wakkerstroom, both in the warmer and colder months fluctuated substantially throughout the day. There was an 8 °C, 9 °C and 14 °C fluctuations in daily indoor temperatures of apartheid-era, post-apartheid and shacks houses, and daily outdoor fluctuations of 5-15 °C, with higher fluctuations measured in Wakkerstroom. Generally, ambient and indoor temperatures were correlated but showed high variability. Indoor data for the winter months were less well correlated. Data showed that residents are subjected to extreme temperatures and these are expected to increase. The householder’s perceptions of thermal comfort were often not related to indoor temperature readings but to behavioural changes including the use of warm clothes and wood burning stoves. The study’s findings suggest that a majority of low-cost houses are thermally inefficient especially for those built in the post-apartheid era and shacks. With these houses showing a clear link between ambient and indoor temperature fluctuations. The occupants of these homes are poor and vulnerable to health risks which could be exacerbated by temperature fluctuations. Small changes such as installation of ceilings and use of insulation could make a large difference in these houses.

The impacts of drought and the adaptive strategies of small-scale farmers in uMsinga, KwaZulu-Natal, South Africa

Drought is a major challenge threatening agricultural productivity in uMsinga. The occurrence of drought is expected to increase in coming decades, intensifying in severity, duration and the way people are affected by drought. The objective of this study is to understand small-scale farmers’ and rural communities’ perceptions of drought, its environmental and socio-economic impacts, adaptive and mitigation measures at household level and their satisfaction with the government’s role in drought management in the community. The study utilized a combination of quantitative and qualitative research methods, in the form of questionnaires, focus groups and key informant interviews. The sample size for the research study was 180 respondents for the questionnaire component and a total of 30 respondents for the focus groups and key informant interviews. The results show that increased levels of poverty, food insecurity and increased migration were the main socio-economic impacts perceived by respondents. Water scarcity, crop failure, forest degradation and an increase in average temperatures were perceived by respondents as the main environmental impacts caused by drought in uMsinga. Respondents perceived drought as a serious threat to agricultural production and adopted various indigenous adaptive strategies. A majority of respondents adopted a reactive approach to drought management, and therefore did not adopt many mitigation measures.

Temperature as a modifier of the effects of air pollution on cardiovascular disease hospital admissions in Cape Town, South Africa

Climate change and air pollution are two independent risk factors to cardiovascular diseases (CVD). Few studies investigated their interaction and potential effect modification of one another in developing countries. Individual level CVD hospital admission (ICD10: I00-I99) data for 1 January 2011 to 31 October 2016 were obtained from seven private hospitals in Cape Town. NO(2), SO(2), PM(10), temperature and relative humidity data were obtained from the South African Weather Services and the City of Cape Town. A case-crossover epidemiological study design and conditional logistic regression model were applied. Various cut-off values were applied to classify cold and warm days. In total, 54,818 CVD hospital admissions were included in the study. In general, on warm and cold days the 15-64 years old group was more at risk for CVD hospitalization with increasing air pollution levels compared to all ages combined or the ??65 years old group. Females appeared to be more at risk than males with increasing PM(10) levels. In contrast, males were more vulnerable to the effects of NO(2) and SO(2) than females. The study showed the modification effect of temperature on air pollution associated with CVD hospital admissions. The consideration of such interaction will help in policy making and public health interventions dealing with climate change-related health risks.

Spatial clustering of food insecurity and its association with depression: A geospatial analysis of nationally representative South African data, 2008-2015

While food insecurity is a persistent public health challenge, its long-term association with depression at a national level is unknown. We investigated the spatial heterogeneity of food insecurity and its association with depression in South Africa (SA), using nationally-representative panel data from the South African National Income Dynamics Study (years 2008-2015). Geographical clusters (“hotpots”) of food insecurity were identified using Kulldorff spatial scan statistic in SaTScan. Regression models were fitted to assess association between residing in food insecure hotspot communities and depression. Surprisingly, we found food insecurity hotspots (p?

Short term seasonal effects of airborne fungal spores on lung function in a panel study of schoolchildren residing in informal settlements of the Western Cape of South Africa

BACKGROUND: The individual effects of biological constituents of particulate matter (PM) such as fungal spores, on lung function in children are not well known. This study investigated the seasonal short-term effect of daily variation in Alternaria and Cladosporium fungal spores on lung function in schoolchildren. METHODS: This panel study evaluated 313 schoolchildren in informal settlements of the Western Cape of South Africa, exposed to spores of two commonly encountered fungi, Alternaria and Cladosporium species. The children provided forced-expiratory volume in 1-s (FEV(1)) and peak-expiratory flow (PEF) measurements thrice daily for two consecutive school-weeks in summer and winter. Daily PM(10) levels, from a stationary ambient air quality monitor and fungal spore levels using spore traps were measured in each study area throughout the year. The effects of Alternaria and Cladosporium spores, on lung function were analysed for lag periods up to five-days, adjusting-for PM(10), other pollen exposures, study area, and other host and meteorological factors. Same-day exposure-response curves were computed for both fungal species. RESULTS: There was more variability in Alternaria spores level with noticeable peaks in summer. There were consistent lag-effects for Alternaria on PEF compared to Cladosporium, with the largest PEF deficit observed in winter (mean deficit: 13.78 L/min, 95%CI: 24.34 to -3.23 L/min) per 10spores/m(3) increase in Alternaria spores on lag day-2. Although there were no observable lag-effects for Alternaria and Cladosporium on FEV(1), same-day effects of Cladosporium spores on FEV(1) was present across both seasons. Threshold effects of Alternaria on both PEF and FEV(1) deficits were apparent at levels of 100 spores/m(3), but could not be explored for Cladosporium beyond the levels observed during the study. CONCLUSION: The study provides evidence for the independent effects of daily exposure to ambient fungal spores of Alternaria and Cladosporium on lung function deficits, more especially in winter for PEF.

Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa – Identifying urban planning priorities for adaptation

There is an urgent need to map the geographic location of climate change risks and vulnerability, especially for cities in sub-Saharan Africa, which are experiencing the greatest urban development challenges and vulnerability to climate change impacts. The aim of this study is to investigate current and projected future heat risk, expressed as a heat stress exposure index using high-resolution climate change projections, and a social vulnerability index, to identify areas of potential future heat stress risk in the Durban (eThekwini) metropolitan area, South Africa. Additionally, this is the first study to use high-resolution downscaled climate change projections under Representative Concentration (RCP) 8.5, to construct the heat exposure index using apparent temperature and increases in minimum temperature and a social vulnerability index, using demographic and socio-economic census and land use data to, derived from principal component analysis (PCA) to spatially characterize heat stress within a South African city. Results show that while heat stress is not a current concern, it is projected to increase and become a future concern, mainly as a function of social vulnerability due to household demographic and infrastructural characteristics, and will be experienced in both the rural and inner-city areas of the metro. This study contributes a heat risk framework to identify locations for specific research and adaptation activities on heat stress risk and for urban planning in sub-Saharan African cities, which are characterized by both rural and urban contexts, to address climate change adaptation targeting and priority setting.

Exploring public awareness of the current and future malaria risk zones in South Africa under climate change: A pilot study

Although only a small proportion of the landmass of South Africa is classified as high risk for malaria, the country experiences on-going challenges relating to malaria outbreaks. Climate change poses a growing threat to this already dire situation. While considerable effort has been placed in public health campaigns in the highest-risk regions, and national malaria maps are updated to account for changing climate, malaria cases have increased. This pilot study considers the sub-population of South Africans who reside outside of the malaria area, yet have the means to travel into this high-risk region for vacation. Through the lens of the governmental “ABC of malaria prevention”, we explore this sub-population’s awareness of the current boundaries to the malaria area, perceptions of the future boundary under climate change, and their risk-taking behaviours relating to malaria transmission. Findings reveal that although respondents self-report a high level of awareness regarding malaria, and their boundary maps reveal the broad pattern of risk distribution, their specifics on details are lacking. This includes over-estimating both the current and future boundaries, beyond the realms of climate-topographic possibility. Despite over-estimating the region of malaria risk, the respondents reveal an alarming lack of caution when travelling to malaria areas. Despite being indicated for high-risk malaria areas, the majority of respondents did not use chemoprophylaxis, and many relied on far less-effective measures. This may in part be due to respondents relying on information from friends and family, rather than medical or governmental advice.

Climate change impact on water availability in the olifants catchment (South Africa) with potential adaptation strategies

Increasing population and economic growth has intensified water supply pressure on the Olifants River Basin causing it to become water-stressed. Climate change is expected to aggravate existing water supply challenges in the basin if urgent interventions are not implemented. This study evaluates the impacts of climate change on water availability and demand in the Olifants River Basin of South Africa, and assesses to what extent a combination of management strategies can mitigate current and longer term impacts using the Water Evaluation and Planning (WEAP) model. The results demonstrated by the two projected climate change scenarios (RCP4.5 and RCP8.5) showed a rise in temperature of approximately 1 degrees C-4 degrees C, and a decrease in precipitation of 5%-30%, as compared to the baseline climate of 1976-2005. Results also showed that pressure on water supply due to increased economic activities and a decline in streamflow will increase unmet water demand by 58% and 80% for the mid and end century periods respectively. Results further revealed that the combination of management measures proposed by decision makers is expected to decrease future unmet water demand from 1006MCM to 398MCM, 1205MCM to 872MCM and 1251MCM to 940MCM for reference, RCP4.5 and RCP 8.5 scenario respectively. The study therefore concludes that the combination of management strategies provides a much better and more efficient solution to water scarcity issues in the basin, compared to a reliance on a single strategy.

Shifting Risks of Malaria in Southern Africa: A Regional Analysis

Climate And Health Consortium For Africa: Roundtable Discussion

Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation

Coping through a drought: The association between child nutritional status and household food insecurity in the district of iLembe, South Africa

A study protocol to determine heat-related health impacts among primary schoolchildren in South Africa

The incidence of skin cancer in relation to climate change in South Africa

Socio-economic, infrastructural and health-related risk factors associated with adverse heat-health effects reportedly experienced during hot weather in South Africa

Short-term association between ambient temperature and homicide in South Africa: A case-crossover study

Seasonality of antenatal care attendance, maternal dietary intake, and fetal growth in the VHEMBE birth cohort, South Africa

Rainfall trends and malaria occurrences in Limpopo Province, South Africa

Predicting malaria cases using remotely sensed environmental variables in Nkomazi, South Africa

Hydrological hazards in Vhembe district in Limpopo Province, South Africa

Establishing the nexus between climate change adaptation strategy and smallholder farmers’ food security status in South Africa: A bi-casual effect using instrumental variable approach

Ecological vulnerability indicators to drought: Case of communal farmers in Eastern Cape, South Africa

Climatic factors in relation to diarrhoea hospital admissions in rural Limpopo, South Africa

Climate change and healthcare sustainability in the Agincourt sub-district, Kruger to Canyons Biosphere Region, South Africa

Adaptation to flooding, pathway to housing or ‘wasteful expenditure’? Governance configurations and local policy subversion in a flood-prone informal settlement in Cape Town

A dynamical and zero-inflated negative binomial regression modelling of malaria incidence in Limpopo Province, South Africa

Responses to climate variability in urban poor communities in Pietermaritzburg, KwaZulu-Natal, South Africa

Exploring the influence of daily climate variables on malaria transmission and abundance of anopheles arabiensis over Nkomazi local municipality, Mpumalanga Province, South Africa

Evaluating efficacy of landsat-derived environmental covariates for predicting malaria distribution in rural villages of Vhembe District, South Africa

Climate change and vulnerability discourse by students at a South African university

The long road to elimination: Malaria mortality in a South African population cohort over 21 years

Living with drought in South Africa: Lessons learnt from the recent El Nino drought period

Indoor temperatures in low cost housing in Johannesburg, South Africa

Indoor temperatures in patient waiting rooms in eight rural primary health care centers in northern South Africa and the related potential risks to human health and wellbeing

Impacts of supplemental irrigation as a climate change adaptation strategy for maize production: a case of the Eastern Cape Province of South Africa

Heat effects of ambient apparent temperature on all-cause mortality in Cape Town, Durban and Johannesburg, South Africa: 2006-2010

Climatic variables and malaria morbidity in mutale local municipality, South Africa: A 19-year data analysis

Trauma unit attendance: Is there a relationship with weather, sporting events and week/ month-end times? An audit at an urban tertiary trauma unit in Cape Town

Random forest variable selection in spatial malaria transmission modelling in Mpumalanga Province, South Africa

Perceptions of climate change and the potential for adaptation in a rural community in Limpopo Province, South Africa

Climate change threats to two low-lying South African coastal towns: Risks and perceptions

A policy review of synergies and trade-offs in South African climate change mitigation and air pollution control strategies

Long-run relative importance of temperature as the main driver to malaria transmission in Limpopo Province, South Africa: A simple econometric approach

Classical swine fever changes the way farmers value pigs in South Africa

University students as recipients of and contributors to information on climate change: Insights from South Africa and implications for well-being

National policy response to climate change in South Africa

Human health impacts in a changing South African climate

Climate change and occupational health: A South African perspective

The impact of housing type on temperature-related mortality in South Africa, 1996-2015

Impact of climate change on children’s health in Limpopo Province, South Africa

Changes in malaria morbidity and mortality in Mpumalanga Province, South Africa (2001-2009): A retrospective study

Ties Between Air Quality and Climate Change in South Africa and their Impact on Human Health

Participatory planning, justice, and climate change in Durban, South Africa

Adaptation to climate change in Ethiopia and South Africa: Options and constraints

South African crop farming and climate change: An economic assessment of impacts

Climate change impacts on agro-ecosystem sustainability across three climate regions in the maize belt of South Africa

Trauma and posttraumatic stress disorder in a rural primary care population in South Africa

South Africa: Health and Climate Change Country Profile

Flash Flood Guidance System with Global Coverage (FFGS)