Explore By

This site uses cookies.

This site uses cookies to improve your online experience. To learn more about how we use cookies, please see our terms of use.

Seasonality, climate change, and food security during pregnancy among indigenous and non-indigenous women in rural Uganda: Implications for maternal-infant health

BACKGROUND: Climate change is expected to decrease food security globally. Many Indigenous communities have heightened sensitivity to climate change and food insecurity for multifactorial reasons including close relationships with the local environment and socioeconomic inequities which increase exposures and challenge adaptation to climate change. Pregnant women have additional sensitivity to food insecurity, as antenatal undernutrition is linked with poor maternal-infant health. This study examined pathways through which climate change influenced food security during pregnancy among Indigenous and non-Indigenous women in rural Uganda. Specific objectives were to characterize: 1) sensitivities to climate-associated declines in food security for pregnant Indigenous women; 2) women’s perceptions of climate impacts on food security during pregnancy; and 3) changes in food security and maternal-infant health over time, as observed by women. METHODS: Using a community-based research approach, we conducted eight focus group discussions-four in Indigenous Batwa communities and four in non-Indigenous communities-in Kanungu District, Uganda, on the subject of climate and food security during pregnancy. Thirty-six women with ≥1 pregnancy participated. Data were analysed using a constant comparative method and thematic analysis. RESULTS: Women indicated that food insecurity was common during pregnancy and had a bidirectional relationship with antenatal health issues. Food security was thought to be decreasing due to weather changes including extended droughts and unpredictable seasons harming agriculture. Women linked food insecurity with declines in maternal-infant health over time, despite improved antenatal healthcare. While all communities described food security struggles, the challenges Indigenous women identified and described were more severe. CONCLUSIONS: Programs promoting women’s adaptive capacity to climate change are required to improve food security for pregnant women and maternal-infant health. These interventions are particularly needed in Indigenous communities, which often face underlying health inequities. However, resiliency among mothers was strong and, with supports, they can reduce food security challenges in a changing climate.

Health gender gap in Uganda: Do weather effects and water play a role?

BACKGROUND: Vulnerabilities of men and women to adverse health effects due to weather variability and climate change are not equal. Uganda was among the countries in the world most affected by extreme weather events during the last decade. However, there is still limited gendered empirical evidence on the links between weather variability and health and the possible pathways through which these health effects occur. Therefore, this study analyses the effect of weather variability on illness, and the extent to which water collection ‘time burden’ mediates the relationship between weather anomalies and illness among men and women of working age in Uganda. The study also quantifies the health inequalities to be eliminated if resources are equalized. METHODS: Socioeconomic, health and time use data were obtained from the World Bank Living Standards Measurement Studies – Integrated Surveys on Agriculture (LSMS -ISA), combined with high resolution remotely-sensed weather data. Two-parts and non-linear decomposition regression analysis were used on the national representative pooled dataset from the four household survey waves collected between 2009 to 2014, comprising a total of 22,469 men and women aged between 15 and 64 years. RESULTS: Empirical results show that low rainfall below the long-term mean increased the likelihood of illness by at least 8 and 6 percentage points for women and men, respectively. The indirect effect of low rainfall on illness through water access pathway was estimated at 0.16 percentage points in women. Decomposition results reveal that health inequalities among women and men would have been narrowed by 27-61%, if endowments were equalized. CONCLUSIONS: Strategies that promote women empowerment (such as education, labor force participation, access to financial services and clean water), health adaptation and time poverty reduction strategies (such as rain water harvesting and improved access to quality health care) would reduce gender-based health inequalities in Uganda despite changing climatic conditions.

Conflict and climate factors and the risk of child acute malnutrition among children aged 24-59 months: A comparative analysis of Kenya, Nigeria, and Uganda

Acute malnutrition affects a sizeable number of young children around the world, with serious repercussions for mortality and morbidity. Among the top priorities in addressing this problem are to anticipate which children tend to be susceptible and where and when crises of high prevalence rates would be likely to arise. In this article, we highlight the potential role of conflict and climate conditions as risk factors for acute malnutrition, while also assessing other vulnerabilities at the individual- and household-levels. Existing research reflects these features selectively, whereas we incorporate all the features into the same study. The empirical analysis relies on integration of health, conflict, and environmental data at multiple scales of observation to focuses on how local conflict and climate factors relate to an individual child’s health. The centerpiece of the analysis is data from the Demographic and Health Surveys conducted in several different cross-sectional waves covering 2003-2016 in Kenya, Nigeria, and Uganda. The results obtained from multi-level statistical models indicate that in Kenya and Nigeria, conflict is associated with lower weight-for-height scores among children, even after accounting for individual-level and climate factors. In Nigeria and Kenya, conflict lagged 1-3 months and occurring within the growing season tends to reduce WHZ scores. In Uganda, however, weight-for-height scores are primarily associated with individual-level and household-level conditions and demonstrate little association with conflict or climate factors. The findings are valuable to guide humanitarian policymakers and practitioners in effective and efficient targeting of attention, interventions, and resources that lessen burdens of acute malnutrition in countries prone to conflict and climate shocks.

Climate change and young people in Uganda: A literature review

The disruptions of anthropogenic climate change are increasingly severe. People living in sub-Saharan Africa are especially exposed to these risks, and amongst them young people. It is well established that climate disruptions have the potential to halt education, displace populations, and wreck infrastructure. This rigorous literature review focuses on climate change in the landlocked East African country of Uganda, demographically the world’s third youngest country, where young people struggle to get by due to insufficient work opportunities. Extended to other countries in the Eastern and Central African region, the review considers what is known about the intersection of youth livelihoods and climate change; young people’s susceptibility to climate disruption due to limited resources and livelihood options; and the constraints around their responses. The review findings suggest the need for substantial youth informed interventions to bolster young people’s economic resilience and adaptive capacity given the worsening climate change and prolonged population growth.

Dihydroartemisinin-piperaquine chemoprevention and malaria incidence after severe flooding: Evaluation of a pragmatic intervention in rural Uganda

BACKGROUND: Malaria epidemics are a well-described phenomenon after extreme precipitation and flooding, which account for nearly half of global disasters over the past two decades. Yet few studies have examined mitigation measures to prevent post-flood malaria epidemics. METHODS: We conducted an evaluation of a malaria chemoprevention program implemented in response to severe flooding in western Uganda. Children ≤12 years of age from one village were eligible to receive 3 monthly rounds of dihydroartemisinin-piperaquine (DP). Two neighboring villages served as controls. Malaria cases were defined as individuals with a positive rapid diagnostic test result as recorded in health center registers. We performed a difference-in-differences analysis to estimate changes in the incidence and test positivity of malaria between intervention and control villages. RESULTS: A total of 554 children received at least one round of chemoprevention with 75% participating in at least two rounds. Compared to control villages, we estimated a 53.4% reduction (aRR 0.47, 95% CI 0.34 – 0.62, p<.01) in malaria incidence and a 30% decrease in the test positivity rate (aRR=0.70, CI 0.50 - 0.97, p=0.03) in the intervention village in the six months post-intervention. The impact was greatest among children receiving the intervention, but decreased incidence was also observed in older children and adults (aRR=0.57, CI 0.38-0.84, p<.01). CONCLUSIONS: Three rounds of chemoprevention with DP delivered under pragmatic conditions reduced the incidence of malaria after severe flooding in western Uganda. These findings provide a proof-of-concept for the use of malaria chemoprevention to reduce excess disease burden associated with severe flooding.

Modelling rotavirus concentrations in rivers: Assessing Uganda’s present and future microbial water quality

Faecal pathogens can be introduced into surface water through open defecation, illegal disposal and inadequate treatment of faecal sludge and wastewater. Despite sanitation improvements, poor countries are progressing slowly towards the United Nation’s Sustainable Development Goal 6 by 2030. Sanitation-associated pathogenic contamination of surface waters impacted by future population growth, urbanization and climate change receive limited attention. Therefore, a model simulating human rotavirus river inputs and concentrations was developed combining population density, sanitation coverage, rotavirus incidence, wastewater treatment and environmental survival data, and applied to Uganda. Complementary surface runoff and river discharge data were used to produce spatially explicit rotavirus outputs for the year 2015 and for two scenarios in 2050. Urban open defecation contributed 87%, sewers 9% and illegal faecal sludge disposal 3% to the annual 15.6 log(10) rotavirus river inputs in 2015. Monthly concentrations fell between -3.7 (Q5) and 2.6 (Q95) log(10) particles per litre, with 1.0 and 2.0 median and mean log(10) particles per litre, respectively. Spatially explicit outputs on 0.0833 × 0.0833° grids revealed hotspots as densely populated urban areas. Future population growth, urbanization and poor sanitation were stronger drivers of rotavirus concentrations in rivers than climate change. The model and scenario analysis can be applied to other locations.

Associations between environmental covariates and temporal changes in malaria incidence in high transmission settings of Uganda: A distributed lag nonlinear analysis

BACKGROUND: Environmental factors such as temperature, rainfall, and vegetation cover play a critical role in malaria transmission. However, quantifying the relationships between environmental factors and measures of disease burden relevant for public health can be complex as effects are often non-linear and subject to temporal lags between when changes in environmental factors lead to changes in malaria incidence. The study investigated the effect of environmental covariates on malaria incidence in high transmission settings of Uganda. METHODS: This study leveraged data from seven malaria reference centres (MRCs) located in high transmission settings of Uganda over a 24-month period. Estimates of monthly malaria incidence (MI) were derived from MRCs’ catchment areas. Environmental data including monthly temperature, rainfall, and normalized difference vegetation index (NDVI) were obtained from remote sensing sources. A distributed lag nonlinear model was used to investigate the effect of environmental covariates on malaria incidence. RESULTS: Overall, the median (range) monthly temperature was 30 °C (26-47), rainfall 133.0 mm (3.0-247), NDVI 0.66 (0.24-0.80) and MI was 790 per 1000 person-years (73-3973). Temperature of 35 °C was significantly associated with malaria incidence compared to the median observed temperature (30 °C) at month lag 2 (IRR: 2.00, 95% CI: 1.42-2.83) and the increased cumulative IRR of malaria at month lags 1-4, with the highest cumulative IRR of 8.16 (95% CI: 3.41-20.26) at lag-month 4. Rainfall of 200 mm significantly increased IRR of malaria compared to the median observed rainfall (133 mm) at lag-month 0 (IRR: 1.24, 95% CI: 1.01-1.52) and the increased cumulative IRR of malaria at month lags 1-4, with the highest cumulative IRR of 1.99(95% CI: 1.22-2.27) at lag-month 4. Average NVDI of 0.72 significantly increased the cumulative IRR of malaria compared to the median observed NDVI (0.66) at month lags 2-4, with the highest cumulative IRR of 1.57(95% CI: 1.09-2.25) at lag-month 4. CONCLUSIONS: In high-malaria transmission settings, high values of environmental covariates were associated with increased cumulative IRR of malaria, with IRR peaks at variable lag times. The complex associations identified are valuable for designing strategies for early warning, prevention, and control of seasonal malaria surges and epidemics.

Do socio-demographic factors modify the effect of weather on malaria in Kanungu District, Uganda?

BACKGROUND: There is concern in the international community regarding the influence of climate change on weather variables and seasonality that, in part, determine the rates of malaria. This study examined the role of sociodemographic variables in modifying the association between temperature and malaria in Kanungu District (Southwest Uganda). METHODS: Hospital admissions data from Bwindi Community Hospital were combined with meteorological satellite data from 2011 to 2014. Descriptive statistics were used to describe the distribution of malaria admissions by age, sex, and ethnicity (i.e. Bakiga and Indigenous Batwa). To examine how sociodemographic variables modified the association between temperature and malaria admissions, this study used negative binomial regression stratified by age, sex, and ethnicity, and negative binomial regression models that examined interactions between temperature and age, sex, and ethnicity. RESULTS: Malaria admission incidence was 1.99 times greater among Batwa than Bakiga in hot temperature quartiles compared to cooler temperature quartiles, and that 6-12 year old children had a higher magnitude of association of malaria admissions with temperature compared to the reference category of 0-5 years old (IRR = 2.07 (1.40, 3.07)). DISCUSSION: Results indicate that socio-demographic variables may modify the association between temperature and malaria. In some cases, such as age, the weather-malaria association in sub-populations with the highest incidence of malaria in standard models differed from those most sensitive to temperature as found in these stratified models. CONCLUSION: The effect modification approach used herein can be used to improve understanding of how changes in weather resulting from climate change might shift social gradients in health.

Uganda mountain community health system-perspectives and capacities towards emerging infectious disease surveillance

In mountain communities like Sebei, Uganda, which are highly vulnerable to emerging and re-emerging infectious diseases, community-based surveillance plays an important role in the monitoring of public health hazards. In this survey, we explored capacities of village health teams (VHTs) in Sebei communities of Mount Elgon in undertaking surveillance tasks for emerging and re-emerging infectious diseases in the context of a changing climate. We used participatory epidemiology techniques to elucidate VHTs’ perceptions on climate change and public health and assessed their capacities to conduct surveillance for emerging and re-emerging infectious diseases. Overall, VHTs perceived climate change to be occurring with wider impacts on public health. However, they had inadequate capacities in collecting surveillance data. The VHTs lacked transport to navigate through their communities and had insufficient capacities in using mobile phones for sending alerts. They did not engage in reporting other hazards related to the environment, wildlife, and domestic livestock that would accelerate infectious disease outbreaks. Records were not maintained for disease surveillance activities and the abilities of VHTs to analyze data were also limited. However, VHTs had access to platforms that could enable them to disseminate public health information. The VHTs thus need to be retooled to conduct their work effectively and efficiently through equipping them with adequate logistics and knowledge on collecting, storing, analyzing, and relaying data, which will improve infectious disease response and mitigation efforts.

Next generation chlorine dispensers for safe water, delivering a climate-health solution at scale

Preventing climate-driven outbreaks of malaria through scalable and cost effective Seasonal Malaria Chemoprevention programs in Africa

Human Climate Horizons (HCH)

Perceptions and vulnerability to climate change among the urban poor in Kampala City, Uganda

Climate risks and vulnerability continue to disproportionately affect the urban poor given their constrained adaptive capacity. This paper examines the urban poor’s perceptions and vulnerability to climate change in Kampala. Data was collected from a proportionate sample of 534 respondents drawn from households that were randomly selected from the city’s informal settlements and interviewed using a structured questionnaire. Six focus group discussions and 15 key informant interviews were conducted whose participants were purposively selected because of their knowledge and experiences. Quantitative data was analyzed using chi-square tests while content analysis was used to analyze qualitative data from key informant interviews and focus group discussions. A total of 96.6% of the households were aware of climate change, mainly perceived as rising temperatures and reduction in rainfall. Floods (53.4%) and droughts (27%) were the most commonly experienced climate risks, with the former considered more frequent and severe. Perceptions and vulnerability to climate risk varied with incomes, education level, marital status, main occupation, housing conditions and length of stay. Individuals with less wealth and education, employed in informal business and having insecure housing tenure were most vulnerable to flooding than they are to drought. The sensitivity of the urban poor communities is heightened by ecosystem degradation, poor access to urban infrastructure, utilities and services. With socio-economic attributes highly associated to climate change vulnerabilities, incorporating social dimensions and exchange of information between the vulnerable communities, planners and decision makers is necessary to inform the city’s adaptation policy and building long-term urban resilience. Partnerships are necessary between the urban authorities, communities, civil society and donors/financiers to improve housing and livelihoods in slums settlements. At the same time, strengthening co-production of climate information services, building climate change awareness, restoration of critical ecosystems and a broader inclusive adaptation planning are avenues for building resilient urban poor communities.

Village-level climate and weather variability, mediated by village-level crop yield, is associated with linear growth in children in Uganda

INTRODUCTION: To investigate total annual precipitation, precipitation anomaly and aridity index in relation to linear growth in children under 5 in Uganda and quantify the mediating role of crop yield. METHODS: We analysed data of 5219 children under 5 years of age who participated in the 2016 Uganda Demographic and Health Survey. Annual crop yield in kilograms per hectare for 42 crops at a 0.1° (~10 km at the equator) spatial resolution square grid was obtained from the International Food Policy Research Institute. Normalised rainfall anomaly and total precipitation were derived from the African Rainfall Estimation Algorithm Version 2 product. Linear regression models were used to associate total annual precipitation and anomalies with height-for-age z-scores and to explore the mediating role of crop yield qualitatively. The intervening effects were quantitatively estimated by causal mediation models. RESULTS: Twenty-nine per cent of children were stunted (95% CI 28% to 31%). After adjusting for major covariates, higher total annual precipitation was significantly associated with increasing height-for-age z-scores. At the mean, an increase of 1 standard deviation in local annual rainfall was associated with a 0.07-point higher z-score. Aridity index and precipitation anomaly were not associated with height-for-age z scores in altitude-adjusted models. Crop yields of nuts, seeds, cereals and pulses were significant mediating factors. For instance, 38% of the association between total annual precipitation with height-for-age z-scores can be attributed to the yield of sesame seeds. CONCLUSIONS: Higher total annual precipitation at the village-level was significantly associated with higher height-for-age z-scores among children in Uganda. This association can be partially explained by higher crop yield, especially from seeds and nuts. This study suggests that more attention should be paid to villages with lower annual rainfall amounts to improve water availability for agriculture.

Spatial-temporal patterns of malaria incidence in Uganda using HMIS data from 2015 to 2019

BACKGROUND: As global progress to reduce malaria transmission continues, it is increasingly important to track changes in malaria incidence rather than prevalence. Risk estimates for Africa have largely underutilized available health management information systems (HMIS) data to monitor trends. This study uses national HMIS data, together with environmental and geographical data, to assess spatial-temporal patterns of malaria incidence at facility catchment level in Uganda, over a recent 5-year period. METHODS: Data reported by 3446 health facilities in Uganda, between July 2015 and September 2019, was analysed. To assess the geographic accessibility of the health facilities network, AccessMod was employed to determine a three-hour cost-distance catchment around each facility. Using confirmed malaria cases and total catchment population by facility, an ecological Bayesian conditional autoregressive spatial-temporal Poisson model was fitted to generate monthly posterior incidence rate estimates, adjusted for caregiver education, rainfall, land surface temperature, night-time light (an indicator of urbanicity), and vegetation index. RESULTS: An estimated 38.8 million (95% Credible Interval [CI]: 37.9-40.9) confirmed cases of malaria occurred over the period, with a national mean monthly incidence rate of 20.4 (95% CI: 19.9-21.5) cases per 1000, ranging from 8.9 (95% CI: 8.7-9.4) to 36.6 (95% CI: 35.7-38.5) across the study period. Strong seasonality was observed, with June-July experiencing highest peaks and February-March the lowest peaks. There was also considerable geographic heterogeneity in incidence, with health facility catchment relative risk during peak transmission months ranging from 0 to 50.5 (95% CI: 49.0-50.8) times higher than national average. Both districts and health facility catchments showed significant positive spatial autocorrelation; health facility catchments had global Moran’s I?=?0.3 (p <?0.001) and districts Moran’s I?=?0.4 (p <?0.001). Notably, significant clusters of high-risk health facility catchments were concentrated in Acholi, West Nile, Karamoja, and East Central – Busoga regions. CONCLUSION: Findings showed clear countrywide spatial-temporal patterns with clustering of malaria risk across districts and health facility catchments within high risk regions, which can facilitate targeting of interventions to those areas at highest risk. Moreover, despite high and perennial transmission, seasonality for malaria incidence highlights the potential for optimal and timely implementation of targeted interventions.

Rainfall and child weight in Uganda

We combine data from the 2006 and 2011 Uganda Demographic and Health Surveys (UDHS) with rainfall data and two waves of the Ugandan National Household Survey (UNHS) to study patterns in child weight, as measured by weight-for-height z scores (WHZ), among 3492 rural children below age 5 in Uganda. We focus on rainfall as a nutrition driver along agriculture and disease pathways. We find a positive and significant association between crop yield and WHZ, but the magnitude of this association diminishes as we control for covariates, especially the use of productivity-enhancing agricultural inputs. We find diarrheal disease to have a negative and significant association with WHZ, and modifying effects of social and environmental factors along the disease pathway. Contemporaneous rainfall is associated with a lower likelihood of diarrheal disease in areas with excess rainfall and a higher likelihood of diarrheal disease in rainfall deficit areas. Our findings reinforce calls for targeted and situation-sensitive policies to promote child nutrition.

Multilevel and spatial analyses of childhood malnutrition in Uganda: Examining individual and contextual factors

In this study, we examine the concepts of spatial dependence and spatial heterogeneity in the effect of macro-level and micro-level factors on stunting among children aged under five in Uganda. We conducted a cross-sectional analysis of 3624 Ugandan children aged under five, using data from the 2016 Ugandan Demographic and Health Survey. Multilevel mixed-effect analysis, spatial regression methods and multi-scale geographically weight regression (MGWR) analysis were employed to examine the association between our predictors and stunting as well as to analyse spatial dependence and variability in the association. Approximately 28% of children were stunted. In the multilevel analysis, the effect of drought, diurnal temperature and livestock per km(2) on stunting was modified by child, parent and household factors. Likewise, the contextual factors had a modifiable effect on the association between child’s sex, mother’s education and stunting. The results of the spatial regression models indicate a significant spatial error dependence in the residuals. The MGWR suggests rainfall and diurnal temperature had spatial varying associations with stunting. The spatial heterogeneity of rainfall and diurnal temperature as predictors of stunting suggest some areas in Uganda might be more sensitive to variability in these climatic conditions in relation to stunting than others.

Malaria patterns across altitudinal zones of Mount Elgon following intensified control and prevention programs in Uganda

BACKGROUND: Malaria remains a major tropical vector-borne disease of immense public health concern owing to its debilitating effects in sub-Saharan Africa. Over the past 30?years, the high altitude areas in Eastern Africa have been reported to experience increased cases of malaria. Governments including that of the Republic of Uganda have responded through intensifying programs that can potentially minimize malaria transmission while reducing associated fatalities. However, malaria patterns following these intensified control and prevention interventions in the changing climate remains widely unexplored in East African highland regions. This study thus analyzed malaria patterns across altitudinal zones of Mount Elgon, Uganda. METHODS: Times-series data on malaria cases (2011-2017) from five level III local health centers occurring across three altitudinal zones; low, mid and high altitude was utilized. Inverse Distance Weighted (IDW) interpolation regression and Mann Kendall trend test were used to analyze malaria patterns. Vegetation attributes from the three altitudinal zones were analyzed using Normalized Difference Vegetation Index (NDVI) was used to determine the Autoregressive Integrated Moving Average (ARIMA) model was used to project malaria patterns for a 7 year period. RESULTS: Malaria across the three zones declined over the study period. The hotspots for malaria were highly variable over time in all the three zones. Rainfall played a significant role in influencing malaria burdens across the three zones. Vegetation had a significant influence on malaria in the higher altitudes. Meanwhile, in the lower altitude, human population had a significant positive correlation with malaria cases. CONCLUSIONS: Despite observed decline in malaria cases across the three altitudinal zones, the high altitude zone became a malaria hotspot as cases variably occurred in the zone. Rainfall played the biggest role in malaria trends. Human population appeared to influence malaria incidences in the low altitude areas partly due to population concentration in this zone. Malaria control interventions ought to be strengthened and strategically designed to achieve no malaria cases across all the altitudinal zones. Integration of climate information within malaria interventions can also strengthen eradication strategies of malaria in such differentiated altitudinal zones.

Integrating climate in Ugandan health and subsistence food systems: Where diverse knowledges meet

BACKGROUND: The effects of food insecurity linked to climate change will be exacerbated in subsistence communities that are dependent upon food systems for their livelihoods and sustenance. Place-and community-based forms of surveillance are important for growing an equitable evidence base that integrates climate, food, and health information as well as informs our understanding of how climate change impacts health through local and Indigenous subsistence food systems. METHODS: We present a case-study from southwestern Uganda with Batwa and Bakiga subsistence communities in Kanungu District. We conducted 22 key informant interviews to map what forms of monitoring and knowledge exist about health and subsistence food systems as they relate to seasonal variability. A participatory mapping exercise accompanied key informant interviews to identify who holds knowledge about health and subsistence food systems. Social network theory and analysis methods were used to explore how information flows between knowledge holders as well as the power and agency that is involved in knowledge production and exchange processes. RESULTS: This research maps existing networks of trusted relationships that are already used for integrating diverse knowledges, information, and administrative action. Narratives reveal inventories of ongoing and repeated cycles of observations, interpretations, evaluations, and adjustments that make up existing health and subsistence food monitoring and response. These networks of local health and subsistence food systems were not supported by distinct systems of climate and meteorological information. Our findings demonstrate how integrating surveillance systems is not just about what types of information we monitor, but also who and how knowledges are connected through existing networks of monitoring and response. CONCLUSION: Applying conventional approaches to surveillance, without deliberate consideration of the broader contextual and relational processes, can lead to the re-marginalization of peoples and the reproduction of inequalities in power between groups of people. We anticipate that our findings can be used to inform the initiation of a place-based integrated climate-food-health surveillance system in Kanungu District as well as other contexts with a rich diversity of knowledges and existing forms of monitoring and response.

Changing malaria fever test positivity among paediatric admissions to Tororo district hospital, Uganda 2012-2019

BACKGROUND: The World Health Organization (WHO) promotes long-lasting insecticidal nets (LLIN) and indoor residual house-spraying (IRS) for malaria control in endemic countries. However, long-term impact data of vector control interventions is rarely measured empirically. METHODS: Surveillance data was collected from paediatric admissions at Tororo district hospital for the period January 2012 to December 2019, during which LLIN and IRS campaigns were implemented in the district. Malaria test positivity rate (TPR) among febrile admissions aged 1 month to 14 years was aggregated at baseline and three intervention periods (first LLIN campaign; Bendiocarb IRS; and Actellic IRS?+?second LLIN campaign) and compared using before-and-after analysis. Interrupted time-series analysis (ITSA) was used to determine the effect of IRS (Bendiocarb?+?Actellic) with the second LLIN campaign on monthly TPR compared to the combined baseline and first LLIN campaign periods controlling for age, rainfall, type of malaria test performed. The mean and median ages were examined between intervention intervals and as trend since January 2012. RESULTS: Among 28,049 febrile admissions between January 2012 and December 2019, TPR decreased from 60% at baseline (January 2012-October 2013) to 31% during the final period of Actellic IRS and LLIN (June 2016-December 2019). Comparing intervention intervals to the baseline TPR (60.3%), TPR was higher during the first LLIN period (67.3%, difference 7.0%; 95% CI 5.2%, 8.8%, p?<?0.001), and lower during the Bendiocarb IRS (43.5%, difference -?16.8%; 95% CI -?18.7%, -?14.9%) and Actellic IRS (31.3%, difference -?29.0%; 95% CI -?30.3%, -?27.6%, p?<?0.001) periods. ITSA confirmed a significant decrease in the level and trend of TPR during the IRS (Bendicarb?+?Actellic) with the second LLIN period compared to the pre-IRS (baseline?+?first LLIN) period. The age of children with positive test results significantly increased with time from a mean of 24 months at baseline to 39 months during the final IRS and LLIN period. CONCLUSION: IRS can have a dramatic impact on hospital paediatric admissions harbouring malaria infection. The sustained expansion of effective vector control leads to an increase in the age of malaria positive febrile paediatric admissions. However, despite large reductions, malaria test-positive admissions continued to be concentrated in children aged under five years. Despite high coverage of IRS and LLIN, these vector control measures failed to interrupt transmission in Tororo district. Using simple, cost-effective hospital surveillance, it is possible to monitor the public health impacts of IRS in combination with LLIN.

Improving malaria evaluation and planning with enhanced climate services in East Africa

Healthy Futures Atlas: A publicly available resource for evaluating climate change risks on water-related and vector-borne disease in eastern Africa

Forecasting malaria transmission: finding the basis for making district scale predictions in Uganda

Mapping and modelling plague in Uganda to improve health outcomes

Drought and illness among young children in Uganda, 2009-2012

Assessing the interaction of land cover/land use dynamics, climate extremes and food systems in Uganda

The logic model for Uganda’s health sector preparedness for public health threats and emergencies

Temporal, spatial, and household dynamics of Typhoid fever in Kasese district, Uganda

Survey-based data on food security, nutrition and agricultural production shocks among rural farming households in northern Uganda

Seasonality of childhood tuberculosis cases in Kampala, Uganda, 2010-2015

Dynamical malaria forecasts are skillful at regional and local scales in Uganda up to 4 months ahead

Urban climate change, livelihood vulnerability and narratives of generational responsibility in Jinja, Uganda

Understanding weather and hospital admissions patterns to inform climate change adaptation strategies in the healthcare sector in Uganda

The 2015-2016 malaria epidemic in Northern Uganda; What are the implications for malaria control interventions?

Interactions between climatic changes and intervention effects on malaria spatio-temporal dynamics in Uganda

Influence of climatic factors on malaria epidemic in Gulu District, Northern Uganda: A 10-Year retrospective study

Drought and flood risk, impacts and adaptation options for resilience in rural communities of Uganda

Whether weather matters: Evidence of association between in utero meteorological exposures and foetal growth among Indigenous and non-Indigenous mothers in rural Uganda

Rural household vulnerability to climate risk in Uganda

Quality and dissemination of information from a drought early warning system in Karamoja sub-region, Uganda

Prenatal temperature shocks reduce cooperation: Evidence from public goods games in Uganda

Malaria incidence among children less than 5 years during and after cessation of indoor residual spraying in Northern Uganda

Infrastructure mitigates the sensitivity of child growth to local agriculture and rainfall in Nepal and Uganda

Institutional challenges to climate change adaptation: A case study on policy action gaps in Uganda

How seasonality and weather affect perinatal health: Comparing the experiences of indigenous and non-indigenous mothers in Kanungu district, Uganda

Ecological niche modeling for filoviruses: A Risk map for Ebola and Marburg Virus Disease Outbreaks in Uganda

Vulnerability to the health effects of climate variability in rural southwestern Uganda

To what extent does climate explain variations in reported malaria cases in early 20th century Uganda?

Severe flooding and Malaria transmission in the Western Ugandan Highlands: Implications for disease control in an era of global climate change

Seasonal variation of food security among the Batwa of Kanungu, Uganda

Risk of intestinal parasitic infections in people with different exposures to wastewater and fecal sludge in Kampala, Uganda: A cross-sectional study

Fishers’ perceptions of climate change, impacts on their livelihoods and adaptation strategies in environmental change hotspots: A case of Lake Wamala, Uganda

Assessing temporal associations between environmental factors and malaria morbidity at varying transmission settings in Uganda

Assessing the effects of air temperature and rainfall on malaria incidence: An epidemiological study across Rwanda and Uganda

Local and participatory approaches to building resilience in informal settlements in Uganda

Evaluation of climate change impacts and adaptation measures for maize cultivation in the western Uganda agro-ecological zone

Water and climate variability in developing countries: The case of Uganda

Relative undernourishment and food insecurity associations with Plasmodium falciparum among Batwa Pygmies in Uganda: Evidence from a cross-sectional survey

Vulnerability of indigenous health to climate change: A case study of Uganda’s Batwa Pygmies

Distribution and faunal richness of Cladocera in western Uganda crater lakes

Increased risk of diarrhoeal diseases from climate change: Evidence from urban communities supplied by groundwater in Uganda

Schistosomiasis transmission at high altitude crater lakes in Western Uganda

Solar powered water supply for drought-prone communities in Uganda