Drought is a distinct and complicated climate hazard that regularly leads to severe economic impacts. Changes in the frequency and occurrence of drought due to anthropogenic climate change can lead to new and unanticipated outcomes. To better prepare for health outcomes, more research is needed to develop methodologies to understand potential consequences. This study suggests a new methodology for assessing the impact of monthly severe drought exposure on mortality in the Northern Rockies and Plains of the United States from 2000 to 2018. A two-stage model with the power prior approach was applied to integrate heterogeneous severe drought pattern and estimate overall risk ratios of all-cause and cardiovascular mortality related to multiple drought indices (the US Drought Monitor, 6- and 12-month Standardized Precipitation-Evapotranspiration Index, 6- and 12 month Evaporative Demand Drought Index). Under severe drought, the risk ratios of all-cause mortality are 1.050 (95 % Cr: 1.031 to 1.071, USDM), 1.041 (95 % Cr: 1.022 to 1.060, 6-SPEI), 1.009 (95 % Cr: 0.989 to 1.031, 12SPEI), 1.045 (95 % Cr: 1.022 to 1.067, 6-EDDI), and 1.035 (95 % Cr: 1.009 to 1.062, 12-EDDI); cardiovascular mortality are 1.057 (95 % Cr: 1.023 to 1.091, USDM), 1.028 (95 % Cr: 0.998 to 1.059, 6-SPEI), 1.005 (95 % Cr: 0.973 to 1.040, 12-SPEI), 1.042 (95 % Cr: 1.005 to 1.080, 6-EDDI), and 1.004 (95 % Cr: 0.959 to 1.049, 12-EDDI). Our results showed that (i) a model with properly accounted for heterogeneous exposure pattern had greater risk ratios if statistically significant; (ii) a mid-term (6-month) severe drought had higher risk ratios compared to longer-term (12-month) drought; and (iii) different severe droughts affect populations in a different way. These results expand the existing knowledge of drought relationship to increasing mortality in the United States. The findings from this study highlight the need for communities and policymakers to establish effective drought-prevention initiatives in this region.
Few studies have examined the relationship between exposure to natural hazards and suicide and self-harm in youth. We extend prior research by investigating the association between multiple disasters and the risks of self-harm and suicide longitudinally in a nationally representative longitudinal cohort of adolescents 14 to 15 years to 18-19 years of age. Natural disasters were identified through parental self-reports for the local area. Different types of multiple disaster exposures were investigated including compound disasters (two or more disasters occurring in the last 12 months), cascading disasters (a disaster that leads to another disaster in the subsequent wave) and consecutive disasters (multiple disasters within the last two years or over an eight-year period). Using 8,714 person-waves of data from 2,908 adolescents, findings from random effect models suggest that parental reports of fire or floods increase the risk of self-harm ideation, self-harm, and suicidal ideation. Compound disasters of fire/flood and drought were also associated with increased risk of suicidal thoughts. Cascading disasters of drought followed by fire/flood increased the risks of self-harm but recurrent consecutive droughts were associated with lower risks of suicidal ideation. Australian adolescents are exposed to high rates of natural disasters that increase the risk of self-harm and thoughts of self-harm and suicide. Climate change will increase risk of natural disaster exposure for all countries. Despite these increased risks, there was resilience to disaster exposure particularly in the case of recurrent drought suggesting that youth, families and communities may well develop protective strategies to support mental health.
OBJECTIVE: Agricultural producers face a wide array of stress triggers, shocks, and long-term pressures such as drought, flooding, fire, government policies, financial insecurity, and physical injuries. Extant research has revealed that mental health stigma, lack of access to care in rural areas, and negative coping responses (alcohol abuse, suicide, prescription drugs use) exacerbate the challenge of producer responses to short and long-term adversity. Resilience, the traits, processes, and capacities of producers to adapt and transform their approach to farming or ranching, when necessary, in response to stress triggers or long-term pressures, has received less research attention, particularly in the Western United States. The purpose of the study was to apply an interactionist occupational resilience theoretical perspective to the investigation of contextual factors contributing to resilience in Western United States agricultural producers. METHODS: Qualitative interviews (45 to 90 minutes) were conducted with agricultural producers (n=51) from Western states and territories. Applied thematic analysis with a phenomenological lens was utilized to analyze interview transcriptions. First and second level coding were conducted to derive themes. RESULTS: The analysis revealed that resilience is based upon the interactions between traits of producers and the context of agriculture. Four themes were generated (Agricultural Life, External Stressors, Traits and Adaptations, and Supports and Resources), supported by subthemes. The themes and subthemes are depicted in an agricultural producer resiliency model. The findings shed light on the equivocal role of neighbors in providing support for each other and the double-edged sword of co-working with family. CONCLUSIONS: The findings underscore that social capital is an important mechanism for supporting farmers and ranchers, as those with stronger social resources are more resilient. We recommend more funding to tailor stress and mental health programming to the specifics of agriculture, integration of behavioral health in primary care as a mechanism to increase access to care, and more intentional technical assistance for farmers and ranchers on strategic planning and problem solving.
Climate change has increased the variability of river inflows in the Murray-Darling Basin, threatening the viability of irrigated agriculture, food processing industries and ecological condition of wetlands. With increasing water scarcity, decision-makers and communities face heightened contestation over scarce water resources and trade-offs and adaptation have become increasingly necessary. We used a social-ecological systems approach to identify thresholds of change in the Goulburn-Broken Catchment, a major food-producing region, to reveal options for adaptation to climate change. We developed systems models whereby feedbacks are identified between sub-systems of cultural paradigms, policies, human well-being and environmental condition. Models were constructed using data from semi-structured interviews with managers and decision-makers, industry reports and the scientific literature. We found environmental thresholds are fixed, but whether they are exceeded is socially determined. Environmental condition can be maintained by relaxing constraints on volumes of water released into the highly regulated river system and easing rules on the distribution of water among users in the dairy and horticulture industries. Socio-economic thresholds were more flexible. Industries have adapted to water scarcity through irrigation efficiency measures, inter-industry relationships for water-sharing and feed substitutes in dairy production. However, industry interdependence indicates potential for maladaption, whereas investment in adaptation and diversification offers more sustainable options. Current policy and management disconnects between water for the environment and water for food production reveal opportunities for co-benefits between environmental and socio-economic domains. Realising these benefits requires a systemic, inclusive adaptation pathways approach to design and implement options for change.
Climate change-related drought risks are intensifying in many urban areas, making stakes particularly high in contexts of severe vulnerability. Yet, how social power, differential agency and economic visions will shape societal responses to droughts remains poorly understood. Here, we build a social-environmental scenario of the possible impacts of an unprecedented drought in Maputo, which epitomizes a Southern African city with highly uneven development and differential vulnerability across urban areas. To build the scenario, we draw on theoretical insights from critical social sciences and take Cape Town (2015-2017) as a case-in-point of a locally unprecedented drought in Southern Africa. We show that future droughts in Southern Africa will probably polarize urban inequalities, generate localized public health crises and regress progress in water access. Climate policies must address these inequalities and develop equitable water distribution and conservation measures to ensure sustainable and inclusive adaptation to future droughts.
The warming of the global climate system is expected to result in significant socio-economic stress, primarily through the occurrence of extreme weather and climate events, with the potential for severe impacts on societies. This was evidenced by the vulnerability of European nations during the 2003 summer heatwave, which resulted in the death of tens of thousands of individuals due to heat-related complications. In this analysis, we examine the summer of 2022 in Spain, a Mediterranean country that is among the most impacted by the effects of climate change. A distinct pattern of the subtropical ridge in the 500 hPa geopotential height, which is typically linked to the occurrence of heatwaves in the Iberian Peninsula (IP), and the atmospheric blocking in the North Atlantic region facilitated the southerly flow of exceptionally warm air masses from Africa towards the IP, contributing to the sustained high temperatures throughout the summer season. Our results show that Spain experienced record -breaking temperatures in nearly half of the country that favored more frequent, intense, and longer-lasting heatwaves compared to previous historical records available from 1893. In general, despite normal rainfall conditions, the extremely high temperatures led to intense drought conditions in most areas. Finally, the pa-leoclimatic records suggest that the average summer temperature of 2022 was unprecedented within the last 700 years, and the driest within the last 279 in NE Spain. These findings highlight the need for measures to mitigate the effects of heat on at-risk populations, and to increase resilience and adaptation to climate change in the future.
Droughts reduce hydropower production and heatwaves increase electricity demand, forcing power system operators to rely more on fossil fuel power plants. However, less is known about how droughts and heat waves impact the county level distribution of health damages from power plant emissions. Using California as a case study, we simulate emissions from power plants under a 500-year synthetic weather ensemble. We find that human health damages are highest in hot, dry years. Counties with a majority of people of color and counties with high pollution burden (which are somewhat overlapping) are disproportionately impacted by increased emissions from power plants during droughts and heat waves. Taxing power plant operations based on each plant’s contribution to health damages significantly reduces average exposure. However, emissions taxes do not reduce air pollution damages on the worst polluting days, because supply scarcity (caused by severe heat waves) forces system operators to use every power plant available to avoid causing a blackout.
Climate-sensitive infectious diseases are an issue of growing concern due to global warming and the related increase in the incidence of extreme weather and climate events. Diarrhea, which is strongly associated with climatic factors, remains among the leading causes of child death globally, disproportionately affecting populations in low- and middle-income countries (LMICs). We use survey data for 51 LMICs between 2000 and 2019 in combination with gridded climate data to estimate the association between precipitation shocks and reported symptoms of diarrheal illness in young children. We account for differences in exposure risk by climate type and explore the modifying role of various social factors. We find that droughts are positively associated with diarrhea in the tropical savanna regions, particularly during the dry season and dry-to-wet and wet-to-dry transition seasons. In the humid subtropical regions, we find that heavy precipitation events are associated with increased risk of diarrhea during the dry season and the transition from dry-to-wet season. Our analysis of effect modifiers highlights certain social vulnerabilities that exacerbate these associations in the two climate zones and present opportunities for public health intervention. For example, we show that stool disposal practices, child feeding practices, and immunizing against the rotavirus modify the association between drought and diarrhea in the tropical savanna regions. In the humid subtropical regions, household’s source of water and water disinfection practices modify the association between heavy precipitation and diarrhea. The evidence of effect modification varies depending on the type and duration of the precipitation shock.
The climate of southern Africa is expected to become hotter and drier with more frequent severe droughts and the incidence of diarrhoea to increase. From 2015 to 2018, Cape Town, South Africa, experienced a severe drought which resulted in extreme water conservation efforts. We aimed to gain a more holistic understanding of the relationship between diarrhoea in young children and climate variability in a system stressed by water scarcity. METHODS: Using a mixed-methods approach, we explored diarrhoeal disease incidence in children under 5 years between 2010 to 2019 in Cape Town, primarily in the public health system through routinely collected diarrhoeal incidence and weather station data. We developed a negative binomial regression model to understand the relationship between temperature, precipitation, and relative humidity on incidence of diarrhoea with dehydration. We conducted in-depth interviews with stakeholders in the fields of health, environment, and human development on perceptions around diarrhoea and health-related interventions both prior to and over the drought, and analysed them through the framework method. RESULTS: From diarrhoeal incidence data, the diarrhoea with dehydration incidence decreased over the decade studied, e.g. reduction of 64.7% in 2019 [95% confidence interval (CI): 5.5-7.2%] compared to 2010, with no increase during the severe drought period. Over the hot dry diarrhoeal season (November to May), the monthly diarrhoea with dehydration incidence increased by 7.4% (95% CI: 4.5-10.3%) per 1 °C increase in temperature and 2.6% (95% CI: 1.7-3.5%) per 1% increase in relative humidity in the unlagged model. Stakeholder interviews found that extensive and sustained diarrhoeal interventions were perceived to be responsible for the overall reduction in diarrhoeal incidence and mortality over the prior decade. During the drought, as diarrhoeal interventions were maintained, the expected increase in incidence in the public health sector did not occur. CONCLUSIONS: We found that that diarrhoeal incidence has decreased over the last decade and that incidence is strongly influenced by local temperature and humidity, particularly over the hot dry season. While climate change and extreme weather events especially stress systems supporting vulnerable populations such as young children, maintaining strong and consistent public health interventions helps to reduce negative health impacts.
As a destructive and economic disaster in the world, drought shows an increasing trend under the continuous global climate change and adverse health effects have been reported. The interactive effects between drought and air pollutants, which may also be harmful to respiratory systems, remain to be discussed. We built the generalized additive model (GAM) and distributed lag nonlinear model (DLNM) to estimate the effects of drought and air pollutants on daily upper respiratory infections (URTI) outpatient visits among children under 6 in three cities of Gansu province. The Standardized Precipitation Index (SPI) based on monthly precipitation (SPI-1) was used as an indicator of drought. A non-stratified model was established to explore the interaction effect of SPI-1 and air pollutants. We illustrated the number of daily pediatric URTI outpatient visits increased with the decrease in SPI-1. The interactive effects between air pollutants and the number of daily pediatric URTIs were significant. According to the non-stratified model, we revealed highly polluted and drought environments had the most significant impact on URTI in children. The occurrence of drought and air pollutants increased URTI in children and exhibited a significant interactive effect.
As global average temperatures rise, so does the frequency and intensity of El Nino-induced droughts, which in turn threaten the reliability of hydropower. 1.4 billion people live in countries where hydropower constitutes more than a quarter of the electricity production and which have experienced El Nino droughts, meaning many more power outages can be expected around the world. Little research has been conducted on the impact of power outages on mental health. This study takes Zambia as its case study to examine the impact that El Nino droughts have had on the lives of householders connected to a highly hydropower-dependant electricity grid, and includes the impact it has had on their physical and self-reported mental health. Using 54 online responses to a survey, we found that the greatest impacts of outages spoiled food, compromised entertainment, compromised ability to work and limitation in cooking options. More than a fifth of respondents reported experiencing self-reported depression to a major degree or all of the time due to power outages, with individuals writing their own responses that they felt debilitated, experienced reduced communication and reduced activities, and stress. Using Bayesian inference, we found that changes in sleeping patterns arising from power outages was a statistically significant predictor of self-reported depression. 63% of surveyed households were willing to pay approximately USD 0.10/kWh as of the end of 2019, about double the tariff that they did, to ensure reliable electricity supply. Household income was a statistically significant predictor of willingness to pay more.
The link between population dynamics and climate-related severe events is complicated. Extreme weather events (EWEs), along with other factors such as socioeconomic and cultural factors, influence population dynamics, particularly changes in fertility, mortality, and migration. This study focuses solely on the fertility aspect of climate change and aims to investigate it in Bangladesh, which is extremely sensitive to climate change and EWEs such as floods, cyclones, and droughts. On a regular basis, the country is confronted with a number of EWEs. The current study examines how different types of extreme weather events affect vulnerable people’s decisions to have children or to prefer children of a certain gender. People who reside in a particular area may be more vulnerable to particular EWE types, which may result in different preferences for fertility and gender. This study employed individual-level data from three places (flood-prone, drought-prone, and cyclone-prone), each exposed to a distinct hazard, to address this issue, and collected pertinent information from 177 respondents in the susceptible areas using a survey questionnaire. The quantitative results show that the gender of the first child, the perceived risk of infant death due to EWE, the opinion on having more children to recover from the damage and losses caused by EWE, government and non-governmental organization (NGO) support during EWE, and the intended timing of child bearing (after or before EWE) are all significant factors influencing fertility preferences and gender preferences. The findings also indicate that the three regions under investigation have statistically distinct preferences for fertility and gender. There were larger differences between flood-prone areas and drought- and cyclone-prone areas. The complex issue of variations due to different EWEs requires more in-depth studies with larger samples and different methodological techniques.
Extreme weather events lead to significant adverse societal costs. Extreme Event Attribution (EEA), a methodology that examines how anthropogenic greenhouse gas emissions had changed the occurrence of specific extreme weather events, allows us to quantify the climate change-induced component of these costs. We collect data from all available EEA studies, combine these with data on the socio-economic costs of these events and extrapolate for missing data to arrive at an estimate of the global costs of extreme weather attributable to climate change in the last twenty years. We find that US[Formula: see text] 143 billion per year of the costs of extreme events is attributable to climatic change. The majority (63%), of this is due to human loss of life. Our results suggest that the frequently cited estimates of the economic costs of climate change arrived at by using Integrated Assessment Models may be substantially underestimated.
Drought is one natural disaster with the greatest impact worldwide. Southern Africa (SA) is susceptible and vulnerable to drought due to its type of climate. In the last four decades, droughts have occurred more frequently, with increasing intensity and impacts on ecosystems, agriculture, and health. The work consists of a systematic literature review on the drought regime’s characteristics in the SA under current and future climatic conditions, conducted on the Web of Science and Scopus platforms, using the PRISMA2020 methodology, with usual and appropriate inclusion and exclusion criteria to minimize/eliminate the risk of bias, which lead to 53 documents published after the year 1987. The number of publications on the drought regime in SA is still very small. The country with the most drought situations studied is South Africa, and the countries with fewer studies are Angola and Namibia. The analysis revealed that the main driver of drought in SA is the ocean-atmosphere interactions, including the El Nino Southern Oscillation. The documents used drought indices, evaluating drought descriptors for some regions, but it was not possible to identify one publication that reports the complete study of the drought regime, including the spatial and temporal distribution of all drought descriptors in SA.
Although a growing body of literature studies drought impacts, papers providing a comprehensive review of drought’s social and economic impacts are scarce. This paper fills this gap by exploring the consequences of drought on societies based on research findings in Australia-a large country used to experiencing severe droughts. To do this, we propose a framework to categorise drought impacts in three dimensions: individuals/households (including health), productive sectors and system (including economic and ecosystem) impacts. The framework then guides a systematic literature review and discussion of studies looking at diverse drought impacts and their related costs. By analysing and discussing the findings from this literature, we emphasise different policy considerations, empirical challenges and research needs to support robust analysis and estimates of the true cost of droughts. We conclude by proposing an expanded framework to identify drought impacts and a discussion of the implications of the review for policy development.
This study traces the causal effects of extreme weather events on nutritional and health outcomes among rural children in Uganda using four waves of individual child survey data (2009-2014). A simultaneous regression model was applied for causal inference while also accounting for households’ adaptive responses. The study finds the evidence of a significant negative relationship between extreme weather events and availability of calories and nutrients for children. In particular, droughts reduced calorie, protein and zinc supply, and overall diet diversity by 67%, 37%, 28% and 30%, respectively. We further traced the effects of this reduced calorie and nutrient availability on child health indicators. A 10% decrease in zinc supply decreased height-for-age z-scores (HAZ) by around 0.139 – 0.164 standard deviations (SD), and increased probability of stunting ranging from 3.1 to 3.5 percentage points. Both boys and girls HAZ and stunting rates were sensitive to nutrient inadequacies. Different coping and adaptation strategies significantly influenced rural households’ ability to safeguard children’s nutrition and health against the effects of extreme weather. The findings of this study provide specific insights for building ex-ante resilience against extreme weather events, particularly when compared to ex-post, unsustainable, and often costlier relief actions.
Arid pastoralism is often understood as an adaptive strategy to marginal environments. As pastoralists become increasingly market integrated, novel dietary preferences and access to low quality market foods can erode traditional diets. These market-based dietary shifts are particularly problematic during sustained drought, where reductions in traditional foods make pastoralists increasingly reliant on a cash economy. Among the Himba of the Kunene region in Namibia, colonial policies prohibiting access to livestock markets inhibit access to a cash-based economy, leaving them vulnerable to food insecurity when nontraditional foods are needed to supplement traditional lifeways during drought. To understand the impacts of long-term drought on diet and food insecurity, we collected longitudinal survey data on diet breadth and food insecurity across 4 years during a multi-year drought. METHODS: Participants completed a five-item food insecurity survey and recalled diet breadth survey over the course of 4 years (N = 191-234). Additionally, women completed a short survey of recent stressors, including health and resource stressors (N = 127). We used a set of multilevel models to estimate changes in food insecurity items and diet breadth changes over the course of the study period. RESULTS: Multilevel models predicted score outcomes, as well as individual item responses, by year of data collection. Results indicate a 43% increase in average food insecurity and a 15% decline in average diet breadth over the study period. Dietary recall indicates that drought caused a reduction in sour milk intake, and an increase in nontraditional foods, but no change in meat or maize consumption. CONCLUSIONS: Sustained drought in the Kunene region is having long-term impacts on food insecurity, which could result in dietary shifts that outlast the current period of drought. We consider the implications of this change, especially as it relates to increasing market integration and reliance on a cash-based over a subsistence-based economy.
Climate change has brought increasing attention to the assessment of health risks associated with climate and extreme events. Drought is a complex climate phenomenon that has been increasing in frequency and severity both locally and globally due to climate change. However, the health risks of drought are often overlooked, especially in places such as the United States, as the pathways to health impacts are complex and indirect. This study aims to conduct a comprehensive assessment of the effects of monthly drought exposure on respiratory mortality for NOAA climate regions in the United States from 2000 to 2018. A two-stage model was applied to estimate the location-specific and overall effects of respiratory risk associated with two different drought indices over two timescales (the US Drought Monitor and the 6-month and 12-month Evaporative Demand Drought Index). During moderate and severe drought exposure, respiratory mortality risk ratio in the general population increased up to 6.0% (95% Cr: 4.8 to 7.2) in the Northeast, 9.0% (95% Cr: 4.9 to 13.3) in the Northern Rockies and Plains, 5.2% (95% Cr: 3.9 to 6.5) in the Ohio Valley, 3.5% (95% Cr: 1.9 to 5.0) in the Southeast, and 15.9% (95% Cr: 10.8 to 20.4) in the Upper Midwest. Our results showed that age, ethnicity, sex (both male and female), and urbanicity (both metro and non-metro) resulted in more affected population subgroups in certain climate regions. The magnitude and direction of respiratory risk ratio differed across NOAA climate regions. These results demonstrate a need for policymakers and communities to develop more effective strategies to mitigate the effects of drought across regions.
BACKGROUND: Past research on the impact of climatic events, such as drought, on birth outcomes has primarily been focused in Africa, with less research in South Asia, including Nepal. Existing evidence has generally found that drought impacts birthweight and infant sex, with differences by trimester. Additionally, less research has looked at the impact of excess rain on birth outcomes or focused on the impact of rainfall extremes in the preconception period. Using data from a large demographic surveillance system in Nepal, combined with a novel measure of drought/excess rainfall, we explore the impact of these on birthweight by time in pregnancy. METHODS: Using survey data from the 2016 to 2019 Chitwan Valley Study in rural Nepal combined with data from Climate Hazards InfraRed Precipitation with Station, we explored the association between excess rainfall and drought and birthweight, looking at exposure in the preconception period, and by trimester of pregnancy. We also explore the impact of excess rainfall and drought on infant sex and delivery with a skilled birth attendant. We used multilevel regressions and explored for effect modification by maternal age. RESULTS: Drought in the first trimester is associated with lower birthweight (β = -82.9 g; 95% confidence interval [CI] = 164.7, -1.2) and drought in the preconception period with a high likelihood of having a male (odds ratio [OR] = 1.41; 95% CI = 1.01, 2.01). Excess rainfall in the first trimester is associated with high birthweight (β = 111.6 g; 95% CI = 20.5, 202.7) and higher odds of having a male (OR = 1.48; 95% CI = 1.02, 2.16), and in the third trimester with higher odds of low birth weight (OR = 2.50; 95% CI = 1.40, 4.45). CONCLUSIONS: Increasing rainfall extremes will likely impact birth outcomes and could have implications for sex ratios at birth.
Water resources, whether exceeding per capita water abundance thresholds or below water scarcity thresholds, are health determinants within small island developing states (SIDS). Thresholds indicate water stress vulnerability in SIDS, however, underestimate the physicality associated with a lack of water. The objectives of this study are to capture the main challenges of consistently meeting water demand in SIDS and to present their intersection with certain diseases or factors associated with specific health conditions like dengue fever, gastrointestinal disorders, dehydration, and malnutrition. This review utilizes archival evidence to categorize the challenges undermining water availability in SIDS with the view that these issues present or exacerbate health outcomes. Seasonal rainfall variations (73%), inadequate distribution infrastructure (64%), saltwater intrusion (61%), contamination (58%), human-induced watershed change (19%), and sea level rise (17%) were identified from 108 country-specific sources as challenges to consistently meeting water demand by 59 SIDS. Any water stress indicator must consider that it is contingent on its human burden. These challenges affect food security through agricultural drought and soil salinization, and the proliferation of vector-borne and sanitation-related diseases across SIDS. This review is the first step in determining the human health burden of water insecurity in SIDS.HIGHLIGHTS center dot Environmental properties, resource protection and distribution infrastructure determine water security in SIDS.center dot Rainfall variations and saltwater intrusion affect water resources in .60% of SIDS & threaten food security.center dot Seasonality, insufficient infrastructure, watershed change, and pollution increase the risk of vector-& water-borne disease.center dot Accounting for the human burden of climate-associated water insecurity would benefit SIDS.
Beliefs form the fabric of every society. Likewise, there are socio-cultural beliefs that people hold as causes of climate risk. This paper sought to identify the socio-cultural beliefs on drought among crop farmers in Talensi, Ghana and how these provide insights for environmental management, social vulnerability, early warning systems and coping and adaptation. The selection of Talensi District was appropriate because it is one of the agrarian districts located in drought prone zone of Ghana. The study was designed following the case study approach. A total of 69 participants were selected through purposive sampling to participate in key informant interviews and focus group discussions conducted across nine (9) communities. The study found that manifestation of bad and/or indecent behavioural practices; performance and/or non-performance of traditional rites; presence and behaviour peculiar animals; and magical conjurations and incantations by spiritualists, diviners and soothsayers were the significant socio-cultural beliefs accounting for drought. The study concludes that the socio-cultural beliefs of the local people are their social-cultural capital and this asset is a useful gamut in explaining the social vulnerability; development of early warning drought systems; and selection of coping and adaptation strategies in Talensi District. A major recommendation is that individuals and institutions with expertise in technical and scientific early warning drought information should be circumspect in not adopting a judgmental approach when they are communicating and disseminating risk information, to the detriment of indigenous knowledge.
Environmental stresses including salinity, drought, cold, warmer temperatures, alterations in precipitation patterns, fluctuations of weather events, and increasing insect and disease infestations negatively affect crop production and nutritional values. This situation becomes further complicated due to the changing climatic conditions, thus raising concern about food security worldwide. Some worst-case projections indicated that by 2100, CO2 concentrations will reach 950 parts per million, temperatures will climb by 3.5 to more than 8 degrees C, sea level will rise by more than 2.4 meters, and the average farmland drought risk index will increase from 52.45 to 129. In addition, average precipitation will increase by 1%-3% in some areas and atmospheric water vapor will increase by 6%-7% for every degree of temperature rise. Rice (Oryza sativa L.) is a staple crop in many parts of the world. The main objective of this review is to highlight the prospects of rice for future climatic conditions. The present review depicts the advantages and prospects of rice and addresses why rice is a better option as a cereal crop for the future situations for food and nutritional sustainability. The impact of climate change on food and nutritional security can be mitigated by developing biotic and abiotic stress-tolerant and biofortified rice varieties. These rice cultivars can withstand the negative effects of climate change while also meeting the nutritional needs of future generations. Furthermore, this review underlines the forthcoming issues and measures that should be addressed to assure a sustainable food and nutritional supply in the era of global climate change.
The use of reclaimed water for irrigation is an option that is becoming increasingly widespread to alleviate water scarcity and to cope with drought. However, reclaimed water, if used for irrigation, may introduce Contaminants of Emerging Concern (CECs) into the agroecosystems, which may be taken up by the crops and subsequently enter the food chain. The number of CECs is steadily increasing due to their continuous introduction on the market for different uses. There is an urgent need to draw up a short list of potential high priority CECs, which are substances that could be taken up by plants and accumulated in food produce, and/or that could have negative effects on human health and the environment. This review presents and discusses the approaches developed to prioritize CECs when reclaimed water is (re-)used for irrigation. They are divided into quantitative methodologies, which estimate the risk for environmental compartments (soil and water), predators and humans through equations, and qualitative methodologies, which are instead conceptual frameworks or procedures based on the simultaneous combination of data/information/practices with the judgment of experts. Three antibiotics (erythromycin, sulfamethoxazole and ciprofloxacin), one estrogen (17-α ethinylestradiol) and one analgesic (ibuprofen) were found on at least two priority lists, although comparison among studies is still difficult. The review remarks that it is advisable to harmonize the different methodologies in order to identify the priority CECs to include in monitoring programs in reclaimed water reuse projects and to ensure a high level of protection for humans and the environment.
Extreme weather events are expected to increase due to climate change, which could pose an additional burden of morbidity and mortality. In recent decades, drought severity has increased in several regions around the world, affecting health by increasing the risk of water-, food-, and vector-borne diseases, malnutrition, cardiovascular and respiratory illness, mental health disorders, and mortality. Drought frequency and severity are expected to worsen across large regions as a result of a decrease in precipitation and an increase in temperature and atmospheric evaporative demand, posing a pressing challenge for public health. Variation in impacts among countries and communities is due to multiple factors, such as aging, socioeconomic status, access to health care, and gender, affecting population resilience. Integrative proactive action plans focused on risk management are required, and resources should be transferred to developing countries to reduce their vulnerability and risk.
We have limited knowledge on the impact of hydrometeorological conditions on dengue incidence in China and its associated disease burden in a future with a changed climate. This study projects the excess risk of dengue caused by climate change-induced hydrometeorological conditions across mainland China. METHODS: In this modelling study, the historical association between the Palmer drought severity index (PDSI) and dengue was estimated with a spatiotemporal Bayesian hierarchical model from 70 cities. The association combined with the dengue-transmission biological model was used to project the annual excess risk of dengue related to PDSI by 2100 across mainland China, under three representative concentration pathways ([RCP] 2·6, RCP 4·5, and RCP 8·5). FINDINGS: 93 101 dengue cases were reported between 2013 and 2019 in mainland China. Dry and wet conditions within 3 months lag were associated with increased risk of dengue. Locations with potential dengue risk in China will expand in the future. The hydrometeorological changes are projected to substantially affect the risk of dengue in regions with mid-to-low latitudes, especially the coastal areas under high emission scenarios. By 2100, the annual average increased excess risk is expected to range from 12·56% (95% empirical CI 9·54-22·24) in northwest China to 173·62% (153·15-254·82) in south China under the highest emission scenario. INTERPRETATION: Hydrometeorological conditions are predicted to increase the risk of dengue in the future in the south, east, and central areas of mainland China in disproportionate patterns. Our findings have implications for the preparation of public health interventions to minimise the health hazards of non-optimal hydrometeorological conditions in a context of climate change. FUNDING: National Natural Science Foundation of China.
As a widespread natural hazard, droughts impact several aspects of human society adversely. Thus, the present study aims to answer the following research questions; (i) What are the expected variabilities in different drought conditions over India in the future? (ii) How the population exposure to drought varies under different climate change and population scenarios? (iii) How is the total exposure attributed to the individual exposure (climate, population, and interaction) in future climate change scenarios? In this sense, the study is performed under four Shared Socioeconomic Pathways scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) using thirteen Global Climate Models from Coupled Model Intercomparison Project Phase 6 and Standardized Precipitation Evapotranspiration Index as a drought indicator. The future period is divided into two parts i.e., 2023-2061 (T1) and 2062-2100 (T2), and compared with the historical period during 1967-2005. The results show that the severe (56 % to 72 % of the area) and extreme (99 % of the area) droughts are likely to increase under all the scenarios for 3-month scale conditions, respectively. The drought intensity is projected to increase under 3-and 12-month scale drought conditions. The population exposure to the extreme drought severity is anticipated to increase for both the drought conditions and the highest exposure is noticed under the SSP3-7.0 scenario. The significant contribution from climate or interaction effects is observed in the case of 3- and 9-month scale extreme drought conditions. The present study necessitates a call for effective measures to alleviate the risk, especially in the high-risk areas of India.
Somali post-conflict development faces many challenges that affect the sustainability of the water sector. This paper reviews and analyses the post-conflict development activities in the water sector through local communications and reviewing published materials and databases from international players in Somalia, funding agencies and financial tracking service. The paper has shown that there has been great attention and support given to the country during its post-conflict development. However, most of these initiatives and projects have focused on emerging issues such as tackling food security and water, sanitation and hygiene services. The paper also shows that the continuous funding of emerging issues in Somalia has reduced its long-term sustainability of the water sector and limited its national and long-term benefits but has increased corruption due to increase the gap between actors and local people. Therefore, new transparent cooperative initiatives are needed based on transparent involvement and coordination among donors, local authorities and implementers to improve and develop the water sector and the livelihood in Somalia through a solid water governance system.
Compound dry hot events (CDHEs), where hot events and droughts coexist, have received a lot of attention lately due to their catastrophic effects on the economy, environment and human health. In this study, we use two CDHE indices, the Standardized Compound Event Indicator (SCEI) and the Standardized Dry and Hot Index (SDHI), to assess changes in CDHE characteristics (severity, frequency, spatial extent) over the historical past and future CMIP6 simulations across the Indian subcontinent. To understand the role of the drought index selected on CDHE characterization two drought indices namely the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) are employed in the calculation of the CDHE indices. Further, the role of climatic oscillations such as El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Equatorial Indian Ocean Monsoon Oscillation and Indian Ocean Dipole in modulating CDHE characteristics have also been explored. Results show that SPI and SPEI based CDHE indices exhibit contrasting trends in northern India, while similar trends are observed in southern India in the historical past. Also, more frequent, extended, and severe CDHEs are reported by CDHE indices calculated using SPEI than by SPI. Temperature is found to be the dominant factor contributing to increases in CDHEs in the recent past and ENSO phases significantly modulate the severity and frequency of CDHE events in India. CMIP6 simulations generally report an increase in CDHE events for a 3 degrees C global warming scenario. Overall, our findings show that the choice of the drought index has a greater impact on CDHE characterization than the choice of the CDHE index itself. Results from this study provide useful information towards understanding the risk of CDHEs in India under global warming and urge for the development and implementation of adaptation and mitigation measures.
Natural hazards are increasing because of climate change, and they disproportionately affect vulnerable populations. Prior reviews of the mental health consequences of natural hazard events have not focused on the particular experiences of vulnerable groups. Based on the expected increase in fires and droughts in the coming years, the aim of this systematic review is to synthesize the global evidence about the mental health of vulnerable populations after experiencing natural hazards. We searched databases such as Ovid MEDLINE, EMBASE, CINAHL and Ovid PsycInfo using a systematic strategy, which yielded 3,401 publications. We identified 18 eligible studies conducted in five different countries with 15,959 participants. The most common vulnerabilities were living in a rural area, occupying a low socioeconomic position, being a member of an ethnic minority and having a medical condition. Common experiences reported by vulnerable individuals affected by drought included worry, hopelessness, isolation and suicidal thoughts and behaviors. Those affected by fire reported experiencing posttraumatic stress disorder (PTSD) and anger. These mental health problems exacerbated existing health and socioeconomic challenges. The evidence base about mental health in vulnerable communities affected by natural hazards can be improved by including standardized measures and comparison groups, examining the role of intersectional vulnerabilities, and disaggregating data routinely to allow for analyses of the particular experiences of vulnerable communities. Such efforts will help ensure that programs are informed by an understanding of the unique needs of these communities.
The Central African Region is an agricultural and fishing-based economy, with 40% of the population living in rural communities. The negative impacts of climate change have caused economic/health-related adverse impacts and food insecurity. This original article aims to research four key themes: (i) acute food insecurity (AFI); (ii) childhood malnutrition and mortality; (iii) infectious disease burden; and (iv) drought and mean temperature projections throughout the twenty-first century. Food insecurity was mapped in Central Africa based on the Integrated Food Security Phase Classification (IPC) for AFI. The global hunger index (GHI) was presented along with the proportion of children with undernourishment, stunting, wasting, and mortality. Data for infectious disease burden was computed by assessing the adjusted rate of change (AROC) of mortality due to diarrhea among children and the burden of death rates due to pneumonia across all age groups. Finally, the mean drought index was computed through the year 2100. This population-based study identifies high levels of hunger across a majority of the countries, with the mean drought index suggesting extreme ends of wet and dry days and an overall rise of 1-3 °C. This study is a source of evidence for stakeholders, policymakers, and the population residing in Central Africa.
As a result of climatically regulated water sources, smallholder farming households in South Africa are severely impacted by climate change. Using the Livelihood Vulnerability Index, we assessed the vulnerability of smallholder farming households to climate change in Thaba Nchu, Mangaung District of the Free State Province of South Africa. Primary data from 301 smallholder farming households were collected and augmented with secondary data on temperature and rainfall from 2010 to 2020. The study found that farming households in Central Thaba Nchu are more vulnerable than those in North and South Thaba Nchu in terms of adaptive capacity: social network, livelihoods strategies, and socio-demographic structure. The Central Thaba Nchu were likewise more vulnerable to water resources than the Northern and Southern Thaba Nchu. However, Northern Thaba Nchu is more exposed and sensitive to health-related difficulties than Central and Southern Thaba Nchu. The study recommends that non-government and government institutions in the province should employ a pragmatic method to evaluate vulnerability using climate service information while prioritizing vulnerable households for adaptation support to improve adaptive capacity and resilience. The findings also imply that weather forecasters, in partnership with agricultural extension agents, must provide farmers with timely and adequate climate information reports to prepare them for climatic shocks. Moreover, it is important to deliver climate service information that is genuine, significant, and reliable.
Natural disasters in the Central Highlands of Vietnam are increasing and therefore becoming a concern for the provincial governments. The local authorities’ recent ability to respond to natural disasters in the region is considered ineffective, as evidenced by the increasing number of deaths and economic losses. Here, we focus on presenting and analyzing the current capacity of local authorities in the Central Highlands of Vietnam to respond to natural disasters in a normal state and in transitioning to an emergency state. We also provide evidence of natural disasters that have occurred and the actions undertaken by the Central Highlands provinces over the period 2015-2021. Our analysis shows that the capacity of local authorities to respond to natural disasters in the region is not commensurate with the actual requirements, in the dry season, the drought area increases, in the rainy season floods occur more, and human losses and economic losses have not been controlled. We propose that first of all, the government needs to have a system of timely guidance documents, the coordination between relevant agencies, secondly, that civil servants working in disaster response work must be capable, thirdly, the government must there should be publicity on how to respond, four is to limit the hot growth of projects such as hydroelectric projects, five is that the government must have a long-term master plan and sixth is to pay attention to livelihoods, education level of local ethnic people. These proposals can gradually control and limit the damage caused by increasingly severe natural disasters in the Central Highlands.
OBJECTIVES: to provide evidence of the health impacts of climate change in Italy. DESIGN: descriptive study. SETTING AND PARTICIPANTS: the indicators published in the 2022 Lancet Countdown report were adapted and refined to provide the most recent data relevant to Italy. MAIN OUTCOME MEASURES: twelve indicators were measured, organized within five sections mirroring those of the 2022 Lancet Countdown report: climate change impacts, exposures, and vulnerabilities; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. RESULTS: the overall picture depicted by the analysis of the 12 indicators reveals two key findings. First, climate change is already affecting the health of Italian populations, with effects not being uniform across the Country and with the most vulnerable groups being disproportionately at risk. Second, results showed that Italy’s mitigation response has been partial, with major costs to human health. Accelerated climate change mitigation through energy system decarbonisation and shifts to more sustainable modes of transport could offer major benefits to health from cleaner air locally and from more active lifestyles, and to climate change from reduction of global warming. The decarbonisation of agricultural systems would similarly offer health co-benefits to Italian population. Conclusions: through accelerated action on climate change mitigation, Italy has the opportunity of delivering major and immediate health benefits to its population. Developing a key set of local indicators to monitor the impacts of climate change and evaluate response actions, in terms of adaptation and mitigation, can help support and enhance policy and action to fight climate changes.
Terminal lakes in the Great Basin (GB) of the western US host critical wildlife habitat and food for migrating birds and can be associated with serious human health and economic consequences when they desiccate. Water levels have declined dramatically in the last 100+ years due to diversion of inflows, drought and climate change. Satellite-derived environmental science data records (ESDRs) from the MODerate-resolution Imaging Spectroradiometer (MODIS) (snow cover, evapotranspiration (ET) and land surface temperature (LST)), enable a unique approach to evaluate the effects of aridification on terminal lakes and to study their individual vulnerabilities. Surface and air temperatures in the GB are rising dramatically, with a sharp rise in the rate of increase observed beginning around 2011, while the number of days of snow cover is declining especially in the western mountainous part of the GB as exemplified in Mono Basin, California. Rising temperatures coincide with fewer days of snow cover, a decrease of inflow to the lakes and greater evaporation of water from the lakes. MODIS ESDRs show strong and statistically significant increasing surface temperature (LST) in the GB, a reduction in the number of days of snow cover, and mixed results in ET. ET declined slightly in the more arid parts of the GB due to greater moisture restrictions to evaporation from extended drought, while ET increased in the more-vegetated, wetter, mountainous northeastern parts as temperatures have risen. Severe and costly ecological, human health and economic consequences are expected if the lakes continue to decline as predicted.
The climate change and increasing anthropogenic pressures are expected to limit the availability of water resources. Hence, active measures must be planned in vulnerable regions to ensure a sustainable water supply and minimize environmental impacts. A pilot test was carried out in the Llobregat River (NE Spain) aiming to provide a useful procedure to cope with severe droughts through indirect water reuse. Reclaimed water was used to restore the minimum flow of the lower Llobregat River, ensuring a suitable water supply downstream for Barcelona. A monitoring was performed to assess chemical and microbiological threats throughout the water treatment train, the river and the final drinking water, including 376 micropollutants and common microbiological indicators. The effects of water disinfection were studied by chlorinating reclaimed water prior to its discharge into the river. Data showed that 10 micropollutants (bromodichloromethane, dibromochloromethane, chloroform, EDDP, diclofenac, iopamidol, ioprimid, lamotrigine, ofloxacin and valsartan) posed a potential risk to aquatic life, whereas one solvent (1,4-dioxane) could affect human health. The chlorination of reclaimed water mitigated the occurrence of pharmaceuticals but, conversely, the concentration of halogenated disinfection by-products increased. From a microbiological perspective, the microbial load decreased along wastewater treatments and, later, along drinking water treatment, ultimately reaching undetectable values in final potable water. Non-chlorinated reclaimed water showed a lower log reduction of E. coli and coliphages than chlorinated water. However, the effect of disinfection vanished once reclaimed water was discharged into the river, as the basal concentration of microorganisms in the Llobregat River was comparable to that of non-chlorinated reclaimed water. Overall, our study indicates that indirect water reuse can be a valid alternative source of drinking water in densely populated areas such as Barcelona (Catalonia – NE Spain). A suitable monitoring procedure is presented to assess the related risks to human health and the aquatic ecosystem.
Mwenezi district is a drought prone area characterised by high temperatures, droughts, rainfall deficit, crop failures and chronic food deficiencies. Rainfed agriculture can no longer be sustained without any innovations. The study explored the impacts of climate change on household food security among the vulnerable populations of Matande communal lands, Mwenezi district in Zimbabwe. The study is guided by the Sustainable Livelihoods Framework (SLF). An exploratory sequential research design was adopted, and a total of 78 respondents were selected from the population of 371 households using purposive and cluster sampling techniques. Data collection was triangulated through the use of household survey, focus group discussions, key informant interviews and observations. The thematic approach and SPSS software were used to analyse qualitative and quantitative data, respectively. Results demonstrated that climate change propelled increases of pests and diseases for both livestock and crops, reduction of meals uptake per day, biodiversity loss and dwindled crop production. Livestock increases were recorded despite the changing climate shows a nexus with food insecurity. The research called for the adoption of drought-tolerant crops, capacity building through climate change resilience programmes, livestock centric in diversification, improved formal markets for livestock and tapping of underground water for irrigation and other purposes to complement existing water bodies to prevent them drying up early. CONTRIBUTION: There is deepening aridification in Mwenezi district because of climate change resulting in the continuous obliteration for the worst of agro-ecological regions iv and v reclassified into a and b. This confirmed the heterogeneity of various climatic conditions and variability within the same geographical context. However, vulnerability continues to be generalised into regions. The study investigates the impacts of climate change typical to Matande communal lands with the view to generate knowledge relevant to review adaptation practices specific to the researched area in order to escalate community resilience.
As a consequence of global climate change, acute water deficit conditions, soil salinity, and high temperature have been on the rise in their magnitude and frequency, which have been found to impact plant growth and development negatively. However, recent evidence suggests that many fruit plants that face moderate abiotic stresses can result in beneficial effects on the postharvest storage characters of the fruits. Salinity, drought, and high temperature conditions stimulate the synthesis of abscisic acid (ABA), and secondary metabolites, which are vital for fruit quality. The secondary metabolites like phenolic acids and anthocyanins that accumulate under abiotic stress conditions have antioxidant activity, and therefore, such fruits have health benefits too. It has been noticed that fruits accumulate more sugar and anthocyanins owing to upregulation of phenylpropanoid pathway enzymes. The novel information that has been generated thus far indicates that the growth environment during fruit development influences the quality components of the fruits. But the quality depends on the trade-offs between productivity, plant defense, and the frequency, duration, and intensity of stress. In this review, we capture the current knowledge of the irrigation practices for optimizing fruit production in arid and semiarid regions and enhancement in the quality of fruit with the application of exogenous ABA and identify gaps that exist in our understanding of fruit quality under abiotic stress conditions.
Climate change and its respective environmental impacts, such as dying lakes, is widely acknowledged. Studies on the impact of shrinking hyper-saline lakes suggest severe negative consequences for the health of the affected population. The primary aim was to investigate the relationship between changes in the water level of the hyper-saline Lake Urmia, along with the associated salt release, and the prevalence of hypertension and the general state of health of the local population in Shabestar County north of the lake. Moreover, we sought to map the vulnerability of the local population to the health risks associated with salt-dust scatter using multiple environmental and demographic characteristics. We applied a spatiotemporal analysis of the environmental parameters of Lake Urmia and the health of the local population. We analyzed health survey data from local health care centers and a national STEPS study in Shabestar County, Iran. We used a time-series of remote sensing images to monitor the trend of occurrence and extent of salt-dust storms between 2012 and 2020. To evaluate the impacts of lake drought on the health of the residences, we investigated the spatiotemporal correlation of the lake drought and the state of health of local residents. We applied a GIScience multiple decision analysis to identify areas affected by salt-dust particles and related these to the health status of the residents. According to our results, the lake drought has significantly contributed to the increasing cases of hypertension in local patients. The number of hypertensive patients has increased from 2.09% in 2012 to 19.5% in 2019 before decreasing slightly to 16.05% in 2020. Detailed results showed that adults, and particularly females, were affected most by the effects of the salt-dust scatter in the residential areas close to the lake. The results of this study provide critical insights into the environmental impacts of the Lake Urmia drought on the human health of the residents. Based on the results we suggest that detailed socioeconomic studies might be required for a comprehensive analysis of the human health issues in this area. Nonetheless, the proposed methods can be applied to monitor the environmental impacts of climate change on human health.
BACKGROUND: Extreme weather events represent one of the most tangible impacts of anthropogenic climate change. They have increased in number and severity and a further increase is expected. This is accompanied by direct and indirect negative consequences for human health. METHODS: Flooding events, storms and droughts are analysed here for Germany from a systemic perspective on the basis of a comprehensive literature review. Cascading risks beyond the initial event are also taken into account in order to depict downstream consequences. RESULTS: In addition to the immediate health burdens caused by extreme weather events such as injuries, long-term consequences such as stress-related mental disorders occur. These stresses particularly affect certain vulnerable groups, e.g. older persons, children, pregnant women or first responders. CONCLUSIONS: A look at the cascading risks described in the international literature allows us to develop precautionary measures for adaptation to the consequences of climate change. Many adaptation measures protect against different risks at the same time. In addition to planning measures, these include, above all, increasing the population’s ability to protect itself through knowledge and strengthening of social networks.
BACKGROUND: Increasing grain nutritional value in sorghum (Sorghum bicolor) is a paramount breeding objective, as is increasing drought resistance (DR), because sorghum is grown mainly in drought-prone areas. The genetic basis of grain nutritional traits remains largely unknown. Marker-assisted selection using significant loci identified through genome-wide association study (GWAS) shows potential for selecting desirable traits in crops. This study assessed natural variation available in sorghum accessions from around the globe to identify novel genes or genomic regions with potential for improving grain nutritional value, and to study associations between DR traits and grain weight and nutritional composition. RESULTS: We dissected the genetic architecture of grain nutritional composition, protein content, thousand-kernel weight (TKW), and plant height (PH) in sorghum through GWAS of 163 unique African and Asian accessions under irrigated and post-flowering drought conditions. Several QTLs were detected. Some were significantly associated with DR, TKW, PH, protein, and Zn, Mn, and Ca contents. Genomic regions on chromosomes 1, 2, 4, 8, 9, and 10 were associated with TKW, nutritional, and DR traits; colocalization patterns of these markers indicate potential for simultaneous improvement of these traits. In African accessions, markers associated with TKW were mapped to six regions also associated with protein, Zn, Ca, Mn, Na, and DR, suggesting the potential for simultaneous selection for higher grain nutrition and TKW. Our results indicate that it may be possible to select for increased DR on the basis of grain nutrition and weight potential. CONCLUSIONS: This study provides a valuable resource for selecting landraces for use in plant breeding programs and for identifying loci that may contribute to grain nutrition and weight with the hope of producing cultivars that combine improved yield traits, nutrition, and DR.
This article addresses how African states respond to climate crisis, arguing that, beyond the agency and impact of climate phenomena such as drought and cyclones, they are active participants in the production of climate disasters and emergencies, mostly through infrastructural processes that affect land and resource use, and subsequently livelihoods. To demonstrate this, it uses the cases of the drought in southwestern Angola and cyclones in northern and central Mozambique, where such climate phenomena have exposed ‘fatal architectures’ that have dramatically raised the toll of climate victims and refugees. Both extractivist, agro-industrial and hydroelectric projects, as well as other, more deferred infrastructural designs (roads, communication networks, etc.) have challenged the traditional agency and resilience of local communities. Such new infrastructural projects also illustrate how certain perceived long-term solutions to address the climate crisis with industrial and energy reconversion towards greener energies can still become fatal architectures in the context of climate emergencies. Ce texte traite de la maniere dont les etats africains repondent a la crise climatique, en soutenant que, au-dela de l’impact des phenomenes climatiques tels que la secheresse et les cyclones, les Etats participent activement a la production de catastrophes et d’urgences climatiques, principalement par le biais de processus infrastructurels qui affectent l’utilisation des terres et des ressources et, par consequent, les moyens de subsistance. Pour illustrer son propos, l’auteur s’appuie sur les exemples de la secheresse dans le sud-ouest de l’Angola et des cyclones dans le nord et le centre du Mozambique, ou ces phenomenes climatiques ont mis en evidence des << architectures fatales >> qui ont considerablement alourdi le bilan des victimes du changement climatique et des refugies. C’est le cas des projets extractivistes, agro-industriels et hydroelectriques, ainsi que des projets d’infrastructure plus differes (tels que les routes et les reseaux de communication) qui ont bouleverse le pouvoir d’action et la resilience traditionnels des communautes locales. Lorsqu’il s’agit de faire face a la crise climatique par une reconversion industrielle et energetique tournee vers des energies plus vertes, ces exemples de nouveaux projets d’infrastructure illustrent egalement comment certaines solutions percues comme etant a long terme peuvent malgre tout devenir des architectures fatales dans des contextes d’urgence climatique. Este texto aborda a forma como os Estados africanos respondem a crise climatica, com o argumento de que, para alem da agencia e do impacto de fenomenos climaticos tais como as secas e os ciclones, os Estados sao participantes ativos na producao de desastres e emergencias climaticas, em particular atraves de processos infraestruturais que afetam o uso da terra e dos recursos e, em ultima instancia, os modos de vida locais. Para ilustrar o argumento, invoco os casos da seca no sudoeste de Angola e dos ciclones no norte e centro de Mocambique, onde estes fenomenos climaticos expuseram “arquiteturas fatais” que aumentaram dramaticamente o numero de vitimas e refugiados do clima. e o caso de projetos extrativistas, agroindustriais e hidoreletricos, bem como de outros projetos infra-estruturais mais difusos (estradas, redes de comunicacao, etc.), que desafiaram a agencia tradicional e a resiliencia das comunidades locais. Estes casos de novos projetos infra-estruturais tambem nos recordam como certas solucoes percebidas como sendo de longo prazo no que diz respeito a enfrentar a crise climatica atraves da reconversao industrial e energetica para energias mais verdes ainda podem se tornar arquiteturas fatais em contextos de emergencia climatica.
BACKGROUND: Essential health services can be disrupted due to several naturally occurring public health emergencies such as drought, flood, earthquake and outbreak of infectious diseases. However, little evidence exists on the status of essential health services delivery under the effect of drought and food insecurity. North-east Uganda is severely affected by prolonged drought that significantly affected the livelihood of the residents. Therefore, we aimed to determine the current status of essential health services and quality improvement (QI) actions in health facilities in north-east Uganda. METHODS: We used a descriptive cross-sectional study design to assess the availability of essential health service and quality improvement activities in drought and food insecurity affected districts of north-east Uganda. We included a total of 150 health facilities from 15 districts with proportionated multistage sampling method. We interviewed health facilities’ managers and services focal persons using structured questionnaire and observation checklist. We used a descriptive statistic to analyze the data with SPSS version 22. RESULTS: A few health facilities (8.7%) had mental health specialist. There was also lack of capacity building training on essential health services. Considerable proportion of health facilities had no non-communicable diseases (38.3%), mental health (47.0%), and basic emergency obstetric care (40.3%) services. Stock out of essential medicines were observed in 20% of health facilities. There was lack of supportive supervision, and poor documentation of QI activities. CONCLUSION: Essential health service and QI were suboptimal in drought and food insecure emergency affected districts. Human resource deployment (especially mental health specialist), provision of capacity building training, improving non-communicable diseases, mental health and basic emergency obstetric care services are required to improve availability of essential health services. Supporting supply chain management to minimize stock out of medicines, and promoting QI activities are also vital to assure quality of health service in drought and food insecurity affected districts in north-Eastern Uganda.
The Murray-Darling Basin (MDB) is Australia’s prime agricultural region, where drought and hotter weather pose a significant threat to rural residents’ mental health – hence increasing their potential suicide risk. We investigate the impact of drought and hotter temperatures on monthly suicide within local areas in the MDB, from 2006-2016. Using Poisson fixed-effects regression modeling, we found that extreme drought and hotter temperatures were associated with increased total suicide rates. The effects of extreme drought and temperature on suicide were heterogeneous across gender and age groups, with younger men more vulnerable. Areas with higher percentages of Indigenous and farmer populations were identified as hot spots, and were vulnerable to increased temperatures and extreme drought. Green space coverage (and to some extent higher incomes) moderated the drought and suicide relationship. Providing targeted interventions in vulnerable groups and hot spot areas is warranted to reduce the suicide effect of climate change.
California experienced extreme and prolonged drought conditions during the early 2010s. To date, little is known regarding the influence of drought on air quality. Our study quantified site-specific associations between drought (defined by the Standardized Precipitation-Evapotranspiration Index; SPEI) and daily maximum 8-h ozone (O(3)) concentrations for California, USA, and then pooled these associations for the years 2009-2015. Overall, ambient O(3) concentration was higher during droughts by 1.18 ppb (95% confidence interval (CI) = 1.00-1.36). The sensitivity of O(3) to drought was greater during the warm season than during the cool season (1.73 ppb versus 0.79 ppb higher O(3) during droughts) with substantial regional variation. In a pooled analysis with meteorological parameters as potential effect modifiers, the spatial heterogeneity of drought-O(3) associations was explained strongly by average relative humidity for each season (71.9% (warm season) and 73.4% (cool season) of the drought-O(3) associations explained), followed by the drought-related changes in relative humidity (47.6% (warm season)) and temperature (53.6% (cool season)). The pooled regression further identified regions susceptible for drought-related O(3) increases as those with relatively low average relative humidity (10-25(th) percentiles or 44.3-47.3%) and larger drought-related decrease in relative humidity and increase in temperature. As the drought events are projected to occur with increased frequency and intensity in the era of climate change, the excess health burdens from O(3) exposures attributed to the projected drought events need to be taken into account when allocating air quality and health resources. The impacts of O(3) on health during droughts would confound the health burdens from the drought itself.
Climate-induced extreme events could lead to drastic socioeconomic consequences, including altered cooperation behaviours. With survey experiments among Iraqi and Syrian refugees, this study finds drought experience could reduce altruism and group identity function as the key moderator. Previous research on climate change impact regularly considers conflict outcomes, thereby disregarding cooperative behaviour such as altruism. Drought has the potential to fuel inter-ethnic cleavages, thus contributing to conflicts. Yet this runs against resilience arguments suggesting people who experience environmental hardship are more cooperative. Here we examine altruism in survey experiments in a natural setting among refugees from Syria and Iraq. We match survey responses to observational data on drought and socioeconomic variables. Our findings speak to both arguments. First, we show that drought exposure is associated with decreased altruism for survey respondents generally. We further show how group identity moderates the relationship between drought and altruism. Our results suggest a decrease in altruism due to drought is much larger when the target of altruism is presented as a member of an antagonistic ethno-religious outgroup.
The western United States has experienced severe drought in recent decades, and climate models project increased drought risk in the future. This increased drying could have important implications for the region’s interconnected, hydropower-dependent electricity systems. Using power-plant level generation and emissions data from 2001 to 2021, we quantify the impacts of drought on the operation of fossil fuel plants and the associated impacts on greenhouse gas (GHG) emissions, air quality, and human health. We find that under extreme drought, electricity generation from individual fossil fuel plants can increase up to 65% relative to average conditions, mainly due to the need to substitute for reduced hydropower. Over 54% of this drought-induced generation is transboundary, with drought in one electricity region leading to net imports of electricity and thus increased pollutant emissions from power plants in other regions. These drought-induced emission increases have detectable impacts on local air quality, as measured by proximate pollution monitors. We estimate that the monetized costs of excess mortality and GHG emissions from drought-induced fossil generation are 1.2 to 2.5x the reported direct economic costs from lost hydro production and increased demand. Combining climate model estimates of future drying with stylized energy-transition scenarios suggests that these drought-induced impacts are likely to remain large even under aggressive renewables expansion, suggesting that more ambitious and targeted measures are needed to mitigate the emissions and health burden from the electricity sector during drought.
During 2010-2012, extreme food insecurity and famine in Somalia were estimated to account for 256,000 deaths. Since 2014 Somalia has experienced recurrent below-average rainfall, with consecutive failed rains in late 2016 and 2017 leading to large-scale drought, displacement and epidemics. We wished to estimate mortality across Somalia from 2014 to 2018, and measure the excess death toll attributable to the 2017-2018 drought-triggered crisis. We used a statistical approach akin to small-area estimation, and relying solely on existing data. We identified and re-analysed 91 household surveys conducted at the district level and estimating the crude (CDR) and under 5 years death rate (U5DR) over retrospective periods of 3-4 months. We captured datasets of candidate predictors of mortality with availability by district and month. We also reconstructed population denominators by district-month combining alternative census estimates and displacement data. We combined these data inputs into predictive models to estimate CDR and U5DR and combined the predictions with population estimates to project death tolls. Excess mortality was estimated by constructing counterfactual no-crisis scenarios. Between 2013 and 2018, Somalia’s population increased from 12.0 to 13.5 million, and internally displaced people or returnees reached 20% of the population. We estimated an excess death toll of 44,700 in the most likely counterfactual scenario, and as high as 163,800 in a pessimistic scenario. By contrast to 2010-2012, excess deaths were widespread across Somalia, including central and northern regions. This analysis suggests that the 2017-2018 crisis had a lower, albeit still very substantial, mortality impact than its 2010-2012 predecessor. Despite modest elevations in death rate, crisis conditions were widespread and affected a population of millions. Humanitarian response to drought-related crises in Somalia needs to be strengthened, target the most vulnerable and emphasise very early interventions.
Natural and human-made disasters have long played a role in shaping the environment and microbial communities, also affecting non-microbial life on Earth. Disaster microbiology is a new concept based on the notion that a disaster changes the environment causing adaptation or alteration of microbial populations -growth, death, transportation to a new area, development traits, or resistance- that can have downstream effects on the affected ecosystem. Such downstream effects include blooms of microbial populations and the ability to colonize a new niche or host, cause disease, or survive in former extreme conditions. Throughout history, fungal populations have been affected by disasters. There are prehistoric archeological records of fungal blooms after asteroid impacts and fungi implicated in the fall of the dinosaurs. In recent times, drought and dust storms have caused disturbance of soil fungi, and hurricanes have induced the growth of molds on wet surfaces, resulting in an increased incidence of fungal disease. Probably, the anticipated increase in extreme heat would force fungi adaptation to survive at high temperatures, like those in the human body, and thus be able to infect mammals. This may lead to a drastic rise of new fungal diseases in humans.
Scientifically analyzing and documenting climate change and related disaster risks is demanded by international organizations such as the United Nations. However, global or national studies predominate, and cross-regional overviews are lacking, especially for Western Asia. In four countries in the region, Iran, Israel, Saudi Arabia, and Turkey, transport accidents, floods, fires, and earthquakes are the predominant accidents and disasters in the Emergency Events Database (EM-DAT). The result is different when analyzing the scientific publications via a bibliometric literature analysis using VOS viewer and the Web of Science, and earthquakes, climate change, COVID-19, and terrorism dominate here. Governance and management are also an important and recurring cluster topic. The conceptual components of vulnerability and resilience are discussed in most countries. The hazards are often associated with specific concepts and quantitative methods. GIS and remote sensing as specific methodologies also often appear in a cluster. Further clusters derived from the keyword search include floods and droughts, food security and agriculture, and posttraumatic stress and psychological aspects. The results help us to identify countries with a rich literature on certain hazards and gaps in relation to other types of disasters, which are more prevalent. The findings can help scientists and policymakers to support future studies based on either high or low research coverage.
BACKGROUND: Drought is a slow-onset natural hazard with significant socioeconomic, environmental and psychological impacts. The extant literature has predominately focused on the physical and economic dimensions of resilience, which mainly address the socioeconomic and environmental consequences of drought. However, the mental health effects of chronic environmental adversity, such as prolonged drought, remain an under-researched area, and frameworks that build and strengthen the psychological aspect of the social resilience of communities are lacking. METHODS: This feasibility study will employ a mixed-method design sub-divided into three phases. Phase 1 will utilise social network analysis (SNA) to identify leadership patterns and their intersections across communities. While phase 2 will use semi-structured interviews to ascertain the perceived roles of identified leaders in preparing for and recovering from drought impacts, the third phase will adopt the Delphi method to unpack existing perceptions of control, coherence and connectedness.
Young people today are predicted to experience more climate change related stressors and harms than the previous generation, yet they are often excluded from climate research, policy, and advocacy. Increasingly, this exposure is associated with experience of common mental health disorders (CMD). The VoCes-19 study collected surveys from 168,407 young people across Mexico (ages 15-24 years) through an innovative online platform, collecting information on various characteristics including CMD and experience of recent climate harms. Logistic regression models were fit to explore characteristics associated with CMD. Structural equation models were fit to explore pathways between exposure, feeling of concern about climate change, and a sense of agency (meaning the respondent felt they could help address the climate crisis) and how these relate to CMD. Of the respondents, 42% (n = 50,682) were categorized as experiencing CMD, higher among those who experienced a climate stressor (51%, n = 4,808) vs those not experiencing climate stressors (41%, n = 43,872). Adjusting for key demographic characteristics, exposure to any climate event increased the odds of CMD by 50% (Odd Ratio = 1.57; 95% Confidence Interval (CI) 1.49, 1.64), highest for heatwaves. Specific climate impacts such as housing damage, loss of or inability to work, damage to family business, leaving school and physical health affected were adversely related to CMD, though for different climate hazards. More concern and less agency were related to CMD through different pathways, particularly for those exposed to recent events. Future research regarding the cumulative exposures to climate change, not just acute events but as an ongoing crisis, and various pathways that influence the mental health and well-being of young people must be clearly understood to develop programs and policies to protect the next generation.
Compound hydrometeorological extremes have been widely examined under climate change, they have significant impacts on ecological and societal well-being. This study sheds light on a new category compound of contrasting extremes, namely compounding wet and dry extremes (CWDEs). The CWDEs are characterized as devastating dry events (EDs) accompanied by wet extremes (EWs) in a given time window. Notably, we first adopt a separate system to identify coinciding events considering the different evolving processes and impacting patterns of EDs and EWs. The peak-over-threshold and standardized index methods are used in a daily and monthly window to identify EWs and EDs respectively. Furthermore, the spatial-temporal changes and risky patterns of CWDEs are revealed by using the Mann-Kendall test, the Ordinary Least Squares, and the Global and Local Moran indices. Germany is the study case. As one major finding, the results indicate a pronounced seasonal effect and spatial clustering pattern of CWDEs. The summer is the most vulnerable period for CWDEs, and the spatial hotspots are mainly located in the southern tip of Germany, as well as in the vicinity of the capital city Berlin. Besides, robust uptrends in CWDEs across all evaluation metrics have been discovered in historical periods, and the moist climate and complex geography collectively contribute to severe CWDEs. Unexpectedly, the study finds that compounding events in dry regions are mainly driven by wet extremes, whereas they show a higher dependency on dry anomalies in wet regions. The research provides new insights into compound extremes which are composed of individual hazards with distinct features. Related findings will aid decision-makers in producing effective risk mitigation plans for prioritizing vulnerable regions. Lastly, the robust framework and open access data allow for extensive exploration of various compounding hazards in different regions.
Green leafy vegetables, such as Vigna unguiculata, Brassica oleraceae, and Solanum scabrum, are important sources of vitamins A, B1, and C. Although vitamin deficiencies considerably affect human health, not much is known about the effects of changing soil and climate conditions on vegetable vitamin concentrations. The effects of high or low soil fertility and three drought intensities (75%, 50%, and 25% pot capacity) on three plant species were analysed (n = 48 pots) in a greenhouse trial. The fresh yield was reduced in all the vegetables as a result of lower soil fertility during a severe drought. The vitamin concentrations increased with increasing drought stress in some species. Regardless, the total vitamin yields showed a net decrease due to the significant biomass loss. Changes in vitamin concentrations as a result of a degrading environment and increasing climate change events are an important factor to be considered for food composition calculations and nutrient balances, particularly due to the consequences on human health, and should therefore be considered in agricultural trials.
Climate change presents a major public health concern in Australia, marked by unprecedented wildfires, heatwaves, floods, droughts, and the spread of climate-sensitive infectious diseases. Despite these challenges, Australia’s response to the climate crisis has been inadequate and subject to change by politics, public sentiment, and global developments. This study illustrates the spatiotemporal patterns of selected climate-related environmental extremes (heatwaves, wildfires, floods, and droughts) across Australia during the past two decades, and summarizes climate adaptation measures and actions that have been taken by the national, state/territory, and local governments. Our findings reveal significant impacts of climate-related environmental extremes on the health and well-being of Australians. While governments have implemented various adaptation strategies, these plans must be further developed to yield concrete actions. Moreover, Indigenous Australians should not be left out in these adaptation efforts. A collaborative, comprehensive approach involving all levels of government is urgently needed to prevent, mitigate, and adapt to the health impacts of climate change.
Severe weather events can be a catalyst for intimate partner violence, particularly in agricultural settings. This research explores the association between weather and violence in parts of East Africa that rely on subsistence farming. We used IPUMS-DHS data from Uganda in 2006, Zimbabwe in 2010, and Mozambique in 2011 for intimate partner violence frequency and EM-DAT data to identify weather events by region in the year of and year prior to IPUMS-DHS data collection. This work is grounded in a conceptual framework that illustrates the mechanisms through which violence increases. We used logistic regression to estimate the odds of reporting violence in regions with severe weather events. The odds of reporting violence were 25% greater in regions with severe weather compared to regions without in Uganda (OR = 1.25, 95% CI: 1.11-1.41), 38% greater in Zimbabwe (OR = 1.38, 95% CI: 1.13-1.70), and 91% greater in Mozambique (OR = 1.91, 95% CI: 1.64-2.23). Our results add to the growing body of evidence showing that extreme weather can increase women’s and girls’ vulnerability to violence. Moreover, this analysis demonstrates that climate justice and intimate partner violence must be addressed together.
Climate change has forced the world into a state of emergency, but the urgency can also become an oppor-tunity to strengthen the focus on sustainable development and reduce social vulnerability. For developing economies, the first and foremost challenge regarding climate change is to address the knowledge gap on sustainable development and vul-nerability. Besides this, evidence-based inputs are needed for the policies and programs that intend to enhance the adaptive capacity and social capital from the gender perspective in comparatively more disaster-prone districts of the country. The environmental impact in terms of socioeconomic conditions specifically pertaining to rural areas of Pakistan cannot be ig-nored. Natural events such as floods and droughts have raised the question of the social and socioeconomic vulnerability of the rural communities. This paper is an attempt toward understanding that everyone who is affected will be impacted differ-ently by climate change both within the same gender and between different genders, including gender minorities. In addition, an attempt is made to identify the drivers of gender-disaggregated social vulnerability in selected disaster-prone rural commu-nities of the district of Dadu, Sindh Province, Pakistan. Both quantitative and qualitative techniques are employed to examine the differences in gender perception on climate change, experiences related to climate change, disasters, and impacts on their lives. Women and households headed by them are found to be relatively more vulnerable due to their socioeconomic and social status in the rural areas of Pakistan. The paper gives policy directives that not only address the measures for reduction in climate change impacts but also suggest the development of effective disaster management programs, policies, and strategies.
Extreme climate events are related to women’s exposure to different forms of violence. We examined the relationship between droughts and physical, sexual, and emotional intimate partner violence (IPV) in India by using two different definitions of drought: precipitation-based drought and socio-economic drought. We analyzed data from two rounds of a nationally representative survey, the National Family Health Survey, where married women were asked about their experiences of IPV in the past year (2015-16 and 2019-21; N=122,696). Precipitation-based drought was estimated using remote sensing data and GIS mapping, while socio-economic drought status was collected from government records. Logistic regression models showed precipitation-based drought to increase the risk of experiencing physical IPV and emotional IPV. Similar findings were observed for socio-economic drought; women residing in areas classified as drought-impacted by the government were more likely to report physical IPV, sexual IPV, and emotional IPV. These findings support the growing body of evidence regarding the relationship between climate change and women’s vulnerability, and highlight the need for gender responsive strategies for disaster management and preparedness.
An association between climatic conditions and asthma incidence has been widely assumed. However, it is unclear whether climatic variations have a fingerprint on asthma dynamics over long time intervals. The aim of this study is to detect a possible correlation of the Summer North Atlantic Oscillation (S-NAO) index and the self-calibrated palmer drought severity index (scPDSI) with asthma incidence over the period from 1957 to 2006 in Italy. To this aim, an analysis of non-stationary and non-linear signals was performed on the time series of the Italian databases on respiratory health (ISAYA and GEIRD) including 36,255 individuals overall, S-NAO, and scPDSI indices to search for characteristic periodicities. The ISAYA (Italian Study on Asthma in Young Adults) and GEIRD (Gene Environment Interactions in Respiratory Diseases) studies collected information on respiratory health in general population samples, born between 1925 and 1989 and aged 20-84 years at the time of the interview, from 13 Italian centres. We found that annual asthma total incidence shared the same periodicity throughout the 1957-2006 time interval. Asthma incidence turned out to be correlated with the dynamics of the scPDSI, modulated by the S-NAO, sharing the same averaged 6 year-periodicity. Since climate patterns appear to influence asthma incidence, future studies aimed at elucidating the complex relationships between climate and asthma incidence are warranted.
BACKGROUND: Climate change influences the incidence and scope of climate extreme events that affect communities and the environment around the world. In an urban context such as Barcelona, these climate extremes can have a negative impact on drinking water quality. The worsening of drinking water quality can have important repercussions on human health, leading to the appearance of different diseases. OBJECTIVE: Investigate the association between climate extremes, in particular heavy rainfall events and drought conditions, and the drinking water quality in the city of Barcelona from 2010 to 2022. METHODS: We conducted a daily retrospective time-series study using data covering 13 years of daily monitoring of conductivity, nickel, turbidity and trihalomethanes parameters of raw water in the Llobregat River catchment area and treated water in the Drinking Water Treatment Plant (DWTP) Sant Joan Despí. We used river flow as a proxy for drought conditions and heavy rainfall events. We analyzed short-term associations between river flow rate and quality parameters in raw and treated water using generalized linear regression with distributed lag-non-linear models (DLNM). RESULTS: A low flow, as an indicator of drought condition or low rainfall, was significantly associated with an increase in conductivity in raw water and nickel in both raw and treated water. A high flow, as an indicator of heavy rainfall events, was significantly associated with an increase of turbidity in raw water, and a decrease in all other quality parameters. IMPACT STATEMENT: This study provides novel evidence that climate extremes have an impact on the quality of drinking water in urban areas with a Mediterranean climate. The findings of this study are significant because they suggest that as the frequency and intensity of climate extremes increase due to climate change, there will be further challenges in managing and treating drinking water, which could have a detrimental effect on public health. This study serves as an important reminder of the need to strengthen and accelerate adaptation actions in water management to ensure an adequate supply of drinking water that protects the people’s health.
Drought is a natural hazard that is characterized by a low amount of precipitation in a region. In order to evaluate the drought-related issues that cause chaos for human well-being, drought indices have become increasingly important. In this study, the monthly precipitation data from 1964 to 2013 (about 50 years) of the Jodhpur district in the drought-prone Rajasthan state of India was used to derive the effective drought index (EDI). The machine learning models hybridized with evolutionary optimizers such as the genetic algorithm adaptive neurofuzzy inference system (GA-ANFIS) and particle swarm optimization ANFIS (PSO-ANFIS) were used in addition to the generalized regression neural network (GRNN) to predict the EDI index. Using the partial autocorrelation function (PACF), models for forecasting the monthly EDI were constructed with 2-, 3- and 5-input combinations to evaluate their outcomes based on various performance indices. The results of the different combination models were compared. With reference to 2-input and 3-input combination models, both GA-ANFIS and PSOANFIS show better performance results with R-2 = 0.75, while among the models with 5-input combination, GA-ANFIS depicts better performance results compared to other models with R-2 = 0.78. The results are presented suitably with the aid of scatter plots, Taylor’s diagram and violin plots. Overall, the GA-ANFIS and PSO-ANFIS models outperformed the GRNN model.
Compound warm-dry spells over land, which is expected to occur more frequently and expected to cover a much larger spatial extent in a warming climate, result from the simultaneous or successive occurrence of extreme heatwaves, low precipitation, and synoptic conditions, e.g., low surface wind speeds. While changing patterns of weather and climate extremes cannot be ameliorated, effective mitigation requires an understanding of the multivariate nature of interacting drivers that influence the occurrence frequency and predictability of these extremes. However, risk assessments are often focused on univariate statistics, incorporating either extreme temperature or low precipitation; or at the most bivariate statistics considering concurrence of temperature versus precipitation, without accounting for synoptic conditions influencing their joint dependency. Based on station-based daily meteorological records from 23 urban and peri-urban locations of India, covering the 1970-2018 period, this study identifies four distinct regions that show temporal clustering of the timing of heatwaves. Further, combining joint probability distributions of interacting drivers, this analysis explored compound warm-dry potentials that result from the co-occurrence of warmer temperature, scarcer precipitation, and synoptic wind patterns. The results reveal 50-year severe heat stress solely based on the temperature at each location tends to be more frequent and is expected to become 5 to 17-year compound warm-dry events considering interdependence between attributes. Notably, considering dependence among drivers, a median 6-fold amplification (ranging from 3 to 10-fold) in compound warm-dry spell frequency is apparent relative to the expected annual number of a local (univariate) 50-year severe heatwave episode, indicating warming-induced desiccation is already underway over most of the urbanized areas of the country. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00382-022-06324-y.
Hot extremes may adversely impact human health and agricultural production. Owing to anthropogenic and climate changes, the close and dynamic interaction between drought and hot extremes in most areas of China need to be revisited from the perspective of nonstationarity. This study therefore proposes a time-varying Copulabased model to describe the nonstationary dependence structure of summer extreme temperature (SET) and antecedent soil moisture condition to quantify the dynamic risk of hot extremes conditioned on dry/wet condition. A general statistical inspection procedure which was composed of maximum likelihood (ML)-based estimation, nonstationary Goodness-of-fit (GOF) tests, the log likelihood ratio (LR) tests and minimum corrected Akaike information criterion-based selection was promoted to select the best-fitted nonstationary models efficiently. This study proposed a new approach to identify the soil moisture driving law over extreme temperature from the point view of tail monotonicity and nonstationary risk assessment. Owing to the LTI-RTD (left tail increasing and right tail decreasing) tail monotonicity for dependence structure of these two extremes derived from most areas, two kinds of the driving laws of soil moisture over SET were detected. Because of the spatiotemporal divergence of sensitivity index derived from tail monotonicity (SITM), we can conclude that the spatial and temporal heterogeneity of response degree of ET over the variations of antecedent dry/wet conditions is evident. Incorporation of nonstationarity and tail monotonicity helps identify the changes of driving mechanism (laws) between soil moisture and hot extremes.
BACKGROUND: Australian rural and regional communities are marked by geographic isolation and increasingly frequent and severe natural disasters such as drought, bushfires and floods. These circumstances strain the mental health of their inhabitants and jeopardise the healthy mental and emotional development of their adolescent populations. Professional mental health care in these communities is often inconsistent and un-coordinated. While substantial research has examined the barriers of young people’s mental health and help-seeking behaviours in these communities, there is a lack of research exploring what adolescents in rural and regional areas view as facilitators to their mental health and to seeking help when it is needed. This study aims to establish an in-depth understanding of those young people’s experiences and needs regarding mental health, what facilitates their help-seeking, and what kind of mental health education and support they want and find useful. METHOD: We conducted a qualitative study in 11 drought-affected rural and regional communities of New South Wales, Australia. Seventeen semi-structured (14 group; 3 individual) interviews were held with 42 year 9 and 10 high school students, 14 high school staff, and 2 parents, exploring participants’ experiences of how geographical isolation and natural disasters impacted their mental health. We further examined participants’ understandings and needs regarding locally available mental health support resources and their views and experiences regarding mental illness, stigma and help-seeking. RESULTS: Thematic analysis highlighted that, through the lens of participants, young people’s mental health and help-seeking needs would best be enabled by a well-coordinated multi-pronged community approach consisting of mental health education and support services that are locally available, free of charge, engaging, and empowering. Participants also highlighted the need to integrate young people’s existing mental health supporters such as teachers, parents and school counselling services into such a community approach, recognising their strengths, limitations and own education and support needs. CONCLUSIONS: We propose a three-dimensional Engagement, Empowerment, Integration model to strengthen young people’s mental health development which comprises: 1) maximising young people’s emotional investment (engagement); 2) developing young people’s mental health self-management skills (empowerment); and, 3) integrating mental health education and support programs into existing community and school structures and resources (integration).
Solastalgia is a recent concept that refers to disruptive psychological responses in people exposed to environmental degradation. The aim of this study was to determine the number of dimensions solastalgia has using a sample of people exposed to the effects of climate change in the coastal dry land of Maule region, Chile. In order to achieve this, a Scale Of Solastalgia (SOS) was designed and then validated, by means of applying it to 223 inhabitants at the municipalities of Pencahue (n = 105) and Curepto (n = 118), who were also evaluated by the Short Post-traumatic Stress Disorder Rating Interview (SPRINT-E). Using robust validation methods (Parallel factor analysis and Omega), two dimensions were obtained for solastalgia: solace and algia. Both correlate with the SPRINT-E scale (r = 0.150, p < 0.01 and r = 0.359, p < 0.01, respectively) and have 58% sensitivity and 67% specificity to detect cases of post-traumatic stress disorder (PTSD). Like PTSD, solastalgia is related to psychopathologies expected after disasters and also presents a spatial pattern where the concentration of positive cases occurs in places of greater exposure to environmental change or degradation.
Considering the global climate changes that have disrupted the availability of fresh water and led to the emergence of drought, an effective management strategy for water quality must be implemented. In this work, we analyzed the possibility of used and treated water being reused and the effect of its use on soil on the development of plants. In the case of irrigation with treated wastewater, the following parameters increased: calcium carbonate equivalent, organic matter, content of phosphorus, calcium, potassium, sodium, nitrogen, biochemical oxygen consumption; chemical oxygen demand (COD), decreased sodium absorption rate, soil electrical conductivity, pH, magnesium content, and soil bulk density. Due to the micronutrients it contains, the use of treated wastewater in irrigation can be an organic fertilizer for the soil. Wastewater is a source of soil water supply. Untreated wastewater may contain, depending on the source (industry, pharmacies, medicine, households), toxic compounds, bacteria, viruses, and helminths, which, if used for long periods of time in irrigation, can have a negative impact on health and the environment, reaching the soil, the roots of the crops, and then the underground water. Therefore, these waters must be used after adequate treatment. Global climate change disrupts the availability of fresh water and negatively influences the occurrence of floods, droughts, and water quality, which is why any water source must be managed correctly.
In Australia, tropospheric ozone measurements in rural locations are scarce with measurements mostly made in cities. This limits the ability to estimate background ozone levels that inform policy development. The few studies that have assessed rural ozone in Australia have been associated with short campaign monitoring or specific, short-term research programs. Recognising this deficit of information, the New South Wales Government has established long-term ozone monitoring at two rural locations. This paper presents results from the first three years of monitoring at Gunnedah. We assess seasonal, diurnal and sectoral patterns of ozone. Several events are analysed, including high ozone associated with the 2019/20 Australian Bushfire Emergency and an extreme heatwave event. We find that ozone levels at Gunnedah exceed the screening standards set by Australia’s National Environmental Protection (Ambient Air Quality) Measure, emphasising the need for additional ozone monitoring in rural and regional Australia. Our early results indicate that in NSW, background ozone mixing ratios for airmasses of continental origin is likely in the range of 36-39 ppb, higher than the 14-30 ppb associated with air masses of marine origin and greater than the 30 ppb background mixing ratio used for monitoring design and standard setting in Australia. Maximum 8-hourly ozone in non-bushfire impacted events is as high as 64 ppb, demonstrating the challenges that rural/regional communities may face in always meeting the new Australian 8-h ozone standard of 65 ppb. These results add to our understanding of rural background ozone within Australia and in the southern hemisphere.
Droughts are slow-onset disasters with devastating impacts that can last for months and even years. The poorest communities are usually the hardest hit by droughts. In the Androy region of Madagascar, droughts are a constant major handicap for agriculture and farming which are the two main local economic activities. Human vulnerability to droughts differs according to age, sex, and physical conditions. The precariousness of the situation of Antandroy women caused by droughts motivated the choice of this study, which sought to understand the factors behind women’s vulnerability to this risk. To study these factors, documents on gender, vulnerability, droughts and the Androy region were collected and analysed. We then conducted interviews and a survey to understand the Antandroy’s living conditions. Several factors lead to women’s high degree of vulnerability, such as the particular climate of Androy, household’s size, duties, difficulties faced by the agricultural production, early marriage, migration and low educational levels. To contribute to the reduction of their vulnerability to droughts, Antandroy women should reinforce their adaptability by developing income-generating activities in diversified sectors, using varied seeds and protecting the environment, with the definitive eradication of slash-and burn cultivation and bushfires.
BACKGROUND: Ethiopia’s exposure to the El Niño drought (2015-2016) resulted in high malnutrition, internally displaced people, and epidemics of communicable diseases, all of which strained the health system. The drought was especially challenging for mothers and children. We aimed to identify salient factors that can improve health system resilience by exploring the successes and challenges experienced by a community-based health system during the drought response. METHODS: We collected data via key informant interviews and focus group discussions to capture diverse perspectives across the health system (eg, international, national, district, facility, and community perspectives). Data were collected from communities in drought-affected regions of: 1) Somali, Sitti Zone, 2) Hawassa, Southern Nations, Nationalities, and Peoples’ Region (SNNPR), and 3) Tigray, Eastern Zone. Data were analysed using a deductive-inductive approach using thematic content analysis applied to a conceptual framework. RESULTS: A total of 94 participants were included (71 from the communities and 23 from other levels). Key themes included the importance of: 1) organized community groups linked to the health system, 2) an effective community health workforce within strong health systems, 3) adaptable human resource structures and service delivery models, 4) training and preparedness, and 5) strong government leadership with decentralized decision making. CONCLUSIONS: The results of this study provide insights from across the health system into the successes and challenges of building resilience in community-based health systems in Ethiopia during the drought. As climate change exacerbates extreme weather events, further research is needed to understand the determinants of building resilience from a variety of shocks in multiple contexts, especially focusing on harnessing the power of communities as reservoirs of resilience.
The Drinking Water Tool (DWT) is a community-driven online tool that provides diverse users with information about drinking water sources and threats to drinking water quality and access due to drought. Development of the DWT was guided by the Community Water Center (CWC) as part of the Water Equity Science Shop (WESS), a research partnership integrating elements of community-based participatory research and the European Science Shop model. The WESS engages in scientific projects that inform policy change, advance water justice, and reduce cumulative exposure and disproportionate health burdens among impacted communities in California. WESS researchers conducted qualitative analysis of 15 stakeholder interviews regarding the DWT, including iterative feedback and the stakeholder consultation process as well as stakeholder perceptions of the tool’s impact on California water policy, organizing, and research. Results indicate that the DWT and the stakeholder engagement process which developed it were effective in influencing policy priorities and in promoting interagency coordination at multiple levels to address water equity challenges and their disproportionate burdens, particularly among rural and low socioeconomic status areas and communities of color.
BACKGROUND: Stunting is impaired linear growth of children: they experience stunting in the first 1000 days after conception and is an indication of chronic malnutrition. Children under the age of two are regarded as the most vulnerable to malnutrition due to their rapid growth and greater exposure to infectious disease. OBJECTIVE: To assess the magnitude and associated factors of stunting among 6 to 23-month-old children in drought-vulnerable kebeles of the Demba Gofa district, southern Ethiopia. METHODS: A community-based cross-sectional study was conducted from February to March 2021. Systematic random sampling was used to select pairs of mothers/caregivers with children aged 6 to 23 months. A semistructured questionnaire and anthropometric measurement were used to collect the data. The data were checked coded and entered into Epi-data version 3.1 and exported to SPSS for Windows version 20.0 for analysis. Simple and multivariable linear regressions were conducted. The level of significance was declared at 95% CI and p-value < 0.05. RESULTS: The magnitude of stunting in the study area was 79(21.82%). Household dietary diversity [β = 0.217, 95% CI, 0.093-0.342], early initiation of complementary feeding [β = 0.444, 95% CI, 0.344-0.543], frequency of breastfeeding within 24 h [β = 0.217, 95% CI, 0.179-0.263] and child eating animal source food [β = 0.351, 95% CI, 0.196-0.506] were positively significant predictors of child height/length-for-age (HAZ). CONCLUSION: The extent of stunting in the study area is relatively lower than that in regional and national reports, but one out of five children were still stunted. Therefore, health education on infant and young child feeding practices should be provided to mothers to reduce the problem.
Drought has exacerbated morbidity and mortality worldwide. Here, a time series study was conducted in northern Bangladesh to evaluate the impact of drought on selected causes of mortality during 2007-2017. Rainfall and temperature data from six meteorological stations were used to analyze drought and non-drought periods and to categorize mild, moderate, severe, and extreme drought based on the 3-month and 12-month Standardized Precipitation Index (SPI) and Standardized Precipitation Evaporation Index (SPEI). A generalized linear model with Poisson regression with log link, a negative binomial with log link, and a zero-inflated Poisson model were used to determine associations between drought severity and mortality. The SPI and SPEI produced slightly different analysis results. Compared with the SPEI, the SPI showed a stronger and more sensitive correlation with mortality. The relative risk for respiratory disease mortality was high, and Saidpur was the most vulnerable area. Health care expenditure was negatively associated with mortality. High temperatures during the drought period were associated with suicide-related mortality in Rajshahi. The impact of drought on mortality differed with small changes in climate. The findings of this study improve our understanding of the differences between the two most used drought indicators and the impact of drought on mortality.
BACKGROUND AND OBJECTIVES: Over centuries, Ethiopia has experienced severe famines and periods of serious drought, and malnutrition remains a major public health problem. The aims of this study were to estimate seasonal variations in child stunting and wasting, and identify factors associated with both forms of child malnutrition in drought-prone areas. METHODS: This cohort study was conducted among a random sample of 909 children in rural southern Ethiopia. The same children were followed for 1 year (2017-2018) with quarterly repeated measurements of their outcomes: height-for-age and weight-for-height indices (Z-scores). Linear regression models were used to analyse the association between both outcomes and baseline factors (eg, household participation in a social safety net programme and water access) and some time-varying factors (eg, household food insecurity). RESULTS: Child wasting rates varied with seasonal household food insecurity (ᵪ(2) (trend) = 15.9, p=0.001), but stunting rates did not. Household participation in a social safety net programme was associated with decreased stunting (p=0.001) and wasting (p=0.002). In addition to its association with decreased wasting (p=0.001), protected drinking water access enhanced the association between household participation in a social safety net programme and decreased stunting (p=0.009). Absence of a household latrine (p=0.011), lower maternal education level (p=0.001), larger family size (p=0.004) and lack of non-farming income (p=0.002) were associated with increased child stunting. CONCLUSIONS: Seasonal household food insecurity was associated with child undernutrition in rural Ethiopia. Strengthening community-based food security programmes, such as the Ethiopian social safety net programme, could help to reduce child undernutrition in drought-prone areas. Improving clean water access and sanitation could also decrease child undernutrition.Key terms: Z-scores; Social safety net program; Water access.
This review study examines the state of meteorological drought over Africa, focusing on historical trends, impacts, mitigation strategies, and future prospects. Relevant meteorological drought-related articles were systematically sourced from credible bibliographic databases covering African subregions in the twentieth and twenty-first centuries (i.e. from 1950 to 2021), using suitable keywords. Past studies show evidence of the occurrence of extreme drought events across the continent. The underlying mechanisms are mostly attributed to complex interactions of dynamical and thermodynamical mechanisms. The resultant impact is evidenced in the decline of agricultural activities and water resources and the environmental degradation across all subregions. Projected changes show recovery from drought events in the west/east African domain, while the south and north regions indicate a tendency for increasing drought characteristics. The apparent intricate link between the continent’s development and climate variability, including the reoccurrence of drought events, calls for paradigm shifts in policy direction. Key resources meant for the infrastructural and technological growth of the economy are being diverted to develop coping mechanisms to adapt to climate change effects, which are changing. Efficient service delivery to drought-prone hotspots, strengthening of drought monitoring, forecasting, early warning, and response systems, and improved research on the combined effects of anthropogenic activities and changes in climate systems are valuable to practitioners, researchers, and policymakers regarding drought management in Africa today and in the future.
Developing-country households are facing an increasingly challenging set of shocks-including climate, economic, political, and health shocks-that in combination present a novel threat to their livelihoods and well-being, and thus to international development progress. There is a growing need to strengthen the evidence base for interventions and programming approaches that bolster households’ resilience to such shocks. In response, this paper documents an impact evaluation of the USAID-funded “Pastoralist Areas Resilience Improvement and Market Expansion” (PRIME) project implemented from 2012 to 2017 in one of the most shock-prone areas of the world, the drylands of Ethiopia. The project’s overall goal was to reduce poverty and hunger by enhancing households’ ability to recover from recurring climate shocks and their downstream economic impacts. As it were, soon after its inception, the drylands were hit by an exceptionally harsh and prolonged shock, a series of multiple, back-to-back, severe droughts. The droughts led to a sharp drop in households’ well-being, measured here by their food security. Using Difference-in-Difference Propensity Score Matching (DID-PSM) in one of the first causal resilience evaluations, this paper demonstrates that, nevertheless, the project’s resilience-strengthening interventions had a positive impact on their ability to recover, slowing the decline in food security considerably. Delving deeper into how this impact was achieved, the paper finds that two programming approaches optimized resilience impacts. First, “Comprehensive Resilience Programming”, whereby interventions spanning multiple sectors were implemented simultaneously in the same geographical areas, made a major difference. Second, while interventions were mainly implemented at a systems-level (e.g., establishing veterinary pharmacies), many households made the decision to actively participate in them. The paper finds that the impact on their resilience was far greater when they did so. The lessons for future resilience projects are that (1) greater impacts can be achieved by taking advantage of the synergies induced when interventions are layered cross-sectorally, and (2) projects with systems-level interventions should pro-actively plan for the direct participation of households so they can take full advantage of their benefits and thereby achieve greater resilience to shocks. The paper also offers some lessons for future resilience impact evaluations.
BACKGROUND: The 2017-2018 yellow fever virus (YFV) outbreak in southeastern Brazil marked a reemergence of YFV in urban states that had been YFV-free for nearly a century. Unlike earlier urban YFV transmission, this epidemic was driven by forest mosquitoes. The objective of this study was to evaluate environmental drivers of this outbreak. METHODOLOGY/PRINCIPAL FINDINGS: Using surveillance data from the Brazilian Ministry of Health on human and non-human primate (NHP) cases of YFV, we traced the spatiotemporal progression of the outbreak. We then assessed the epidemic timing in relation to drought using a monthly Standardized Precipitation Evapotranspiration Index (SPEI) and evaluated demographic risk factors for rural or outdoor exposure amongst YFV cases. Finally, we developed a mechanistic framework to map the relationship between drought and YFV. Both human and NHP cases were first identified in a hot, dry, rural area in northern Minas Gerais before spreading southeast into the more cool, wet urban states. Outbreaks coincided with drought in all four southeastern states of Brazil and an extreme drought in Minas Gerais. Confirmed YFV cases had an increased odds of being male (OR 2.6; 95% CI 2.2-3.0), working age (OR: 1.8; 95% CI: 1.5-2.1), and reporting any recent travel (OR: 2.8; 95% CI: 2.3-3.3). Based on this data as well as mosquito and non-human primate biology, we created the “Mono-DrY” mechanistic framework showing how an unusual drought in this region could have amplified YFV transmission at the rural-urban interface and sparked the spread of this epidemic. CONCLUSIONS/SIGNIFICANCE: The 2017-2018 YFV epidemic in Brazil originated in hot, dry rural areas of Minas Gerais before expanding south into urban centers. An unusually severe drought in this region may have created environmental pressures that sparked the reemergence of YFV in Brazil’s southeastern cities.
BACKGROUND: Precipitation variability is a potentially important driver of infectious diseases that are leading causes of child morbidity and mortality worldwide. Disentangling the links between precipitation variability and disease risk is crucial in a changing climate. We aimed to investigate the links between precipitation variability and reported symptoms of infectious disease (cough, fever, and diarrhoea) in children younger than 5 years. METHODS: We used nationally representative survey data collected between 2014 and 2019 from Demographic and Health Survey (DHS) surveys for 32 low-income to middle-income countries in combination with high-resolution precipitation data (via the Climate Hazards Group InfraRed Precipitation with Station dataset). We only included DHS data for which interview dates and GPS coordinates (latitude and longitude) of household clusters were available. We used a regression modelling approach to assess the relationship between different precipitation variability measures and infectious disease symptoms (cough, fever, and diarrhoea), and explored the effect modification of different climate zones and disease susceptibility factors. FINDINGS: Our global analysis showed that anomalously wet conditions increase the risk of cough, fever, and diarrhoea symptoms in humid, subtropical regions. These health risks also increased in tropical savanna regions as a result of anomalously dry conditions. Our analysis of susceptibility factors suggests that unimproved sanitation and unsafe drinking water sources are exacerbating these effects, particularly for rural populations and in drought-prone areas in tropical savanna. INTERPRETATION: Weather shifts can affect the survival and transmission of pathogens that are particularly harmful to young children. As our findings show, the health burden of climate-sensitive infectious diseases can be substantial and is likely to fall on populations that are already among the most disadvantaged, including households living in remote rural areas and those lacking access to safe water and sanitation infrastructure. FUNDING: University of California, San Diego FY19 Center Launch programme.
INTRODUCTION: Wheat is grown and consumed worldwide, making it an important staple food crop for both its calorific and nutritional content. In places where wheat is used as a staple food, suboptimal micronutrient content levels, especially of grain iron (Fe) and zinc (Zn), can lead to malnutrition. Grain nutrient content is influenced by abiotic stresses, such as drought and heat stress. The best method for addressing micronutrient deficiencies is the biofortification of food crops. The prerequisites for marker-assisted varietal development are the identification of the genomic region responsible for high grain iron and zinc contents and an understanding of their genetics. METHODS: A total of 193 diverse wheat genotypes were evaluated under drought and heat stress conditions across the years at the Indian Agricultural Research Institute (IARI), New Delhi, under timely sown irrigated (IR), restricted irrigated (RI) and late sown (LS) conditions. Grain iron content (GFeC) and grain zinc content (GZnC) were estimated from both the control and treatment groups. Genotyping of all the lines under study was carried out with the single nucleotide polymorphisms (SNPs) from Breeder’s 35K Axiom Array. RESULT AND DISCUSSION: Three subgroups were observed in the association panel based on both principal component analysis (PCA) and dendrogram analysis. A large whole-genome linkage disequilibrium (LD) block size of 3.49 Mb was observed. A genome-wide association study identified 16 unique stringent marker trait associations for GFeC, GZnC, and 1000-grain weight (TGW). In silico analysis demonstrated the presence of 28 potential candidate genes in the flanking region of 16 linked SNPs, such as synaptotagmin-like mitochondrial-lipid-binding domain, HAUS augmin-like complex, di-copper center-containing domain, protein kinase, chaperonin Cpn60, zinc finger, NUDIX hydrolase, etc. Expression levels of these genes in vegetative tissues and grain were also found. Utilization of identified markers in marker-assisted breeding may lead to the rapid development of biofortified wheat genotypes to combat malnutrition.
Intersectoral collaborations are an integral component of the prevention and control of diseases in a complex health system. On the one hand, One Health (OH) is promoting the establishment of intersectoral collaborations for prevention at the human-animal-environment interface. On the other hand, operationalising OH can only be realized through intersectoral collaborations. This work contributes to broadening the knowledge of the process for operationalising OH by analysing the governance structures behind different initiatives that tackle health problems at the human-animal-environment interface. The cases taken as examples for the analysis are the control and response to rabies and avian influenza under “classical OH”, and the management of floods and droughts for insights into “extended OH”. Data from Ghana and India were collected and compared to identify the key elements that enable ISC for OH. Despite the case studies being heterogeneous in terms of their geographic, economic, social, cultural, and historical contexts, strong similarities were identified on how intersectoral collaborations in OH were initiated, managed, and taken to scale. The actions documented for rabies prevention and control were historically based on one sector being the leader and implementer of activities, while avian influenza management relied more on intersectoral collaborations with clearly defined sectoral responsibilities. The management of the impact of flood and droughts on health provided a good example of intersectoral collaborations achieved by sectoral integration; however, the human health component was only involved in the response stage in the case of Ghana, while for India, there were broader schemes of intersectoral collaborations for prevention, adaptation, and response concerning climate change and disaster.
Objectives Folate is an essential nutrient fundamental to human growth and development. Human milk maintains high folate content across the maternal folate status range, suggesting buffering of milk folate with prioritized delivery to milk at the expense of maternal depletion. We investigated whether and how the extent of this buffering may diminish under prolonged nutritional and/or disease stress, while taking into consideration infants’ varying vulnerability to malnutrition-related morbidity/mortality. Methods A cross-sectional study analyzed milk specimens from northern Kenyan mothers (n = 203), surveyed during a historic drought and ensuing food shortage. Multiple regression models for folate receptor-alpha (FOLR1) in milk were constructed. Predictors included maternal underweight (BMI < 18.5), iron-deficiency anemia (hemoglobin 5 mg/L), folate deficiency (hyperhomocysteinemia, homocysteine >12 or 14 mu mol/L), inflammation (serum C-reactive protein >5 mg/L), infant age and sex, and mother-infant interactions. Results In adjusted models, milk FOLR1 was unassociated with maternal underweight, iron-deficiency anemia and inflammation. FOLR1 was positively associated with maternal folate deficiency, and inversely associated with infant age. There was interaction between infant age and maternal underweight, and between infant sex and maternal folate deficiency, predicting complex changes in FOLR1. Conclusions Our results suggest that mothers buffer milk folate against their own nutritional stress even during a prolonged drought; however, the extent of this buffering may vary with infant age, and, among folate-deficient mothers, with infant sex. Future research is needed to better understand this variability in maternal buffering of milk folate and how it relates to folate status in nursing infants.
Pastoralists in East Africa are among the world’s most vulnerable communities to climate change, already living near their upper thermal limits and engaging in a climate-sensitive livelihood in a climate change global hot spot. Pregnant women and children are even more at risk. Here, we report the findings of a study characterizing Samburu pastoralist women’s experiences of severe drought and outcomes in their children (N = 213, 1.8-9.6 y). First, we examined potential DNA methylation (DNAm) differences between children exposed to severe drought in utero and same-sex unexposed siblings. Next, we performed a high-dimensional mediation analysis to test whether DNAm mediated associations of exposure to severe drought with body weight and adiposity. DNAm was measured using the Infinium MethylationEPIC BeadChip array. After quality control; batch, chip, and genomic inflation corrections; covariate adjustment; and multiple testing correction, 16 CpG sites were differentially methylated between exposed and unexposed children, predominantly in metabolism and immune function pathways. We found a significant indirect effect of drought exposure on child body weight through cg03771070. Our results are the first to identify biological mediators linking severe drought to child growth in a low-income global hot spot for climate change. A better understanding of the mechanisms underlying the association between drought exposure and child growth is important to increasing climate change resilience by identifying targets for intervention.
There is growing evidence that early life conditions are important for outcomes during adolescence, including cognitive development and education. Economic conditions at the time children enter school are also important. We examine these relationships for young adolescents living in a low-income drought-prone pastoral setting in Kenya using historical rainfall patterns captured by remote sensing as exogenous shocks. Past rainfall shocks measured as deviations from local long-term averages have substantial negative effects on the cognitive development and educational achievement of girls. Results for the effects of rainfall shocks on grades attained, available for both girls and boys, support that finding. Consideration of additional outcomes suggests the effects of rainfall shocks on education are due to multiple underlying mechanisms including persistent effects on the health of children and the wealth of their households, underscoring the potential value of contemporaneous program and policy responses to such shocks.
Each year there are over 300 natural disasters globally with millions of victims that cost economic losses near USD$100 billion. In the context of climate change, an emerging literature linking extreme weather events to HIV infections suggests that efforts to control the HIV epidemic could be under threat. We used Demographic and Health Survey (DHS) data collected during the 2015-2016 harsh drought that affected several areas of Malawi to provide new evidence on the effect of an unanticipated economic shock on sexual behaviours of young women and men. We find that amongst women employed in agriculture, a six-months drought doubles their likelihood of engaging in transactional sex compared to women who were not affected by the drought and increases their likelihood of having a sexually transmitted infections (STI) by 48% in the past twelve months. Amongst men employed outside of agriculture, drought increases by 50% the likelihood of having a relationship with a woman engaged in transactional sex. These results suggest that women in agriculture experiencing economic shocks as a result of drought use transactional sex with unaffected men, i.e. men employed outside agriculture, as a coping mechanism, exposing themselves to the risk of contracting HIV. The effect was especially observed among non-educated women. A single drought in the last five years increases HIV prevalence in Malawi by around 15% amongst men and women. Overall, the results confirm that weather shocks are important drivers of risky sexual behaviours of young women relying on agriculture in Africa. Further research is needed to investigate the most adequate formal shock-coping strategies to be implemented in order to limit the negative consequences of natural disasters on HIV acquisition and transmission.
The effects of adverse prenatal conditions are not only experienced over the life course but can be passed on intergenerationally. The present study took advantage of a natural experiment from three drought periods of 1981/82, 1987/88, and 1992/93 that occurred in Malawi with varying severity and used data from a randomized clinical trial (RCT), conducted between 2011-2015 (Protocol #NCT01239693). The present study aimed to assess the effect of the interactions between maternal exposure to drought in early life and prenatal supplementation with a novel supplement [small quantity (SQ), lipid-based nutrient supplement (LNS)], the standard of care prenatal supplement [iron-folic acid or IFA], or a close substitute of the standard of care [multiple micronutrients or MMN], on subsequent infant birth outcomes. During data analysis, ordinary least squares were used to run multiple regressions. The regression results were as follows. When there was no maternal exposure to drought, SQ-LNS compared to IFA appeared to improve subsequent infant birth outcomes for length-for-age Z score or LAZ (0.403 standard deviation (SD), Confidence interval CI [0.099, 0.708]), for subsequent infant weight-for-age Z score or WAZ (0.372 SD, CI [0.053, 0.691]), and for imputed infant birthweight or BTW (125.900 g, CI [2.901, 248.899]). In conclusion, the results show a pattern emerging whereby some positive associations can be observed, specifically, when maternal non-drought exposure variables and the SQ-LNS variable interact. Their combined effects on subsequent infant birth outcomes notably subsequent infant LAZ, subsequent infant WAZ, and subsequent infant imputed BWT appear to be positive.
INTRODUCTION: Over the past 30 years, south-central Somalia, Puntland (north-east) and Somaliland (north-west) have experienced recurring drought- and conflict-related crises. By the end of 2018, the number of internally displaced persons (IDPs) in the region had reached 2.6 million; most were displaced to larger towns under government control, where humanitarian assistance was more accessible. Understanding the drivers of crisis-related displacement can provide insight into how responses can best manage and respond to displacement to prevent downstream morbidity and mortality. We aimed to explore the temporal patterns and crisis-related risk factors for population displacement in Somalia from 2016 to 2018, a period of severe drought. METHODS: We conducted an ecological study of secondary panel data stratified by district and month. The study population included all people in the region from 2016 to 2018. The outcome was defined as the number of new out-migrating internally displaced persons (IDPs) per district-month. Exposure variables included armed conflict, rainfall, food insecurity and food security services. Lags at one, two and three months were generated to explore possible delayed effects. All univariate and multivariate analyses were conducted using negative binomial regression models with mixed effects incorporating the district as a random effect. RESULTS: From 2016 to 2018, the proportion of IDPs increased from 9% to 25% in Somalia, Puntland and Somaliland. We observed strong associations between IDP out-migration rate and failed rains at a three-month lag, food insecurity at a one-month lag, and the presence of therapeutic food services with no lag. IDP out-migration rate was not associated with armed conflict intensity, and cash- and rations-based food security services. DISCUSSION: This study identified temporal, and socially and biologically plausible associations between key crisis-related risk factors and displacement in Somalia. The findings suggest a sequence of events spanning a few months, where failed rains and consequent food insecurity likely prompted early population out-migration to larger urban centers where humanitarian services were more accessible. The presence of therapeutics-based food security services could represent a more general correlate of crisis severity and the decision to migrate.
In 2015, South Africa experienced one of the worst (El Ni??o-induced) droughts in 35 years. This affected economic activities, individual and community livelihoods and wellbeing especially in rural communities in northern KwaZulu-Natal. Drought’s direct and indirect impacts on public health require urgent institutional responses, especially in South Africa’s stride to eliminate HIV as a public health threat by 2030 in line with the UNAIDS goals. This paper draws on qualitative data from interviews and policy documents to discuss how the devastating effect of the 2015 drought experience in the rural Hlabisa sub-district of uMkhanyakude, a high HIV prevalence area, imposes an imperative for more proactive institutional responses to drought and other climate-related events capable of derailing progress made in South Africa’s HIV/AIDS response. We found that drought had a negative impact on individual and community livelihoods and made it more difficult for people living with HIV to consistently engage with care due to economic losses from deaths of livestock, crop failure, food insecurity, time spent in search of appropriate water sources and forced relocations. It also affected government institutions and their interventions. Interviewed participants’ reflections on drought-related challenges, especially those related to institutional and coordination challenges, showed that although current policy frameworks are robust, their implementation has been stalled due to complex reporting systems, and inadequate interdepartmental collaboration and information sharing. We thus argue that to address the gaps in the institutional responses, there is a need for more inclusive systems of drought-relief implementation, in which government departments, especially at the provincial and district levels, work with national institutions to better share data/information about drought-risks in order to improve preparedness and implementation of effective mitigation measures.
In 2015 and 2016, South Africa experienced a severe drought resulting in water restrictions and food price inflation. A year later, while the proportion of food secure households remained constant, the proportion of those experiencing severe food insecurity increased. This paper investigates the socio-economic determinants of increasing food insecurity during and after the drought. Two cross-sectional household surveys were carried out in the district of iLembe in November 2016 and 2017. Household food insecurity was measured using the Coping Strategies Index. The results indicated changes in socio-economic determinants of food insecurity over time, with the poorest households experiencing the worst levels of food insecurity. After the drought, having a child under-five years was positively associated with food insecurity, while being located in a rural area was negatively associated. Policies that limit household vulnerability to price inflation, and interventions that protect poorer households from the effects of drought should be considered.
The 2015 El Nin & SIM;o-triggered drought in Southern Africa caused widespread economic and livelihood disruption in South Africa, imposing multiple physical and health challenges for rural populations including people living with HIV (PLHIV). We examined the economic, social and demographic impacts of drought drawing on 27 in-depth interviews in two cohorts of PLHIV in Hlabisa, uMkhanyakude district, KwaZulu-Natal. Thematic analysis revealed how drought enforced soil water depletion, dried-up rivers, and dams culminated in a continuum of events such as loss of livestock, reduced agricultural production, and insufficient access to water and food which was understood to indirectly have a negative impact on HIV treatment adherence. This was mediated through disruptions in incomes, livelihoods and food systems, increased risk to general health, forced mobility and exacerbation of contextual vulnerabilities linked to poverty and unemployment. The systems approach, drawn from interview themes, hypothesises the complex pathways of plausible networks of impacts from drought through varying socioeconomic factors, exacerbating longstanding contextual precarity, and ultimately challenging HIV care utilisation. Understanding the multidimensional relationships between climate change, especially drought, and poor HIV care outcomes through the prism of contextual vulnerabilities is vital for shaping policy interventions.
BACKGROUND: Climate-induced disruptions like drought can destabilize household and community livelihoods, particularly in low- and middle-income countries. This qualitative study explores the impact of severe and prolonged droughts on gendered livelihood transitions, women’s social and financial wellbeing, and sexual and reproductive health (SRH) outcomes in two Zambian provinces. METHODS: In September 2020, in-depth interviews (n = 20) and focus group discussions (n = 16) with 165 adult women and men in five drought-affected districts, as well as key informant interviews (n = 16) with civic leaders and healthcare providers, were conducted. A team-based thematic analysis approach, guided by the Framework Method, was used to code transcript text segments, facilitating identification and interpretation of salient thematic patterns. RESULTS: Across districts, participants emphasized the toll drought had taken on their livelihoods and communities, leaving farming households with reduced income and food, with many turning to alternative income sources. Female-headed households were perceived as particularly vulnerable to drought, as women’s breadwinning and caregiving responsibilities increased, especially in households where women’s partners out-migrated in search of employment prospects. As household incomes declined, women and girls’ vulnerabilities increased: young children increasingly entered the workforce, and young girls were married when families could not afford school fees and struggled to support them financially. With less income due to drought, many participants could not afford travel to health facilities or would resort to purchasing health commodities, including family planning, from private retail pharmacies when unavailable from government facilities. Most participants described changes in fertility intentions motivated by drought: women, in particular, expressed desires for smaller families, fearing drought would constrain their capacity to support larger families. While participants cited some ongoing activities in their communities to support climate change adaptation, most acknowledged current interventions were insufficient. CONCLUSIONS: Drought highlighted persistent and unaddressed vulnerabilities in women, increasing demand for health services while shrinking household resources to access those services. Policy solutions are proposed to mitigate drought-induced challenges meaningfully and sustainably, and foster climate resilience.
The assessment of the vulnerability to drought hazards in smallholder farming systems dependent on rain-fed agriculture has recently gained global popularity, given the need to identify and prioritize climate hotspots for climate adaptation. Over the past decade, numerous studies have focused on vulnerability assessments with respect to drought and other meteorological hazards. Nonetheless, less research has focused on applying common measurement frameworks to compare vulnerability in different communities and the sources of such vulnerability. Yet, the crucial question remains: who is more vulnerable and what contributes to this vulnerability? This article is a case study for assessing the vulnerability to drought of smallholder farmers in two wards in Chivi district, Masvingo Province, Zimbabwe. This study is timely, as climate change is increasingly affecting populations dependent on rainfed agriculture. This assessment has been conducted by calculating the Livelihood Vulnerability Index (LVI) and Livelihood Vulnerability Index of the Intergovernmental Panel on Climate Change (LVI-IPCC). This empirical study used data from 258 households from the two wards and triangulated it through Key Informant Interviews and Focus Group Discussions. To calculate the LVI, twenty-six subcomponents made up of seven major components, including socio-demographic variables; livelihood strategies; social capital; access to food, health, and water; and exposure to drought, were considered. To calculate the LVI-IPCC, we combined the three contributing factors of vulnerability (exposure, sensitivity, and adaptive capacity). Our results indicate that the LVI forward 14 is statistically higher than for ward 19 (F = 21.960; p <= 0.01) due to high exposure to drought, food insecurity, and compromised social networks. Concerning the LVI-IPCC, ward 14 was significantly more vulnerable to the impacts of drought than ward 19 (F = 7.718; p <= 0.01). Thus, reducing exposure to drought through early warning systems, building diversified agricultural systems, and social networks are of high priority to reduce the vulnerability of the farmers.
Climate change-induced extreme weather events such as drought have occurred with increasing frequency and intensity in Zimbabwe over the past 30 years bringing about pressure on communally owned water resources. Using the Zimbabwe Vulnerability Assessment Committee 2020 survey of rural households in Zimbabwe, this study assesses the impact of drought shock on the occurrence of water point violence. The impact of self-reported drought shock on the likelihood of occurrence of social conflict in the form of water point violence is subject to confounding due to selection bias. Using the doubly robust inverse probability weighted regression adjustment to account for confounding, we investigate gender dimensions of the impact of drought on inducing water point violence in rural Zimbabwe. The study offers three major findings. First, drought shock is associated with increased household propensity to experience water point violence. Second, the severity of the drought shock impact increases the probability of the household experiencing water point violence. Third, drought shock-induced water point violence is only statistically valid for households where the water-fetcher is a woman or girl. The results suggest that the impact of drought shocks on water point violence is gendered and disadvantages women and girls more than men and boys.
INTRODUCTION: Zimbabwe experienced the negative effects of the devastating cyclone Idai which affected several districts in the country, and the drought due to low rainfall that has affected the whole country. As a result of these catastrophes, the food and nutrition security situation in the country has deteriorated. For this reason, we carried out a rapid assessment of the health facilities in 19 sampled high global acute malnutrition and high food insecurity districts from the ten provinces of Zimbabwe to ascertain the preparedness of the facilities to respond to drought effects. METHODS: we conducted a rapid nutritional assessment in 19 purposely selected districts with highest rates of global acute malnutrition from the 10 provinces of Zimbabwe. From these districts, we selected a district hospital and a rural health facility with high number of acute malnutrition cases. We adapted and administered the WHO recommended checklist (Multi-Cluster/Sector Initial Rapid Assessment (MIRA) as the assessment tool. We used STATA to generate frequencies, and proportions. RESULTS: about 94% (16/19) of the districts had less than 50% health workers trained to manage acute malnutrition. A total of 26% (5/19) of the district hospitals and 32% (6/19) of the primary health care facilities were not admitting according to integrated management of acute malnutrition (IMAM) protocol. Twelve districts (63%) had none of their staff trained in infant and young child feeding (IYCF), 58% (11/19) had no staff trained in growth monitoring and 63% (12/19) of the districts had no trained staff in baby friendly hospital initiative (BFHI). A total of 60% of the provinces did not have combined mineral vitamin mix stocks, 80% had no resomal stocks, 20% did not have micronutrient powder stocks and 30% had no ready to use supplementary food stocks in all their assessed facilities. Fifty percent (50%) of the health facilities were not adequately stocked with growth monitoring cards. Manicaland had the least (20%) number of health facility with a registration system to notify cases of malnutrition. CONCLUSION: we concluded that the Zimbabwe health delivery system is not adequately prepared to respond to the effects of the current drought as most health workers had inadequate capacity to manage acute malnutrition, the nutrition surveillance was weak and inadequate stocks of commodities and anthropometric equipment was noted. Following this, health workers from six of ten provinces were trained on management of acute malnutrition, procurement of some life -saving therapeutic and supplementary foods was done. We further recommend food fortification as a long-term plan, active screening for early identification of malnutrition cases and continuous training of health workers.
Droughts are associated with several health effects and Africa is uniquely vulnerable. Despite this, there has been no previous review of the literature on the health effects of drought in Africa. This study systematically reviewed the epidemiological research on the association between drought and adverse health effects in Africa (2012-2019). A total of fifteen articles were included in the review after screening 1922 published (peer-reviewed) and unpublished articles. These studies were all conducted in 9 Sub-Saharan African countries. The drought-related health effects identified were on adverse nutritional health (n = 8) including malnutrition resulting in reduced body size and wasting, stunting and underweight, mortality from food insecurity, anaemia from food insecurity and nutrition-related disability from food insecurity; drought and diseases due to microbial contamination of water (n = 6) including cholera, diarrhoeal diseases, scabies, vector-borne diseases and malaria-related mortality; and drought and health behaviours (n = 1) including HIV prevention and care behaviours. The study found limited evidence of a high prevalence of malnutrition, an increased prevalence of anaemia, cholera, scabies, dengue and an increased incidence in child disabilities during periods of drought. Additionally, there was limited evidence on improved child nutritional health with improved water and sanitation access, and an increased prevalence of child wasting, stunting and underweight in drought-prone areas. No evidence of drought on other health outcomes was found. However, all the studies had more than one limitation including weak study design, a lack of comparison to a drought period, uncertainty on the onset and end of drought, lack of control for confounding, presence of contextual factors, weak outcome and/or exposure measure, small sample size and lack of generalizability. This review found weak evidence for all health outcomes measured but highlights key areas for further research and contextual factors which need to be considered for interventions.
Droughts are associated with poor health outcomes and disruption of public health programming. Data on the association between drought and HIV testing and transmission risk behaviors are limited. We combined data from Demographic and Health Surveys from 10 high HIV prevalence sub-Saharan African countries with a high-resolution measure of drought. We estimated the association between drought and recent HIV testing, report of condomless sex, and number of sexual partners in the last year. Respondents exposed to drought were less likely to have an HIV test and more likely to have condomless sex, although effect sizes were small. We found evidence for effect modification by sex and age for the association between drought and HIV testing, such that the negative association between drought and HIV testing was strongest among men (marginal risk ratio [mRR] 0.92, 95% CI 0.89-0.95) and adolescents (mRR 0.90, 95% CI 0.86-0.93). Drought may hinder HIV testing programs in countries with high HIV prevalence.
Climate change is directly and indirectly linked to human health, including through access to treatment and care. Our systematic review presents a systems understanding of the nexus between drought and antiretroviral therapy (ART) adherence in HIV-positive individuals in the African setting. Narrative synthesis of 111 studies retrieved from Web of Science, PubMed/MEDLINE, and PsycINFO suggests that livelihoods and economic conditions, comorbidities and ART regimens, human mobility, and psychobehavioural dispositions and support systems interact in complex ways in the drought-ART adherence nexus in Africa. Economic and livelihood-related challenges appear to impose the strongest impact on human interactions, actions, and systems that culminate in non-adherence. Indeed, the complex pathways identified by our systems approach emphasise the need for more integrated research approaches to understanding this phenomenon and developing interventions.
Objectives This study of Samburu pastoralists (Kenya) employs a same-sex sibling design to test the hypothesis that exposure in utero to severe drought and maternal psychosocial stress negatively influence children’s growth and adiposity. As a comparison, we also hypothesized that regional climate contrasts would influence children’s growth and adiposity based on ecogeographical patterning. Materials and Methods Anthropometric measurements were taken on Samburu children ages 1.8-9.6 years exposed to severe drought in utero and younger same-sex siblings (drought-exposed, n = 104; unexposed, n = 109) in two regions (highland, n = 128; lowland, n = 85). Mothers were interviewed to assess lifetime and pregnancy-timed stress. Results Drought exposure associated to lower weight-for-age and higher adiposity. Drought did not associate to tibial growth on its own but the interaction between drought and region negatively associated to tibial growth in girls. In addition, drought exposure and historically low rainfall associated to tibial growth in sensitivity models. A hotter climate positively associated to adiposity and tibial growth. Culturally specific stressors (being forced to work too hard, being denied food by male kin) associated to stature and tibial growth for age. Significant covariates for child outcomes included lifetime reported trauma, wife status, and livestock. Discussion Children exposed in utero to severe drought, a hotter climate, and psychosocial stress exhibited growth differences in our study. Our results demonstrate that climate change may deepen adverse health outcomes in populations already psychosocially and nutritionally stressed. Our results also highlight the value of ethnography to identifying meaningful stressors.
This paper evaluates the short-term health effects of in utero drought shock using repeated cross-section household data on Malawi. The main finding reveals that the effects of in utero harvest variability caused by rainfall shocks on child growth indices are driven by the deleterious effects of negative rainfall deviations, namely droughts. Negative rainfall deviation during the agricultural season prior to the gestational period of a child leads to a 21.8 per cent average local level reduction in age-standardized height scores, with the counterpart positive rainfall deviation having no apparent effect. The paper also uses harvest and consumption patterns to establish an important link between early-life malnutrition and growth serving as a precursor for the fetal period programming hypothesis in the literature. The direct impact of embryonic period shocks on growth provides supportive evidence on potential interaction between nutritional and environmental pathways.
BACKGROUND: Temperature and precipitation are known to affect Vibrio cholerae outbreaks. Despite this, the impact of drought on outbreaks has been largely understudied. Africa is both drought and cholera prone and more research is needed in Africa to understand cholera dynamics in relation to drought. METHODS: Here, we analyse a range of environmental and socioeconomic covariates and fit generalised linear models to publicly available national data, to test for associations with several indices of drought and make cholera outbreak projections to 2070 under three scenarios of global change, reflecting varying trajectories of CO(2) emissions, socio-economic development, and population growth. RESULTS: The best-fit model implies that drought is a significant risk factor for African cholera outbreaks, alongside positive effects of population, temperature and poverty and a negative effect of freshwater withdrawal. The projections show that following stringent emissions pathways and expanding sustainable development may reduce cholera outbreak occurrence in Africa, although these changes were spatially heterogeneous. CONCLUSIONS: Despite an effect of drought in explaining recent cholera outbreaks, future projections highlighted the potential for sustainable development gains to offset drought-related impacts on cholera risk. Future work should build on this research investigating the impacts of drought on cholera on a finer spatial scale and potential non-linear relationships, especially in high-burden countries which saw little cholera change in the scenario analysis.
Chronic seasonal crop and livestock loss due to heat stress and rainfall shortages can pose a serious threat to human health, especially in Sub-Saharan Africa where subsistence and small-scale farming dominate. Young children are particularly susceptible to undernutrition when households experience food insecurity because nutritional deficiencies affect their growth and development. The increase in the frequency of extreme climate events, including droughts, can potentially pose serious health impacts on children. However, the evidence is inconclusive and rather limited to small-scale local contexts. Furthermore, little is known about the differential impacts of droughts on the health of population subgroups. This study contributes to the literature by using data from three nationwide Demographic and Health Surveys (DHS) for Ethiopia conducted in 2005, 2011 and 2016 (n = 21,551). Undernutrition, measured as stunting and wasting among children under five, is used as a health indicator. Droughts are identified using the Standardized Precipitation Evapotranspiration Index (SPEI), a multi-scalar drought index. This study found that drought exposure during the main agricultural season (meher) increased the risk of both chronic undernutrition (stunting) and acute undernutrition (wasting) among under-five children in Ethiopia, however, the impacts vary with population subgroups. Boys, children born to uneducated mothers, and those living in the rural area and whose households are engaged in agricultural activities were more likely to be affected. This suggests that nutritional intervention should target these particularly vulnerable groups of the population. (C) 2021 Elsevier Ltd. All rights reserved.
A healthy and a dignified life experience requires adequate water, sanitation, and hygiene (WaSH) coverage. However, inadequate WaSH resources remain a significant public health challenge in many communities in Southern Africa. A systematic search of peer-reviewed Researchs from 2010 -May 2022 was undertaken on Medline, PubMed, EbscoHost and Google Scholar from 2010 to May 2022 was searched using combinations of predefined search terms with Boolean operators. Eighteen peer-reviewed articles from Southern Africa satisfied the inclusion criteria for this review. The general themes that emerged for both barriers and facilitators included geographical inequalities, climate change, investment in WaSH resources, low levels of knowledge on water borne-diseases and ineffective local community engagement. Key facilitators to improved WaSH practices included improved WaSH infrastructure, effective local community engagement, increased latrine ownership by individual households and the development of social capital. Water and sanitation are critical to ensuring a healthy lifestyle. However, many people and communities in Southern Africa still lack access to safe water and improved sanitation facilities. Rural areas are the most affected by barriers to improved WaSH facilities due to lack of WaSH infrastructure compared to urban settings. Our review has shown that, the current WaSH conditions in Southern Africa do not equate to the improved WaSH standards described in SDG 6 on ensuring access to water and sanitation for all. Key barriers to improved WaSH practices identified include rurality, climate change, low investments in WaSH infrastructure, inadequate knowledge on water-borne illnesses and lack of community engagement.
Water scarcity is a global challenge, yet existing responses are failing to cope with current shocks and stressors, including those attributable to climate change. In sub-Saharan Africa, the impacts of water scarcity threaten livelihoods and wellbeing across the continent and are driving a broad range of adaptive responses. This paper describes trends of water scarcity for Africa and outlines climate impacts on key water-related sectors on food systems, cities, livelihoods and wellbeing, conflict and security, economies, and ecosystems. It then uses systematic review methods, including the Global Adaptation Mapping Initiative, to analyse 240 articles and identify adaptation characteristics of planned and autonomous responses to water scarcity across Africa. The most common impact drivers responded to are drought and participation variability. The most frequently identified actors responding to water scarcity include individuals or households (32%), local government (15%) and national government (15%), while the most common types of response are behavioural and cultural (30%), technological and infrastructural (27%), ecosystem-based (25%) and institutional (18%). Most planned responses target low-income communities (31%), women (20%), and indigenous communities (13%), but very few studies target migrants, ethnic minorities or those living with disabilities. There is a lack of coordination of planned adaptation at scale across all relevant sectors and regions, and lack of legal and institutional frameworks for their operation. Most responses to water scarcity are coping and autonomous responses that showed only minor adjustments to business-as-usual water practices, suggesting limited adaptation depth. Maladaptation is associated with one or more dimension of responses in almost 20% of articles. Coordinating institutional responses, carefully planned technologies, planning for projected climate risks including extension of climate services and increased climate change literacy, and integrating indigenous knowledge will help to address identified challenges of water scarcity towards more adaptive responses across Africa.
Droughts are associated with several societal ills, especially in developing economies that rely on rainfed agriculture. Recently, researchers have begun to examine the effect of droughts on the risk of Intimate-Partner Violence (IPV), but so far this work has led to inconclusive results. For example, two large recent studies analyzed comparable data from multiple sub-Saharan African countries and drew opposite conclusions. We attempt to resolve this apparent paradox by replicating previous analyses with the largest data set yet assembled to study drought and IPV. Integrating the methods of previous studies and taking particular care to control for spatial autocorrelation, we find little association between drought and most forms of IPV, although we do find evidence of associations between drought and women’s partners exhibiting controlling behaviors. Moreover, we do not find significant heterogeneous effects based on wealth, employment, household drinking water sources, or urban-rural locality.
Pastoral women in the semi-arid rangelands of East Africa are significantly burdened by the vulnerability to and responsibility for responding to changing climates. Consequently, understanding how adaptation and coping strategies impact pastoral women’s well-being is critical for supporting the climate resilience of communities and the landscapes on which they rely. We used a household survey, guided by a multi-dimensional framework of well-being, to investigate how the use of drought-related coping and adaptation strategies by Samburu households influenced livestock loss and women’s well-being in northern Kenya. Coping and adaptation strategies predicted numerous social-cognitive components of well-being, although not livestock loss. We conjecture these results are a product of a gendered division of labor within households and the community. We argue that interventions aimed at supporting drought resilience must consider the gendered implications of climate response strategies, multiple indicators for evaluation, and the influence of community and place.
Protracted and prolonged droughts lead to famine and substantial decline in agricultural productivity that contribute to food insecurity and hunger in sub-Saharan Africa which needs to explore the risk coping strategies to better target risk mitigation. The main research question of this paper was to analyze ex-post coping strategies and their determinants in rural Ethiopia. We use a cross-section data collected in 2013 from vulnerable rural households in Rayitu district, Bale Zone of Oromia Regional State. Using population-proportionate to size (PPS) sampling technique, a total number of 1,402 households in the district participated in this study. The data were analyzed using a three-stage least squares (3SLS) method. Our analysis confirms that rural households in Rayitu district experience drought and are vulnerable to the consequences of shocks. As a response, rural households adopt interdependent risk coping strategies. This supports the notion of addressing the problem of risk through integrated rural development strategies (and policies) to help the poor to improve the vulnerability to shock and help to escape out of poverty. In addition, we found that the risk coping strategies that households adopt are influenced by the resource holdings and income levels of the rural households, their access to product and financial market, and their socio-demographic characteristics. Hence, we argue that strategies and interventions to improve the livelihood of the poor and to support the vulnerable ones should be targeted to fit to the needs and priorities of households.
BACKGROUND: Ethiopia is a Sub-Saharan country with very high neonatal mortality rates, varying across its regions. The rate of neonatal mortality reduction in Ethiopia is slow, and Ethiopia may not meet the third United Nations sustainable development target by 2030. This study aimed to investigate the spatial variations and contributing factors for neonatal mortality rates in Ethiopia. METHODS: We analysed data from the 2016 Ethiopian Demographic and Health Survey (EDHS), which used a two-stage cluster sampling technique with a census enumeration area as primary and households as secondary sampling units. A Bayesian spatial logistic regression model using the Stochastic Partial Differential Equation (SPDE) method was fitted accounting for socio-economic, health service-related and geographic factors. RESULTS: Higher neonatal mortality rates were observed in eastern, northeastern and southeastern Ethiopia, and the Somali region had higher risks of neonatal mortality. Neonates from frequently drought-affected areas had a higher mortality risk than less drought-affected areas. Application of traditional substances on the cord increased the risk of neonatal mortality (Adjusted Odds Ratio (AOR) = 2.07, 95% Credible Interval (CrI): 1.12 to 4.30) and getting health facility delivery services had a lower odds of neonatal mortality (AOR = 0.60, 95% CrI: 0.37, 0.98). CONCLUSIONS: Residing in drought-affected areas, applying traditional substances on the umbilical cord and not delivering at health facilities were associated with a higher risk of neonatal mortality. Policy-makers and resource administrators at different administrative levels could leverage the findings to prioritise and target areas identified with higher neonatal mortality rates.
BACKGROUND: Globally, understanding spatial analysis of malnutrition is increasingly recognized. However, our knowledge on spatial clustering of malnutrition after controlling for known risk factors of malnutrition such as wealth status, food insecurity, altitude and maternal characteristics is limited from Ethiopia. Previous studies from southern Ethiopia have shown seasonal patterns of malnutrition, yet they did not evaluate spatial clustering of malnutrition. OBJECTIVE: The aim of this study was to assess whether child stunting and maternal malnutrition were spatially clustered in drought-prone areas after controlling for previously known risk factors of malnutrition. METHODS: We used a community-based cohort study design for a one-year study period. We used SaTScan software to identify high rates of child stunting and maternal malnutrition clustering. The outcome based was the presence or absence of stunting and maternal malnutrition ([BMI] <18.5 kg/m(2)). We controlled for previously known predictors of child stunting and maternal malnutrition to evaluate the presence of clustering. We did a logistic regression model with declaring data to be time-series using Stata version 15 for further evaluation of the predictors of spatial clustering. RESULTS: The crude analysis of SaTScan showed that there were areas (clusters) with a higher risk of stunting and maternal malnutrition than in the underlying at risk populations. Stunted children within an identified spatial cluster were more likely to be from poor households, had younger and illiterate mothers, and often the mothers were farmers and housewives. Children identified within the most likely clusters were 1.6 times more at risk of stunting in the unadjusted analysis. Similarly, mothers within the clusters were 2.4 times more at risk of malnutrition in the unadjusted analysis. However, after adjusting for known risk factors such as wealth status, household food insecurity, altitude, maternal age, maternal education, and maternal occupation with SaTScan analysis, we show that child stunting and maternal malnutrition were not spatially clustered. CONCLUSION: The observed spatial clustering of child stunting and maternal malnutrition before controlling for known risk factors for child stunting and maternal malnutrition could be due to non-random distribution of risk factors such as poverty and maternal characteristics. Moreover, our results indicated the need for geographically targeted nutritional interventions in a drought-prone area.
Evidence on the potential for agricultural intensification to improve nutrition has grown considerably. While small-scale irrigation is a key factor driving agricultural intensification in sub-Saharan Africa, its impact on nutrition has not yet been thoroughly explored. In this study, we assess the impact of adoption of small-scale irrigation in Ethiopia and Tanzania on household and women’s dietary diversity, as well as children’s nutrition. We use two rounds of primary data collected from irrigators and nonirrigators in Ethiopia and Tanzania. We used a panel fixed effects econometric approach to control for observed household, women and children specific characteristics as well as observed and unobserved time-invariant confounding factors. The results show that among Ethiopian households who reported having faced drought, women in irrigating households have higher Women’s Dietary Diversity Score (WDDS) compared to women in nonirrigating households. In Tanzania, women in irrigating households have higher WDDS compared to nonirrigators and the impact of irrigation on WDDS more than doubles among households facing drought. In addition, among Tanzanian households who reported having faced a drought shock, irrigating households have higher Household Dietary Diversity Score compared to nonirrigators. Children in irrigating households in Ethiopia have weight-for-height z-scores (WHZ) that are 0.87 SDs higher, on average, than WHZ of children in nonirrigating households. In Tanzania, irrigation leads to higher WHZ-scores in children under-five among households who reported having experienced a drought in the 5 years preceding the survey. The study shows small-scale irrigation has a strong effect on households’ economic access to food and on nutritional outcomes of women and children.
Globally, drought impacts more people than any other natural hazard. However, drought is also the most complex natural hazard, and its impacts are not evenly distributed across the landscape or among human populations. Just as the impacts of drought vary, so do the coping strategies used by people during drought. The research to-date on drought coping strategies in Sub-Saharan Africa are highly quantitative, focused on top-down interventions, and do not emphasize individual perceptions, experience, and autonomous decision-making when coping with drought. This paper aims to fill these gaps by examining the human experience of coping with drought through narratives from farmers in Burat and Kinna, Isiolo County, Kenya. This paper highlights (1) their perceived impacts of drought, and (2) the various coping strategies used. A total of 83 interviews were conducted in 20 households. Results found that the perceived impacts of drought were decreased agricultural productivity, livestock hunger, death, and relocation, a lack of water in rivers, human hunger and disease, and violent conflict. The strategies for coping with drought included changing agricultural practices, adopting irrigation, relying on aid, charcoal burning, casual labor, livelihood diversification, and others. Importantly, these coping strategies can be classified into four categories: livelihood diversification, longer-term livelihood strategies, short-term coping activities, and erosive coping strategies. This research contributes to the effort to better document and understand farmers? perceptions and strategies to cope with drought through qualitative research methods and from the perspective of the individual smallholder farmer, which is important for making context-specific policy and project recommendations aimed at smallholder farmers.
Over the last decades, increased emission of greenhouse gases has led to hot weather extremes, heavy precipitation and worsening of agricultural and ecological droughts. Although Africa’s contribution to climate change is minimal, the continent is especially vulnerable to its effects. This report aims to describe the effect of climate change leading to drought in Kilifi County, Kenya, and the communities’ experiences of this effect on food availability. During their community rotation, residents from a university in Nairobi, Kenya, evaluated changes in weather patterns and nutrition indicators in Kilifi County and conducted focus group discussions (FGDs) with community members and health care stakeholders to explore challenges in access to adequate nutrition and possible local solutions. Kilifi County has one of the highest rates of undernutrition in Kenya, with one in five under-5 children being underweight. County data showed that rainfall in the last 4 years has become increasingly unpredictable, resulting in reduced household milk production, one of the indicators of nutrition security. Three major themes emerged from the FGDs: lack of food variety, collapse of drought mitigating projects and increasing poverty levels. Possible solutions to these problems include promoting alternatives to the current diet that are culturally sensitive and adaptable to recent climate changes, ensuring continuity of agricultural and financial support projects and improved local leadership and governance.
Africa has historically seen several periods of prolonged and extreme droughts across the continent, causing food insecurity, exacerbating social inequity and frequent mortality. A known consequence of droughts and their associated risk factors are infectious disease outbreaks, which are worsened by malnutrition, poor access to water, sanitation and hygiene and population displacement. Cholera is a potential causative agent of such outbreaks. Africa has the highest global cholera burden, several drought-prone regions and high levels of inequity. Despite this, research on cholera and drought in Africa is lacking. Here, we review available research on drought-related cholera outbreaks in Africa and identify a variety of potential mechanisms through which these outbreaks occurred, including poor access to water, marginalization of refugees and nomadic populations, expansion of informal urban settlements and demographic risks. Future climate change may alter precipitation, temperature and drought patterns, resulting in more extremes, although these changes are likely to be spatially heterogeneous. Despite high uncertainty in future drought projections, increases in drought frequency and/or durations have the potential to alter these related outbreaks into the future, potentially increasing cholera burden in the absence of countermeasures (e.g. improved sanitation infrastructure). To enable effective planning for a potentially more drought-prone Africa, inequity must be addressed, research on the health implications of drought should be enhanced, and better drought diplomacy is required to improve drought resilience under climate change.
This paper investigates the extent to which in-utero exposure to droughts influences the health outcomes of Bangladeshi children in early childhood. Exploiting the plausibly exogenous deviations of rainfall from the location-specific norms, we find that deficient rainfall during the prenatal period is harmful to child health. Specifically, in-utero exposure to droughts decreases the height-for-age, weight-for-height, and weight-for-age z-scores by 0.10, 0.11, and 0.11 standard deviations among children under five years old, respectively. Our heterogeneity analyses reveal that the adverse health setbacks fall disproportionately on children of disadvantaged backgrounds. Exploring the differential effects by trimesters of exposure, we further show that experiencing droughts during the second and the third trimesters leaves injurious effects on early childhood health.
BACKGROUND: Drought has been a considerable problem for many years in northern Bangladesh. However, the health impacts of drought in this region are not well understood. METHODS: This study analyzed the impact of drought duration and severity on select causes of mortality in northern Bangladesh. Rainfall data from three meteorological stations (Rangpur, Dinajpur and Nilphamari) in northern Bangladesh were used to assess drought and non-drought periods, and the Standardized Precipitation Index was used to categorize mild, moderate, severe, and extreme drought. Mortality data from 2007 to 2017 for the three areas were collected from the Sample Vital Registration System, which is a survey of 1 million people. The generalized linear model with Poisson regression link was used to identify associations between mortality and the drought severity and 1-month preceding SPI. RESULTS: Only severe and extreme drought in the short-term drought periods affected mortality. Long-term drought was not associated with natural cause mortality in Rangpur and Nilphamari. In Dinajpur, mild and moderate drought was associated with circulatory- and respiratory-related mortality. CONCLUSION: The impact of drought on mortality varied by region. This study improves our understanding of how droughts affect specific causes of mortality and will help policy makers to take appropriate measures against drought impacts on selected cause of mortality. Future research will be critical to reduce drought-related risks of health.
Climate change has increased the frequency of drought occurrence in various parts of the world. Drought as a complex phenomenon causes severe impacts on ecological and socio-economic status. Short-term and long-term occurrences of drought have made many regions vulnerable globally. This paper makes an attempt to assess drought vulnerability in Godavari Middle Sub-basin of India. Twenty-four site specific socio-economic and environmental factors were identified based on the extensive literature review. Drought frequency was assessed using standardized precipitation index (SPI). These datasets were divided into training (70%) and testing (30%) data. Frequency ratio (FR) model was utilized to establish relationship among drought conditioning factors and drought frequency. Weights obtained from the FR model were used as input to the adaptive neuro-fuzzy inference systems (ANFIS) model. Drought vulnerability results were validated using the testing data and receiver operating characteristic (ROC). The accuracy of ANFIS models for 1-month (0.957), 3-months (0.882), 6-months (0.964) and 12-months (0.938) showed high suitability of ANFIS model for the assessment of drought vulnerability. The findings revealed that very low normalized difference vegetation index (NDVI) and increasing trend of highest maximum and mean maximum temperature were major environmental factors which influenced high drought vulnerability in the sub-basin. High proportion of area under fallow land, high infant mortality rate (IMR) and moderate literacy rate were identified as major socio-economic factors making watersheds vulnerable during short and long-term droughts. Largest area of the sub-basin was found under high vulnerability for 3-months, followed by 6-months and 12-months droughts. Thus, the study calls for policy intervention towards lessening the impact of drought in highly vulnerable watersheds.
The Indian summer monsoon rainfall (ISMR) is vital for the livelihood of millions of people in the Indian region; droughts caused by monsoon failures often resulted in famines. Large volcanic eruptions have been linked with reductions in ISMR, but the responsible mechanisms remain unclear. Here, using 145-year (1871-2016) records of volcanic eruptions and ISMR, we show that ISMR deficits prevail for two years after moderate and large (VEI > 3) tropical volcanic eruptions; this is not the case for extra-tropical eruptions. Moreover, tropical volcanic eruptions strengthen El Niño and weaken La Niña conditions, further enhancing Indian droughts. Using climate-model simulations of the 2011 Nabro volcanic eruption, we show that eruption induced an El Niño like warming in the central Pacific for two consecutive years due to Kelvin wave dissipation triggered by the eruption. This El Niño like warming in the central Pacific led to a precipitation reduction in the Indian region. In addition, solar dimming caused by the volcanic plume in 2011 reduced Indian rainfall.
Climate change threatens global sustainability, especially in rural communities of developing countries. In Pakistan, severe impacts of climate change have become evident in the recent past. Large-scale floods in the Indus river system have caused massive damages in the past decade. Also, frequent droughts and heatwaves are among other consequences of the changing climate in the country. Understanding the perspective of local communities regarding climate change adaptation strategies is pivotal to effective policymaking. We surveyed the rural community in the Indus Basin, in southern Punjab, Pakistan, to assess the climate change adaptations currently practiced. We found that the respondents perceive droughts, floods, and disease outbreaks (which are frequently followed by flooding events) as major climate change-induced threats. The respondents used flood and drought-resistant crop varieties, field boundaries (spate irrigation), migration to safe places, and loans as key adaptation strategies. We also assessed the socioeconomic determinants of climate change adaptation behaviour using a binary logistic regression model. Gender, occupation, and education influenced the adaptations to climate change. The present study highlights the need for monetary support to flood-prone communities, better medical facilities, provision of drought and flood-resistant crop varieties, and awareness campaigns to enhance adaptive capacity in the study area.
BACKGROUND: Drought represents a globally relevant natural disaster linked to adverse health. Evidence has shown agricultural communities to be particularly susceptible to drought, but there is a limited understanding of how drought may impact occupational stress in farmers. METHODS: We used repeated measures data collected in the Musculoskeletal Symptoms among Agricultural Workers Cohort study, including 498 Midwestern U.S. farmers surveyed with a Job Content Questionnaire (JCQ) at six-month intervals in 312 counties from 2012 through 2015. A longitudinal linear mixed effects model was used to estimate the change in job strain ratio, a continuous metric of occupational psychosocial stress, during drought conditions measured with a 12-month standardized precipitation index. We further evaluated associations between drought and psychological job demand and job decision latitude, the job strain components, and applied a stratified analysis to evaluate differences by participant sex, age, and geography. RESULTS: During the growing season, the job strain ratio increased by 0.031 (95% CI: 0.012, 0.05) during drought conditions, an amount equivalent to a one-half standard deviation change (Cohen’s D = 0.5), compared to non-drought conditions. The association between drought and the job strain ratio was driven mostly by increases in the psychological job demand (2.09; 95% CI: 0.94, 3.24). No risk differences were observed by sex, age group, or geographic region. CONCLUSIONS: Our results suggest a previously unidentified association between drought and increased occupational psychosocial stress among farmers. With North American climate anticipated to become hotter and drier, these findings could provide important health effects data for federal drought early warning systems and mitigation plans.
This study assesses the potential impact of drought on arsenic exposure from private domestic wells by using a previously developed statistical model that predicts the probability of elevated arsenic concentrations (>10 μg per liter) in water from domestic wells located in the conterminous United States (CONUS). The application of the model to simulate drought conditions used systematically reduced precipitation and recharge values. The drought conditions resulted in higher probabilities of elevated arsenic throughout most of the CONUS. While the increase in the probability of elevated arsenic was generally less than 10% at any one location, when considered over the entire CONUS, the increase has considerable public health implications. The population exposed to elevated arsenic from domestic wells was estimated to increase from approximately 2.7 million to 4.1 million people during drought. The model was also run using total annual precipitation and groundwater recharge values from the year 2012 when drought existed over a large extent of the CONUS. This simulation provided a method for comparing the duration of drought to changes in the predicted probability of high arsenic in domestic wells. These results suggest that the probability of exposure to arsenic concentrations greater than 10 μg per liter increases with increasing duration of drought. These findings indicate that drought has a potentially adverse impact on the arsenic hazard from domestic wells throughout the CONUS.
As is the case for many semi-arid regions globally, drought in the Intermountain West of the United States is a recurrent, costly phenomenon that leaves few aspects of human and natural systems untouched. Here, we focus on drought impact data and evaluation challenges across four non-agricultural sectors: water utilities, forest resources, public health, and recreation and tourism. There are marked commonalities in the way drought indicators-that is, hydrometeorological conditions-are tracked, but considerable differences in how impacts are measured, evaluated, and disseminated. For drought indicator data, researchers and practitioners have a veritable smorgasbord of data at their fingertips. Such data are often spatially and temporally continuous, available at a wide variety of scales, and readily accessible through government-funded online portals. This is in stark contrast to drought impact data, which are typically collected opportunistically, if at all. These data are thus often limited in spatiotemporal scope and difficult to access relative to drought indicators. Concerningly, even within a given sector, the definition of drought impacts, quantitative or otherwise, can vary considerably, making it difficult to evaluate the true cost of drought. Far from being specific to the Intermountain West, these problems are found in most regions experiencing drought. We suggest such challenges are surmountable through the development of a common drought impact framework based around economic damages and purposeful, continuous, government-funded drought impact data collection. These tractable changes will allow for a better quantification of drought’s true impacts under both present conditions and climate change scenarios in the Intermountain West and beyond. This article is categorized under: Human Water > Value of Water Science of Water > Water Extremes Water and Life > Stresses and Pressures on Ecosystems
BACKGROUND: Climate change will increase drought duration and severity in many regions around the world, including the Central Plains of North America. However, studies on drought-related health impacts are still sparse. This study aims to explore the potential associations between drought and all-cause mortality in Nebraska from 1980 to 2014. METHODS: The Evaporative Demand Drought Index (EDDI) were used to define short-, medium- and long-term drought exposures, respectively. We used a Bayesian zero-inflated censored negative binomial (ZICNB) regression model to estimate the overall association between drought and annual mortality first in the total population and second in stratified sub-populations based on age, race, sex, and the urbanicity class of the counties. RESULTS: The main findings indicate that there is a slightly negative association between all-cause mortality and all types of droughts in the total population, though the effect is statistically null. The joint-stratified analysis renders significant results for a few sub-groups. White population aged 25-34 and 45-64 in metro counties and 45-54 in non-metro counties were the population more at risk in Nebraska. No positive associations were observed in any race besides white. Black males aged 20-24 and white females older than 85 showed protective effect against drought mainly in metro counties. We also found that more sub-populations had higher rates of mortality with longer-term droughts compared to shorter-term droughts (12-month vs 1- or 6-month timescales), in both metro and non-metro counties, collectively. CONCLUSION: Our results suggest that mortality in middle aged white population in Nebraska shows a greater association with drought. Moreover, women aged 45-54 were more affected than men in non-metro counties. With a projected increase in the frequency and severity of drought due to climate change, understanding these relationships between drought and human health will better inform drought mitigation planning to reduce potential impacts.
The outcomes of drought can be difficult to assess due to the complexity of its effects. While most risk assessments of drought are developed for agriculture or water resources, the associations with human health are not well studied due to unclear and complex pathways. This study is the first to assess potential changes in health risk from droughts during the last decade in the contiguous United States. To assess the risk, we spatially superimposed vulnerability variables associated with drought on historical drought exposure over the last decade. Different variations in Local Moran’s I statistics were used to assess the spatial distribution of health vulnerability, risk of drought, and changes in the two five-year study periods (2010-2014 and 2015-2019). Our results show large clusters of the western United States had a significant increase in risk during the latter part of the study period due to increases in vulnerability and hazard. In addition, southern areas of the United States were consistently above the national average in drought risk. Since our vulnerability variables include agriculture, drinking water, and sociodemographic indicators, the results of this study can help various experts interested in drought preparedness efforts associated with human health.
As global warming impacts the climate, severe cases of droughts, abnormalities in precipitations, unusual patterns of hurricanes, and excessive heat are becoming more frequent. Excessive heat and droughts in US have made dehydration a problem on construction job sites. Despite the studies about the efficient use of water in buildings post occupancy, little has been explored about water consumption during the construction phase. Given this lack of focus, this study investigates drinking water consumption by construction personnel during construction of a new academic building located in Fort Myers, Florida. Daily potable water consumption data on a jobsite have been recorded during construction through daily interviews with site personnel. Regression analysis is used to examine the existence of correlations between daily humidity, temperature and precipitation data, and daily drinking water consumption by each construction worker. An artificial neural network model is also deployed to examine the existence of such a link.
The impacts of climate change on agricultural production are a global concern and have already begun to occur (Kawasaki 2018 Am. J. Agric. Econ. 101 172-92; Ortiz-Bobea et al 2021 Nat. Clim. Change 11 306-12), with major drivers including warmer temperatures and the occurrence of extreme weather events (Lobell and Field 2007 Environ. Res. Lett. 2 014002; Challinor et al 2014 Nat. Clim. Change 4 287; Rosenzweig et al 2001 Glob. Change Hum. Health 2 90-104; Schlenker and Roberts 2009 Proc. Natl Acad. Sci. USA 106 15594-8; Lobell et al 2014 Science 344 516-9; Ortiz-Bobea et al 2019 Environ. Res. Lett. 14 064003). An important dimension of the climate change-crop yield relationship that has often been overlooked in the empirical literature is the influence that warming temperatures can have on plant damage arriving through biotic channels, such as pest infestation or fungal infection (Rosenzweig et al 2001 Glob. Change Hum. Health 2 90-104). Aflatoxins are carcinogenic chemicals produced by the fungi Aspergillus flavus and A. parasiticus, which commonly infect food crops. Currently, in the United States, aflatoxin is a perennial contaminant in corn grown in the South, but rare in the Corn Belt and northern states. Climate change may expand aflatoxin’s geographical prevalence, however; because hot, dry summers promote aflatoxin accumulation. Here we model aflatoxin risk as a function of corn plant growth stages and weather to predict US regions with high aflatoxin risk in 2031-2040, based on 16 climate change models. Our results suggest that over 89.5% of corn-growing counties in 15 states, including the Corn Belt, will experience increased aflatoxin contamination in 2031-2040 compared to 2011-2020. Interestingly, the results are spatially heterogeneous and include several southern counties expected to have lower aflatoxin risk, because the causative fungi become inactivated at very high temperatures.
Individually, both droughts and pandemics cause disruptions to global food supply chains. The 21st century has seen the frequent occurrence of both natural and human disasters, including droughts and pandemics. Together their impacts can be compounded, leading to severe economic stress and malnutrition, particularly in developing countries. Understanding how droughts and pandemics interact, and identifying appropriate policies to address them together and separately, is important for maintaining a robust global food supply. Herein we assess the impacts of each of these disasters in the context of food and agriculture, and then discuss their compounded effect. We discuss the implications for policy, and suggest opportunities for future research.
BACKGROUND: Drought is an understudied driver of infectious disease dynamics. Amidst the ongoing southwestern North American megadrought, California (USA) is having the driest multi-decadal period since 800 CE, exacerbated by anthropogenic warming. In this study, we aimed to examine the influence of drought on coccidioidomycosis, an emerging infectious disease in southwestern USA. METHODS: We analysed California census tract-level surveillance data from 2000 to 2020 using generalised additive models and distributed monthly lags on precipitation and temperature. We then developed an ensemble prediction algorithm of incident cases of coccidioidomycosis per census tract to estimate the counterfactual incidence that would have occurred in the absence of drought. FINDINGS: Between April 1, 2000, and March 31, 2020, there were 81 448 reported cases of coccidioidomycosis throughout California. An estimated 1467 excess cases of coccidioidomycosis were observed in California in the 2 years following the drought that occurred between 2007 and 2009, and an excess 2649 drought-attributable cases of coccidioidomycosis were observed in the 2 years following the drought that occurred between 2012 and 2015. These increased numbers of cases more than offset the declines in cases that occurred during drought. An IQR increase in summer temperatures was associated with 2·02 (95% CI 1·84-2·22) times higher incidence in the following autumn (September to November), and an IQR increase in precipitation in the winter was associated with 1·45 (1·36-1·55) times higher incidence in the autumn. The effect of winter precipitation was 36% (25-48) stronger when preceded by two dry, rather than average, winters. Incidence in arid counties was most sensitive to precipitation fluctuations, while incidence in wetter counties was most sensitive to temperature. INTERPRETATION: In California, multi-year cycles of dry conditions followed by a wet winter increases transmission of coccidioidomycosis, especially in historically wetter areas. With anticipated increasing frequency of drought in southwestern USA, continued expansion of coccidioidomycosis, along with more intense seasons, is expected. Our results motivate the need for heightened precautions against coccidioidomycosis in seasons that follow major droughts. FUNDING: National Institutes of Health.
From hampering the ability of water utilities to fill their reservoirs to leaving forests parched and ready to burn, drought is a unique natural hazard that impacts many human and natural systems. A great deal of research and synthesis to date has been devoted to understanding how drought conditions harm agricultural operations, leaving other drought-vulnerable sectors relatively under-served. This review aims to fill in such gaps by synthesizing literature from a diverse array of scientific fields to detail how drought impacts nonagricultural sectors of the economy: public water supply, recreation and tourism, forest resources, and public health. We focus on the Intermountain West region of the United States, where the decadal scale recurrence of severe drought provides a basis for understanding the causal linkages between drought conditions and impacts. This article is categorized under: Human Water & Value of Water Science of Water & Water Extremes.
The Great Plains drought of 1931-1939 was a prolonged socio-ecological disaster with widespread impacts on society, economy, and health. While its immediate impacts are well documented, we know much less about the disaster’s effects on distal human outcomes. In particular, the event’s effects on later life mortality remain almost entirely unexplored. Closing this gap would contribute to our understanding of the long-term effects of place-based stress. To help fill this gap, I use a new, massive, linked mortality dataset to investigate whether young men’s exposure to drought and dust storms in 341 Great Plains counties was linked to a higher risk of death in early-old age. Contrary to expectations, results suggest exposure to drought conditions had no obvious adverse effect among men aged 65 years or older at time of death-rather, the average age at death was slightly higher than for comparable men without exposure. This effect also appears to have been stronger among Plainsmen who stayed in place until the drought ended. A discussion of potential explanations for these counterintuitive results is provided.
California is one of the nation’s top agriculture producers and is vulnerable to extreme events such as droughts and heat waves. Concurrent extreme events may further stress water and energy resources, exerting greater adverse socioeconomic, environmental, and health impacts than individual events. Here we examine the features of compound drought, heat wave, and dust events in California during spring and summer. From 2003 to 2020, 16 compound events are found in warm seasons, with a mean duration of similar to 4 days. Compound events are characterized by enhanced surface temperature up to 4.5 degrees C over northern and western California, reduced soil moisture and vegetation density, and an increase in dust optical depth (DOD) by 0.05-0.1 over central and southern California. The enhanced DOD is largely associated with severe vegetation dieback that favors dust emissions and southeasterly wind anomalies that support northward transport of dust from source regions in southern California. Surface fine dust and PM2.5 concentrations also increase by more than 0.5 and 5 mu g m(-3), respectively, during compound events associated with both enhanced dust emissions and a relatively stable atmosphere that traps pollutants. The development of the compound events is related to an anomalous high over the west coast in the lower to middle troposphere, which is a pattern favoring sinking motion and dry conditions in California. The anomalous high is embedded in a wave train that develops up to 7 days before the events. In comparison with heat wave extremes alone, compound events show significantly higher DOD and lower vegetation density associated with droughts.
OBJECTIVE: Ongoing environmental changes increasingly require public health nurses to understand how environmental factors impact the health of populations. One approach to researching these impacts is incorporating environmental research methods to determine associations between harmful exposures and health. We use the Salton Sea in Southern California as a demonstration of how environmental exposure can be examined using air parcel trajectory analysis. DESIGN: We demonstrate a methodology for public health nurses to better understand and apply data from the Hybrid Single-Particle Lagrangian Integrated Trajectory meteorological model to estimate the effect of airborne particulate matter from a single source. MEASUREMENTS: We explain a method for tracking air parcel trajectories to populations: selection of meterological data to identify air parcels, geographic identification of population centers, generation of trajectories, classification of trajectory dispersions, adjusting for atmospheric stability, and merging environmental variables with health data. CONCLUSIONS: Climate change-related environmental events are expected to become more commonplace and disproportionately affect those populations impacted by health disparities. Public health nurses can identify communities at risk so that public health nursing researchers can use these techniques in collaboration with environmental science to robustly examine health effects of proximal air pollution sources for communities at risk.
BACKGROUND/OBJECTIVE: Natural disasters (NDs) are calamitous phenomena that can increase the risk of infections in disaster-affected regions. This study aimed to evaluate the frequency of malaria and cutaneous leishmaniasis (CL) before and after earthquakes, floods, and droughts during the past four decades in Iran. METHODS: Malaria and CL data were obtained from the reports of the Ministry of Health and Medical Education in Iran for the years 1983 through 2017. The data of NDs were extracted from the Centre for Research on the Epidemiology of Disasters (CRED). Interrupted time series analysis with linear regression modeling was used to estimate time trends of mentioned diseases in pre- and post-disaster conditions. RESULTS: For the periods preceding the disasters drought and flood, a decreasing time trend for malaria and CL was found over time. The time trend of malaria rate preceding the 1990 earthquake was stable, a downward trend was found after 1990 disaster until 1997 (β coefficient: -10.7; P = .001), and this declining trend was continued after 1997 disaster (β coefficient: -2.7; P = .001). The time trend of CL rate preceding the 1990 earthquake had a declining trend, an upward trend was found after 1990 earthquake until 1999 (β coefficient: +8.7; P = .293), and a slight upward trend had also appeared after 1999 earthquake (β coefficient: +0.75; P = .839). CONCLUSION: The results of the current study indicated the occurrence of earthquakes, floods, and droughts has no significant effect on the frequency of malaria and CL in Iran.
Drought and desertification have a significant impact on socio-ecological systems throughout the world, particularly in arid and semi-arid regions. In this context, the impact of desertification and drought was analyzed in the pre-Sahara of Morocco. Additionally, a new conceptual framework combining various variables under the context of drought and desertification impacts was developed. The study area has an arid climate and socio-ecological system-based oases. To achieve the goal of the research, a questionnaire was conceived and distributed to a sample of young people (n = 290 on desertification phenomena and n = 290 on drought). A bibliometric analysis was conducted using VOSViewer software to highlight the structure of research and the Likert technique was used as a statistical method to analyze the results. The findings revealed that the respondents reported that drought has a high impact on desertification and sand silting. Otherwise, mental health is highly at risk and drought affects strongly the revenue, yield, and land use. In terms of solutions, the respondents recorded water safe as the appropriate option to adapt to drought in this area. However, in terms of desertification, interviewees thought that temperature and wind have a very high impact on desertification. Roads are the most impacted by sand silting and desertification followed by irrigation canals, and settlements. Concerning the solutions, tourism has a moderate impact on desertification. Young people thereby are aware of the climatic factors and the psycho-socio-economic impacts. They are also able to identify the appropriate solutions to desertification and drought.
Drinking water provision has been a constant challenge in the Sahrawi refugee camps, located in the desert near Tindouf (Algeria). The drinking water supply system is itself divided in three zones which pump groundwater from different deep aquifers. It is equipped with reverse osmosis plants and chlorination systems for treating water. The allocation of water supplied to the Saharawi refugees for human consumption in 2016 has been estimated at between 14 and 17 L/person/day on average. This supplied water volume is below recommended standards, and also below the strategic objective of the Sahrawi government (20 L/person/day). Yet the local groundwater resources are huge in comparison with estimated consumption, and hence there is great potential for increasing the supplied volume through effecting improvements in the supply system. The physico-chemical quality of the raw and supplied water between 2006 and 2016 has been assessed according to Algerian standards for human consumption. The raw water of two zones of the supply system presents a very high conductivity and high concentrations of chloride, nitrate, fluoride, sulfate, sodium, calcium, potassium and iodide concentrations of natural origin, which may entail health risks. The treatment of water in a reverse osmosis plant greatly improves its quality and osmosed water met the standards. However, the supply of osmosed and raw water needs to be combined in Zone 1, to avoid an excessive reduction in water volume, and the supplied raw water poses a risk to the health of the refugees. The present study provides an example of a drinking water supply system under extreme drought conditions and in the political and social conditions of a refugee camp. Furthermore, it establishes a reference for supplied water allocation and quality in the Sahrawi refugee camps.
Climate change is drastically altering the frequency, duration, and severity of compound drought-heatwave (CDHW) episodes, which present a new challenge in environmental and socioeconomic sectors. These threats are of particular importance in low-income regions with growing populations, fragile infrastructure, and threatened ecosystems. This review synthesizes emerging progress in the understanding of CDHW patterns in Brazil while providing insights about the impacts on fire occurrence and public health. Evidence is mounting that heatwaves are becoming increasingly linked with droughts in northeastern and southeastern Brazil, the Amazonia, and the Pantanal. In those regions, recent studies have begun to build a better understanding of the physical mechanisms behind CDHW events, such as the soil moisture-atmosphere coupling, promoted by exceptional atmospheric blocking conditions. Results hint at a synergy between CDHW events and high fire activity in the country over the last decades, with the most recent example being the catastrophic 2020 fires in the Pantanal. Moreover, we show that HWs were responsible for increasing mortality and preterm births during record-breaking droughts in southeastern Brazil. This work paves the way for a more in-depth understanding on CDHW events and their impacts, which is crucial to enhance the adaptive capacity of different Brazilian sectors.
People living in areas vulnerable to diseases caused by extreme climate change events, such as semiarid regions, tend to recognize them quickly and, consequently, develop strategies to cope with their effects. Our study investigated the perception of diseases by farmers living in the semiarid region of Northeastern Brazil and the adaptive strategies locally developed and used. To this end, the effect of the incidence and severity of locally perceived diseases on the frequency of adaptive responses adopted by the farmers was tested. The research was conducted in rural communities in the Pernambuco State, Northeastern Region of Brazil. Semi-structured interviews with 143 farmers were conducted to collect information about major drought and rainfall events, the perceived diseases related to these events, and the adaptive strategies developed to mitigate them. The incidence and severity of diseases perceived by farmers were calculated using the Participatory Risk Mapping method and the frequency of adaptive strategies. Our findings demonstrated that few climate change-related diseases were frequently mentioned by farmers, indicating low incidence rates. Among them, direct transmission diseases were the most frequently mentioned. Adaptive strategies to deal with the mentioned diseases related to prophylactic behavior were less mentioned, except if already utilized. Our model demonstrated that incidence was the only explanatory variable with a significant impact on the adaptive strategies used to deal with the effects of these risks on health. Our findings suggest that the estimated incidence of diseases should be considered in the development of predictive climate change models for government policy measures for the public health security of populations in areas of greater socio-environmental vulnerability.
This article compares urban and rural household water insecurity experiences during the last major drought period (2011-17) in the semi-arid interior region of Ceara, Brazil. Using data from a household survey (N = 322), we determined that households in small urban areas are more and differently water insecure than rural counterparts. Factor analysis and an ordinal logistic regression pinpoint key dimensions, such as water distress, water-sharing and intermittency, contribute differently to water insecurity in rural and urban households. Policy recommendations are made.
A significant fraction of Brazil’s population has been exposed to drought in recent years, a situation that is expected to worsen in frequency and intensity due to climate change. This constitutes a current key environmental health concern, especially in densely urban areas such as several big cities and suburbs. For the first time, a comprehensive assessment of the short-term drought effects on weekly non-external, circulatory, and respiratory mortality was conducted in 13 major Brazilian macro-urban areas across 2000-2019. We applied quasi-Poisson regression models adjusted by temperature to explore the association between drought (defined by the Standardized Precipitation-Evapotranspiration Index) and the different mortality causes by location, sex, and age groups. We next conducted multivariate meta-analytical models separated by cause and population groups to pool individual estimates. Impact measures were expressed as the attributable fractions among the exposed population, from the relative risks (RRs). Overall, a positive association between drought exposure and mortality was evidenced in the total population, with RRs varying from 1.003 [95% CI: 0.999-1.007] to 1.010 [0.996-1.025] for non-external mortality related to moderate and extreme drought conditions, from 1.002 [0.997-1.007] to 1.008 [0.991-1.026] for circulatory mortality, and from 1.004 [0.995-1.013] to 1.013 [0.983-1.044] for respiratory mortality. Females, children, and the elderly population were the most affected groups, for whom a robust positive association was found. The study also revealed high heterogeneity between locations. We suggest that policies and action plans should pay special attention to vulnerable populations to promote efficient measures to reduce vulnerability and risks associated with droughts.
BACKGROUND: Temperature and rainfall patterns are known to influence seasonal patterns of dengue transmission. However, the effect of severe drought and extremely wet conditions on the timing and intensity of dengue epidemics is poorly understood. In this study, we aimed to quantify the non-linear and delayed effects of extreme hydrometeorological hazards on dengue risk by level of urbanisation in Brazil using a spatiotemporal model. METHODS: We combined distributed lag non-linear models with a spatiotemporal Bayesian hierarchical model framework to determine the exposure-lag-response association between the relative risk (RR) of dengue and a drought severity index. We fit the model to monthly dengue case data for the 558 microregions of Brazil between January, 2001, and January, 2019, accounting for unobserved confounding factors, spatial autocorrelation, seasonality, and interannual variability. We assessed the variation in RR by level of urbanisation through an interaction between the drought severity index and urbanisation. We also assessed the effect of hydrometeorological hazards on dengue risk in areas with a high frequency of water supply shortages. FINDINGS: The dataset included 12 895 293 dengue cases reported between 2001 and 2019 in Brazil. Overall, the risk of dengue increased between 0-3 months after extremely wet conditions (maximum RR at 1 month lag 1·56 [95% CI 1·41-1·73]) and 3-5 months after drought conditions (maximum RR at 4 months lag 1·43 [1·22-1·67]). Including a linear interaction between the drought severity index and level of urbanisation improved the model fit and showed the risk of dengue was higher in more rural areas than highly urbanised areas during extremely wet conditions (maximum RR 1·77 [1·32-2·37] at 0 months lag vs maximum RR 1·58 [1·39-1·81] at 2 months lag), but higher in highly urbanised areas than rural areas after extreme drought (maximum RR 1·60 [1·33-1·92] vs 1·15 [1·08-1·22], both at 4 months lag). We also found the dengue risk following extreme drought was higher in areas that had a higher frequency of water supply shortages. INTERPRETATION: Wet conditions and extreme drought can increase the risk of dengue with different delays. The risk associated with extremely wet conditions was higher in more rural areas and the risk associated with extreme drought was exacerbated in highly urbanised areas, which have water shortages and intermittent water supply during droughts. These findings have implications for targeting mosquito control activities in poorly serviced urban areas, not only during the wet and warm season, but also during drought periods. FUNDING: Royal Society, Medical Research Council, Wellcome Trust, National Institutes of Health, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, and Conselho Nacional de Desenvolvimento Científico e Tecnológico. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.
Understanding the influence of climate change and population pressure on human conflict remains a critically important topic in the social sciences. Long-term records that evaluate these dynamics across multiple centuries and outside the range of modern climatic variation are especially capable of elucidating the relative effect of—and the interaction between—climate and demography. This is crucial given that climate change may structure population growth and carrying capacity, while both climate and population influence per capita resource availability. This study couples paleoclimatic and demographic data with osteological evaluations of lethal trauma from 149 directly accelerator mass spectrometry 14C-dated individuals from the Nasca highland region of Peru. Multiple local and supraregional precipitation proxies are combined with a summed probability distribution of 149 14C dates to estimate population dynamics during a 700-y study window. Counter to previous findings, our analysis reveals a precipitous increase in violent deaths associated with a period of productive and stable climate, but volatile population dynamics. We conclude that favorable local climate conditions fostered population growth that put pressure on the marginal and highly circumscribed resource base, resulting in violent resource competition that manifested in over 450 y of internecine warfare. These findings help support a general theory of intergroup violence, indicating that relative resource scarcity—whether driven by reduced resource abundance or increased competition—can lead to violence in subsistence societies when the outcome is lower per capita resource availability.
Amazonia and the Northeast region of Brazil exhibit the highest levels of climate vulnerability in the country. While Amazonia is characterized by an extremely hot and humid climate and hosts the world largest rainforest, the Northeast is home to sharp climatic contrasts, ranging from rainy areas along the coast to semiarid regions that are often affected by droughts. Both regions are subject to extremely high temperatures and are susceptible to many tropical diseases. This study develops a multidimensional Extreme Climate Vulnerability Index (ECVI) for Brazilian Amazonia and the Northeast region based on the Alkire-Foster method. Vulnerability is defined by three components, encompassing exposure (proxied by seven climate extreme indicators), susceptibility (proxied by sociodemographic indicators), and adaptive capacity (proxied by sanitation conditions, urbanization rate, and healthcare provision). In addition to the estimated vulnerability levels and intensity, we break down the ECVI by indicators, dimensions, and regions, in order to explore how the incidence levels of climate-sensitive infectious and parasitic diseases correlate with regional vulnerability. We use the Grade of Membership method to reclassify the mesoregions into homoclimatic zones based on extreme climatic events, so climate and population/health data can be analyzed at comparable resolutions. We find two homoclimatic zones: Extreme Rain (ER) and Extreme Drought and High Temperature (ED-HT). Vulnerability is higher in the ED-HT areas than in the ER. The contribution of each dimension to overall vulnerability levels varies by homoclimatic zone. In the ER zone, adaptive capacity (39%) prevails as the main driver of vulnerability among the three dimensions, in contrast with the approximately even dimensional contribution in the ED-HT. When we compare areas by disease incidence levels, exposure emerges as the most influential dimension. Our results suggest that climate can exacerbate existing infrastructure deficiencies and socioeconomic conditions that are correlated with tropical disease incidence in impoverished areas.
Compound dry and hot events (CDHEs) have increased significantly and caused agricultural losses and adverse impacts on human health. It is thus critical to investigate changes in CDHEs and population exposure in responding to climate change. Based on the simulations of the Coupled Model Intercomparison Project Phase 6 (CMIP6), future changes in CDHEs and population exposure are estimated under four Shared Socioeconomic Pathways climate scenarios (SSPs) at first. And then the driving forces behind these changes are analyzed and discussed. The results show that the occurrence of CDHEs is expected to increase by larger magnitudes by the end of the 21st century (the 2080s) than that by the mid-21st century (2050s). Correspondingly, population exposure to CDHEs is expected to increase significantly responding to higher global warming (SSP3-7.0 and SSP5-8.5) but is limited to a relatively low level under the modest emission scenarios (SSP1-2.6). Globally, compared to 1985-2014, the exposure is expected to increase by 8.5 and 7.7 times under SSP3-7.0 and SSP5-8.5 scenarios by the 2080s, respectively. Regionally, Sahara has the largest increase in population exposure to CDHEs, followed by the Mediterranean, Northeast America, Central America, Africa, and Central Asia. The contribution of climate change to the increase of exposure is about 75% by the 2080s under the SSP5-8.5 scenarios, while that of population change is much lower. The conclusion highlights the importance and urgency of implementing mitigation strategies to alleviate the influence of CDHEs on human society.
Previous studies seldom consider humidity when examining heat-related extremes, and none have explored the effects of humidity on concurrent extremes of high heat stress and low river streamflow. Here, we present the first global picture of projected changes in compound lethal heat stress (T-h)-drought hazards (CHD) across 11,637 catchments. Our observational datasets show that atmospheric conditions (e.g., energy and vapor flux) play an important role in constraining the heat extremes, and that T-h (32% +/- 11%) yields a higher coincidence rate of global CHD than wet-bulb temperature (28% +/- 11%), driven by lower relative humidity (RH) and thus air dryness in T-h extremes. Our large model ensemble projects a 10-fold intensification of bivariate CHD risks by 2071-2100, mainly driven by increases in heat extremes. Future declines in RH, wind, snow, and precipitation in many regions are likely to exacerbate such water and weather-related hazards (e.g., drought and CHD).
Climate change is projected to intensify drought conditions, which may increase the risk of diarrheal diseases in children. We constructed log-binomial generalized linear mixed models to examine the association between diarrhea risk, ascertained from global-scale nationally representative Demographic and Health Surveys, and drought, represented by the standardized precipitation evapotranspiration index, among children under five in 51 low- and middle-income countries (LMICs). Exposure to 6-month mild or severe drought was associated with an increased diarrhea risk of 5% (95% confidence interval 3-7%) or 8% (5-11%), respectively. The association was stronger among children living in a household that needed longer time to collect water or had no access to water or soap/detergent for handwashing. The association for 24-month drought was strong in dry zones but weak or null in tropical or temperate zones, whereas that for 6-month drought was only observed in tropical or temperate zones. In this work we quantify the associations between exposure to long-term drought and elevated diarrhea risk among children under five in LMICs and suggest that the risk could be reduced through improved water, sanitation, and hygiene practices, made more urgent by the likely increase in drought due to climate change.
Climate change is likely to increase the risk of drought which impacts on health are not quite known well due to its creeping nature. This study maps the publications on the consequences of drought on human health, directly or indirectly, from January 2008 to December 2018. We searched Scopus, Web of Science, PsycINFO, google scholar and Pubmed. 378 articles were included. Poisson regression analysis was performed to evaluate the relationship between the number of articles and some variables such as the continent of the study, article type, subject, and climate event type (climate change or just drought). Data were analyzed using Microsoft Excel 2019 and SPSS version 26. Based on the results, Asia had the highest number of publications (91) compared to North America (82), while the number of articles from South America (16) was lower significantly. The majority of articles had used quantitative analysis (175), and review articles were the second most frequent (104). Most of the articles had focused on the social impacts of drought. The number of articles has increased over the years and most of them were not in the health area primarily. Also, a noticeable amount of the knowledge comes from analysis of previously collected data and review articles. To mitigate and reduce the impacts of drought on the different dimensions of health, we need to understand them through more investigations with precise data and methods, especially in less developed countries with a more vulnerable population, and mental health consequences of drought that have been less considered.
Drought may be efficiently managed using the following strategies: prevention, mitigation, readiness, recovery, and transformation. Biotechnological interventions may become highly important in reducing plants’ drought stress in order to address key plant challenges such as population growth and climate change. Drought is a multidimensional construct with several triggering mechanisms or contributing factors working at various spatiotemporal scales, making it one of the known natural catastrophes. Drought is among the causes of hunger and malnutrition, decreasing agricultural output, and poor nutrition. Many deaths caused in children are due to hunger situations, and one in four children face stunted growth. All this hunger and malnutrition may be responsible for the reduction in agricultural productivity caused due to the drought situations affecting food security. Global Hunger Index has been accelerating due to under-nutrition and under-5 deaths. Drought has been covering more than 20% of the world’s agricultural areas, leading to significantly less food production than what is required for consumption. Drought reduces soil fertility and adversely affects soil biological activity reducing the inherent capacity of the soil to support vegetation. Recent droughts have had a much greater effect on people’s lives, even beyond causing poverty and hunger. Drought may have substantial financial consequences across the globe it may cause a severe impact on the world economy. It is a natural feature of the environment that will appear and disappear as it has in history. Due to increasing temperatures and growing vulnerabilities, it will undoubtedly occur more often and seriously in the coming years. To ensure sustainable socio-economic and social development, it is critical to reducing the effects of potential droughts worldwide using different biotechnological interventions. It’s part of a long-term growth plan, and forecasting is essential for early warnings and global hunger management.
INTRODUCTION: Exposure to natural hazards such as fire, drought, floods, and earthquakes can have negative impacts on physical and mental health and wellbeing. The social and structural factors contributing to individual and community vulnerability also influence responses to disaster and the resulting consequences on health and wellbeing. Experiencing disasters like bushfires amplifies the impacts of inequality, magnifying existing disparities and contributing to additional psychological burdens of grief, trauma and adaptive challenge. There is a need to understand how vulnerability can influence responses to disaster, and to identify factors that develop and foster resilience in the context of increasing disasters and vulnerability. MATERIALS AND METHODS: This protocol will describe the methodology of two scoping reviews: the first will describe the mental health outcomes of vulnerable populations after droughts and bushfires; the second will identify and describe strategies that promote community resilience in vulnerable populations in the context of a disaster. A thorough search will be conducted in relevant databases. Studies will be limited to English language. The reviews will be reported using the 22-item checklist for the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Methodological quality of the included papers will be assessed using the Joanna Briggs Institute’s critical appraisal tools. RESULTS & CONCLUSIONS: The two scoping reviews described in this protocol will have broad relevance in the context of increasing and intensifying disasters, and will especially consider the compounded impact of disaster on vulnerable communities. Findings will contribute directly to the design and implementation of solutions to improve post-disaster health and wellbeing and community resilience.
In the middle of the twentieth century, the from North America sooty bark disease (SBD) of maples was first discovered in England and has spread in the last decades in Central Europe, in particular. The trigger of SBD is the mould fungus Cryptostroma (C.) corticale. The most common infested maple is the sycamore, Acer pseudoplatanus, a common tree in woods and parks. The disease is characterised by peeling of the outer layer of the bark and brownish-black spores under the peeled off bark. These spores can cause maple bark disease (MBD) in humans, a hypersensitivity pneumonitis (HP) with similar symptoms like COPD, allergic asthma, influenza or flu-like infections and interstitial pneumonia. Persons who have intensive respectively occupational contact with infested trees or wood, e.g., woodman, foresters, sawyers or paper mill workers, are at risk in particular. Since C. corticale favours hot summers and host trees weakened by drought, SBD will increasingly spread in the future due to ongoing climate change. Consequently, the risk of developing MBD will increase, too. As with all HPs, e.g., farmer’s lung and pigeon breeder’s disease, the diagnosis of MBD is intricate because it has no clear distinguishing characteristics compared to other interstitial lung diseases. Therefore, the establishment of consistent diagnosis guidelines is required. For correct diagnosis and successful therapy, multidisciplinary expertise including pulmonologists, radiologists, pathologists and occupational physicians is recommended. If MBD is diagnosed in time, the removal of the triggering fungus or the infested maple wood leads to complete recovery in most cases. Chronic HP can lead to lung fibrosis and a total loss of lung function culminating in death. HP and, thus, MBD, is a disease with a very high occupational amount. To avoid contact with spores of C. corticale, persons working on infested wood or trees have to wear personal protective equipment. To protect the public, areas with infested maples have to be cordoned off, and the trees should be removed. This is also for impeding further spreading of the spores.
Climate change can have economic consequences, affecting the nutritional intake of populations and increasing food insecurity, as it negatively affects diet quality parameters. One way to mitigate these consequences is to change the way we produce and consume our food. A healthy and sustainable diet aims to promote and achieve the physical, mental, and social well-being of the populations at all life stages, while protecting and safeguarding the resources of the planet and preserving biodiversity. Over the past few years, several indexes have been developed to evaluate dietary sustainability, most of them based on the EAT-Lancet reference diet. The present review explains the problems that arise in human nutrition as a result of climate change and presents currently available diet sustainability indexes and their applications and limitations, in an effort to aid researchers and policy actors in identifying aspects that need improvement in the development of relevant indexes. Overall, great heterogeneity exists among the indicators included in the available indexes and their methodology. Furthermore, many indexes do not adequately account for the diets’ environmental impact, whereas others fall short in the economic impact domain, or the ethical aspects of sustainability. The present review reveals that the design of one environmentally friendly diet that is appropriate for all cultures, populations, patients, and geographic locations is a difficult task. For this, the development of sustainable and healthy diet recommendations that are region-specific and culturally specific, and simultaneously encompass all aspects of sustainability, is required.
In the recent years, the effects of extreme climate phenomena (mainly heat-related) on agricultural crops, infrastructure and human health have become increasingly severe as a result of their complex interactions with the particularities of the urban/rural habitat, as well as the social and economic factors. In Romania, heat-related phenomena (e.g. drought, heat waves) are affecting wide areas in the southern half of the territory where the study area (Bucharest Metropolitan Area) lies. The paper aims to develop a multi-criteria vulnerability assessment using both quantitative and qualitative methods. 23 indicators were selected and processed in order to assess various components of socio-economic and environmental vulnerability to heat-related phenomena using the statistical data available at local administrative units (LAU). The indicators were grouped into the three key components of vulnerability (potential exposure, sensitivity and adaptive capacity) on two dimensions (socio-economic and environmental) resulting two indexes: Socio-Economic Vulnerability Index (SEVI) and Environmental Vulnerability Index (EVI). Finally, an integrated Heat Vulnerability Index (HVI) (using Hull score, average 50 and standard deviation 14) was computed.
Public communication on water availability is pivotal in highlighting water conservation needs as droughts impact water resources for critical use, such as drinking water quality and accessibility. This paper presents the results of research into public communication on water availability and the implementation of water conservation measures in the Republic of Ireland. The paper analyses social media (Twitter and Facebook) communication and newspaper publications from 2018 to 2020 on water conservation and drought events, in addition, to undertaking six key stakeholder interviews made up of journalists (n = 4), political representatives (n = 1), and a water and communication expert (n = 1). Our analysis indicates that Irish newspapers’ coverage of drought and water availability was greater in 2018 compared to 2020. Uncertainty and risk was also identified as the prevalent frame, used by newspapers to cover drought events. Although the sentiments in communications on drought by the national utility, Irish Water, were scored as positive (63%), its engagement with the public on social media was considerably limited. Accessible information platforms that provides data and information on water resources were also found; nevertheless, no comprehensive national drought information management system nor national drought plan have been developed. Based on our findings, we demonstrate the need for public engagement and collaborative efforts to communicate drought and water conservation measures led by An Fóram Uisce|The Water Forum. Recommendations made in this study also aim to influence decision-making and awareness among stakeholders regarding drought communication on water conservation and resources availability.
Drought affects the European Alpine mountain region, despite a humid climate. Droughts’ damaging character in the past and increasing probability in future projections call for an understanding of drought impacts in the mountain regions. The European Drought Impact report Inventory (EDIT) collects text reports on negative drought impacts. This study presents a considerably updated EDII focusing on the Alpine region. This first version release of an Alpine Drought Impact report Inventory (EDIIALPS) classifies impact reports into categories covering various affected sectors and enables comparisons of the drought impact characteristics. We analysed the distribution of reported impacts on the spatial, temporal and seasonal scale and by drought type for soil moisture drought and hydrological drought. For the spatial analysis, we compared the impact data located in the Alpine region to the whole of Europe. Furthermore, we compared impact data between different climatic and altitudinal domains (the northern region vs. the southern region and the pre-Alpine region vs. the high-altitude region) and between the Alpine countries. Compared to the whole of Europe, in the Alpine region agriculture and livestock farming impacts are even more frequently reported, especially in the southern region. Public water supply is the second most relevant sector but overall less prominent compared to Europe, especially in spring when snowmelt mitigates water shortages. Impacts occur mostly in summer and early autumn, with a delay between those impacts initiated by soil moisture and those initiated by hydrological drought. The high-altitude region shows this delay the strongest. From 1975 to 2020, the number of archived reports increases, with substantially more impacts noted during the drought events of 1976, 2003, 2015 and 2018. Moreover, reported impacts diversify from agricultural dominance to multi-faceted impact types covering forestry, water quality, industry and so forth. Though EDIIALPS is biased by reporting behaviour, the region-specific results of negative drought impacts across the water-rich European mountain region demonstrate the need to move from emergency response to prevention and preparedness actions. These may be guided by EDIIALPS’ insights to regional patterns, seasons and drought types.
Adaptation to climate change is often understood as a top-down decision-making and policy-implementing process, as well as application of expert knowledge, to prevent or reduce its (locally specific) negative consequences. In high-income societies, adaptation at the household level then frequently refers to adopting technological fixes distributed through the market, sometimes at a considerable cost. Informed by a study in the context of Central Europe, this article aims to discuss different practices of households and individuals that do not require increased consumption of energy or materials, but still help adapting to climate change in some of its local expressions, such as heatwaves and drought. They were described by participants in focus groups in six cities in the Czech Republic. I argue that such ‘inconspicuous adaptations’ emerge without connection to the climate change debate, or without deeper knowledge about the issue. Yet, they should not be overlooked as unimportant and short-term ‘coping responses’ and underestimated in this debate. They are part and parcel of the ongoing process of societal adaptation to climate change.
Increases in the magnitude and frequency of climate and other disruptive factors are placing environmental, economic, and social stresses on coastal systems. This is further exacerbated by land use transformations, urbanization, over-tourism, sociopolitical tensions, technological innovations, among others. A scenario-informed multicriteria decision analysis (MCDA) was applied in the Metropolitan City of Venice integrating qualitative (i.e., local stakeholder preferences) and quantitative information (i.e., climate-change projections) with the aim of enhancing system resilience to multiple climate-related threats. As part of this analysis, different groups of local stakeholders (e.g., local authorities, civil protection agencies, SMEs, NGOs) were asked to identify critical functions that needs to be sustained. Various policy initiatives were considered to support these critical functions. The MCDA was used to rank the initiatives across several scenarios describing main climate threats (e.g., storm surges, floods, heatwaves, drought). We found that many climate change scenarios were considered to be disruptive to stakeholders and influence alternative ranking. The management alternatives acting on physical domain generally enhance resilience across just a few scenarios while cognitive and informative initiatives provided resilience enhancement across most scenarios considered. With uncertainty of multiple stressors along with projected climate variability, a portfolio of cognitive and physical initiatives is recommended to enhance resilience.
Extreme weather events (EWEs) may significantly increase pathogenic contamination of private (unregulated) groundwater supplies. However, due to the paucity of protective guidance, private well users may be ill-equipped to undertake adaptive actions. With rising instances of waterborne illness documented in groundwater-dependent, developed regions such as the Republic of Ireland, a better understanding of well user risk perceptions pertaining to EWEs is required to establish appropriate educational interventions. To this end, the current study employed an online and physical questionnaire to identify current risk perceptions and correspondent predictors among Irish private well users concerning extreme weather. Respondents were elicited via purposive sampling, with 515 private well users elucidating perceived supply contamination risk in the wake of five EWEs between the years 2013-2018 including drought and pluvial flooding. A novel scoring protocol was devised to quantify overall risk perception (i.e. perceived likelihood, severity and consequences) of extreme weather impacts. Overall risk perception of EWEs was found to demonstrate a significant relationship with gender (p = 0.017) and event experience (p < 0.001), with female respondents and those reporting prior event experience exhibiting higher median risk perception scores. Risk perception was additionally mediated by perceived self-efficacy in undertaking supply maintenance (p = 0.001), as well users citing confidence in ability scored significantly lower than those citing no confidence. Two-step cluster analysis identified three distinct respondent subsets based on risk perception of EWEs (high, moderate and low perception), with female respondents and those with a third-level education significantly more likely to fall within the high perception cluster. Study findings affirm that certain demographic, experiential and cognitive factors exert a significant influence on private well user risk perceptions of EWE impacts and highlight potential focal points for future educational interventions seeking to reduce the risk of human infection associated with groundwater and extreme weather.
INTRODUCTION: The SARS-CoV-2 (COVID-19) pandemic has caused unprecedented social and economic disruption, accompanied by the enactment of a multitude of public health measures to restrain disease transmission. These public health and social measures have had a considerable impact on lifestyle and mental wellbeing, which has been well studied with metropolitan populations. However, limited literature concerning such effects on a selectively rural population is presently available. Additionally, the use of a standardised scoring system for lifestyle may be valuable for an overall assessment of lifestyle that may be incorporated into clinical practice. METHODS: This study examined the associations between psychological distress and changes in SNAPS health behaviours (smoking, nutrition, alcohol, physical activity, sleep) since the onset of COVID-19 in Australia. A cross-sectional anonymous survey was distributed online to adults in the Western New South Wales Primary Health Network in August 2020 and included measures of psychological distress, income, disposition and lifestyle factors during the pandemic as well as changes to lifestyle due to COVID-19. A novel Global Lifestyle Score (GLS) was generated as a holistic assessment of lifestyle across multiple domains. RESULTS: The survey was completed by 304 individuals (modal age group 45-54 years, 86.8% female). High distress on the Kessler-5 scale was present in over one-third of participants (n=95, 33.7%). Detrimental change was reported for sleep (22.7%), nutrition (14.5%), alcohol (16.7%), physical exercise (34.0%) and smoking (24.7%) since the onset of the pandemic. Changes in sleep, nutrition, physical activity and smoking were associated with distress. Participants with a poor lifestyle (GLS) during the pandemic were significantly more distressed. Perceived COVID-19 impact was associated with high distress, drought impact and loss of income. Participants who reported negative impact from both COVID-19 and drought were significantly more distressed than those reporting a negative impact from drought alone or neither event. CONCLUSION: High rates of distress among rural Australians during the COVID-19 pandemic was linked to low GLS, worsening lifestyles and loss of income. Healthy lifestyle strategies should be considered by health professionals for the management of crisis-related distress. Further research may explore the impact of COVID-19 on a larger study population with a greater proportion of male participants and to examine the effect of modifying lifestyle factors in reducing distress in the context of a stressor such as this pandemic.
OBJECTIVE: To identify the modifiable psychological and behavioural coping strategies associated with low levels of psychological distress, independent of more stable personality and demographic factors, in a sample of farmers who reported being exposed to a recent stressful event during an extended drought. DESIGN/SETTING/PARTICIPANTS: Three hundred and nine South Australian, drought-affected grain, sheep and/or cattle farmers completed printed or online questionnaires. Only those who reported experiencing a stressful event in the past month that they rated ≥7 on a scale ranging from 1 (not stressful at all) to 10 (extremely stressful) were included in the analyses (n = 175, 65.06%). Participants ranged in age from 24 to 85 years and 40% were female. MAIN OUTCOME MEASURES: Psychological distress was measured using the Kessler Psychological Distress Scale, and coping strategies were measured using a situational version of the COPE inventory. Five personality factors (extraversion, neuroticism, openness, conscientiousness and agreeableness) were assessed using the Quickscales-R. RESULTS: In the final multivariable model, distress was elevated among individuals reporting higher neuroticism and behavioural disengagement, and lower in individuals reporting greater use of acceptance. These 3 variables explained 44% of the variance in distress. CONCLUSION: Farmers recently exposed to a significant stressor, who used acceptance as a coping strategy, did not engage in behavioural disengagement and scored low on neuroticism, were least likely to experience distress. Given the stability of personality factors, interventions that foster farmers’ use of acceptance and prevent behavioural disengagement as coping strategies might assist them with the management of future stressors, particularly in times of drought.
Farming women have rarely been the focus of scholarly work on drought and/or distress. This article focuses on farming women’s lived experience of drought and distress, drawing on a participatory filmmaking project created by a small group of farming women from Southern Australia. Feminist materialism and Barad’s (2003) concept of ‘intra-action’ provides a useful lens to examine both the film as an artefact as well as the discussions among the women during its creation. Intra-action enables an exploration of how farming women’s bodies come into being as distressed in moments of time through and with drought as a complex constellation of multiple ‘matter’. The film and narratives show distressed bodies emerging with dust, wind, objects and the suffering of non-human animals. For these women, distress emerges from hearing, sensing, seeing and feeling the irritation of dirt splattered against window panes, the emotional pain and economic consequences of topsoil blowing across paddocks and as feed becomes hard to source, the recognition of the suffering of sheep. The power of these animate and inanimate ‘things’-windmills, windows, troughs, work boots, animals and soil-were sensorily entangled with women’s bodies. For farming women, distress materialises within their bodies through processes of intra-action in their more-than-human worlds.
Drought is thought to impact upon the mental health of agricultural communities, but studies of this relationship have reported inconsistent results. A source of inconsistency could be the aggregation of data by a single spatiotemporal unit of analysis, which induces the modifiable areal and temporal unit problems. To investigate this, mental health-related emergency department (MHED) presentations among residents of the Wheat Belt region of Western Australia, between 2002 and 2017, were examined. Average daily rainfall was used as a measure of drought. Associations between MHED presentations and rainfall were estimated based on various spatial aggregations of underlying data, at multiple temporal windows. Wide variation amongst results was observed. Despite this, two key features were found: Associations between MHED presentations and rainfall were generally positive when rainfall was measured in summer months (rate ratios up to 1.05 per 0.5 mm of daily rainfall) and generally negative when rainfall was measured in winter months (rate ratios as low as 0.96 per 0.5 mm of daily rainfall). These results demonstrate that the association between drought and mental health is quantifiable; however, the effect size is small and varies depending on the spatial and temporal arrangement of the underlying data. To improve understanding of this association, more studies should be undertaken with longer time spans and examining specific mental health outcomes, using a wide variety of spatiotemporal units.
Long-lasting drought can have a serious impact on human society and even lead to regime change and the demise of civilizations. Case studies will help to understand the evolution and mechanism of drought under different spatiotemporal scales and social contexts, providing references for dealing with the risk brought by extreme drought. In the late 1920s, northern China witnessed an extreme drought, however, the government had done little to deal with it, causing large losses at the time. This extreme drought event can be served as a case study of the social impact of drought. We collected newspaper records during the drought period, processed qualitative records with textual analysis, and explored the impact path of drought on the human system with network analysis. This research draws the following conclusions: (1) The great drought in northern China caused 19 kinds of recorded events to the human system. (2) The transmission process of drought impact on the human system had two characteristics: hierarchical propagation and cascading effects. The former was reflected in the transmission process of drought impacts among natural, supporting and humanity systems, and the latter was reflected in the transmission process of drought impact within the humanity system. (3) The core event of the natural system is “meteorological drought”; the core event of the supporting system is “food production damage”; the core events of the humanity system are “physical health decline” and “eating alternative foods” (population subsystem), “rising of food prices” (economic subsystem) and “bandits” (social subsystem). These events constitute the main network of how drought affected society. (4) The most special event among all events is “food production damage”, which receives most of the effects of meteorological drought, transmits the effects to other systems and controls the transition of drought effects from nature to human society. Strengthening the resilience of food production systems is an important measure to control the escalation of drought effects.
The upstream construction of hydropower dams may drastically intensify climate change impacts due to changing the natural river flood-drought cycle and reducing the amount of water that flows into the lower Mekong Delta river, leading to hydrological and environmental health impacts. However, until now the influence of drought on residents’ health in the lower MDR, where river drought is highly sensitive to recently built hydropower plants, has not been examined. The objectives of this study are, for the first time, to detect the health impacts of river drought on residents and to evaluate the contribution of hydropower dams to the impacts of drought on health in the lower Mekong Delta Region (MDR). We applied the multi-step approaches of a Detection and Attribution study. First, we detected the effects of the river drought on the risk of hospitalization using a Multivariable Fractional Polynomials algorithm (MFP). Second, we linked the long-term changes of the river water level (RWL) to the operation of the first hydropower dam in the upper MDR using the interrupted time-series model (ITS). Finally, we quantified the hospitalizations and related economic loss attributed to the river drought. The results show that the percentage changes in risk of all-cause, respiratory, and renal hospitalizations attributed to the river drought were 2%, 2%, and 7%. There were significant reductions in average level and trend of the RWL during the post-1995 period, when the first hydropower dam began operation in the upper MDR, even though the cumulative rainfall in the MDR had not changed. The all-cause hospitalizations attributed to the river drought were 1134 cases during the period 1995-2014, which resulted in total additional cost at two provincial hospitals of US $360,385. This current study demonstrates the link between hydropower dams, river drought, and health impacts. As the MDR is highly vulnerable to climate change, these findings about the devastating impacts of hydropower dams and environmental change have important implications for the lives of downstream residents.
Loss and Damage studies have tended to focus on rapid-onset events with lesser attention to slow-onset events such as drought. Even when discussed, narratives around droughts emphasize implications on rural populations and there remain empirical and conceptual gaps on drought impacts in urban areas. We focus on losses and damages associated with urban drought and water insecurity through a review of interventions and policies in seven Asian countries. We find evidence of urban droughts leading to tangible losses (e.g. groundwater over-extraction, economic impacts) and intangible losses (e.g. conflict, increased drudgery). We highlight examples of Asian cities minimizing urban drought-related losses and damages through nature-based, institutional, technological, and behavioral adaptation interventions. We argue that water management policies that take into account current and projected L&D of urban droughts as well as beyond-urban dynamics of water availability and sharing are essential for effective climate adaptation.
Background: In this study, we investigated the associations Lake Urmia’s drought to the prevalence of thyroid nodules (TNs) and metabolic syndrome (MetS) among local inhabitants of the lake. Methods: In this cross-sectional study which was started in 2014, we collected data on 992 adults who participated in the Azar cohort study, in Shabestar county, Iran. The sociodemographic status, smoking, and medical history of the subjects living in the areas adjacent to (n = 163) and far from (n = 829) Lake Urmia were collected through questionnaires. After obtaining written consent, anthropometric factors and blood pressure (BP) were measured. The lipid profile and fasting blood glucose (FBG) of the respondents were measured using colorimetric methods, and all underwent thyroid examination and sonography. Furthermore, the size and characteristics of nodules were determined with a fine-needle aspiration biopsy (FNAB) method. Results: We did not find any significant difference in the prevalence of TNs between the two groups (P=0.44), whereas the prevalence of MetS were significantly higher among the subjects from the regions that were far from the Lake (P=0.04). After adjustment for confounding factors (age and gender) in both groups, low risk of TNs (OR=1.20, 95% CI:0.89-1.62) and high risk of TNs (OR=1.19, 95% CI:0.65-2.19) were not significantly associated to MetS (P>0.05). Conclusion: In this study, Lake Urmia’s drought was identified to be with no contribution to the prevalence of TNs and MetS. Therefore, long term perspective studies are suggested to reach precise results.
Hemorrhagic fever with renal syndrome (HFRS) continued to affect human health across Eurasia, which complicated by climate change has posed a challenge for the disease prevention measures. Nation-wide surveillance data of HFRS cases were collected during 2008-2020.The seasonality and epidemiological features were presented by combining the HFRS incidence and the endemic types data. Factors potentially involved in affecting incidence and shaping disease seasonality were investigated by generalized additive mixed model, distributed lag nonlinear model and multivariate meta-analysis. A total of 76 cities that reported totally 111,054 cases were analyzed. Three endemic types were determined, among them the Type I cities (Hantaan virus-dominant) were related to higher incidence level, showing one spike every year in Autumn-Winter season; Type II (Seoul virus-dominant) cities were related to lower incidence, showing one spike in Spring, while Type III (Hantaan/Seoul-mixed type) showed dual peaks with incidence lying between. Persistently heavy rainfall had significantly negative influence on HFRS incidence in Hantaan virus-dominant endemic area, while a significantly opposite effect was identified when continuously heavy rainfall induced floods, where temperature and relative humidity affected HFRS incidence via an approximately parabolic or linear manner, however few or no such effects was shown in Seoul virus-dominant endemic areas, which was more vulnerable to temperature variation. Dual seasonal pattern of HFRS was depended on the dominant genotypes of hantavirus, and impact of climate on HFRS was greater in Hantaan virus-dominant endemic areas, than in Seoul virus-dominant areas.
Drought and flood are two of the most destructive natural disasters with the most significant impact and greatest losses in the Dadu River basin (DRB). However, their impacts on people’s life have not attracted enough attention from scholars. In this study, the Standardized Precipitation Index (SPI) describing the drought/flood situation and the Composite Index of Human Well-being (CIHW) are calculated, and a framework is further constructed to assess the impacts of drought and flood disasters on human well-being in the DRB. The results show that the annual and seasonal SPI in the DRB generally exhibit an increasing trend in fluctuations during 2000-2009, indicating a wetting climate in this basin. Overall, the upper reaches of the DRB have experienced an evolution of flood-drought-flood state transition, where the variation amplitude of the SPI in the western sub-basin is greater than that in the eastern sub-basin. In addition, the lower reaches of the DRB have suffered more dramatic and periodic changes from the drought/flood disasters in terms of the SPI. For human well-being during 2000-2019, Maerkang City in the upper reaches, Kangding City in the middle reaches, and Shimian County in the lower reaches of the DRB are at a relatively higher level, with the CIHW decreasing from administrative centers to the around. Moreover, the CIHW over the whole basin increases gradually from 2000 to 2019. The SPI has significantly negative effects on different capitals, following a descending order of financial, social, physical, human and natural capitals. The counties of the basin are divided into four groups, namely the group with high disaster risks and high human well-being, the group with high disaster risks and low human well-being, the group with low disaster risks and high human well-being, and the group with low disaster risks and low human well-being. The panel regression results suggest that the construction of water conservancy facilities, the financial inputs in agriculture and meteorology, and the educational level have positive impacts on human well-being, but the impacts differ from different groups. The construction of water conservancy facilities has highly significant impacts on human well-being in all groups; the education level has no significant impact on the group with high disaster risk and high human well-being, which has not passed the significance test; while the financial inputs in agriculture and meteorology have relatively higher impacts on the whole basin and on the group with low disaster risk and low human well-being compared with other groups. Therefore, it is suggested that the negative impacts of drought and flood disasters can be mitigated through strengthening infrastructure construction, responding appropriately to climate change, avoiding disasters at the source of major projects and improving the disaster prevention and mitigation systems.
Climate change may contribute to the spatio-temporal occurrence of disasters. Long-term studies of either homogeneous or heterogeneous responses of historical disasters to climate change are, however, limited by the quality and quantity of the available proxy data. Here we reconstruct spatio-temporal patterns of five types of disasters in China during the period AD 1368-1911. Our analyses of these time series reveal that warmer temperatures decreased the occurrence of disasters in the monsoon-affected parts of central-east China, but it increased the frequency and intensity of disasters along the boundary of arid and humid conditions in parts of southwest and northeast China, probably driven by the interplay among monsoon, westerlies, polar vortex and variation of temperature. Moreover, we show that drought and flood events had cascading effects on the occurrences of locust outbreaks, famine and human epidemics. Our findings suggest that climate can contribute to the spatio-temporal occurrence of disasters, and therefore may contribute to an improvement of China’s regional to national risk management of future climate and environmental change.
Objective: This study aimed to 1) investigate the psychometric properties of the Climate Change Anxiety Scale or CCAS (Clayton & Karazsia, 2020) and 2) examine the mediating role of climate change anxiety on the link between experience of climate change and behavioural engagement in climate mitigation in Filipino youth. Method: A total of 452 Filipino adolescents responded to the survey (Mean Age = 19.18, SD = .99). Results: A modified two-factor model of the CCAS displayed superior fit relative to the other three models tested. Confirmatory factor analysis in Phase 1 yielded a stable two-factor structure with strong factor loadings and good internal consistency. In Phase 2, cognitive-emotional, but not the functional impairment component of climate anxiety, showed a mediating effect on the relationship between experience of climate change and behavioural engagement in climate mitigation. Conclusions: This study is the first to demonstrate that CCAS subscales have distinct mediating roles in linking Filipino adolescents’ experience of climate change and mitigation behaviours. Further validation of the CCAS is recommended, as well as further research on the factors that can promote environment-friendly behaviours in Filipino youth.
Vanuatu, a Pacific Small Island Developing State, has high exposure to climate extremes, such as tropical cyclones and interannual rainfall variability, which can have devastating short- and long-term impacts on food and nutrition security (FNS). This paper presents local experiences of the effects of climate extremes on FNS in Vanuatu through a case study of two recent events: Tropical Cyclone Pam (2015) and an El Nino-induced drought (2015-2017). A qualitative research approach, using a range of data collection methods, was used to document people’s lived experiences in two villages in Vanuatu. This study found that climate extremes affected the FNS of people in the two study villages directly, with effects on gardens and food production, and indirectly, by exacerbating the nutrition transition, a shift away from traditional diets energy-dense imported food that is already progressing in Vanuatu. These effects undermine long-term FNS and health. Climate extremes also eroded food-related cultural practices and traditions and constrained local agency to make food choices. The magnitude and extent of these impacts, however, are influenced by structural vulnerabilities and local resiliencies. The adaptive capacity and resilience of communities needs to be strengthened in a way that allows people to exercise agency in their responses to climate extremes and to promote FNS, including cultural acceptability and food preferences, and long-term health.
Drought is a global threat to public health. Increasingly, the impact of drought on mental health and wellbeing is being recognized. This paper investigates the relationship between drought and well-being to determine which drought indices most effectively capture well-being outcomes. A thorough understanding of the relationship between drought and well-being must consider the (i) three aspects of drought (duration, frequency, and magnitude); (ii) different types of drought (meteorological, agricultural, etc.); and (iii) the individual context of specific locations, communities, and sectors. For this reason, we used a variety of drought types, drought indices, and time windows to identify the thresholds for wet and dry epochs that enhance and suppress impacts to well-being. Four postcodes in New South Wales (NSW), Australia, are used as case studies in the analysis to highlight the spatial variability in the relationship between drought and well-being. The results demonstrate that the relationship between drought indices and well-being outcomes differs temporally, spatially, and according to drought type. This paper objectively tests the relationship between commonly used drought indices and wellbeing outcomes to establish whether current methods of quantifying drought effectively capture well-being outcomes. For funding, community programs, and interventions to result in successful adaptation, it is essential to critically choose which drought index, time window, and well-being outcome to use in empirical studies. The uncertainties associated with these relationships must be accounted for, and it must also be realized that results will differ on the basis of these decisions.
El sistema de monitorización de sequías meteorológicas está diseñado para el seguimiento, alerta temprana y evaluación de la sequía meteorológica, para lo que utiliza en tiempo real la información climática y satelital disponible que muestra el desarrollo de las condiciones de sequía meteorológica y la posible evolución de la misma. El sistema incorpora el desarrollo de productos tecnológicos operativos con implicaciones directas para la gestión de los recursos hídricos, las áreas naturales y para la gestión del riesgo de sequía meteorológica en sectores económicos afectados.
Sušomer, dnevni in povprečni podatki za kmetovelce, fenološki podatki, relevantne publikacije.
Climate change is expected to have severe consequences for the world, some of which are already being felt. According to projections, in some regions, droughts will be more frequent and intense in the 21st century. This calls for purposeful interventions by governments to mitigate the impacts. Drought-affected communities are more vulnerable to famine. The effects of drought are felt in people’s education levels, nutrition, health, sanitation, and women and the safety of children in these communities. The impact of drought can be seen in the livelihoods of people affected by it. Against this backdrop, there is the need to document the effects of drought on women and children’s health in the affected communities. Such a study calls for a systematic approach. This study explores the various dimensions of the effects of droughts. It accessed electronic databases, including Google Scholar, Scopus, Pub-Med, JSTOR to identify a substantial number of studies using key words and expressions. To begin with, the word drought was kept constant in all combinations of keywords and phrases. The search was then refined by using the word drought with keywords, such as livelihood, vulnerability, sustainable development, adaption and mitigation, migration, health impact, and risk management to search the required articles. Only studies conducted in the period 2000 – 2019 were considered for this review. The review’s findings show that due to a lack of water during a drought, the burden of work on women and children increased considerably. Most faced severe health issues like malnutrition and anemia. The livelihoods of women were also affected because of which they were forced to adopt various strategies to overcome the problems posed by droughts. Droughts occur every year in different parts of India. Actions are required to mitigate the effects of drought, including the provision of drinking water, food, aid and relief aid to distressed farmers, employment support, support for changes in livelihoods, water security, and drought-proofing. State policies and actions must give particular attention to women and children because they are the most vulnerable. Employment-generation actions should also include youth by providing appropriate training for developing appropriate skills.
The Imperial Valley region of Southeastern California has become one of the most productive agricultural regions in the state and has the highest rates of childhood asthma in California. Lack of precipitation in the Imperial Valley has caused the water level of the Salton Sea to recede to a record low since its formation in the early 1900s. Previous studies of wind and dust deposition conducted in other regions have shown how reduced precipitation, ground heating, and the diminishing water level in an arid climate pose a risk of exposing previously sequestered toxic chemicals to open air, adversely affecting lung health. The purpose of this study is to draw historical parallels between the Aral Sea and Salton Sea in the context of geomorphology, ecology, human health, economics, and human migration, to inform an assessment of environmentally related health impacts of those living in the Imperial Valley region. Future droughts and heatwaves are expected to rise in frequency and severity, disproportionately affecting those impacted by financial and health disparities. Future research must include the implications of population health in the context of GeoHealth as a result of the most recent drought and the receding water levels of the Salton Sea.
Over the last century, droughts have caused more deaths internationally than any other weather- or climate-related disaster. Like other natural disasters, droughts cause significant changes in the environment that can lead to negative health outcomes. As droughts are becoming more frequent and intense with climate change, public health systems need to address impacts associated with these events. Partnering with federal and local entities, we evaluated the state of knowledge of drought and health in the United States through a National Drought and Public Health Summit and a series of subsequent regional workshops. The intended outcome was to develop public health strategies for implementing activities to better support and prepare public health systems for future droughts. The information gathered from this work identified multiple policy and law options to address the public health issues associated with drought. These policy recommendations include the use of public health emergency declarations for drought events, increased usage of preparedness evaluations for drought emergencies, and engagement of drought and climate experts in state and local risk assessments. As drought events are projected to increase in frequency and magnitude with climate change, taking policy action now will help decrease the health impacts of drought and save lives.
BACKGROUND: Both the World Health Organization and the Intergovernmental Panel on Climate Change project that malnutrition will be the greatest contributor to climate change-associated morbidity and mortality. Although there have been several studies that have examined the potential effects of climate change on human health broadly, the effects on malnutrition are still not well understood. We conducted a systematic review investigating the role of three climate change proxies (droughts, floods, and climate variability) on malnutrition in children and adults. METHODS AND FINDINGS: We identified 22 studies examining the effects of droughts, floods, and climate variability on at least one malnutrition metric. We found that 17 out of 22 studies reported a significant relationship between climate change proxies and at least one malnutrition metric. In meta-analysis, drought conditions were significantly associated with both wasting (Odds Ratio [OR] 1.46, 95% Confidence Interval [CI] 1.05-2.04) and underweight prevalence (OR 1.46, 95% CI 1.01-2.11). CONCLUSIONS: Given the long-term consequences of malnutrition on individuals and society, adoption of climate change adaptation strategies such as sustainable agriculture and water irrigation practices, as well as improving nutritional interventions aimed at children aged 1-2 years and older adults, should be prioritised on global policy agendas in the coming years.
Drought is a devastating natural hazard that significantly affects human health and social and economic activities. This study aims to explore the short-term association between drought and outpatient visits for respiratory diseases (RDs) in four northwest cities, China. In this study, we obtained daily outpatient visits for RDs, meteorological factors, and air pollutant data in four cities (Lanzhou from 2014 to 2016, Wuwei from 2016 to 2018, Tianshui and Zhangye from 2015 to 2018) of northwest China. We used the daily Standardized Precipitation Index (SPI) as an indicator of drought and estimated the effects of drought on outpatient visits with RDs by using a generalized additive model (GAM) in each city, controlling for daily temperature, time trends, and other confounding factors. The city-specific estimates were pooled by random-effects meta-analysis. There were 1,134,577 RDs cases in the hospitals across the four cities. We found that a 1-unit decrease in daily exposure to SPI-1 was positively associated with daily outpatient visits for RDs, with estimated RR of 1.0230 (95% CIs: 1.0096, 1.0366). Compared to non-drought periods, the RR of daily outpatient visits for RDs for exposure to all drought conditions was 1.0431 (95% CIs: 1.0309, 1.0555). In subgroup analysis, the estimated effects of drought on outpatient visits for RDs appeared larger for males than females though not statistically different, and the estimated effects in children and adolescents were the greatest among different age groups. Drought likely increases the risk of respiratory diseases, particularly among children and adolescents. We highlight that public health adaptations to drought such as drought monitoring, mitigation measures, and adaptation strategies are necessary.
Concurrent meteorological droughts and consecutive cold events can significantly impact local ecosystems, socio-economies, and human health. The respective characteristics of droughts and cold extremes have been extensively studied, however, their concurrent extremes have received very little attention. In this study, we used the Huai River Basin as a case to build a magnitude index of concurrent meteorological droughts and consecutive cold events (CDCMI) based on daily minimum temperature data and a 1-month standardized precipitation evapotranspiration index (SPEI) from 1961 to 2018. Results show that the magnitude of meteorological droughts increased over the observation period, while consecutive cold events significantly decreased. CDCMI showed a significant downward trend at a rate of -0.14 per decade. Large differences were observed between 1990-2018 and 1961-1989-especially in the southern parts of the basin (around -50%). The frequency of mild and moderate concurrent meteorological droughts and consecutive cold events showed no significant upward or downward trends, but severe and extreme concurrent events showed pronounced decreasing trends at rates of -0.03 events/decade and – 0.036 events/decade, respectively. Under the same return period, high CDCMI values are present in the southeastern part of the basin, indicating that the concurrent events in this region are more serious. When CDCMI = 1.79 (extreme grade), the return period in the southeastern part of the basin (5-10 years) is much lower than that in the northwestern part of the basin (>100 years), indicating that this part is harmed to a greater extent by the concurrent extremes than elsewhere in the basin. The spatial pattern of maximum CDCMI again indicates that the southeastern part of the basin is at a high risk for concurrent events. The proposed magnitude index may be a useful tool for analysing concurrent (compound) droughts and cold events as well as their potential impacts.
The California state government put restrictions on outdoor residential water use, including landscape irrigation, during the 2012-2016 drought. The public health implications of these actions are largely unknown, particularly with respect to mosquito-borne disease transmission. While residential irrigation facilitates persistence of mosquitoes by increasing the availability of standing water, few studies have investigated its effects on vector abundance. In two study sub-regions in the Los Angeles Basin, we examined the effect of outdoor residential water use restrictions on the abundance of the most important regional West Nile virus vector, Culex quinquefasciatus. Using spatiotemporal random forest models fit to Cx. abundance during drought and non-drought years, we generated counterfactual estimates of Cx. abundance under a hypothetical drought scenario without water use restrictions. We estimate that Cx. abundance would have been 44% and 39% larger in West Los Angeles and Orange counties, respectively, if outdoor water usage had remained unchanged. Our results suggest that drought, without mandatory water use restrictions, may counterintuitively increase the availability of larval habitats for vectors in naturally dry, highly irrigated settings and such mandatory water use restrictions may constrain Cx. abundance, which could reduce the risk of mosquito-borne disease while helping urban utilities maintain adequate water supplies.
Disaster planning for slow-onset city-wide shocks will be become increasingly necessary, particularly as cities face increasingly severe climate hazards. This paper provides unique insight into the disaster planning and management that was undertaken by the City of Cape Town government in response to its most severe hydrological drought on record. It describes how risk was understood and why decisions were made on key elements of the plan, including trigger points, risk prioritisation and mitigation, and the location and design of points of distribution of water rations for the public. Reflecting upon the authors’ experience and interviews with senior City officials who worked on the drought disaster planning and response, the paper extracts five key lessons learnt that have since been applied during the COVID-19 pandemic: (i) the need for cross-functional planning and response skills, (ii) the need for integrated, up-to-date and scale-appropriate data; (iii) the importance of scenario-based simulations, communication and rapid costing to enable the rapid scaling-up of a response; (iv) the value of being able to use outsourced expert capacity effectively; and (v) the application of previously used disaster management and planning experience to build resilience in cities. These lessons, captured in a visual framework, help reflect on capabilities required for responding to future city-scale disasters. The paper provides an informative case study for other cities and risk managers, and will be particularly useful for global South contexts that face drought and other slow-onset disasters, most recently illustrated by the COVID-19 pandemic.
Many deltas worldwide have increasingly faced extreme drought and salinity intrusion, which have adversely affected millions of coastal inhabitants in terms of lives and property. The Vietnamese Mekong Delta (VMD) is considered one of the world?s most vulnerable regions to drought and saline water intrusion, especially in the context of climate change. This study aims to assess livelihood vulnerability and adaptation of the coastal people of the VMD under the impacts of drought and saltwater intrusion. A multi-disciplinary approach was applied, including desktop literature reviews, field surveys, interviews, and focus group discussions with 120 farmers and 30 local officials in two representative hamlets of Soc Trang, a coastal province of the VMD. A vulnerability assessment tool in combination with a sustainable livelihood framework was used to evaluate livelihood vulnerability using the five capital resources to indicate the largest effects of drought and salinity intrusion on the migration of local young people to large cities for adaptation. Livelihood Vulnerability Indexes revealed higher vulnerability in terms of the five capitals of coastal communities living in Nam Chanh hamlet compared to Soc Leo. Results of interviews with officials indicated an optimized mechanism between social organizations and local communities before, at the time, and after being impacted by the drought and salinity intrusion. Our findings contribute evidence-based knowledge to decision-makers to enable coastal communities in the VMD and other deltas worldwide to effectively adapt to the impacts of drought and salinity intrusion.
Natural hazards like floods and droughts affect many aspects of life. The study in particular examined the impacts of droughts on under-five mortality rate in Southern Africa, adjusting for gross domestic product (GDP) and literacy rate. Despite drought and child mortality being key public health concerns in Southern Africa over the past few decades, there have hardly been any studies examining the relationships between them. The study used publicly available data from 1980 to 2012. The Standard Precipitation Index (SPI) was calculated for 3-, 6-, 9-, and 12-monthly time scales for ten southern African countries. The wetter and drier states are represented by positive and negative SPI values, respectively. SPI, GDP, and literacy rate were considered for predicting child mortality rate using both Multiple Linear Regression techniques and nonlinear methods (Generalized Additive Model), on a leave-one-year-out cross validation approach for model evaluation. Child mortality increased as the drought worsened for five countries in this region, namely Angola, Malawi, Mozambique, Namibia, and Zambia. We found that child mortality can be predicted with a high degree of accuracy using three predictor variables-drought index, GDP and literacy rate. Statistical modelling based on early warning system can complement regional capacities for drought response systems to increase child survival rate in drought-prone areas
Global warming is likely to cause a progressive drought increase in some regions, but how population and natural resources will be affected is still underexplored. This study focuses on global population and land-use (forests, croplands, pastures) exposure to meteorological drought hazard in the 21st century, expressed as frequency and severity of drought events. As input, we use a large ensemble of climate simulations from the Coordinated Regional Climate Downscaling Experiment, population projections from the NASA-SEDAC dataset, and land-use projections from the Land-Use Harmonization 2 project for 1981-2100. The exposure to drought hazard is presented for five SSPs (SSP1-SSP5) at four Global Warming Levels (GWLs, from 1.5 to 4 degrees C). Results show that considering only Standardized Precipitation Index (SPI; based on precipitation), the combination SSP3-GWL4 projects the largest fraction of the global population (14%) to experience an increase in drought frequency and severity (vs. 1981-2010), with this value increasing to 60% if temperature is considered (indirectly included in the Standardized Precipitation-Evapotranspiration Index, SPEI). With SPEI, considering the highest GWL for each SSP, 8 (for SSP2, SSP4, and SSP5) and 11 (SSP3) billion people, that is, more than 90%, will be affected by at least one unprecedented drought. For SSP5 (fossil-fuelled development) at GWL 4 degrees C, approximately 2 center dot 10(6) km(2) of forests and croplands (respectively, 6 and 11%) and 1.5 center dot 10(6) km(2) of pastures (19%) will be exposed to increased drought frequency and severity according to SPI, but for SPEI, this extent will rise to 17 center dot 10(6) km(2) of forests (49%), 6 center dot 10(6) km(2) of pastures (78%), and 12 center dot 10(6) km(2) of croplands (67%), with mid-latitudes being the most affected areas. The projected likely increase of drought frequency and severity significantly increases population and land-use exposure to drought, even at low GWLs, thus extensive mitigation and adaptation efforts are needed to avoid the most severe impacts of climate change.
This publication presents a comparison of the content of pollutants in groundwater samples taken at 117 measurement points in four regions of Poland during a drought period and in the reference period without drought. Based on the chemical analyses of water, an assessment of the health risk resulting from the use of underground water for consumption was carried out. The study aimed to determine whether drought affects the increase in health risk exposure of the population. It was found that despite the occurrence of drought, the expected increase in the concentration of pollutants in water does not take place in all locations. This study found that in some cases the occurrence of drought did not cause an increase in the non-cancerogenic threat expressed by the hazard index. There were also no clear changes in excess lifetime cancer risk values except for selected measurement points. On the other hand, the statistical analysis of all data collected in the regions where the research was conducted showed a general trend of increasing environmental health risk caused by changes in groundwater pollution during drought.
This study focuses on Guizhou Province, a region with difficult geographical conditions and poor economic development, to examine the effect of rainfall shocks on contemporaneous infant health and long-run socioeconomic outcomes in China. The study results indicate that negative rainfall shocks are robustly correlated with higher infant mortality and lower birth weight. In the long run, early life rainfall shortages limit an individual’s income and housing conditions. The study findings indicate a significant interaction of rainfall shock with the severity of water scarcity. This result implies that drinking water safety is an essential channel through which early life rainfall shocks influence individual health endowments. However, agriculture production is not a likely channel for rainfall effects despite its association with infant mortality. Accordingly, our empirical results suggest that improving public facility coverage will reduce the vulnerability of infant health to adverse rainfall shocks in Guizhou and other developing areas.
Environmental change and climate-related disasters are an under-examined factor impacting women’s health, globally. Drawing on ecofeminist theory, we conduct analyses examining if the HIV burden among women is higher in nations that experience suffering from droughts. Specifically, we posit that droughts, which typically impact more people and for greater lengths of time than other climate-related disasters, have a unique impact on women’s vulnerability to HIV/AIDS. We use a cross-national dataset of less-developed countries and ordinary least squares (OLS) regression to explore and compare relationships between suffering from drought and total HIV prevalence and suffering from drought and women’s proportion of HIV cases. Overall, the results demonstrate that while droughts have an inconsistent impact on total HIV prevalence, suffering from drought significantly increases the proportion of HIV cases among women in comparison to men, net of the impact of common economic, social, cultural, and political predictors. The findings suggest that suffering from drought differentially impacts women’s health in less-developed countries, where a number of mechanisms, such as transactional sex or displacement, likely underlie the associations identified.
Portugal (Southwestern Europe) experiences a high incidence of dry hazards such as drought, a phenomenon that entails a notable burden of morbidity and mortality worldwide. For the first time in the Lisbon district, a time-series study was conducted to evaluate the impact of drought measured by the Standardised Precipitation Index (SPI) and Standardised Precipitation-Evapotranspiration Index (SPEI) on the daily natural, circulatory, and respiratory mortality from 1983 to 2016. An assessment by gender and adult age population groups (45-64, 65-74, ?75 years old) was included. To estimate the relative risks and attributable risks, generalised linear models with a Poisson link were used. Additionally, the influence of heatwaves and atmospheric pollution for the period from 2007 to 2016 (available period for pollution data) was considered. The main findings indicate statistically significant associations between drought conditions and all analysed causes of mortality. Moreover, SPEI shows an improved capability to reflect the different risks. People in the 45-64 year-old group did not indicate any significant influence in any of the cases, whereas the oldest groups had the highest risk. The drought effects on mortality among the population varied across the different study periods, and in general, the men population was affected more than the women population (except for the SPEI and circulatory mortality during the long study period). The short-term influence of droughts on mortality could be explained primarily by the effect of heatwaves and pollution; however, when both gender and age were considered in the Poisson models, the effect of drought also remained statistically significant when all climatic phenomena were included for specific groups of the total population and men. This type of study facilitates a better understanding of the population at risk and allows the development of more effective measures to mitigate the drought effects on the population.
India has reported a high prevalence of Intimate Partner Violence (IPV) against women over the years. Previous Western research has found an increased IPV risk among women in the aftermath of natural disasters, underscoring the need for such studies in India. We could not locate any study focusing on the impact of slow-onset versus rapid-onset disasters, which might have differing impacts on the vulnerable, especially on the incidence of IPV in India. Using data on ever-married women from the National Family Health Survey-4 (2015-16), we investigated the association of residing in districts exposed to a drought (N = 31,045), and separately, to two cyclones (N = 8469), with three forms of self-reported IPV against women (emotional, physical, and sexual). Survey-adjusted logistic regression models showed that exposure to cyclone was positively associated with emotional IPV (AOR: 1.59, 95% CI: 1.20, 2.10) after adjusting for sociodemographic covariates. Although not statistically significant, exposure to cyclone was also positively associated with physical and sexual IPV, and drought with physical IPV. However, we did not find an association of drought with emotional and sexual violence. We corroborated previous findings that women from wealthier households, with greater education, and whose husbands had no history of alcohol consumption, were less likely to experience any form of IPV independent of the influence of other factors. These results highlight the potential increased risk of IPV following natural disasters. In patriarchal societies such as India vulnerable to climate-change, these sobering results highlight the need to prepare for the social disasters that might accompany natural disasters.
HIV/AIDS represents the leading cause of death among women of reproductive age globally, and gender inequalities in the burden of HIV/AIDS are most pronounced in poorer countries. Drawing on ideas from feminist political ecology, we explore linkages between suffering from drought, food insecurity, and women’s vulnerability to HIV. Using data from 91 less-developed countries, we construct a structural equation model to analyze the direct and indirect influence of these factors, alongside other socio-economic indicators, on the percentage of the adult population living with HIV that are women. We find that droughts are significant in shaping gender inequalities in the HIV burden indirectly through increased food insecurity. We draw on prior research to argue that due to gendered inequalities, food insecurity increases women’s vulnerability to HIV by intensifying biological susceptibilities to the disease, reducing access to social and health resources, and motivating women to engage in risky sexual behaviors, such as transactional sex. Overall, our findings demonstrate that droughts serve as an important underlying factor in promoting HIV transmission among vulnerable women in poor countries, and that food insecurity is a key mechanism in driving this relationship.
Constant environmental degradation and increased frequency and severity of natural disasters have been evident over the past few decades worldwide. As such, scientific tools to predict and assess risks keep being developed. Assessing disaster risk is an important task in supporting the transition to a sustainable society. However, as disasters and systems become more complex, disaster models combining diverse aspects including climatic, social, economic, and environmental factors are necessary. For this study, we set a model using the concept of risk by identifying hazards, exposure, and vulnerability. Here, the vulnerability was classified into two domains, sensitivity and adaptive capacity, and two spheres, natural/built environment and human environment. Also, we stressed that controllable geo-spatial indicators should be included in risk assessments to effectively reduce risk and implement adequate spatio-temporal actions. The approach of this study was applied to Kazakhstan and South Korea as a pilot study to develop Agricultural Drought Risk Index (ADRI) and maps. As a result, the agricultural drought risk could be analyzed for South Korea and Kazakhstan. In addition, we performed additional spatial analyses at a reasonable scale for practical use. It was concluded that prioritizing risk areas at administrative and site level could contribute in decision and policy-making for risk reduction. Furthermore, spatial data availability and quality were found to be significant in assessing disaster risk.
In the Northeast Brazil (NEB), the impacts of climate extreme events such as severe droughts are aggravated by poverty and poor socioeconomic conditions. In this region, such events usually result in the spread of endemic diseases, problems in water distribution, and agricultural losses, often leading to an increase in the population’s vulnerability. Thus, this study aims to evaluate the microregions of the Rio Grande do Norte (RN) state, in the NEB, according to the Epidemiological Index for Drought Vulnerability (EIDV). We mapped and classified the microregions according to three dimensions of vulnerability: risk, susceptibility, and adaptive capacity. We also verified potential associations between drought risk and epidemiological vulnerability. The EIDV was calculated by considering the three dimensions of vulnerability as mutually exclusive events and applying the third axiom of probability. Then we carried out a cluster analysis in order to classify the microregions according to similarities in the EIDV. Odds ratio were also calculated in order to evaluate the odds of microregions having a high susceptibility to diseases and high vulnerability given the drought risk. Results showed that the Pau dos Ferros, Seridó Ocidental, Seridó Oriental, and Umarizal microregions were the most vulnerable, while Natal and Litoral Sul were the least vulnerable. Regarding the dimensions of vulnerability, we observed that almost the entire RN state exhibited high drought risk. Pau dos Ferros and Umarizal had the highest susceptibility and Litoral Nordeste presented the worst adaptive capacity to the effects of drought on health. The EIDV revealed that the population of the RN state needs improvements in living conditions and health, since socioeconomic status is one of the factors that most influence the vulnerability of microregions, which in turn is aggravated by drought risk.
Health determinants might play an important role in shaping the impacts related to long-term disasters such as droughts. Understanding their distribution in populated dry regions may help to map vulnerabilities and set coping strategies for current and future threats to human health. The aim of the study was to identify the most vulnerable municipalities of the Brazilian semiarid region when it comes to the relationship between drought, health, and their determinants using a multidimensional index. From a place-based framework, epidemiological, socio-economic, rural, and health infrastructure data were obtained for 1135 municipalities in the Brazilian semiarid region. An exploratory factor analysis was used to reduce 32 variables to four independent factors and compute a Health Vulnerability Index. The health vulnerability was modulated by social determinants, rural characteristics, and access to water in this semiarid region. There was a clear distinction between municipalities with the highest human welfare and economic development and those municipalities with the worst living conditions and health status. Spatial patterns showed a cluster of the most vulnerable municipalities in the western, eastern, and northeastern portions of the semiarid region. The spatial visualization of the associated vulnerabilities supports decision making on health promotion policies that should focus on reducing social inequality. In addition, policymakers are presented with a simple tool to identify populations or areas with the worst socioeconomic and health conditions, which can facilitate the targeting of actions and resources on a more equitable basis. Further, the results contribute to the understanding of social determinants that may be related to medium- and long-term health outcomes in the region.
Exposure to drought is on the increase, also in sub-Saharan Africa. Even so, little attention has been paid to what supports youth resilience to the stressors associated with drought. In response, this article reports a secondary analysis of qualitative data generated in a phenomenological study with 25 South African adolescents (average age 15.6; majority Sepedi-speaking) from a drought-impacted and structurally disadvantaged community. The thematic findings show the importance of personal, relational, and structural resources that fit with youths’ sociocultural context. Essentially, proactive collaboration between adolescents and their social ecologies is necessary to co-advance socially just responses to the challenges associated with drought.
The indigenous knowledge of our ancestors provides valuable information on how to prevent negative health impacts on water hygiene in the event of drought. The present study aimed to explore the role of indigenous knowledge in maintaining water safety in drought conditions. A qualitative content analysis method using in-depth semi-structured interviews was used to collect and analyze the data. The current research was carried out from April 2017 to June 2018. A purposive sampling method was used to select 15 participants. Trustworthiness was applied with the Lincoln and Guba approach and data were analyzed using Graneheim and Lundman’s method. Two categories including drinking water storage and water collection were extracted from the data. Each category includes different strategies to deal with water. Water storage includes water quantity and water quality. Water collection consists of collection methods and rules. Indigenous knowledge is an indispensable component of community disaster resilience. It can be transferred to other communities and employed to empower affected communities. But using the knowledge without scientific considerations cannot guarantee peoples’ health throughout the drought periods.
The aim of the paper is to describe the spread forest fire event occurred in the Italian Alps in 2017 under extremely drought conditions. In the study the root causes of wildfires and their direct relapses to the air quality of the Western Po valley and the urban centre of Torino have been assessed by means of air pollution measurements (focused to particulate matter with reference samplers and optical particle counters OPCs), meteorological indicators and additional public data. Results show a good correlation among different urban sites and instrument technologies. Concentration data, compared with environmental conditions and historical values describe the clear impact of fires on both local and regional air quality. Indeed, the deferred impact of wildfires on the local wood biomass energy supply chain is briefly outlined. (C) 2019 Published by Elsevier Ltd.
The global literature on drought and health highlights a variety of health effects for people in developing countries where certain prevailing social, economic and environmental conditions increase their vulnerability especially with climate change. Despite increased focus on climate change, relatively less is known about the health-drought impacts in the developed country context. In the UK, where climate change-related risk of water shortages has been identified as a key area for action, there is need for better understanding of drought-health linkages. This paper assesses people’s narratives of drought on health and well-being in the UK using a source-receptor-impact framing. Stakeholder narratives indicate that drought can present perceived health and well-being effects through reduced water quantity, water quality, compromised hygiene and sanitation, food security, and air quality. Heatwave associated with drought was also identified as a source of health effects through heat and wildfire, and drought-related vectors. Drought was viewed as potentially attributing both negative and positive effects for physical and mental health, with emphasis on mental health. Health impacts were often complex and cross-sectoral in nature indicating the need for a management approach across several sectors that targets drought and health in risk assessment and adaptation planning processes. Two recurring themes in the UK narratives were the health consequences of drought for ‘at-risk’ groups and the need to target them, and that drought in a changing climate presented potential health implications for at-risk groups.
Drought is a major challenge threatening agricultural productivity in uMsinga. The occurrence of drought is expected to increase in coming decades, intensifying in severity, duration and the way people are affected by drought. The objective of this study is to understand small-scale farmers’ and rural communities’ perceptions of drought, its environmental and socio-economic impacts, adaptive and mitigation measures at household level and their satisfaction with the government’s role in drought management in the community. The study utilized a combination of quantitative and qualitative research methods, in the form of questionnaires, focus groups and key informant interviews. The sample size for the research study was 180 respondents for the questionnaire component and a total of 30 respondents for the focus groups and key informant interviews. The results show that increased levels of poverty, food insecurity and increased migration were the main socio-economic impacts perceived by respondents. Water scarcity, crop failure, forest degradation and an increase in average temperatures were perceived by respondents as the main environmental impacts caused by drought in uMsinga. Respondents perceived drought as a serious threat to agricultural production and adopted various indigenous adaptive strategies. A majority of respondents adopted a reactive approach to drought management, and therefore did not adopt many mitigation measures.
During the 2012-2016 drought in La Guajira, Colombia, child mortality rates rose to 23.4 out of 1000. Most of these children belonged to the Wayuu indigenous community, the largest and one of the most vulnerable in Colombia. At the municipal level, this study found a significant positive correlation between the average child mortality rate and households with a monthly income of less than USD 100, the number of people without access to health insurance, being part of the indigenous population, being illiterate, lacking sewage systems, living in rural areas, and large households with members younger than 5 years old and older than 65 years old. No correlation was found with households without access to a water source. The stepwise regression analysis showed that households with a monthly income of less than USD 100, no members older than 65 years old, but several children younger than 5 years old, account for 90.4% of the child mortality rate. This study concludes that, if inhabitants had had better incomes or assets, as well as an adequate infrastructure, they could have faced the drought without the observed increase in child mortality.
OBJECTIVES: Indian agriculture is mostly dependent on monsoon. Poor and irregular rainfall may result in crop failure and food shortage among the vulnerable population. This study examined the variations in drought condition and its association with under age 5 child malnutrition across the districts of India. METHODS: Using remote sensing and National Family Health Survey (NFHS-4) data, univariate Moran’s I and bivariate local indicator of spatial autocorrelation (LISA) maps were generated to assess the spatial autocorrelation and clustering. To empirically check the association, we applied multivariate ordinary least square and spatial autoregressive models. RESULTS: The study identified highly significant spatial dependence of drought followed by underweight, stunting, and wasting. Bivariate LISA maps showed negative spatial autocorrelation between drought and child malnutrition. Regression results suggest agricultural drought is substantially associated with stunting. An increasing value of drought showed statistical association with the decreasing (??=?-?8.251; p value?0.05) prevalence rate of child stunting across India. CONCLUSIONS: This study provides evidence of child undernutrition attributable to drought condition, which will further improve the knowledge of human vulnerability and adaptability in the climatic context.
Spain is a country of southern Europe that is prone to drought, and it is likely that this type of hydrological extreme will become substantially more frequent and intense in the 21st century, which could lead to greater health risks if adequate adaptive measures are not taken. For the first time, we calculated the relative risks (RRs) of daily natural (ICD10: A00-R99), circulatory (ICD10: I00-I99), and respiratory (ICD: J00-J99) mortality associated with drought events in each province of Spain from 2000 to 2009. For this purpose, we compared the performance of the Standardized Precipitation Index (SPI) and Standardized Precipitation- Evapotranspiration Index (SPEI) obtained at 1 month of accumulation (denoted as SPI-1/SPEI-1) to estimate the short-term risks of droughts on daily mortality using generalised linear models. Attributable risks were calculated from the RR data. The main findings of this study revealed statistically significant associations between the different causes of daily mortality and drought events for the different provinces of Spain, and clear spatial heterogeneity was observed across the country. Western Spain (northwest to southwest) was the region most affected, in contrast to northern and eastern Spain, and daily respiratory mortality was the group most strongly linked to the incidence of drought conditions. Moreover, for a considerable number of provinces, the effect of SPI-1 and SPEI-1 largely reflected the impact of atmospheric pollution and/or heatwaves; however, for other regions, the effect of drought conditions on daily mortality remained when these different climatic events were controlled in Poisson models. When the performances of the SPEI and SPI were compared to identify and estimate the risks of drought on daily mortality, the results were very similar, although there were slight differences in the specific causes of daily mortality.
This study was conducted to evaluate seasonal patterns of household food insecurity, dietary diversity, and household characteristics on wasting and stunting among children in households followed for 1 year in the drought-prone areas of Sidama, Ethiopia. A cohort study design was employed. Data were collected on the pre-harvest season (March and June) and post-harvest season (September and December) of 2017. We studied 935 children aged 6 to 47 months. At four seasons over a year, we had 3,449 observations from 897 households and 82% (2,816) (95% CI: 80.3-82.9) were food in-secured households. Severe food insecurity was higher in the pre-harvest (March; food scarcity season) which was 69% as compared to 50% of September (P < .001). From 3,488 observations, 44% (1,533) (95% CI: 42.3-45.6) of children were stunted. Stunting showed seasonal variations with 38% (95% CI: 34.7-41.0) in March and 49% (95% CI: 45.8-52.5) in December. Six percent (95% CI: 5.0-6.6) of children were wasted, with higher prevalence in March (8%) as compared to 3% of September (P < .001). Moreover, household characteristics such as poverty level, education, occupation and the household food insecurity and dietary diversity were associated with subsequent wasting and stunting.
A performance assessment of two different indices (the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI)) for monitoring short-term and short-medium-term drought impacts on daily specific-cause mortality in Spain was conducted. To achieve a comprehensive, nationwide view, a meta-analysis was performed using a combination of provincial relative risks (RRs). Moreover, the subdivisions of Spain based on administrative, climatic, and demographic criteria to obtain the measures of combined risks were also taken into account. The results of the SPEI and SPI calculated at the same timescale were similar. Both showed that longer drought events produced greater RR values, for respiratory mortality. However, at the local administrative level, Galicia, Castilla-y-Leon, and Extremadura showed the greatest risk of daily mortality associated with drought episodes, with Andalucía, País Vasco, and other communities being notably impacted. Based on climatic regionalization, Northwest, Central, and Southern Spain were the regions most affected by different drought conditions for all analyzed causes of daily mortality, while the Mediterranean coastal region was less affected. Demographically, the regions with the highest proportion of people aged 65 years of age and over reflected the greatest risk of daily natural, circulatory, and respiratory mortality associated with drought episodes.
The number of serious and extreme drought events is increasing, causing a serious threat to ecosystems, food security, livelihood security, social stability, and sustainable development. The Marathwada region of India is highly vulnerable to the impacts of drought and has been severely affected because of consecutive drought events from 2012 to 2016. This article aims to understand the rural farming household’s perceptions of the impacts of drought, their adaptation and mitigation measures, and also attempts to assess the level of satisfaction of rural households with government mitigation measures. This study is based on primary and secondary sources of data collected from 192 farming households following a structured questionnaire survey. The survey reveals that crop failure, livelihood insecurity, declines in livestock production, livestock loss, water conflicts, and problems in meeting agricultural expenses, increased school dropout rates of children, and both psychological and health problems, were the most immediate socio-economic impacts of drought. The various environmental impacts of drought perceived by farmers included depleted groundwater levels, poor groundwater quality, land degradation, a decrease in seasonal river flows, degradation of pastures and declines in soil fertility. It was found that small and medium sized farmers were highly affected by drought compared with marginal and large scale farmers because of their high dependency on agriculture and poor adaptation strategies.
Somalia, Kenya and Ethiopia, situated in the Horn of Africa, are highly vulnerable to climate change, which manifests itself through increasing temperatures, erratic rains and prolonged droughts. Millions of people have to flee from droughts or floods either as cross-border refugees or as internally displaced persons (IDPs). The aim of this study was to identify knowledge status and gaps regarding public health consequences of large-scale displacement in these countries. After a scoping review, we conducted qualitative in-depth interviews during 2018 with 39 stakeholders from different disciplines and agencies in these three countries. A validation workshop was held with a selection of 13 interviewees and four project partners. Malnutrition and a lack of vaccination of displaced people are well-known challenges, while mental health problems and gender-based violence (GBV) are less visible to stakeholders. In particular, the needs of IDPs are not well understood. The treatment of mental health and GBV is insufficient, and IDPs have inadequate access to essential health services in refugee camps. Needs assessment and program evaluations with a patients’ perspective are either lacking or inadequate in most situations. The Horn of Africa is facing chronic food insecurity, poor population health and mass displacement. IDPs are an underserved group, and mental health services are lacking. A development approach is necessary that moves beyond emergency responses to the building of long-term resilience, the provision of livelihood support and protection to reduce displacement by droughts.
BACKGROUND: Over the past four decades, drought episodes in the Eastern Mediterranean Region (EMR) of the of the World Health Organization (WHO) have gradually become more widespread, prolonged and frequent. We aimed to map hotspot countries and identified key strategic actions for health consequences. METHODS: We reviewed scientific literature and WHO EMR documentation on trends and patterns of the drought health consequences from 1990 through 2019. Extensive communication was also carried out with EMR WHO country offices to retrieve information on ongoing initiatives to face health consequences due to drought. An index score was developed to categorize countries according vulnerability factors towards drought. RESULTS: A series of complex health consequences are due to drought in EMR, including malnutrition, vector-borne diseases, and water-borne diseases. The index score indicated how Afghanistan, Yemen and Somalia are “hotspots” due to poor population health status and access to basic sanitation as well as other elements such as food insecurity, displacement and conflicts/political instability. WHO country offices effort is towards enhancing access to water and sanitation and essential healthcare services including immunization and psychological support, strengthening disease surveillance and response, and risk communication. CONCLUSIONS: Drought-related health effects in the WHO EMR represent a public health emergency. Strengthening mitigation activities and additional tailored efforts are urgently needed to overcome context-specific gaps and weaknesses, with specific focus on financing, accountability and enhanced data availability.
When drought hits water-scarce regions, there are significant repercussions for food and water security, as well as serious issues for the stability of broader social and environmental systems. To mitigate these effects, environmental monitoring and early warning systems aimed at detecting the onset of drought conditions can facilitate timely and effective responses from government and private sector stakeholders. This study uses multistage, participatory research methods across more than 135 interviews, focus groups, and workshops to assess extant climatic, agricultural, hydrological, and drought monitoring systems; key cross-sector drought impacts; and drought monitoring needs in four countries in the Middle East and North Africa (MENA) region: Morocco, Tunisia, Lebanon, and Jordan. This extensive study of user needs for drought monitoring across the MENA region is informing and shaping the ongoing development of drought early warning systems, a composite drought indicator (CDI), and wider drought management systems in each country. Overarching themes of drought monitoring needs include technical definitions of drought for policy purposes; information-sharing regimes and data-sharing platforms; ground-truthing of remotely sensed and modeled data; improved data quality in observation networks; and two-way engagement with farmers, organizations, and end-users of drought monitoring products. This research establishes a basis for informing enhanced drought monitoring and management in the countries, and the broad stakeholder engagement can help foster the emergence of effective environmental monitoring coalitions.