Explore By

This site uses cookies.

This site uses cookies to improve your online experience. To learn more about how we use cookies, please see our terms of use.

Florida’s harmful algal bloom (HAB) problem: Escalating risks to human, environmental and economic health with climate change

Harmful Algal Blooms (HABs) pose unique risks to the citizens, stakeholders, visitors, environment and economy of the state of Florida. Florida has been historically subjected to reoccurring blooms of the toxic marine dinoflagellate Karenia brevis (C. C. Davis) G. Hansen & Moestrup since at least first contact with explorers in the 1500’s. However, ongoing immigration of more than 100,000 people year–1 into the state, elevated population densities in coastal areas with attendant rapid, often unregulated development, coastal eutrophication, and climate change impacts (e.g., increasing hurricane severity, increases in water temperature, ocean acidification and sea level rise) has likely increased the occurrence of other HABs, both freshwater and marine, within the state as well as the number of people impacted by these blooms. Currently, over 75 freshwater, estuarine, coastal and marine HAB species are routinely monitored by state agencies. While only blooms of K. brevis, the dinoflagellate Pyrodinium bahamense (Böhm) Steidinger, Tester, and Taylor and the diatom Pseudo-nitzschia spp. have resulted in closure of commercial shellfish beds, other HAB species, including freshwater and marine cyanobacteria, pose either imminent or unknown risks to human, environmental and economic health. HAB related human health risks can be classified into those related to consumption of contaminated shellfish and finfish, consumption of or contact with bloom or toxin contaminated water or exposure to aerosolized HAB toxins. While acute human illnesses resulting from consumption of brevetoxin-, saxitoxin-, and domoic acid-contaminated commercial shellfish have been minimized by effective monitoring and regulation, illnesses due to unregulated toxin exposures, e.g., ciguatoxins and cyanotoxins, are not well documented or understood. Aerosolized HAB toxins potentially impact the largest number of people within Florida. While short-term (days to weeks) impacts of aerosolized brevetoxin exposure are well documented (e.g., decreased respiratory function for at-risk subgroups such as asthmatics), little is known of longer term (>1 month) impacts of exposure or the risks posed by aerosolized cyanotoxin [e.g., microcystin, β-N-methylamino-L-alanine (BMAA)] exposure. Environmental risks of K. brevis blooms are the best studied of Florida HABs and include acute exposure impacts such as significant dies-offs of fish, marine mammals, seabirds and turtles, as well as negative impacts on larval and juvenile stages of many biota. When K. brevis blooms are present, brevetoxins can be found throughout the water column and are widespread in both pelagic and benthic biota. The presence of brevetoxins in living tissue of both fish and marine mammals suggests that food web transfer of these toxins is occurring, resulting in toxin transport beyond the spatial and temporal range of the bloom such that impacts of these toxins may occur in areas not regularly subjected to blooms. Climate change impacts, including temperature effects on cell metabolism, shifting ocean circulation patterns and changes in HAB species range and bloom duration, may exacerbate these dynamics. Secondary HAB related environmental impacts are also possible due to hypoxia and anoxia resulting from elevated bloom biomass and/or the decomposition of HAB related mortalities. Economic risks related to HABs in Florida are diverse and impact multiple stakeholder groups. Direct costs related to human health impacts (e.g., increased hospital visits) as well as recreational and commercial fisheries can be significant, especially with wide-spread sustained HABs. Recreational and tourism-based industries which sustain a significant portion of Florida’s economy are especially vulnerable to both direct (e.g., declines in coastal hotel occupancy rates and restaurant and recreational users) and indirect (e.g., negative publicity impacts, associated job losses) impacts from HABs. While risks related to K. brevis blooms are established, Florida also remains susceptible to future HABs due to large scale freshwater management practices, degrading water quality, potential transport of HABs between freshwater and marine systems and the state’s vulnerability to climate change impacts.

Harmful algal blooms and their eco-environmental indication

Harmful algal blooms (HABs) in freshwater lakes and oceans date back to as early as the 19th century, which can cause the death of aquatic and terrestrial organisms. However, it was not until the end of the 20th century that researchers had started to pay attention to the hazards and causes of HABs. In this study, we analyzed 5720 published literatures on HABs studies in the past 30 years. Our review presents the emerging trends in the past 30 years on HABs studies, the environmental and human health risks, prevention and control strategies and future developments. Therefore, this review provides a global perspective of HABs and calls for immediate responses.

Harmful algal blooms and their effects in coastal seas of Northern Europe

Harmful algal blooms (HAB) are recurrent phenomena in northern Europe along the coasts of the Baltic Sea, Kattegat-Skagerrak, eastern North Sea, Norwegian Sea and the Barents Sea. These HABs have caused occasional massive losses for the aquaculture industry and have chronically affected socioeconomic interests in several ways. This status review gives an overview of historical HAB events and summarises reports to the Harmful Algae Event Database from 1986 to the end of year 2019 and observations made in long term monitoring programmes of potentially harmful phytoplankton and of phycotoxins in bivalve shellfish. Major HAB taxa causing fish mortalities in the region include blooms of the prymnesiophyte Chrysochromulina leadbeateri in northern Norway in 1991 and 2019, resulting in huge economic losses for fish farmers. A bloom of the prymesiophyte Prymnesium polylepis (syn. Chrysochromulina polylepis) in the Kattegat-Skagerrak in 1988 was ecosystem disruptive. Blooms of the prymnesiophyte Phaeocystis spp. have caused accumulations of foam on beaches in the southwestern North Sea and Wadden Sea coasts and shellfish mortality has been linked to their occurrence. Mortality of shellfish linked to HAB events has been observed in estuarine waters associated with influx of water from the southern North Sea. The first bloom of the dictyochophyte genus Pseudochattonella was observed in 1998, and since then such blooms have been observed in high cell densities in spring causing fish mortalities some years. Dinoflagellates, primarily Dinophysis spp., intermittently yield concentrations of Diarrhetic Shellfish Toxins (DST) in blue mussels, Mytilus edulis, above regulatory limits along the coasts of Norway, Denmark and the Swedish west coast. On average, DST levels in shellfish have decreased along the Swedish and Norwegian Skagerrak coasts since approximately 2006, coinciding with a decrease in the cell abundance of D. acuta. Among dinoflagellates, Alexandrium species are the major source of Paralytic Shellfish Toxins (PST) in the region. PST concentrations above regulatory levels were rare in the Skagerrak-Kattegat during the three decadal review period, but frequent and often abundant findings of Alexandrium resting cysts in surface sediments indicate a high potential risk for blooms. PST levels often above regulatory limits along the west coast of Norway are associated with A. catenella (ribotype Group 1) as the main toxin producer. Other Alexandrium species, such as A. ostenfeldii and A. minutum, are capable of producing PST among some populations but are usually not associated with PSP events in the region. The cell abundance of A. pseudogonyaulax, a producer of the ichthyotoxin goniodomin (GD), has increased in the Skagerrak-Kattegat since 2010, and may constitute an emerging threat. The dinoflagellate Azadinium spp. have been unequivocally linked to the presence of azaspiracid toxins (AZT) responsible for Azaspiracid Shellfish Poisoning (AZP) in northern Europe. These toxins were detected in bivalve shellfish at concentrations above regulatory limits for the first time in Norway in blue mussels in 2005 and in Sweden in blue mussels and oysters (Ostrea edulis and Crassostrea gigas) in 2018. Certain members of the diatom genus Pseudo-nitzschia produce the neurotoxin domoic acid and analogs known as Amnesic Shellfish Toxins (AST). Blooms of Pseudo-nitzschia were common in the North Sea and the Skagerrak-Kattegat, but levels of AST in bivalve shellfish were rarely above regulatory limits during the review period. Summer cyanobacteria blooms in the Baltic Sea are a concern mainly for tourism by causing massive fouling of bathing water and beaches. Some of the cyanobacteria produce toxins, e.g. Nodularia spumigena, producer of nodularin, which may be a human health problem and cause occasional dog mortalities. Coastal and shelf sea regions in northern Europe provide a key supply of seafood, socioeconomic well-being and ecosystem services. I

Climatic versus anthropogenic controls of decadal trends (1983-2017) in algal blooms in lakes and reservoirs across China

The proliferation of algal blooms (ABs) in lakes and reservoirs (L&Rs) poses a threat to water quality and the ecological health of aquatic communities. With global climate change, there is a concern that the frequency and geographical expansion of ABs in L&Rs could increase. China has experienced rapid economic growth and major land-use changes over the last several decades and therefore provides an excellent context for such an analysis. About 289,600 Landsat images were used to examine the spatiotemporal distribution of ABs in L&Rs (>1 km(2)) across China (1983-2017). Results showed significant changes in the temporal slope of the sum of normalized area (0.26), frequency (2.28), duration (6.14), and early outbreak (-3.48) of AB events in L&Rs across China. Specifically, AB-impacted water bodies expanded longitudinally, and the time range of AB observation has expanded starting in the 2000s. Spearman correlation and random forest regression analyses further indicated that, among climatic factors, wind speed and temperature contributed the most to AB expansion. Overall, anthropogenic forces have overridden the imprints of climatic factors on the temporal evolution of ABs in China’s L&Rs and therefore could inform policy decisions for the management of these resources.

Seasonal water quality and algal responses to monsoon-mediated nutrient enrichment, flow regime, drought, and flood in a drinking water reservoir

Freshwater reservoirs are a crucial source of urban drinking water worldwide; thus, long-term evaluations of critical water quality determinants are essential. We conducted this study in a large drinking water reservoir for 11 years (2010-2020). The variabilities of ambient nutrients and total suspended solids (TSS) throughout the seasonal monsoon-mediated flow regime influenced algal chlorophyll (Chl-a) levels. The study determined the role of the monsoon-mediated flow regime on reservoir water chemistry. The reservoir conditions were mesotrophic to eutrophic based on nitrogen (N) and phosphorus (P) concentrations. An occasional total coliform bacteria (TCB) count of 16,000 MPN per 100 mL was recorded in the reservoir, presenting a significant risk of waterborne diseases among children. A Mann-Kendall test identified a consistent increase in water temperature, conductivity, and chemical oxygen demand (COD) over the study period, limiting a sustainable water supply. The drought and flood regime mediated by the monsoon resulted in large heterogeneities in Chl-a, TCB, TSS, and nutrients (N, P), indicating its role as a key regulator of the ecological functioning of the reservoir. The ambient N:P ratio is a reliable predictor of sestonic Chl-a productivity, and the reservoir was P-limited. Total phosphorus (TP) had a strong negative correlation (R(2) = 0.59, p < 0.05) with the outflow from the dam, while both the TSS (R(2) = 0.50) and Chl-a (R(2) = 0.32, p < 0.05) had a strong positive correlation with the outflow. A seasonal trophic state index revealed oligo-mesotrophic conditions, indicating a limited risk of eutrophication and a positive outcome for long-term management. In conclusion, the Asian monsoon largely controlled the flood and drought conditions and manipulated the flow regime. Exceedingly intensive crop farming in the basin may lead to oligotrophic nutrient enrichment. Although the reservoir water quality was good, we strongly recommend stringent action to alleviate sewage, nutrient, and pollutant inflows to the reservoir.

Climate Reporting Resource Hub

Caribbean Action Plan on Health and Climate Change

WHO global strategy on health, environment and climate change

UNDRR Hazard Information Profile: Harmful Algal Blooms

Canadian Centre for Climate Services Support Desk and Resource Hub

Examining harmful algal blooms through a disaster risk management lens: A case study of the 2015 U.S. West Coast domoic acid event

Multiple stressors and benthic harmful algal blooms (BHABs): Potential effects of temperature rise and nutrient enrichment

Nanobiotechnology for the environment: Innovative solutions for the management of harmful algal blooms

Harmful algal blooms and climate change: Exploring future distribution changes

Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans

Climate change impacts on harmful algal blooms in U.S. freshwaters: A screening-level assessment

Aquatic food security: Insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment

Marine downscaling of a future climate scenario in the North Sea and possible effects on dinoflagellate harmful algal blooms

Centers for Oceans and Human Health: A unified approach to the challenge of harmful algal blooms

Hazard Information Profiles: Supplement to UNDRR-ISC Hazard Definition & Classification Review – Technical Report

Toxic cyanobacteria in water – Second edition

Health, the global Ocean and Marine Resources

Preventing Cold-related Illness, Injury, and Death among Workers

Atlas of Health and Climate

Early detection, assessment and response to acute public health events: Implementation of Early Warning and Response with a focus on Event-Based Surveillance

Introduction to Algae

NOAA Harmful Algal Bloom Monitoring System

Harmful Algae

Harmful Algal Events Dataset (HAEDAT)

Harmful Algal Bloom Observing System (HABSOS)

Baltic Sea Algae situation

Gulf of Mexico Harmful Algal Bloom Forecast

New Zealand Water Contamination Risk Levels

US Harmful Algal Bloom (HAB) Monitoring System and Forecasts