Explore By

This site uses cookies.

This site uses cookies to improve your online experience. To learn more about how we use cookies, please see our terms of use.

Ambient air pollution and cardiovascular disease rate an ANN modeling: Yazd-Central of Iran

This study was aimed to investigate the air pollutants impact on heart patient’s hospital admission rates in Yazd for the first time. Modeling was done by time series, multivariate linear regression, and artificial neural network (ANN). During 5 years, the mean concentrations of PM(10), SO(2), O(3), NO(2), and CO were 98.48 μg m(-3), 8.57 ppm, 19.66 ppm, 18.14 ppm, and 4.07 ppm, respectively. The total number of cardiovascular disease (CD) patients was 12,491, of which 57% and 43% were related to men and women, respectively. The maximum correlation of air pollutants was observed between CO and PM(10) (R = 0.62). The presence of SO(2) and NO(2) can be dependent on meteorological parameters (R = 0.48). Despite there was a positive correlation between age and CD (p = 0.001), the highest correlation was detected between SO(2) and CD (R = 0.4). The annual variation trend of SO(2), NO(2), and CO concentrations was more similar to the variations trend in meteorological parameters. Moreover, the temperature had also been an effective factor in the O(3) variation rate at lag = 0. On the other hand, SO(2) has been the most effective contaminant in CD patient admissions in hospitals (R = 0.45). In the monthly database classification, SO(2) and NO(2) were the most prominent factors in the CD (R = 0.5). The multivariate linear regression model also showed that CO and SO(2) were significant contaminants in the number of hospital admissions (R = 0.46, p = 0.001) that both pollutants were a function of air temperature (p = 0.002). In the ANN nonlinear model, the 14, 12, 10, and 13 neurons in the hidden layer were formed the best structure for PM, NO(2), O(3), and SO(2), respectively. Thus, the R(all) rate for these structures was 0.78-0.83. In these structures, according to the autocorrelation of error in lag = 0, the series are stationary, which makes it possible to predict using this model. According to the results, the artificial neural network had a good ability to predict the relationship between the effect of air pollutants on the CD in a 5 years’ time series.

Effects of climate variables on the incidence of scorpion stings in Iran for five years

BACKGROUND: Although scorpionism is recorded worldwide, some regions such as Iran present a higher incidence. Due to the great prevalence of scorpion stings in Khuzestan province, southwestern Iran, the present study examined the relationship between different climate parameters and the scorpion sting rate in this area from April 2010 to March 2015. METHODS: In this cross-sectional descriptive-analytical study, we considered all scorpion sting cases recorded in the Department of Infectious Diseases, Ahvaz Jundishapur University of Medical Sciences. Data were analyzed using statistics, frequency distribution and Pearson’s correlation coefficient. RESULTS: A total of 104,197 cases of scorpion stings was recorded from 2010 to 2015. The cumulative incidence of scorpion sting was 2.23%. The spatial distribution of scorpion stings showed that most cases occurred in the Dehdez district (4,504 scorpion stings/100,000 inhabitants) and the Masjed Soleyman county (4,069 scorpion stings/100,000 inhabitants). A significant association was found between climate factors (temperature, evaporation rate, sunshine duration, humidity, and precipitation) and the scorpion sting rate. An increase in rainfall and humidity coincided with a reduction in scorpion stings whereas an increase in temperature, evaporation, and sunshine duration was accompanied by a growth of scorpion stings. No significant correlation was found between wind velocity/direction and the incidence rate of stings. Moreover, the seasonal peak incidence of scorpion stings was recorded in summer (an average of 8,838 cases) and the lowest incidence was recorded during winter (an average of 1,286 cases). The annual trend of scorpion sting cases decreased during the period from 2010 to 2015. CONCLUSION: Climate variables can be a good index for predicting the incidence of scorpion stings in endemic regions. Since they occur mostly in the hot season, designing preventive measures in the counties and districts with a high incidence of scorpion stings such as Dehdez and Masjed Soleyman can minimize mortality and other burdens.

Environmental impact assessment and efficiency of cotton: The case of northeast Iran

Cotton is one of the important crops that play an important role in creating a livelihood for rural people in many parts of Iran. Cotton production necessitates a large amount of resources (e.g., fossil energy and agrochemicals, all of which have the potential to damage the environment in various ways). The purpose of the current study was to evaluate the environmental effects of cotton production in the South Khorasan Province of Iran. For this purpose, life cycle assessment (LCA) and data envelopment analysis (DEA) techniques have been applied to investigate the environmental impacts of cotton production. LCA is a practical method to evaluate the environment on the product flow, in which all aspects of the product life cycle are examined by a comprehensive approach. Furthermore, combining the LCA method with other managerial strategies such as DEA could allow researchers to provide decision-makers with more practical and interpretable data. The findings of the efficiency test showed that the average technical efficiency, pure technical efficiency, and scale efficiency were 0.81, 0.92, and 0.87, respectively. Respiratory inorganics (i.e., respiratory effects resulting from winter smog caused by emissions of dust, sulfur, and nitrogen oxides to air) posed the greatest environmental burden in cotton production, followed by non-renewable energy, carcinogens, and global warming. In addition, the highest effects were on human health, and then, on resources and climate change. Energy, on-system pollution, and waste played a crucial role in the environmental impacts of cotton processing. This study suggests improving farmers’ knowledge toward the optimum application of chemical fertilizers, or their substitution with green fertilizers, which reduces the environmental effect of growing cotton in the area.

Geoclimatic risk factors for childhood asthma hospitalization in southwest of Iran

BACKGROUND: Asthma is a chronic respiratory disease resulting from a complex interaction between genetic and environmental factors. Among environmental factors, climatic and geographical variations have an important role in increasing asthma hospitalization. The current study aimed to investigate the effect of geoclimatic factors on the occurrence of childhood asthma hospitalization in Fars province, southwest Iran. METHOD: We mapped the addresses of 211 hospitalized patients with childhood asthma (2016-2019) and investigated the effects of different temperature models, mean annual rainfall and humidity, number of frosty and rainy days, evaporation, slope, and land covers on the occurrence of childhood asthma hospitalization using a geographical information system. The Kriging and Spline methods have been used for generating interpolated models. Data were analyzed using logistic regression. RESULTS: In the multivariate model, urban setting was recognized as the most important childhood asthma hospitalization predictor (p < 0.001, odds ration [OR] = 35.044, confidence interval [CI] = 9.096-135.018). The slope was considered the determinant of childhood asthma hospitalization when analyzed independently and its increase was associated with decreased childhood asthma hospitalization (p  = 0.01, OR = 0.914, CI = 0.849-0.984). CONCLUSION: In the current study, the urban setting was the most important risk factor associated with increased childhood asthma hospitalization.

Impacts of climate change on occupational health indicators in the three climatic regions of Iran

Climate change has increased the exposure risk of workers to occupational health risk factors and diseases. This study aims to investigate the impacts of climate change on the occupational health indicators at the workplaces in Iran. This study was conducted during 2021 in three climatic regions of Iran. Required data was collected from Health Deputies of Medical Universities and Iran Meteorological Organization. Stepwise linear regression model used for data analysis and predictions were done based on three scenarios of SSP1-2.6, SSP3-7.0, and SSP5-8.5 during the period of 2021-2100. This indicated 2.6 and 2.9 times higher percentage of workers who were exposed to heat stress and Ultra Violet (UV) radiation, respectively, in the provinces understudy. This study suggests a holistic approach to address potential impacts of climate change on workers’ health and safety that would benefit in making decisions on climate-related planning and developing the adaptation strategies at workplaces.

Predicting the incidence of brucellosis in Western Iran using Markov switching model

OBJECTIVE: Brucellosis is a zoonosis almost chronic disease. Brucellosis bacteria can remain in the environment for a long time. Thus, climate irregularities could pave the way for the survival of the bacterium brucellosis. Brucellosis is more common in men 25 to 29 years of age, in the western provinces, and in the spring months. The aim of this study is to investigate the effect of climatic factors as well as predicting the incidence of brucellosis in Qazvin province using the Markov switching model (MSM). This study is a secondary study of data collected from 2010 to 2019 in Qazvin province. The data include brucellosis cases and climatic parameters. Two state MSM with time lags of 0, 1 and 2 was fitted to the data. The Bayesian information criterion (BIC) was used to evaluate the models. RESULTS: According to the BIC, the two-state MSM with a 1-month lag is a suitable model. The month, the average-wind-speed, the minimum-temperature have a positive effect on the number of brucellosis, the age and rainfall have a negative effect. The results show that the probability of an outbreak for the third month of 2019 is 0.30%.

Factors associated with pro-environmental behaviors in Israel: A comparison between participants with and without a chronic disease

This study examined differences regarding climate change pro-environmental behaviors (PEBs), comparing between individuals with chronic diseases and those without. A cross-sectional survey was conducted among 402 adults, of whom 25% had a chronic disease. Participants completed measures for PEBs, climate change exposure (i.e., exposure to its effects), climate change risk appraisal, environmental self-efficacy, collective efficacy, and sociodemographic variables. Results revealed a significant difference between participants with and without chronic diseases in climate change risk appraisal. Having a chronic disease was associated with higher climate change risk appraisal (β = 0.16, p < 0.001), which in turn was associated with higher collective efficacy (β = 0.29, p < 0.001). The latter was associated with more PEBs (β = 0.10, p = 0.049). Furthermore, higher climate change exposure was associated with higher climate change risk appraisal (β = 0.49, p < 0.001), which in turn was associated with collective efficacy (β = 0.29, p < 0.001). The latter was associated with more PEBs (β = 0.10, p = 0.049). In addition, higher climate change exposure was directly associated with both self-efficacy (β = 0.33, p < 0.001) and collective efficacy (β = 0.10, p = 0.049), which in turn were associated with more PEBs (β = 0.28, p < 0.001 and β = 0.10, p = 0.049, respectively). This study highlights the need to provide efficacy-enhancing information in climate change messaging for PEBs in general. A threat component in environment-relevant messages for people with chronic diseases, specifically, should also be adopted.

Assessment of bio-contaminants during COVID-19 outbreak from the indoor environment of Hail city, Kingdom of Saudi Arabia

Biocontaminants are minute particles derived from different biological materials. Indoor biocontaminants are associated with major public health problems. In Gulf countries, it is more precarious due to the harsh climatic conditions, including high ambient temperatures and relative humidity. In addition, due to COVID-19 pandemic, most of the time public is inside their home. Therefore, the aim of the study was to determine the load of biocontaminants in the indoor environment of Hail city. The results showed that most of the bacteria are gram-positive and higher in polymicrobial (87.1%) than monomicrobial (62.7%) association. There was no significant association with sample collection time and types of isolates. The most abundant microbes found in all samples were Staphylococcus aureus followed by Bacillus spp. Among Gram-negative bacterial isolates, E. coli was most common in tested indoor air samples. The study will be useful to find the biocontaminants associated with risk factors and their impact on human health in the indoor environment, especially during the COVID-19 pandemic. These results indicate the need to implement health care awareness programs in the region to improve indoor air quality.

Spatial modelling of malaria in south of Iran in line with the implementation of the malaria elimination program: A Bayesian poisson-gamma random field model

BACKGROUND: Malaria is the third most important infectious disease in the world. WHO propose programs for controlling and elimination of the disease. Malaria elimination program has begun in first phase in Iran from 2010. Climate factors play an important role in transmission and occurrence of malaria infection. The main goal is to investigate the spatial distribution of incidence of malaria during April 2011 to March 2018 in Hormozgan Province and its association with climate covariates. METHODS: The data included 882 confirmed cases gathered from CDC in Hormozgan University of Medical Sciences. A Poisson-Gamma Random field model with Bayesian approach was used for modeling the data and produces the smoothed standardized incidence rate (SIR). RESULTS: The SIR for malaria ranged from 0 (Abu Musa and Haji Abad districts) to 280.57 (Bandar-e-Jask). Based on model, temperature (RR= 2.29; 95% credible interval: (1.92-2.78)) and humidity (RR= 1.04; 95% credible interval: (1.03-1.06)) had positive effect on malaria incidence, but rainfall (RR= 0.92; 95% credible interval: (0.90-0.95)) had negative impact. Also, smoothed map represent hot spots in the east of the province and in Qeshm Island. CONCLUSION: Based on the analysis of the study results, it was found that the ecological conditions of the region (temperature, humidity and rainfall) and population displacement play an important role in the incidence of malaria. Therefore, the malaria surveillance system should continue to be active in the region, focusing on high-risk areas of malaria.

Hygienic quality assessment of well and spring water: A case study of the region of Al-Hoceima (Morocco northern)

The purpose of this research is to evaluate the hygienic quality of spring and well water used mainly for drinking and domestic activities for some districts in the municipality of Al-Hoceima city. In the rainy season of November to April 2018-2019, a total of fifty-two groundwater samples were collected under appropriate conditions and analyzed according to Moroccan standards, for coliform bacteria (BC), Escherichia coli (E. Coli), and intestinal Enterococcus (IE). The sample locations were identified from the physiochemical details and the nature of nearby pollution. The physical parameters of temperature, pH, dissolved oxygen O-2, oxygen saturation, electrical conductivity (EC), total dissolved solids (TDS) and salinity were measured on site. The results revealed that quality of water from all springs and wells, in the area of study, did not meet the World Health Organization guideline as well as Morocco standard for drinking water of zero (0) coliform forming unit (CFU) per 100 mL for CB, E. Coli and IE, respectively. Furthermore, fecal contamination of groundwater is indicated, the high bacteria count in samples could be attributed to their closeness septic effluent, the infiltration of wastewater into groundwater, and to the inadequate treatment of sewage. It is recommended that the water should be treated properly before consumption.

Climate change and diarrhoeal disease burdens in the Gaza Strip, Palestine: Health impacts of 1.5 °C and 2 °C global warming scenarios

The Gaza Strip is one of the world’s most fragile states and faces substantial public health and development challenges. Climate change is intensifying existing environmental problems, including increased water stress. We provide the first published assessment of climate impacts on diarrhoeal disease in Gaza and project future health burdens under climate change scenarios. Over 1 million acute diarrhoea cases presenting to health facilities during 2009−2020 were linked to weekly temperature and rainfall data and associations assessed using time-series regression analysis employing distributed lag non-linear models (DLNMs). Models were applied to climate projections to estimate future burdens of diarrhoeal disease under 2 °C and 1.5 °C global warming scenarios. There was a significantly raised risk of diarrhoeal disease associated with both mean weekly temperature above 19 °C and total weekly rainfall below 6 mm in children 0−3 years. A heat effect was also present in subjects aged > 3 years. Annual diarrhoea cases attributable to heat and low rainfall was 2209.0 and 4070.3, respectively, in 0−3-year-olds. In both age-groups, heat-related cases could rise by over 10% under a 2 °C global warming level compared to baseline, but would be limited to below 2% under a 1.5 °C scenario. Mean rises of 0.9% and 2.7% in diarrhoea cases associated with reduced rainfall are projected for the 1.5 °C and 2 °C scenarios, respectively, in 0−3-year-olds. Climate change impacts will add to the considerable development challenges already faced by the people of Gaza. Substantial health gains could be achieved if global warming is limited to 1.5 °C.

The socio-ecological system of the pre-Sahara zone of Morocco: A conceptual framework to analyse the impact of drought and desertification

Drought and desertification have a significant impact on socio-ecological systems throughout the world, particularly in arid and semi-arid regions. In this context, the impact of desertification and drought was analyzed in the pre-Sahara of Morocco. Additionally, a new conceptual framework combining various variables under the context of drought and desertification impacts was developed. The study area has an arid climate and socio-ecological system-based oases. To achieve the goal of the research, a questionnaire was conceived and distributed to a sample of young people (n = 290 on desertification phenomena and n = 290 on drought). A bibliometric analysis was conducted using VOSViewer software to highlight the structure of research and the Likert technique was used as a statistical method to analyze the results. The findings revealed that the respondents reported that drought has a high impact on desertification and sand silting. Otherwise, mental health is highly at risk and drought affects strongly the revenue, yield, and land use. In terms of solutions, the respondents recorded water safe as the appropriate option to adapt to drought in this area. However, in terms of desertification, interviewees thought that temperature and wind have a very high impact on desertification. Roads are the most impacted by sand silting and desertification followed by irrigation canals, and settlements. Concerning the solutions, tourism has a moderate impact on desertification. Young people thereby are aware of the climatic factors and the psycho-socio-economic impacts. They are also able to identify the appropriate solutions to desertification and drought.

Drinking water provision and quality at the Sahrawi refugee camps in Tindouf (Algeria) from 2006 to 2016

Drinking water provision has been a constant challenge in the Sahrawi refugee camps, located in the desert near Tindouf (Algeria). The drinking water supply system is itself divided in three zones which pump groundwater from different deep aquifers. It is equipped with reverse osmosis plants and chlorination systems for treating water. The allocation of water supplied to the Saharawi refugees for human consumption in 2016 has been estimated at between 14 and 17 L/person/day on average. This supplied water volume is below recommended standards, and also below the strategic objective of the Sahrawi government (20 L/person/day). Yet the local groundwater resources are huge in comparison with estimated consumption, and hence there is great potential for increasing the supplied volume through effecting improvements in the supply system. The physico-chemical quality of the raw and supplied water between 2006 and 2016 has been assessed according to Algerian standards for human consumption. The raw water of two zones of the supply system presents a very high conductivity and high concentrations of chloride, nitrate, fluoride, sulfate, sodium, calcium, potassium and iodide concentrations of natural origin, which may entail health risks. The treatment of water in a reverse osmosis plant greatly improves its quality and osmosed water met the standards. However, the supply of osmosed and raw water needs to be combined in Zone 1, to avoid an excessive reduction in water volume, and the supplied raw water poses a risk to the health of the refugees. The present study provides an example of a drinking water supply system under extreme drought conditions and in the political and social conditions of a refugee camp. Furthermore, it establishes a reference for supplied water allocation and quality in the Sahrawi refugee camps.

Ability to adapt to seasonal temperature extremes among atrial fibrillation patients. A nation-wide study of hospitalizations in Israel

BACKGROUND: In recent years, temperature fluctuations and adverse weather events have become major concerns, influencing overall mortality and morbidity. While the association between extreme temperatures and atrial fibrillation (AF) has been supported by research, there is limited evidence on the ability of AF patients to adapt to the changing temperatures. We explored this question among AF patients in Israel featured by extreme temperature conditions. METHODS: We examined the association between exposure to extreme temperatures and hospitalizations related to AF in a nationwide cohort in Israel. A case-crossover design with a distributed nonlinear model (DLNM) was applied to assess possible effects of temperature fluctuations during each season. We considered the 7 days prior to the event as the possible window period. RESULTS: During 2004-2018 we recorded a total of 54,909 hospitalizations for AF. Low temperatures in winter and high in summer adversely affected AF-related hospitalizations. The effect recorded for the first few weeks of each season was of higher magnitude and decreased or faded off completely as the seasons progressed (OR in winter: from 1.14, 95%CI 0.98, 1.32 to 0.90, 95%CI: 0.77, 1.06;OR in summer: from 1.95, 95%CI: 1.51, 2.52 to 1.22, 95%CI: 0.90, 1.65). Patients living in the south region and patients with low socioeconomic status were more susceptible to extreme temperatures. CONCLUSIONS: Although extreme hot and cold temperatures are associated with an increased risk of hospitalization for AF, the patients are likely to adapt to temperature change over the course of the first weeks of the season.

Low and high ambient temperatures during pregnancy and birth weight among 624,940 singleton term births in Israel (2010-2014): An investigation of potential windows of susceptibility

BACKGROUND: Exposure to heat during pregnancy has been associated with reduced fetal growth. Less is known about associations with cold and the potential for critical time windows of exposure. OBJECTIVES: We aimed to evaluate, in a national retrospective cohort, critical windows of susceptibility during pregnancy to extreme temperatures (low and high) and fetal growth, among 624,940 singleton term births in Israel during the period 2010-2014. METHODS: Temperature exposures were estimated using a spatially refined gridded climate data set with a 1-h and 1-km2 resolution. Percentiles of temperature were categorized by climatic zone for the entire pregnancy and by trimesters and weeks. Generalized additive models with the distributed lag nonlinear model framework were used to estimate unadjusted and adjusted associations between percentiles and categories of temperature and fetal growth markers: term [births after 36 weeks of gestational age (GA)] mean birth weight and term low birth weight (tLBW, term infants with birth weight below 2,500 g). RESULTS: After adjustment, extreme temperatures (percentiles) during the entire pregnancy were associated with a lower mean birth weight { ≤ 10th vs. 41st-50th percentile: – 56 g [95% confidence interval (CI): – 63 g, – 50 g)];  > 90th vs. 41st-50th percentile: – 65 g; 95% CI: – 72 g, – 58 g}. Similar inverse U-shaped patterns were observed for all trimesters, with stronger associations for heat than for cold and for exposures during the third trimester. For heat, results suggest critical windows between 3-9 and 19-34 GA-weeks, with the strongest association estimated at 3 GA-weeks (temperature  > 90th vs. 41st-50th percentiles: – 3.8 g; 95% CI: – 7.1 g, – 0.4 g). For cold, there was a consistent trend of null associations early in pregnancy and stronger inverse associations over time, with the strongest association at 36 GA-week ( ≤ 10th vs. 41st-50th percentiles: – 2.9 g; 95% CI: – 6.5 g, 0.7g). For tLBW, U-shape patterns were estimated for the entire pregnancy and third trimester exposures, as well as nonsignificant associations with heat for 29-36 GA-weeks. Generally, the patterns of associations with temperatures during the entire pregnancy were consistent when stratified by urbanicity and geocoding hierarchy, when estimated for daily minimum and maximum temperatures, when exposures were classified based on temperature distributions in 49 natural regions, and when estimated for all live births. DISCUSSION: Findings from our study of term live births in Israel (2010-2014) suggest that exposure to extreme temperatures, especially heat, during specific time windows may result in reduced fetal growth. https://doi.org/10.1289/EHP8117.

Climate change and health in Kuwait: Temperature and mortality projections under different climatic scenarios

It is uncertain what climate change could bring to populations and countries in the hot desert environment of the Arabian Peninsula. Not only because they are already hot, countries in this region also have unique demographic profiles, with migrant populations potentially more vulnerable and constituting a large share of the population. In Kuwait, two-thirds of the population are migrant workers and record-high temperatures are already common. We quantified the temperature-related mortality burdens in Kuwait in the mid- (2050-2059) and end-century (2090-2099) decades under moderate (SSP2-4.5) and extreme (SSP5-8.5) climate change scenarios. We fitted time series distributed lag non-linear models to estimate the baseline temperature-mortality relationship which was then applied to future daily mean temperatures from the latest available climate models to estimate decadal temperature-mortality burdens under the two scenarios. By mid-century, the average temperature in Kuwait is predicted to increase by 1.80 degrees C (SSP2-4.5) to 2.57 degrees C (SSP5-8.5), compared to a 2000-2009 baseline. By the end of the century, we could see an increase of up to 5.54 degrees C. In a moderate scenario, climate change would increase heat-related mortality by 5.1% (95% empirical confidence intervals: 0.8, 9.3) by end-century, whereas an extreme scenario increases heat-related mortality by 11.7% (2.7, 19.0). Heat-related mortality for non-Kuwaiti migrant workers could increase by 15.1% (4.6, 22.8). For every 100 deaths in Kuwait, 13.6 (-3.6, 25.8) could be attributed to heat driven by climate change by the end of the century. Climate change induced warming, even under more optimistic mitigation scenarios, may markedly increase heat-related mortality in Kuwait. Those who are already vulnerable, like migrant workers, could borne a larger impact from climate change.

Adherence of healthcare workers to Saudi management guidelines of heat-related illnesses during Hajj pilgrimage

Heat-related illnesses (HRIs), such as heatstroke (HS) and heat exhaustion (HE), are common complications during Hajj pilgrims. The Saudi Ministry of Health (MoH) developed guidelines on the management of HRIs to ensure the safety of all pilgrims. This study aimed to assess healthcare workers’ (HCWs) adherence to the updated national guidelines regarding pre-hospital and in-hospital management of HRIs. This was a cross-sectional study using a questionnaire based on the updated HRI management interim guidelines for the Hajj season. Overall, compliance with HE guidelines scored 5.5 out of 10 for basic management and 4.7 out of 10 for advanced management. Medical staff showed an average to above average adherence to pre-hospital HS management, including pre-hospital considerations (7.2), recognition of HS (8.1), case assessment (7.7), stabilizing airway, breathing, and circulation (8.7), and cooling (5). The overall compliance to in-hospital guidelines for HS management were all above average, except for special conditions (4.3). In conclusion, this survey may facilitate the evaluation of the adherence to Saudi HRIs guidelines by comparing annual levels of compliance. These survey results may serve as a tool for the Saudi MoH to develop further recommendations and actions.

Analysis of outdoor thermal discomfort over the Kingdom of Saudi Arabia

In this study, the variability and trends of the outdoor thermal discomfort index (DI) in the Kingdom of Saudi Arabia (KSA) were analyzed over the 39-year period of 1980-2018. The hourly DI was estimated based on air temperature and relative humidity data obtained from the next-generation global reanalysis from the European Center for Medium-Range Weather Forecasts and in-house high-resolution regional reanalysis generated using an assimilative Weather Research Forecast (WRF) model. The DI exceeds 28°C, that is, the threshold for human discomfort, in all summer months (June to September) over most parts of the KSA due to a combination of consistently high temperatures and relative humidity. The DI is greater than 28°C for 8-16 h over the western parts of KSA and north of the central Red Sea. A DI of >28°C persistes for 7-9 h over the Red Sea and western KSA for 90% of summer days. The spatial extent and number of days with DI > 30°C, that is, the threshold for severe human discomfort, are significantly lower than those with DI > 28°C. Long-term trends in the number of days with DI > 28°C indicate a reduced rate of increase or even a decrease over some parts of the southwestern KSA in recent decades (1999-2018). Areas with DI > 30°C, in particular the northwestern regions of the Arabian Gulf and its adjoining regions, also showed improved comfort levels during recent decades. Significant increases in population and urbanization have been reported throughout the KSA during the study period. Analysis of five-years clinical data suggests a positive correlation between higher temperatures and humidity with heat-related deaths during the Hajj pilgrimage. The information provided herein is expected to aid national authorities and policymakers in developing necessary strategies to mitigate the exposure of humans to high levels of thermal discomfort in the KSA.

Knowledge, attitude and practice towards heat related illnesses of the general public of Jeddah, Saudi Arabia

Background: Heat related illness can be avoided; it may also be present in a milder form to a life threatening condition. Objectives: To explore the pattern of KAP towards HRIs among the subjects in Jeddah city. Method: It was a cross-sectional study of 378 subjects, who gave their responses through an online Google form. Data were analyzed using SPSS software version 23. The level of significance was 0.05%. Results: 18.2% of the subjects suffered from HRls, and 49% never received health education about HRIs. Increased KAP score was associated with increased age (b= 0.177, p<0.000), more encountered in the females (b= -2.25, p <0.000), in those who owned air conditioning (b = 5.3, p < 0.024), in the smokers (b= 1.77, p<0.35), and in those who received health education about HRIs (b=2.327, p< 0.000). Conclusions: The subjects' awareness of the prevention of HRIs needs to be strengthened.

Evaluating the understanding about kidney stones among adults in the United Arab Emirates

OBJECTIVES: The prevalence of kidney stones is increasing worldwide. Multiple risk factors are believed to contribute to the development of kidney stones such as lifestyle, diet, and global warming. In the United Arab Emirates (UAE), there has been limited research exploring the prevalence and risk factors of kidney stones. This study attempts to assess the understanding and prevalence of kidney stones among adults in the UAE. METHODS: In this cross-sectional study, data were collected using a self-administered questionnaire, distributed among 515 participants (20-49 years old) from Abu Dhabi, Dubai, Ajman, and Sharjah states. IBM SPSS version 25 was used for data analysis. RESULTS: The mean of knowledge score was 56.4% (n = 500). There was no correlation between the knowledge of those who had experienced kidney stones and those who did not. Furthermore, a family history of kidney stones increased the risk of developing stones by 2.27 times. Among participants reporting signs, symptoms, diagnosis, and the management of kidney stones, the knowledge and understanding about kidney stones was high. However, the perceptions of the same cohort about dietary precautions were limited. While analysing the sources of knowledge, the Internet and mass media were twice as important as physicians in educating the population. CONCLUSION: This study shows that the study cohort from the UAE population was aware of certain aspects of kidney stones but was quite naïve about its consequential risk factors. This highlights the importance of promoting education about kidney stones through health campaigns.

Data-driven analysis of climate change in Saudi Arabia: Trends in temperature extremes and human comfort indicators

We have analyzed the long-term temperature trends and extreme temperature events in Saudi Arabia between 1979 and 2019. Our study relies on high-resolution, consistent, and complete ERA5 reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). We evaluated linear trends in several climate descriptors, including temperature, dewpoint temperature, thermal comfort, and extreme event indices. Previous works on this topic used data from weather station observations over limited time intervals and did not include temperature data for recent years. The years 2010-19 have been the warmest decade ever observed by instrumental temperature monitoring and are the eight warmest years on record. Therefore, the earlier results may be incomplete, and their results may no longer be relevant. Our findings indicate that, over the past four decades, Saudi Arabia has warmed up at a rate that is 50% higher than the rest of the landmass in the Northern Hemisphere. Moreover, moisture content of the air has significantly increased in the region. The increases of temperature and humidity have resulted in the soaring of dewpoint temperature and thermal discomfort across the country. These increases are more substantial during summers, which are already very hot relative to winters. Such changes may be dangerous to people over vast areas of the country. If the current trend persists into the future, human survival in the region will be impossible without continuous access to air conditioning.

Long-term health impacts of wildfire exposure: A retrospective study exploring hospitalization dynamics following the 2016 wave of fires in Israel

BACKGROUND: Climate-related events, including wildfires, which adversely affect human health, are gaining the growing attention of public-health officials and researchers. Israel has experienced several disastrous fires, including the wave of fires in November 2016 that led to the evacuation of 75,000 people. The fires lasted six days (22-27 November) with no loss of life or significant immediate health impacts. The objective of this study is to explore the long-term hospitalization dynamics in a population exposed to this large-scale fire, including the effects of underlying morbidity and socio-economic status (SES). METHODS: This is a retrospective crossover study, conducted in 2020, analyzing the electronic medical records of residents from areas exposed to a wildfire in northern Israel. The study spans from one year before exposure to two years after it (22 November 2015-27 November 2018). The hospitalization days during the study period were analyzed using the Poisson regression model. The rate of hospitalization days along with 95% confidence intervals (CIs) were plotted. RESULTS: The study included 106,595 participants. The median age was 37 (IQR = 17-56), with a mean socio-economic ranking of 6.47 out of 10 (SD = 2.01). Analysis revealed that people with underlying morbidity were at greater risk of experiencing long-term effects following fires, which was manifested in higher hospitalization rates that remained elevated for two years post-exposure. This was also evident among individuals of low socio-economic status without these background illnesses. CONCLUSIONS: Healthcare services should prepare for increased hospitalization rates during the two years following wildfires for populations with underlying morbidity and those of low socio-economic status. Implementing preventive-medicine approaches may increase the resiliency of communities in the face of extreme climate-related events and prevent future health burdens. Additional research should focus on the specific mechanisms underpinning the long-term effects of wildfire exposure.

Social work post-disaster response in Iran: A case study of the 2019 mass flooding in Poldokhtar, Lorestan

Flash-flooding affected Iran in March 2019 causing the displacement of thousands of people. Social workers established a Child Friendly Space (CFS) and applied comprehensive case management to provide psychosocial support for people who were affected by flooding (PWAF) (n = 565) in a community in Poldokhtar, covering a period of 3 months. Outreach services, involving community-volunteers, providing counseling, establishing CFS, training PWAF for reducing violence, and preventing child abuse were essential social work post-disaster interventions to support vulnerable populations. The article reflects upon the often-neglected role of social workers in post-disaster settings, and brings new material for discussion from the unexplored field of Iranian social workers.

Floods, food security, and coping strategies: Evidence from Afghanistan

In this paper, we assess the long-term effect of floods on food security (as measured by calorie and micronutrient consumption) by applying an instrumental variable approach to data from the Afghanistan National Risk and Vulnerability Assessment survey. To identify the determinants of this effect, we also estimate how floods affect per capita yearly household income and poverty status. We find that exposure to flooding during a 12-month period decreased daily calorie consumption by approximately 60 kcal while increasing the probability of iron, vitamin A, and vitamin C deficiency by 11, 12, and 27 percentage points, respectively. Controlling for price shocks and income only marginally reduces this flood effect on food security, suggesting that impaired livelihoods (rather than price hikes) are its primary driver. We further determine that exposure to this natural disaster decreases income by about 3% and makes flood-affected households about 3 percentage points more likely to be poor. Lastly, we show that experience of floods is strongly and significantly associated with lower diet quality and quantity, and with engaging in consumption smoothing coping strategies, such as buying food on credit and taking loans. These findings underscore the serious direct impact of floods on both diet and effective behavioral responses to such shocks while emphasizing the need for targeted micronutrient supplementation in disaster relief and food aid measures even after the period of natural disaster emergency.

Deadly floods and their causal factors: A case-control study in Iran between 2005 and 2018

Flood hazard characteristics play a key role in flood-induced mortality. Therefore, it is crucial to evaluate the associations between these factors and flood fatalities. This case-control study was performed in the flood-prone regions of Iran with recorded flood-induced mortality rates during 2005-2018. In total, 369 subjects completed the survey (123 cases and 246 controls); they were selected from 12 provinces and 30 cities. In this study, descriptive and analytical analyses were carried out to measure flood hazard characteristics. Afterward, the correlation of flood hazard characteristics with flood-induced mortality was measured. According to the descriptive analysis, most deaths occurred in summer, during hours of darkness, in areas with one- and five-year flood return periods, and in floods with short rainfall durations. In addition, the spatial analysis demonstrated that most deaths occurred in flash floods, floods accompanied by bad weather, and floods with floating debris. The results of Chi-square and Fisher’s exact test also indicated significant correlations between darkness, flood return periods, flood behavior, floods with floating debris, bad weather, other hazards, and flood discharge with flood-induced mortality. According to the regression analysis, the variables of flood discharge over 500 m3/s, flash floods, nighttime floods, and floods with floating debris increased the risk of flood-induced mortality 3.64, 1.62, 3.34, and 1.06 times, respectively. Although changing flood hazard characteristics seems to be impossible, damages caused by floods can be decreased and the lives of people can be protected through appropriate preventive and managerial solutions, planning, training, promotion of preparedness, and timely warnings.

Assessment of perceptions of climate change and its causes and impacts on mental health and psychosocial wellbeing among a group of internally displaced persons in Iraq

Extreme weather conditions across Iraq influence people’s psychosocial wellbeing, particularly the wellbeing of internally displaced persons (IDPs). This research examines the perceptions of climate change, as well as its causes and impacts on the everyday lives of IDPs in Iraq, and what needs to be done to mitigate these impacts. Following a literature review, this study presents a survey developed and carried out by the International Organisation for Migration (IOM) with IDPs in Ninewa and Duhok camp settings to assess interest in climate change, the impacts of climate change on the IDP population, the observed importance of addressing climate change and what actions can be taken to mitigate such impacts. Key research findings illustrate that most IDPs (80%) have observed climate change in their lives and have been affected directly by climate change (74%). Apart from detailing these findings, the study presents the solutions suggested by the IDPs to address climate change impacts. Based on these suggestions, this study then introduces policy-relevant recommendations to enhance the psychosocial wellbeing of the IDPs across Iraq and support government authorities, national policymakers and humanitarian actors in responding to the needs of the affected population associated with the consequences of climate change.

Eco-anxiety: A q method analysis towards eco-anxiety attitudes in the United Arab Emirates

Humans are witnessing extreme events such as droughts, floods, heat waves, wildfires, and emergence of novel diseases causing unprecedented changes to our planet. These rapid changes coupled with a transparent world that enjoys access to information mean that today’s population is more aware and attentive about the progress of climate change. The purpose of this study is to discover attitudes towards new gained consciousness and the term Eco-anxiety. The American Psychological Association (APA) defines eco-anxiety as a ‘chronic fear of environmental doom’. To investigate this phenomenon, we use Q-methodology to analyse discourses on the topic. Thirty-nine people from four different stakeholder groups were surveyed. Five distinct discourses were generated covering the connection between environmental awareness and psychological well-being, coming to terms with emotional response to climate change, importance of climate change, awareness about eco-anxiety leading to a more positive outlook, and disbelief that eco-anxiety and climate change can affect mental well-being.

Factors influencing injury or death due to traumatic events in Afghanistan’s crisis-affected populations: A cross-sectional nationwide study

OBJECTIVE: Afghanistan, with one of the world’s largest refugee populations, suffers an enormous burden of injury resulting in loss of life. This study aims to identify the epidemiology of injuries or death in the crisis-affected populations across Afghanistan and to investigate factors associated with injuries or deaths due to traumatic events. DESIGN: Cross-sectional study. SETTING: This study analysed Whole Afghanistan Assessment 2019 data. This survey geographically covered all 34 accessible provinces in Afghanistan. PARTICIPANTS: 31 343 displaced and shock-affected households in Afghanistan. PRIMARY AND SECONDARY OUTCOME MEASURES: Injury or death of household members due to traumatic events. RESULTS: 2561 (8.2%) reported at least one household member had been injured or deceased because of a significant conflict or natural disaster in the past year. Households experienced significant events such as active conflict or violence (prevalence ratio, PR=5.575, p<0.001), earthquake (PR=3.118, p=0.004), flood (PR=1.534, p=0.008) and avalanche or heavy snowfall (PR=3.450, p<0.001) were significantly associated with injury or death. The likelihood of injury or death was significantly higher for long-distance households than for households living within a 5 km radius of the nearest healthcare facilities (6-10 km: PR=1.402, p=0.030; >10 km: PR=1.560, p=0.020). CONCLUSION: The study provides an epidemiological profile of injuries or death in crisis-affected populations across Afghanistan. Results also suggest that certain factors place the crisis-affected populations in Afghanistan at high risk for injuries or death, which can inform the development of surveillance and prevention programmes, the monitoring of patterns over time and the formulation of healthcare policies.

Using a hybrid approach to apportion potential source locations contributing to excess cancer risk of PM(2.5)-bound PAHs during heating and non-heating periods in a megacity in the Middle East

Polycyclic aromatic hydrocarbons (PAHs) represent one of the major toxic pollutants associated with PM(2.5) with significant human health and climate effects. Because of local and long-range transport of atmospheric PAHs to receptor sites, higher global attentions have been focused to improve PAHs pollution emission management. In this study, PM(2.5) samples were collected at three urban sites located in the capital of Iran, Tehran, during the heating and non-heating periods (H-period and NH-period). The US EPA 16 priority PAHs were analyzed and the data were processed to the following detailed aims: (i) investigate the H-period and NH-period variations of PM(2.5) and PM(2.5)-bound PAHs concentrations; (ii) identify the PAHs sources and the source locations during the two periods; (iii) carry out a source-specific excess cancer risk (ECR) assessment highlighting the potential source locations contributing to the ECR using a hybrid approach. Total PAHs (TPAHs) showed significantly higher concentrations (1.56-1.89 times) during the H-period. Among the identified PAHs compounds, statistically significant periodical differences (p-value < 0.05) were observed only between eight PAHs species (Nap, BaA, Chr, BbF, BkF, BaP, IcdP, and DahA) at all three sampling sites which can be due to the significant differences of PAHs emission sources during H and NH-periods. High molecular weight (HMW) PAHs accounted for 52.7% and 46.8% on average of TPAHs during the H-period and NH-period, respectively. Positive matrix factorization (PMF) led to identifying four main PAHs sources including industrial emissions, petrogenic emissions, biomass burning and natural gas emissions, and vehicle exhaust emissions. Industrial and petrogenic emissions exhibited the highest contribution (19.8%, 27.2%, respectively) during the NH-period, while vehicle exhaust and biomass burning-natural gas emissions showed the largest contribution (40.7%, 29.6%, respectively) during the H-period. Concentration weighted trajectory (CWT) on factor contributions was used for tracking the potential locations of the identified sources. In addition to local sources, long-range transport contributed to a significant fraction of TPHAs in Tehran both during the H- and NH-periods. Source-specific carcinogenic risks assessment apportioned vehicle exhaust (44.2%, 2.52 × 10(-4)) and biomass burning-natural gas emissions (33.9%, 8.31 × 10(-5)) as the main cancer risk contributors during the H-period and NH-period, respectively. CWT maps pointed out the different distribution patterns associated with the cancer risk from the identified sources. This will allow better risk management through the identification of priority PAHs sources.

Effects of dust events and meteorological elements on stroke morbidity in Northern Khuzestan, Iran

BACKGROUND: In recent years, the prevalence of dust events has increased in the region and the world. According to the Meteorological Organization, the most frequent days with dust events are on stations located in Khuzestan province. Objective: Assessment of the effects of dust events and meteorological elements on stroke morbidity in health in Iran: a health promotion approach. MATERIALS AND METHODS: The present study was a retrospective cohort study 2020 and 2013 provided between based on ecological data-based on population. Information about patients with stroke was obtained from the hospital. Information on the dust events and meteorological elements was also from the data center of the Meteorological Organization of Iran. Using STATA the correlation between the diseases and the, 14 statistical software version occurrence of dust events and changes in meteorological elements was obtained and the statistical model (Spearman correlation coefficient) individually estigate the equation was used inv modified by Poisson regression simultaneous effect of variables. RESULTS: the results of adjusted statistical models show that increasing the severity of dust event increases the risk of stroke in males (lag 0-21 confidence interval [CI] 95% = 1.496-1.0067 relative risk [RR] = 1.03 P = 0.01). Increasing the average wind speed also increases the risk of stroke in males (lag 0-3 CI 95% = 1.0491-0.9996 RR = 1.02 P = 0.05). Increased rainfall and average relative humidity increase the risk of stroke in people under 60 years (lag 0-7 CI 95% = 1.0012-0.9058 RR = 1.95 P = 0.05). Increasing the average daily temperature reduces the risk of stroke in males (lag 0-3 CI 95% = 0.9874-0.9254 RR = 0.51 P < 0.001). CONCLUSION: Increasing the intensity of dust storms along with meteorological elements has increased the risk of stroke. However, increasing the average temperature has had a protective effect on the risk of stroke.

Impact of sandstorm on environmental pollutants PM2.5, carbon monoxide, nitrogen dioxide, ozone, and SARS-CoV-2 morbidity and mortality in Kuwait

Objectives: Sandstorms are natural climate calamities causing severe weather changes and health prob-lems. The sandstorm allied issues are of significant apprehension worldwide, mainly in the present pan-demic. This study aims to examine the “sandstorm impact on environmental pollution particulate matter (PM2.5), carbon monoxide (CO), ozone (O3), and daily new cases and deaths due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) ” in Kuwait. Methods: The two incidences of sandstorms occurred in Kuwait, dated 13 March 2021 and 13 June 2021. The data on “PM2.5, CO, NO2, and O-3, and SARS-CoV-2 cases and deaths ” were documented three weeks before and after both incidences of the sandstorm. For the first incidence, the data was recorded from 18 February to 12 March 2021; and from 13 March to 2 April 2021. However, for the second incidence of sandstorms, data were documented from 23 May to 12 June 2021; and from 13 June to 3 July 2021. The daily “PM2.5, CO, NO2, and O-3 levels ” were recorded from “Air Quality Index-AQI, metrological web, and data on COVID-19 daily cases and deaths were recorded from the World Health Organization “. Results: After the first and second sandstorm incidence, the air contaminants PM2.5 was increased by 26.62%, CO 22.08%, and O-3 increased 18.10% compared to before the sandstorm. SARS-CoV-2 cases were markedly amplified by (21.25%), and deaths were increased by (61.32%) after the sandstorm. Conclusions: Sandstorm events increase air pollutants PM2.5, CO, and O-3 levels, and these pollutants increase the SARS-COV-2 daily cases and deaths in Kuwait. The findings have a meaningful memorandum to healthcare representatives to advise the public about the health hazards of the sandstorm and its link-age with SARS-CoV-2 cases and deaths. (C) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.

Climate change influences on the potential distribution of the sand fly Phlebotomus sergenti, vector of Leishmania tropica in Morocco

BACKGROUND: Leishmaniases are a vector-borne disease, re-emerging in several regions of the world posing a burden on public health. As other vector-borne diseases, climate change is a crucial factor affecting the evolution of leishmaniasis. In Morocco, anthroponotic cutaneous leishmaniasis (ACL) is widespread geographically as many foci across the country, mainly in central Morocco. The objective of this study is to evaluate the potential impacts of climate change on the distribution of ACL due to Leishmania tropica, and its corresponding vector Phlebotomus sergenti in Morocco. METHODS: Using Ecological Niche Modeling (ENM) tool, the estimated geographical range shift of L. tropica and P. sergenti by 2050 was projected under two Representative’s Concentration’s Pathways (RCPs) to be 2.6 and RCP 8.5 respectively. P. sergenti records were obtained from field collections of the laboratory team and previously published entomological observations, while, epidemiological data for L. tropica were obtained from Moroccan Ministry of Health reports. RESULTS: Our models under present-day conditions indicated a probable expansion for L. tropica as well as for its vector in Morocco, P. sergenti. It showed a concentrated distribution in the west-central and northern area of Morocco. Future predictions anticipate expansion into areas not identified as suitable for P. sergenti under present conditions, particularly in northern and southeastern areas of Morocco. L. tropica is also expected to have high expansion in southern areas for the next 30 years in Morocco. CONCLUSION: This indicates that L. tropica and P. sergenti will continue to find suitable climate conditions in the future. A higher abundance of P. sergenti may indeed result in a higher transmission risk of ACL. This information is essential in developing a control plan for ACL in Morocco. However, future investigations on L. tropica reservoirs are needed to confirm our predictions.

No evidence of rift valley fever antibodies in veterinarians and sheep in northern Palestine

BACKGROUND AND AIM: Rift Valley fever virus (RVFV) is a vector-borne virus that causes RVF in humans and ruminants. The clinical symptoms in humans and animals are non-specific and often misdiagnosed, but abortions in ruminants and high mortality in young animals are characteristic. Since the initial outbreak in the Rift Valley area in Kenya, the disease has spread to most African countries and the Middle East. The presence and epidemiological status of RVFV in humans and animals in Palestine are unknown. This study aimed to investigate the presence and risk factors for RVF seroprevalence in veterinarians, as occupational hazard professionals, and sheep, as highly susceptible animals, in Northern Palestine. MATERIALS AND METHODS: A cross-sectional study was conducted. Data and blood samples of 280 Assaf sheep and 100 veterinarians in close occupational contact with sheep were collected between August and September 2020 using an indirect enzyme-linked immunosorbent assay. RESULTS: No evidence of RVF antibodies was found in any human or animal sample. CONCLUSION: Our results suggest that RVFV has not circulated in livestock in Northern Palestine, yet. Surveillance and response capabilities and cooperation with the nearby endemic regions are recommended. The distribution of competent vectors in Palestine, associated with global climate change and the role of wild animals, might be a possible route for RVF spreading to Palestine from neighboring countries.

The epidemiology and incidence of dengue in Makkah, Saudi Arabia, during 2017-2019

OBJECTIVES: To study the epidemiology of dengue incidence and understand the dynamics of dengue transmission in Makkah, Kingdom of Saudi Arabia (KSA), between 2017-2019. METHODS: This is a cross-sectional study. Health and demographic data was obtained for all confirmed dengue cases in Makkah, KSA, in the years 2017-2019 from the Vector-Borne and Zoonotic Diseases Administration (VBZDA) in Makkah and the Makkah Regional Laboratory, KSA. In addition, entomological data about Aedes density was obtained from the VBZDA. Descriptive epidemiological methods were used to determine the occurrence and distribution of dengue cases. RESULTS: Laboratory-confirmed dengue cases were higher in 2019 as compared to 2017 and 2018, suggesting an outbreak of dengue in Makkah, KSA, in 2019. The incidence of confirmed dengue cases was 204 in 2017, 163 in 2018 and 748 in 2019. Dengue mostly affected people in the 25-44 age group, accounting for approximately half of the annual dengue cases each year. Men were at a higher dengue incidence risk when compared to women, and Saudi women had a higher risk rate for dengue cases when compared to non-Saudi women in all 3 years studied. There was no dengue related death in these 3 years. CONCLUSION: The dengue incidence increased in Makkah, KSA, in 2019 as compared to the previous 2 years, owing to heavy rainfall in 2019. Post-rainfall Vector control efforts may help contain the disease in Makkah, KSA.

A cross-tabulated analysis for the influence of climate conditions on the incidence of dengue fever in Jeddah City, Saudi Arabia during 2006-2009

OBJECTIVE: Increased temperature and humidity across the world and emergence of mosquito-borne diseases, notably dengue both continue to present public health problems, but their relationship is not clear as conflicting evidence abound on the association between climate conditions and risk of dengue fever. This characterization is important as mitigation of climate change-related variables will contribute toward efficient planning of health services. The purpose of this study was to determine whether humidity in addition to high temperatures increase the risk of dengue transmission. METHODS: We have assessed the joint association between temperature and humidity with the incidence of dengue fever at Jeddah City in Saudi Arabia. We obtained weekly data from Jeddah City on temperature and humidity between 2006 and 2009 for 200 weeks starting week 1/2006 and ending week 53/2009. We also collected incident case data on dengue fever in Jeddah City. RESULTS: The cross-tabulated analysis showed an association between temperature or humidity conditions and incident cases of dengue. Our data found that hot and dry conditions were associated with a high risk of dengue incidence in Jeddah City. CONCLUSION: Hot and dry conditions are risk factors for dengue fever.

Rift Valley Fever and West Nile virus vectors in Morocco: Current situation and future anticipated scenarios

Rift Valley Fever (RVF) and West Nile virus (WNV) are two important emerging Arboviruses transmitted by Aedes and Culex mosquitoes, typically Ae. caspius, Ae. detritus and Cx. pipiens in temperate regions. In Morocco, several outbreaks of WNV (1996, 2003 and 2010), affecting horses mostly, have been reported in north-western regions resulting in the death of 55 horses and one person cumulatively. Serological evidence of WNV local circulation, performed one year after the latest outbreak, revealed WNV neutralizing bodies in 59 out of 499 tested participants (El Rhaffouli et al., 2012). The country also shares common borders with northern Mauritania, where RVF is often documented. Human movement, livestock trade, climate changes and the availability of susceptible mosquito vectors are expected to increase the spread of these diseases in the country. Thus, in this study, we gathered a data set summarizing occurrences of Ae. caspius, Ae. detritus and Cx. pipiens in the country, and generated model prediction for their potential distribution under both current and future (2050) climate conditions, as a proxy to identify regions at-risk of RVF and WNV probable expansion. We found that the north-western regions (where the population is most concentrated), specifically along the Atlantic coastline, are highly suitable for Ae. caspius, Ae. detritus and Cx. pipiens, under present-day conditions. Future model scenarios anticipated possible range changes for the three mosquitoes under all climatic assumptions. All of the studied species are prospected to gain new areas that are currently not suitable, even under the most optimist scenario, thus placing additional human populations at risk. Our maps and predictions offer an opportunity to strategically target surveillance and control programmes. Public health officials, entomological surveillance and control delegation must augment efforts and continuously monitor these areas to reduce and minimize human infection risk.

Men’s role in violence against women in disasters: Studies in Iran and Australia

Sexual violence is largely absent from studies on violence against women in disasters. The role of men in perpetrating violence against women is overlooked or excused and women are usually blamed in both countries. A review of 2 studies of men’s violence against women after floods and earthquakes in Iran and bushfires in Australia show remarkable similarities. Although cultural contexts and the way gender inequality is established and demonstrated are different, these studies reveal unexpected parallels. The context of disaster lays it bare. Participants of both studies were disaster-affected people in Iran and Australia who revealed the taboos that prevent women speaking of violence that is exacerbated in a disaster context. Men play important roles in preventing and responding to violence against women as the result of their responsibilities and positions at the household and community levels. The objective of this paper was to compare the findings from these studies and consider the difficulties faced in conducting studies related to the roles of men and women roles during and after disaster events.

Climate change, adaptation and infectious diseases surveillance – Policy Brief

Pakistan Lancet Countdown on Health and Climate Change Data Sheet 2023

United Arab Emirates Lancet Countdown on Health and Climate Change Data Sheet 2023

Egypt Lancet Countdown on Health and Climate Change Data Sheet 2023

Identifying malaria risk in Niger

Food security and shock response systems support social protection in Mauritania and the Sahel

Project Optimize: Green Vaccine Supply Chain in Tunisia

World Malaria Report 2022

Impacts of flood on health of Iranian population: Infectious diseases with an emphasis on parasitic infections

BACKGROUND: Outbreaks of infectious diseases are the major concern after flooding. Flood makes people displacement which would be more complicated with inadequate sanitation. Settling in crowded shelters in absence of clean water and inaccessibility to health care services makes people more vulnerable to get infection. This review aimed to discuss about potential undesirable outcomes of flooding occurred in 2019 in Iran. METHODS: A comprehensive search was carried out in databases including PubMed, Google scholar, Scopus, Science Direct, Iran medex, Magiran and SID (Scientific information database) from 2000 to 2019. All original descriptive articles on flood were concerned. Related articles on flood disturbance were considered. Also, publication of red cross society was considered as only reliable reference in evaluation of consequences of flood occurred in 2019 in Iran. RESULTS: Flooding in Iran, was started in March 2019 and lasted to April 2019. Flood affected 31 provinces and 140 rivers burst their banks, and southwestern Iran being hit most severely. According the reports of international federation of red cross society, 3800 cities and villages were affected by the floods with 65,000 destroyed houses and 114,000 houses partially damaged. Also 70 hospitals or health care centers with 1200 schools were damaged along with many infrastructures including 159 main roads and 700 bridges. CONCLUSIONS: Considering 365,000 displaced persons and estimation of mentioned damages, it was one of the greatest natural disaster during the last 20 years. Various risk factors in favor of infectious diseases such as overcrowding, disruption of sewage disposal, poor standards of hygiene, poor nutrition, negligible sanitation and human contact among refugees provide suitable conditions for increased incidence of infectious diseases after flooding and also cause epidemics.More attention is needed to provide hygienic situation for people after natural disasters including flood.

The effect of meteorological variables on salmonellosis incidence in Kermanshah, West of Iran: A generalized linear model with negative binomial approach

PURPOSE: Salmonella is one of the main causes of gastroenteritis, and its incidence may be affected by meteorological variables. This is the first study about the effect of climatic factors on salmonella incidence in Kermanshah, Iran. METHODS: Data about salmonellosis cases in Kermanshah were inquired from Center for Communicable Disease Control, at the Ministry of Health and Medical Education of Iran, for the 2008 to 2018 time-frame. Meteorological variables including maximum, minimum and mean of temperature and humidity, sunshine hours and rainfall were inquired for the same time frame. Negative binomial generalized linear models (GLM) were used to assess the effect of meteorological variables on the weekly incidence of salmonellosis. RESULTS: During the years under study, 569 confirmed cases were registered in Kermanshah province. Study results showed a 3?% increase in salmonellosis incidence, after 1?% increase in minimum humidity in the week before (incidence rate ratio (IRR): 1.03; 95?% confidence interval (CI):1.02-1.05) and also a 4?% increase in incidence for 1 °C increase in mean temperature in the same week (IRR: 1.04; 95?% CI:1.02-1.06). CONCLUSIONS: Increase in minimum humidity and mean temperature may have a role in increasing the incidence of salmonellosis in Iran.

The effect of climate change on depression in urban areas of western Iran

Temporal and spatial analysis of thermal stress and its trend in Iran

The study was conducted to determine thermal stress and its trend in Iran. The atmospheric variables of 304 synoptic stations, including mean temperature, relative humidity, wind speed and cloudiness, for the period 1961-2010, were used to identify the thermal stress conditions in Iran. These data were prepared on a daily basis from the Iran Meteorological Organization. Physiologically equivalent temperature (PET) and standard effective temperature (SET*) were used to identify thermal stress. Also, thermal stress was studied with a simple linear regression method and at a 95% confidence level. The results of the study revealed that in Iran each location can experience different types of environmental conditions throughout the year. At a specified time, thermal stresses of different intensities can be seen. The other results showed that the mountainous regions, especially the highlands of the northwest, along with the Zagros and Alborz mountains, had the highest co-efficient of variability (> 50%). Also, the southern regions of Iran have both monthly and annual scales with the least co-efficient of variability (< 20%) in bioclimatic conditions. In general, a diversity of bioclimatic conditions is evident in Iran both temporally and spatially. The other part of the study determined that heat and cold stress and heat comfort had a positive trend (fewer than 60 stations) in parts of Iran, a negative trend in some other parts (more than 50 stations), and no specific trend in the remaining parts (more than 250 stations). Most of the northern stations, especially on the Caspian coast, have been shown to have a positive trend in the event of cold stress. Indeed, extreme bioclimatic conditions (very cold and hot conditions) have been rising in both the southern and northern latitudes of the country. Even in southern parts, a positive trend of cold and very cold conditions can be observed at some stations.

The Granger causality analysis of the impact of climatic factors on visceral leishmaniasis in northwestern Iran in 1995-2019

Visceral leishmaniasis (VL) as a vector-borne disease, is an endemic in the northwest and south of Iran and sporadic in other areas in the country. This study was performed to investigate the Granger causality analysis of the impacts of climatic factors on VL in northwestern Iran throughout the period from 1995 to 2019. In a longitudinal study, the epidemiological data of patients suffering from VL were collected from the health centers and hospitals in Meshkinshahr County, Ardabil province, between 1995 and 2019. Moreover, the environmental and climatic data of each location, such as temperature, humidity, rainfall, the number of frost and warm days in the year, were obtained from the meteorological center of the county and put into the Excel software. The incidence rate of VL was modeled by time series analysis and to compare its relationship with other time series covariates, the Granger causality analysis was used. The results of Granger causality analysis showed that some climatic variables including daily mean temperature, absolute minimum temperature, maximum and minimum temperature and maximum humidity were the main factors affecting the prevalence of VL in northwestern Iran. The findings greatly demonstrated that the potential of Granger causality in epidemiologic status of VL in northwestern Iran. Moreover, the results suggest that in addition to patient-related and biological factors, environmental and climatic factors such as temperature and humidity also play a major role in completing the transmittance cycle of VL in an endemic focus.

The effect of climate variables on the incidence of cutaneous leishmaniasis in Isfahan, Central Iran

In recent years, there have been considerable changes in the distribution of diseases that are potentially tied to ongoing climate variability. The aim of this study was to investigate the association between the incidence of cutaneous leishmaniasis (CL) and climatic factors in an Iranian city (Isfahan), which had the highest incidence of CL in the country. CL incidence and meteorological data were acquired from April 2010 to March 2017 (108 months) for Isfahan City. Univariate and multivariate seasonal autoregressive integrated moving average (SARIMA), generalized additive models (GAM), and generalized additive mixed models (GAMM) were used to identify the association between CL cases and meteorological variables, and forecast CL incidence. AIC, BIC, and residual tests were used to test the goodness of fit of SARIMA models; and R(2) was used for GAM/GAMM. 6798 CL cases were recorded during this time. The incidence had a seasonal pattern and the highest number of cases was recorded from August to October. In univariate SARIMA, (1,0,1) (0,1,1)(12) was the best fit for predicting CL incidence (AIC=8.09, BIC=8.32). Time series regression (1,0,1) (0,1,1)(12) showed that monthly mean humidity after 4-month lag was inversely related to CL incidence (AIC=8.53, BIC=8.66). GAMM results showed that average temperature with 2-month lag, average relative humidity with 3-month lag, monthly cumulative rainfall with 1-month lag, and monthly sunshine hours with 1-month lag were related to CL incidence (R(2)=0.94). The impact of meteorological variables on the incidence of CL is not linear and GAM models that include non-linear structures are a better fit for prediction. In Isfahan, Iran, meteorological variables can greatly predict the incidence of CL, and these variables can be used for predicting outbreaks.

Relationship between ambient black carbon and daily mortality in Tehran, Iran: A distributed lag nonlinear time series analysis

PURPOSE: The aim of the present study was to investigate the effect of short-term exposure to ambient black carbon (BC) on daily cause-specific mortality, including mortality due to respiratory, cardiovascular, ischemic heart and cerebrovascular diseases in Tehran, Iran. MATERIALS AND METHODS: Daily non-accidental death counts, meteorological data and hourly concentrations of air pollutants from 2014 to 2017 were collected in Tehran. A distributed lag non-linear model was used to assess the association between exposure to BC and daily mortality. RESULTS: The mean daily BC concentration during the study period was 3.96?±?1.19 µg/m(3). The results indicated that BC was significantly associated with cardiovascular, ischemic heart disease, and cerebrovascular mortality, but not with respiratory mortality. In first model, each 10 µg/m(3) increase in at lag 3, lag 4 and lag 5 were associated with cardiovascular mortality in 16-65 year age group with the relative risks (RRs) of 1.17 (95?% CI: 1.02-1.33), 1.17 (95?% CI: 1.04-1.31) and 1.12 (95?% CI: 1.02-1.24), respectively. The highest mortality rate per 10 µg/m(3) increase in exposure was found for ischemic heart diseases with RR of 3.98 (95?% CI: 1.04-1.81, lag 01) for 16-65 age group. Cerebrovascular mortality was associated with 10 µg/m(3) increases in non-cumulative exposure with RR of 1.17 (95?% 1.009-1.35, lag 5) in the age group ? 65 years. In the second model for a 10 µg/m(3) increase in BC, cardiovascular mortality at specific lag days (5 and 6 days) in the age group ? 16 years were associated with RR of 1.34 (95?% CI 1.08-1.66) and 1.35(95?% CI 1.02-1.77), respectively. CONCLUSIONS: This study in Tehran found significant effects of BC exposure on daily mortality for cardiovascular, ischemic heart disease, cerebrovascular disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40201-021-00659-0.

Physiological equivalent temperature (PET) and non-accidental, cardiovascular and respiratory disease mortality in Ahvaz, Iran

Climate change may be associated with human morbidity and mortality through direct and indirect effects. Ahvaz is one of the hottest cities in the world. The aim of this study was to investigate the relation between physiological Equivalent Temperature (PET) and non-accidental, cardiovascular and respiratory disease mortality in Ahvaz, Iran. Distributed Lag Non-linear Models (DLNM) combined with quasi-Poisson regression were used to investigate the effect of PET on death. The effect of time trend, air pollutants (NO(2), SO(2) and PM(10)), and weekdays were adjusted.The results showed that in cold stress [1st percentile of PET (2.7 °C) relative to 25th percentile (11.9 °C)] the risk of total respiratory mortality, respiratory mortality in men, and mortality in people under 65 year olds, significantly decreased in the cumulative lags of 0-2, 0-6 and 0-13; but the risk of respiratory mortality increased in the elderly and in the final lags. In contrast, heat stress [99th percentile of PET (44.9 °C) relative to 75th percentile (43.4 °C)] significantly increased the risk of total cardiovascular mortality (CVD), cardiovascular mortality in men, ischemic heart disease and cerebrovascular disease mortality in lags 0 and 0-2. It seems that high PET values increase the risk of cardiovascular mortality, while low PET values increase respiratory mortality only among the elderly in Ahvaz.

Physiological equivalent temperature (PET) index and respiratory hospital admissions in Ahvaz, southwest of Iran

Although Ahvaz is considered as one of the warmest cities around the world, few epidemiological studies have been conducted on the adverse effects of temperature on human health using thermal indices in this city. This study investigates the relation between physiologically equivalent temperature (PET) and respiratory hospital admissions in Ahvaz. Distributed lag non-linear models (DLNMs) combined with quasi-Poisson regression models were used to investigate the relation between PET and respiratory disease hospital admissions, adjusted for the effect of time trend, air pollutants (NO(2), SO(2), and PM(10)), and weekdays. The analysis was performed by utilizing R software. Low PET values significantly decreased the risk of hospital admissions for total respiratory diseases, respiratory diseases in men and women, chronic obstructive pulmonary diseases (COPD), and bronchiectasis. However, low PET (16.9°C) in all lags except lag 0-30 significantly increased the risk of hospital admissions for asthma. The results indicate that in Ahvaz, which has a warm climate, cold weather decreased overall respiratory hospital admissions, except for asthma.

Is vulnerability to climate change gendered? And how? Insights from Egypt

Most climate change literature tends to downplay the gendered nature of vulnerability. At best, gender is discussed in terms of the male-female binary, seen as opposing forces rather than in varying relations of interdependency. Such construction can result in the adoption of maladaptive culturally unfit gender-blind policy and interventions. In Egypt, which is highly vulnerable to climate change, gender analysis of vulnerability is almost non-existent. This paper addresses this important research gap by asking and drawing on a rural Egyptian context ‘How do the gendered relational aspects of men’s and women’s livelihoods in the household and community influence vulnerability to climate change?’. To answer this question, I draw on gender analysis of social relations, framed within an understanding of sustainable livelihoods. During 16 months of fieldwork, I used multiple ethnographic methods to collect data from two culturally and ethnically diverse low-income villages in Egypt. My main argument is that experiences of climate change are closely intertwined with gender and wider social relations in the household and community. These are shaped by local gendered ideologies and cultures that are embedded in conjugal relations, kinship and relationship to the environment, as compared across the two villages. In this paper, I strongly argue that vulnerability to climate change is highly gendered and therefore gender analysis should be at the heart of climate change discourses, policy and interventions.

Heat and cold-related morbidity risk in north-east of Iran: A time-stratified case crossover design

This study aimed to estimate morbidity risk/number attributed to air extreme temperatures using time-stratified case crossover study and distributed lag non-linear model in a region of Iran during 2015-2019. A time-stratified case crossover design based on aggregated exposure data was used in this study. In order to have no overlap bias in the estimations, a fixed and disjointed window by using 1-month strata was used in the design. A conditional Poisson regression model allowing for over dispersion (Quasi-Poisson) was applied into Distributed Lag Non-linear Model (DLNM). Different approaches were applied to estimate Optimum Temperature (OT). In the model, the interaction effect between temperature and humidity was assessed to see if the impact of heat or cold on Hospital Admissions (HAs) are different between different levels of humidity. The cumulative effect of heat during 21 days was not significant and it was the cold that had significant cumulative adverse effect on all groups. While the number of HAs attributed to any ranges of heat, including medium, high, extreme, and even all values were negligible, but a large number was attributable to cold values; about 10000 HAs were attributable to all values of cold temperature, of which about 9000 were attributed to medium range and about 1000 and less than 500 were attributed to high and extreme values of cold, respectively. This study highlights the need for interventions in cold seasons by policymakers. The results inform researchers as well as policy makers to address both men and women and elderly when any plan or preventive program is developed in the area under study.

Eco-epidemiological aspects of zoonotic cutaneous leishmaniasis in Ouarzazate Province, Morocco

Some epidemiological and ecological aspects of Zoonotic cutaneous leishmaniasis (ZCL) in Ouarzazate province, southern Morocco, were explored with the objective of analyzing ZCL distribution and associated ecological factors. Information on cutaneous leishmaniasis patients attending the local health centers of Ouarzazate during the period 2002-2009 was gathered and compiled. Urban, peri-urban, rural origin, precipitation, wind speed, temperature, water irrigation, dam volume, and altitude were studied. The findings show that the disease affected 5405 person during this period; the major part was found in the municipalities near both oases (desert oasis) and water resources, with a high concentration of cases in the peri-urban area. The highest percentage of cases was recorded mainly in September. Considerable associations were found between relative humidity and wind speed with ZCL occurrence. A large number of cases were recorded in areas with altitude ranging from 800 to 2000 m.a.s.l. and spatial precipitation from 15 to 150 mm. The statistical analysis showed a strong association between water storage volume and water irrigation with the annual ZCL occurrence recorded in the downstream area (Zagora province). The results will lead us to understand ZCL risk areas for effective control. Further work is needed mainly for gathering these variables in one single and simplest model.

Development of a GIS-based alert system to mitigate flash flood impacts in Asyut governorate, Egypt

Egypt is one Arab country that is vulnerable to flash floods caused by heavy and intensive rainfall. Different locations in Egypt are vulnerable to the hazards of flash floods, especially in Upper Egypt. Throughout history, Egypt witnessed a series of events of flash floods that lead to mortality, damages, and economic losses. The intensity and frequency of flash floods in Egypt vary from year to year according to a number of hydrological and climatological variables. Although several previous flash floods studies have been conducted in Egypt, studies on the governorate of Asyut are still limited. This study integrates the physical and social parameters in order to assess the vulnerability to flash floods. The objectives of this study are to shed light on flash floods in the study area, develop a vulnerability model to determine the regions vulnerable to the impacts of flash floods, and propose a flash flood alert system in the governorate of Asyut in Egypt to mitigate the impacts of flash floods and to avoid the loss of life and property. The AHP (analytical hierarchy process) is used for assigning the optimal criterion weight of the considered vulnerability parameters based on the responses of eight expert respondents to an online Google forms questionnaire. The highest weighted flash floods causative parameters are population density (27.4%), precipitation (22.1%), total population (16.4%), and elevation (10.2%), respectively. The results reveal that Asyut is one of the Egyptian governorates prone to flash floods’ impacts, especially in Dayrut, Al-Qusiyah, and Abnub, urban districts. The findings of this study are expected to be useful to policymakers and responsible authorities for better disaster risk management and for dealing with the flash floods events in the future.

Childhood visceral leishmaniasis in Tunisia: A cross-sectional study in local spatial analysis

This paper describes spatial distribution of Visceral Leishmaniasis (VL) and determines its correlation with climatic factors in an endemic focus in northern and central Tunisia. Data on VL cases in children under five years of age were obtained by consulting medical reports from all Tunisian Pediatric Departments (TPD) during 2006-2016. Three key climatic factors, namely precipitation, continentality index and pluviometric coefficient of Emberger were used as predictor variables to model the VL geographical distribution. Data handling and statistical analysis were performed using R and Arcview GIS software systems. Bayesian local spatial model was employed to analyse the data. The results show a progressive increase in the VL incidence rates in regions with high levels of precipitation, but with low values of both continentality index and pluviometric coefficient of Emberger. A likely explanation of these findings arises from the opposite local effects of climatic factors which tend to cancel each other out in the calculation of the mean parameter estimate over the whole study area. We conclude that using non-local spatial analysis approach leads to misleading epidemiological interpretations, which in turn are of relevance for more efficient and cost-effective resource allocation for control and well manage the spread of VL in the study region and elsewhere in Tunisia.

Thermal comfort and mortality in a dry region of Iran, Kerman; a 12-year time series analysis

This study was conducted in order to explore the effect of thermal comfort on all-cause mortality using three indices in different lag times, in a semi-arid to dry region of Iran. Three thermal comfort indices based on the energy balance of the human body including physiologically equivalent temperature (PET), predicted mean vote (PMV), and standard effective temperature (SET) were used to assess the effects of thermal comfort on mortality. Distributed lag non-linear models were used to assess the relation. The natural cubic spline was chosen as the basis function for the space of predictors and lags, with 4 degrees of freedom. All three indices showed the same pattern in general, but the relative risk for PMV values were more than the other indices in different lags. For all three indices, lag 0 had the highest relative risk of mortality in warm and hot indices. The relative risk for warm and hot values was more than cool and cold values in lag 0, and for the PMV index, it was larger than the two other indices. These results were different in lags 5 to 8, and the relative risks for cool and cold values were more than warm and hot values. This study showed that heat stress has a stronger and more immediate adverse effect on mortality than cold stress. Also, the elderly and females are more vulnerable than others. The most apparent effect was seen in lags 0-12.

The impact of climatic changes on total horticultural production and food security in agro-ecological zones of Iran

Arid and semi-arid climates, including that of Iran, are more susceptible to environmental changes due to their special ecological structure than other climates. Therefore, climate change in these areas appears to have significant effects on agricultural and food production systems. The present study explores the effect of climatic changes on total horticultural production and food security in agro-ecological zones of Iran. The study was conducted in two steps. In the first step, the effects of climatic parameters on total horticultural production were investigated using time series data (1985-2017) and a regression model. In the second step, due to the important role of horticultural products in per capita food consumption in Iran, the effect of climate parameters on food security was also examined. Results revealed that total horticultural production was influenced by temperature, evapotranspiration, and wind speed at the 0.05 level. With the increase in temperature (at a rate of one unit), total horticultural production is reduced to 0.01 million tons. Evapotranspiration and wind speed have had a negative effect on total horticultural production, and with increasing evapotranspiration and wind speed, total horticultural production was 0.029 and 0.008 million, respectively, tons decreased. Also, food security was influenced by temperature, precipitation, and wind speed.

The impact of climatic variables on the population dynamics of the main malaria vector, Anopheles stephensi Liston (Diptera: Culicidae), in southern Iran

Objective: To determine the significance of temperature, rainfall and humidity in the seasonal abundance of Anopheles stephensi in southern Iran. Methods: Data on the monthly abundance of Anopheles stephensi larvae and adults were gathered from earlier studies conducted between 2002 and 2019 in malaria prone areas of southeastern Iran. Climatic data for the studied counties were obtained from climatology stations. Generalized estimating equations method was used for cluster correlation of data for each study site in different years. Results: A significant relationship was found between monthly density of adult and larvae of Anopheles stephensi and precipitation, max temperature and mean temperature, both with simple and multiple generalized estimating equations analysis (P<0.05). But when analysis was done with one month lag, only relationship between monthly density of adults and larvae of Anopheles stephensi and max temperature was significant (P<0.05). Conclusions: This study provides a basis for developing multivariate time series models, which can be used to develop improved appropriate epidemic prediction systems for these areas. Long-term entomological study in the studied sites by expert teams is recommended to compare the abundance of malaria vectors in the different areas and their association with climatic variables.

The effect of physiological equivalent temperature index variations on mortality in Urmia (The Northwest of Iran)

The effect of climate variables on the incidence of Crimean Congo Hemorrhagic Fever (CCHF) in Zahedan, Iran

BACKGROUND: The Crimean-Congo Hemorrhagic fever (CCHF) is endemic in Iran and has a high fatality rate. The aim of this study was to investigate the association between CCHF incidence and meteorological variables in Zahedan district, which has a high incidence of this disease. METHODS: Data about meteorological variables and CCHF incidence was inquired from 2010 to 2017 for Zahedan district. The analysis was performed using univariate and multivariate Seasonal Autoregressive Integrated Moving Average (SARIMA) models and Generalized Additive Models (GAM) using R software. AIC, BIC and residual tests were used to test the goodness of fit of SARIMA models, and R(2) was used to select the best model in GAM/GAMM. RESULTS: During the years under study, 190 confirmed cases of CCHF were identified in Zahedan district. The fatality rate of the disease was 8.42%. The disease trend followed a seasonal pattern. The results of multivariate SARIMA showed the (0,1,1) (0,1,1)(12) model with maximum monthly temperature lagged 5?months, forecasted the disease better than other models. In the GAM, monthly average temperature lagged 5?months, and the monthly minimum of relative humidity and total monthly rainfall without lag, had a nonlinear relation with the incidence of CCHF. CONCLUSIONS: Meteorological variables can affect CCHF occurrence.

The effect of climatic and geographical factors on breast cancer in Iran

OBJECTIVE: By studying the effect of environmental factors on health, it is clear that geographical, climatic and environmental factors have a significant impact on human health. This study, based on the data of the patients with breast cancer in Iran since 2010 to 2014 and using the statistical methods has determined the effect of geographical features of Iran (solar radiation status, radiation angle) on the frequency and distribution of this disease. RESULTS: The maximum amount of total solar radiation occurs in the vicinity (surrounding) of the tropic of cancer, which covers some parts of the south of Iran and in the atmosphere of the northern latitudes of Iran. The amount of humidity and cloudiness is more than the southern latitudes, which causes more reflection of short waves of the sun during the day. Findings showed that the rate of breast cancer in low latitudes is higher than high latitudes. It was also found that with increasing longitude, the rate of cancer increases significantly due to the high thickness of the atmosphere and receiving more sunlight in the electromagnetic spectrum, as well as dry air and low water vapor in low altitude areas of eastern and southeastern Iran.

The effect of cold and heat waves on mortality in Urmia a cold region in the North West of Iran

Few studies have investigated the different extreme temperature effects (heat-cold) of one geographical location at the same time in Iran. This study was conducted to assess the impact of heat and cold waves on mortality in Urmia city, which has a cold and mountainous climate. Distributed Lag Non-linear Models combined with a quasi-Poisson regression were used to assess the impact of heat (HW) and cold waves (CW) on mortality in subgroups, controlled for potential confounders such as long-term trend of daily mortality, day of week effect, holidays, mean temperature, humidity, wind speed and air pollutants. The heat/cold effect was divided into two general categories A-main effect (the effect caused by temperature), B-added effect (the effect caused by persistence of extreme temperature). Results show that there was no relation between HW and respiratory and cardiovascular death, but in main effects, HW(H1) significantly increased, the risk of Non-Accidental Death (NAD) in lag 0 (Cumulative Excess Risk (CER) (NAD) = 31(CI; 4-65)). Also in added effects, HW had a significant effect on NAD (CER (H1; NAD; lag;0-2) = 31(CI; 5, 51), CER (H2; NAD; lag;0-2) = 26(CI; 6, 48)). There was no relation between CW and respiratory death and cardiovascular death, but in added effects, CW((C1)) significantly decreased, the risk of non-accidental death in initial lags (CER (C1; NAD; lag;0-2) = 19 (CI; 35, 2)). It seems that high temperatures and heat waves increase the risk of non-accidental mortality in northwest of Iran.

Temporal and climate characteristics of respiratory syncytial virus bronchiolitis in neonates and children in Sousse, Tunisia, during a 13-year surveillance

This study established the correlation between respiratory syncytial virus (RSV) bronchiolitis and climate factors in the area of Sousse, Tunisia, during 13 years (2003-2015), from neonates and children <=?5 years old and hospitalized in Farhat Hached University-Hospital of Sousse. The meteorological data of Sousse including temperature, rainfall, and humidity were obtained. RSV detection was carried out with the direct immunofluorescence assay. The impact of climate factors on viral circulation was statistically analyzed. From 2003 to 2015, the total rate of RSV bronchiolitis accounted for 34.5% and peaked in 2007 and 2013. RSV infection was higher in male cases and pediatric environment (p<0.001) and was detected in 47.3% of hospitalizations in intensive care units. The epidemic of this pathogen started in October and peaked in January (41.6%). When the infectivity of RSV was at its maximum, the monthly average rainfall was high (31 mm) and the monthly average temperature and the monthly average humidity were at their minimum (11 °C and 66%, respectively). RSV activity was negatively correlated with temperature (r?=?-?0.78, p?=?0.003) and humidity (r?=?-?0.62, p?=?0.03). Regression analysis showed that the monthly average temperature fits into a linear model (R(2)?=?61%, p?

Psychological aspects of climate change risk perception: A content analysis in Iranian context

BACKGROUND: Risk perception is an important predictor to mitigate climate change effects which can produce mental health consequences such as anxiety and depression. For developing policies of climate risk adaptation, awareness of public attitudes, beliefs, and perception is essential. At this study, researchers tried to focus on the often “unseen” psychological aspects of climate change. MATERIALS AND METHODS: A qualitative approach was done with a consistent content analysis method. The study consisted of 33 participants including ordinary people and experts in disasters and climate change. Purposeful sampling was adopted until data saturation. The data collection was performed through in-depth and semi-structured interviews. All interviews were transcribed after listening again and again and reading several times to catch an overall understanding of the interviews. RESULTS: The main theme of the study was “Complexity nature of climate change risk perception” and related categories including “the Mental health dimension,” “the Cognitive dimension” and “Interaction of imposed components.” The structure of the research community strongly reflected effects of cultural and religious factors in all aspects of community life. Participants’ life experiences of extreme events were associated to their perception of climate change. CONCLUSIONS: Risk perception is multifactorial and complicate and should clearly be understood to improve community participation to manage climate change-related risks. We propose that authorities and related managers should pay attention to it as a priority. This may assist in developing research on public mental health practices.

Prevalence of acute Myocardial Infarction and changing meteorological conditions in Iran: Fuzzy clustering approach

BACKGROUND: The prevalence of Acute Myocardial Infarction (AMI) varies from region to region caused by seasonal climate changes and temperature variation. This study aimed to assess the relationship between changing meteorological conditions and incidence of AMI in Iran. METHODS: This retrospective prevalence study was based on medical records of the heart center of Mazandaran Province on all patients diagnosed with AMI in Mazandaran, northern Iran between 2013 and 2015. Patients’ sex and the day, month, year and time of hospital admission were extracted from patients’ records. Moreover, the meteorological reports were gathered. RESULTS: A statistically significant difference was found between the distributions of AMI cases across 12 months of the year (P < 0.01). Fuzzy clustering analysis using 16 different climatic variables showed that March, April, and May were in the same cluster together. The other 9 months were in different clusters. CONCLUSION: Significant increase in AMI was seen in March, April and May (cold to hot weather).

Projection of mortality attributed to heat and cold; the impact of climate change in a dry region of Iran, Kerman

BACKGROUND: Estimating the effects of climate change on human health can help health policy makers plan for the future. In Iran, there are few studies, about investigating the effects of climate change on mortality. This study aimed to project the effect of low (cold) and high (heat) temperature on mortality in a dry region of Iran, Kerman. METHODS: Mortality attributed to temperature was projected by estimating the temperature-mortality relation for the observed data, projection of future temperatures by the statistical downscaling model (SDSM), and quantifying the attributable fraction by applying the observed temperature-mortality relation on the projected temperature. Climate change projection was done by three climate scenarios base on Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5). Adaptation was considered by using different minimum mortality temperatures (MMT) and risk reduction approaches. The current decade (2010-19) was considered as the reference period. RESULTS: All three climate change scenarios, showed that the mean of temperature will rise about 1 °C, by 2050 in Kerman. The number of deaths attributed to heat were obviously higher than cold in all periods. Assuming no adaptation, over 3700 deaths attributed to temperature will happen in each decade (2020s, 2030s and 2040s) in the future, in which over 3000 deaths will be due to heat and over 450 due to cold. In the predictions, as Minimum Mortality Temperature (MMT) went up, the contribution of heat to mortality slightly decreased, and cold temperature played a more important role. By considering the risk reduction due to adaptation, the contribution of heat in mortality slightly and insignificantly decreased. CONCLUSION: The results showed that although low temperatures will contribute to temperature-related mortality in the future, but heat will be a stronger risk factor for mortality, especially if adaptation is low.

Possible ramifications of climate variability on HPAI-H5N1 outbreak occurrence: Case study from the Menoufia, Egypt

Long endemicity of the Highly Pathogenic Avian Influenza (HPAI) H5N1 subtype in Egypt poses a lot of threats to public health. Contrary to what is previously known, outbreaks have been circulated continuously in the poultry sectors all year round without seasonality. These changes call the need for epidemiological studies to prove or deny the influence of climate variability on outbreak occurrence, which is the aim of this study. This work proposes a modern approach to examine the degree to which the HPAI-H5N1disease event is being influenced by climate variability as a potential risk factor using generalized estimating equations (GEEs). GEE model revealed that the effect of climate variability differs according to the timing of the outbreak occurrence. Temperature and relative humidity could have both positive and negative effects on disease events. During the cold seasons especially in the first quarter, higher minimum temperatures, consistently show higher risks of disease occurrence, because this condition stimulates viral activity, while lower minimum temperatures support virus survival in the other quarters of the year with the highest negative effect in the third quarter. On the other hand, relative humidity negatively affects the outbreak in the first quarter of the year as the humid weather does not support viral circulation, while the highest positive effect was found in the second quarter during which low humidity favors the disease event.

Occurrence of domoic acid and cyclic imines in marine biota from Lebanon-Eastern Mediterranean Sea

Marine biotoxins are naturally existing chemicals produced by toxic algae and can accumulate in marine biota. When consumed with seafood, these phycotoxins can cause human intoxication with symptoms varying from barely-noticed illness to death depending on the type of toxin and its concentration. Recently, the occurrence of marine biotoxins has been given special attention in the Mediterranean as it increased in frequency and severity due to anthropogenic pressures and climate change. Up to our knowledge, no previous study reported the presence of lipophilic toxins (LTs) and cyclic imines (CIs) in marine biota in Lebanon. Hence, this study reports LTs and CIs in marine organisms: one gastropod (Phorcus turbinatus), two bivalves (Spondylus spinosus and Patella rustica complex) and one fish species (Siganus rivulatus), collected from various Lebanese coastal areas. The results show values below the limit of detection (LOD) for okadaic acid, dinophysistoxin-1 and 2, pectenotoxin-1 and 2, yessotoxins, azaspiracids and saxitoxins. The spiny oyster (S. spinosus) showed the highest levels of domoic acid (DA; 3.88 mg kg(-1)), gymnodimine (GYM-B) and spirolide (SPX) (102.9 and 15.07 ?g kg(-1), respectively) in congruence with the occurrence of high abundance of Pseudo-nitzchia spp., Gymnodinium spp., and Alexandrium spp. DA levels were below the European Union (EU) regulatory limit, but higher than the Lowest Observed Adverse Effect Level (0.9 ?g g(-1)) for neurotoxicity in humans and lower than the Acute Reference Dose (30 ?g kg(-1) bw) both set by the European Food Safety Authority (EFSA, 2009). Based on these findings, it is unlikely that a health risk exists due to the exposure to these toxins through seafood consumption in Lebanon. Despite this fact, the chronic toxicity of DA, GYMs and SPXs remains unclear and the effect of the repetitive consumption of contaminated seafood needs to be more investigated.

Overview of the strengths and challenges associated with healthcare service rendered in the first 10 days after the great flood in northern Iran, 2019

Background: Iran is a disaster-prone country, and many flood events occur in its provinces annually. The unprecedented amount of rainfall in the northern region of Iran (from March 17 to 22, 2019) led to flash flooding of the Golestan Province. Objectives: This study assessed the challenges and strengths of health-related needs in the first 10 days after the great flood in Golestan; via interviews with experts. Methods: This cross-sectional and qualitative study was carried out in Gonbad-e-Kavoos, Anbar Alum, Aq-Qala, Simin Shahr, and Gomishan cities of the flood-hit province of Golestan from March 21, to April 13 in 2019. The data were collected using the researcher’s field observations and interviews with 26 experts and policymakers. Results: The findings were categorized into 10 main groups namely mental health, environmental health, health education, maternal, infant, and child health, nutrition, epidemics, drugs, mobile hospitals, non-communicable diseases, and management. Environmental health issues were faced with a wide range of challenges. Conclusion: Due to the insufficient development of many health infrastructures in underdeveloped and developing countries, health policymakers and disaster management experts should collaborate before and after the disaster to detect and resolve the flaws. This could help reduce health problems and challenges when a natural disaster occurs, particularly by diminishing the number of morbidities and mortalities.

Modification of the effect of ambient air temperature on cardiovascular and respiratory mortality by air pollution in Ahvaz, Iran

OBJECTIVES: This study investigated the modification of temperature effects on cardiovascular and respiratory mortality by air pollutants (particulate matter less than 2.5 and 10 µm in diameter [respectively], ozone, nitrogen dioxide, carbon monoxide, and sulfur dioxide). METHODS: Poisson additive models with a penalized distributed lag non-linear model were used to assess the association of air temperature with the daily number of deaths from cardiovascular and respiratory diseases in Ahvaz, Iran from March 21, 2014 to March 20, 2018, controlling for day of the week, holidays, relative humidity, wind speed, air pollutants, and seasonal and long-term trends. Subgroup analyses were conducted to evaluate the effect modification for sex and age group. To assess the modification of air pollutants on temperature effects, the level of each pollutant was categorized as either greater than the median value or less than/equal to the median value. RESULTS: We found no significant associations between temperature and cardiovascular and respiratory mortality. In the subgroup analyses, however, high temperatures were significantly associated with an increased risk of cardiovascular mortality among those 75 years old and older, with the strongest effect observed on day 0 relative to exposure. The results revealed a lack of interactive effects between temperature and air pollutants on cardiovascular and respiratory mortality. CONCLUSIONS: A weak but significant association was found between high temperature and cardiovascular mortality, but only in elderly people. Air pollution did not significantly modify the effect of ambient temperature on cardiovascular and respiratory mortality.

Monitoring and analysis of the effects of atmospheric temperature and heat extreme of the environment on human health in Central Iran, located in southwest Asia

Investigation of temperature extremes is very important as one of the most important climate parameters in different parts. If exposed to enough heat, humans will suffer from extreme heat. Maximum temperature and heat can adversely affect many living organisms. The effects of extreme heat on people with chronic lung disease, including asthma and emphysema, are greater; even for people with healthy lungs, outdoor activities are not recommended during high ozone levels. The purpose of this study is to monitor and analyze the effects of atmospheric temperature extreme and extreme heat on human health in Central Iran. Therefore, the minimum and maximum data of 15 synoptic stations in the study area for the period (1988-2018) using hybrid artificial neural network (HANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used. Finally, multi-criteria decision-making (MCDM) models TOSIS and SAW were used to prioritize the areas exposed to rising temperature. The results showed that according to ANFIS modelling for predicting extreme temperatures, the lowest mean training error and the mean error of validation for the minimum temperature were equal to 0.10 for the Yazd Station and 1.66% for the Damghan station. The lowest mean training error and the mean error of validation for the maximum extreme temperature obtained 0.016 for the Garmsar station and 9.39% for the Shahroud station. The maximum extreme temperature of two stations of Garmsar and Bafgh (1 and 0.9689, respectively) was more exposed to extreme temperatures based on the TOPSIS model. Garmsar and Salafchegan Stations (1 and 0.9873, respectively) were more exposed to extreme temperatures based on the SAW model. Climate change is fundamentally changing the Earth’s climate system in a way that directly and indirectly endangers human physical and mental health. Severe increase in temperature is directly associated with death from cardiovascular and respiratory diseases, especially in the elderly. Also in the study area, the house is a place for peace and comfort for every human being. Climatic and weather conditions have a direct impact on creating a sense of comfort in any architectural space. Proper heating and air conditioning in the interior of the building is another case of architecture that will not be easy because this architectural issue is related to the comfort or non-comfort of man, and the concepts of heat or cold are mostly due to the natural feeling of man and his physiological conditions. The rising trend of thermal stresses in the studied stations increases the need to pay attention to the issue of thermal stresses and the spread of diseases (heat attack, syncope, and muscle cramps) in terms of crisis planning and management.

Investigation of effective climatology parameters on COVID-19 outbreak in Iran

SARS CoV-2 (COVID-19) Coronavirus cases are confirmed throughout the world and millions of people are being put into quarantine. A better understanding of the effective parameters in infection spreading can bring about a logical measurement toward COVID-19. The effect of climatic factors on spreading of COVID-19 can play an important role in the new Coronavirus outbreak. In this study, the main parameters, including the number of infected people with COVID-19, population density, intra-provincial movement, and infection days to end of the study period, average temperature, average precipitation, humidity, wind speed, and average solar radiation investigated to understand how can these parameters effects on COVID-19 spreading in Iran? The Partial correlation coefficient (PCC) and Sobol’-Jansen methods are used for analyzing the effect and correlation of variables with the COVID-19 spreading rate. The result of sensitivity analysis shows that the population density, intra-provincial movement have a direct relationship with the infection outbreak. Conversely, areas with low values of wind speed, humidity, and solar radiation exposure to a high rate of infection that support the virus’s survival. The provinces such as Tehran, Mazandaran, Alborz, Gilan, and Qom are more susceptible to infection because of high population density, intra-provincial movements and high humidity rate in comparison with Southern provinces.

Impact of climatic factors on the seasonal fluctuation of leishmaniasis vectors in central Morocco (Meknes prefecture)

The impact of climate factors on the epidemiology of diseases in general and leishmaniasis in particular continues to be a subject of research and analysis. Changes in climatic parameters contribute to the creation of ecological conditions favorable to the multiplication of the vectors of certain diseases. With this in mind, this study presents an entomological survey conducted in Meknes prefecture and the study of the link between the abundance of sandflies, an indicator of the risk of leishmaniasis in a given area, and the climatic factors. Monthly trapping of this fauna was carried out during a year from March 2016 until April 2017 using adhesive traps. Climatic data from the region were used to determine the effect of climate on the distribution of sandflies. A total of 941 leishmaniasis vector specimens were captured. The dominant species is Ph. sergenti (73.32), followed by Ph. longicuspis (8.25%), then Ph. perniciosus (7.94%) and Ph. papatasi (6.31%). The sex ratio study showed that males are more abundant than females for all species. The seasonal fluctuation is bimodal with two peaks, the first in July and the second in September. The results show a positive correlation between temperature and abundance of sandflies (r?=?0.99) and a negative correlation with humidity and precipitation with a correlation coefficient of r?=?-0.87 and r?=?-0.72. Indeed, the medium-term climatological forecasts are essential tools to develop a warning system for leishmaniasis.

Impact of environmental and climate factors on spatial distribution of Cutaneous Leishmaniasis in Northeastern Iran: Utilizing remote sensing

BACKGROUND: Cutaneous leishmaniasis (CL) is a dermal and parasitic disease.. The aim of this study was to determine the effect of environmental and climate factors on spatial distribution of CL in northeastern Iran by utilizing remote sensing from 20 March 2016 to 19 March 2017. METHODS: In this ecological study, the data were divided into two parts: The descriptive data on human CL cases were gathered from Communicable Diseases center of Iran. The remote sensing techniques and satellite imagery data (TRMM, MODIS-Aqua, MODIS-Terra and AMSR-2 with spatial resolution 0.25°, 0.05°, 5600m and 10km) of environmental and climate factors were used to determine the spatial pattern changes of cutaneous leishmaniasis incidence. RESULTS: The incidence of CL in North Khorasan, Razavi Khorasan, and South Khorasan was 35.80 per 100,000 people (309/863092), 34.14 per 100,000 people (2197/6,434,501) and 7.67 per 100,000 people (59/768,898), respectively. The incidence of CL had the highest correlation with soil moisture and evapotranspiration. Moreover, the incidence of disease was significantly correlated with Normalized Difference Vegetation Index (NDVI) and air humidity while it had the lowest correlation with rainfall. Furthermore, the CL incidence had an indirect correlation relation with the air temperature meaning that with an increase in the temperature, the incidence of disease decreased. CONCLUSION: As such, the incidence of disease was also higher in the northern regions; most areas of North Khorasan and northern regions of Razavi Khorasan; where the rainfall, vegetation, specific humidity, evapotranspiration, and soil moisture was higher than the southern areas.

High ambient temperature in summer and risk of stroke or transient ischemic attack: A national study in Israel

Objective: To examine whether high ambient temperature and diurnal temperature range during the summer are associated with risk of stroke/transient ischemic attack (TIA). Methods: A time-stratified case-crossover study design was conducted. The study sample comprised all individuals aged >= 50 years who had a stroke/TIA reported to the Israeli National Stroke Registry between 2014 and 2016 during the summer season. Daily temperature data were retrieved from the Israel Meteorological Service. Conditional logistic regression models were used with relative humidity and air pollution as covariates. Results: The sample included 15,123 individuals who had a stroke/TIA during the summer season (mean age 73 +/- 12 years; 54% males). High ambient temperature was associated with stroke/TIA risk starting from the day before the stroke event, and increasing in strength over a six-day lag (OR = 1.10 95%CI 1.09-1.12). Moreover, a larger diurnal temperature range prior to stroke/TIA occurrence was associated with decreased stroke/TIA risk (OR = 0.96 95%CI 0.95-0.97 for a six-day lag). Conclusions: High ambient temperature may be linked to increased risk of cerebrovascular events in subsequent days. However, relief from the heat during the night may attenuate this risk.

Health system plan for implementation of Paris agreement on climate change (COP 21): A qualitative study in Iran

BACKGROUND: Ensuring public health is crucial in any policy debate on climate change. Paris Agreement on climate change is a global contract, through which countries have committed themselves to a public health treaty. The agreement has laid the foundation for mitigation and adaptation. This study was conducted to provide an evidence-based framework for policy-making in the health system of Iran in order to reduce the adverse effects of climate change on public health and to increase the adaptation of the health system as a result. METHODS: This is a qualitative study. We first used Delphi method to extract the components of Paris Agreement on climate change that were related to the functions and policymaking of health system in Iran. Twenty-three experts in health and climate change were identified purposefully and through snowball sampling as participants in Delphi. Data collection instrument was a structured questionnaire. We used SPSS software version 25 for data analysis based on the descriptive indices including the mean, the percentage of consensus above 75%, and the Kendall coordination coefficient. RESULTS: Seventy-nine components classified within nine categories were extracted. The most important examples of the implementation of Paris Agreement on climate change in the health system of Iran were: participation in the formulation of strategies for mitigation and adaptation, identifying vulnerable groups, assessing vulnerability, increasing the capacity of health services delivery during extreme events, using early warning systems, using new technologies to increase the adaptation, evaluation of interventions, financial support, increasing the number of researches, increasing the knowledge and skills of staff, and finally public awareness. CONCLUSIONS: Evidence-based policy-making is pivotal to develop effective programs to control the health effects of climate change. This research provided policy translation and customization of micro and macro provisions of Paris Agreement on climate change, in line with the political context of health system in Iran. Our finding will pave the ground, we envisage, for further steps towards capacity building and enhancement of resiliency of the health system, adaptation interventions, and evaluation, identification of barriers and facilitators for adaptation and decreasing the adverse health effects caused by the climate change, in Iran and perhaps beyond.

Effect of climate change on spatial distribution of scorpions of significant public health importance in Iran

Objective: To establish a spatial geo-database for scorpions in Iran, and to identify the suitable ecological niches for the most dangerous scorpion species under different climate change scenarios. Methods: The spatial distribution of six poisonous scorpion species of Iran were modeled: Hemiscorpius lepturus, Androctonus crassicauda, Mesobuthus eupeus, Hottentotta saulcyi, Hottentotta zagrosensis, and Odontobuthus (O.) doriae, under RCP2.6 and RCP8.5 climate change scenarios. The MaxEnt ecological niche model was used to predict climate suitability for these scorpion species in the 2030s and 2050s, and the data were compared with environmental suitability under the current bioclimatic data. Results: A total of 73 species and subspecies of scorpions belonging to 19 genera in Iran were recorded. Khuzestan Province has the highest species diversity with 34 species and subspecies. The most poisonous scorpion species of Iran are scattered in the semi-arid climates, at an altitudinal range between 11 m and 2 954 m above sea level. It is projected that O. doriae, Androctonus crassicauda and Mesobuthus eupeus species would be widely distributed in most parts of the country, whereas the most suitable ecological niches for the other species would be limited to the west and/or southwestern part of Iran. Conclusions: Although the environmental suitability for all the species would change under the two climate change scenarios, the change would be more significant for O. doriae under RCP8.5 in the 2050s. These findings can be used as basis for future studies in the areas with the highest environmental suitability for the most dangerous scorpion species to fill the gaps in the ecology of scorpion species in these areas.

Vigilance Meteo et Marine

Linking climate to incidence of zoonotic cutaneous leishmaniasis (L. major) in pre-Saharan North Africa

Seasonal Regional Differentiation of Human Thermal Comfort Conditions in Algeria

Lebanon: Health and Climate Change Country Profile 2021

Iraq: Health and Climate Change Country Profile 2021

Iran: Health and Climate Change Country Profile 2022

Israel: Health and Climate Change Country Profile 2022

Occupied Palestinian territories: Health and Climate Change Country Profile 2022

UNFCCC NDC Registry

Effects Of Climate Change On The Social & Environmental Determinants Of Health In Africa: What Can Communities Do To Strengthen Their Climate Resilience?

Climate And Health Consortium For Africa: Roundtable Discussion

Health and Environment Joint Interventions in Africa: Third Interministerial Conference On Health And Environment In Africa, Libreville, Gabon 6–9 November 2018

Strategic Action Plan to Scale Up Health and Environment Interventions in Africa 2019–2029

Framework for Scaling Up Investments in Priority Health and Environment Interventions: Third Interministerial Conference On Health And Environment In Africa Libreville, Gabon 6–9 November 2018

The Libreville Declaration on Health and Environment in Africa: 10 years on, 2008 – 2018

Third Inter-ministerial Conference On Health And Environment In Africa: Conference Proceedings and Outcomes

Persistent heat waves projected for Middle East and North Africa by the end of the 21st century

Canopy Urban Heat Island and Its Association with Climate Conditions in Dubai, UAE

High temperature effect on daily all-cause mortality in Tunis 2005-2007

Geo-climatic factors in a newly emerging focus of zoonotic visceral leishmaniasis in rural areas of north-eastern Iran

Extreme temperatures and mortality in Kuwait: Who is vulnerable?

Estimating near-surface air temperature across Israel using a machine learning based hybrid approach

Entomological investigations, seasonal fluctuations and impact of bioclimate factors of Phlebotomines Sand Flies (Diptera: Psychodidae) of an emerging focus of cutaneous Leishmaniasis in Aichoun, Central Morocco

Developing a thermal stress map of Iran through modeling a combination of bioclimatic indices

Climate change and distribution of zoonotic cutaneous leishmaniasis (ZCL) reservoir and vector species in central Iran

Associations between climatic parameters and the human salmonellosis in Yazd province, Iran

Association between climate variables (cold and hot weathers, humidity, atmospheric pressures) with out-of-hospital cardiac arrests in Rasht, Iran

Assessment of thermal exposure level among construction workers in UAE using WBGT, HSI and TWL indices

Ambient temperature and air pollution, and the risk of preterm birth in Tehran, Iran: A time series study

A primary investigation of the relation between the incidence of brucellosis and climatic factors in Iran

A field evaluation of construction workers’ activity, hydration status, and heat strain in the extreme summer heat of Saudi Arabia

The relation between climatic factors and malaria incidence in Sistan and Baluchestan, Iran

The potential of West Nile Virus transmission regarding the environmental factors using Geographic Information System (GIS), West Azerbaijan Province, Iran

The impacts of climate change on road traffic accidents in Saudi Arabia

The impact of heat waves on mortality and years of life lost in a dry region of Iran (Kerman) during 2005-2017

The effects of temperature on short-term mortality risk in Kuwait: A time-series analysis

The environmental study on assessing the infertility and its risk factors: A population-based study of married couples in Iran

The effects of meteorological variables on ambulance attendance for cardiovascular diseases in Rasht, Iran

Species composition, seasonal abundance, and distribution of potential anopheline vectors in a malaria endemic area of Iran: Field assessment for malaria elimination

Short-term effects of ambient air pollution and cardiovascular events in Shiraz, Iran, 2009 to 2015

Preparedness challenges of the Iranian health system for dust and sand storms: A qualitative study

Potential effects of climatic parameters on human brucellosis in Fars Province, Iran, during 2009-2015

Perceptions of, and practices for, coping with heat exposure among male Arab pilgrims to the Hajj, 1436

Pathways for building urban resilience to climate change in Oman

Natural disasters and challenges toward achieving food security response in Iran

Modification of the conventional influenza epidemic models using environmental parameters in Iran

Influence of weather conditions on the onset of spontaneous pneumothorax in the region of Sousse (Tunisia): Analysis of time series

Impacts of cold and hot temperatures on mortality rate in Isfahan, Iran

Heat stress impacts on cardiac mortality in Nepali migrant workers in Qatar

Exploring community resilience and early warning solution for flash floods, debris flow and landslides in conflict prone villages of Badakhshan, Afghanistan

Environmental extreme temperature and daily preterm birth in Sabzevar, Iran: A time-series analysis

Effects of time-lagged meteorological variables on attributable risk of leishmaniasis in central region of Afghanistan

Effect of meteorological factors on Hyalomma species composition and their host preference, seasonal prevalence and infection status to Crimean-Congo haemorrhagic fever in Iran

Ecological niche modeling of West Nile Virus vector in northwest of Iran

Diarrhea patterns and climate: A spatiotemporal Bayesian hierarchical analysis of diarrheal disease in Afghanistan

Comparative evaluation of sultry indices in the mid-south of Iran

Climate change and the risk of malaria transmission in Iran

Bacteriuria in pregnancy varies with the ambiance: A retrospective observational study at a tertiary hospital in Doha, Qatar

Attributable risk of mortality associated with heat and heat waves: A time-series study in Kerman, Iran during 2005-2017

Assessment of heat stress exposure among construction workers in the hot desert climate of Saudi Arabia

Assessment of resilience to drought of rural communities in Iran

Co-occurrence of extreme ozone and heat waves in two cities from Morocco

Trends of climate change in Saudi Arabia: Implications on water resources

Thunderstorm asthma outbreak, a rare phenomenon in southwest Iran: Patients’ perspectives

The nexus approach to water-energy-food security: An option for adaptation to climate change in Algeria

The relation between mortality from cardiovascular diseases and temperature in Shiraz, Iran, 2006-2012

The relationship between climatic factors and the prevalence of visceral leishmaniasis in north west of Iran

The impact of Sharav weather conditions on airborne pollen in Jerusalem and Tel Aviv (Israel)

The effect of floods on anemia among reproductive age women in Afghanistan

The association between heat waves and other meteorological parameters and snakebites: Israel national study

Temporal and climate characteristics of respiratory syncytial virus bronchiolitis in neonates and children in Sousse, Tunisia, during a 13-year surveillance

Surveying of heat waves impact on the urban heat islands: Case study, the Karaj City in Iran

Spatiotemporal distribution and predictors of tuberculosis incidence in Morocco

Spatio-temporal study of gastric cancer incidence in Kermanshah province, Iran during the years 2009-2014

Spatial distribution of thermal stresses in Iran based on PET and UTCI indices

Spatial and temporal analysis of outdoor human thermal comfort during heat and cold waves in Iran

Spatial distribution of phlebotomine sand flies (diptera: Psychodidae) as phlebovirus vectors in different areas of Iran

Risks to critical environmental resources and public wellbeing from climate change in the eyes of public opinion in Kuwait

Role of environmental, climatic risk factors and livestock animals on the occurrence of cutaneous leishmaniasis in newly emerging focus in Iran

Recent trends and long-range forecasts of water resources of northeast Iraq and climate change adaptation measures

Potential biological and climatic factors that influence the incidence and persistence of highly pathogenic H5N1 avian influenza virus in Egypt

Physiological equivalent temperature index and mortality in Tabriz (the northwest of Iran)

Outbreak of West Nile Virus disease in Israel (2015): A retrospective analysis of notified cases

Meteorological correlates and AirQ(+) health risk assessment of ambient fine particulate matter in Tehran, Iran

Future heat stress arising from climate change on Iran’s population health

Forecasting zoonotic cutaneous leishmaniasis using meteorological factors in eastern Fars province, Iran: a SARIMA analysis

Farmers’ perceptions of and adaptations to drought in Herat Province, Afghanistan

Epidemiology of fascioliasis in Kermanshah Province, Western Iran

Effect of climatic changes on spatial distribution of zoonoses: A case study from South Khorasan Province, Iran

Dengue infection in patients with febrile illness and its relationship to climate factors: A case study in the city of Jeddah, Saudi Arabia, for the period 2010-2014

Combining GIS application and climatic factors for mosquito control in Eastern Province, Saudi Arabia

Climate and environmental factors affecting the incidence of cutaneous leishmaniasis in Isfahan, Iran

Associations between ambient air temperature, low birth weight and small for gestational age in term neonates in southern Israel

Association between apparent temperature and acute coronary syndrome admission in Rasht, Iran

Assessment of extreme heat stress probabilities in Iran’s urban settlements, using first order Markov chain model

Application of decision tree for prediction of cutaneous leishmaniasis incidence based on environmental and topographic factors in Isfahan Province, Iran

Ambient temperature and age-related notified Campylobacter infection in Israel: A 12-year time series study

Estimating the Health Cost of Air Pollution: The Case of Morocco

Urban settlements’ vulnerability to flood risks in African cities: A conceptual framework

System dynamics evaluation of climate change adaptation strategies for water resources management in central Iran

Spatially correlated time series and ecological niche analysis of cutaneous leishmaniasis in Afghanistan

Seasonal variation in spontaneous intracerebral hemorrhage in northern Israel

Potential risk areas of Aedes albopictus in South-Eastern Iran: A vector of dengue fever, zika, and chikungunya

Predicting the potential distribution of main malaria vectors Anopheles stephensi, An. culicifacies s.l. and An. fluviatilis s.l. in Iran based on maximum entropy model

Predictive determinants of scorpion stings in a tropical zone of South Iran: Use of mixed seasonal autoregressive moving average model

Modelling the association of dengue fever cases with temperature and relative humidity in Jeddah, Saudi Arabia-A generalised linear model with break-point analysis

Modeling zoonotic cutaneous leishmaniasis incidence in central Tunisia from 2009-2015: Forecasting models using climate variables as predictors

Mitigation of time series approach on climate change adaptation on rainfall of Wadi al-Aqiq, Madinah, Saudi Arabia

Impact of climate variability on the occurrence of cutaneous leishmaniasis in Khuzestan Province, Southwestern Iran

Forecasting the number of zoonotic cutaneous leishmaniasis cases in south of Fars province, Iran using seasonal ARIMA time series method

Environmental risk factors for the incidence of cutaneous leishmaniasis in an endemic area of Iran: A GIS-based approach

Diurnal temperature range and mortality in Urmia, the northwest of Iran

Association of polycyclic aromatic hydrocarbons of the outdoor air in Ahvaz, southwest Iran during warm-cold season

Association of particulate maters attributed to outdoor air in Ahvaz, Iran during cold-warm season of 2017.

Association between air temperature and acute myocardial infarction hospitalizations in Tehran, Iran: A time-stratified case-crossover

Analysis of the extreme heat events in Iran

Acute viral respiratory infections among children in MERS-endemic Riyadh, Saudi Arabia, 2012-2013

A time series analysis of environmental and metrological factors impact on cutaneous leishmaniasis incidence in an endemic area of Dehloran, Iran

A main driver or an intermediate variable? Climate change, water and security in the Middle East

Balancing water stress and human crises in the Bekaa Valley

Time series analysis of malaria in Afghanistan: Using ARIMA models to predict future trends in incidence

Time series analysis of meteorological factors influencing malaria in South Eastern Iran

The role of season and climate in the incidence of congenital hypothyroidism in Kerman province, Southeastern Iran

The use of spatial and spatiotemporal modeling for surveillance of H5N1 highly pathogenic avian influenza in poultry in the Middle East

The past and future trends of heat stress based on wet bulb globe temperature index in outdoor environment of Tehran City, Iran

The impact of future world events on Iranians’ social health: A qualitative futurology

The effect of hot and humid weather on the level of mental workload among managers and supervisors on a project of South Pars phases, Iran

Spatial changes in the distribution of malaria vectors during the past 5 decades in Iran

Some resilient aspects of urban areas to air pollution and climate change, case study: Tehran, Iran

Simulation of sea level rise and its impacts on the western coastal area of Saudi Arabia

Seroprevalence and risk factors of Varicella Zoster infection in Iranian adolescents: a multilevel analysis; The CASPIAN-III Study

Seasonality of tuberculosis in Israel, 2001-2011

Risk assessment of climate change impacts on runoff in Urmia Lake Basin, Iran

Modelling climate change impacts on and adaptation strategies for agriculture in Sardinia and Tunisia using AquaCrop and value-at-risk

Impact of climate and environmental factors on West Nile Virus circulation in Iran

Future of water supply and demand in the Middle Draa Valley, Morocco, under climate and land use change

Effects of the 2008 flood on economic performance and food security in Yemen: A simulation analysis

Ecological niche modeling for the prediction of the geographic distribution of cutaneous leishmaniasis in Tunisia

Ecological niche modeling of main reservoir hosts of zoonotic cutaneous leishmaniasis in Iran

Determination of air enthalpy based on meteorological data as an indicator for heat stress assessment in occupational outdoor environments, a field study in Iran

Cutaneous leishmaniasis prevalence and morbidity based on environmental factors in Ilam, Iran: Spatial analysis and land use regression models

Control of cutaneous leishmaniasis using geographic information systems from 2010 to 2014 in Khuzestan Province, Iran

Assessment of the physicochemical quality of drinking water resources in the central part of Iran

Assessment of future Syrian water resources supply and demand by the WEAP model

Preventive resettlement in anticipation of sea level rise: A choice experiment from Alexandria, Egypt

Water scarcity impact of climate change in semi-arid regions: A case study in Mujib basin, Jordan

Spatiotemporal Anopheles population dynamics, response to climatic conditions: The case of Chabahar, south Baluchistan, Iran

Outdoor occupational environments and heat stress in Iran

Modeling the distribution of urolithiasis prevalence under projected climate change in Iran

Identification and prioritization of food insecurity and vulnerability indices in Iran

Dynamic relations between incidence of zoonotic cutaneous leishmaniasis and climatic factors in Golestan Province, Iran

Developing a climate-based risk map of fascioliasis outbreaks in Iran

Demographic, socioeconomic and environmental changes affecting circulation of neglected tropical diseases in Egypt

Climate change vulnerability and adaptation strategies in Egypt’s agricultural sector

Climate change in the Fertile Crescent and implications of the recent Syrian drought

Zoom in at African country level: Potential climate induced changes in areas of suitability for survival of malaria vectors

Water, drought, climate change, and conflict in Syria

Vulnerability of Ras Sudr, Egypt to climate change, livelihood index, an approach to assess risks and develop future adaptation strategy

Vulnerability assessment of environmental and climate change impacts on water resources in Al Jabal Al Akhdar, Sultanate of Oman

Time series trend of Bilharzial bladder cancer in Egypt and its relation to climate change: A study from 1995-2005

Thermal comfort and forecast of energy consumption in Northwest Iran

The Burden of climate-related conditions among laborers at Al-Razi Health Centre, Bahrain

Spatial and temporal distribution of West Nile virus in horses in Israel (1997-2013)–from endemic to epidemics

Short-term effect of dust storms on the risk of mortality due to respiratory, cardiovascular and all-causes in Kuwait

Nationwide prediction of drought conditions in Iran based on remote sensing data

Fasciola gigantica transmission in the zoonotic fascioliasis endemic lowlands of Guilan, Iran: Experimental assessment

Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran

Egypt’s economic vulnerability to climate change

Crimean-Congo hemorrhagic fever and its relationship with climate factors in southeast Iran: A 13-year experience

An integrated methodology to assess future water resources under land use and climate change: An application to the Tahadart drainage basin (Morocco)

Air quality and seasonal variations in consultations for respiratory, allergic, dermatological and gastrointestinal diseases in Bahrain, 2007

A climatological study of scsorpion sting incidence from 2007 to 2011 in the Dezful area of Southwestern Iran, using a time series model

A comparative study about the influences of climatic factors on fertility rate among the healthy and infertile women in the North of Iran

Biomphalaria alexandrina in Egypt: Past, present and future

Late Holocene dune mobilizations in the northwestern Negev dunefield, Israel: A response to combined anthropogenic activity and short-term intensified windiness

Global warming: Knowledge and views of Iranian students

Excess mortality during heat waves, Tehran Iran: An ecological time-series study

Climate change, securitisation and the Israeli-Palestinian conflict

Weather conditions and visits to the medical wing of emergency rooms in a metropolitan area during the warm season in Israel: A predictive model

Distribution of natural and anthropogenic radionuclides in heavy rainfall areas in Jordan

Some epidemiological aspects of dermatophyte infections in Southwest Iran

Extreme value indicators in highly resolved climate change simulations for the Jordan River area

Climate change and predicted trend of fungal keratitis in Egypt

Safety in the Heat: A comprehensive program for prevention of heat illness among workers in Abu Dhabi, United Arab Emirates

Conflict and social vulnerability to climate change: Lessons from Gaza

Prioritizing environmental health risks in the UAE

Rainwater harvesting potentials for drought mitigation in Iran

Investigation of climate change in Iran

Distribution and seasonality of Phlebotomus sand flies in cutaneous leishmaniasis foci, Judean Desert, Israel

A model-based assessment of the effects of projected climate change on the water resources of Jordan

A study on Aspergillus species in houses of asthmatic patients from Sari City, Iran and a brief review of the health effects of exposure to indoor Aspergillus

Visceral leishmaniasis in Tunisia: Spatial distribution and association with climatic factors

Study of heat exposure during Hajj (pilgrimage)

Meteorological factors, aeroallergens and asthma-related visits in Kuwait: A 12-month retrospective study

Modelling of malaria temporal variations in Iran

Influence of warming tendency on Culex pipiens population abundance and on the probability of West Nile fever outbreaks (Israeli case study: 2001-2005)

Ecoepidemiology of cutaneous leishmaniasis outbreak, Israel

Climate change and the emergence of Vibrio vulnificus disease in Israel

A 1-year study of the epidemiology of hepatitis A virus in Tunisia

Forest fires in Europe, Middle East and North Africa 2019

United Arab Emirates: Health and Climate Change Country Profile

Assessment of Occupational Heat Strain and Mitigation Strategies in Qatar

Kuwait: Health and Climate Change Country Profile

Morocco: Health and Climate Change Country Profile

Iran: Health and Climate Change Country Profile

Oman: Health and Climate Change Country Profile

Egypt: Health and Climate Change Country Profile

The Pan African programme for public health adaptation to climate change: current status and perspectives

First aid for excessive heat victims

Guidelines for treating and preventing hot weather health impacts

Fighting Water Scarcity in the West Bank and Gaza

Climate and Malaria in Africa: IRI Maproom

African Flood and Drought Monitor

Vigilance Maroc Météo

RBG Risk Map Morocco

Meteo Rwanda Map Room