2023

Author(s): Zhou L, Chen R, He C, Liu C, Lei J, Zhu Y, Gao Y, Kan H, Xuan J

BACKGROUND: Although the existing studies have suggested a significant association between high temperatures and urolithiasis, no nationwide studies have quantified the burden attributable to environmental heat stress and explored how the urolithiasis burden would vary in a warming climate. METHODS: We collected data on urolithiasis attacks from 137 hospitals in 59 main cities from 20 provincial regions of China from 2000 to 2020. An individual-level case-crossover analysis was conducted to estimate the effect of daily wet-bulb globe temperature (WBGT), a heat stress index combining temperature and humidity, on urolithiasis attacks. Stratified analyses were performed by region, age, and sex. We further quantified the future WBGT-related burden of urolithiasis from the Coupled Model Intercomparison Project Phase 6 under three Shared Socioeconomic Pathway (SSP) scenarios. RESULTS: In total, 118,180 urolithiasis patients were evaluated. The exposure-response curve for the association between WBGT and urolithiasis attacks was J-shaped, with a significantly increased risk for WBGT higher than 14.8 °C. The middle-aged and elderly group (≥45 years old) had a higher risk of WBGT-related urolithiasis attacks than in the younger group, while no significant sex difference was observed. The attributable fraction (AF) due to high WBGT would increase from 10.1% in the 2010s to 16.1% in the 2090s under the SSP585 scenario. Warm regions were projected to experience disproportionately higher AFs and larger increments in the future. CONCLUSIONS: This nationwide investigation provides novel evidence on the acute effect of high WBGT on urolithiasis attacks and demonstrates the increasing disease burden in a warming climate.

DOI: https://dx.doi.org/10.1016/j.envres.2022.114850