2023

Author(s): Ruiz-Páez R, Díaz J, López-Bueno JA, Navas MA, Mirón IJ, Martínez GS, Luna MY, Linares C

BACKGROUND: In Spain, two synoptic-scale conditions influence heat wave formation. The first involves advection of warm and dry air masses carrying dust of Saharan origin (North African Dust (NAF) = 1). The second entails anticyclonic stagnation with high insolation and stability (NAF) = 0). Some studies show that the meteorological origin of these heat waves may affect their impact on morbidity and mortality. OBJECTIVE: To determine whether the impact of heat waves on health outcomes in Madrid (Spain) during 2013-2018 varied by synoptic-scale condition. METHODOLOGY: Outcome data consist of daily mortality and daily hospital emergency admissions (morbidity) for natural, circulatory, and respiratory causes. Predictors include daily maximum and minimum temperatures and daily mean concentrations of NO(2), PM(10), PM(2.5), NO(2), and O(3). Analyses adjust for insolation, relative humidity, and wind speed. Generalized linear models were performed with Poisson link between the variables controlling for trend, seasonality, and auto-regression in the series. Relative Risks (RR) and Attributable Risks (AR) were determined. The RRs for mortality attributable to high temperatures were similar regardless of NAF status. For hospital admissions, however, the RRs for hot days with NAF = 0 are higher than for days with NAF = 1. We also found that atmospheric pollutants worsen morbidity and mortality, especially PM(10) concentrations when NAF = 1 and O(3) concentrations when NAF = 0. RESULTS: The effect of heat waves on morbidity and mortality depends on the synoptic situation. The impact is greater under anticyclonic stagnation conditions than under Saharan dust advection. Further, the health impact of pollutants such as PM(10) and O(3) varies according to the synoptic situation. CONCLUSIONS: Based on these findings, we strongly recommend prevention plans to include data on the meteorological situation originating the heat wave, on a synoptic-scale, as well as comprehensive preventive measures against the compounding effect of high temperatures and pollution.

DOI: https://dx.doi.org/10.1016/j.scitotenv.2022.158900